Science.gov

Sample records for environmental growth conditions

  1. Modelling mould growth under suboptimal environmental conditions and inoculum size.

    PubMed

    Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2010-10-01

    Predictive models can be a tool to develop strategies to prevent mould development and consequently mycotoxin production. The aims of this work were to assess the impact of a) high/low levels of inoculum and b) optimal/suboptimal environmental conditions on fungal responses based on both kinetic and probabilistic models. Different levels of spore suspensions of Aspergillus carbonarius and Penicillium expansum were prepared and inoculated centrally with a needlepoint load on malt extract agar (MEA) with 50 replicates. While optimum conditions led to a colony diameter increase which followed Baranyi's function, suboptimal conditions led to different grow functions. In general, growth rate (mu) and lag phase (lambda) were normally distributed. Specifically, the growth rate (mu) showed similar distributions under optimal growth conditions, regardless of the inoculum level, while suboptimal a(w) and temperature conditions led to higher kurtosis distributions, mainly when the inoculum levels were low. Regarding lambda, more skewed distributions were observed, mainly when the inoculum levels were low. Probability models were not much affected by the inoculum size. Lower probabilities of growth were in general predicted under marginal conditions at a given time for both strains. The slopes of the probability curves were smaller under suboptimal growth conditions due to wider distributions. Results showed that a low inoculum level and suboptimal conditions lead to high variability of the estimated growth parameters and growth probability.

  2. Development of a predictive program for Vibrio parahaemolyticus growth under various environmental conditions.

    PubMed

    Fujikawa, Hiroshi; Kimura, Bon; Fujii, Tateo

    2009-09-01

    In this study, we developed a predictive program for Vibrio parahaemolyticus growth under various environmental conditions. Raw growth data was obtained with a V. parahaemolyticus O3:K6 strain cultured at a variety of broth temperatures, pH, and salt concentrations. Data were analyzed with our logistic model and the parameter values of the model were analyzed with polynomial equations. A prediction program consisting of the growth model and the polynomial equations was then developed. After the range of the growth environments was modified, the program successfully predicted the growth for all environments tested. The program could be a useful tool to ensure the bacteriological safety of seafood.

  3. Incorporating temporal heterogeneity in environmental conditions into a somatic growth model

    USGS Publications Warehouse

    Dzul, Maria C.; Yackulic, Charles B.; Korman, Josh; Yard, Michael D.; Muehlbauer, Jeffrey D.

    2017-01-01

    Evaluating environmental effects on fish growth can be challenging because environmental conditions may vary at relatively fine temporal scales compared to sampling occasions. Here we develop a Bayesian state-space growth model to evaluate effects of monthly environmental data on growth of fish that are observed less frequently (e.g., from mark-recapture data where time between captures can range from months to years). We assess effects of temperature, turbidity duration, food availability, flow variability, and trout abundance on subadult humpback chub (Gila cypha) growth in two rivers, the Colorado River (CR) and the Little Colorado River (LCR), and we use out-of-sample prediction to rank competing models. Environmental covariates explained a high proportion of the variation in growth in both rivers; however, the best growth models were river-specific and included either positive temperature and turbidity duration effects (CR) or positive temperature and food availability effects (LCR). Our approach to analyzing environmental controls on growth should be applicable in other systems where environmental data vary over relatively short time scales compared to animal observations.

  4. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces.

  5. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study.

    PubMed

    Kasemets, Kaja; Nisamedtinov, Ildar; Laht, Tiiu-Maie; Abner, Kristo; Paalme, Toomas

    2007-07-01

    The effect of individual environmental conditions (pH, pO(2), temperature, salinity, concentration of ethanol, propanol, tryptone and yeast extract) on the specific growth rate as well as ethanol and glycerol production rate of Saccharomyces cerevisiae S288C was mapped during the fermentative growth in aerobic auxo-accelerostat cultures. The obtained steady-state values of the glycerol to ethanol formation ratio (0.1 mol mol(-1)) corresponding to those predicted from the stoichiometric model of fermentative yeast growth showed that the complete repression of respiration was obtained in auxostat culture and that the model is suitable for calculation of Y(ATP) and Q(ATP) values for the aerobic fermentative growth. Smooth decrease in the culture pH and dissolved oxygen concentration (pO2) down to the critical values of 2.3 and 0.8%, respectively, resulted in decrease in growth yield (Y(ATP)) and specific growth rate, however the specific ATP production rate (Q(ATP)) stayed almost constant. Increase in the concentration of biomass (>0.8 g dwt l(-1)), propanol (>2 g l(-1)) or NaCl (>15 g l(-1)) lead at first to the decrease in the specific growth rate and Q(ATP), while Y(ATP) was affected only at higher concentrations. The observed decrease in Q(ATP) was caused by indirect rather than direct inhibition of glycolysis. The increase in tryptone concentration resulted in an increase in the specific growth rate from 0.44 to 0.62 h(-1) and Y(ATP) from 12.5 to 18.5 mol ATP g dwt(-1). This study demonstrates that the auxo-accelerostat method, besides being an efficient tool for obtaining the culture characteristics, provides also decent conditions for the experiments elucidating the control mechanisms of cell growth.

  6. The exploring root--root growth responses to local environmental conditions.

    PubMed

    Monshausen, Gabriele B; Gilroy, Simon

    2009-12-01

    Because of their sessile lifestyle, the areas which plants can access to forage for resources are confined to those which can be explored by growth. High sensitivity to environmental conditions coupled to the appropriate readjustment of growth and developmental responses are thus critical to plant survival. In this review, we focus on how roots perceive physical cues such as soil water status and mechanical properties and translate them into physiological signals to redirect organ growth and modulate root system architecture. Because the precise molecular identity of most of the sensors used by the root to sample the soil environment remain to be determined, the mechanisms underlying similar processes in microbes are providing important models for how these receptor systems may be functioning in plants.

  7. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    PubMed

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  8. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    PubMed Central

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-01-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content. PMID:27457754

  9. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    NASA Astrophysics Data System (ADS)

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-07-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content.

  10. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  11. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Lavaleye, M. M. S.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M. J. N.; de Haas, H.; Brooke, S.; van Weering, T. C. E.

    2014-05-01

    The Cape Lookout cold-water coral area off the coast of North Carolina forms the shallowest and northernmost cold-water coral mound area on the Blake Plateau in the NW Atlantic. Cold-water coral habitats near Cape Lookout are occasionally bathed in the Gulf Stream, which is characterised by oligotrophic warm water and strong surface currents. Here, we present the first insights into the mound distribution and morphology, sedimentary environment and coral cover and near-bed environmental conditions as recorded by bottom landers from this coral area. The mounds occur between 320 and 550 m water depth and are characterised by high acoustic backscatter indicating the presence of hard structure. Three distinct mound morphologies were observed: (1) a mound with a flattened top at 320 m, (2) multi-summited mounds with a teardrop shape in the middle part of the area and (3) a single mound at 540 m water depth. Echosounder profiles show the presence of a strong reflector underneath all mound structures that forms the base of the mounds. This reflector cropped out at the downstream side of the single mound and consists of carbonate slabs. Video analysis revealed that all mounds are covered by Lophelia pertusa and that living colonies only occur close to the summits of the SSW side of the mounds, which is the side that faces the strongest currents. Off-mound areas were characterised by low backscatter and sediment ripples, indicating the presence of relatively strong bottom currents. Two bottom landers were deployed amidst the coral mounds between December 2009 and May 2010. Both landers recorded prominent events, characterised by large fluctuations in environmental conditions near the seabed as well as in the overlying water column. The period between December and April was characterised by several events of increasing temperature and salinity, coinciding with increased flow and near-bed acoustic backscatter. During these events temperature fluctuated by up to 9 °C within a

  12. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Lavaleye, M. J. N.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M.; de Haas, H.; Brooke, S.; van Weering, T.

    2013-12-01

    The Cape Lookout cold-water coral area off the coast of North Carolina forms the shallowest and northernmost cold-water coral mound area on the Blake Plateau in the NW Atlantic. Cold-water coral habitats near Cape Lookout are occasionally bathed in the Gulf Stream, which is characterised by oligotrophic warm water and strong surface currents. Here, we present the first insights into the mound distribution and morphology, sedimentary environment and coral cover and near-bed environmental conditions as recorded by bottom landers from this coral area. The mounds occur between 320-550 m water depth and are characterised by high acoustic backscatter indicating the presence of hard structure. Three distinct mound morphologies were observed, (1) a mound with a flattened top at 320 m, (2) multi-summited mounds with a tear drop shape in the middle part of the area and (3) a single mound at 540 m water depth. Echosounder profiles show the presence of a strong reflector underneath all mound structures that forms the base of the mounds. This reflector cropped out at the downstream side of the single mound and consists of carbonate slabs. Video analysis revealed that all mounds are covered by Lophelia pertusa and that living colonies only occur close to the summits of the SSW side of the mounds, which is the side that faces the strongest currents. Off mound areas were characterised by low backscatter and sediment ripples, indicating the presence of relatively strong bottom currents. Two bottom landers were deployed amidst the coral mounds between December 2009 and May 2010. Both landers recorded prominent features near the seabed as well as in the overlying water column. The period between December and April was characterised by several events of increasing temperature and salinity, coinciding with increased flow and near-bed acoustic backscatter. During these events temperature fluctuated by up to 9 °C within a day, which is the largest temperature variability as measured so

  13. Effects of environmental conditions on growth and survival of Salmonella in pasteurized whole egg.

    PubMed

    Jakočiūnė, Džiuginta; Bisgaard, Magne; Hervé, Gaëlle; Protais, Jocelyne; Olsen, John Elmerdahl; Chemaly, Marianne

    2014-08-01

    This study investigated the influence of three parameters (time, temperature and NaCl concentration) on survival and four parameters (temperature, NaCl and lysozyme concentrations and pH) on growth of Salmonella enterica serovar Enteritidis (S. Enteritidis) in pasteurized whole egg (PWE). Doehlert uniform shell design was employed to choose conditions for trials and data was fitted to polynomial models and were presented as estimated response surfaces. A model for prediction of reduction of S. Enteritidis in PWE within temperatures between 50 and 58°C, NaCl concentrations of 0-12%, and heating times between 30 and 210s and a model for prediction of growth rate of S. Enteritidis in PWE in the temperature range of 1-25°C, NaCl concentration of 0-12%, pH between 5 and 9, and lysozyme concentrations of 107-1007 U/mg proteins were developed. The maximum reduction condition was 58°C, 0% of NaCl at a fixed heating time of 120s, while maximum growth rate was estimated at 25°C and 0% of NaCl. pH and lysozyme concentration were shown not to influence growth performance significantly in the range of values studied. Results inform industry of the optimal pasteurization and storage parameters for liquid whole egg.

  14. Growth kinetics and energetics of a deep-sea hyperthermophilic methanogen under varying environmental conditions.

    PubMed

    Ver Eecke, Helene C; Akerman, Nancy H; Huber, Julie A; Butterfield, David A; Holden, James F

    2013-10-01

    A hyperthermophilic deep-sea methanogen, Methanocaldococcus strain JH146, was isolated from 26°C hydrothermal fluid at Axial Volcano to model high temperature methanogenesis in the subseafloor. Emphasis was placed on defining growth kinetics, cell yields and growth energy demand (GE) across a range of conditions. The organism uses H2 and CO2 as its sole carbon and energy sources. At various temperatures, pHs, and chlorinities, its growth rates and cell yields co-varied while GE remained uniform at 1.69 × 10(-11) J cell(-1)s(-1) ± 0.68 × 10(-11) J cell(-1)s(-1) (s.d., n = 23). An exception was at superoptimal growth temperatures where GE increased to 7.25 × 10(-11) J cell(-1)s(-1) presumably due to heat shock. GE also increased from 5.1 × 10(-12) J cell(-1)s(-1) to 7.61 × 10(-11) J cell(-1)s(-1) as NH4 (+) concentrations decreased from 9.4 mM to 0.14 mM. JH146 did not fix N2 or assimilate NO3 (-), lacked the N2-fixing (cluster II) nifH gene, and became nitrogen limited below 0.14 mM NH4Cl. Nitrogen availability may impact growth in situ since ammonia concentrations at Axial Volcano are < 18 μM. Our approach contributes to refining bioenergetic and carbon flux models for methanogens and other organisms in hydrothermal vents and other environments.

  15. Germination and Growth of a Vegetable Exposed to Very Severe Environmental Conditions Experimentally Induced by High Voltage

    NASA Astrophysics Data System (ADS)

    Aoki, Takashi; Ikezawa, Shunjiro

    1982-09-01

    Ultra-high-voltage (UHV) transmission power lines are required in order to reduce transmission energy losses, and to transfer more power across long distances. However, the ecological and biological influence of UHV lines has not been documented well. Possible influences of UHV lines are: electro-magnetic field, ozone, NOx, and ion shower. The purpose of this study was to obtain information on the germination and growth of Raphanus sativus L.cv. Kaiware-daikon exposed to an experimental environment in which all the above influences at very severe intensity levels were working simultaneously. Several environmental conditions severer than those predicted for future UHV lines were set up, using a high voltage at 60 Hz. The germination and growth of this plant were suppressed under the experimental conditions used, the suppression being greater the severer the conditions. When the electric field is strong, corona discharge occurs at the tip of the plant.

  16. Is intraspecific variability of growth and mycotoxin production dependent on environmental conditions? A study with Aspergillus carbonarius isolates.

    PubMed

    Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2011-01-05

    The aim of this study was to assess the impact of suboptimal environmental conditions on the intraspecific variability of A. carbonarius growth and OTA production using thirty isolates of A. carbonarius. Three a(w)/temperature conditions were tested, one optimal (0.98a(w)/25°C) and two suboptimal: 0.90a(w)/25°C and 0.98a(w)/37°C as suboptimal water activity and temperature, respectively, which might take place through over ripening and dehydration of grapes. For each condition, 12 Petri dishes were inoculated, and colony growth and OTA production were measured over time. ANOVA revealed significant differences among μ and λ within the 30 assayed isolates. Coefficients of variation (CV%) revealed a wider dispersion of growth rates at 0.90a(w)/25°C compared to 0.98a(w)/25°C, and a more than 4-fold higher CV at 0.98a(w)/37°C compared to 0.98a(w)/25°C. However, dispersion of lag phases was similar at 0.98a(w)/25°C and 0.90a(w)/25°C and wider at 0.98a(w)/37°C. There were significant differences (p<0.05) among OTA levels (ng/mm(2)) for the different conditions, values being lower under marginal conditions, and particularly at 0.98a(w)/37°C. Coefficients of variation (CV%) revealed a wider dispersion of OTA production at 0.90a(w)/25°C compared to 0.98a(w)/25°C, while CV at 0.98a(w)/37°C was similar to that at 0.98a(w)/25°C. In order to address the strain variability in growth initiation and prove the well-established notion of reducing OTA in foods by preventing fungal growth, a greater number of strains should be included when developing models for conditions that are suboptimal both for a(w) for OTA production and temperature levels for growth.

  17. Bacterial Epimerization as a Route for Deoxynivalenol Detoxification: the Influence of Growth and Environmental Conditions.

    PubMed

    He, Jian Wei; Hassan, Yousef I; Perilla, Norma; Li, Xiu-Zhen; Boland, Greg J; Zhou, Ting

    2016-01-01

    Deoxynivalenol (DON) is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25-30°C), and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 μg DON/h/10(8) cells). The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions.

  18. Bacterial Epimerization as a Route for Deoxynivalenol Detoxification: the Influence of Growth and Environmental Conditions

    PubMed Central

    He, Jian Wei; Hassan, Yousef I.; Perilla, Norma; Li, Xiu-Zhen; Boland, Greg J.; Zhou, Ting

    2016-01-01

    Deoxynivalenol (DON) is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25–30°C), and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 μg DON/h/108 cells). The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions. PMID:27148248

  19. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global

  20. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  1. Marked deleterious changes in the condition, growth and maturity schedules of Acanthopagrus butcheri (Sparidae) in an estuary reflect environmental degradation

    NASA Astrophysics Data System (ADS)

    Cottingham, Alan; Hesp, S. Alex; Hall, Norman G.; Hipsey, Matthew R.; Potter, Ian C.

    2014-08-01

    As Acanthopagrus butcheri typically completes its life within its natal estuary and possesses plastic biological characteristics, it provides an excellent model for exploring the ways and extent to which a fish species can respond to environmental changes over time. The environment of the Swan River Estuary in south-western Australia has deteriorated markedly during the last two decades, reflecting the effects of increasing eutrophication and hypoxia in the upper regions, where A. butcheri spends most of the year and spawns. In this study, the biological characteristics of A. butcheri in 2007-11 were determined and compared with those in 1993-95. Between these two periods, the condition factor for females and males of A. butcheri across their length ranges declined by 6 and 5%, respectively, and the parameters k and L∞ in the von Bertalanffy growth curves of both sexes underwent marked reductions. The predicted lengths of females and males at all ages ≥1 year were less in 2007-11 than in 1993-95 and by over 30% less at ages 3 and 6. The ogives relating maturity to length and age typically differed between 1993-94 and 2007-10. The L50s of 156 mm for females and 155 mm for males in 2007-10 were less than the corresponding values of 174 and 172 mm in 1993-94, whereas the A50s of 2.5 years for both females and males in 2007-10 were greater than the corresponding values of 1.9 and 2.0 years in 1993-94. The above trends in condition, growth and maturity parameters between periods are consistent with hypotheses regarding the effects of increasing hypoxia on A. butcheri in offshore, deeper waters. However, as the density of A. butcheri declined in offshore, deeper waters and increased markedly in nearshore, shallow waters, density-dependent effects in the latter waters, although better oxygenated, also probably contributed to the overall reductions in growth and thus to the changes in the lengths and ages at maturity.

  2. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Strachan, S.; Biondi, F.; Johnson, B. G.

    2012-12-01

    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  3. Environmental hypoxia but not minor shell damage affects scope for growth and body condition in the blue mussel Mytilus edulis (L.).

    PubMed

    Sanders, Trystan; Widdicombe, Steve; Calder-Potts, Ruth; Spicer, John I

    2014-04-01

    The effects of short-term (7 d) exposure to environmental hypoxia (2.11 mg O₂ L⁻¹; control: 6.96 mg O₂ L⁻¹) and varying degrees of shell damage (1 or 2, 1 mm diameter holes; control: no holes) on respiration rate, clearance rate, ammonia excretion rate, scope for growth (SFG) and body condition index were investigated in adult blue mussels (Mytilus edulis). There was a significant hypoxia-related reduction in SFG (>6.70 to 0.92 J g⁻¹ h⁻¹) primarily due to a reduction in energy acquisition as a result of reduced clearance rates during hypoxia. Shell damage had no significant affect on any of the physiological processes measured or the SFG calculated. Body condition was unaffected by hypoxia or shell damage. In conclusion, minor physical damage to mussels had no effect on physiological energetics but environmental hypoxia compromised growth, respiration and energy acquisition presumably by reducing feeding rates.

  4. Effects of nutritional and environmental conditions on planktonic growth and biofilm formation of Citrobacter werkmanii BF-6.

    PubMed

    Zhou, Gang; Li, Long-jie; Shi, Qing-shan; Ouyang, You-sheng; Chen, Yi-ben; Hu, Wen-feng

    2013-12-01

    Citrobacter sp. is a cause of significant opportunistic nosocomial infection and is frequently found in human and animal feces, soil, and sewage water, and even in industrial waste or putrefaction. Biofilm formation is an important virulence trait of Citrobacter sp. pathogens but the process and characteristics of this formation are unclear. Therefore, we employed in vitro assays to study the nutritional and environmental parameters that might influence biofilm formation of C. werkmanii BF-6 using 96-well microtiter plates. In addition, we detected the relative transcript levels of biofilm formation genes by RT-PCR. Our results indicated that the capacity of C. werkmanii BF-6 to form biofilms was affected by culture temperature, media, time, pH, and the osmotic agents glucose, sucrose, NaCl, and KCl. Confocal laser scanning microscopy results illustrated that the structure of biofilms and extracellular polysaccharide was influenced by 100 mM NaCl or 100 mM KCl. In addition, nine biofilm formation genes (bsmA, bssR, bssS, csgD, csgE, csgF, mrkA, mrkB, and mrkE) were found to contribute to planktonic and biofilm growth. Our data suggest that biofilm formation by C. werkmanii BF-6 is affected by nutritional and environmental factors, which could pave the way to the prevention and elimination of biofilm formation using proper strategies.

  5. Effect of saline irrigation on growth characteristics and mineral composition of two local halophytes under Saudi environmental conditions.

    PubMed

    Alshammary, Saad F

    2008-09-01

    A field experiment was carried out to determine the growth characteristics and mineral composition of two local halophytes (Atriplex halimus and Salvadora persica) under saline irrigation at Kind Abdulaziz City for Science and Technology (KACST), Research Station Al-Muzahmyia, Riyadh. The experiment treatments were one soil (sandy), four irrigation waters of different salinities (2000, 8000, 12000 and 16000 mg L(-1) TDS), two halophytes (Salvadora persica and Atriplex halimus) and one irrigation level (irrigation at 50% depletion of moisture at field capacity). Mean fresh biomass yield and fresh plant root weight of A. halimus increased while that of S. persica decreased significantly with increasing irrigation water salinity in all the treatments. Soil salinity increased significantly with increasing water salinity. A positive correlation (r = 0.987) existed between the irrigation water salinity and the soil salinity resulting from saline irrigation. The plant tissue protein contents increased in A. halimus, but decreased in S. persica with increasing irrigation water salinity. The Na ion uptake by plant roots was significantly less than K in A. halimus compared to S. persica which indicated adjustment of plants to high soil salinity and high Na ion concentration for better growth. The order of increasing salt tolerance was A. halimus > S. persica under the existing plant growing conditions. Among the two halophytes, A. halimus showed great potential for establishing gene banks of local species, because it has more forage value due to high protein contents than S. persica for range animals.

  6. A "core-top" screen for trace element proxies of environmental conditions and growth rates in the calcite skeletons of bamboo corals (Isididae)

    NASA Astrophysics Data System (ADS)

    Thresher, Ronald E.; Fallon, Stewart J.; Townsend, Ashley T.

    2016-11-01

    We test for trace element proxies in the high-magnesium calcite fraction of bamboo coral internodes by comparing environmental conditions and growth rates to the specimen-mean compositions of 73 corals that were live-caught at depths ranging from 3 to 3950 m and collected from habitats ranging from tropical coral reefs to the Antarctic slope. Comparisons were done at a large geographic scale (LGS) and for a well sampled area south of Australia, across depths at a single site, in order to help separate the effects of environmental variables that co-vary at one spatial scale, but not the other. Thirty-seven trace elements were measured using solution-based Sector Field ICP-MS, of which seventeen were significantly detected in more than a third of the specimens. Only eight element/calcium ratios correlated significantly with any environmental variable at the large geographic scale, and only four did so at the local level. At the LGS, the highest correlation was between ambient temperature and Mg/Ca, which accounted for 89% of the variance across specimens, spanned all four Isidid sub-families and was independently significant in the two best sampled sub-families.

  7. Effects of environmental and biological conditions on the recruitment and growth of the Manila clam Ruditapes philippinarum on the west coast of Korea

    NASA Astrophysics Data System (ADS)

    Kim, Sang Lyeol; Kwon, Soon Hyun; Lee, Hyun Gon; Yu, Ok Hwan

    2017-01-01

    The distribution of the Manila clam Ruditapes philippinarum, which is often dominant in intertidal zones, is influenced by both environmental and biological conditions. However, there have been few comprehensive studies on the interactive effects of these two groups of factors. The present study examined the environmental and biological parameters determining the population dynamics of the clams that is a dominant component of the intertidal communities of Euhangri and Padori on the west coast of Korean peninsula. We collected R. philippinarum and other members of the macrobenthos (> 1 mm long) monthly from 0.25 m2 quadrats deployed in the intertidal zones at Euhangri, Taean, and Padori during the period from August 2013 to January 2015. Physicochemical parameters of the water and sediment were measured at the same time. Water temperature and salinity is high and low in the summer to winter, respectively. While mean grain size of the sediment was higher at Euhangri than at Padori, total mean density of R. philippinarum was higher at Euhangri (325 ind./ 0.25 m² at Padori vs. 194 ind./0.25 m² at Euhangri). Settled spat (< 10 mm in length) density was much higher at Euhangri than at Padori (132 vs. 12 individuals/0.25m2, respectively). R. philippinarum spats settled down on the sediment at Euhangri in October and grew continually until the following May, when they reached adult size. Spats that settled down at Padori between March and April were not able to reach the adult stage. As the density of the adult population increased, the condition index of individual clams decreased, but as the population density of the spat increased the body condition index increased. The chlorophyll a content of the sediments at Padori exceeded that at Euhangri and decreased as the population of R. philippinarum increased. The shapes of R. philippinarum shells at Euhangri were more prolate than those at Padori, and the condition index at Euhangri exceeded that at Padori, indicating

  8. Effects of environmental and biological conditions on the recruitment and growth of the Manila clam Ruditapes philippinarum on the west coast of Korea

    NASA Astrophysics Data System (ADS)

    Kim, Sang Lyeol; Kwon, Soon Hyun; Lee, Hyung-Gon; Yu, Ok Hwan

    2017-03-01

    The distribution of the Manila clam Ruditapes philippinarum, which is often dominant in intertidal zones, is influenced by both environmental and biological conditions. However, there have been few comprehensive studies on the interactive effects of these two groups of factors. The present study examined the environmental and biological parameters determining the population dynamics of the clams that is a dominant component of the intertidal communities of Euhangri and Padori on the west coast of Korean peninsula. We collected R. philippinarum and other members of the macrobenthos (> 1 mm long) monthly from 0.25 m2 quadrats deployed in the intertidal zones at Euhangri, Taean, and Padori during the period from August 2013 to January 2015. Physicochemical parameters of the water and sediment were measured at the same time. Water temperature and salinity is high and low in the summer to winter, respectively. While mean grain size of the sediment was higher at Euhangri than at Padori, total mean density of R. philippinarum was higher at Euhangri (325 ind./ 0.25 m2 at Padori vs. 194 ind./0.25 m2 at Euhangri). Settled spat (< 10 mm in length) density was much higher at Euhangri than at Padori (132 vs. 12 individuals/0.25m2, respectively). R. philippinarum spats settled down on the sediment at Euhangri in October and grew continually until the following May, when they reached adult size. Spats that settled down at Padori between March and April were not able to reach the adult stage. As the density of the adult population increased, the condition index of individual clams decreased, but as the population density of the spat increased the body condition index increased. The chlorophyll a content of the sediments at Padori exceeded that at Euhangri and decreased as the population of R. philippinarum increased. The shapes of R. philippinarum shells at Euhangri were more prolate than those at Padori, and the condition index at Euhangri exceeded that at Padori, indicating

  9. Conditioning biomass for microbial growth

    DOEpatents

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  10. Environmental impact of population growth

    NASA Astrophysics Data System (ADS)

    Naylor, Rosamond; Matson, Pamela

    Earth's population currently numbers 5.4 billion; even given optimistic assumptions for reduction in growth rates, the number will double by the middle of the next century with most of the increase in the developing countries. Rapid population growth in the developing world raises the fundamental dilemma of how to alleviate chronic hunger and poverty in the short run while preserving the atmosphere and ecosystem services required for long-term human and biospheric sustenance. This dilemma, and the compromises required to solve it, were discussed by twenty-five researchers from five countries at the Aspen Global Change Institute 1992 Summer Science Session III, Food, Conservation, and Global Environmental Change: Is Compromise Possible?, held from August 16 to 28, in Aspen, Colo.

  11. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium.

    PubMed

    Bove, Claudio Giorgio; De Angelis, Maria; Gatti, Monica; Calasso, Maria; Neviani, Erasmo; Gobbetti, Marco

    2012-11-01

    The aim of this study was to demonstrate the metabolic and proteomic adaptation of Lactobacillus rhamnosus strains, which were isolated at different stages of Parmigiano Reggiano cheese ripening. Compared to de Man, Rogosa, and Sharpe (MRS) broth, cultivation under cheese-like conditions (cheese broth, CB) increased the number of free amino acids used as carbon sources. Compared with growth on MRS or pasteurized and microfiltrated milk, all strains cultivated in CB showed a low synthesis of d,l-lactic acid and elevated levels of acetic acid. The proteomic maps of the five representative strains, showing different metabolic traits, were comparatively determined after growth on MRS and CB media. The amount of intracellular and cell-associated proteins was affected by culture conditions and diversity between strains, depending on their time of isolation. Protein spots showing decreased (62 spots) or increased (59 spot) amounts during growth on CB were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Compared with cultivation on MRS broth, the L. rhamnosus strains cultivated under cheese-like conditions had modified amounts of some proteins responsible for protein biosynthesis, nucleotide, and carbohydrate metabolisms, the glycolysis pathway, proteolytic activity, cell wall, and exopolysaccharide biosynthesis, cell regulation, amino acid, and citrate metabolism, oxidation/reduction processes, and stress responses.

  12. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures.

    PubMed

    Chen, Chien-Chih; Bates, Rick; Carlson, John

    2014-01-01

    The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabilizer, 2-(N-morpholino)ethanesulfonic acid (MES) that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth.

  13. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures

    PubMed Central

    Chen, Chien-Chih; Bates, Rick; Carlson, John

    2015-01-01

    The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabilizer, 2-(N-morpholino)ethanesulfonic acid (MES) that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth. PMID:26535110

  14. Population growth and environmental degradation in Malawi.

    PubMed

    Kalipeni, E

    1992-01-01

    Malawi has been ranked by the World Bank as one of the poorest countries in Africa. Malawi's only resources are its people and fertile soil, which comprises about 55% of land area. Environmental degradation and population growth conditions in Malawi were used to illustrate the model of environmental degradation linked to population pressure on land resources and government development strategies that favored large-scale agricultural farms. The result has been deforestation, overgrazing, overuse of land for subsistence, and increased population density. The argument was that population growth in some developing countries has been so rapid that environmental collapse is the result. The theoretical framework linking population growth, environment, and resources emphasized processes: 1) the precursor stage of underlying causes; 2) the problem phase with potential ecological and economic decline; and 3) consequences (environmental decline, reduction in food production systems, and reduction in standard of living). The precursors were identified as an agrarian society, lack of a population policy, and emphasis on large families. The problems were rapid population growth and immigration from Mozambique, which led to increased demand for trees for fuel and consequent deforestation, increased demand for arable land and consequent landlessness, increased investment in livestock and consequent overgrazing, and continued population momentum which was a financial burden to government and resulted in increased labor competition. The ecological consequences were soil erosion, degradation of vegetation, and water supply contamination and decline. Eventually, famines will occur and lead to disease, migration, deserted villages, urbanization, unemployment, ethnic conflicts, and political unrest. Population was estimated at 8.75 million in 1990, with exponential growth expected. Completed family size was 6.6 children per woman. Even replacement fertility would mean growth for 50 more

  15. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum.

    PubMed

    Marín, Patricia; Magan, Naresh; Vázquez, Covadonga; González-Jaén, María Teresa

    2010-08-01

    The effects of ecophysiological factors, temperature and solute potential, on both the growth and the regulation of the fumonisin biosynthetic FUM1 gene were studied and compared in one isolate each of the two closely related fumonisin-producing and maize pathogens Fusarium verticillioides and Fusarium proliferatum. The effect of solute potential and temperature was examined on in vitro mycelia growth and on the expression of the FUM1 gene, quantified by species-specific real-time reverse transcriptase-PCR assays. Although both isolates showed similar two-dimensional profiles of growth, for F. verticillioides, optimal growth conditions were maintained at higher temperatures and lower solute potential values. FUM1 gene expression was markedly induced at 20 degrees C in both isolates, under suboptimal conditions for growth; however, their expression patterns differed in relation to solute potential. Whereas FUM1 expression was induced in response to increasing water stress in the isolate of F. verticillioides, the F. proliferatum one showed a stable expression pattern regardless of water potential conditions. These results suggest a differential regulation of fumonisin biosynthesis in these isolates of the two species that might be related to their different host range, and play an ecological role. Additionally, environmental conditions leading to water stress (drought) might result in increased risk of fumonisin contamination of maize caused by F. verticillioides.

  16. Conflict Between Economic Growth and Environmental Protection

    SciTech Connect

    Czech, Bryan

    2012-01-09

    The conflict between economic growth and environmental protection may not be reconciled via technological progress. The fundamentality of the conflict ultimately boils down to laws of thermodynamics. Physicists and other scholars from the physical sciences are urgently needed for helping the public and policy makers grasp the conflict between growth and environmental protection.

  17. Economic Growth with Environmental Quality

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    Producers of environmental control equipment have formed the Environmental Industry Council (EIC) in order to acquire a voice in the Washington legislative machinery. The Council is interested in changes in tax policy and in publicizing case histories where environmental controls have led to industrial savings. (BT)

  18. Growth rate and TRI5 gene expression profiles of Fusarium equiseti strains isolated from Spanish cereals cultivated on wheat and barley media at different environmental conditions.

    PubMed

    Marín, Patricia; Jurado, Miguel; González-Jaén, M Teresa

    2015-02-16

    Fusarium equiseti is a toxigenic species that often contaminates cereal crops from diverse climatic regions such as Northern and Southern Europe. Previous results suggested the existence of two distinct populations within this species with differences in toxin profile which largely corresponded to North and South Europe (Spain). In this work, growth rate profiles of 4 F. equiseti strains isolated from different cereals and distinct Spanish regions were determined on wheat and barley based media at a range of temperatures (15, 20, 25, 30, 35 and 40°C) and water potential regimens (-0.7, -2.8, -7.0, and -9.8MPa, corresponding to 0.99, 0.98, 0.95 and 0.93 aw values). Growth was observed at all temperatures except at 40°C, and at all the solute potential values except at -9.8MPa when combined with 15°C. Optimal growth was observed at 20-30°C and -0.7/-2.8MPa. The effect of these factors on trichothecene biosynthesis was examined on a F. equiseti strain using a newly developed real time RT-PCR protocol to quantify TRI5 gene expression at 15, 25 and 35°C and -0.7, -2.8, -7.0 and -9.8MPa on wheat and barley based media. Induction of TRI5 expression was detected between 25 and 35°C and -0.7 and -2.8MPa, with maximum values at 35°C and -2.8MPa being higher in barley than in wheat medium. These results appeared to be consistent with a population well adapted to the present climatic conditions and predicted scenarios for Southern Europe and suggested some differences depending on the cereal considered. These are also discussed in relation to other Fusarium species co-occurring in cereals grown in this region and to their significance for prediction and control strategies of toxigenic risk in future scenarios of climate change for this region.

  19. Environmental variability and child growth in Nepal.

    PubMed

    Shively, Gerald; Sununtnasuk, Celeste; Brown, Molly

    2015-09-01

    Data from the 2011 Nepal Demographic Health Survey are combined with satellite remotely sensed Normalized Difference Vegetation Index (NDVI) data to evaluate whether interannual variability in weather is associated with child health. For stunting, we focus on children older than 24 months of age. NDVI anomaly averages during cropping months are evaluated during the year before birth, the year of birth, and the second year after birth. For wasting, we assess children under 59 months of age and relate growth to NDVI averages for the current and most recent growing periods. Correlations between short-run indicators of child growth and intensity of green vegetation are generally positive. Regressions that control for a range of child-, mother- and household-specific characteristics produce mixed evidence regarding the role of NDVI anomalies during critical periods in a child's early life and the subsequent probability of stunting and wasting. Overall findings suggest that the relationship between environmental conditions and child growth are heterogeneous across the landscape in Nepal and, in many cases, highly non-linear and sensitive to departures from normality.

  20. Crops Models for Varying Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  1. Dynamic photosynthesis in different environmental conditions.

    PubMed

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis.

  2. Environmental Conditions in Kentucky's Penal Institutions

    ERIC Educational Resources Information Center

    Bell, Irving

    1974-01-01

    A state task force was organized to identify health or environmental deficiencies existing in Kentucky penal institutions. Based on information gained through direct observation and inmate questionnaires, the task force concluded that many hazardous and unsanitary conditions existed, and recommended that immediate action be given to these…

  3. Improving Warfighters’ Sustainment and Performance in Extreme Environmental Conditions

    DTIC Science & Technology

    2008-02-18

    performance; 2) reduced stress-induced damage (such as oxidative stress and inflammation, among others) in vital organs (heart, liver , kidneys, and brain); and...among others) in vital organs (heart, liver , kidneys, and brain); and 3) increased the body’s tolerance to these extreme environmental conditions; 5...and the activation of molecular cell survival pathways via activation of erythropoietin ( EPO ), vascular endothelial growth factor (VEGF), hypoxia

  4. Evidence for environmentally enhanced forest growth

    PubMed Central

    Fang, Jingyun; Kato, Tomomichi; Guo, Zhaodi; Yang, Yuanhe; Hu, Huifeng; Shen, Haihua; Zhao, Xia; Kishimoto-Mo, Ayaka W.; Tang, Yanhong; Houghton, Richard A.

    2014-01-01

    Forests in the middle and high latitudes of the northern hemisphere function as a significant sink for atmospheric carbon dioxide (CO2). This carbon (C) sink has been attributed to two processes: age-related growth after land use change and growth enhancement due to environmental changes, such as elevated CO2, nitrogen deposition, and climate change. However, attribution between these two processes is largely controversial. Here, using a unique time series of an age-class dataset from six national forest inventories in Japan and a new approach developed in this study (i.e., examining changes in biomass density at each age class over the inventory periods), we quantify the growth enhancement due to environmental changes and its contribution to biomass C sink in Japan’s forests. We show that the growth enhancement for four major plantations was 4.0∼7.7 Mg C⋅ha−1 from 1980 to 2005, being 8.4–21.6% of biomass C sequestration per hectare and 4.1–35.5% of the country's total net biomass increase of each forest type. The growth enhancement differs among forest types, age classes, and regions. Our results provide, to our knowledge, the first ground-based evidence that global environmental changes can increase C sequestration in forests on a broad geographic scale and imply that both the traits and age of trees regulate the responses of forest growth to environmental changes. These findings should be incorporated into the prediction of forest C cycling under a changing climate. PMID:24979781

  5. NOVELTY DETECTION UNDER CHANGING ENVIRONMENTAL CONDITIONS

    SciTech Connect

    H. SOHN; K. WORDER; C. R. FARRAR

    2001-04-01

    The primary objective of novelty detection is to examine a system's dynamic response to determine if the system significantly deviates from an initial baseline condition. In reality, the system is often subject to changing environmental and operation conditions that affect its dynamic characteristics. Such variations include changes in loading, boundary conditions, temperature, and moisture. Most damage diagnosis techniques, however, generally neglect the effects of these changing ambient conditions. Here, a novelty detection technique is developed explicitly taking into account these natural variations of the system in order to minimize false positive indications of true system changes. Auto-associative neural networks are employed to discriminate system changes of interest such as structural deterioration and damage from the natural variations of the system.

  6. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus.

    PubMed

    Lai, W H; Siti Murni, M J; Fauzi, D; Abas Mazni, O; Saleh, N M

    2011-06-01

    Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media.

  7. CTOD for slow stable crack growth conditions

    NASA Astrophysics Data System (ADS)

    Perez Ipina, J. E.

    1992-11-01

    An incremental method is developed for calculating values of CTOD under slow stable crack growth conditions. The method, which only needs the data required for an R-curve test, gives more accurate CTOD values than those obtained using existing standards.

  8. Microaerophilic Conditions Promote Growth of Mycobacterium genavense

    PubMed Central

    Realini, L.; De Ridder, K.; Palomino, J.-C.; Hirschel, B.; Portaels, F.

    1998-01-01

    Our studies show that microaerophilic conditions promote the growth of Mycobacterium genavense in semisolid medium. The growth of M. genavense at 2.5 or 5% oxygen was superior to that obtained at 21% oxygen in BACTEC primary cultures (Middlebrook 7H12, pH 6.0, without additives). By using nondecontaminated specimens, it was possible to detect growth with very small inocula (25 bacilli/ml) of 12 different M. genavense strains (from nude mice) within 6 weeks of incubation under low oxygen tension; conversely, with 21% oxygen, no growth of 8 of 12 (66.7%) M. genavense strains was detected (growth index, <10). The same beneficial effect of 2.5 or 5% oxygen was observed in primary cultures of a decontaminated clinical specimen. Low oxygen tension (2.5 or 5%) is recommended for the primary isolation of M. genavense. Microaerophilic cultivation of other atypical mycobacteria, especially slow-growing (e.g., Mycobacterium avium) and difficult-to-grow (e.g., Mycobacterium ulcerans) species, is discussed. PMID:9705393

  9. Changes in Environmental Conditions Modify Infection Kinetics of Dairy Phages.

    PubMed

    Zaburlin, Delfina; Quiberoni, Andrea; Mercanti, Diego

    2017-04-08

    Latent period, burst time, and burst size, kinetic parameters of phage infection characteristic of a given phage/host system, have been measured for a wide variety of lactic acid bacteria. However, most studies to date were conducted in optimal growth conditions of host bacteria and did not consider variations due to changes in external factors. In this work, we determined the effect of temperature, pH, and starvation on kinetic parameters of phages infecting Lactobacillus paracasei, Lactobacillus plantarum, and Leuconostoc mesenteroides. For kinetics assessment, one-step growth curves were carried out in MRS broth at optimal conditions (control), lower temperature, pH 6.0 and 5.0 (MRS6 and MRS5, respectively), or in medium lacking carbon (MRSN) or nitrogen (MRSC) sources. Phage infection was progressively impaired as environmental conditions were modified from optimal. At lower temperature or pH, infection was delayed, as perceived by longer latent and burst times. Burst size, however, was lower, equal or higher than for controls, but this effect was highly dependent on the particular phage-host system studied. Phage infection was strongly inhibited in MRSC, but only mildly impaired in MRSN. Nevertheless, growth of all the bacterial strains tested was severely compromised by starvation, without significant differences between MRSC and MRSN, indicating that nitrogen compounds are specifically required for a successful phage infection, beyond their influence on bacterial growth.

  10. Environmental Effects on Fatigue Crack Growth in 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Bonakdar, A.; Wang, F.; Williams, J. J.; Chawla, N.

    2012-08-01

    The fatigue behavior of aluminum alloys is greatly influenced by the environmental conditions. In this article, fatigue crack growth rates were measured for 7075-T651 Al alloy under ultrahigh vacuum (UHV, ~10-10 Torr), dry air, and water vapor. Standard compact tension (CT) specimens were tested along the L-T orientation under various load ratios of 0.1, 0.5, and 0.8. Fracture surfaces and crack morphologies were studied using scanning electron microscopy and crack deflection analysis. The crack growth behavior under vacuum was affected by friction and possible rewelding of crack surfaces, causing an asymmetry in the crack growth behavior, from load shedding to constant load. The enhancement of crack growth at higher moisture levels was observed and is discussed in terms of moisture decreasing friction between the crack faces. The effect of crack deflection as a function of R ratio and environment is also presented.

  11. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  12. Growth kinetics of coliform bacteria under conditions relevant to drinking water distribution systems.

    PubMed

    Camper, A K; McFeters, G A; Characklis, W G; Jones, W L

    1991-08-01

    The growth of environmental and clinical coliform bacteria under conditions typical of drinking water distribution systems was examined. Four coliforms (Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, and Enterobacter cloacae) were isolated from an operating drinking water system for study; an enterotoxigenic E. coli strain and clinical isolates of K. pneumoniae and E. coli were also used. All but one of the coliforms tested were capable of growth in unsupplemented mineral salts medium; the environmental isolates had greater specific growth rates than did the clinical isolates. This trend was maintained when the organisms were grown with low levels (less than 1 mg liter-1) of yeast extract. The environmental K. pneumoniae isolate had a greater yield, higher specific growth rates, and a lower Ks value than the other organisms. The environmental E. coli and the enterotoxigenic E. coli strains had comparable yield, growth rate, and Ks values to those of the environmental K. pneumoniae strain, and all three showed significantly more successful growth than the clinical isolates. The environmental coliforms also grew well at low temperatures on low concentrations of yeast extract. Unsupplemented distribution water from the collaborating utility supported the growth of the environmental isolates. Growth of the K. pneumoniae water isolate was stimulated by the addition of autoclaved biofilm but not by tubercle material. These findings indicate that growth of environmental coliforms is possible under the conditions found in operating municipal drinking water systems and that these bacteria could be used in tests to determine assimilable organic carbon in potable water.

  13. Environmental conditions and reproductive health outcomes

    EPA Science Inventory

    Environmental exposures range across multiple domains to affect human health. In an effort to learn how environmental factors combine to contribute to health outcomes we constructed a multiple environmental domain index (MEDI) for use in health research. We used principal compone...

  14. [Guidelines on asthma in extreme environmental conditions].

    PubMed

    Drobnic, Franchek; Borderías Clau, Luis

    2009-01-01

    Asthma is a highly prevalent chronic disease which, if not properly controlled, can limit the patient's activities and lifestyle. In recent decades, owing to the diffusion of educational materials, the application of clinical guidelines and, most importantly, the availability of effective pharmacological treatment, most patients with asthma are now able to lead normal lives. Significant social changes have also taken place during the same period, including more widespread pursuit of sporting activities and tourism. As a result of these changes, individuals with asthma can now participate in certain activities that were inconceivable for these patients only a few years ago, including winter sports, underwater activities, air flight, and travel to remote places with unusual environmental conditions (deserts, high mountain environments, and tropical regions). In spite of the publication of several studies on this subject, our understanding of the effects of these situations on patients with asthma is still limited. The Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) has decided to publish these recommendations based on the available evidence and expert opinion in order to provide information on this topic to both doctors and patients and to avert potentially dangerous situations that could endanger the lives of these patients.

  15. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  16. Adversarial Growth in Telephone Counsellors: Psychological and Environmental Influences

    ERIC Educational Resources Information Center

    O'Sullivan, Julian; Whelan, Thomas A.

    2011-01-01

    The aims of this study were to investigate the level of adversarial growth among telephone counsellors, and to examine the influence of psychological and environmental factors on growth. In particular, the effect of compassion fatigue, empathy, environmental support and calls per shift on posttraumatic growth was assessed. Sixty-four telephone…

  17. Plant growth conditions alter phytolith carbon

    PubMed Central

    Gallagher, Kimberley L.; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O.; Santos, Guaciara M.

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a “glass wastebasket.” Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction. PMID:26442066

  18. Plant growth conditions alter phytolith carbon.

    PubMed

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  19. Analysis of Environmental Stress Factors Using an Artificial Growth System and Plant Fitness Optimization

    PubMed Central

    Lee, Meonghun; Yoe, Hyun

    2015-01-01

    The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production. PMID:25874206

  20. Mineral losses during extreme environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minerals are nutrients that are conserved by the body. During exposure to environmental stimuli, such as heat and/or exercise, the excretion of minerals, macro (Na, K, Ca, Mg) and micro (Cu, Fe, Zn), occurs through the body surface in the form of cellular desquamation and sweat, as well as in the u...

  1. Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computer-readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy.

    PubMed

    Hannemann, Jan; Poorter, Hendrik; Usadel, Björn; Bläsing, Oliver E; Finck, Alex; Tardieu, Francois; Atkin, Owen K; Pons, Thijs; Stitt, Mark; Gibon, Yves

    2009-09-01

    Data mining depends on the ability to access machine-readable metadata that describe genotypes, environmental conditions, and sampling times and strategy. This article presents Xeml Lab. The Xeml Interactive Designer provides an interactive graphical interface at which complex experiments can be designed, and concomitantly generates machine-readable metadata files. It uses a new eXtensible Mark-up Language (XML)-derived dialect termed XEML. Xeml Lab includes a new ontology for environmental conditions, called Xeml Environment Ontology. However, to provide versatility, it is designed to be generic and also accepts other commonly used ontology formats, including OBO and OWL. A review summarizing important environmental conditions that need to be controlled, monitored and captured as metadata is posted in a Wiki (http://www.codeplex.com/XeO) to promote community discussion. The usefulness of Xeml Lab is illustrated by two meta-analyses of a large set of experiments that were performed with Arabidopsis thaliana during 5 years. The first reveals sources of noise that affect measurements of metabolite levels and enzyme activities. The second shows that Arabidopsis maintains remarkably stable levels of sugars and amino acids across a wide range of photoperiod treatments, and that adjustment of starch turnover and the leaf protein content contribute to this metabolic homeostasis.

  2. Growth of single crystals under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Popolitov, Vladislav Ivanovich; Litvin, Boris Nikolaevich

    The book summarizes the available theoretical, methodological, and experimental data on the hydrothermal growth of inorganic compounds, such as simple and complex oxides, sulfides, silicates, germanates, phosphates, niobates, and tantalates. Attention is given to the physicochemical, hydrodynamic, and kinetic characteristics of the growth of these compounds, as well as hydrothermal growth techniques and equipment. The discussion also covers the morphogenetic characteristics of hydrothermally grown single crystals, their principal physical properties, and X-ray diffraction and structural data.

  3. Growth of Corophium volutator under laboratory conditions.

    PubMed

    Kater, Belinda J; Jol, Johan G; Smit, Mathijs G D

    2008-04-01

    Temperature-dependent growth is an important factor in the population model of Corophium volutator that was developed to translate responses in a 10-day acute bioassay to ecological consequences for the population. The growth rate, however, was estimated from old data, based on a Swedish population. Therefore, new growth rates are estimated herein from two experiments using Corophium volutator. To save time, a tool was developed to use image analysis to measure Corophium volutator. The experiments show that Corophium volutator has a low growth rate at low temperatures (5-10 degrees C). At higher temperatures no difference in growth rate between 15 degrees C and 25 degrees C was found. The growth rate from these experiments is comparable to data found in literature. A new relationship between temperature and individual growth was estimated, and incorporated into the Corophium population model. As the model also uses the same temperature relationship for reproduction, the modelled population growth rate at different temperatures changes as a result of the new data. The new growth rate and the updated temperature relationship result in reduced tolerance to external stressors, as previously predicted by the model.

  4. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  5. Is Decoupling GDP Growth from Environmental Impact Possible?

    PubMed

    Ward, James D; Sutton, Paul C; Werner, Adrian D; Costanza, Robert; Mohr, Steve H; Simmons, Craig T

    2016-01-01

    The argument that human society can decouple economic growth-defined as growth in Gross Domestic Product (GDP)-from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing.

  6. Brachiopods recording environmental conditions and biomineralisation processes

    NASA Astrophysics Data System (ADS)

    Cusack, Maggie; MacDonald, John M.; Fitzer, Susan C.; John, Cedric M.

    2016-04-01

    For around 550 million years, organisms have been exerting biological control on biomineral formation, generating elegant functional biomineral structures from basic components such as calcium phosphate in the case of vertebrate skeletons; silica or calcium carbonate in invertebrate shells and corals. In the marine realm, environmental information on the world's oceans is entrapped within the composition of calcium carbonate biomineral structures such as the shells of molluscs or brachiopods. Here, conventional stable and clumped isotopes of calcium carbonate of brachiopod shells are explored in the context of biological control. The aim is to ensure the correct interpretation of environmental data and to consider the possibility of extracting information on the mechanisms of biomineralisation processes from the data stored in the fossil record.

  7. Is Decoupling GDP Growth from Environmental Impact Possible?

    PubMed Central

    Sutton, Paul C.; Werner, Adrian D.; Costanza, Robert; Mohr, Steve H.; Simmons, Craig T.

    2016-01-01

    The argument that human society can decouple economic growth—defined as growth in Gross Domestic Product (GDP)—from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing. PMID:27741300

  8. Lunar Polar Environmental Testing: Regolith Simulant Conditioning

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie

    2014-01-01

    As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.

  9. Growth management of vetiver (Vetiveria zizanioides) under Mediterranean conditions.

    PubMed

    Dudai, N; Putievsky, E; Chaimovitch, D; Ben-Hur, M

    2006-10-01

    In spite of the advantages of Vetiver grass in light of environmental aspects, this plant is not used in the Mediterranean region. The objectives of the present study were: (i) to elucidate growth parameters and establishment of Vetiver under Mediterranean conditions suitable for its various environmental applications; and (ii) to develop management practices for growing vetiver under Mediterranean conditions. In greenhouse experiments conducted under controlled conditions it was found that, in general, increasing the minimum/maximum temperatures to 21-29 degrees C significantly increased plant height. In the Mediterranean region, this range of air temperatures is obtained mainly during the summer, from June to September. For air temperatures up to 15-23 degrees C the effect of day length on plant height was insignificant, whereas in air temperature >15-23 degrees C, the plant heights under long day conditions were significantly higher than under short day. The number of sprouts per plant increased exponentially with increasing air temperature, and was not significantly affected by the day length at any air temperature range. In open fields, the heights of irrigated vetiver plants were significantly higher than those of rain-fed plants. It was concluded that, once they were established, vetiver plants could survive the dry summer of the Mediterranean region under rain-fed conditions, but they would be shorter than under irrigation. Cutting or burning of the plant foliage during the spring did not improve the survival of vetiver during the dry summer. In order to obtain fast growth of vetiver and to increase the possibility of its using the rainwater, the plants should be planted in the winter, during February and March. However, under this regime, the vetiver plant cannot be used as a soil stabilizer during the first winter, because the plant is still small. In contrast, under irrigation it is advantageous to plant vetiver at the beginning of the summer; the plant

  10. Management of Cattle Exposed to Adverse Environmental Conditions.

    PubMed

    Mader, Terry L; Griffin, Dee

    2015-07-01

    During periods of adverse weather, optimum conditions for animal comfort and performance are compromised. Use of alternative supplementation programs need to be considered for livestock challenged by adverse environmental conditions. Use of additional water for consumption and cooling, shade, and/or alternative management strategies need to be considered to help livestock cope with heat stress. For animals reared outside during winter, strategies that increase animal space and environmental buffers need to be used to minimize effects of mud, wet conditions, and windchill. There are ample opportunities for livestock producers to enhance animal welfare and minimize the impact of environmental stress.

  11. Eddy correlation measurements in wet environmental conditions

    NASA Astrophysics Data System (ADS)

    Cuenca, R. H.; Migliori, L.; O Kane, J. P.

    2003-04-01

    The lower Feale catchment is a low-lying peaty area of 200 km^2 situated in southwest Ireland that is subject to inundation by flooding. The catchment lies adjacent to the Feale River and is subject to tidal signals as well as runoff processes. Various mitigation strategies are being investigated to reduce the damage due to flooding. Part of the effort has required development of a detailed hydrologic balance for the study area which is a wet pasture environment with local field drains that are typically flooded. An eddy correlation system was installed in the summer of 2002 to measure components of the energy balance, including evapotranspiration, along with special sensors to measure other hydrologic variables particular to this study. Data collected will be essential for validation of surface flux models to be developed for this site. Data filtering is performed using a combination of software developed by the Boundary-Layer Group (BLG) at Oregon State University together with modifications made to this system for conditions at this site. This automated procedure greatly reduces the tedious inspection of individual records. The package of tests, developed by the BLG for both tower and aircraft high frequency data, checks for electronic spiking, signal dropout, unrealistic magnitudes, extreme higher moment statistics, as well as other error scenarios not covered by the instrumentation diagnostics built into the system. Critical parameter values for each potential error were developed by applying the tests to real fast response turbulent time series. Potential instrumentation problems, flux sampling problems, and unusual physical situations records are flagged for removal or further analysis. A final visual inspection step is required to minimize rejection of physically unusual but real behavior in the time series. The problems of data management, data quality control, individual instrumentation sensitivity, potential underestimation of latent and sensible heat

  12. Oceanographic conditions govern shell growth of Arctica islandica (Bivalvia) in surface waters off Northeast Iceland

    NASA Astrophysics Data System (ADS)

    Marali, Soraya; Schöne, Bernd R.

    2015-04-01

    Shells of the long-lived bivalve Arctica islandica provide absolutely dated, highly resolved archives of environmental variability in the extratropical realm. Shell growth rates of contemporaneous A. islandica specimens are synchronized by one or several environmental factor(s), such as seawater temperature, food supply etc. Based on the growth synchrony, increment width records can be combined to composite chronologies. However, according to existing studies, A. islandica specimens from shallow waters do not show synchronous changes in shell growth and may thus not provide information about environmental conditions such as sea surface temperature. Here, we present the first statistically robust composite chronology of A. islandica from unpolluted surface waters (8-23 m) off Northeast Iceland. The complete record spans the time interval of 1835 to 2012. Times of enhanced shell growth coincide with periods of higher temperature and elevated food supply. Instrumental sea surface temperature (SST) during the growing season explains up to 43% of the variation in relative shell growth. However, the correlation strength varies over time. When the environmental conditions at the sampling site were stable over many consecutive years, i.e. one of the two major surface currents (the warm, nutrient-rich Irminger Current or the cold, nutrient-deficient East Icelandic Current) predominated the area over longer time intervals, the growth synchrony among coeval A. islandica weakened and the correlation between shell growth and SSTs was markedly reduced. Conversely, if the habitat was under the alternating influence of both ocean currents, shell growth was stronger correlated to each other and to SST. Thus, environmental variability is required to synchronize shell growth rates within an A. islandica population. This study further enlightens the relationship between bivalve shell growth and environmental variables.

  13. ENVIRONMENTALLY FRIENDLIER ORGANIC TRANSFORMATIONS ON MINERAL SUPPORTS UNDER NONTRADITIONAL CONDITIONS

    EPA Science Inventory

    Synthetic organic reactions performed under non-traditional conditions are gaining popularity primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst o...

  14. Overview of environmental and hydrogeologic conditions at King Salmon, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1994-01-01

    The Federal Aviation Administration is conducting preliminary environmental assessments at most of its present or former facilities in Alaska. Information about environmental conditions at King Salmon, Alaska are presented in this report. This report gives an overview of the geology, hydro- logy, and climate of the King Salmon area and describes general geohydrologic conditions. A thick alluvial aquifer underlies King Salmon and both ground water and surface water are plentiful in the area.

  15. Affluence and objective environmental conditions: Evidence of differences in environmental concern in metropolitan Brazil

    PubMed Central

    Nawrotzki, Raphael J.; Guedes, Gilvan; do Carmo, Roberto Luiz

    2016-01-01

    In an age of climate change, researchers need to form a deepened understanding of the determinants of environmental concern, particularly in countries of emerging economies. This paper provides a region-specific investigation of the impact of socio-economic status (SES) and objective environmental conditions on environmental concern in urban Brazil. We make use of data that were collected from personal interviews of individuals living in the metropolitan areas of Baixada Santista and Campinas, in the larger São Paulo area. Results from multilevel regression models indicate that wealthier households are more environmentally concerned, as suggested by affluence and post-materialist hypotheses. However, we also observe that increasing environmental concern correlates with a decline in objective environmental conditions. Interactions between objective environmental conditions and SES reveal some intriguing relationships: Among poorer individuals, a decline in environmental conditions increases environmental concern as suggested by the objective problems hypothesis, while for the wealthy, a decline in environmental conditions is associated with lower levels of environmental concern. PMID:27594931

  16. Effects of diverse environmental conditions on {phi}LC3 prophage stability in Lactococcus lactis.

    PubMed

    Lunde, Merete; Aastveit, Are Halvor; Blatny, Janet Martha; Nes, Ingolf F

    2005-02-01

    The effects of various growth conditions on spontaneous phiLC3 prophage induction in Lactococcus lactis subsp. cremoris IMN-C1814 was analyzed with a half fraction of a 4(4) factorial experimental design. The four factors included in the study were nutrient availability, acidity, osmolarity, and temperature, each applied at four levels. These environmental factors are related to the fermentation processes in the dairy industry, in which bacteriophage attacks on sensitive starter strains are a constant threat to successful fermentation processes. The frequency of spontaneous phiLC3 induction was determined by quantitative analyses of restored DNA attachment sites (attB) on the bacterial chromosomes in a population of lysogenic cells. Statistical analysis revealed that all four environmental factors tested affected phiLC3 prophage stability and that the environmental factors were involved in interactions (interactions exist when the effect of one factor depends on the level of another factor). The spontaneous phiLC3 induction frequency varied from 0.08 to 1.76%. In general, the induction frequency remained at the same rate or decreased when level 1 to 3 of the four environmental factors was applied. At level 4, which generally gave the least favorable growth conditions, the induction frequency was either unchanged, decreased, or increased, depending on the type of stress. It appeared that the spontaneous induction frequency was independent of the growth behavior of the host. It was the environmental growth conditions that were the decisive factor in induction frequency.

  17. Environmental embrittlement of iron aluminides under cyclic loading conditions

    SciTech Connect

    Castagna, A.; Alven, D.A.; Stoloff, N.S.

    1995-08-01

    The tensile and fatigue crack growth behavior in air in hydrogen and in oxygen of an Fe-Al-Cr-Zr alloy is described. The results are compared to data for FA-129. A detailed analysis of frequency effects on fatigue crack growth rates of FA-129, tested in the B2 condition, shows that dislocation transport of hydrogen from the surface is the rate limiting step in fatigue crack growth.

  18. Environmental Enteropathy: Critical implications of a poorly understood condition

    PubMed Central

    Korpe, Poonum S.; Petri, William A.

    2012-01-01

    Environmental enteropathy (also called tropical enteropathy) is a subclinical condition caused by constant fecal-oral contamination and resulting in blunting of intestinal villi and intestinal inflammation. Although these histological changes were discovered decades ago, the clinical impact of environmental enteropathy is just starting to be recognized. The failure of nutritional interventions and oral vaccines in the developing world may be attributed to environmental enteropathy, as the intestinal absorptive and immunologic functions are significantly deranged. Here we review the existing literature and examine potential mechanisms of pathogenesis for this poorly understood condition. PMID:22633998

  19. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    SciTech Connect

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; Stach, Eric A.; Ross, Frances M.

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  20. Population growth, agrarian peasant economy and environmental degradation in Tanzania.

    PubMed

    Madulu, N F

    1995-03-01

    Population strategies to relieve the density pressures on land and resources in Tanzania have not considered the basic causes of population growth. Resettlement results in the same environmental degradation as in the original settlement. There should be a reduction in the population growth and planning of proper land use and resource exploitation before resettlement. Rural development must include a decline in the dependency on subsistence agriculture. Population in Tanzania increased by 213% during 1948-88. An absolute increase in population size during 1978-88 is recorded despite a slight decline in the rate of growth. Death rates declined, but birth rates were relatively stable at around 50 per 1000 population. Regions with the highest growth rates were Dar es Salaam (4.8%), Rukwa (4.3%), Arusha (3.8%), Mbeya (3.1%), and Ruvuma (3.2%). The regions with the lowest rates were Tanga and Kilimanjaro (2.1%), Coast (2.1%), Lindi (2%), and Mtwara (1.4%). Low growth rates are attributed to low fertility and high infertility. Other factors affecting high growth rates are culture, rates of natural increase, intensity of internal and international migration, climatic conditions, and availability of resources. In 1988 46% of the population was under 15 years old. Per capita land availability declined from 11.8 hectares in 1948 to 3.8 hectares in 1988. The number of landless peasants increased. Productivity declined, and distances to farms increased. The total fertility rate was 6.5 children per woman in 1988 and 6.1 during 1991-92. Slight declines were apparent in the crude birth rate also. High fertility was a response to universal marriage, low contraceptive use (7% using modern methods during 1991-92), declining lactation periods, high mortality rates, and old traditions favoring large families. Children were used extensively in time-consuming and labor-intensive activities, such as fetching water. The mean number of children ever born was higher among women with 1

  1. Parasitism in early life: environmental conditions shape within-brood variation in responses to infection

    PubMed Central

    Granroth-Wilding, Hanna M V; Burthe, Sarah J; Lewis, Sue; Reed, Thomas E; Herborn, Katherine A; Newell, Mark A; Takahashi, Emi A; Daunt, Francis; Cunningham, Emma J A

    2014-01-01

    Parasites play key ecological and evolutionary roles through the costs they impose on their host. In wild populations, the effect of parasitism is likely to vary considerably with environmental conditions, which may affect the availability of resources to hosts for defense. However, the interaction between parasitism and prevailing conditions is rarely quantified. In addition to environmental variation acting on hosts, individuals are likely to vary in their response to parasitism, and the combined effect of both may increase heterogeneity in host responses. Offspring hierarchies, established by parents in response to uncertain rearing conditions, may be an important source of variation between individuals. Here, we use experimental antiparasite treatment across 5 years of variable conditions to test how annual population productivity (a proxy for environmental conditions) and parasitism interact to affect growth and survival of different brood members in juvenile European shags (Phalacrocorax aristotelis). In control broods, last-hatched chicks had more plastic growth rates, growing faster in more productive years. Older siblings grew at a similar rate in all years. Treatment removed the effect of environment on last-hatched chicks, such that all siblings in treated broods grew at a similar rate across environmental conditions. There were no differences in nematode burden between years or siblings, suggesting that variation in responses arose from intrinsic differences between chicks. Whole-brood growth rate was not affected by treatment, indicating that within-brood differences were driven by a change in resource allocation between siblings rather than a change in overall parental provisioning. We show that gastrointestinal parasites can be a key component of offspring's developmental environment. Our results also demonstrate the value of considering prevailing conditions for our understanding of parasite effects on host life-history traits. Establishing how

  2. Environmental influences on speleothem growth in southwestern Oregon during the last 380, 000 years

    USGS Publications Warehouse

    Ersek, Vasile; Hostetler, Steven W.; Cheng, Hai; Clark, Peter U.; Anslow, Faron S.; Mix, Alan C.; Edwards, R. Lawrence

    2009-01-01

    The growth of carbonate formations in caves (speleothems) is sensitive to changes in environmental conditions at the surface (temperature, precipitation and vegetation) and can provide useful paleoclimatic and paleoenvironmental information. We use 73 230Th dates from speleothems collected from a cave in southwestern Oregon (USA) to constrain speleothem growth for the past 380 000 years. Most speleothem growth occurred during interglacial periods, whereas little growth occurred during glacial intervals. To evaluate potential environmental controls on speleothem growth we use two new modeling approaches: i) a one-dimensional thermal advection–diffusion model to estimate cave temperatures during the last glacial cycle, and ii) a regional climate model simulation for the Last Glacial Maximum (21 000 years before present) that assesses a range of potential controls on speleothem growth under peak glacial conditions. The two models are mutually consistent in indicating that permafrost formation did not influence speleothem growth during glacial periods. Instead, the regional climate model simulation combined with proxy data suggest that the influence of the Laurentide and Cordilleran ice sheets on atmospheric circulation induced substantial changes in water balance in the Pacific Northwest and affected speleothem growth at our location. The overall drier conditions during glacial intervals and associated periods of frozen topsoil at times of maximum surface runoff likely induced drastic changes in cave recharge and limited speleothem growth. This mechanism could have affected speleothem growth in other mid-latitude caves without requiring the presence of permafrost.

  3. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 Degree C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop primary and secondary models to describe the growth of Salmonella in raw ground beef. Primary and secondary models can be integrated into a dynamic model that can predict the microbial growth under varying environmental conditions. Growth data of Salmonel...

  4. Exploring the middle ground between environmental protection and economic growth.

    PubMed

    Kaplowitz, Michael D; Lupi, Frank; Yeboah, Felix K; Thorp, Laurie G

    2013-05-01

    Public preference concerning the environment and the economy typically has been characterized as either pro-environmental protection or pro-economic development. Researchers and policymakers increasingly suggest that environmental protection and economic growth are not mutually exclusive. However, use of dichotomous-choice policy preference questions persists. This note empirically examines an alternative response format for the typical dichotomous-choice environmental/economic policy preference question and explores respondents' stated policy preferences in light of their support for recycling. We find that most respondents do not view environmental protection and economic development policy goals to be mutually exclusive. Most respondents view economic growth and environmental protection as compatible suggesting a more heterogeneous view of the environment-economic relationship than oft reported. Hence excluding a middle response choice to the standard environment/economic policy preference question may add measurement error, increase item nonresponse, and fail to account for the views of respondents who view these goals as complementary.

  5. Tourism in Austria: biodiversity, environmental sustainability, and growth issues.

    PubMed

    Malik, Muhammad Asad Saleem; Shah, Syed Asim; Zaman, Khalid

    2016-12-01

    This study examined the long-run and causal relationships between international tourism, biodiversity loss, environmental sustainability, and specific growth factors under the premises of sustainable tourism in Austria, by using a consistent time series data from 1975 to 2015. The results reveal that inbound tourism, per capita income, and population density affected the potential habitat area while population density largely affected the food production in a country. Inbound tourism and population density both deteriorate the environmental quality in a form of increasing carbon dioxide (CO2) emissions and fossil fuel energy consumption while per capita income reduces the fossil fuel energy consumption. Food exports increase per capita income, while food imports and population density both decrease economic growth. Inbound tourism and economic growth advance population density while forest area and food exports decrease the population density. The study supports growth-led tourism and growth-led food production in a country.

  6. Environmental noise and human prenatal growth

    SciTech Connect

    Schell, L.M.

    1981-09-01

    To determine whether chronic exposure to relatively loud noise has demonstrable biological effects in humans, a study was conducted on the effect of mother's exposure to airport noise while pregnant, and of social and biological characteristics of the family upon birthweight and gestation length. The sample of births was drawn from a community located adjacent to an international airport in the U.S., where noise levels had been measured previously. Mother's noise exposure was based upon noise levels near her residence in the community while she was pregnant. Data from 115 births were used, these being from mothers whose noise exposure history was most complete throughout the pregnancy. Using multivariate analysis to correct for family characteristics, the partial correlation coefficient for noise exposure and gestation length was negative, large, and significant in girls (r . -0.49, p less than 0.001). In boys the partial correlation coefficient was also negative but was smaller and did not quite reach statistical significance. Partial correlations with birthweight were smaller in both boys and girls and not significant. These results agree best with previous studies that suggest that noise may reduce prenatal growth. The size of the observed effects may be related to a conservative research design biased towards underestimation, as well as to the real effects of noise upon human prenatal growth.

  7. Pan-Svalbard growth rate variability and environmental regulation in the Arctic bivalve Serripes groenlandicus

    NASA Astrophysics Data System (ADS)

    Carroll, Michael L.; Ambrose, William G.; Levin, Benjamin S.; Locke V, William L.; Henkes, Gregory A.; Hop, Haakon; Renaud, Paul E.

    2011-11-01

    Growth histories contained in the shells of bivalves provide continuous records of environmental and biological information over lifetimes spanning decades to centuries, thereby linking ecosystem responses to both natural and anthropogenic climatic variations over a range of scales. We examined growth rates and temporal growth patterns of 260 individuals of the circumpolar Greenland Smooth Cockle ( Serripes groenlandicus) collected between 1997 and 2009 from 11 sites around the Svalbard Archipelago. These sites encompass a range of oceanographic and environmental conditions, from strongly Atlantic-influenced conditions on the west coast to high-Arctic conditions in northeast Svalbard. Absolute growth was up to three times greater at the most strongly Atlantic-influenced locations compared to the most Arctic-influenced areas, and growth performance was highest at sites closest to the West Spitsbergen Current. We also developed growth chronologies up to 34 years in length extending back to 1974. Standardized growth indices (SGI) exhibited substantial inter-site variability, but there were also common temporal features including steadily increasing growth from the late 1980's to the mid-1990's followed by a marked shift from relatively greater to poorer growth in the mid-1990's and from 2004 to 2008. This pattern was consistent with phase-shifts in large-scale climatic drivers. Interannual variability in SGI was also related to local manifestations of the large-scale drivers, including sea temperature and sea ice extent. The temporal growth pattern at Rijpfjorden, on northeast Svalbard, was broadly representative (R = 0.81) of the entire dataset. While there were site-related differences in the specific relationships between growth and environmental parameters, the aggregated dataset indicated an overriding regional driver of bivalve growth: the Arctic Climate Regime Index (ACRI). These results demonstrate that sclerochronological proxies can be useful retrospective

  8. Effect of boundary conditions on thermal plume growth

    NASA Astrophysics Data System (ADS)

    Kondrashov, A.; Sboev, I.; Rybkin, K.

    2016-07-01

    We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.

  9. Growth conditions determine different melatonin levels in Lupinus albus L.

    PubMed

    Arnao, Marino B; Hernández-Ruiz, Josefa

    2013-09-01

    Melatonin, an indoleamine, which has recently been assigned several roles in plant physiology as a growth promoter, as rooting agent, and as antioxidant in senescence delay and cytoprotection, seems to have a relevant function in plant stress situations. The presence of melatonin increases the resistance of lupin plant tissues (Lupinus albus L.) against natural or artificially induced adverse situations. In this work, we studied the response of lupin plants in controlled stress situations (drought-, anaerobic-, pH-, and cold stress and using ZnSO4 , NaCl, and H2 O2 as chemical stressors) and measured the changes in endogenous melatonin levels in lupin plants. Also, the effect of abscisic acid, ethylene, and natural environmental conditions were evaluated. In general, nearly all stressful factors caused an increase in melatonin in the investigated organs. The chemical stress provoked by ZnSO4 or NaCl caused the most pronounced changes in the endogenous level of melatonin, followed by cold and drought stressors. In some cases, the level of melatonin increased 12-fold with respect to the levels in control plants, indicating that melatonin biosynthesis is upregulated in common stress situations, in which it may serve as a signal molecule and/or as a direct antistress agent due to its well-known antioxidative properties.

  10. Environmental Physical Modulation of Intrinsic Tendency to Growth of Multicellular Tumour Spheroids: In Silico Experiments

    NASA Astrophysics Data System (ADS)

    Griffa, M.; Scalerandi, M.

    2005-01-01

    Lowering in nutrient local availability and rising in host mechanical rigidity are two distinct boundary conditions that affect the growth of solid a-vascular cancers in similar ways (inhibition of growth). In silico experiments based on a physical-mathematical model can shed light on some of the mechanisms at the basis of these effects and suggest that the self-organizing properties of neoplastic populations are greatly modulated by environmental restrictions.

  11. Metabolic network modularity in archaea depends on growth conditions.

    PubMed

    Takemoto, Kazuhiro; Borjigin, Suritalatu

    2011-01-01

    Network modularity is an important structural feature in metabolic networks. A previous study suggested that the variability in natural habitat promotes metabolic network modularity in bacteria. However, since many factors influence the structure of the metabolic network, this phenomenon might be limited and there may be other explanations for the change in metabolic network modularity. Therefore, we focus on archaea because they belong to another domain of prokaryotes and show variability in growth conditions (e.g., trophic requirement and optimal growth temperature), but not in habitats because of their specialized growth conditions (e.g., high growth temperature). The relationship between biological features and metabolic network modularity is examined in detail. We first show the absence of a relationship between network modularity and habitat variability in archaea, as archaeal habitats are more limited than bacterial habitats. Although this finding implies the need for further studies regarding the differences in network modularity, it does not contradict previous work. Further investigations reveal alternative explanations. Specifically, growth conditions, trophic requirement, and optimal growth temperature, in particular, affect metabolic network modularity. We have discussed the mechanisms for the growth condition-dependant changes in network modularity. Our findings suggest different explanations for the changes in network modularity and provide new insights into adaptation and evolution in metabolic networks, despite several limitations of data analysis.

  12. A water use and growth model for Eucalyptus plantation in water-limited conditions

    SciTech Connect

    Calder, I.R.

    1992-12-31

    To investigate the environmental impact of plantation forestry using fast-growing tree species in southern India, a program of field studies was initiated in 1987 specifically to measure the water use, nutrient uptake and growth rates of the plantations. A water use and growth (WAG) model is proposed for calculating transpiration and growth of Eucalyptus plantation in water-limited conditions. The model is based on the measured relationships between transpiration rate and basal cross-sectional area and soil moisture availability. The volume growth rate (in water-limited conditions) is assumed to be proportional to the volume of water transpired. The model is calibrated using (deuterium tracing) measurements of transpiration and measurements of growth recorded at the Puradal experimental plantation, Karnataka, southern India.

  13. Ice Particle Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  14. Ice Particle Growth Under Conditions of the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 microns, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  15. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  16. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Environmental conditions. 50.36b Section 50.36b Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Applications for Licenses, Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain...

  17. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Environmental conditions. 50.36b Section 50.36b Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Applications for Licenses, Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain...

  18. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Environmental conditions. 50.36b Section 50.36b Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Applications for Licenses, Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain...

  19. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Environmental conditions. 50.36b Section 50.36b Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Applications for Licenses, Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain...

  20. Matching biological traits to environmental conditions in marine benthic ecosystems

    NASA Astrophysics Data System (ADS)

    Bremner, J.; Rogers, S. I.; Frid, C. L. J.

    2006-05-01

    The effects of variability in environmental conditions on species composition in benthic ecosystems are well established, but relatively little is known about how environmental variability relates to ecosystem functioning. Benthic invertebrate assemblages are heavily involved in the maintenance of ecological processes and investigation of the biological characteristics (traits) expressed in these assemblages can provide information about some aspects of functioning. The aim of this study was to establish and explore relationships between environmental variability and biological traits expressed in megafauna assemblages in two UK regions. Patterns of trait composition were matched to environmental conditions and subsets of variables best describing these patterns determined. The nature of the relationships were subsequently examined at two separate scales, both between and within the regions studied. Over the whole area, some traits related to size, longevity, reproduction, mobility, flexibility, feeding method, sociability and living habit were negatively correlated with salinity, sea surface temperature, annual temperature range and the level of fishing effort, and positively associated with fish taxon richness and shell content of the substratum. Between the two regions, reductions in temperature range and shell content were associated with infrequent relative occurrences of short-lived, moderately mobile, flexible, solitary, opportunistic, permanent-burrow dwelling fauna and those exhibiting reproductive strategies based on benthic development. Relationships between some traits and environmental conditions diverged within the two regions, with increases in fishing effort and shell content of the substratum being associated with low frequencies of occurrence of moderately mobile and moderately to highly flexible fauna within one region, but high frequencies in the other. These changes in trait composition have implications for ecosystem processes, with, for

  1. Ceramic production during changing environmental/climatic conditions

    NASA Astrophysics Data System (ADS)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  2. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  3. Growth rate changes of sodium chlorate crystals independent of growth conditions

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; Baroš, Z. Z.

    2008-10-01

    Results of investigations of the growth rate changes inherent to the crystal are presented. It is shown that, in initial growth stage, there exist crystal growth rate changes independent of experimental conditions, with tendency to level during the time. Time evolution of sodium chlorate crystals growth rate dispersion is also presented. The results obtained show that these changes must be included in the interpretations of the growth rate changes affected by various parameters (supersaturation, temperature, fields, stress, impurities, etc.), which have not previously been taken into account. These results may improve the current crystal growth theories.

  4. Indium antimonide crystal growth experiment M562. [Skylab weightless conditions

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1974-01-01

    It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach.

  5. The behavior of Kevlar fibers under environmental-stress conditions

    NASA Astrophysics Data System (ADS)

    Perry, Mark Charles

    There are a myriad of mechanisms by which polymers can degrade and fail. It is therefore important to understand the physical mechanics, chemistry, their interactions, and kinetics. This pursuit becomes more than just "academic" because these mechanisms might just change with service conditions (i.e. environment and loading). If one does not understand these processes from the molecular to macroscopic scale it would be exceedingly difficult to gain information from accelerated testing because the mechanisms just might change from one condition to another. The purpose of this study was to probe these processes on scales ranging from molecular to macroscopic in environmental stress conditions. This study reports the results of environmental-stress degradation of Kevlar 49 fibers. The environmental agent of focus was the ubiquitous air pollutant complex NOsb{x}. Other materials and environments were investigated to a lesser extent for purposes of comparison. Mechanical property (i.e., short-term strength, modulus, and creep lifetime) degradation was examined using single fiber, yarn, and epoxy coated yarn (composite) specimens under environmental-stress conditions. Optical and scanning electron microscopes were employed to examine and compare the appearance of fracture features resulting from the various testing conditions. Atomic force microscopy augmented these studies with detailed topographical mappings and measures of the fracture surface frictional and modulus properties. Molecular processes (i.e., chain scission and other mechanical-chemical reactions) were probed by measures of changes in viscosity average molecular weight and the infrared spectra. It was demonstrated that environmental-stress degradation effects do occur in the Kevlar-NOsb{x} gas system. Strength decay in environmentally exposed unloaded fibers was demonstrated and a synergistic response in creep reduced fiber lifetimes by three orders of magnitude at moderate loadings. That is to say, the

  6. CADDIS Volume 4. Data Analysis: Predicting Environmental Conditions from Biological Observations (PECBO Appendix)

    EPA Pesticide Factsheets

    Overview of PECBO Module, using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, methods for inferring environmental conditions, statistical scripts in module.

  7. Environmental Conditions for Space Flight Hardware: A Survey

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette; Lee, Brandon

    2005-01-01

    Interest in generalization of the physical environment experienced by NASA hardware from the natural Earth environment (on the launch pad), man-made environment on Earth (storage acceptance an d qualification testing), the launch environment, and the space environment, is ed to find commonality among our hardware in an effort to reduce cost and complexity. NASA is entering a period of increase in its number of planetary missions and it is important to understand how our qualification requirements will evolve with and track these new environments. Environmental conditions are described for NASA projects in several ways for the different periods of the mission life cycle. At the beginning, the mission manager defines survivability requirements based on the mission length, orbit, launch date, launch vehicle, and other factors . such as the use of reactor engines. Margins are then applied to these values (temperature extremes, vibration extremes, radiation tolerances, etc,) and a new set of conditions is generalized for design requirements. Mission assurance documents will then assign an additional margin for reliability, and a third set of values is provided for during testing. A fourth set of environmental condition values may evolve intermittently from heritage hardware that has been tested to a level beyond the actual mission requirement. These various sets of environment figures can make it quite confusing and difficult to capture common hardware environmental requirements. Environmental requirement information can be found in a wide variety of places. The most obvious is with the individual projects. We can easily get answers to questions about temperature extremes being used and radiation tolerance goals, but it is more difficult to map the answers to the process that created these requirements: for design, for qualification, and for actual environment with no margin applied. Not everyone assigned to a NASA project may have that kind of insight, as many have

  8. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  9. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  10. Comparing Environmental Conditions Using Indicators of Pollution Hazard

    PubMed

    Turner; Ruffio; Roberts

    1997-07-01

    / Land use/land cover classifications for 1973 and 1991, derived from the interpretation of satellite imagery, are quantified on the basis of biophysical land units in a study area in southeastern Australia. Nutrient export potentials are estimated for each land unit based on their composition of land use/land cover classes. Spatial and temporal comparisons are made of the land units based on the calculated pollution hazard indicators to provide an insight into changes in the state of the environment and the regional significance of land use changes. For example, one ecosystem, unique to the study, showed a large increase in pollution hazard over the study period as a manifestation of an 11-fold rise in cleared area and an expansion of cropping activities. The benefits to environmental management in general are discussed.KEY WORDS: Land cover change; Nutrient export; Environmental condition; Pollution hazard; Agricultural pollution; Nonpoint source pollution; Diffuse pollution; Environmental degradation

  11. In situ study of single-walled carbon nanotube growth in an environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Mehedi, H.-A.; Ravaux, J.; Tahir, S.; Podor, R.; Jourdain, V.

    2016-12-01

    Monitoring individual single-walled carbon nanotubes (SWCNTs) during their growth is a highly sought-after goal in view of understanding the processes involved in the nucleation, elongation and termination which ultimately control the diameter and chiral selectivity. Here, we report on the first truly in situ observations of SWCNT growth in an environmental scanning electron microscope (ESEM). The CNT growth from lithographically patterned catalysts was investigated as a function of the catalyst type (Fe, Co or Ni), temperature, type of precursor (ethanol or acetylene), gas phase composition and pressure, and pretreatment conditions, and we report on the most appropriate conditions for SWCNT growth in ESEM conditions. We show that this approach allows the observation at the submicron scale of the different steps of the nanotube synthesis including the catalyst reduction, the growth and percolation of the nanotube network, and the deposition of individual nanotubes grown in the gas phase on the substrate. Despite these obvious advantages, we identified a few limitations which will need to be tackled for fully taking advantage of the approach, for instance for monitoring the growth of individual SWCNTs by ESEM, including the short lifetime of the catalyst nanoparticles, the preference for kite growth (by opposition to surface growth) and the influence of the electron beam on the nanotube growth.

  12. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations.

  13. Experiment 8: Environmental Conditions in the ASTROCULTURE(trademark) Plant Chamber During the USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Zhou, Weijia; Yetka, R. A.; Draeger, N. A.

    1998-01-01

    Conducting plant research to assess the impact of microgravity on plant growth and development requires a plant chamber that has the capability to control other environmental parameters involved in plant growth and development. The environmental control in a space-based plant chamber must be equivalent to that available in such facilities used for terrestrial plant research. Additionally, plants are very sensitive to a number of atmospheric gaseous materials. Thus, the atmosphere of a plant chamber must be isolated from the space vehicle atmosphere, and the plant growth unit should have the capability to remove any such deleterious materials that may impact plant growth and development. The Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, has developed a totally enclosed controlled environment plant growth unit. The flight unit was used to support the ASTROCULTURE(TM) experiment conducted during the USML-2 mission. The experiment had two major objectives: 1) Provide further validation of the flight unit to control the experiment-defined environmental parameters in the plant chamber, and 2) support a plant experiment to assess the capability of potato plant material to produce tubers in microgravity. This paper describes the temperature, humidity, and carbon dioxide conditions of the plant chamber during the mission, from launch to landing. Another paper will present the plant response data.

  14. Can environmental conditions experienced in early life influence future generations?

    PubMed Central

    Burton, Tim; Metcalfe, Neil B.

    2014-01-01

    The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different ‘internal’ and ‘external’ cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions. PMID:24807254

  15. Growth Factor Liberation and DPSC Response Following Dentine Conditioning.

    PubMed

    Sadaghiani, L; Gleeson, H B; Youde, S; Waddington, R J; Lynch, C D; Sloan, A J

    2016-10-01

    Liberation of the sequestrated bioactive molecules from dentine by the action of applied dental materials has been proposed as an important mechanism in inducing a dentinogenic response in teeth with viable pulps. Although adhesive restorations and dentine-bonding procedures are routinely practiced, clinical protocols to improve pulp protection and dentine regeneration are not currently driven by biological knowledge. This study investigated the effect of dentine (powder and slice) conditioning by etchants/conditioners relevant to adhesive restorative systems on growth factor solubilization and odontoblast-like cell differentiation of human dental pulp progenitor cells (DPSCs). The agents included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH <1), citric acid (10%, pH 1.5), and polyacrylic acid (25%, pH 3.9). Growth factors were detected in dentine matrix extracts drawn by EDTA, phosphoric acid, and citric acid from powdered dentine. The dentine matrix extracts were shown to be bioactive, capable of stimulating odontogenic/osteogenic differentiation as observed by gene expression and phenotypic changes in DPSCs cultured in monolayer on plastic. Polyacrylic acid failed to solubilize proteins from powdered dentine and was therefore considered ineffective in triggering a growth factor-mediated response in cells. The study went on to investigate the effect of conditioning dentine slices on growth factor liberation and DPSC behavior. Conditioning by EDTA, phosphoric acid, and citric acid exposed growth factors on dentine and triggered an upregulation in genes associated with mineralized differentiation, osteopontin, and alkaline phosphatase in DPSCs cultured on dentine. The cells demonstrated odontoblast-like appearances with elongated bodies and long extracellular processes extending on dentine surface. However, phosphoric acid-treated dentine appeared strikingly less populated with cells, suggesting a detrimental impact on cell

  16. Investigation of the Best Saccharomyces cerevisiae Growth Condition

    PubMed Central

    Salari, Roshanak; Salari, Rosita

    2017-01-01

    Introduction Saccharomyces cerevisiae is known as one of the useful yeasts which are utilized in baking and other industries. It can be easily cultured at an economic price. Today the introduction of safe and efficient carriers is being considered. Due to its generally round shape, and the volume that is enclosed by its membrane and cell wall, it is used to encapsulate active materials to protect them from degradation or to introduce a sustained release drug delivery system. Providing the best conditions in order to achieve the best morphological properties of Saccharomyces cerevisiae as a carrier. Methods In this research, the most suitable growth condition of yeast cells which provides the best size for use as drug carriers was found by a bioreactor in a synthetic culture medium. Yeast cell reproduction and growth curves were obtained, based on pour plate colony counting data and UV/Visible sample absorption at 600 nm. Yeast cell growth patterns and growth rates were determined by Matlab mathematical software. Results Results showed that pH=4 and dissolving oxygen (DO) 5% was the best condition for yeast cells to grow and reproduce. This condition also provided the largest size (2 × 3 μ) yeast cells. Conclusion Owing to the yeast cells’ low-cost production and their structural characteristics, they could be used as potent drug carriers. Funding This work was supported by a grant from the Vice Chancellor of Research of Mashhad University of Medical Sciences. PMID:28243411

  17. Stability of melt crystal growth under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Tatarchenko, V. A.

    The conception of dynamic stability of melt crystal growth has been developed. The method based on the Lyapunov stability theory has been used to the study stability of crystallization by capillary shaping techniques including Czokhralsky, Stepanov, Kiropoulos, Verneuil and floating zone methods. Preliminary results of the stability analysis of crystallization by floating zone technique under microgravity conditions are presented here.

  18. EFFECT OF CATALASE AND CULTURAL CONDITIONS ON GROWTH OF BEGGIATOA.

    PubMed

    BURTON, S D; MORITA, R Y

    1964-12-01

    Burton, Sheril D. (Oregon State University, Corvallis), and Richard Y. Morita. Effect of catalase and cultural conditions on growth of Beggiatoa. J. Bacteriol. 88:1755-1761. 1964.-The addition of catalase to culture medium increased the period of viability of Beggiatoa from 1 week to 2 months. Addition of catalase also produced a marked increase in cell yield and enzyme activity. Cultures grown without catalase exhibited an absorption peak characteristic of peroxides. This absorption peak was removed by addition of catalase during or after growth. Oxygen was required for growth, but carbon dioxide was not produced. Malate and acetate stimulated growth at low concentrations. Glucose and thiosulfate were not oxidized, and cytochromes were not detectable by spectrophotometric analysis.

  19. Plankton bioindicators of environmental conditions in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Hemraj, Deevesh A.; Hossain, Md A.; Ye, Qifeng; Qin, Jian G.; Leterme, Sophie C.

    2017-01-01

    Coastal lagoons are characterised by strong spatial gradient of environmental parameters, especially hypersalinity, and are prone to anthropogenic disturbance. The Coorong (South Australia) is an inverse estuarine coastal lagoon separated from the sea by sand dunes. It is exposed to extreme water quality changes that affect its aquatic communities. Here, we used plankton as indicators of extreme environmental fluctuations to monitor and manage the environmental health of such complex systems. We defined the relationship of different plankton communities with water quality fluctuations and determined plankton species suitable for monitoring the ecosystem health. Two distinct communities of phytoplankton and zooplankton were identified, with salinity and nutrients being the principal factors impacting species distribution. Thus, two sets of indicator species were selected based on the different communities observed. Polychaete and gastropod larvae were positive indicators, showing salinity range restriction of brackish to marine. The distribution Acartia cf. fancetti represented healthy hypersaline conditions (salinity 40-60), while Cyclophora sp. and Scrippsiella sp. were negative indicators, correlating with extreme salinity and ammonia levels. The implementation of planktonic organisms as environmental indicators provided a constructive tool for the management of ecosystem health of the Coorong and will be applicable to similar coastal lagoons.

  20. The apparatus "Photostat-I" for simulating Martian environmental conditions.

    PubMed

    Zaar, E I; Zelikson, V G; Kitaigorodsky, M G; Lozina-Lozinsky, L K; Koshelev, G V; Rybin, M A

    1970-01-01

    One of the main tasks of exobiology is to determine conditions required for life on different planets of our solar system. At present, experimental ecological methods permitting the study of responses of living systems to extreme influences and, in particular, to simulated environmental Martian conditions, are widely used. To study the reaction of Earth organisms, special chambers and mechanisms are used which allow the modelling of conditions different from ours, mainly Martian. Existing devices capable of simulating the Martian environment. Our apparatus "Photostat-I" permits the simulation of pressure and visible light illumination (up to 60,000 lux), the irradiation of biological objectives in UV light (220-400 nm) and the production of a daily temperature cycle typical of Mars with a high degree of accuracy.

  1. The effect and role of environmental conditions on magnetosome synthesis

    PubMed Central

    Moisescu, Cristina; Ardelean, Ioan I.; Benning, Liane G.

    2014-01-01

    Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, “magnetofossils,” have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life. In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron. PMID:24575087

  2. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions.

    PubMed

    Misyura, Maksym; Colasanti, Joseph; Rothstein, Steven J

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested.

  3. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions

    PubMed Central

    Rothstein, Steven J.

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested. PMID:23162120

  4. Environmental control of carbon allocation matters for modelling forest growth.

    PubMed

    Guillemot, Joannès; Francois, Christophe; Hmimina, Gabriel; Dufrêne, Eric; Martin-StPaul, Nicolas K; Soudani, Kamel; Marie, Guillaume; Ourcival, Jean-Marc; Delpierre, Nicolas

    2017-04-01

    We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 10(4) sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.

  5. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE PAGES

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  6. Economic growth and energy regulation in the environmental Kuznets curve.

    PubMed

    Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín

    2016-08-01

    This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution.

  7. Odors eliciting fear: a conditioning approach to Idiopathic Environmental Intolerances.

    PubMed

    Leer, Arne; Smeets, Monique A M; Bulsing, Patricia J; van den Hout, Marcel A

    2011-06-01

    Patients suffering from Idiopathic Environmental Intolerances (IEI) report health symptoms, referable to multiple organ systems, which are triggered by harmless odors and therefore medically unexplainable. In line with previous research that predominantly points towards psychological explanations, the present study tests the hypothesis that IEI symptoms result from learning via classical conditioning of odors to fear. A differential conditioning paradigm was employed. Hedonically different odors were compared on ease of fear acquisition. Conditioned stimuli (CSs) were Dimethyl Sulfide (unpleasant) and peach (pleasant). The unconditioned stimulus (US) was an electrical shock. During acquisition one odor (CS+) was followed by shock, while the other odor (CS-) was not. Next, fear extinction was tested by presenting both CS+ and CS- without US. Electrodermal response, odor evaluation, and sniffing behavior were monitored. Results showed successful fear conditioning irrespective of hedonic character as evidenced by electrodermal response. Acquired fear did not extinguish. There was no evidence of evaluative conditioning taking place, as CS evaluation did not change during fear acquisition. Early avoidance of the CS+, as deduced from odor inhalation measures, was demonstrated, but did not sustain during the entire acquisition phase. This study suggests that a fear conditioning account of IEI is only partially satisfactory.

  8. Overview of environmental and hydrogeologic conditions at Dillingham, Alaska

    USGS Publications Warehouse

    Palcsak, Betty B.; Dorava, Joseph M.

    1994-01-01

    The remote city of Dillingham is at the northern end of Bristol Bay in southwestern Alaska. The hydrology of the area is strongly affected by the mild maritime climate and local geologic conditions. Dillingham residents obtain drinking water from both deep and shallow aquifers composed of gravels and sands and separated by layers of clay underlying the community. Alternative sources of drinking water are limited to the development of new wells because surface-water sources are of inadequate quantity or quality or are located at too great a distance from the population. The Federal Aviation Administration owns or operates airway support facilities in Dillingham and wishes to consider the severity of contamination and the current environmental setting when they evaluate options for compliance with environmental regulations at their facilities. This report describes the climate. vegetation, geology, soils, ground-water and surface-water hydrology, and flood potential of the areas surrounding the Federal Aviation Administration facilities near Dillingham.

  9. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions

    PubMed Central

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-01-01

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264

  10. Degenerate nonlinear programming with a quadratic growth condition.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2000-01-01

    We show that the quadratic growth condition and the Mangasarian-Fromovitz constraint qualification (MFCQ) imply that local minima of nonlinear programs are isolated stationary points. As a result, when started sufficiently close to such points, an L1 exact penalty sequential quadratic programming algorithm will induce at least R-linear convergence of the iterates to such a local minimum. We construct an example of a degenerate nonlinear program with a unique local minimum satisfying the quadratic growth and the MFCQ but for which no positive semidefinite augmented Lagrangian exists. We present numerical results obtained using several nonlinear programming packages on this example and discuss its implications for some algorithms.

  11. Growth and condition of juvenile chum and pink salmon in the northeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Wechter, Melissa E.; Beckman, Brian R.; Andrews, Alexander G., III; Beaudreau, Anne H.; McPhee, Megan V.

    2017-01-01

    As the Arctic continues to warm, abundances of juvenile Pacific salmon (Oncorhynchus spp.) in the northern Bering Sea are expected to increase. However, information regarding the growth and condition of juvenile salmon in these waters is limited. The first objective of this study was to describe relationships between size, growth, and condition of juvenile chum (O. keta) and pink (O. gorbuscha) salmon and environmental conditions using data collected in the northeastern Bering Sea (NEBS) from 2003-2007 and 2009-2012. Salmon collected at stations with greater bottom depths and cooler sea-surface temperature (SST) were longer, reflecting their movement further offshore out of the warmer Alaska Coastal Water mass, as the season progressed. Energy density, after accounting for fish length, followed similar relationships with SST and bottom depth while greater condition (weight-length residuals) was associated with warm SST and shallower stations. We used insulin-like growth factor-1 (IGF-1) concentrations as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found fish exhibited higher IGF-1 concentrations in 2010-2012 than in 2009, although these differences were not clearly attributable to environmental conditions. Our second objective was to compare size and condition of juvenile chum and pink salmon in the NEBS between warm and cool spring thermal regimes of the southeastern Bering Sea (SEBS). This comparison was based on a hypothesis informed by the strong role of sea-ice retreat in the spring for production dynamics in the SEBS and prevailing northward currents, suggesting that feeding conditions in the NEBS may be influenced by production in the SEBS. We found greater length (both species) and condition (pink salmon) in years with warm thermal regimes; however, both of these responses changed more rapidly with day of year in years with cool springs. Finally, we compared indicators of energy allocation between even and odd brood

  12. Assessing environmental conditions of Antarctic footpaths to support management decisions.

    PubMed

    Tejedo, Pablo; Benayas, Javier; Cajiao, Daniela; Albertos, Belén; Lara, Francisco; Pertierra, Luis R; Andrés-Abellán, Manuela; Wic, Consuelo; Luciáñez, Maria José; Enríquez, Natalia; Justel, Ana; Reck, Günther K

    2016-07-15

    Thousands of tourists visit certain Antarctic sites each year, generating a wide variety of environmental impacts. Scientific knowledge of human activities and their impacts can help in the effective design of management measures and impact mitigation. We present a case study from Barrientos Island in which a management measure was originally put in place with the goal of minimizing environmental impacts but resulted in new undesired impacts. Two alternative footpaths used by tourist groups were compared. Both affected extensive moss carpets that cover the middle part of the island and that are very vulnerable to trampling. The first path has been used by tourists and scientists since over a decade and is a marked route that is clearly visible. The second one was created more recently. Several physical and biological indicators were measured in order to assess the environmental conditions for both paths. Some physical variables related to human impact were lower for the first path (e.g. soil penetration resistance and secondary treads), while other biochemical and microbiological variables were higher for the second path (e.g. β-glucosidase and phosphatase activities, soil respiration). Moss communities located along the new path were also more diverse and sensitive to trampling. Soil biota (Collembola) was also more abundant and richer. These data indicate that the decision to adopt the second path did not lead to the reduction of environmental impacts as this path runs over a more vulnerable area with more outstanding biological features (e.g. microbiota activity, flora and soil fauna diversity). In addition, the adoption of a new route effectively doubles the human footprint on the island. We propose using only the original path that is less vulnerable to the impacts of trampling. Finally from this process, we identify several key issues that may be taken into account when carrying out impact assessment and environmental management decision-making in the

  13. Interaction of gravity with other environmental factors in growth and development: an introduction.

    PubMed

    Hoson, T

    1999-01-01

    The life of plants and other organisms is governed by the constant force of gravity on earth. The mechanism of graviperception, signal transduction, and gravireaction is one of the major themes in space biology. When gravity controls each step of the life cycle such as growth and development, it does not work alone but operates with the interaction of other environmental factors. In order to understand the role of gravity in regulation of the life cycle, such interactions also should be clarified. Under microgravity conditions in space, various changes are brought about in the process of growth and development. Some changes would be advantageous to organisms, but others would be unfavorable. For overcoming such disadvantages, it may be required to exploit some other environmental factors which substitute for gravity in some properties. In terrestrial plants, gravity can be replaced by light under certain conditions. The gravity-substituting factors may play a principal role in future space development.

  14. Colloid's influences on microalgae growth as a potential environmental factor

    NASA Astrophysics Data System (ADS)

    Zhao, Xinhuai; Zhang, Zhengbin; Liu, Liansheng

    2003-09-01

    The role of colloid as “colloid pump” in the ocean is well known. The important influence of colloid in seawater on the growth of microalga was found in our 1999 2000 study. Colloid concentrates were obtained by employing a cross-flow filtration system to ultrafilter seawater (which had been pre-filtrated by 0.45 μm acetate cellulose membrane) successively with different membranes. Ultrafiltration retentions (we called them colloid concentrates) together with control sample (seawater without colloid) were then inoculated with two species of microalgae and cultivated in selected conditions. Monitoring of microalgae growth during cultivation showed that all colloid concentrates had obvious influence on the growth of the microalgae studied. Addition of Fe(OH)3 colloid or organic colloid (protein or carbohydrate) to the control sample enhanced the microalgae’s growth.

  15. Effects of varying environmental conditions on vegetation response to ozone exposure

    SciTech Connect

    Zaleski, R.T.; Triemer, L.R.

    1995-12-31

    Developing an exposure-effects model for plant response to ozone exposure is a complex process. It is known that ozone must enter the plant through the stomata for an effect to occur. Therefore, ozone uptake is related not only to ambient ozone concentrations, but also to environmental factors which control stomatal movement. In addition, cellular factors within the plant can mitigate ozone impact and ultimately control plant response. This paper presents a review of the scientific literature on plant responses (e.g. visible foliar injury, reductions in growth or yield) to ozone exposures under varying environmental conditions known to affect stomatal aperture. The results of this effort show the importance of considering key environmental factors when developing exposure-effects models.

  16. Antimicrobial Treatment Improves Mycobacterial Survival in Nonpermissive Growth Conditions

    PubMed Central

    Turapov, Obolbek; Waddell, Simon J.; Burke, Bernard; Glenn, Sarah; Sarybaeva, Asel A.; Tudo, Griselda; Labesse, Gilles; Young, Danielle I.; Young, Michael; Andrew, Peter W.; Butcher, Philip D.; Cohen-Gonsaud, Martin

    2014-01-01

    Antimicrobials targeting cell wall biosynthesis are generally considered inactive against nonreplicating bacteria. Paradoxically, we found that under nonpermissive growth conditions, exposure of Mycobacterium bovis BCG bacilli to such antimicrobials enhanced their survival. We identified a transcriptional regulator, RaaS (for regulator of antimicrobial-assisted survival), encoded by bcg1279 (rv1219c) as being responsible for the observed phenomenon. Induction of this transcriptional regulator resulted in reduced expression of specific ATP-dependent efflux pumps and promoted long-term survival of mycobacteria, while its deletion accelerated bacterial death under nonpermissive growth conditions in vitro and during macrophage or mouse infection. These findings have implications for the design of antimicrobial drug combination therapies for persistent infectious diseases, such as tuberculosis. PMID:24590482

  17. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions.

    PubMed

    Manso, Sandra; Calvo-Torras, María Ángeles; De Belie, Nele; Segura, Ignacio; Aguado, Antonio

    2015-04-15

    Incorporation of living organisms, such as photosynthetic organisms, on the structure envelope has become a priority in the area of architecture and construction due to aesthetical, economic and ecological advantages. Important research efforts are made to achieve further improvements, such as for the development of cementitious materials with an enhanced bioreceptivity to stimulate biological growth. Previously, the study of the bioreceptivity of cementitious materials has been carried out mainly under laboratory conditions although field-scale experiments may present different results. This work aims at analysing the colonisation of cementitious materials with different levels of bioreceptivity by placing them in three different environmental conditions. Specimens did not present visual colonisation, which indicates that environmental conditions have a greater impact than intrinsic properties of the material at this stage. Therefore, it appears that in addition to an optimized bioreceptivity of the concrete (i.e., composition, porosity and roughness), extra measures are indispensable for a rapid development of biological growth on concrete surfaces. An analysis of the colonisation in terms of genus and quantity of the most representative microorganisms found on the specimens for each location was carried out and related to weather conditions, such as monthly average temperature and total precipitation, and air quality in terms of NOx, SO2, CO and O3. OPC-based specimens presented a higher colonisation regarding both biodiversity and quantity. However, results obtained in a previous experimental programme under laboratory conditions suggested a higher suitability of Magnesium Phosphate Cement-based (MPC-based) specimens for algal growth. Consequently, carefully considering the environment and the relationships between the different organisms present in an environment is vital for successfully using a cementitious material as a substrate for biological growth.

  18. Butyrate production under aerobic growth conditions by engineered Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Yakushi, Toshiharu; Matsushita, Kazunobu

    2017-01-11

    Butyrate is an important industrial platform chemical. Although several groups have reported butyrate production under oxygen-limited conditions by a native producer, Clostridium tyrobutylicum, and by a metabolically engineered Escherichia coli, efforts to produce butyrate under aerobic growth conditions have met limited success. Here, we constructed a novel butyrate synthetic pathway that functions under aerobic growth conditions in E. coli, by modifying the 1-butanol synthetic pathway reported previously. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, and endogenous thioesterase(s) of E. coli. To evaluate the potential of this pathway for butyrate production, culture conditions, including pH, oxygen supply, and concentration of inorganic nitrogen sources, were optimized in a mini-jar fermentor. Under the optimal conditions, butyrate was produced at a concentration of up to 140 mM (12.3 g/L in terms of butyric acid) after 54 h of fed-batch culture.

  19. [Environmental pollution and population growth in Latin America].

    PubMed

    Viel, B

    1983-01-01

    3 factors are always involved in causation of infectious disease: the causal organism, an adverse environment, and nutritional status. As knowledge of degenerative and mental illnesses advances, their relationship to environmental problems becomes clearer. Health in the human being as in all living things is the product of ecological equilibrium. In countries with high mortality rates, the majority of deaths occur in the early years of life. Countries enjoying low mortality rates are those that have protected themselves against environmental deterioration. The Roman civilization, the 1st to have large cities, built aqueducts to protect the water supply from contamination. With the disappearance of the Roman Empire the concern for purity of the water supply also disappeared, and the cities of the Middle Ages became breeding grounds for epidemics. In the early 19th century John Snow demonstrated the role of water in the transmission of cholera and thereafter the concern with potable water and sewage disposal was reborn. The Industrial Revolution eventually allowed sufficient accumulation of wealth to permit improved nutrition. Environmental sanitation and improved food supply produced a new ecological equilibrium, and Western Europe began to have lower and lower mortality rates. Paralleling the decline in deaths a new spirit of responsible parenthood and delayed marriage was lowering birth rates. Population growth, which never exceeded 1%, had the additional escape valve of emigration to America and Australia. The true cause of environmental degradation is man. When human beings were few their contaminants were readily obsorbed by the environment, but as they proliferate the environment is increasingly unable to absorb their pollution by natural processes. Industrial fumes, deforestation, and polluted rivers are only the symptoms of contamination. In the developed countries, technological innovations minimizing industrial pollution and lower population growth are

  20. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution

    PubMed Central

    Xu, Yixiao; Richlen, Mindy L.; Liefer, Justin D.; Robertson, Alison; Kulis, David; Smith, Tyler B.; Parsons, Michael L.; Anderson, Donald M.

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may

  1. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution.

    PubMed

    Xu, Yixiao; Richlen, Mindy L; Liefer, Justin D; Robertson, Alison; Kulis, David; Smith, Tyler B; Parsons, Michael L; Anderson, Donald M

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4-5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0-0.48 divisions day(-1). In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55 μmol photons · m(-2) · s(-1) were lower than those at 110-400 μmol photons · m(-2) · s(-1). At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1-38.5 and 23.8-29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may

  2. Suppression of Elongation and Growth of Tomato Seedlings by Auxin Biosynthesis Inhibitors and Modeling of the Growth and Environmental Response

    PubMed Central

    Higashide, Tadahisa; Narukawa, Megumi; Shimada, Yukihisa; Soeno, Kazuo

    2014-01-01

    To develop a growth inhibitor, the effects of auxin inhibitors were investigated. Application of 30 μM L-α-aminooxy-β-phenylpropionic acid (AOPP) or (S)-methyl 2-((1,3-dioxoisoindolin-2-yl)oxy)-3-phenylpropanoate (KOK1101), decreased the endogenous IAA levels in tomato seedlings at 8 days after sowing. Then, 10–1200 μM AOPP or KOK1101 were sprayed on the leaves and stem of 2–3 leaf stage tomato plants grown under a range of environmental conditions. We predicted plant growth and environmental response using a model based on the observed suppression of leaf enlargement. Spraying AOPP or KOK1101 decreased stem length and leaf area. Concentration-dependent inhibitions and dose response curves were observed. Although the effects of the inhibitors on dry weight varied according to the environmental conditions, the net assimilation rate was not influenced by the inhibitors. Accordingly, the observed decrease in dry weight caused by the inhibitors may result from decreased leaf area. Validation of the model based on observed data independent of the dataset showed good correlations between the observed and predicted values of dry weight and leaf area index. PMID:24690949

  3. Unravelling environmental conditions during the Holocene in the Dead Sea region using multiple archives

    NASA Astrophysics Data System (ADS)

    Rambeau, Claire; van Leeuwen, Jacqueline; van der Knaap, Pim; Gobet, Erika

    2016-04-01

    For the most arid parts of the Southern Levant (roughly corresponding to modern Jordan, Israel and Palestine), environmental reconstructions are impeded by the limited number of archives, and the frequent contradictions between individual palaeoenvironmental records. The Southern Levant is characterised by steep climate gradients; local conditions presently range from arid to dry Mediterranean, with limits that may have fluctuated during the Holocene. This further complicates the determination of site-specific past environmental conditions. Understanding past climate and environmental evolution through time, at a local level, is however crucial to compare these with societal evolution during the Holocene, which features major cultural developments such as cereal cultivation, animal domestication, water management, as well as times of preferential settlement growth or site abandonment. This contribution proposes to examine the different archives available for the Dead Sea region, paying special attention to the most recent pollen data obtained from the area. It will particularly critically compare local to regional-scale information, and try to decipher the main evolutions of environmental conditions during the Holocene in arid and semi-arid Southern Levant.

  4. Multimodal cues improve prey localization under complex environmental conditions

    PubMed Central

    Rhebergen, F.; Taylor, R. C.; Ryan, M. J.; Page, R. A.; Halfwerk, W.

    2015-01-01

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them. PMID:26336176

  5. Multimodal cues improve prey localization under complex environmental conditions.

    PubMed

    Rhebergen, F; Taylor, R C; Ryan, M J; Page, R A; Halfwerk, W

    2015-09-07

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them.

  6. Effect of lighting conditions on zebrafish growth and development.

    PubMed

    Villamizar, Natalia; Vera, Luisa María; Foulkes, Nicholas Simon; Sánchez-Vázquez, Francisco Javier

    2014-04-01

    In the underwater environment, the properties of light (intensity and spectrum) change rapidly with depth and water quality. In this article, we have described how and to what extent lighting conditions can influence the development, growth, and survival of zebrafish. Fertilized eggs and the corresponding larvae were exposed to different visible light wavelengths (violet, blue, green, yellow, red, and white) in a 12-h light-12-h dark (LD) cycle until 30 days posthatching (dph), when the expression of morphometric parameters and growth (igf1a, igf2a)- and stress-related (crh and pomca) genes were examined. Another group of larvae was raised under constant darkness (DD) until 5 or 10 dph, after which they were transferred to a LD of white light. A third group remained under DD to investigate the effects of light deprivation upon zebrafish development. The results revealed that the hatching rate was highest under blue and violet light, while total length at 30 dph was greatest under blue, white, and violet light. Red light led to reduced feeding activity and poor survival (100% mortality). Larvae raised under constant white light (LL) showed a higher proportion of malformations, as did larvae raised under LD violet light. The expression of growth and stress factors was upregulated in the violet (igf1a, igf2a, pomca, and chr) and blue (igf2a) groups, which is consistent with the higher growth recorded and the higher proportion of malformations detected under the violet light. All larvae kept under DD died before 18 dph, but the survival rates improved in larvae transferred to LD at 5 dph and at 10 dph. In summary, these findings revealed that lighting conditions are crucial factors influencing zebrafish larval development and growth.

  7. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  8. Growth of Heterostegina depressa under natural and laboratory conditions

    PubMed Central

    Eder, Wolfgang; Briguglio, Antonino; Hohenegger, Johann

    2016-01-01

    The use of micro-computed tomography (μCT) provides a unique opportunity to look inside the shells of larger benthic foraminifera to investigate their structure by measuring linear and volumetric parameters. For this study, gamonts/schizonts and agamonts of the species Heterostegina depressa d'Orbigny were examined by μCT; each single chamber's volume was digitally measured. This approach enables cell growth to be recognised in terms of chamber volume sequence, which progressively increases until reproduction occurs. This sequence represents the ontogeny of the foraminiferal cell and has been used here to investigate controlling factors potentially affecting the process of chamber formation. This is manifested as instantaneous or periodic deviations of the realised chamber volumes derived from modelled growth functions. The results obtained on naturally grown specimens show oscillations in chamber volumes which can be modelled by sums of sinusoidal functions. A set of functions with similar periods in all investigated specimens points to lunar and tidal cycles. To determine whether such cyclic signals are genuine and not the effects of a theoretical model, the same analysis was conducted on specimens held in a closed laboratory facility, as they should not be affected by natural environmental effects. Surprisingly, similar cyclicities were observed in such samples. However, a solely genetic origin of these cycles couldn't be verified either. Therefore, detailed analysis on the phase equality of these growth oscillations have been done. This approach is pivotal for proving that the oscillatory patterns discovered in LBF are indeed genuine signals, and on how chamber growth might be influenced by tidal currents or lunar months. PMID:28100933

  9. Maternal, social and abiotic environmental effects on growth vary across life stages in a cooperative mammal.

    PubMed

    English, Sinead; Bateman, Andrew W; Mares, Rafael; Ozgul, Arpat; Clutton-Brock, Tim H

    2014-03-01

    Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment

  10. The community conditioning hypothesis and its application to environmental toxicology

    SciTech Connect

    Matthews, R.A.; Landis, W.G.; Matthews, G.B.

    1996-04-01

    In this paper the authors present the community conditions hypothesis, ecological communities retain information bout events in their history. This hypothesis, which was derived from the concept of nonequilibrium community ecology, was developed as a framework for understanding the persistence of dose-related responses in multispecies toxicity tests. The authors present data from three standardized aquatic microcosm (SAM) toxicity tests using the water-soluble fractions from turbine fuels (Jet-A, JP-4, and JP-8). In all three tests, the toxicants depressed the Daphnia populations for several weeks, which resulted in algal blooms in the dosed microcosms due to lower predation rates. These effects were short-lived, and by the second and third months of the experiments, the Daphnia populations appeared to have recovered. However, multivariate analysis of the data released dose/response differences that reappeared during the later part of the tests, often due to differences in other consumers (rotifers, ostracods, ciliates), or algae that are not normally consumed (filamentous green algae and bluegreen algae). The findings are consistent with ecological theories that describe communities as the unique production of their etiologies. The implications of this to environmental toxicology are that almost all environmental events leave lasting effects, whether or not they have observed them.

  11. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.

  12. K, U, and Th behavior in Martian environmental conditions

    NASA Technical Reports Server (NTRS)

    Zolotov, M. YU.; Krot, T. V.; Moroz, L. V.

    1993-01-01

    The possibility of K, U, and Th content determination from orbit and in situ allows consideration of those elements as geochemical indicators in the planetary studies. In the case of Mars the unambiguous interpretations of such data in terms of igneous rocks are remarkably constrained by the widespread rock alteration and the existence of exogenic deposits. Besides, the terrestrial experience indicates that K, U, and Th contents could be used as indicators of environmental geochemical processes. Thus the determination of K, U, and Th contents in the Martian surface materials could provide the indirect data on the conditions of some exogenic geological processes. The speculations on the K, U, and Th behavior in the Martian environments show that aeolian and aqueous processes leads to the preferential accumulation of K, U, and Th in fine dust material. The separation of K, U, and Th on Mars is smaller in scale to that on Earth.

  13. Environmental conditioning for textile yarn-spinning mill

    SciTech Connect

    Gengler, M.

    1996-06-01

    In mid-1993, Parkdale Mills, Inc., entered into a contract with Pneumafil Corporation to design and construct a total environmental conditioning system for their Plant No. 5 Open-End Spinning Room modernization program. This system was put into use in July 1994. Parkdale Mills in Gastonia, N.C. is one of the true innovators in the textile yarn-spinning business. The company presented a challenge to press technology to a new level to meet a number of well-defined goals. These goals were as follows: (1) Room temperature and humidity control -- Very accurate control to enable consistent production of the highest possible quality of yarn; (2) Energy efficiency -- The best achievable to assure the lowest possible production cost to the mill; (3) Dust levels -- The lowest possible within the mill for compliance with OSHA dust standards and for the least impact on yarn quality; and (4) Installed cost -- Not to exceed that of a conventionally designed system.

  14. The Culture Conditions for the Mycelial Growth of Phellinus spp.

    PubMed Central

    Rew, Young-Hyun; Choi, Sung-Guk; Seo, Geon-Sik; Sung, Jae-Mo; Uhm, Jae-Youl

    2006-01-01

    Phellinus genus belonged to Hymenochaetaceae of Basidiomycetes and has been well known as one of the most popular medicinal mushrooms due to high antitumor activity. This study was carried out to obtain the basic information for mycelial culture conditions of Phellinus linteus, P. baumii, and P. gilvus. According to colony diameter and mycelial density, the media for suitable mycelial growth of them were shown in MEA, glucose peptone, and MCM. The optimum temperature for mycelial growth was 30℃. Carbon and nitrogen sources were mannose and malt extract, respectively. The optimum C/N ratio was 10 : 1 to 5 : 1 with 2% glucose concentration, vitamin was thiamine-HCl, organic acid was succinic acid, and mineral salt was MgSO4·7H2O. PMID:24039499

  15. The Culture Conditions for the Mycelial Growth of Phellinus spp.

    PubMed

    Jo, Woo-Sik; Rew, Young-Hyun; Choi, Sung-Guk; Seo, Geon-Sik; Sung, Jae-Mo; Uhm, Jae-Youl

    2006-12-01

    Phellinus genus belonged to Hymenochaetaceae of Basidiomycetes and has been well known as one of the most popular medicinal mushrooms due to high antitumor activity. This study was carried out to obtain the basic information for mycelial culture conditions of Phellinus linteus, P. baumii, and P. gilvus. According to colony diameter and mycelial density, the media for suitable mycelial growth of them were shown in MEA, glucose peptone, and MCM. The optimum temperature for mycelial growth was 30℃. Carbon and nitrogen sources were mannose and malt extract, respectively. The optimum C/N ratio was 10 : 1 to 5: 1 with 2% glucose concentration, vitamin was thiamine-HCl, organic acid was succinic acid, and mineral salt was MgSO4·7H2O.

  16. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro.

    PubMed

    Fistarol, Giovana O; Coutinho, Felipe H; Moreira, Ana Paula B; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E M; Coutinho, Ricardo; de Moura, Rodrigo L; Valentin, Jean Louis; Tenenbaum, Denise R; Paranhos, Rodolfo; do Valle, Rogério de A B; Vicente, Ana Carolina P; Amado Filho, Gilberto M; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E; Thompson, Cristiane C; Salomon, Paulo S; Thompson, Fabiano L

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km(2). In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay's degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay's water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro.

  17. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro

    PubMed Central

    Fistarol, Giovana O.; Coutinho, Felipe H.; Moreira, Ana Paula B.; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E. M.; Coutinho, Ricardo; de Moura, Rodrigo L.; Valentin, Jean Louis; Tenenbaum, Denise R.; Paranhos, Rodolfo; do Valle, Rogério de A. B.; Vicente, Ana Carolina P.; Amado Filho, Gilberto M.; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E.; Thompson, Cristiane C.; Salomon, Paulo S.; Thompson, Fabiano L.

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro. PMID:26635734

  18. Pervaporative irrigation: a flow rate driven by environmental conditions

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Mougros, C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    Pervaporative irrigation allows in-situ treatment of low quality water (e.g. saline water) whilst simultaneously distributing water throughout the soil. The system is also low energy, requiring only that a positive head of water is maintained in a supply tank. To irrigate using this method a pervaporative polymer membrane is formed into a pipe, buried in the soil and filled with water. Water is transported across the membrane by the process of pervaporation whilst the transport of contaminants is retarded, thus reducing the risk of soil degradation due to the use of low water quality. Uniquely these systems also inherently provide a feedback mechanism by which crops can affect the irrigation rate. Such a system has significant possibilities to provide an irrigation pipe from which water is only applied when required, hence reducing the volume of water used. However such systems are currently not fully understood and, to be implemented effectively, the behaviour of the membrane in different environmental conditions must be quantified. From experimental results this work has identified the significance of vapour flows in predicting the flux from the irrigation system in dry soils. In a 15cm layer of sand, the presence of a desiccant above the soil doubled the flux from the pipe, but more than 70% of this mass was adsorbed by the desiccant. Experiments also show that the flux into typical top soil was greater than into sand because of the greater capacity of the top soil for water adsorption. This adsorption maintained a lower humidity in the soil, hence providing a larger gradient across the irrigation membrane and inducing a higher flux. Although there is some evidence that seeds can absorb water from vapour flows the possibility that plants also do this has not yet been explored. This technology provides future opportunities to explore the interaction of plants both with vapour flows, and with a system where the irrigation rate is influenced by the crop uptake and

  19. A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes

    PubMed Central

    Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R.; Junier, Pilar

    2016-01-01

    Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active

  20. A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes.

    PubMed

    Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R; Junier, Pilar

    2016-01-01

    Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active

  1. Influence of growth conditions on barley starch properties.

    PubMed

    Tester, R F

    1997-08-01

    Air equilibrated barley starch comprises amylopectin, amylose, lipid and water. The structure of amylose and amylopectin, and the proportion of amylose in granules is under genetic control and is therefore subject to genotypic variation. The amount of lipid (which is essentially all lysophospholipid) is similarly under genetic control. Environment and especially environmental temperature do, however, have a regulatory effect on the size of starch granules, the amylose to amylopectin ratio and the amount of lipid (which is essentially all complexed with amylose) within barley starch. High growth temperatures probably facilitate amylopectin crystallisation and increase gelatinisation temperatures, (and to some extent the enthalpy of gelatinisation), but delay the onset and depress the extent of swelling of granules when heated in water.

  2. Human STEAP3 maintains tumor growth under hypoferric condition

    SciTech Connect

    Isobe, Taichi; Baba, Eishi; Arita, Shuji; Komoda, Masato; Tamura, Shingo; Shirakawa, Tsuyoshi; Ariyama, Hiroshi; Takaishi, Shigeo; Kusaba, Hitoshi; and others

    2011-11-01

    Iron is essential in cellular proliferation and survival based on its crucial roles in DNA and ATP synthesis. Tumor cells proliferate rapidly even in patients with low serum iron, although their actual mechanisms are not well known. To elucidate molecular mechanisms of efficient tumor progression under the hypoferric condition, we studied the roles of six-transmembrane epithelial antigen of the prostate family member 3 (STEAP3), which was reported to facilitate iron uptake. Using Raji cells with low STEAP3 mRNA expression, human STEAP3-overexpressing cells were established. The impact of STEAP3 expression was analyzed about the amount of iron storage, the survival under hypoferric conditions in vitro and the growth of tumor in vivo. STEAP3 overexpression increased ferritin, an indicator of iron storage, in STEAP3-overexpressing Raji cells. STEAP3 gave Raji cells the resistance to iron deprivation-induced apoptosis. These STEAP3-overexpressing Raji cells preserved efficient growth even in hypoferric mice, while parental Raji cells grew less rapidly. In addition, iron deficiency enhanced STEAP3 mRNA expression in tumor cells. Furthermore, human colorectal cancer tissues exhibited more STEAP3 mRNA expression and iron storage compared with normal colon mucosa. These findings indicate that STEAP3 maintains iron storage in human malignant cells and tumor proliferation under the hypoferric condition. -- Highlights: {yields} STEAP3 expression results in increment of stored intracellular iron. {yields} Iron deprivation induces expression of STEAP3. {yields} Colorectal cancer expresses STEAP3 highly and stores iron much. {yields} STEAP3 expressing tumors preserves growth even in mice being hypoferremia.

  3. Growth conditions influence the melatonin content of tomato plants.

    PubMed

    Arnao, Marino Bañón; Hernández-Ruiz, Josefa

    2013-06-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an interesting molecule with well-known functions in vertebrates. Since its discovery in plants in 1995, many data indicate that its role as a cellular antioxidant is very relevant. Agents that induce stress cause increased melatonin levels in plant organs and melatonin levels fluctuate over the light:dark cycle; there are also conflicting data on the influence of environmental conditions on the melatonin content of plants. In this contribution we describe how cultivation conditions decisively influence melatonin levels in roots, stems and leaves of tomato plants, and we establish some guidelines for interpreting data with the intention of opening up new discussion options, given the lack of data on the place/s of melatonin biosynthesis and its mode of action in plant cells as an antioxidant.

  4. [Fluorescence parameters of chlorophyll in leaves of caules plants in different environmental conditions].

    PubMed

    Iakovleva, O V; Talipova, E V; Kukarskikh, G P; Krendeleeva, T E; Rubin, A B

    2005-01-01

    The functional state of medicinal plants of Convallaria majalis L., Vaccinium vitis-idaeae L., Arctostaphylos uva-ursi L. in connection with heavy metal accumulation in their leaves under man impact was studied by the pulse-amplitude-modulation (PAM) fluorometric method. The relative yield of variable fluorescence (F(v)/F(m)), induction of fluorescence of chlorophyll, and fluorescence quenching processes in leaves at different distances from the local Kirov-Sovetsk, Kirov-Omutninsk road in Kirov region were analyzed. Changes in biophysical characteristics with the increasing content of heavy metals in leaves were demonstrated. The most informative characteristic is F(v)/F(m). Its value correlates with the activity of the photosynthetic apparatus and reflects the potential effeciency of photosynthesis. The better are the environmental conditions of plant growth, the higher is the F(v)/F(m) ratio and the lower is its average statistical deviation. Fluorescence induction curves do not always vary in shape under our ecological conditions, indicating relatively favorable conditions at places of plant growth investigated. The rate of the environmental pollution in the investigated region is not critical, since the content of heavy metal in leaves does not change considerably with the distance from the road.

  5. Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: conditions and population consequences.

    PubMed

    Stelkens, Rike B; Wedekind, Claus

    2010-02-01

    The great diversity of sex determination mechanisms in animals and plants ranges from genetic sex determination (GSD, e.g. mammals, birds, and most dioecious plants) to environmental sex determination (ESD, e.g. many reptiles) and includes a mixture of both, for example when an individual's genetically determined sex is environmentally reversed during ontogeny (ESR, environmental sex reversal, e.g. many fish and amphibia). ESD and ESR can lead to widely varying and unstable population sex ratios. Populations exposed to conditions such as endocrine-active substances or temperature shifts may decline over time due to skewed sex ratios, a scenario that may become increasingly relevant with greater anthropogenic interference on watercourses. Continuous exposure of populations to factors causing ESR could lead to the extinction of genetic sex factors and may render a population dependent on the environmental factors that induce the sex change. However, ESR also presents opportunities for population management, especially if the Y or W chromosome is not, or not severely, degenerated. This seems to be the case in many amphibians and fish. Population growth or decline in such species can potentially be controlled through the introduction of so-called Trojan sex genes carriers, individuals that possess sex chromosomes or genes opposite from what their phenotype predicts. Here, we review the conditions for ESR, its prevalence in natural populations, the resulting physiological and reproductive consequences, and how these may become instrumental for population management.

  6. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    PubMed

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  7. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    PubMed Central

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  8. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells

    SciTech Connect

    Umehara, Senkei; Hattori, Akihiro; Inoue, Ippei; Yasuda, Kenji . E-mail: yasuda.bmi@tmd.ac.jp

    2007-05-04

    Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells.

  9. Environmental conditions for alternative tree cover states in high latitudes

    NASA Astrophysics Data System (ADS)

    Abis, Beniamino; Brovkin, Victor

    2016-04-01

    Previous analysis of the vegetation cover from remote sensing revealed the existence of three alternative modes in the frequency distribution of boreal tree cover: a sparsely vegetated treeless state, a savanna-like state, and a forest state. Identifying which are the regions subject to multimodality, and assessing which are the main factors underlying their existence, is important to project future change of natural vegetation cover and its effect on climate. We study the impact on the forest cover fraction distribution of seven globally-observed environmental factors: mean annual rainfall, mean minimum temperature, growing degree days above 0, permafrost distribution, soil moisture, wildfire occurrence frequency, and thawing depth. Through the use of generalised additive models, regression trees, and conditional histograms, we find that the main factors determining the forest distribution in high latitudes are: permafrost distribution, mean annual rainfall, mean minimum temperature, soil moisture, and wildfire frequency. Additionally, we find differences between regions within the boreal area, such as Eurasia, Eastern North America, and Western North America. Furthermore, using a classification based on these factors, we show the existence and location of alternative tree cover states under the same climate conditions in the boreal region. These are areas of potential interest for a more detailed analysis of land-atmosphere interactions.

  10. Environmental safety conditions for mobile base stations in Alexandria.

    PubMed

    el-Shal, W; el-Sebaie, O

    2000-01-01

    The use of wireless communications devices e.g. cellular phones is increasing rapidly all over the world and in Egypt as well. This translates into a potentially significant public health problem: how far is the risk associated with these devices? Another risk is expected from the cellular towers or base stations, which transmit and receive these electromagnetic waves. Usually, these base stations should be constructed over residential buildings to cover all areas. Considering the increased public awareness about electromagnetic fields (EMF) exposure associated with these towers, this work aimed at investigation and evaluation of authorized environmental safety conditions for some mobile base stations in different districts of Alexandria city. The different mobile base stations were investigated for 12 standard safety specifications of the buildings' roofs on which mobile base stations are constructed. Although some of the standard specifications in the examined base stations were in compliance with standard specifications, some items were not in a safe condition. Only base stations F & G had complete safe conditions for all investigated items because of being erected on lighting towers of a sports stadium. On the other hand, base stations C, D, E, I, J, K, L1 & L2 needed a raise in the height of the antennas over buildings' roofs of 1-4.5 m. However, base stations C, D, H, K, L1 & L2 may pose a risk to near living population and consequently the towers have to be moved away. The violating distances are 3, 5.5, 3, 4.5, 4, 3 meters, respectively, while the environmental standard is 6 m. Therefore, the towers should be moved away from these populated areas Nevertheless, guided directions should be constructed in all base stations to warn close living population. Safety regulations as well as frequent inspection need to be applied, on both Egyptian mobile phone companies, to ensure the application of all standard specifications. A significant research effort is needed

  11. Bacterial populations growth under co- and counter-flow condition

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Toschi, Federico

    2014-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients play a major role on the population level: the flow has a dual role as it transports the nutrient while dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction diffusion equation. The solution predicts the expansion as a wave front (Fisher wave) proceeding at constant speed, till the carrying capacity is reached everywhere. The effect of fluid flow, however, is not well understood and the interplay between transport of individuals and nutrient opens a wide scenario of possible behaviors. In this work, we experimentally observe non-motile E. coli bacteria spreading inside rectangular channels in a PDMS microfluidic device. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates.

  12. Guaranteeing robustness of structural condition monitoring to environmental variability

    NASA Astrophysics Data System (ADS)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  13. Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R

    2012-03-15

    Coral reefs exhibit marked spatial and temporal variability, and coral reef organisms exhibit trade-offs in functional traits that influence demographic performance under different combinations of abiotic environmental conditions. In many systems, trait trade-offs are modelled using an energy and/or nutrient allocation framework. However, on coral reefs, differences in biomechanical vulnerability have major demographic implications, and indeed are believed to play an essential role in mediating species coexistence because highly competitive growth forms are vulnerable to physical dislodgment events that occur with high frequency (e.g. annual summer storms). Therefore, an integrated energy allocation and biomechanics framework is required to understand the effect of physical environmental gradients on species' demographic performance. However, on coral reefs, as in most ecosystems, the effects of environmental conditions on organisms are measured in different currencies (e.g. lipid accumulation, survival and number of gametes), and thus the relative contributions of these effects to overall capacity for population growth are not readily apparent. A comprehensive assessment of links between the environment and the organism, including those mediated by biomechanical processes, must convert environmental effects on individual-level performance (e.g. survival, growth and reproduction) into a common currency that is relevant to the capacity to contribute to population growth. We outline such an approach by considering the population-level performance of scleractinian reef corals over a hydrodynamic gradient, with a focus on the integrating the biomechanical determinants of size-dependent coral colony dislodgment as a function of flow, with the effects of flow on photosynthetic energy acquisition and respiration.

  14. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  15. Physiological behaviour of gliotoxigenic Aspergillus fumigatus sensu stricto isolated from maize silage under simulated environmental conditions.

    PubMed

    Alonso, V; Vergara, L Díaz; Aminahuel, C; Pereyra, C; Pena, G; Torres, A; Dalcero, A; Cavaglieri, L

    2015-01-01

    Environmental conditions play a key role in fungal development. During the silage production process, humidity, oxygen availability and pH vary among lactic-fermentation phases and among different silage sections. The aim of this work was to study the physiological behaviour of gliotoxicogenic Aspergillus fumigatus strains isolated from maize silage under simulated natural physicochemical conditions - different water activities (a(W)), temperatures (Tº), pH and oxygen pressure - on the growth parameters (growth rate and lag phase) and gliotoxin production. The silage was made with the harvested whole maize plant that was chopped and used for trench-type silo fabrication. Water activity and pH of the silage samples were determined. Total fungal counts were performed on Dichloran Rose Bengal Chloramphenicol agar and Dichloran 18% Glycerol agar. The morphological identification of A. fumigatus was performed with different culture media and at different growth temperature to observe microscopic and macroscopic characteristics. Gliotoxin production by A. fumigatus was determined by HPLC. All strains isolated were morphologically identified as A. fumigatus. Two A. fumigatus strains isolated from the silage samples were selected for the ecophysiological study (A. fumigatus sensu stricto RC031 and RC032). The results of this investigation showed that the fungus grows in the simulated natural physicochemical conditions of corn silage and produces gliotoxin. The study of the physiological behaviour of gliotoxigenic A. fumigatus under simulated environmental conditions allowed its behaviour to be predicted in silage and this will in future enable appropriate control strategies to be developed to prevent the spread of this fungus and toxin production that leads to impairment and reduced quality of silage.

  16. Microbial forensics: predicting phenotypic characteristics and environmental conditions from large-scale gene expression profiles.

    PubMed

    Kim, Minseung; Zorraquino, Violeta; Tagkopoulos, Ilias

    2015-03-01

    A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications.

  17. Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

    PubMed Central

    Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.

    2015-01-01

    Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5

  18. Biodegradation of a Light NAPL under Varying Soil Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Yadav, B. K.; Hassanizadeh, S. M.; Kleingeld, P. J.

    2009-12-01

    To see the impact of different soil environmental conditions on LNAPL biodegradation, a series of batch, microcosm, column and 2-D tank experiments under controlled conditions have been planned. Microcosms along with batch experiments have been designed for five different moisture contents ranging from residual to saturated, and under varying temperature condition. The batches are being used for two saturated soils containing toluene. For the unsaturated cases, fifteen microcosms are designed to mimic natural conditions more closely. The microcosms consist of a transparent outer column and an air permeable, but watertight, inner tube comprised of toluene phobic material. The space between the outer column and the inner porous tube is filled with a soil having a particular moisture content with a known amount of toluene. The inner porous tube is filled with air at atmospheric pressure, providing sufficient oxygen for the degradation of considered light NAPL. A special sampling mechanism has been fabricated to enable airtight soil sampling. Four columns have been designed for studying the impact of water table fluctuation on the LNAPL fate and transport in variably-saturated soil. Water table in two columns will be static and remaining two will be subjected to a fluctuation. Finally a 2-D tank setup, made of a steel box and a glass cover, has been refurbished for bioremediation process of LNAPL from start to finish. The main body is constructed of one piece of 1.5 mm thick stainless steel formed into a box with inner dimensions of 200cm-long x 94cm-high x 4cm-deep. The front cover is made of glass wall having 19-mm thickness. The soil is going to be packed between the two walls. The groundwater will be flowing horizontally from left to right and the water table level in the tank will be controlled by two end chambers. The chambers are separated from the soil by a fine meshed stainless steel sheet. The spatial and the temporal distributions of the LNAPL and its

  19. The first "space" vegetables have been grown in the "SVET" greenhouse using controlled environmental conditions

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Bercovich, Yu. A.; Mashinskiy, A. L.; Meleshko, G. I.

    The paper describes the "SVET" project—a new generation of space greenhouse with small dimensions. Through the use of a minicomputer, "SVET" is fully capable of automatically operating and controlling environmental systems for higher plant growth. A number of preliminary studies have shown the radish and cabbage to be potentially important crops for CELSS (Closed Environmental Life Support System). The "SVET" space greenhouse was mounted on the "CRYSTAL" technological module docked to the Mir orbital space station on 10 June 1990. Soviet cosmonauts Balandin and Solovyov started the first experiments with the greenhouse on 15 June 1990. Preliminary results of seed cultivation over an initial 54-day period in "SVET" are presented. Morphometrical characteristics of plants brought back to Earth are given. Alteration in plant characteristics, such as growth and developmental changes, or morphological contents were noted. A crop of radish plants was harvested under microgravity conditions. Characteristics of plant environmental control parameters and an estimation of functional properties of control and regulation systems of the "SVET" greenhouse in space flight as received via telemetry data is reported.

  20. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential

    PubMed Central

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970–2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon

  1. EVALUATION OF FUNGAL GROWTH ON FIBERGLASS DUCT MATERIALS FOR VARIOUS MOISTURE, SOIL, USE, AND TEMPERATURE CONDITIONS (JOURNAL)

    EPA Science Inventory

    The paper gives results of a series of experiments, each lasing 6 weeks, conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. (NOTE:...

  2. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes

    USGS Publications Warehouse

    Espinar, J.L.; Garcia, L.V.; Clemente, L.

    2005-01-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management.

  3. Surface monitoring measurements of materials on environmental change conditions

    NASA Astrophysics Data System (ADS)

    Tornari, Vivi; Bernikola, Eirini; Bellendorf, Paul; Bertolin, Chiara; Camuffo, Dario; Kotova, Lola; Jacobs, Daniela; Zarnic, Roko; Rajcic, Vlatka; Leissner, Johanna

    2013-05-01

    Climate Change is one of the most critical global challenges of our time and the burdened cultural heritage of Europe is particularly vulnerable to be left unprotected. Climate for Culture2 project exploits the damage impact of climate change on cultural heritage at regional scale. In this paper the progress of the study with in situ measurements and investigations at cultural heritage sites throughout Europe combined with laboratory simulations is described. Cultural works of art are susceptible to deterioration with environmental changes causing imperceptibly slow but steady accumulation of damaging effects directly impacted on structural integrity. Laser holographic interference method is employed to provide remote non destructive field-wise detection of the structural differences occurred as climate responses. The first results from climate simulation of South East Europe (Crete) are presented. A full study in regards to the four climate regions of Europe is foreseen to provide values for development of a precise and integrated model of thermographic building simulations for evaluation of impact of climate change. Development of a third generation user interface software optimised portable metrology system (DHSPI II) is designed to record in custom intervals the surface of materials witnessing reactions under simulated climatic conditions both onfield and in laboratory. The climate conditions refer to real data-loggers readings representing characteristic historical building in selected climate zones. New generation impact sensors termed Glass Sensors and Free Water Sensors are employed in the monitoring procedure to cross-correlate climate data with deformation data. In this paper results from the combined methodology are additionally presented.

  4. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis

    PubMed Central

    Haande, Sigrid; Molversmyr, Åge

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a “cold thermal refuge”, inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  5. Impact of Environmental Conditions on the Survival of Cryptosporidium and Giardia on Environmental Surfaces

    PubMed Central

    Alum, Absar; Absar, Isra M.; Asaad, Hamas; Rubino, Joseph R.; Ijaz, M. Khalid

    2014-01-01

    The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control. PMID:25045350

  6. 76 FR 6455 - Final Programmatic Environmental Impact Statement (PEIS) for the Growth, Realignment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Department of the Army Final Programmatic Environmental Impact Statement (PEIS) for the Growth, Realignment... growth, realignment, and stationing of new and existing Army aviation assets. The proposed action..., indirect, and cumulative environmental effects of proposed CAB growth and realignment for each...

  7. 75 FR 55312 - Preparation of a Programmatic Environmental Impact Statement (PEIS) for the Growth, Realignment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... Department of the Army Preparation of a Programmatic Environmental Impact Statement (PEIS) for the Growth... Intent. SUMMARY: The Army announces its intent to prepare a PEIS for the proposed growth, realignment..., indirect, and cumulative environmental effects of proposed CAB growth and realignment for each...

  8. Do Environmental Conditions Contribute to Narcosis Onset and Symptom Severity?

    PubMed

    Lafère, P; Balestra, C; Hemelryck, W; Guerrero, F; Germonpré, P

    2016-12-01

    Although many factors contributing to inert gas narcosis onset and severity have been put forward, the available evidence is not particularly strong. Using objective criteria, we have assessed brain impairment associated with narcosis under various environmental diving conditions. 40 volunteers performed a no-decompression dive (33 m for 20 min) either in a dry chamber, a pool or open sea. They were assessed by critical flicker fusion frequency before the dive, upon arriving at depth, 5 min before ascent, on surfacing and 30 min post-dive. Compared to the pre-dive value, the mean value of each measurement was significantly different. An increase of flicker fusion to 105.00±0.69% when arriving at depth is followed by a decrease to 94.05±0.65%. This impairment persists when surfacing and 30 min post-dive, decreasing further to 96.36±0.73% and 96.24±0.73%, respectively. Intragroup comparison failed to demonstrate any statistical difference. When objectively measured narcosis may not be influenced by external factors other than pressure and gas. This might be of importance for training to avoid any over- or underestimation of the severity of narcosis based only on subjective symptoms.

  9. Age at menarche: the influence of environmental conditions

    NASA Astrophysics Data System (ADS)

    Saar, E.; Shalev, C.; Dalal, I.; Sod-Moriah, U. A.

    1988-03-01

    Age at menarche was studied by the recollection method in two groups of Causasian Jewish high school girls, inhabitants of two towns in Israel, Safad and Elat. The two towns differ mainly in climatic conditions. The age at menarche was found to be significantly lower ( P<0.02) in the hot town of Elat than in the temperate town of Safad: 13.30±1.21 and 13.58±0.9 years, respectively (mean ±SD). A significant association was found between the age at menarche and the town in which the girls lived. Accordingly, in the hot town of Elat, the percentage of girls who had their first menstrual cycle by the age of 12 years and earlier, was more than double that of the girls in Safad (17.9% and 7.1%, respectively). It is concluded that the environmental temperature, with or without any possible interaction of humidity, is probably responsible for the tendency for an earlier onset of menarche in girls living in the hot town of Elat.

  10. Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50.

    PubMed Central

    McDermid, A S; McKee, A S; Marsh, P D

    1988-01-01

    Since the pH of the gingival crevice increases from below neutrality in health to above pH 8 in disease, we decided to investigate the effect of environmental pH on the growth and enzyme activity of Bacteroides gingivalis W50. Cells were grown in a chemostat under hemin-excess conditions over a range of pH values; stable growth was observed only between pH 6.7 and 8.3, with the maximum yields obtained between pH 7.0 and 8.0. The enzyme profile of cells varied markedly with pH. Enzymes with a specificity for gingival connective tissue (collagenase, hyaluronidase) were produced optimally at or below neutral pH, whereas trypsinlike activity increased with the growth pH and was maximal at pH 8.0. Chymotrypsinlike activity was generally low, although its activity was highest at the extremes of growth pH, i.e., at pH 6.7 and 8.3. Inhibitor studies provided evidence that the breakdown of collagen involved the concerted action of both a collagenase and the trypsinlike enzyme. The ratio of trypsin to collagenolytic activity rose from 1:1 during growth at neutral pH and below to almost 7:1 during growth at pH 8.3. Thus B. gingivalis appears to be uniquely adapted as a periodontopathic organism in that under environmental conditions likely to prevail during the initial stages of pocket development it produces maximally those enzymes with a tissue-damaging potential. Then, as the pH of the pocket rises during the host inflammatory response, the activity of the trypsinlike enzyme increases markedly, which may enable cells to inactivate key components of the host defenses such as immunoglobulins and complement. PMID:3281900

  11. Reproductive health, population growth, economic development and environmental change.

    PubMed

    Lincoln, D W

    1993-01-01

    World population will increase by 1000 million, or by 20%, within 10 years. Ninety-five per cent of this increase will occur in the South, in areas that are already economically, environmentally and politically fragile. Morbidity and mortality associated with reproduction will be greater in the current decade than in any period in human history. Annually, 40-60 million pregnancies will be terminated and 5-10 million children will die within one year of birth. AIDS-related infections, e.g. tuberculosis, will undermine health care in Africa (and elsewhere) and in places AIDS-related deaths will decimate the work-force. The growth in population and associated morbidity will inhibit global economic development and spawn new problems. The key issues are migration, the spread of disease, the supply of water and the degradation of land, and fiscal policies with respect to family planning, pharmaceuticals and Third-World debt. Full education, particularly of women, and more effective family planning in the South have the power to unlock the problem. Failure will see the developed countries, with their 800 million population, swamped by the health, economic and environmental problems of the South, with its projected population of 5400 million people for the year 2000.

  12. The onset condition of equatorial plasma bubbles - the role of seeding mechanism and growth condition

    NASA Astrophysics Data System (ADS)

    Kil, H.; Choi, J. M.; Kwak, Y. S.; Lee, W. K.; Park, J.

    2015-12-01

    We investigate the role of seeding mechanism and growth condition of perturbations in the creation of equatorial plasma bubbles by analyzing the C/NOFS and ROCSAT-1 satellite observations. The initial development times of bubbles were identified by manual processing of the data, and the periodic characteristics in the occurrence of bubbles were investigated using periodograms obtained from segments of bubble chains. Our preliminary results show that bubbles initiate at the time that the pre-reversal enhancement (PRE) ends. This time corresponds to the time that the F region reaches the highest altitude where the growth rate of the Rayleigh-Taylor (R-T) instability is large. The initial onset time of bubbles varies with season and longitude in accordance with the variation of the PRE ending time. Our investigation of the periodicity in the occurrence of bubbles (spacing between bubbles) shows that a dominant periodicity does not exist; the spacing between bubbles ranges from 100 km to over 1000 km. A pronounced periodicity occurs in some series of bubbles, but, in general, multiple periodicity co-exists. The initiation of bubbles at a specific local time but the absence of a preferential wave property in the occurrence of bubbles lead to the conclusion that the onset of bubbles is controlled by the growth condition of the R-T instability.

  13. Growth of pulsed electric field exposed Escherichia coli in relation to inactivation and environmental factors.

    PubMed

    Aronsson, Kristina; Borch, Elisabeth; Stenlöf, Bo; Rönner, Ulf

    2004-05-15

    Pulsed electric fields (PEF) have been proven to inactivate microorganisms during nonthermal conditions and have the potential to replace thermal processing as a method for food preservation. However, there is a need to understand the recovery and growth of survivors and potentially injured microorganisms following PEF processing. The purpose of this investigation was to study the growth of Escherichia coli at 10 degrees C following exposure to electrical field strengths (15, 22.5 and 30 kV/cm) in relation to inactivation and the amount of potentially sublethally injured cells. One medium was used as both a treatment medium and an incubation medium, to study the influence of environmental factors on the inactivation and the growth of the surviving population. The pH (5.0, 6.0 and 7.0) and water activity (1.00, 0.985 and 0.97) of the medium was varied by adding HCl and glycerol, respectively. Growth was followed continuously by measuring the optical density. The time-to-detection (td) and the maximum specific growth rate (micromax) were calculated from these data. Results showed that the PEF process did not cause any obvious sublethal injury to the E. coli cells. The number of survivors was a consequence of the combination of electrical field strength and environmental factors, with pH being the most prominent. Interestingly, the micromax of subsequent growth was influenced by the applied electrical field strength during the process, with an increased micromax at more intense electrical field strengths. In addition, the micromax was also influenced by the pH and water activity. The td, which could theoretically be considered as an increase in shelf life, was found to depend on a complex correlation between electrical field strength, pH and water activity. That could be explained by the fact that the td is a combination of the number of survivors, the recovery of sublethal injured cells and the growth rate of the survivors.

  14. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould.

    PubMed

    Nevarez, Laurent; Vasseur, Valérie; Debaets, Stella; Barbier, Georges

    2010-01-01

    Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.

  15. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  16. Race, Social and Environmental Conditions, and Health Behaviors in Men

    PubMed Central

    Thorpe, Roland J.; Kennedy-Hendricks, Alene; Griffith, Derek M.; Bruce, Marino A.; Coa, Kisha; Bell, Caryn N.; Young, Jessica; Bowie, Janice V.; LaVeist, Thomas A.

    2016-01-01

    Although understanding race differences in health behaviors among men is an important step in reducing disparities in leading causes of death in the United States, progress has been stifled when using national data because of the confounding of race, socioeconomic status (SES), and residential segregation. The purpose of this study is to examine the nature of disparities in health behaviors among African American and White men in the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore (EHDIC-SWB) which was conducted in a racially a racially-integrated neighborhood of Baltimore to data from the 2003 National Health Interview Survey (NHIS). After adjusting for age, marital status, insurance, income, educational attainment, poor or fair health, and obesity status, African American men in NHIS had greater odds of being physically inactive (odds ratio [OR] =1.48, 95% confidence interval [CI] 129, 1.69), reduced odds of being a current smoker (OR= 0.77, 95% CI 0.65, 0.90), and reduced odds of being a current drinker (OR= 0.58, 95% CI 0.50, 0.67). In the EHDIC-SWB sample, African American and white men had similar odds of being physically inactive (OR = 0.79, 95% CI 0.50, 1.24), being a current smoker (OR = 0.86, 95% CI 0.60, 1.23), or being a current drinker (OR = 1.34, 95% CI 0.81, 2.21). Because race disparities in these health behaviors were ameliorated in the sample where African American and white men were living under similar social, environmental and SES conditions, these findings suggest that social environment may be an important determinant of health behaviors among African American and White men. Public health interventions and health promotion strategies should consider the social environment when seeking to better understand men’s health disparities. PMID:26291190

  17. Effects of Environmental Conditions on an Urban Wetland's Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Naor Azrieli, L.; Morin, T. H.; Bohrer, G.; Schafer, K. V.; Brooker, M.; Mitsch, W. J.

    2013-12-01

    Methane emissions from wetlands are the largest natural source of uncertainty in the global methane (CH4) budget. Wetlands are highly productive ecosystems with a large carbon sequestration potential. While wetlands are a net sink for carbon dioxide, they also release methane, a potent greenhouse gas. To effectively develop wetland management techniques, it is important to properly calculate the carbon budget of wetlands by understand the driving factors of methane fluxes. We constructed an eddy flux covariance system in the Olentangy River Wetland Research Park, a series of created and restored wetland in Columbus Ohio. Through the use of high frequency open path infrared gas analyzer (IRGA) sensors, we have continuously monitored the methane fluxes associated with the wetland since May 2011. To account for the heterogeneous landscape surrounding the tower, a footprint analysis was used to isolate data originating from within the wetland. Continuous measurements of the meteorological and environmental conditions at the wetlands coinciding with the flux measurements allow the interactions between methane fluxes and the climate and ecological forcing to be studied. The wintertime daily cycle of methane peaks around midday indicating a typical diurnal pattern in cold months. In the summer, the peak shifts to earlier in the day and also includes a daily peak occurring at approximately 10 AM. We believe this peak is associated with the onset of photosynthesis in Typha latifolia flushing methane from the plant's air filled tissue. Correlations with methane fluxes include latent heat flux, soil temperature, and incoming radiation. The connection to radiation may be further evidence of plant activity as a driver of methane fluxes. Higher methane fluxes corresponding with higher soil temperature indicates that warmer days stimulate the methanogenic consortium. Further analysis will focus on separating the methane fluxes into emissions from different terrain types within

  18. Race, Social and Environmental Conditions, and Health Behaviors in Men.

    PubMed

    Thorpe, Roland J; Kennedy-Hendricks, Alene; Griffith, Derek M; Bruce, Marino A; Coa, Kisha; Bell, Caryn N; Young, Jessica; Bowie, Janice V; LaVeist, Thomas A

    2015-01-01

    Although understanding race differences in health behaviors among men is an important step in reducing disparities in leading causes of death in the United States, progress has been stifled when using national data because of the confounding of race, socioeconomic status, and residential segregation. The purpose of this study is to examine the nature of disparities in health behaviors among African American and white men in the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore, which was conducted in a racially integrated neighborhood of Baltimore to data from the 2003 National Health Interview Survey. After adjusting for age, marital status, insurance, income, educational attainment, poor or fair health, and obesity status, African American men in National Health Interview Survey had greater odds of being physically inactive (odds ratio [OR] = 1.48; 95% confidence interval [CI], 129-1.69), reduced odds of being a current smoker (OR = 0.77; 95% CI, 0.65-0.90), and reduced odds of being a current drinker (OR = 0.58; 95% CI, 0.50-0.67). In the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore sample, African American and white men had similar odds of being physically inactive (OR = 0.79; 95% CI, 0.50-1.24), being a current smoker (OR = 0.86; 95% CI, 0.60-1.23), or being a current drinker (OR = 1.34; 95% CI, 0.81-2.21). Because race disparities in these health behaviors were ameliorated in the sample where African American and white men were living under similar social, environmental, and socioeconomic status conditions, these findings suggest that social environment may be an important determinant of health behaviors among African American and white men. Public health interventions and health promotion strategies should consider the social environment when seeking to better understand men's health disparities.

  19. Escherichia coli growth and transport in the presence of nanosilver under variable growth conditions.

    PubMed

    Xie, Weijie; Vu, Kien; Yang, Guang; Tawfiq, Kamal; Chen, Gang

    2014-01-01

    Nanosilver (silver nanoparticles) has the ability to anchor to the bacterial cell membrane and subsequently penetrate it, thereby causing structural changes (i.e., permeability) in the cell membrane and death of the cell. The bacterial responses to the presence of nanosilver usually vary depending on the concentration of nanosilver particles, exposure time and the bacterial physiological stage. Since bacterial anabolism dependents upon a stoichiometric ratio of carbon and inorganic elements (nutrients), the macronutrient ratio, i.e. carbon to nitrogen ratio (C/N) thus plays an important role of bacterial responses to the exposure of nanosilver. This study investigated the responses of Escherichia coli to the exposure of nanosilver under variable growth conditions. It was discovered that E. coli grown under different growth conditions had different responses to the presence of nanosilver. E. coli had least resistance to the toxicity of nanosilver when cultured under carbon-limited conditions. However, the presence of rhamnolipid, a commonly utilized biosurfactant for soil remediation increased the resistance of E. coli to nanosilver. The transport of E. coli cultured under carbon-limited conditions was further studied in silica sand columns. E. coli adsorption in silica sand increased when cultured in the presence of nanosilver. On the contrary, E. coli adsorption in silica sand was significantly reduced when cultured in the presence of rhamnolipid.

  20. Environmental Influences on the Release of Ophiosphaerella agrostis Ascospores Under Controlled and Field Conditions.

    PubMed

    Kaminski, John E; Dernoeden, Peter H; O'Neill, Nichole R

    2005-11-01

    ABSTRACT Ophiosphaerella agrostis, the causal agent of dead spot of creeping bentgrass (Agrostis stolonifera), can produce prodigious numbers of pseudothecia and ascospores throughout the summer. The environmental conditions and seasonal timings associated with O. agrostis ascospore release are unknown. The objectives of this research were to (i) determine the influence of light and relative humidity on ascospore release in a controlled environment, (ii) document the seasonal and daily discharge patterns of ascospores in the field, and (iii) elucidate environmental conditions that promote ascospore release under field conditions. In a growth chamber, a sharp decrease (100 to approximately 50%; 25 degrees C) in relative humidity resulted in a rapid (1- to 3-h) discharge of ascospores, regardless of whether pseudothecia were incubated in constant light or dark. In the field, daily ascospore release increased between 1900 and 2300 h and again between 0700 and 1000 h local time. The release of ascospores occurred primarily during the early morning hours when relative humidity was decreasing and the canopy began to dry, or during evening hours when relative humidity was low and dew began to form. Few ascospores were released between 1100 and 1800 h when the bentgrass canopy was dry. The release of ascospores also was triggered by precipitation. Of the ascospores collected during precipitation events, 87% occurred within 10 h of the beginning of each event.

  1. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population.

    PubMed

    Adams, Jennifer R; Vucetich, Leah M; Hedrick, Philip W; Peterson, Rolf O; Vucetich, John A

    2011-11-22

    Genetic rescue, in which the introduction of one or more unrelated individuals into an inbred population results in the reduction of detrimental genetic effects and an increase in one or more vital rates, is a potentially important management tool for mitigating adverse effects of inbreeding. We used molecular techniques to document the consequences of a male wolf (Canis lupus) that immigrated, on its own, across Lake Superior ice to the small, inbred wolf population in Isle Royale National Park. The immigrant's fitness so exceeded that of native wolves that within 2.5 generations, he was related to every individual in the population and his ancestry constituted 56 per cent of the population, resulting in a selective sweep of the total genome. In other words, all the male ancestry (50% of the total ancestry) descended from this immigrant, plus 6 per cent owing to the success of some of his inbred offspring. The immigration event occurred in an environment where space was limiting (i.e. packs occupied all available territories) and during a time when environmental conditions had deteriorated (i.e. wolves' prey declined). These conditions probably explain why the immigration event did not obviously improve the population's demography (e.g. increased population numbers or growth rate). Our results show that the beneficial effects of gene flow may be substantial and quickly manifest, short-lived under some circumstances, and how the demographic benefits of genetic rescue might be masked by environmental conditions.

  2. Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: temperature, light, and pH.

    PubMed

    Smith, E A; Prues, S L; Oehme, F W

    1996-11-01

    A polyacrylamide thickening agent (PATA) was formulated at four concentrations in distilled-deionized water, without and with a glyphosate-surfactant herbicide (GH). Over a 6-week period, these mixtures were exposed to various controlled temperature and light conditions. Acrylamide concentration, ammonium concentration, and pH were measured at weekly intervals to assess the degradation of polyacrylamide and acrylamide. Satellite studies were conducted to examine the effect of altered pH on solutions of PATA (i.e., does pH promote polyacrylamide depolymerization?) and GH binding to amine groups (i.e., protection from degradation). The results of these studies suggest that polyacrylamide can degrade to acrylamide by thermal and photolytic effects, that changes in pH do not promote the depolymerization of polyacrylamide, and that GH does protect polyacrylamide and acrylamide from environmental degradation. Statistically there was no linear correlation between the various parameters measured.

  3. Raman spectroscopy of a single living cell in environmentally stressed conditions

    NASA Astrophysics Data System (ADS)

    Singh, Gajendra P.; Creely, Caitriona; Volpe, Giovanni; Grotsch, Helga; Petrov, Dmitri

    2005-08-01

    Living cells initiate a stress response in order to survive environmentally stressful conditions. We monitored changes in the Raman spectra of an optically trapped Saccharomyces cerevisiae yeast cell under normal and hyperosmotic stress conditions. When the yeast cells were challenged with a high concentration of glucose so as to exert hyperosmotic stress, it was shown that two chemical substances - glycerol and ethanol - could be monitored in real time in a single cell. The volume of the detection area of our confocal microspectrometer is approximately 1 fL. The average quantities of detected glycerol and ethanol are about 300 attomol and 700 attomol respectively. This amounts to the detection of approximately 108 glycerol molecules and 4 X 108 ethanol molecules after 36 min of hyper osmotic stress. Besides this, we also optically trapped a single yeast cell for up to three hours under normal conditions and monitored the changes in the Raman spectra during the lag phase of its growth and the G1 phase of its cell cycle. During the lag phase the cell synthesises new proteins and the observed behavior of the peaks corresponding to these proteins as well as those of RNA served as a sensitive indicator of the adaptation of the cell to its changed environment. The changes observed in the Raman spectra of a trapped yeast cell in the late G1 phase or the beginning of S phase corresponded to the growth of a bud.

  4. Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions.

    PubMed

    Torres-Arias, Yamir; Fors, Rosalba Ortega; Nobre, Camila; Gómez, Eduardo Furrazola; Berbara, Ricardo Luis Louro

    In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.

  5. Biological and Environmental Initial Conditions Shape the Trajectories of Cognitive and Social-Emotional Development across the First Years of Life

    ERIC Educational Resources Information Center

    Feldman, Ruth; Eidelman, Arthur I.

    2009-01-01

    Human development is thought to evolve from the dynamic interchange of biological dispositions and environmental provisions; yet the effects of specific biological and environmental birth conditions on the trajectories of cognitive and social-emotional growth have rarely been studied. We observed 126 children at six time-points from birth to 5…

  6. OVERALL MASS TRANSFER COEFFICIENT FOR POLLUTANT EMISSIONS FROM SMALL WATER POOLS UNDER SIMULATED INDOOR ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...

  7. ECO and RESOLVE: Galaxy Disk Growth in Environmental Context

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Kannappan, Sheila J.; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David V.; Hendel, David; Norris, Mark A.; Grogin, Norman A.

    2015-10-01

    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜ {10}11.5 {M}⊙ , implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early-types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early- and late-types have higher typical group halo masses than blue early- and late-types. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments tend to have more early-types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites.

  8. ECO and RESOLVE: Morphology and Disk Growth in Environmental Context

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Kannappan, Sheila; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David; Hendel, David; Norris, Mark A.; Grogin, Norman A.; RESOLVE Team

    2016-01-01

    We present the first data release of the Environmental COntext (ECO) catalog, which was designed to surround and complement the RESOLVE survey with matched photometry, gas and stellar mass estimates, and environment metrics for ~13,000 galaxies in a >500,000 cubic Mpc volume. In the first results from ECO, we study the phenomenon of galaxy disk growth by considering by-eye and quantitative morphological classifications as well as galaxy environments quantified using group identifications and halo abundance matching (on integrated r-band luminosity) as well as smoothed galaxy density fields. Additionally, we derive HI gas masses and upper limits from ALFALFA data and HI mass estimates from the photometric gas fraction technique. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜10^11.5 Msun, implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early types can regrow late-type disks. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments have more early types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites. This work has been supported through NSF grant AST-0955368.

  9. Ability of organic and inorganic bedding materials to promote growth of environmental bacteria.

    PubMed

    Godden, S; Bey, R; Lorch, K; Farnsworth, R; Rapnicki, P

    2008-01-01

    The major objective of this study was to contrast the ability of 4 commonly utilized bedding materials to promote growth of environmental bacteria under controlled conditions. A second objective was to describe the relationship between bacterial growth and specific biochemical or nutritional properties of these bedding materials. Unused samples of clean sand (CS; n = 20), recycled sand (RS; n = 21), digested manure solids (DS; n = 15), and shavings (SH; n = 15) were collected from bedding storage areas on 49 commercial Minnesota and Wisconsin dairy farms. Sterilized bedding samples were inoculated with Klebsiella pneumoniae and Enterococcus faecium then incubated, in triplicate, for 72 h at 37 degrees C. Subsamples were collected after 0, 24, 48, and 72 h of incubation for culture and enumeration of bacteria. Subsamples of bedding were also tested for pH, total C content (%), and total N content (%). If bacterial growth occurred, peak levels were typically achieved within 24 h. Digested manure solids promoted the greatest amounts of growth of K. pneumoniae, followed by RS and then SH, whereas CS promoted the least. There would seem to be a tradeoff in selecting SH as a bedding material, because it supported moderate growth of K. pneumoniae but caused a rapid decline in the numbers of E. faecium. However, RS, CS, and DS each only supported relatively small amounts of growth of E. faecium, so the benefit of SH relative to other bedding materials is limited. High bedding pH may partially explain why some bedding materials supported growth of E. faecium (e.g., DS and RS). Both high bedding pH (e.g., as for DS or RS) and high total C (%) content (e.g., as for DS and SH) may partially explain why some bedding materials supported growth of K. pneumoniae.

  10. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards.

    PubMed

    Duncan, Christine A; Jetzt, Amanda E; Cohick, Wendie S; John-Alder, Henry B

    2015-05-15

    Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator

  11. Shell growth and environmental control of methanophyllic Thyasirid bivalves from Svalbard cold seeps

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Åström, Emmelie; Ambrose, William; Locke, William; Oliver, Graham; Hong, Wei-Li; Carroll, JoLynn

    2016-04-01

    The analysis of molluscan shell material (sclerochronology) can provide information about an organism's age, growth history, and environmental conditions during its lifetime. Bivalve molluscs are common members of hydrothermal vents and methane cold seeps communities where, supported by chemosynthetic symbionts, they can reach high density and biomass. But little is known about methane-associated bivalve populations inhabiting high-Arctic cold seeps, and sclerochronological analysis of methane-influenced bivalves is rare. We measured growth rates and elemental and isotopic shell signatures in a newly discovered species of bivalve (Thyasiridae) from cold seeps at 350-390m depth southwest of Svalbard. First discovered in 2014, recently described shells of Thyasira capitanea sp.nov. were found at 2 independent seep systems in Storfjordrenna. Mean shell carbon isotopic ratios from inorganic δ13C (mean = -4.8‰) and organic δ13C (mean = -26.9‰) fractions clearly indicate a methane influenced habitat and food source for these organisms. Shell mineral ratios (Li/Ca, Mg/Ca, Mn/Ca, Fe/Ca, Sr/Ca, Ba/Ca, Pb/Ca) sampled along the axis of growth with laser-ablated ICP-MS exhibit variability through time and between sites, suggesting that concentrations of these elements that may be affected by methane emissions. The mineralogical data also elucidates the internal pattern of shell deposition and growth checks, and combined with the isotopic and growth rate data, enables us to interpret the temporal history of methane release from these locations.

  12. Stability of antibiotics under growth conditions for thermophilic anaerobes

    SciTech Connect

    Peteranderl, R.; Shotts, E.B. Jr.; Wiegel, J. )

    1990-06-01

    It was shown that the inhibitory effect of kanamycin and streptomycin in a growing culture of Clostridium thermohydrosulfuricum JW 102 is of limited duration. To screen a large number of antibiotics, their stability during incubation under the growth conditions of thermophilic clostridia was determined at 72 and 50C by using a 0.2% yeast extract-amended prereduced mineral medium with a pH of 7.3 or 5.0. Half-lives were determined in a modified MIC test with Escherichia coli, Staphylococcus aureus, and Bacillus megaterium as indicator strains. All compounds tested were similar at the two temperatures or more stable at 50 than at 72C. The half-life (t{sub 1/2}) at pH 7.3 and 72C ranged from 3.3 h (k = 7.26 day{sup {minus}1}, where k (degradation constant) = 1/t{sub 1/2}) for ampicillin to no detectable loss of activity for kanamycin, neomycin, and other antibiotics. Apparently some compounds became more potent during incubation. A change to pH 5.0 caused some compounds to become more labile to become more stable than at pH 7.3.

  13. Dynamics of Deinococcus radiodurans under Controlled Growth Conditions

    PubMed Central

    Jena, Sidhartha S.; Joshi, Hiren M.; Sabareesh, K. P. V.; Tata, B. V. R.; Rao, T. S.

    2006-01-01

    Deinococcus radiodurans is a potent radiation resistant bacterium with immense potential in nuclear waste treatment. In this investigation, the translational and rotational dynamics of dilute suspensions of D. radiodurans cultured under controlled growth conditions was studied by the polarized and depolarized dynamic light-scattering (DLS) techniques. Additionally, confocal laser scanning microscopy was used for characterizing the cultured samples and also for identification of D. radiodurans dimer, tetramer, and multimer morphologies. The data obtained showed translational diffusion coefficients (DT) of 1.2 × 10−9, 1.97 × 10−9, and 2.12 × 10−9 cm2 /s, corresponding to an average size of 3.61, 2.22, and 2.06 μm, respectively, for live multimer, tetramer, and dimer forms of D. radiodurans. Depolarized DLS experiments showed very slow rotational diffusion coefficients (DR) of 0.182/s for dimer and 0.098/s for tetramer morphologies. No measurable rotational diffusion was observed for multimer form. Polarized DLS measurements on live D. radiodurans confirmed that the bacterium is nonmotile in nature. The dynamics of the dead dimer and tetramer D. radiodurans were also studied using polarized and depolarized DLS experiments and compared with the dynamics of live species. The dead cells were slightly smaller in size when compared to the live cells. However, no additional information could be obtained for dead cells from the polarized and depolarized dynamic light-scattering studies. PMID:16829564

  14. Growth condition-dependent Esp expression by Enterococcus faecium affects initial adherence and biofilm formation.

    PubMed

    Van Wamel, Willem J B; Hendrickx, Antoni P A; Bonten, Marc J M; Top, Janetta; Posthuma, George; Willems, Rob J L

    2007-02-01

    A genetic subpopulation of Enterococcus faecium, called clonal complex 17 (CC-17), is strongly associated with hospital outbreaks and invasive infections. Most CC-17 strains contain a putative pathogenicity island encoding the E. faecium variant of enterococcal surface protein (Esp). Western blotting, flow cytometric analyses, and electron microscopy showed that Esp is expressed and exposed on the surface of E. faecium, though Esp expression and surface exposure are highly varied among different strains. Furthermore, Esp expression depends on growth conditions like temperature and anaerobioses. When grown at 37 degrees C, five of six esp-positive E. faecium strains showed significantly increased levels of surface-exposed Esp compared to bacteria grown at 21 degrees C, which was confirmed at the transcriptional level by real-time PCR. In addition, a significant increase in surface-exposed Esp was found in half of these strains when grown at 37 degrees C under anaerobic conditions compared to the level in bacteria grown under aerobic conditions. Finally, amounts of surface-exposed Esp correlated with initial adherence to polystyrene (R(2) = 0.7146) and biofilm formation (R(2) = 0.7535). Polystyrene adherence was competitively inhibited by soluble recombinant N-terminal Esp. This study demonstrates that Esp expression on the surface of E. faecium (i) varies consistently between strains, (ii) is growth condition dependent, and (iii) is quantitatively correlated with initial adherence and biofilm formation. These data indicate that E. faecium senses and responds to changing environmental conditions, which might play a role in the early stages of infection when bacteria transit from oxygen-rich conditions at room temperature to anaerobic conditions at body temperature. In addition, variation of surface exposure may explain the contrasting findings reported on the role of Esp in biofilm formation.

  15. The spatial structure of bacterial communities is influenced by historical environmental conditions.

    PubMed

    Andersson, Martin G I; Berga, Mercè; Lindström, Eva S; Langenheder, Silke

    2014-05-01

    The spatial structure of ecological communities, including that of bacteria, is often influenced by species sorting by contemporary environmental conditions. Moreover, historical processes, i.e., ecological and evolutionary events that have occurred at some point in the past, such as dispersal limitation, drift, priority effects, or selection by past environmental conditions, can be important, but are generally investigated much less. Here, we conducted a field study using 16 rock pools, where we specifically compared the importance of past vs. contemporary environmental conditions for bacterial community structure by correlating present differences in bacterial community composition among pools to environmental conditions measured on the same day, as well as to those measured 2, 4, 6, and 8 d earlier. The results prove that selection by past environmental conditions exists, since we were able to show that bacterial communities are, to a greater extent, an imprint of past compared to contemporary environmental conditions. We suggest that this is the result of a combination of different mechanisms, including priority effects that cause rapid adaptation to new environmental conditions of taxa that have been initially selected by past environmental conditions, and slower rates of turnover in community composition compared to environmental conditions.

  16. A Comparison of Three Conditional Growth Percentile Methods: Student Growth Percentiles, Percentile Rank Residuals, and a Matching Method

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Seo, Dong Gi

    2014-01-01

    This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…

  17. IGF-1 Release Kinetics from Chitosan Microparticles Fabricated Using Environmentally Benign Conditions

    PubMed Central

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p<0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with Von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx 2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. PMID:25063148

  18. Failure processes in polymers: Environmental stress crack growth and adhesion of elastomeric copolymers to polypropylene

    NASA Astrophysics Data System (ADS)

    Ayyer, Ravishankar

    In CHAPTER 1 slow crack propagation in MDPE pipe was studied in air and Igepals at 50°C to determine the possibility for fatigue to creep correlation in environmental liquids. The stepwise fatigue crack growth in air was preserved in Igepal solutions. Lifetime in Igepal was affected to a much smaller extent as compared to air. The correlation in air was previously established primarily for tests at 21°C. The stepwise mechanism was verified in air at 50°C. The crack growth rate under various loading conditions was related to the maximum stress and R-ratio by a power law relationship. Alternatively a strain rate approach reliably correlated fatigue and creep in air at 50°C except at R=0.1 and frequency less than 1 Hz. In CHAPTER 2 the effect of concentration of Igepal CO 630 on slow crack propagation in MDPE pipe was investigated to determine whether the mechanism was conserved in creep and fatigue as required for the fatigue-to-creep correlation. The mechanism of crack propagation and lifetimes in creep and fatigue at R=0.1 at 50°C were compared to those in air and water. The fatigue and creep behavior followed the same stepwise crack growth mechanism as in air at all the concentrations used. As the concentration increased to 0.01 vol. %, the creep lifetime decreased significantly whereas the lifetime in fatigue gradually increased. At higher concentrations the lifetime was similar in creep and fatigue. In CHAPTER 3 effect of R-ratio on kinetics and mechanism of environmental fatigue and creep crack growth was analyzed in an attempt to predict the environmental stress crack resistance at 50°C. Same methodology was used as previously established for fatigue to creep formulation in air at 50°C. The stepwise mechanism of crack growth in air was conserved in Igepal solutions as R-ratio approached to unity (creep) with few exceptions. At higher R-ratio, the lifetime decreased systematically in Igepal solutions relative to air and was defined as 'Igepal transition

  19. Bathymodiolus growth dynamics in relation to environmental fluctuations in vent habitats

    NASA Astrophysics Data System (ADS)

    Nedoncelle, K.; Lartaud, F.; Contreira Pereira, L.; Yücel, M.; Thurnherr, A. M.; Mullineaux, L.; Le Bris, N.

    2015-12-01

    The deep-sea mussel Bathymodiolus thermophilus is a dominant species in the East Pacific Rise (EPR) hydrothermal vent fields. On the EPR volcanically unstable area, this late colonizer reaches high biomass within 4-5 years on new habitats created by lava flows. The environmental conditions and growth rates characterizing the reestablishment of B. thermophilus populations are however largely unknown, leaving unconstrained the role of this foundation species in the ecosystem dynamics. A typical example from the vent field at 9°50'N that was affected by the last massive eruption was the Bio-9 hydrothermal vent site. Here, six years later, a large mussel population had reestablished. The von Bertalanffy growth model estimates the oldest B. thermophilus specimens to be 1.3 year-old in March 2012, consistent with the observation of scarce juveniles among tubeworms in 2010. Younger cohorts were also observed in 2012 but the low number of individuals, relatively to older cohorts, suggests limited survival or growth of new recruits at this site, that could reflect unsuitable habitat conditions. To further explore this asumption, we investigated the relationships between mussel growth dynamics and habitat properties. The approach combined sclerochronology analyses of daily shell growth with continuous habitat monitoring for two mussel assemblages; one from the Bio-9 new settlement and a second from the V-vent site unreached by the lava flow. At both vent sites, semi-diurnal fluctuations of abiotic conditions were recorded using sensors deployed in the mussel bed over 5 to 10 days. These data depict steep transitions from well oxygenated to oxygen-depleted conditions and from alkaline to acidic pH, combined with intermittent sulfide exposure. These semi-diurnal fluctuations exhibited marked changes in amplitude over time, exposing mussels to distinct regimes of abiotic constraints. The V-vent samples allowed growth patterns to be examined at the scale of individual life and

  20. Perceiving environmental properties from motion information: Minimal conditions

    NASA Technical Reports Server (NTRS)

    Proffitt, Dennis R.; Kaiser, Mary K.

    1989-01-01

    The status of motion as a minimal information source for perceiving the environmental properties of surface segregation, three-dimensional (3-D) form, displacement, and dynamics is discussed. The selection of these particular properties was motivated by a desire to present research on perceiving properties that span the range of dimensional complexity.

  1. Genetic and Environmental Influences on the Growth of Early Reading Skills

    ERIC Educational Resources Information Center

    Petrill, Stephen A.; Hart, Sara A.; Harlaar, Nicole; Logan, Jessica; Justice, Laura M.; Schatschneider, Christopher; Thompson, Lee; DeThorne, Laura S.; Deater-Deckard, Kirby; Cutting, Laurie

    2010-01-01

    Background: Studies have suggested genetic and environmental influences on overall level of early reading whereas the larger reading literature has shown environmental influences on the rate of growth of early reading skills. This study is the first to examine the genetic and environmental influences on both initial level of performance and rate…

  2. Overview of environmental and hydrogeologic conditions at Saint Marys, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The Federal Aviation Administration (FAA) owns or operates airway support facilities near Saint Marys along the Yukon River in west-central Alaska. The FAA is evaluating the severity of environmental contamination and options for remediation of environmental contamination at their facilities. Saint Marys is on a flood plain near the continence of the Yukon and Andreafsky Rivers and has long cold winters and short summers. Residents obtain their drinking water from an infiltration gallery fed by a creek near the village. Surface spills and disposal of hazardous materials combined with potential flooding may affect the quality of the surface and ground water. Alternative drinking-water sources are available, but would likely cost more than existing supplies to develop.

  3. Environmental Conditions in the Norwegian-Iceland Seas, May 1987.

    DTIC Science & Technology

    1987-06-01

    2 I (U) PREJIMflQON. The goal of the prediction element was threefold: (1) using TOPS together with the winds forecasted by the Navy Operational ...predictions by NORDA at the Anti-Submarine Warfare Operations Center (ASWOC), Keflavik, Iceland; (3) near-real-time tactical scale ocean dynamic forcasts...segments by briefly describing the field efforts and the analysis/forecast segment of the operation . Some initial findings concerning the environmental

  4. Common lung conditions: environmental pollutants and lung disease.

    PubMed

    Delzell, John E

    2013-06-01

    Exposure to environmental pollutants can have short- and long-term effects on lung health. Sources of air pollution include gases (eg, carbon monoxide, ozone) and particulate matter (eg, soot, dust). In the United States, the Environmental Protection Agency regulates air pollution. Elevated ozone concentrations are associated with increases in lung-related hospitalizations and mortality. Elevated particulate matter pollution increases the risk of cardiopulmonary and lung cancer mortality. Occupations with high exposures to pollutants (eg, heavy construction work, truck driving, auto mechanics) pose higher risk of chronic obstructive lung disease. Some industrial settings (eg, agriculture, sawmills, meat packing plants) also are associated with higher risks from pollutants. The Environmental Protection Agency issues an air quality index for cities and regions in the United States. The upper levels on the index are associated with increases in asthma-related emergency department visits and hospitalizations. Damp and moldy housing might make asthma symptoms worse; individuals from lower socioeconomic groups who live in lower quality housing are particularly at risk. Other household exposures that can have negative effects on lung health include radon, nanoparticles, and biomass fuels.

  5. Environmental- and growth stage-related differences in the susceptibility of terrestrial isopods to UV radiation.

    PubMed

    Morgado, Rui; Ferreira, Nuno G C; Tourinho, Paula; Ribeiro, Fabianne; Soares, Amadeu M V M; Loureiro, Susana

    2013-09-05

    Global environmental changes are nowadays one of the most important issues affecting terrestrial ecosystems. One of its most significant expressions is the increasing ultraviolet radiation (UVR) arising from the human-induced depletion in ozone layer. Therefore, to investigate the effects of UVR on the terrestrial isopod Porcellionides pruinosus a multiple biomarker approach was carried out. Two experiments were performed in order to analyze the importance of the exposure environment and the growth stage on the UV-induced damages. First, adult individuals were exposed to UVR in three exposure environments (soil, soil with leaves, and plaster). Thereafter, three growth stages using soil as the exposure condition were tested. Integrated biomarker responses (IBR) suggested that UV effects were higher in plaster, and mostly identified by changes in acetylcholinesterase and glutathione-S-transferases activities, lipid peroxidation rates, and total energy available. The effects in soil and soil with leaves were not so clear. In the growth stages' experiment, juveniles and pre-adults were found to be more affected than adults, with the greatest differences between irradiated and non-irradiated isopods occurring in energy-related parameters. Our findings suggest that soil surface-living macrofauna may be prone to deleterious effects caused by UVR, highlighting the importance of taking the media of exposure and growth stage in account.

  6. Predicting Plant Performance Under Simultaneously Changing Environmental Conditions—The Interplay Between Temperature, Light, and Internode Growth

    PubMed Central

    Kahlen, Katrin; Chen, Tsu-Wei

    2015-01-01

    Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates, and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system's analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modeling temperature effects on plant development and growth is discussed. PMID:26734036

  7. Environmental Conditions in Coastal Waters Near Panama City, Florida

    DTIC Science & Technology

    1978-08-01

    the cyprid larvae settle on a substrate and transform into sessile form, barnacles exhibit rapid growth. The following were the size ranges of B...Typical Sound Velocity Profiles from St. Andrew Bay 67 46 Sound Velocity Profile at Hathaway Bridge During Flooding Tide 69 47 Barnacle Count 75 48 Yearly... Barnacle Variations at 25-Mile Test Site 78 (Reverse Page vi Blank) V NCSC TR-337-78 INTRODUCTION During the past two decades, the Naval Coastal

  8. 75 FR 24930 - Fort Bliss (Texas) Army Growth and Force Structure Realignment Final Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Department of the Army Fort Bliss (Texas) Army Growth and Force Structure Realignment Final Environmental... Department of the Army announces the availability of the Fort Bliss Army Growth and Force Structure... improvements at Fort Bliss to support Army growth and force structure realignment. The FEIS tiers from...

  9. 78 FR 43963 - Sixty-Second Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Sixty-Second Meeting: RTCA Special Committee 135, Environmental Conditions... public of the Sixty-Second meeting of the RTCA Special Committee 135, Environmental Conditions and...

  10. Sclerochronological records and daily microgrowth of the Peruvian scallop (Argopecten purpuratus, Lamarck, 1819) related to environmental conditions in Paracas Bay, Pisco, Peru

    NASA Astrophysics Data System (ADS)

    Aguirre Velarde, Arturo; Flye-Sainte-Marie, Jonathan; Mendo, Jaime; Jean, Fred

    2015-05-01

    We investigated the rhythm of micro-striae formation in the shell of Argopecten purpuratus and environmental influence on micro-growth increments by monitoring growth over a 98-day period between April and July 2007 under bottom and suspended culture (2 m above the bottom) rearing conditions. The transfer of individuals to the study site induced the formation of a notable growth mark that allowed us to count the number of micro-striae formed between transfer and sampling dates. Micro-striae counts showed a deposition rate of one stria per day independent of rearing condition. This result allowed us to analyse the relationships between growth increments and environmental conditions. We therefore examined the deviations between observed growth rates and growth rates predicted from a Von Bertalanffy growth function. Cross-correlation analysis revealed significant correlations, without time-lag, between these deviations and both particulate organic carbon and nitrogen concentrations in the bottom treatment. Additionally, we observed negative correlations with temperature and current speed at this depth with time-lags of 1 and 10 days respectively. In the suspended treatment, we observed a significant negative correlation with temperature, only with a 12-day lag-time. Our results show that growth response to environmental variability is not always instantaneous. This delay can be explained by the time delay over which metabolic processes need to be performed (e.g. digestion, use/movements of reserves, growth, reproduction). Further modeling studies could help to better understand these processes.

  11. Impact of environmental noise on growth and neuropsychological development of newborn rats.

    PubMed

    Zheng, Yanyan; Meng, Meng; Zhao, Congmin; Liao, Wei; Zhang, Yuping; Wang, Liyan; Wen, Enyi

    2014-05-01

    We aimed to investigate the effects of environmental noise exposure on the growth and neuropsychological development in neonatal rats. Twenty-four postnatal 7-day-old Sprague-Dawley rats were randomly assigned into control, high-noise and reduced noise groups. The rats in the high-noise group were exposed to 90 dB white noise, and those in the control group were grown under standard condition, while those in the reduced noise group were exposed to standard condition with sound-absorbing cotton. Ten, 15, and 20 days post noise exposure, both the body weight and length of the rats in high-noise group were lower than those in the control and reduced noise groups, respectively. The secretion of growth hormone was significantly decreased in the rats exposed to high noise environment, compared to those exposed to standard condition and reduced noise. More interestingly, the swimming distance was apparently increased and the swimming speed was significantly decreased in high-noise group compared with those in control and reduced noise groups. Importantly, the mRNA and protein levels of SYP in the rats hippocampus were significantly decreased in high-noise group compare with those in control and reduced noise groups. Similarly, the positive expression of SYP in the CA1 region of hippocampus was also significantly decreased in the high noise group rats. In conclusion, our results demonstrated that high noise exposure could decrease the production of growth hormone and SYP in neonatal rats, which may retard the growth of weight and length and the capability of learning and memory.

  12. Analysis of uropathogenic Escherichia coli biofilm formation under different growth conditions.

    PubMed

    Adamus-Białek, Wioletta; Kubiak, Anna; Czerwonka, Grzegorz

    2015-01-01

    The ability to form different types of biofilm enables bacteria to survive in a harsh or toxic environment. Different structures of biofilms are related to different surfaces and environment of bacterial growth. The aim of this study was analysis of the biofilm formation of 115 clinical uropathogenic Escherichia coli strains under different growth conditions: surface for biofilm formation, medium composition and time of incubation. The biofilm formation after 24 h, 48 h, 72 h and 96 h was determined spectrophotometrically (A531) after crystal violet staining and it was correlated with bacterial growth (A600). The live and dead cells in biofilm structures was also observed on the glass surface by an epi-fluorescence microscope. Additionally, the presence of rpoS, sdiA and rscA genes was analyzed. The statistical significance was estimated by paired T-test. The observed biofilms were different for each particular strain. The biofilm formation was the highest in the rich medium (LB) after 24 h and its level hasn't changed in time. When biofilm level was compared to bacterial growth (relative biofilm) - it was higher in a minimal medium in comparison to enriched medium. These results suggest that most of the bacterial cells prefer to live in a biofilm community under the difficult environmental conditions. Moreover, biofilm formation on polyurethane surface did not correlate with biofilm formation on glass. It suggests that mechanisms of biofilm formation can be correlated with other bacterial properties. This phenomenon may explain different types of biofilm formation among one species and even one pathotype - uropathogenic Escherichia coli.

  13. Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20

    SciTech Connect

    Şengör, S. Sevinç; Singh, Gursharan; Dohnalkova, Alice; Spycher, Nicolas; Ginn, Timothy R.; Peyton, Brent M.; Sani, Rajesh K.

    2016-09-13

    This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas in the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 m filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites.

  14. Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20.

    PubMed

    Şengör, S Sevinç; Singh, Gursharan; Dohnalkova, Alice; Spycher, Nicolas; Ginn, Timothy R; Peyton, Brent M; Sani, Rajesh K

    2016-12-01

    This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas in the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 μm filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites.

  15. Environmental controls on growth of the massive coral Porites.

    PubMed

    Lough; Barnes

    2000-03-15

    Annual density banding provided growth characteristics for 245 similar-sized, massive colonies of Porites from similar locations on 29 reefs from across the length and breadth of the Great Barrier Reef (GBR), Australia. Values obtained were density, extension rate, and calcification rate. Tissue thickness, the depth to which skeletons were occupied by tissue at the time of collection, was also measured. Extension rate, calcification rate, and tissue thickness were significantly greater at the top of colonies than at the sides. Extension rate and calcification rate decreased from north to south along the GBR (latitudinal range of approximately 9 degrees ) and were significantly and directly related to annual average sea surface temperature (SST; range approximately 25-27 degrees C). For each 1 degrees C rise in SST, average annual calcification increased by 0.39 g cm(-2) year(-1) and average annual extension increased by 3.1 mm year(-1) (c.f. average values of 1.63 g cm(-2) year(-1) and 12.9 mm year(-1), respectively). Density was inversely correlated with extension rate and increased with distance offshore. Data for massive Porites colonies from the GBR were extended though 20 degrees of latitude and an average annual SST range of 23-29 degrees C using published data for the Hawaiian Archipelago (Grigg, R.W., 1981. Coral reef development at high latitudes in Hawaii. Proc. 4th Int. Coral Reef Symp., Manila, Vol. 1, pp. 687-693; Grigg, R.W., 1997. Paleoceanography of coral reefs in the Hawaiian-Emperor Chain - revisited. Coral Reefs 16, S33-S38) and Phuket, Thailand (Scoffin. T.P., Tudhope. A.W., Brown. B.E., Chansang. H., Cheeney. R.F., 1992. Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11, 1-11). The response of calcification rate to temperature remained linear. Variation in annual average SST accounted for 84% of the variance. For each 1 degrees C rise in SST, average annual calcification increased by

  16. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    NASA Astrophysics Data System (ADS)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  17. The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response

    NASA Astrophysics Data System (ADS)

    Nield, Joanna M.; Baas, Andreas C. W.

    2008-11-01

    Aeolian dune field development in coastal and semi-arid environments is a function of complex ecogeomorphic interactions which are sensitive to fluctuations in climatic and environmental conditions. We explore the relationships between ecological and geomorphic processes in the development of these landscape patterns and speculate on their response to variations in vegetation vitality and sediment transport capacity, indicating possible consequences of climate and land use change, using the Discrete ECogeomorphic Aeolian Landscape (DECAL) cellular automaton algorithm. This algorithm models dune field behaviour that reflects long-term trends prevalent in palaeo-records, but also elucidates possible evolutionary progressions, relaxation period sequences and threshold sensitivities. The landscape response is sensitive both to the perturbation itself and the state of the system when the disturbance occurs. Response amplitude decreases in simulated systems with reduced mobility unless an external disturbance mimicking fire or land clearance is applied concurrently with a reduction in growth vigour triggering a threshold type response when sufficient vegetation is removed. The model demonstrates that the relative response characteristics of the multiple vegetation types and their mutual feedback with geomorphic processes impart a significant influence on landscape equilibrium or attractor states. Fast growing vegetation enables the formation of hairpin (long-walled) parabolic dune systems, which eventually become sediment starved and stabilise, whereas inhospitable conditions inhibiting vegetation growth contribute to the development of active transgressive transverse dune fields. This simple vegetated dune model illustrates the power and versatility of a cellular automaton approach for exploring thresholds, sensitivities and possible evolutionary trajectories associated with the interactions between ecology, geomorphology and climatic conditions in complex earth surface

  18. Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation.

    PubMed

    Speranza, Barbara; Corbo, Maria Rosaria; Sinigaglia, Milena

    2011-01-01

    Biofilm formation on food industry surfaces has important health and economic consequences, since they can serve as a potential source of contamination for food products, which may lead to food spoilage or transmission of diseases. Salmonella sp. is one of the most important foodborne pathogens and several studies have led to the discovery that these bacteria are capable of adhering and forming biofilms on different surfaces. The attachment of bacterial cells is affected by several factors, including the medium in which they are grown, motility, growth phase of the cells, type and properties of the inert material, presence of organic material, temperature, pH, contact time, and so on. This investigation focused on the study and quantification of the effects of temperature (20 to 40 °C), pH (4.5 to 7.5), and medium composition (0.5 to 2.5 g/L of peptone) on biofilm formation by Salmonella sp. on stainless steel through surface response modeling. Results highlighted that the target strain was able to adhere on stainless steel, under all the conditions tested. To assess potential differences, the aptitude to biofilm formation (ABF), defined as the time necessary to start adhesion on the surface, was calculated by using the Gompertz equation. This parameter was modeled through a stepwise regression procedure and experimental conditions resulting in the greater ABF were growth in poor media (1.0 to 1.5 g/L of peptone), incubation temperature of about 30 °C, pH close to 6.0. Practical Application: The importance of this work lies in its extension of our knowledge about the effect of different environmental conditions on Salmonella adherence to stainless steel food-processing equipment, as a better understanding of biofilms may provide valuable pathways for the prevention of biofilm formation.

  19. Plasticity of Streptomyces coelicolor Membrane Composition Under Different Growth Conditions and During Development

    PubMed Central

    Sandoval-Calderón, Mario; Nguyen, Don D.; Kapono, Clifford A.; Herron, Paul; Dorrestein, Pieter C.; Sohlenkamp, Christian

    2015-01-01

    Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor. PMID:26733994

  20. Elemental markers in elasmobranchs: effects of environmental history and growth on vertebral chemistry.

    PubMed

    Smith, Wade D; Miller, Jessica A; Heppell, Selina S

    2013-01-01

    Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These

  1. Elemental Markers in Elasmobranchs: Effects of Environmental History and Growth on Vertebral Chemistry

    PubMed Central

    Smith, Wade D.; Miller, Jessica A.; Heppell, Selina S.

    2013-01-01

    Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These

  2. Environmental conditions regulate the impact of plants on cloud formation

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-02-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.

  3. Overview of environmental and hydrogeologic conditions at Tanana, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The remote Native village of Tanana along the Yukon River in west-central Alaska has long cold winters and short summers. The Federal Aviation Administration owns or operates airway support facilities near Tanana and wishes to consider the subsistence lifestyle of the residents and the quality of the current environment when evaluating the severity of environmental contamination at these facilities. Tanana is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available, but may cost more than existing supplies.

  4. Overview of environmental and hydrogeologic conditions at Moses Point, Alaska

    USGS Publications Warehouse

    Dorava, J.M.; Ayres, R.P.; Sisco, W.C.

    1994-01-01

    The Federal Aviation Administration facility at Moses Point is located at the mouth of the Kwiniuk River on the Seward Peninsula in northwestern Alaska. This area has long cold winters and short summers which affect the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities at the Moses Point site and wishes to consider the subsistence lifestyles of area residents and the quality of the current environment when evaluating options for remediation of environmental contamination at their facilities. Currently no operating wells are in the area, but the vulnerability of the aquifer and other alternative water supplies are being evaluated because the Federal Aviation Administration has a potential liability for the storage and use of hazardous materials in the area.

  5. Environmental overview and hydrogeologic conditions at Aniak, Alaska

    USGS Publications Warehouse

    Dorava, J.M.

    1994-01-01

    The remote Native village of Aniak, on the flood plain of the Kuskokwim River in southwestern Alaska, has long cold winters and short summers that affect both the hydrology of the area and the lifestyle of the residents. Aniak obtains its drinking water from a shallow aquifer in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Kuskokwim River may affect the quality of the ground water. Alternative drinking water sources are available but at significantly greater cost than existing supplies. The Federal Aviation Administration (FAA) owns or operates airport support facilities in Aniak. The subsistence lifestyle of the villagers and the quality of the current environment must be taken into consideration when the FAA evaluates options for remediation of environmental contamination at these facilities. This report describes the ground- and surface-water hydrology, geology, climate, vegetation, soils, and flood potential of the areas surrounding the FAA sites.

  6. Overview of environmental and hydrogeologic conditions at Fort Yukon, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The village of Fort Yukon along the Yukon River in east-central Alaska has long cold winters and short summers. The Federal Aviation Administration operates and supports some airport facilities in Fort Yukon and is evaluating the severity of environmental contamination and options for remediation of such contamination at their facilites. Fort Yukon is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available from local surface-water bodies or from presently unidentified confined aquifers.

  7. Overview of environmental and hydrogeologic conditions at Galena, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The remote Native village of Galena along the Yukon River in west-central Alaska has long cold winters and short summers that affects the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities in Galena and wishes to consider the subsistence lifestyle of the residents and the quality of the current environment when evaluating options for remediation of environmental contamination at these facilities. Galena is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available but at significantly greater cost than existing supplies.

  8. Environmental conditions regulate the impact of plants on cloud formation

    PubMed Central

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-01-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253

  9. Deformation and crack growth response under cyclic creep conditions

    SciTech Connect

    Brust, F.W. Jr.

    1995-12-31

    To increase energy efficiency, new plants must operate at higher and higher temperatures. Moreover, power generation equipment continues to age and is being used far beyond its intended original design life. Some recent failures which unfortunately occurred with serious consequences have clearly illustrated that current methods for insuring safety and reliability of high temperature equipment is inadequate. Because of these concerns, an understanding of the high-temperature crack growth process is very important and has led to the following studies of the high temperature failure process. This effort summarizes the results of some recent studies which investigate the phenomenon of high temperature creep fatigue crack growth. Experimental results which detail the process of creep fatigue, analytical studies which investigate why current methods are ineffective, and finally, a new approach which is based on the T{sup *}-integral and its ability to characterize the creep-fatigue crack growth process are discussed. The potential validity of this new predictive methodology is illustrated.

  10. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part II. Mimicking environmental conditions during cultivation in retentostats.

    PubMed

    Marozava, Sviatlana; Röling, Wilfred F M; Seifert, Jana; Küffner, Robert; von Bergen, Martin; Meckenstock, Rainer U

    2014-06-01

    The strict anaerobe Geobacter metallireducens was cultivated in retentostats under acetate and acetate plus benzoate limitation in the presence of Fe(III) citrate in order to investigate its physiology under close to natural conditions. Growth rates below 0.003h(-1) were achieved in the course of cultivation. A nano-liquid chromatography-tandem mass spectrometry-based proteomic approach (nano-LC-MS/MS) with subsequent label-free quantification was performed on proteins extracted from cells sampled at different time points during retentostat cultivation. Proteins detected at low (0.002h(-1)) and high (0.06h(-1)) growth rates were compared between corresponding growth conditions (acetate or acetate plus benzoate). Carbon limitation significantly increased the abundances of several catabolic proteins involved in the degradation of substrates not present in the medium (ethanol, butyrate, fatty acids, and aromatic compounds). Growth rate-specific physiology was reflected in the changed abundances of energy-, chemotaxis-, oxidative stress-, and transport-related proteins. Mimicking natural conditions by extremely slow bacterial growth allowed to show how G. metallireducens optimized its physiology in order to survive in its natural habitats, since it was prepared to consume several carbon sources simultaneously and to withstand various environmental stresses.

  11. Combined effects of working environmental conditions in VDT work.

    PubMed

    Takahashi, K; Sasaki, H; Saito, T; Hosokawa, T; Kurasaki, M; Saito, K

    2001-04-15

    The combined effects of city noise and luminance of the computer display were evaluated from the changes in lymphocytes and mental activities of participants. Healthy male students were tested under the following four experimental conditions: (1) a calculating task on a video display terminal (VDT) with luminance of 90 cd m(-2) without city noise; (2) a calculating task on a VDT with luminance of 20 cd m(-2) without city noise; (3) a calculating task on a VDT with luminance of 90 cd m(-2) with city noise of 70 dB(A); and (4) a calculating task on a VDT with luminance of 20 cd m(-2) with city noise of 70 dB(A). A visual reaction test (VRT) was performed, and critical flicker fusion frequency (CFF), heart rate (HR), numbers of circulating white blood cells (WBCs), lymphocyte subsets and subjective symptoms of fatigue were measured (1) before; (2) just after; and (3) 30 min after each 60 min test. Subjective symptoms of fatigue significantly increased just after experiments conducted under the two noisy conditions. VRT and CFF showed significant changes in the case of the high-luminance display with noise. WBCs and neutrophils showed significant increases in the two quiet conditions. These results suggested that high luminance with noise had the most effect on subjective fatigue and mental activities.

  12. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    PubMed

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.

  13. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression

    PubMed Central

    Nahta, Rita; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Andrade-Vieira, Rafaela; Bay, Sarah; G. Brown, Dustin; Calaf, Gloria M.; Castellino, Robert C.; Cohen-Solal, Karine A.; Colacci, Annamaria; Cruickshanks, Nichola; Dent, Paul; Di Fiore, Riccardo; Forte, Stefano; Goldberg, Gary S.; Hamid, Roslida A.; Krishnan, Harini; Laird, Dale W.; Lasfar, Ahmed; Marignani, Paola A.; Memeo, Lorenzo; Mondello, Chiara; Naus, Christian C.; Ponce-Cusi, Richard; Raju, Jayadev; Roy, Debasish; Roy, Rabindra; P. Ryan, Elizabeth; Salem, Hosni K.; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Vento, Renza; Vondráček, Jan; Wade, Mark; Woodrick, Jordan; Bisson, William H.

    2015-01-01

    As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks. PMID:26106139

  14. Optoelectronic methods in potential application in monitoring of environmental conditions

    NASA Astrophysics Data System (ADS)

    Mularczyk-Oliwa, Monika; Bombalska, Aneta; Kwaśny, Mirosław; Kopczyński, Krzysztof; Włodarski, Maksymilian; Kaliszewski, Miron; Kostecki, Jerzy

    2016-12-01

    Allergic rhinitis, also known as hay fever is a type of inflammation which occurs when the immune system overreacts to allergens in the air. It became the most common disease among people. It became important to monitor air content for the presence of a particular type of allergen. For the purposes of environmental monitoring there is a need to widen the group of traditional methods of identification of pollen for faster and more accurate research systems. The aim of the work was the characterization and classification of certain types of plant pollens by using laser optical methods, which were supported by the chemmometrics. Several species of pollen were examined, for which a database of spectral characteristics was created, using LIF, Raman scattering and FTIR methods. Spectral database contains characteristics of both common allergens and pollen of minor importance. Based on registered spectra, statistical analysis was made, which allows the classification of the tested pollen species. For the study of the emission spectra Nd:YAG laser was used with the fourth harmonic generation (266 nm) and GaN diode laser (375 nm). For Raman scattering spectra spectrometer Nicolet IS-50 with a excitation wavelength of 1064 nm was used. The FTIR spectra, recorded in the mid infrared1 range (4000-650 cm-1) were collected with use of transmission mode (KBr pellet), ATR and DRIFT.

  15. Overview of environmental and hydrogeologic conditions at Barrow, Alaska

    USGS Publications Warehouse

    McCarthy, K.A.

    1994-01-01

    To assist the Federal Aviation Administration (FAA) in evaluating the potential effects of environmental contamination at their facility in Barrow, Alaska, a general assessment was made of the hydrologic system is the vicinity of the installation. The City of Barrow is located approximately 16 kilometers southwest of Point Barrow, the northernmost point in Alaska, and therefore lies within the region of continuous permafrost. Migration of surface or shallow- subsurface chemical releases in this environ- ment would be largely restricted by near-surface permafrost to surface water and the upper, suprapermafrost zone of the subsurface. In the arctic climate and tundra terrain of the Barrow area, this shallow environment has a limited capacity to attenuate the effects of either physical disturbances or chemical contamination and is therefore highly susceptible to degradation. Esatkuat Lagoon, the present drink- ing water supply for the City of Barrow, is located approximately 2 kilometers from the FAA facility. This lagoon is the only practical source of drinking water available to the City of Barrow because alternative sources of water in the area are (1) frozen throughout most of the year, (2) insufficient in volume, (3) of poor quality, or (4) too costly to develop and distribute.

  16. Environmental influences on kelp performance across the reproductive period: an ecological trade-off between gametophyte survival and growth?

    PubMed

    Mohring, Margaret B; Kendrick, Gary A; Wernberg, Thomas; Rule, Michael J; Vanderklift, Mathew A

    2013-01-01

    Most kelps (order Laminariales) exhibit distinct temporal patterns in zoospore production, gametogenesis and gametophyte reproduction. Natural fluctuations in ambient environmental conditions influence the intrinsic characteristics of gametes, which define their ability to tolerate varied conditions. The aim of this work was to document seasonal patterns in reproduction and gametophyte growth and survival of Ecklonia radiata (C. Agardh) J. Agardh in south-western Australia. These results were related to patterns in local environmental conditions in an attempt to ascertain which factors explain variation throughout the season. E. radiata was fertile (produced zoospores) for three and a half months over summer and autumn. Every two weeks during this time, gametophytes were grown in a range of temperatures (16-22 °C) in the laboratory. Zoospore densities were highly variable among sample periods; however, zoospores released early in the season produced gametophytes which had greater rates of growth and survival, and these rates declined towards the end of the reproductive season. Growth rates of gametophytes were positively related to day length, with the fastest growing recruits released when the days were longest. Gametophytes consistently survived best in the lowest temperature (16 °C), yet exhibited optimum growth in higher culture temperatures (20-22 °C). These results suggest that E. radiata releases gametes when conditions are favourable for growth, and E. radiata gametophytes are tolerant of the range of temperatures observed at this location. E. radiata releases the healthiest gametophytes when day length and temperature conditions are optimal for better germination, growth, and sporophyte production, perhaps as a mechanism to help compete against other species for space and other resources.

  17. New insights from coral growth band studies in an era of rapid environmental change

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.; Cooper, Timothy F.

    2011-10-01

    The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.

  18. Temperature governs the inactivation rate of vegetative bacteria under growth-preventing conditions.

    PubMed

    Ross, Tom; Zhang, Donglai; McQuestin, Olivia J

    2008-11-30

    Novel studies, in combination with a meta-analysis of available data, were undertaken to explore the kinetics of non-thermal inactivation of Escherichia coli with particular attention to inactivation in fermented meats and including analogous broth-based model systems. The analyses were based on rates of inactivation and specifically investigated the influence of temperature, pH and water activity at levels that alone, or in combination, prevented growth. When independently-derived inactivation data, obtained using different test conditions and diverse E. coli strains, were presented as Arrhenius plots, temperature was found to have a strong effect on the rate of inactivation, explaining 60% of the variance in the data. The slope of the Arrhenius plot changed, however, at temperatures above approximately 47 degrees C, corresponding to the maximum for growth of E. coli. A strong and consistent effect of pH or water activity on inactivation rate was not observed upon meta-analysis of collated data, but the relative effect of both factors was quantified in an analogous broth-based system. We also observed that inactivation rates of three strains of Listeria monocytogenes in the range 5 to 40 degrees C did not differ systematically from those of four strains of E. coli when growth was prevented by low pH and water activity. The observations of a consistent slope of Arrhenius plots for non-thermal inactivation rate of bacteria under diverse environmental conditions and for different strains and species, but which differ from slopes associated with thermal inactivation, raise the intriguing possibility of a mechanism of inactivation at sub-lethal temperatures, distinct from thermal inactivation, that is common to many vegetative bacteria.

  19. Moose body mass variation revisited: disentangling effects of environmental conditions and genetics.

    PubMed

    Herfindal, Ivar; Haanes, Hallvard; Solberg, Erling J; Røed, Knut H; Høgda, Kjell Arild; Sæther, Bernt-Erik

    2014-02-01

    Large-scale geographical variation in phenotypic traits within species is often correlated to local environmental conditions and population density. Such phenotypic variation has recently been shown to also be influenced by genetic structuring of populations. In ungulates, large-scale geographical variation in phenotypic traits, such as body mass, has been related to environmental conditions and population density, but little is known about the genetic influences. Research on the genetic structure of moose suggests two distinct genetic lineages in Norway, structured along a north-south gradient. This corresponds with many environmental gradients, thus genetic structuring provides an additional factor affecting geographical phenotypic variation in Norwegian moose. We investigated if genetic structure explained geographical variation in body mass in Norwegian moose while accounting for environmental conditions, age and sex, and if it captured some of the variance in body mass that previously was attributed to environmental factors. Genetic structuring of moose was the most important variable in explaining the geographic variation in body mass within age and sex classes. Several environmental variables also had strong explanatory power, related to habitat diversity, environmental seasonality and winter harshness. The results suggest that environmental conditions, landscape characteristics, and genetic structure should be evaluated together when explaining large-scale patterns in phenotypic characters or life history traits. However, to better understand the role of genetic and environmental effects on phenotypic traits in moose, an extended individual-based study of variation in fitness-related characters is needed, preferably in an area of convergence between different genetic lineages.

  20. Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions.

    PubMed

    Cook, Martha E; Croxdale, Judith G

    2003-09-01

    Previous spaceflight reports attribute changes in plant ultrastructure to microgravity, but it was thought that the changes might result from growth in uncontrolled environments during spaceflight. To test this possibility, potato explants were examined (a leaf, axillary bud, and small stem segment) grown in the ASTROCULTURETM plant growth unit, which provided a controlled environment. During the 16 d flight of space shuttle Columbia (STS-73), the axillary bud of each explant developed into a mature tuber. Upon return to Earth, tuber slices were examined by transmission electron microscopy. Results showed that the cell ultrastructure of flight-grown tubers could not be distinguished from that of tuber cells grown in the same growth unit on the ground. No differences were observed in cellular features such as protein crystals, plastids with starch grains, mitochondria, rough ER, or plasmodesmata. Cell wall structure, including underlying microtubules, was typical of ground-grown plants. Because cell walls of tubers formed in space were not required to provide support against the force due to gravity, it was hypothesized that these walls might exhibit differences in wall components as compared with walls formed in Earth-grown tubers. Wall components were immunolocalized at the TEM level using monoclonal antibodies JIM 5 and JIM 7, which recognize epitopes of pectins, molecules thought to contribute to wall rigidity and cell adhesion. No difference in presence, abundance or distribution of these pectin epitopes was seen between space- and Earth-grown tubers. This evidence indicates that for the parameters studied, microgravity does not affect the cellular structure of plants grown under controlled environmental conditions.

  1. Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions

    NASA Technical Reports Server (NTRS)

    Cook, Martha E.; Croxdale, Judith G.; Tibbitts, T. W. (Principal Investigator)

    2003-01-01

    Previous spaceflight reports attribute changes in plant ultrastructure to microgravity, but it was thought that the changes might result from growth in uncontrolled environments during spaceflight. To test this possibility, potato explants were examined (a leaf, axillary bud, and small stem segment) grown in the ASTROCULTURETM plant growth unit, which provided a controlled environment. During the 16 d flight of space shuttle Columbia (STS-73), the axillary bud of each explant developed into a mature tuber. Upon return to Earth, tuber slices were examined by transmission electron microscopy. Results showed that the cell ultrastructure of flight-grown tubers could not be distinguished from that of tuber cells grown in the same growth unit on the ground. No differences were observed in cellular features such as protein crystals, plastids with starch grains, mitochondria, rough ER, or plasmodesmata. Cell wall structure, including underlying microtubules, was typical of ground-grown plants. Because cell walls of tubers formed in space were not required to provide support against the force due to gravity, it was hypothesized that these walls might exhibit differences in wall components as compared with walls formed in Earth-grown tubers. Wall components were immunolocalized at the TEM level using monoclonal antibodies JIM 5 and JIM 7, which recognize epitopes of pectins, molecules thought to contribute to wall rigidity and cell adhesion. No difference in presence, abundance or distribution of these pectin epitopes was seen between space- and Earth-grown tubers. This evidence indicates that for the parameters studied, microgravity does not affect the cellular structure of plants grown under controlled environmental conditions.

  2. Revegetation processes and environmental conditions in abandoned peat production fields in Estonia

    NASA Astrophysics Data System (ADS)

    Orru, M.; Orru, H.

    2009-04-01

    As a result of peat extraction, peat production has been finished in Estonia at different times in 154 peat production areas and 9,500 ha (~1% of peatlands) are abandoned, although the peat reserves are not exhausted yet; besides, several areas are not properly recultivated. In addition 12,000 ha of fens (oligotrophic peat layers) are drained and used as grasslands. If the abandoned and non-recultivated peat production areas are not vegetated, their CO2 emission is considerable and peat mineralises in such areas. The aim of the study was to find out specific ecological and geological factors, which affect recovering of peatlands and influence the recultivation. During the revision the amount and quality of the remained reserves, as well as the state of water regime, drainage network and revegetation was assessed in all 154 abandoned peat production areas. The study showed that the state of them is very variable. Some of them are covered with forest, prevailingly with birches at former drainage ditches, later supplemented by pine trees. In the others predominate grasses among plants, and various species of moss (Cladonia rei, Bryum caespiticum, Sphagnum ripariuma, Sphagnum squarrosum) occur as well. Besides, some abandoned areas are completely overgrown with cotton grass. Open abandoned peat areas, which are not covered by vegetation, are much rarer. We found out, that water regime among the factors plays most important role. Moreover abandoned peat production fields, where the environmental conditions have changed - are appropriate for growth of several moss species, which cannot inhabit the areas already occupied by other species. The most interesting discovers were: second growing site of Polia elongata in West-Estonia and Ephemerum serratum, last found in Estonia in the middle of the 19th century, was identified in central Estonia. Also Campylopus introflexus, what was unknown in Estonia. However, the changes in environmental conditions influence the peat layers

  3. Benefits of environmental conditions for growing coriander in Banat Region, Serbia.

    PubMed

    Acimovic, Milica; Oljaca, Snezana; Jacimovic, Goran; Drazic, Slobodan; Tasic, Slavoljub

    2011-10-01

    As one of the oldest multi-purpose plants (spice, aromatic, honey and medicinal), coriander is widespread across Europe. Although in Serbia there are favorable conditions for its growth and development, it is grown on relatively small areas. During both investigated years it took more than 1200 degrees C for transfer from vegetative to generative phase of development and over 2000 degrees C for it to be ready for harvesting. Coriander is a photophilic plant, which requires around 1000 hours of light from sowing to ripening.. As for humidity, coriander grows well, if there are more than 200 mm of rainfall during growing season. In 2009 and 2010, the experiment carried out at the experimental field in Ostojićevo (Banat, Vojvodina province, Serbia) monitored the effect of parameters mentioned above on development of coriander plants, seed yield and essential oil content. The average yields of 1866 kg ha(-1) (2009) and 2470 kg ha(-1) (2010), and relatively high content of essential oil (1.06% in both years) indicate a great potential of this plant species in Serbia, which is, however, greatly dependent on environmental conditions during year.

  4. Effects of environmental stress on the condition of Littorina littorea along the Scheldt estuary (The Netherlands).

    PubMed

    Van den Broeck, Heidi; De Wolf, Hans; Backeljau, Thierry; Blust, Ronny

    2007-04-15

    The condition of the periwinkle Littorina littorea, expressed in terms of its shell morphology, reproductive impairment (i.e. female sterility/intersex, male penis shedding), trematode infestation load, lipid reserves and dry/wet weight ratio, was determined in function of environmental stress along the polluted Western and relatively clean Eastern Scheldt estuary (The Netherlands). The upstream increasing pollution and decreasing salinity levels along the Western Scheldt estuary (Fig. 1) are reflected in the dry/wet weight ratio and lipid content of the periwinkles. Compared to the Eastern Scheldt, female intersex (i.e. indicator of TBT pollution) and sterility occurred more frequently in the Western Scheldt estuary, while male penis shedding was even restricted to the latter estuary. The highest population intersex and sterility incidence was found near the harbour of Vlissingen and reflects potential nautical activities. The number of trematode infested periwinkles did not differ between both estuaries, although local sampling site differences were detected within each estuary, reflecting the complex interactions that exist among parasites, hosts and the local environment. Finally, both estuaries were maximally discriminated from each other based on the shell weight of the periwinkles using a canonical discriminant analysis. Periwinkles with the heaviest shells were found in the Western Scheldt estuary and may reflect growth rate or structural population differences caused by the less favourable living conditions in the Western Scheldt estuary.

  5. Environmental effects on grass-endophyte associations in the harsh conditions of south Patagonia.

    PubMed

    Novas, M Victoria; Collantes, Marta; Cabral, Daniel

    2007-07-01

    Cool-season grasses are frequently infected by Neotyphodium endophytes and this association is often considered as a mutualistic symbiosis. We examined the incidence of Neotyphodium in populations of Bromus setifolius, Phleum alpinum and Poa spiciformis, native and wide-spread grasses from south Patagonia, Argentina. The incidence of 36 populations of Bromus setifolius was studied in association with climatic and soil variables. 31 populations of Ph. alpinum were sampled in five different plant communities. Seventeen populations of P. spiciformis were sampled in three different plant communities. The association between incidence and climatic variables in Ph. alpinum and between incidence and soil fertility in P. spiciformis was investigated. In B. setifolius endophyte incidence was positively correlated with annual average rainfall contrary to the results found in Ph. alpinum. All the populations of P. spiciformis were infected by endophytes and the incidence was associated with plant community. The Neotyphodium-grass interaction is variable in natural populations, supporting the increasing evidence that the Neotyphodium-host interaction depends, in many cases, on the environmental conditions. Field observations suggest that in detrimental low growth conditions the association is not favoured, leading to a decrease in the endophyte frequency of infection or even to the complete loss of the association.

  6. Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition

    NASA Astrophysics Data System (ADS)

    Jin, Seung-Seop; Jung, Hyung-Jo

    2014-03-01

    It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative

  7. Cross-continent comparisons reveal differing environmental drivers of growth of the coral reef fish, Lutjanus bohar

    NASA Astrophysics Data System (ADS)

    Ong, Joyce J. L.; Rountrey, Adam N.; Marriott, Ross J.; Newman, Stephen J.; Meeuwig, Jessica J.; Meekan, Mark G.

    2017-03-01

    Biochronologies provide important insights into the growth responses of fishes to past variability in physical and biological environments and, in so doing, allow modelling of likely responses to climate change in the future. We examined spatial variability in the key drivers of inter-annual growth patterns of a widespread, tropical snapper, Lutjanus bohar, at similar tropical latitudes on the north-western and north-eastern coasts of the continent of Australia. For this study, we developed biochronologies from otoliths that provided proxies of somatic growth and these were analysed using mixed-effects models to examine the historical drivers of growth. Our analyses demonstrated that growth patterns of fish were driven by different climatic and biological factors in each region, including Pacific Ocean climate indices, regional sea level and the size structure of the fish community. Our results showed that the local oceanographic and biological context of reef systems strongly influenced the growth of L. bohar and that a single age-related growth trend cannot be assumed for separate populations of this species that are likely to experience different environmental conditions. Generalised predictions about the growth response of fishes to climate change will thus require adequate characterisation of the spatial variability in growth determinants likely to be found throughout the range of species that have cosmopolitan distributions.

  8. Influence of growth conditions on bacteriocin production by Brevibacterium linens.

    PubMed

    Motta, A S; Brandelli, A

    2003-08-01

    The influence of temperature, NaCl concentration and cheese whey media on growth of Brevibacterium linens ATCC 9175 and production of bacteriocin-like antimicrobial activity was studied. Bacteriocin production and activity were higher at 25 degrees C than at 30 degrees C. No significant growth or production of bacteriocins was observed at 37 degrees C. When bacteriocin production was investigated in media containing different concentrations of NaCl, increased activity was observed in media containing 40 or 80 g l(-1), but not 120 g l(-1) NaCl. The addition of NaCl resulted in a significant increase in specific production rates of bacteriocin-like activity. Antimicrobial activity was also observed by cultivation of B. linens at 25 degrees C in cheese whey media.

  9. The stability of collected human scent under various environmental conditions.

    PubMed

    Hudson, Davia T; Curran, Allison M; Furton, Kenneth G

    2009-11-01

    Human scent evidence collected from objects at a crime scene is used for scent discrimination with specially trained canines. Storage of the scent evidence is usually required yet no optimized storage protocol has been determined. Storage containers including glass, polyethylene, and aluminized pouches were evaluated to determine the optimal medium for storing human scent evidence of which glass was determined to be the optimal storage matrix. Hand odor samples were collected on three different sorbent materials, sealed in glass vials and subjected to different storage environments including room temperature, -80 degrees C conditions, dark storage, and UVA/UVB light exposure over a 7-week period. Volatile organic compounds (VOCs) in the headspace of the samples were extracted and identified using solid-phase micro-extraction-gas chromatography/mass spectrometry (SPME-GC/MS). Three-dimensional covariance mapping showed that glass containers subjected to minimal UVA/UVB light exposure provide the most stable environment for stored human scent samples.

  10. Corrosion behavior of carbon steels under tuff repository environmental conditions

    SciTech Connect

    McCright, R.D.; Weiss, H.

    1984-10-01

    Carbon steels may be used for borehole liners in a potential high-level nuclear waste repository in tuff in Nevada. Borehole liners are needed to facilitate emplacement of the waste packages and to facilitate retrieval of the packages, if required. Corrosion rates of low carbon structural steels AISI 1020 and ASTM A-36 were determined in J-13 well water and in saturated steam at 100{sup 0}C. Tests were conducted in air-sparged J-13 water to attain more oxidizing conditions representative of irradiated aqueous environments. A limited number of irradiation corrosion and stress corrosion tests were performed. Chromium-molybdenum alloy steels and cast irons were also tested. These materials showed lower general corrosion but were susceptible to stress corrosion cracking when welded. 4 references, 4 tables.

  11. Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions

    PubMed Central

    Day, Christopher J.; Tiralongo, Joe; Hartnell, Regan D.; Logue, Carie-Anne; Wilson, Jennifer C.; von Itzstein, Mark; Korolik, Victoria

    2009-01-01

    The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure. PMID:19290056

  12. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems

    NASA Astrophysics Data System (ADS)

    Fu, Caihong; Large, Scott; Knight, Ben; Richardson, Anthony J.; Bundy, Alida; Reygondeau, Gabriel; Boldt, Jennifer; van der Meeren, Gro I.; Torres, Maria A.; Sobrino, Ignacio; Auber, Arnaud; Travers-Trolet, Morgane; Piroddi, Chiara; Diallo, Ibrahima; Jouffre, Didier; Mendes, Hugo; Borges, Maria Fatima; Lynam, Christopher P.; Coll, Marta; Shannon, Lynne J.; Shin, Yunne-Jai

    2015-08-01

    Understanding how external pressures impact ecosystem structure and functioning is essential for ecosystem-based approaches to fisheries management. We quantified the relative effects of fisheries exploitation and environmental conditions on ecological indicators derived from two different data sources, fisheries catch data (catch-based) and fisheries independent survey data (survey-based) for 12 marine ecosystems using a partial least squares path modeling approach (PLS-PM). We linked these ecological indicators to the total biomass of the ecosystem. Although the effects of exploitation and environmental conditions differed across the ecosystems, some general results can be drawn from the comparative approach. Interestingly, the PLS-PM analyses showed that survey-based indicators were less tightly associated with each other than the catch-based ones. The analyses also showed that the effects of environmental conditions on the ecological indicators were predominantly significant, and tended to be negative, suggesting that in the recent period, indicators accounted for changes in environmental conditions and the changes were more likely to be adverse. Total biomass was associated with fisheries exploitation and environmental conditions; however its association with the ecological indicators was weak across the ecosystems. Knowledge of the relative influence of exploitation and environmental pressures on the dynamics within exploited ecosystems will help us to move towards ecosystem-based approaches to fisheries management. PLS-PM proved to be a useful approach to quantify the relative effects of fisheries exploitation and environmental conditions and suggest it could be used more widely in fisheries oceanography.

  13. EVALUATION OF WASTE PACKAGE EXTERNAL ENVIRONMENTAL CONDITION STUDY

    SciTech Connect

    E. N. Lindner and E. F. Dembowski

    1998-07-23

    The U. S. Department of Energy (DOE) is studying Yucca Mountain as the possible site for a permanent underground repository for disposal of spent nuclear fuel (SNF) and other high-level waste (HLW). The emplacement of high-level radioactive waste in Yucca Mountain will release a large amount of heat into the rock above and below the repository. Due to this heat, the rock temperature will rise, and then decrease when the production of decay heat falls below the rate at which heat escapes from the hot zone. In addition to raising the rock temperature, the heat will vaporize water, which will condense in cooler regions. The condensate water may drain back toward the emplacement drifts or it may ''shed'' through the pillars between emplacement drifts. Other effects, such as coupled chemical and mechanical processes, may influence the movement of water above, within, and below the emplacement drifts. This study examined near field environmental parameters that could have an effect on the waste package, including temperature, humidity, seepage rate, pH of seepage, chemistry (dissolved salts/minerals) of seepage, composition of drift atmosphere, colloids, and biota. This report is a Type I analysis performed in support of the development of System Description Documents (SDDs). A Type I analysis is a quantitative or qualitative analysis that may fulfill any of a variety of purposes associated with the Monitored Geologic Repository (MGR), other than providing direct analytical support for design output documents. A Type I analysis may establish design input, as defined in the ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998). This study establishes a technical basis for emplacement drift (i.e. at the waste package surface) environment criteria to be considered in the development of the waste package design. The information will support development of several SDDs and resolve emplacement drift external environment questions in the criteria of those

  14. Modelling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions: a contribution to the alternative method to preserve foods without using chemical preservatives.

    PubMed

    Dang, T D T; Mertens, L; Vermeulen, A; Geeraerd, A H; Van Impe, J F; Debevere, J; Devlieghere, F

    2010-01-31

    The aim of the study was to develop mathematical models describing growth/no growth (G/NG) boundaries of the highly resistant food spoilage yeast-Zygosaccharomyces bailii-in different environmental conditions, taking acidified sauces as the target product. By applying these models, the stability of products with characteristics within the investigated pH, a(w) and acetic acid ranges can be evaluated. Besides, the well-defined no growth regions can be used in the development of guidelines regarding formulation of new shelf-stable foods without using chemical preservatives, which would facilitate the innovation of additive-free products. Experiments were performed at different temperatures and periods (22 degrees C for 45 and 60days, 30 degrees C for 45days) in 150 modified Sabouraud media characterized by high amount of sugars (glucose and fructose, 15% (w/v)), acetic acid (0.0-2.5% (v/v), 6 levels), pH (3.0-5.0, 5 levels) and a(w) (0.93-0.97, 5 levels). These time and temperature combinations were chosen as they are commonly applied for shelf-stable foods. The media were inoculated with ca. 4.5 log CFU/ml and yeast growth was monitored daily using optical density measurements. Every condition was examined in 20 replicates in order to yield accurate growth probabilities. Three separate ordinary logistic regression models were developed for different tested temperatures and incubation time. The total acetic acid concentration was considered as variable for all models. In general, when one intrinsic inhibitory factor became more stringent, the G/NG boundary shifted to less stressful conditions of the other two factors, resulting in enlarged no growth zones. Abrupt changes of growth probability often occurred around the transition zones (between growth and no growth regions), which indicates that minor variations in environmental conditions near the G/NG boundaries can cause a significant impact on the growth probability. When comparing growth after 45days between the

  15. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site

    PubMed Central

    Alreshidi, Mousa M.; Dunstan, R. Hugh; Gottfries, Johan; Macdonald, Margaret M.; Crompton, Marcus J.; Ang, Ching-Seng; Williamson, Nicholas A.; Roberts, Tim K.

    2016-01-01

    Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35–37°C, and additional 0–5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P< 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis. PMID:27442022

  16. The international growth standard for children and adolescents project: environmental influences on preadolescent and adolescent growth in weight and height.

    PubMed

    Ulijaszek, Stanley J

    2006-12-01

    This review has two aims. The first is to identify important environmental influences on the growth of children aged 1 to 9 years and of adolescents, defined as those aged 10 to 19 years. The second is to identify possible environmentally based criteria for the selection of individuals and populations for data collection in the development of an international growth reference for these age ranges. There are many common environmental influences on the growth of children between the ages of 1 and 19 years; the examination and description of these forms the main body of this review. Subsequently, environmental factors influencing adolescent growth only are considered. In both cases, possible selection criteria are put forward. The most important inclusion criteria for both preadolescence and adolescence are good nutrition, lack of infection, and socioeconomic status that does not constrain growth. Additionally, low birthweight, catchup growth, breastfeeding, and early adiposity rebound have impacts on growth and/or body composition into puberty. Exclusion of children born at low birth and/or experiencing catch-up growth could be most realistically operationalized if populations in which secular trends in growth were either completed or minimal were selected. Although an effect of hypoxia on child and adolescent growth, independent of nutrition, is small at most, many high-altitude populations have high prevalances of low birthweight and should be excluded on this basis. Since all populations are exposed to pollutants, contaminants, and toxicants in varying degrees, they cannot be realistically excluded from the sample frame. However, it may be desirable to exclude populations that are habitually exposed to extremely high levels of environmental pollution, including air pollution, and those living in close proximity to toxic waste. It is impossible to exclude populations and individuals on the basis of their exposure to aflatoxin contamination of food. However

  17. Jensen's Inequality and the Impact of Short-Term Environmental Variability on Long-Term Population Growth Rates.

    PubMed

    Pickett, Evan J; Thomson, David L; Li, Teng A; Xing, Shuang

    2015-01-01

    It is well established in theory that short-term environmental fluctuations could affect the long-term growth rates of wildlife populations, but this theory has rarely been tested and there remains little empirical evidence that the effect is actually important in practice. Here we develop models to quantify the effects of daily, seasonal, and yearly temperature fluctuations on the average population growth rates, and we apply them to long-term data on the endangered Black-faced Spoonbill (Platalea minor); an endothermic species whose population growth rates follow a concave relationship with temperature. We demonstrate for the first time that the current levels of temperature variability, particularly seasonal variability, are already large enough to substantially reduce long-term population growth rates. As the climate changes, our results highlight the importance of considering the ecological effects of climate variability and not just average conditions.

  18. Jensen’s Inequality and the Impact of Short-Term Environmental Variability on Long-Term Population Growth Rates

    PubMed Central

    Pickett, Evan J.; Thomson, David L.; Li, Teng A.; Xing, Shuang

    2015-01-01

    It is well established in theory that short-term environmental fluctuations could affect the long-term growth rates of wildlife populations, but this theory has rarely been tested and there remains little empirical evidence that the effect is actually important in practice. Here we develop models to quantify the effects of daily, seasonal, and yearly temperature fluctuations on the average population growth rates, and we apply them to long-term data on the endangered Black-faced Spoonbill (Platalea minor); an endothermic species whose population growth rates follow a concave relationship with temperature. We demonstrate for the first time that the current levels of temperature variability, particularly seasonal variability, are already large enough to substantially reduce long-term population growth rates. As the climate changes, our results highlight the importance of considering the ecological effects of climate variability and not just average conditions. PMID:26352857

  19. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space

    PubMed Central

    Hoson, Takayuki

    2014-01-01

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms. PMID:25370193

  20. Automated Diagnosis Of Conditions In A Plant-Growth Chamber

    NASA Technical Reports Server (NTRS)

    Clinger, Barry R.; Damiano, Alfred L.

    1995-01-01

    Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.

  1. Therapeutic potential of growth factors in pulmonary emphysematous condition.

    PubMed

    Muyal, Jai Prakash; Muyal, Vandana; Kotnala, Sudhir; Kumar, Dhananjay; Bhardwaj, Harsh

    2013-04-01

    Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease (COPD), which is characterized by progressive destruction of alveolar parenchyma with persistent inflammation of the small airways. Such destruction in the distal respiratory tract is irreversible and irreparable. All-trans-retinoic acid was suggested as a novel therapy for regeneration of lost alveoli in emphysema. However, profound discrepancies were evident between studies. At present, no effective therapeutic options are available that allow for the regeneration of lost alveoli in emphysematous human lungs. Recently, some reports on rodent's models have suggested the beneficial effects of various growth factors toward alveolar maintenance and repair processes.

  2. Neglected Buildings, Damaged Health: A "Snapshot" of New York City Public School Environmental Conditions.

    ERIC Educational Resources Information Center

    Advocates for Children of New York, Inc., Long Island City.

    Survey results are presented from 65 parents, students over 12 years, teachers, and other school employees using 39 different schools about environmental conditions in New York City public schools. It shows the results of years of neglect of infrastructure for children and reveals disturbing new information about the environmental health of school…

  3. Using a Physical Education Environmental Survey to Identify Areas of Concern and Improve Conditions

    ERIC Educational Resources Information Center

    Hill, Grant; Hulbert, George

    2007-01-01

    School environmental conditions can impact learning in physical educational classes. It is important for schools to control environmental health hazards, not only to promote a conducive school learning environment, but to also reduce associated health risks. To help physical education leaders determine the quality of physical education facilities…

  4. Environmental Conditions in Northern Gulf of Mexico Estuaries: Before and After the Deepwater Horizon Oil Spill

    EPA Science Inventory

    When conducting an environmental assessment to determine the ecological effects of the Deepwater Horizon (DWH) Oil Spill in the Gulf of Mexico (GOM), baseline environmental data is essential to establish ecosystem condition prior to the incident. EPA’s National Coastal Assessment...

  5. Maryland`s environmental export programs: Supporting job growth through environmental protection

    SciTech Connect

    Chiu, K.S.; O`Neill, P.G.

    1996-12-31

    Although a relatively small state with less than 6 million residents, Maryland is home to some 400 environmental products and services companies. These companies range in size from less than $1 million to more than $100 million in annual revenue. They include both manufacturing companies and consultants, covering many aspects of air, water and waste management, serving government and industry needs throughout the world. Maryland`s annual share of the market for environmental goods and services has been estimated at over $2 billion. Many of Maryland`s environmental technology companies play some part in limiting the environmental impact on one of the State`s greatest natural resources, the Chesapeake Bay. Maryland believes that economic development and environmental protection are mutually enforcing goals. The State strives to improve both in order to improve quality of life. Maryland recognizes that environmental protection creates jobs. The business environment in Maryland has created a climate for environmental companies to thrive, including those that export abroad. Due to the prevalence of environmental businesses in the State and the growing need for environmental management overseas, environmental technology became one of Maryland`s target export sectors under a recently unveiled strategic plan for international business in the State.

  6. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress

    PubMed Central

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T.; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K.; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D.; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L.; Hill, Richard P.; Jones, Russell G.; Tsao, Ming; Robinson, Murray O.; Thompson, Craig B.; Pan, Guohua; Mak, Tak W.

    2011-01-01

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  7. Environmental Factors Associated with the Growth of Chinese Literary Genius: A Test of Rogerian Assumption.

    ERIC Educational Resources Information Center

    Kuo, You-Yuk

    1987-01-01

    This study explored relationships between environmental factors (era, standard of living, freedom, and value) and the growth of Chinese literary genius. Using a new measure, the Chinese Creator Rating Scale, the study found that historical top scorers had above average values on the four environmental factors, supporting the humanistic theory of…

  8. ENVIRONMENTALLY FRIENDLIER ORGANIC TRANSFORMATIONS ON MINERAL SUPPORTS UNDER NON-TRADITIONAL CONDITIONS

    EPA Science Inventory

    Synthetic organic reactions performed under non-traditional conditions are gaining popularity primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst o...

  9. Environmental Conditions in the Gulf of Mexico during November-December

    DTIC Science & Technology

    1990-10-01

    The purpose of this technical note is to describe some of the environmental conditions in a region of the Gulf of Mexico in which an experiment will take place in November and December 1990. The general area

  10. Does spatial variation in environmental conditions affect recruitment? A study using a 3-D model of Peruvian anchovy

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Rose, Kenneth A.; Chai, Fei; Chavez, Francisco P.; Ayón, Patricia

    2015-11-01

    We used a 3-dimensional individual-based model (3-D IBM) of Peruvian anchovy to examine how spatial variation in environmental conditions affects larval and juvenile growth and survival, and recruitment. Temperature, velocity, and phytoplankton and zooplankton concentrations generated from a coupled hydrodynamic Nutrients-Phytoplankton-Zooplankton-Detritus (NPZD) model, mapped to a three dimensional rectangular grid, were used to simulate anchovy populations. The IBM simulated individuals as they progressed from eggs to recruitment at 10 cm. Eggs and yolk-sac larvae were followed hourly through the processes of development, mortality, and movement (advection), and larvae and juveniles were followed daily through the processes of growth, mortality, and movement (advection plus behavior). A bioenergetics model was used to grow larvae and juveniles. The NPZD model provided prey fields which influence both food consumption rate as well as behavior mediated movement with individuals going to grids cells having optimal growth conditions. We compared predicted recruitment for monthly cohorts for 1990 through 2004 between the full 3-D IBM and a point (0-D) model that used spatially-averaged environmental conditions. The 3-D and 0-D versions generated similar interannual patterns in monthly recruitment for 1991-2004, with the 3-D results yielding consistently higher survivorship. Both versions successfully captured the very poor recruitment during the 1997-1998 El Niño event. Higher recruitment in the 3-D simulations was due to higher survival during the larval stage resulting from individuals searching for more favorable temperatures that lead to faster growth rates. The strong effect of temperature was because both model versions provided saturating food conditions for larval and juvenile anchovies. We conclude with a discussion of how explicit treatment of spatial variation affected simulated recruitment, other examples of fisheries modeling analyses that have used a

  11. Effects of simulated Mars conditions on the survival and growth of Escherichia coli and Serratia liquefaciens.

    PubMed

    Berry, Bonnie J; Jenkins, David G; Schuerger, Andrew C

    2010-04-01

    Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30 degrees C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl(2), MgSO(4), NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20 degrees C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO(4) maintained at 20 or 30 degrees C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and -50 degrees C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m(-2) for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive

  12. Food Production, Population Growth, and Environmental Quality. Caltech Population Program Occasional Papers, Series 1, Number 7.

    ERIC Educational Resources Information Center

    Groth, Edward, III

    This paper, one in a series of occasional publications, discusses trends in food production and population growth, emphasizing how environmental quality will be affected. The series is intended to increase understanding of the interrelationships between population growth and socioeconomic and cultural patterns throughout the world, and to…

  13. Effects of social housing condition and behavior on growth of the Shionogi mouse mammary carcinoma.

    PubMed

    Grimm, M S; Emerman, J T; Weinberg, J

    1996-01-01

    We have demonstrated marked effects of social housing condition on the growth rate of the androgen-responsive Shionogi mouse mammary carcinoma. The present study investigated the possible role of psychosocial variables in modulating the differential tumor growth rates observed. Male DD/S mice were reared individually housed (I) or in groups (G) of three or five siblings or nonsiblings. Following tumor cell injection, mice either remained in their rearing conditions (II, GG) or were rehoused (IG, GI). Effects of group size, sibling relationship, dominance status, change vs. no change in housing condition, and direction of change (individual to group or group to individual) were examined. Home cage behaviors were monitored both prior to and following tumor cell injection and rehousing. Overall, mice in the GI conditions showed faster tumor growth rates than mice in the IG conditions. Mice in the II and GG conditions showed intermediate tumor growth rates. Differences in group size and sibling relationship prior to and following tumor cell injection and rehousing had no significant influence on tumor growth rates. However, both change in housing condition and direction of change following tumor cell injection/rehousing were significant variables in modulating differential tumor growth rates. Dominance status differentially influenced tumor growth depending on whether mice experienced a change in housing; in the IG conditions, dominant mice showed faster tumor growth whereas in the GG conditions, dominant mice showed slower tumor growth than subordinate mice. Increased fighting among mice in IG compared to mice in GG conditions may play a role in modulating differential tumor growth rates.

  14. Environmental influence on mussel (Mytilus edulis) growth - A quantile regression approach

    NASA Astrophysics Data System (ADS)

    Bergström, Per; Lindegarth, Mats

    2016-03-01

    The need for methods for sustainable management and use of coastal ecosystems has increased in the last century. A key aspect for obtaining ecologically and economically sustainable aquaculture in threatened coastal areas is the requirement of geographic information of growth and potential production capacity. Growth varies over time and space and depends on a complex pattern of interactions between the bivalve and a diverse range of environmental factors (e.g. temperature, salinity, food availability). Understanding these processes and modelling the environmental control of bivalve growth has been central in aquaculture. In contrast to the most conventional modelling techniques, quantile regression can handle cases where not all factors are measured and provide the possibility to estimate the effect at different levels of the response distribution and give therefore a more complete picture of the relationship between environmental factors and biological response. Observation of the relationships between environmental factors and growth of the bivalve Mytilus edulis revealed relationships that varied both among level of growth rate and within the range of environmental variables along the Swedish west coast. The strongest patterns were found for water oxygen concentration level which had a negative effect on growth for all oxygen levels and growth levels. However, these patterns coincided with differences in growth among periods and very little of the remaining variability within periods could be explained indicating that interactive processes masked the importance of the individual variables. By using quantile regression and local regression (LOESS) this study was able to provide valuable information on environmental factors influencing the growth of M. edulis and important insight for the development of ecosystem based management tools of aquaculture activities, its use in mitigation efforts and successful management of human use of coastal areas.

  15. Growth and development of Leghorn pullets subjected to abrupt changes in environmental temperature and dietary energy level.

    PubMed

    Leeson, S; Caston, L J

    1991-08-01

    Four trials were conducted to note the response of pullets to changes in environmental temperature and energy level at 56 days of age. In each trial, birds were fed diets providing either 2,500 or 3,000 kcal ME/kg throughout rearing, or with a single diet change from 2,500 to 3,000 and 3,000 to 2,500 kcal ME/kg occurring at 56 days. Each of the four diet scenarios was tested with six replicate caged groups each containing 10 pullets. In Trials 1 and 2 environmental temperature was maintained at 18 and 30 C, respectively, to 126 days. In Trials 3 and 4, temperature was changed at 56 days from 18 to 30 C and 30 to 18 C, respectively. Regardless of environmental temperature conditions, diet change per se had minimal effect on growth and development. Rather dietary energy level used from 56 to 126 days had the greatest effect on growth, with birds fed the highest energy content diet generally being heaviest. However, this effect was not significant (P greater than .05) in all trials, which is probably related to a lack of effect on energy intake under such conditions. Final body weight was more closely associated with energy intake than with protein intake and energy intake was maximized when high-energy diets were used after 56 days of age. Consumption of high-energy diets after 56 days, regardless of trial conditions, always resulted in increased carcass fat content at 126 days. It was concluded that abrupt and major changes in environmental temperature or dietary energy as used in these trials have little deleterious effect on pullet development. Conditions prevailing during later stages of growth have a far greater effect than changes per se in these parameters.

  16. Variation in early-life telomere dynamics in a long-lived bird: links to environmental conditions and survival.

    PubMed

    Watson, Hannah; Bolton, Mark; Monaghan, Pat

    2015-03-01

    Conditions experienced during early life can have profound consequences for both short- and long-term fitness. Variation in the natal environment has been shown to influence survival and reproductive performance of entire cohorts in wild vertebrate populations. Telomere dynamics potentially provide a link between the early environment and long-term fitness outcomes, yet we know little about how the environment can influence telomere dynamics in early life. We found that environmental conditions during growth have an important influence on early-life telomere length (TL) and attrition in nestlings of a long-lived bird, the European storm petrel Hydrobates pelagicus. Nestlings reared under unfavourable environmental conditions experienced significantly greater telomere loss during postnatal development compared with nestlings reared under more favourable natal conditions, which displayed a negligible change in TL. There was, however, no significant difference in pre-fledging TL between cohorts. The results suggest that early-life telomere dynamics could contribute to the marked differences in life-history traits that can arise among cohorts reared under different environmental conditions. Early-life TL was also found to be a significant predictor of survival during the nestling phase, providing further evidence for a link between variation in TL and individual fitness. To what extent the relationship between early-life TL and mortality during the nestling phase is a consequence of genetic, parental and environmental factors is currently unknown, but it is an interesting area for future research. Accelerated telomere attrition under unfavourable conditions, as observed in this study, might play a role in mediating the effects of the early-life environment on later-life performance.

  17. Hydrothermal growth of ZnO nanoparticles under different conditions

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mehmet; Bozkurt Cirak, Burcu; Cirak, Cagri; Aydogan, Sakir

    2016-02-01

    In this study, a simple low-temperature hydrothermal method was used to synthesize ZnO nanoparticles. The structural, morphological and optical characterizations of the nanoparticles were evaluated with regard to the zinc content. To achieve this, the molar ratios of the precursors were changed from 0.05 to 0.1 M. The structural and morphological analyses showed that all samples had a polycrystalline hexangular wurtzite crystal structure and the shape of the ZnO nanoparticles changed with increasing zinc content. A possible growth mechanism of the ZnO nanoparticles is explained in terms of the zinc content. Optical measurement revealed that the shape of the nanoparticles affects the position of the band-edge emission as well as the shape of the luminescence spectrum.

  18. Issues and options in addressing the environmental consequences of livestock sector's growth.

    PubMed

    Gerber, P J; Vellinga, T V; Steinfeld, H

    2010-02-01

    The growth of the livestock sector is being achieved at substantial environmental costs. Today, livestock are a major stressor of the global environmental, occupying a quarter of emerged land (including a third of arable land), contributing close to a fifth of the anthropogenic greenhouse gas emissions, using eight percent of all water resources and threatening a wide range of endangered species. At the same time, livestock are also a crucial engine of rural growth and a tool for improving food security. Policies are required to guide the sector in achieving sometimes conflicting development objectives. Potential pathways include encouraging resource use efficiency, correcting for environmental externalities and accelerating technological change.

  19. Effect of economic growth and environmental quality on tourism in Southeast Asian Countries

    NASA Astrophysics Data System (ADS)

    Firmansyah

    2017-02-01

    The tourism is an important sector in generating income for a country, nevertheless, tourism is sensitive toward the changes in economy, as well as changes in environmental quality. By employing econometric models of error correction on annual data, this study examines the influence of environmental quality, domestic and global economic growth on foreign tourist arrivals in selected Southeast Asian countries, namely Indonesia, Malaysia, Thailand, Philippines, and Singapore. The findings of this study showed that all of countries long run model were proved statistically, indicated that world economic growth as well as environmental quality affect foreign tourism arrivals.

  20. Performing Comparative Peptidomics Analyses of Salmonella from Different Growth Conditions

    SciTech Connect

    Adkins, Joshua N.; Mottaz, Heather; Metz, Thomas O.; Ansong, Charles K.; Manes, Nathan P.; Smith, Richard D.; Heffron, Fred

    2010-01-08

    Host–pathogen interactions are complex competitions during which both the host and the pathogen adapt rapidly to each other in order for one or the other to survive. Salmonella enterica serovar Typhimurium is a pathogen with a broad host range that causes a typhoid fever-like disease in mice and severe food poisoning in humans. The murine typhoid fever is a systemic infection in which S.typhimurium evades part of the immune system by replicating inside macrophages and other cells. The transition from a foodborne contaminant to an intracellular pathogen must occur rapidly in multiple,ordered steps in order for S. typhimurium to thrive within its host environment. Using S. typhimurium isolated from rich culture conditions and from conditions that mimic the hostile intracellular environment of the host cell, a native low molecular weight protein fraction, or peptidome, was enriched from cell lysates by precipitation with organic solvents. The enriched peptidome was analyzed by both LC–MS/MS and LC–MS-based methods, although several other methods are possible. Pre-fractionation of peptides allowed identification of small proteins and protein degradation products that would normally be overlooked. Comparison of peptides present in lysates prepared from Salmonella grown under different conditions provided a unique insight into cellular degradation processes as well as identification of novel peptides encoded in the genome but not annotated. The overall approach is detailed here as applied to Salmonella and is adaptable to a broad range of biological systems.

  1. Life histories have a history: effects of past and present conditions on adult somatic growth rates in wild Trinidadian guppies.

    PubMed

    Auer, Sonya K; Lopez-Sepulcre, Andrés; Heatherly, Thomas; Kohler, Tyler J; Bassar, Ronald D; Thomas, Steven A; Reznick, David N

    2012-07-01

    1. Environmental conditions in the present, more recent past and during the juvenile stage can have significant effects on adult performance and population dynamics, but their relative importance and potential interactions remain unexplored. 2. We examined the influence of food availability at the time of sampling, 2 months prior and during the juvenile stage on adult somatic growth rates in wild Trinidadian guppies (Poecilia reticulata). 3. We found that food availability during both the early and later parts of an individual's ontogeny had important consequences for adult growth strategies, but the direction of these effects differed among life stages and their magnitude, in some cases, depended on food levels experienced during other life stages. Current food levels and those 2 months prior to growth measurements had positive effects on adult growth rate; though, food levels 2 months prior had a greater effect on growth than current food levels. In contrast, the effects of food availability during the juvenile stage were higher in magnitude but opposite in direction to current food levels and those 2 months prior to growth rate measurements. Individuals recruiting under low food levels grew faster as adults than individuals recruiting during periods of high food availability. There was also a positive interaction between food levels experienced during the juvenile stage and 2 months prior such that the effects of juvenile food level diminished as the food level experienced 2 months prior increased. 4. These results suggest that the similar conditions occurring at different life stages can have different effects on short- and long-term growth strategies of individuals within a population. They also demonstrate that, while juvenile conditions can have lasting effects on adult performance, the strength of that effect can be dampened by environmental conditions experienced as an adult. 5. A simultaneous consideration of past events in both the

  2. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-02-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  3. Evaluation of condition indices for estimation of growth of largemouth bass and white crappie

    USGS Publications Warehouse

    Gutreuter, Steve; Childress, W. Michael

    1990-01-01

    We evaluated the ability of three condition indices-condition factor (K), relative condition (Kn), and relative weight (Wr)-to estimate annual growth rates of largemouth bass Micropterus salmoides and white crappies Pomoxis annularis collected during standardized autumn electrofishing and trap-net surveys of Texas reservoirs. Multiple-regression models for estimation of length increments from initial length (at the start of the growing season) and condition indices had R2 values of 0.63-0.76 for largemouth bass and 0.46-0.83 for white crappie. However, these models are not useful for indirect estimation ofgrowth rates because growth must be known (initial length equals length at capture minus estimated annual growth). Models based on length at capture and condition indices had R2 values of 0.22-0.68 for largemouth bass and less than 0.45 for white crappie. The low precision of models based on length at capture indicates that condition provides a weak basis for indirect estimation of growth rates from Texas reservoirs sampled during autumn and, therefore, is unreliable for detection of size-related growth phenomena such as "stockpiling" (size specific, density-dependent growth depression). Direct estimates of growth rates based on back-calculations or tagging data seem necessary for reliable detection of size-related growth patterns for largemouth bass and white crappies from Texas reservoirs.

  4. Toxicity of pentachlorophenol to aquatic organisms under naturally varying and controlled environmental conditions

    SciTech Connect

    Hedtke, S.F.; West, C.W.; Allen, K.N.; Norberg-King, T.J.; Mount, D.I.

    1986-06-01

    The toxicity of pentachlorophenol (PCP) was determined in the laboratory for 11 aquatic species. Tests were conducted seasonally in ambient Mississippi River water and under controlled conditions in Lake Superior water. Fifty-one acute toxicity tests were conducted, with LC50 values ranging from 85 micrograms/L for the white sucker Catastomus commersoni during the summer to greater than 7770 micrograms/L for the isopod Asellus racovitzai during the winter. The effect of PCP on growth and/or reproduction was determined for seven species. The most sensitive chronically exposed organisms were the cladoceran Ceriodaphnia reticulata and the snail Physa gyrina. The greatest variation in toxicity was due to species sensitivity. Within a given, season there was as much as a 40-fold difference in LC50 values between species. For any one species, the maximum variation in LC50 between seasons was approximately 14-fold. There were also substantial differences in acute-chronic relationships, with acute/chronic ratios ranging from greater than 37 for C. reticulata to 1 for Simocephalus vetulus. It is suggested that the composition of the aquatic community should be the most important consideration in estimating the potential environmental effects of PCP.

  5. Systemic regulation of soybean nodulation by acidic growth conditions.

    PubMed

    Lin, Meng-Han; Gresshoff, Peter M; Ferguson, Brett J

    2012-12-01

    Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.

  6. Estimating geographic variation on allometric growth and body condition of Blue Suckers with quantile regression

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Neely, B.C.

    2011-01-01

    Increasing our understanding of how environmental factors affect fish body condition and improving its utility as a metric of aquatic system health require reliable estimates of spatial variation in condition (weight at length). We used three statistical approaches that varied in how they accounted for heterogeneity in allometric growth to estimate differences in body condition of blue suckers Cycleptus elongatus across 19 large-river locations in the central USA. Quantile regression of an expanded allometric growth model provided the most comprehensive estimates, including variation in exponents within and among locations (range = 2.88–4.24). Blue suckers from more-southerly locations had the largest exponents. Mixed-effects mean regression of a similar expanded allometric growth model allowed exponents to vary among locations (range = 3.03–3.60). Mean relative weights compared across selected intervals of total length (TL = 510–594 and 594–692 mm) in a multiplicative model involved the implicit assumption that allometric exponents within and among locations were similar to the exponent (3.46) for the standard weight equation. Proportionate differences in the quantiles of weight at length for adult blue suckers (TL = 510, 594, 644, and 692 mm) compared with their average across locations ranged from 1.08 to 1.30 for southern locations (Texas, Mississippi) and from 0.84 to 1.00 for northern locations (Montana, North Dakota); proportionate differences for mean weight ranged from 1.13 to 1.17 and from 0.87 to 0.95, respectively, and those for mean relative weight ranged from 1.10 to 1.18 and from 0.86 to 0.98, respectively. Weights for fish at longer lengths varied by 600–700 g within a location and by as much as 2,000 g among southern and northern locations. Estimates for the Wabash River, Indiana (0.96–1.07 times the average; greatest increases for lower weights at shorter TLs), and for the Missouri River from Blair, Nebraska, to Sioux City, Iowa (0.90

  7. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China

    PubMed Central

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-01-01

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation. PMID:28367963

  8. Transcriptomic, proteomic and metabolomic analysis of maize responses to UV-B: comparison of greenhouse and field growth conditions.

    PubMed

    Casati, Paula; Campi, Mabel; Morrow, Darren J; Fernandes, John; Walbot, Virginia

    2011-08-01

    UV-B radiation from normal solar fluence elicits physiological and developmental changes in plants under fluctuating environmental conditions. Most UV photobiology studies in plants utilize controlled greenhouse and growth chamber environments in which few conditions vary except the brief presence of UV-B radiation. Our purpose was to compare responses to UV-B in irradiated and shielded maize organs in field (natural solar plus 2x solar supplementation for defined periods) and greenhouse (2x solar supplementation only) conditions during a 4 hour exposure. Three parameters were assessed--transcripts, proteins, and metabolites--to determine the degree of overlap in maize responses in field and greenhouse conditions. We assessed irradiated leaves, and both shielded leaves and immature ears. After comparing transcriptome, proteome and metabolome profiles, we find there are more differences than similarities between field and greenhouse responses.

  9. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.

    PubMed

    Krepski, S T; Emerson, D; Hredzak-Showalter, P L; Luther, G W; Chan, C S

    2013-09-01

    Despite the abundance of Fe and its significance in Earth history, there are no established robust biosignatures for Fe(II)-oxidizing micro-organisms. This limits our ability to piece together the history of Fe biogeochemical cycling and, in particular, to determine whether Fe(II)-oxidizers played a role in depositing ancient iron formations. A promising candidate for Fe(II)-oxidizer biosignatures is the distinctive morphology and texture of extracellular Fe(III)-oxyhydroxide stalks produced by mat-forming microaerophilic Fe(II)-oxidizing micro-organisms. To establish the stalk morphology as a biosignature, morphologic parameters must be quantified and linked to the microaerophilic Fe(II)-oxidizing metabolism and environmental conditions. Toward this end, we studied an extant model organism, the marine stalk-forming Fe(II)-oxidizing bacterium, Mariprofundus ferrooxydans PV-1. We grew cultures in flat glass microslide chambers, with FeS substrate, creating opposing oxygen/Fe(II) concentration gradients. We used solid-state voltammetric microelectrodes to measure chemical gradients in situ while using light microscopy to image microbial growth, motility, and mineral formation. In low-oxygen (2.7-28 μm) zones of redox gradients, the bacteria converge into a narrow (100 μm-1 mm) growth band. As cells oxidize Fe(II), they deposit Fe(III)-oxyhydroxide stalks in this band; the stalks orient directionally, elongating toward higher oxygen concentrations. M. ferrooxydans stalks display a narrow range of widths and uniquely biogenic branching patterns, which result from cell division. Together with filament composition, these features (width, branching, and directional orientation) form a physical record unique to microaerophilic Fe(II)-oxidizer physiology; therefore, stalk morphology is a biosignature, as well as an indicator of local oxygen concentration at the time of formation. Observations of filamentous Fe(III)-oxyhydroxide microfossils from a ~170 Ma marine Fe

  10. Effects of Solar Loading and Other Environmental Conditions on Thermographic Imaging of Subsurface Defects in Concrete

    NASA Astrophysics Data System (ADS)

    Washer, G. A.; Fenwick, R. G.; Bolleni, N.; Harper, J.

    2009-03-01

    The detection of subsurface defects in concrete using infrared cameras relies on thermal variations in the ambient environment to provide heat flow. Solar loading can provide significant thermal energy that enables the imaging of subsurface defects. This paper presents results of a study to determine the optimum environmental conditions for conducting thermal inspection of concrete bridges. This study has included continuous monitoring of a large concrete specimen under ambient environmental condition in central Missouri. The thermal contrast of subsurface targets in the specimen has been analyzed to determine the optimum conditions and time for detection of subsurface features as a function of depth. Environmental conditions that result in the largest contrast in surface temperature are discussed.

  11. Effects of several environmental factors on sweetpotato growth.

    PubMed

    Loretan, P A; Bonsi, C K; Mortley, D G; Wheeler, R M; Mackowiak, C L; Hill, W A; Morris, C E; Trotman, A A; David, P P

    1994-11-01

    Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and 'TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 degrees C and diurnal 28:22 degrees C day:night) and different CO2 levels (ambient, 400, 1000 and 10000 microliters/L--400, 1000 and 10000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were produced for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 degrees C. For the same photoperiod, when a 28:22 degrees C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod, 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 degrees C diurnal temperature variation than with a constant 28 degrees C temperature regime. Preliminary results with both 'Ga Jet' and 'TI 155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1000, and 10000 microliters/L.

  12. Effects of several environmental factors on sweetpotato growth

    NASA Technical Reports Server (NTRS)

    Loretan, P. A.; Bonsi, C. K.; Mortley, D. G.; Wheeler, R. M.; Mackowiak, C. L.; Hill, W. A.; Morris, C. E.; Trotman, A. A.; David, P. P.

    1994-01-01

    Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 C and diurnal 28:222 C day:night) and different CO2 levels (ambient, 400, 1 000 and 10 000 microL/L-400, 1 000 and 10 000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were prodcued for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 C. For the same photoperiod, when a 28:22 C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod. 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 C diurnal temperature variation than with a constant 28 C temperature regime. Preliminary results with both 'Ga Jet' and 'TI-155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1 000, and 10 000 microL/L.

  13. Corrosion pitting and environmentally assisted small crack growth

    PubMed Central

    Turnbull, Alan

    2014-01-01

    In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249

  14. Hypoxia tolerance of common sole juveniles depends on dietary regime and temperature at the larval stage: evidence for environmental conditioning.

    PubMed

    Zambonino-Infante, José L; Claireaux, Guy; Ernande, Bruno; Jolivet, Aurélie; Quazuguel, Patrick; Sévère, Armelle; Huelvan, Christine; Mazurais, David

    2013-05-07

    An individual's environmental history may have delayed effects on its physiology and life history at later stages in life because of irreversible plastic responses of early ontogenesis to environmental conditions. We chose a marine fish, the common sole, as a model species to study these effects, because it inhabits shallow marine areas highly exposed to environmental changes. We tested whether temperature and trophic conditions experienced during the larval stage had delayed effects on life-history traits and resistance to hypoxia at the juvenile stage. We thus examined the combined effect of global warming and hypoxia in coastal waters, which are potential stressors to many estuarine and coastal marine fishes. Elevated temperature and better trophic conditions had a positive effect on larval growth and developmental rates; warmer larval temperature had a delayed positive effect on body mass and resistance to hypoxia at the juvenile stage. The latter suggests a lower oxygen demand of individuals that had experienced elevated temperatures during larval stages. We hypothesize that an irreversible plastic response to temperature occurred during early ontogeny that allowed adaptive regulation of metabolic rates and/or oxygen demand with long-lasting effects. These results could deeply affect predictions about impacts of global warming and eutrophication on marine organisms.

  15. Environmental effects on defect growth in composite materials

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1981-01-01

    Data for evaluating the effects of moisture and temperature on the integrity of fiber composite components was gathered. In particular, the static and cyclic performance of three composite laminates containing flaws was investigated at room temperature and at 422 K (300 F) in wet and dry conditions.

  16. Microbial diversity during cellulose decomposition in different forest stands: I. microbial communities and environmental conditions.

    PubMed

    Kubartová, Ariana; Moukoumi, Judicaël; Béguiristain, Thierry; Ranger, Jacques; Berthelin, Jacques

    2007-10-01

    We studied the effect of forest tree species on a community of decomposers that colonize cellulose strips. Both fungal and bacterial communities were targeted in a native forest dominated by beech and oak and 30-year-old beech and spruce plantations, growing in similar ecological conditions in the Breuil-Chenue experimental forest site in Morvan (France). Microbial ingrowths from the 3rd to 10th month of strip decomposition (May to December 2004) were studied. Community composition was assessed using temperature gradient gel electrophoresis with universal fungal (ITS1F, ITS2) and bacterial (1401r, 968f) primers. Soil temperature and moisture as well as fungal biomass were also measured to give additional information on decomposition processes. Changing the dominant tree species had no significant influence in the number of decomposer species. However, decomposer community composition was clearly different. If compared to the native forest, where community composition highly differed, young monocultures displayed similar species structure for fungi and bacteria. Both species numbers and community composition evolved during the decay process. Time effect was found to be more important than tree species. Nevertheless, the actual environmental conditions and seasonal effect seemed to be even more determining factors for the development of microbial communities. The course and correlations of the explored variables often differed between tree species, although certain general trends were identified. Fungal biomass was high in summer, despite that species richness (SR) decreased and conversely, that high SR did not necessarily mean high biomass values. It can be concluded that the growth and development of the microbiological communities that colonized a model material in situ depended on the combination of physical and biological factors acting collectively and interdependently at the forest soil microsite.

  17. Soil texture and climatc conditions for biocrust growth limitation: a meta analysis

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Subbotina, Mariia

    2015-04-01

    Along with afforestation, attempts have been made to combat desertification by managing soil crusts, and is has been reported that recovery rates of biocrusts are dependent on many factors, including the type, severity, and extent of disturbance; structure of the vascular plant community; conditions of adjoining substrates; availability of inoculation material; and climate during and after disturbance (Belnap & Eldridge 2001). Because biological soil crusts are known to be more stable on and to prefer fine substrates (Belnap 2001), the question arises as to how successful crust management practices can be applied to coarser soil. In previous studies we observed similar crust biomasses on finer soils under arid and on coarser soils under temperate conditions. We hypothesized that the higher water holding capacity of finer substrates would favor crust development, and that the amount of silt and clay in the substrate that is required for enhanced crust development would vary with changes in climatic conditions. In a global meta study, climatic and soil texture threshold values promoting BSC growth were derived. While examining literature sources, it became evident that the amount of studies to be incorporated into this meta analysis was reversely related to the amount of common environmental parameters they share. We selected annual mean precipitaion, mean temperature and the amount of silt and clay as driving variables for crust growth. Response variable was the "relative crust biomass", which was computed per literature source as the ratio between each individual crust biomass value of the given study to the study maximum value reported. We distinguished lichen, green algal, cyanobacterial and moss crusts. To quantify threshold conditions at which crust biomass responded to differences in texture and climate, we (I) determined correlations between bioclimatic variables, (II) calculated linear models to determine the effect of typical climatic variables with soil

  18. How Will Global Environmental Changes Affect the Growth of Alien Plants?

    PubMed Central

    Jia, Jujie; Dai, Zhicong; Li, Feng; Liu, Yanjie

    2016-01-01

    Global environmental changes can create novel habitats, promoting the growth of alien plants that often exhibit broad environmental tolerance and high phenotypic plasticity. However, the mechanisms underlying these growth promotory effects are unknown at present. Here, we conducted a phylogenetically controlled meta-analysis using data from 111 published studies encompassing the responses of 129 alien plants to global warming, increased precipitation, N deposition, and CO2 enrichment. We compared the differences in the responses of alien plants to the four global environmental change factors across six categories of functional traits between woody and non-woody life forms as well as C3 and C4 photosynthetic pathways. Our results showed that all four global change factors promote alien plant growth. Warming had a more positive effect on C4 than C3 plants. Although the effects of the four factors on the functional traits of alien plants were variable, plant growth was mainly promoted via an increase in growth rate and size. Our data suggest that potential future global environmental changes could further facilitate alien plant growth. PMID:27847511

  19. How Will Global Environmental Changes Affect the Growth of Alien Plants?

    PubMed

    Jia, Jujie; Dai, Zhicong; Li, Feng; Liu, Yanjie

    2016-01-01

    Global environmental changes can create novel habitats, promoting the growth of alien plants that often exhibit broad environmental tolerance and high phenotypic plasticity. However, the mechanisms underlying these growth promotory effects are unknown at present. Here, we conducted a phylogenetically controlled meta-analysis using data from 111 published studies encompassing the responses of 129 alien plants to global warming, increased precipitation, N deposition, and CO2 enrichment. We compared the differences in the responses of alien plants to the four global environmental change factors across six categories of functional traits between woody and non-woody life forms as well as C3 and C4 photosynthetic pathways. Our results showed that all four global change factors promote alien plant growth. Warming had a more positive effect on C4 than C3 plants. Although the effects of the four factors on the functional traits of alien plants were variable, plant growth was mainly promoted via an increase in growth rate and size. Our data suggest that potential future global environmental changes could further facilitate alien plant growth.

  20. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review.

    PubMed

    Cheison, Seronei Chelulei; Kulozik, Ulrich

    2017-01-22

    Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.

  1. Permissiveness of freshly isolated environmental strains of amoebae for growth of Legionella pneumophila.

    PubMed

    Dupuy, Mathieu; Binet, Marie; Bouteleux, Celine; Herbelin, Pascaline; Soreau, Sylvie; Héchard, Yann

    2016-03-01

    Legionella pneumophila is a pathogenic bacterium commonly found in water and responsible for severe pneumonia. Free-living amoebae are protozoa also found in water, which feed on bacteria by phagocytosis. Under favorable conditions, some L. pneumophila are able to resist phagocytic digestion and even multiply within amoebae. However, it is not clear whether L. pneumophila could infect at a same rate a large range of amoebae or if there is some selectivity towards specific amoebal genera or strains. Also, most studies have been performed using collection strains and not with freshly isolated strains. In our study, we assess the permissiveness of freshly isolated environmental strains of amoebae, belonging to three common genera (i.e. Acanthamoeba, Naegleria and Vermamoeba), for growth of L. pneumophila at three different temperatures. Our results indicated that all the tested strains of amoebae were permissive to L. pneumophila Lens and that there was no significant difference between the strains. Intracellular proliferation was more efficient at a temperature of 40°C. In conclusion, our work suggests that, under favorable conditions, virulent strains of L. pneumophila could equally infect a large number of isolates of common freshwater amoeba genera.

  2. Characterizing the environmental conditions and estimating aboveground biomass productivity for switchgrass in the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wylie, B. K.; Howard, D. M.

    2013-12-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to investigate the relationship between site environmental conditions and switchgrass productivity and identify the optimal conditions for productive switchgrass in the Great Plains (GP). Environmental and climate variables such as elevation, soil organic carbon, available water capacity, climate, and seasonal weather were used in this study. Satellite-derived growing season averaged Normalized Difference Vegetation Index was used as a proxy for switchgrass productivity. The environmental conditions for switchgrass sites of variable productivity were summarized and a data-driven multiple regression switchgrass productivity model was developed. Results show that spring precipitation has the strongest correlation with switchgrass productivity (r = 0.92, 176 samples) and spring minimum temperature has the weakest correlation with switchgrass productivity (r = 0.16). An estimated switchgrass productivity map for the entire GP based on site environmental and climate conditions was generated. The estimated switchgrass biomass productivity map indicates that highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study provide useful information for assessing economic feasibility or optimal land use decisions regarding switchgrass development in the GP.

  3. Environmental and cultural considerations for growth of potatoes in CELSS

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Bennett, Susan M.; Morrow, Robert C.

    1990-01-01

    The white potato (Solanum tuberosum) was evaluated for use in the Closed Ecology Life Support System (CELSS) because of its high ratio of edible to inedible biomass and highly nutritious tuber that consists of readily digestible carbohydrates and proteins. Results are given for conditions that will produce the highest yields. The results, given in tabluar form, indicate the optimum temperatures, irradiance, carbon dioxide concentration, root environment, plant spacing, root and stolen containment, and harvesting times.

  4. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  5. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees.

    PubMed

    Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Oribe, Yuichiro; Funada, Ryo

    2013-01-01

    The timing of cambial reactivation plays an important role in determination of the amount and quality of wood and the environmental adaptivity of trees. Environmental factors, such as temperature, influence the growth and development of trees. Temperatures from late winter to early spring affect the physiological processes that are involved in the initiation of cambial cell division and xylem differentiation in trees. Cumulative elevated temperatures from late winter to early spring result in earlier initiation of cambial reactivation and xylem differentiation in tree stems and an extended growth period. However, earlier cambial reactivation increases the risk for frost damage because the cold tolerance of cambium decreases after cambial reactivation. The present review focuses on temperature regulation on the timing of cambial reactivation and xylem differentiation in trees, and also highlights recent advances in our understanding of seasonal changes in the cold stability of microtubules in trees. The review also summarizes the present understanding of the relationships between the timing of cambial reactivation, the start of xylem differentiation and changes in levels of storage materials in trees, as well as an attempt to identify the source of energy for cell division and differentiation. A better understanding of the mechanisms that regulate wood formation in trees and the influence of environmental conditions on such mechanisms should help in efforts to improve and enhance the exploitation of wood for commercial applications and to prepare for climatic change.

  6. Evaluation of [3H]thymidine uptake method for studying growth of spiroplasmas under various conditions.

    PubMed Central

    Bastian, F O; Baliga, B S; Pollock, H M

    1988-01-01

    [3H]thymidine uptake and colony counts are quantitative and inexpensive methods for studying Spiroplasma growth. Using these techniques, we demonstrated subtle effects on the growth of suckling mouse cataract agent of medium alterations, inoculum size, and freezing of cultures. In addition, suckling mouse cataract agent multiplied more actively under aerobic than under anaerobic conditions. These techniques have wide application for the study of Spiroplasma growth and will be useful for the development of a defined medium. PMID:3182999

  7. The study of minerals under simulated planetary conditions: Experiments of hydrated sulphates at environmental conditions of martian surface

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, O.; Mateo-Martí, E.; Fernández-Remolar, D.

    2007-08-01

    Minerals on planetary surfaces are usually identified comparing remote infrared spectral data to laboratory mineral databases obtained under terrestrial conditions. However, environmental conditions at other planetary surfaces could produce alterations on the standard mineral spectra. Spectroscopic signals of hydrated magnesium, calcium and hydroxlated iron sulphates have been recently detected on surface of Mars. Some experiments using environmental conditions at the martian surface (temperature and pressure ranges; atmospheric composition, including water vapor content; and ultraviolet radiation) of different sulphates have been performed in order to both, constrain the stability of the hydrated phases and detect any possible modification in their spectra. Experiments have been done in a simulation chamber located in Centro de Astrobiologia, Madrid. The equipment has been developed for a wide range of simulation conditions, including a range of irradiation sources, and the implementation of analytical techniques, including IR and UV spectroscopy and mass spectrometry. The equipment consists of a main vacuum chamber with dimensions of 50 cm long x 40 cm diameter, a second internal chamber connected by differential pumping with the main one, and a third side chamber for the gases analysis using a mass spectrometer. Chambers pressures are monitorized by different pirani-penning gauges. A liquid nitrogen cooling system is connected to the sample holder, and a gas system allows the mixing of gases and water.

  8. Space and Time Scale Characterization of Image Data in Varying Environmental Conditions for Better Scene Understanding

    DTIC Science & Technology

    2015-09-01

    field of view, depth of view, image resolution, pixel size, pixel separation, color matrix size, scene color or shading variations as a function of...environmental and weather conditions, the field of view, depth of view, and image resolution, as noted above. Table 2 provides a list of several space...field of view, and depth of view. Together with the environmental effects, these data can be used as a basic building block for the analysis of

  9. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this study was to evaluate effects of PGPR (Plant Growth Promoting Rhizobacteria) isolated from rainforest on different plants under limited nitrogen conditions. Methods and Results: Bacterial isolates from a Peruvian rainforest soil were screened for plant growth promoting effects...

  10. Analysis of the Salmonella typhimurium Proteome through Environmental Response toward Infectious Conditions

    SciTech Connect

    Adkins, Joshua N.; Mottaz, Heather M.; Norbeck, Angela D.; Gustin, Jean K.; Rue, Joanne; Clauss, Therese RW; Purvine, Samuel O.; Rodland, Karin D.; Heffron, Fred; Smith, Richard D.

    2006-08-01

    Salmonella enterica serovar Typhimurium (aka, S. typhimurium) is a facultative intracellular pathogen that causes ~40,000 reported cases of acute gastroenteritis and diarrhea a year in the United States. To develop a deeper understanding of the infectious state of S. typhimurium, liquid chromatography-mass spectrometry-based “bottom-up” proteomics was used to globally analyze the proteins present under specific growth conditions. Salmonella typhimurium LT2 strain cells were grown in contrasting culture conditions that mimicked both natural free-living conditions and an infectious state, i.e., logarithm phase, stationary phase and Mg-depleted medium growth. Initial comparisons of the LT2 strain protein abundances among cell culture conditions indicate that the majority of proteins do not change significantly. Not unexpectedly, cells grown in Mg-depleted medium conditions had a higher abundance of Mg2+ transport proteins than found in other growth conditions. A second more virulent Salmonella typhimurium strain (14028) was also studied with these growth conditions and used to directly compare to the LT2 strain. The strain comparison offers a unique opportunity to compare and contrast observations in these closely related bacteria. One particular protein family, propanediol utilization proteins, was drastically more abundant in the 14028 strain than in the LT2 strain, and may be a contributor to increased pathogenicity in the 14028 strain.

  11. Environmental conditions modulate neurotoxic effects of psychomotor stimulant drugs of abuse.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari Shanker

    2012-01-01

    Psychomotor stimulants such as methamphetamine (METH), amphetamine, and 3,4-metylenedioxymethamphetamine (MDMA or ecstasy) are potent addictive drugs. While it is known that their abuse could result in adverse health complications, including neurotoxicity, both the environmental conditions and activity states associated with their intake could strongly enhance drug toxicity, often resulting in life-threatening health complications. In this review, we analyze results of animal experiments that suggest that even moderate increases in environmental temperatures and physiological activation, the conditions typical of human raves parties, dramatically potentiate brain hyperthermic effects of METH and MDMA. We demonstrate that METH also induces breakdown of the blood-brain barrier, acute glial activation, brain edema, and structural abnormalities of various subtypes of brain cells; these effects are also strongly enhanced when the drug is used at moderately warm environmental conditions. We consider the mechanisms underlying environmental modulation of acute drug neurotoxicity and focus on the role of brain temperature, a critical homeostatic parameter that could be affected by metabolism-enhancing drugs and environmental conditions and affect neural activity and functions.

  12. Environmental Condition and its Impact on Landscape Description by Salient Element

    NASA Astrophysics Data System (ADS)

    Soleimani, S.; Malek, M. R.; Soleimani, Z.; Arabsheibani, R.

    2015-12-01

    Describing a landscape means making link between concepts of visible features and people's perception. Most landscape description methods underline salient entities which are a key trigger for wayfinding problems and tourism management. Searching for a better understanding of landscape descriptions implies to explore and identify the main visual properties that differentiate between landscapes depending on both human cognition and environmental condition. Furthermore, this environmental condition affects the credibility of data produced by people, particularly when using Volunteered Geographical Information systems which brings forward a huge amount of information. Then this paper proposes an approach to emerge patterns by which describing landscape in general and choosing salient objects in particular have been influenced.

  13. Effect of growth conditions on inactivation of Escherichia coli with monochloramine.

    PubMed

    Berry, David; Xi, Chuanwu; Raskin, Lutgarde

    2009-02-01

    Reduced susceptibility of bacteria to disinfection is a serious concern in drinking water distribution systems (DWDS), yet the mechanisms and conditions governing reduced susceptibility are not well characterized. The effects of growth temperature, growth rate, and growth mode (suspended growth versus growth in biofilms) on inactivation kinetics of Escherichia coli exposed to monochloramine were studied in order to understand growth conditions that may reduce susceptibility of bacteria to disinfectants in DWDS. Cells grown at a suboptimal temperature (20 degrees C) were significantly less sensitive to monochloramine inactivation (using 0.5 and 5.0 mg/L monochloramine (as Cl2)) than cells grown at an optimal temperature (37 degrees C). Cells grown in biofilms were also significantly less sensitive than cells grown in suspension. No difference in inactivation kinetics was observed for cells grown in monolayer versus multilayer biofilms and between cells grown at different growth rates in chemostat bioreactors. Biofilm cells were estimated to grow at specific growth rates (mu) averaging between mu = 0.08 and 0.13 h(-1), which were approximately within the range of tested suspended growth conditions (mu = 0.04-0.10 h(-1)) using fluorescence in situ hybridizations targeting 16S rRNA. This result indicates that the reduced susceptibility of biofilm cells to monochloramine inactivation is not related to their specific growth rate within the range tested in this study. This work suggests that growth at suboptimal temperatures and growth in biofilms are important factors contributing to reduced susceptibility of bacteria to inactivation with monochloramine.

  14. Individuals Maintain Similar Rates of Protein Synthesis over Time on the Same Plane of Nutrition under Controlled Environmental Conditions

    PubMed Central

    McCarthy, Ian D.; Owen, Stewart F.; Watt, Peter W.; Houlihan, Dominic F.

    2016-01-01

    Consistent individual differences in animal performance drive individual fitness under variable environmental conditions and provide the framework through which natural selection can operate. Underlying this concept is the assumption that individuals will display consistent levels of performance in fitness-related traits and interest has focused on individual variation and broad sense repeatability in a range of behavioural and physiological traits. Despite playing a central role in maintenance and growth, and with considerable inter-individual variation documented, broad sense repeatability in rates of protein synthesis has not been assessed. In this study we show for the first time that juvenile flounder Platichthys flesus reared under controlled environmental conditions on the same plane of nutrition for 46 days maintain consistent whole-animal absolute rates of protein synthesis (As). By feeding meals containing 15N-labelled protein and using a stochastic end-point model, two non-terminal measures of protein synthesis were made 32 days apart (d14 and d46). As values (mass-corrected to a standard mass of 12 g) showed 2- to 3-fold variation between individuals on d14 and d46 but individuals showed similar As values on both days with a broad sense repeatability estimate of 0.684 indicating significant consistency in physiological performance under controlled experimental conditions. The use of non-terminal methodologies in studies of animal ecophysiology to make repeat measures of physiological performance enables known individuals to be tracked across changing conditions. Adopting this approach, repeat measures of protein synthesis under controlled conditions will allow individual ontogenetic changes in protein metabolism to be assessed to better understand the ageing process and to determine individual physiological adaptive capacity, and associated energetic costs of adaptation, to global environmental change. PMID:27018996

  15. Plasticity in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: adaptive responses to environmental stress.

    PubMed

    Santos-Del-Blanco, L; Bonser, S P; Valladares, F; Chambel, M R; Climent, J

    2013-09-01

    A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long-lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among-population differentiation for adaptive traits and their remarkable capacity to cope with dry and low-fertility environments. We studied 52 range-wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive-vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade-offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size-corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species.

  16. Influence of culture conditions on growth and protective antigenicity of Clostridium chauvoei.

    PubMed

    Cortiñas, T I; Micalizzi, B; de Guzman, A M

    1994-10-01

    The effect of culture conditions on growth and immunogenicity of Clostridium chauvoei were examined. The pH control and partial feeding of the carbon source at high concentrations were beneficial for growth. The biomass yield was significatively improved, however the butanol concentration reached toxic levels hampering further growth. For each experimental condition the immunogenicity of cells was tested. No differences were found with cells obtained at different temperatures, but it decreased significatively with the partial supply of the carbon source and pH control.

  17. Evaluation of transport conditions during physical vapor transport growth of opto-electronic crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.; Glicksman, M. E.

    1989-01-01

    Transport conditions were evaluated during the vapor phase growth of mercurous chloride crystals in a closed tube. Experimentally observed growth rates were much smaller than those calculated by the Hertz-Knudsen (H-K) equation. The Arrhenius behavior of growth rate with the temperature was used to derive the sticking coefficient. A one-dimensional diffusion model was used to calculate the total mass flux and was compared with the condensing flux. It was predicted that growth occurred in the convecto-diffusive range.

  18. Using Satellite Data for Environmental Impact Analysis in Economic Growth: the Case of Mongolia

    NASA Astrophysics Data System (ADS)

    Tungalag, A.; Tsolmon, R.; Ochirkhuyag, L.; Oyunjargal, J.

    2016-06-01

    The Mongolian economy is based on the primary and secondary economic sectors of agriculture and industry. In addition, minerals and mining become a key sector of its economy. The main mining resources are gold, copper, coal, fluorspar and steel. However, the environment and green economy is one of the big problems among most of the countries and especially for countries like Mongolia where the mining is major part of economy; it is a number one problem. The research of the work tested how environmental elements effect to current Mongolian economic growth, which is growing economy because of mining sector. The study of economic growth but the starting point for any study of economic growth is the neoclassical growth model emphasizing the role of capital accumulation. The growth is analysed either in terms of models with exogenous saving rates (the Solow-Swan model), or models where consumption and hence savings are determined by optimizing individuals. These are the so-called optimal growth or Ramsey-Cass-Koopmans. The study extends the Solow model and the Ramsey-Cass-Koopmans model, including environmental elements which are satellite data determine to degraded land and vegetation value from 1995 to 2013. In contrast, we can see the degraded land area increases from 1995 (4856 m2) to 2013 (10478 m2) and vegetation value decrease at same time. A description of the methodology of the study conducted follows together with the data collected and econometric estimations and calibration with environmental elements.

  19. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology

    NASA Astrophysics Data System (ADS)

    Rampelotto, Pabulo Henrique

    2010-06-01

    In the last decades, substantial changes have occurred regarding what scientists consider the limits of habitable environmental conditions. For every extreme environmental condition investigated, a variety of microorganisms have shown that not only can they tolerate these conditions, but that they also often require these extreme conditions for survival. Microbes can return to life even after hundreds of millions of years. Furthermore, a variety of studies demonstrate that microorganisms can survive under extreme conditions, such as ultracentrifugation, hypervelocity, shock pressure, high temperature variations, vacuums, and different ultraviolet and ionizing radiation intensities, which simulate the conditions that microbes could experience during the ejection from one planet, the journey through space, as well as the impact in another planet. With these discoveries, our knowledge about the biosphere has grown and the putative boundaries of life have expanded. The present work examines the recent discoveries and the principal advances concerning the resistance of microorganisms to extreme environmental conditions, and analyzes its contributions to the development of the main themes of astrobiology: the origins of life, the search for extraterrestrial life, and the dispersion of life in the Universe.

  20. Degradation of methylene blue: optimization of operating condition through a statistical technique and environmental estimate of the treated wastewater.

    PubMed

    Zhuo, Qiongfang; Ma, Hongzhu; Wang, Bo; Fan, Fang

    2008-05-01

    FeO(x)-MoO(3)-P(2)O(5) (x=1 or 1.5) composite catalyst was prepared by solid reaction method and characterized by X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Its catalytic activities on degradation of a heteropolyaromatic dye, methylene blue (MB), were also investigated under mild condition. In order to determine the optimum operating condition, the orthogonal experiments were devised. And the results revealed that initial concentration of MB was the key factor that affected the decoloration, while the catalysts dose has an insignificant effect. Environmental estimation was also done and the results showed that the treated wastewater have little influence on plant growth and could totally be applied to irrigation.

  1. Relationships among condition indices, feeding and growth of walleye in Lake Erie

    USGS Publications Warehouse

    Hartman, K.J.; Margraf, F.J.

    2006-01-01

    Condition indices are often used as surrogates of fish health, growth, and feeding and to compare ecological well-being among fish populations. In an effort to identify easily measured indices, growth and food consumption were compared with gonadal-somatic index, liver-somatic index (LSI), fat-somatic index and relative weight (Wr) for ages 1-3 walleye, Sander vitreus (Mitchill), in Lake Erie from 1986 to 1988. The LSI and Wr were significantly correlated with growth rate or food consumption, but correlations were too small to be considered biologically meaningful. Furthermore, no consistent relationships between condition indices and growth or consumption were found among combinations of fish age and season. None of the indices are considered reliable surrogates for more laborious estimates of growth and food consumption for Lake Erie walleye. Significant relationships between Wr and relative abundance of key prey species warrant further investigation. ?? 2006 Blackwell Publishing Ltd.

  2. Theoretical investigation of crystal growth shaping process with the wetting boundary condition

    NASA Astrophysics Data System (ADS)

    Tatarchenko, V. A.; Uspenski, V. S.; Tatarchenko, E. V.; Roux, B.

    2000-12-01

    A theoretical investigation of crystal growth shaping process (to elaborate crystals in the form of tubes or rods with different cross sections, and other complicated forms) is carried out on the basis of the dynamic stability concept. The capillary dynamic stability of shaped crystal growth from the melt is analyzed using a mathematical model based on the proposal of axisymmetry of crystal and setup geometry. The study is carried out for the different conditions of growth and various configurations of melt meniscus. We study shapers with complex geometry for which a wetting boundary condition has to be considered. A general method is proposed to design the shaper geometry that satisfies the capillary stability conditions of the melt meniscus during the whole crystal growth process. The static stability of the liquid-free surface is analyzed by means of the Jacobi equation.

  3. The effect of water temperature and velocity on barnacle growth: Quantifying the impact of multiple environmental stressors.

    PubMed

    Nishizaki, Michael T; Carrington, Emily

    2015-12-01

    Organisms employ a wide array of physiological and behavioral responses in an effort to endure stressful environmental conditions. For many marine invertebrates, physiological and/or behavioral performance is dependent on physical conditions in the fluid environment. Although factors such as water temperature and velocity can elicit changes in respiration and feeding, the manner in which these processes integrate to shape growth remains unclear. In a growth experiment, juvenile barnacles (Balanus glandula) were raised in dockside, once-through flow chambers at water velocities of 2 versus 19 cm s(-1) and temperatures of 11.5 versus 14 °C. Over 37 days, growth rates (i.e., shell basal area) increased with faster water velocities and higher temperatures. Barnacles at high flows had shorter feeding appendages (i.e., cirri), suggesting that growth patterns are unlikely related to plastic responses in cirral length. A separate experiment in the field confirmed patterns of temperature- and flow-dependent growth over 41 days. Outplanted juvenile barnacles exposed to the faster water velocities (32±1 and 34±1 cm s(-1); mean±SE) and warm temperatures (16.81±0.05 °C) experienced higher growth compared to individuals at low velocities (1±1 cm s(-1)) and temperatures (13.67±0.02 °C). Growth data were consistent with estimates from a simple energy budget model based on previously measured feeding and respiration response curves that predicted peak growth at moderate temperatures (15 °C) and velocities (20-30 cm s(-1)). Low growth is expected at both low and high velocities due to lower encounter rates with suspended food particles and lower capture efficiencies respectively. At high temperatures, growth is likely limited by high metabolic costs, whereas slow growth at low temperatures may be a consequence of low oxygen availability and/or slow cirral beating and low feeding rates. Moreover, these results advocate for approaches that consider the combined effects of

  4. Responses of Organic Phosphorus Fractionation to Environmental Conditions and Lake Evolution.

    PubMed

    Lü, Changwei; Wang, Bing; He, Jiang; Vogt, Rolf D; Zhou, Bin; Guan, Rui; Zuo, Le; Wang, Weiying; Xie, Zhilei; Wang, Jinghua; Yan, Daohao

    2016-05-17

    Geochemical fractionation is used to assess the significance of environmental factors on organic phosphorus (OP) pools in sediments. Labile, moderately labile, and nonlabile OP pools in the sediments from Lake Hulun, Inner Mongolia, were fractionated, and their responses to environmental conditions and lake evolution were investigated based on the spatial and vertical distribution of OP fractionations. In light of the recalcitrant characteristics of organic matter (OM) in different environmental conditions, the pH presents significant negative effects on the amount of labile OP, while water depth shows an important role in regulating the distribution between the moderately labile and nonlabile OP pools. A latitudinal zonation in the distribution of OP pools in surface sediments from different lakes was apparent with this zonation likely linked to the gradient effects of climate and anthropogenic activities on OM decomposition and thereby on the sediments capacity to hold phosphorus. These results show that OM plays a role in governing the impacts of weather and environmental factors on OP fractionation in aquatic environments. This work suggests that OP pools in the sediment core could be used as an archive for environmental conditions and lake evolution.

  5. Environmental Transmission Electron Microscopy Study of Diesel Carbon Soot Combustion under Simulated Catalytic-Reaction Conditions.

    PubMed

    Mori, Kohsuke; Watanabe, Keitaro; Sato, Takeshi; Yamashita, Hiromi

    2015-05-18

    Environmental transmission electron microscopy (ETEM) is used to monitor the catalytic combustion of diesel carbon soot upon exposure to molecular oxygen at elevated temperatures by using a gas-injection specimen heating holder. The reaction conditions simulated in the ETEM experiments reconstruct real conditions effectively. This study demonstrated for the first time that soot combustion occurs at the soot-catalyst interface for both Ag/CeO2 and Cu/BaO/La2 O3 catalysts.

  6. Influence of organic wastes and seasonal environmental factors on growth and reproduction of Eisenia fetida.

    PubMed

    Biradar, Pulikeshi M; Amoji, Sharabanna D

    2003-01-01

    Epigeic earthworms (E. fetida) were cultured on variety of organic wastes amended with cattle manure to determine the influence of diets and the seasonal environmental factors on growth and reproduction. The results showed that growth and reproductive strategies of E. fetida varied with different diets and seasons. Growth and reproduction of worms in all wastes were significantly more in winter and monsoon than in summer season. Hence winter and monsoon seasons could be considered congenial for vermiculture. During all seasons, worm activities were more in cattle manure followed by amended Bengal gram grain husk and Mixed Organic waste by E. fetida. Parthenin containing diet had deleterious effects on cocoon production.

  7. A Hierarchical Analysis of Tree Growth and Environmental Drivers Across Eastern US Temperate Forests

    NASA Astrophysics Data System (ADS)

    Mantooth, J.; Dietze, M.

    2014-12-01

    Improving predictions of how forests in the eastern United States will respond to future global change requires a better understanding of the drivers of variability in tree growth rates. Current inventory data lack the temporal resolution to characterize interannual variability, while existing growth records lack the extent required to assess spatial scales of variability. Therefore, we established a network of forest inventory plots across ten sites across the eastern US, and measured growth in adult trees using increment cores. Sites were chosen to maximize climate space explored, while within sites, plots were spread across primary environmental gradients to explore landscape-level variability in growth. Using the annual growth record available from tree cores, we explored the responses of trees to multiple environmental covariates over multiple spatial and temporal scales. We hypothesized that within and across sites growth rates vary among species, and that intraspecific growth rates increase with temperature along a species' range. We also hypothesized that trees show synchrony in growth responses to landscape-scale climatic changes. Initial analyses of growth increments indicate that across sites, trees with intermediate shade tolerance, e.g. Red Oak (Quercus rubra), tend to have the highest growth rates. At the site level, there is evidence for synchrony in response to large-scale climatic events (e.g. prolonged drought and above average temperatures). However, growth responses to climate at the landscape scale have yet to be detected. Our current analysis utilizes hierarchical Bayesian state-space modeling to focus on growth responses of adult trees to environmental covariates at multiple spatial and temporal scales. This predictive model of tree growth currently incorporates observed effects at the individual, plot, site, and landscape scale. Current analysis using this model shows a potential slowing of growth in the past decade for two sites in the

  8. Environmental consequences of impact cratering events as a function of ambient conditions on Earth.

    PubMed

    Kring, David A

    2003-01-01

    The end of the Mesozoic Era is defined by a dramatic floral and faunal turnover that has been linked with the Chicxulub impact event, thus leading to the realization that impact cratering can affect both the geologic and biologic evolution of Earth. However, the environmental consequences of an impact event and any subsequent biological effects rely on several factors, including the ambient environmental conditions and the extant ecosystem structures at the time of impact. Some of the severest environmental perturbations of the Chicxulub impact event would not have been significant in some periods of Earth history. Consequently, the environmental and biological effects of an impact event must be evaluated in the context in which it occurs.

  9. Impaired growth under iron-limiting conditions associated with the acquisition of colistin resistance in Acinetobacter baumannii.

    PubMed

    López-Rojas, Rafael; García-Quintanilla, Meritxell; Labrador-Herrera, Gema; Pachón, Jerónimo; McConnell, Michael J

    2016-06-01

    Acquisition of colistin resistance in Acinetobacter baumannii has been associated with reduced bacterial fitness and virulence, although the mechanisms underlying this fitness loss have not been well characterised. In this study, the role played by environmental iron levels on the growth and survival of colistin-resistant strains of A. baumannii was assessed. Growth assays with the colistin-susceptible ATCC 19606 strain and its colistin-resistant derivative RC64 [colistin minimum inhibitory concentration (MIC) of 64 mg/L] demonstrated that the strains grew similarly in rich laboratory medium (Mueller-Hinton broth), whereas RC64 demonstrated impaired growth compared with ATCC 19606 in human serum (>100-fold at 24 h). Compared with RC64, ATCC 19606 grew in the presence of higher concentrations of the iron-specific chelator 2,2'-bipyridine and grew more readily under iron-limiting conditions in solid and liquid media. In addition, iron supplementation of human serum increased the growth of RC64 compared with unsupplemented human serum to a greater extent than ATCC 19606. The ability of 11 colistin-resistant clinical isolates with mutations in the pmrB gene to grow in iron-replete and iron-limiting conditions was assessed, demonstrating that eight of the strains showed reduced growth under iron limitation. Individual mutations in the pmrB gene did not directly correlate with a decreased capacity for growth under iron limitation, suggesting that mutations in pmrB may not directly produce this phenotype. Together these results indicate that acquisition of colistin resistance in A. baumannii can be associated with a decreased ability to grow in low-iron environments.

  10. Applications of remote sensing for the evaluation of Adriatic Sea environmental conditions

    SciTech Connect

    Vitiello, F.; Borfecchia, F.; De Cecco, L.; Martini, S.

    1997-08-01

    The paper shows the remote sensing activities that ENEA is carrying out for the evaluation of Adriatic Sea environmental conditions and their modifications over the last fifteen years. The activities were requested by the Italian Research Ministry to gain knowledge of the circulation model of the Adriatic Sea and to understand what caused algae blooms in some of the last years. The Adriatic Sea is a high environmental risk sea, because its depth is low and a strong pollutant charge is coming into the sea from the Po river and from many other rivers of the NE coast of Italy. Processing of satellite images has covered the period from 1980 up to now and has allowed the reconstruction of modifications of the environmental conditions of the sea. The paper shows the first results obtained by remote sensing images processing that will be utilized for the database of the Adriatic Sea.

  11. Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology

    SciTech Connect

    Lefebvre, P.; Fernandez-Garrido, S.; Grandal, J.; Ristic, J.; Sanchez-Garcia, M.-A.; Calleja, E.

    2011-02-21

    Low-temperature photoluminescence is studied in detail in GaN nanocolumns (NCs) grown by plasma-assisted molecular beam epitaxy under various conditions (substrate temperature and impinging Ga/N flux ratio). The relative intensities of the different emission lines, in particular those related to structural defects, appear to be correlated with the growth conditions, and clearly linked to the NC sample morphology. We demonstrate, in particular, that all lines comprised between 3.10 and 3.42 eV rapidly lose intensity when the growth conditions are such that the NC coalescence is reduced. The well-known line around 3.45 eV, characteristic of GaN NC samples, shows, however, a behavior that is exactly the opposite of the other lines, namely, for growth conditions leading to reduced NC coalescence, this line tends to become more prominent, thus proving to be intrinsic to individual GaN NCs.

  12. Ebola Virus RNA Stability in Human Blood and Urine in West Africa’s Environmental Conditions

    PubMed Central

    Delaune, Deborah; Poyot, Thomas; Valade, Eric; Mérens, Audrey; Rollin, Pierre E.; Foissaud, Vincent

    2016-01-01

    We evaluated RNA stability of Ebola virus in EDTA blood and urine samples collected from infected patients and stored in West Africa’s environmental conditions. In blood, RNA was stable for at least 18 days when initial cycle threshold values were <30, but in urine, RNA degradation occurred more quickly. PMID:26812135

  13. 78 FR 7850 - Sixty First Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...-691) Review open proposals for Users Guides Review Working Group Drafts Section 4 Section 5 Section 8... Federal Aviation Administration Sixty First Meeting: RTCA Special Committee 135, Environmental Conditions.... Department of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 135,...

  14. 77 FR 56253 - 60th Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... Working Group activities Section 4 Section 5 Section 8 Section 16 Section 20 Section 21 RTCA Workspace... Federal Aviation Administration 60th Meeting: RTCA Special Committee 135, Environmental Conditions and... of Transportation (DOT) ACTION: Meeting Notice of RTCA Special Committee 135,...

  15. Association between Markers of Classroom Environmental Conditions and Teachers' Respiratory Health

    ERIC Educational Resources Information Center

    Claudio, Luz; Rivera, Glory A.; Ramirez, Olivia F.

    2016-01-01

    Background: Studies have assessed health in schoolchildren. Less is known about the environmental and occupational health of teachers. Methods: A cross-sectional survey of teachers was conducted in 24 randomly selected public elementary schools. Questionnaire included sociodemographic information, healthcare, school conditions, and health…

  16. EVALUATION OF SEVERAL ASSESSMENT METHODS AS INDICATORS OF ESTUARINE ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Researchers from U.S. EPA's Gulf Ecology Division have conducted a multi-year evaluation of the environmental condition of near-coastal areas affected by different types of stressors. Areas of study have included coastal rivers, transportation canals, residential canals and estua...

  17. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  18. Purification, storage, and pathogenicity assay of rice false smut fungus under controlled environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice false smut, caused by Ustilaginoidea virens, is serious disease that affects grain yield and quality. In the present study, a method to purify, store, and evaluate pathogenicity of U. virens under controlled environmental conditions was developed. Yellow chlamydospores were collected from fresh...

  19. Dietary CDP-Choline Supplementation Prevents Memory Impairment Caused by Impoverished Environmental Conditions in Rats

    ERIC Educational Resources Information Center

    Teather, Lisa A.; Wurtman, Richard J.

    2005-01-01

    The authors previously showed that dietary cytidine (5')-diphosphocholine (CDP-choline) supplementation could protect against the development of memory deficits in aging rats. In the present study, younger rats exposed to impoverished environmental conditions and manifesting hippocampal-dependent memory impairments similar to those observed in the…

  20. Environmentally assisted crack growth rates of high-strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Connolly, Brain J.; Deffenbaugh, Kristen L.; Moran, Angela L.; Koul, Michelle G.

    2003-01-01

    The scope of this project is to evaluate the environmentally assisted long crack growth behavior of candidate high-strength aluminum alloys/tempers, specifically AA7150-T7751 and AA7040-T7651, for consideration as viable replacements/refurbishment for stress-corrosion cracking in susceptible AA7075-T6 aircraft components found in aging aircraft systems.

  1. The effects of early environmental conditions on the reproductive and somatic development of juvenile guinea pigs (Cavia aperea f. porcellus)

    PubMed Central

    Bauer, Barbara; Womastek, Irene; Dittami, John; Huber, Susanne

    2011-01-01

    Little is known about the effects of the early environment on the development of non-seasonally reproducing species like the domestic guinea pig (Cavia aperea f. porcellus). Although guinea pigs reproduce throughout the year, there is evidence for environmental sensitivity of their reproductive physiology. To investigate the sensitivity of juvenile body weight and puberty to differences in the prenatal and early postnatal environment, subjects were exposed to either of two experimental conditions mimicking seasonal variation: a long photoperiod with 25 °C ambient temperature (“LD/25 °C”), or a short photoperiod with 15 °C (“SD/15 °C”). Mean body weight of F1-males from LD/25 °C-conditions was higher than that of SD/15 °C-males during the whole pubertal period, although the difference was significant only during the early growth phase. Testosterone concentrations also differed significantly between the two treatment groups, pointing to an earlier pubertal onset in LD/25 °C- than SD/15 °C-males. In F1-females, treatment effects on body weight or age at first estrus were absent. This indicates that the somatic and reproductive development is more sensitive to early photoperiod and temperature conditions in male than female guinea pigs, and that other environmental factors may also play a crucial role for reproductive maturation in this species. PMID:17977535

  2. Environmental and parental influences on offspring health and growth in great tits (Parus major).

    PubMed

    Pickett, Simon R A; Weber, Sam B; McGraw, Kevin J; Norris, Ken J; Evans, Matthew R

    2013-01-01

    Sexual selection requires both that there is heritable variation in traits related to fitness, and that either some of this variation is linked to traits of the parents, and/or that there are direct benefits of choosing particular individuals as mates. This suggests that if direct benefits are important offspring performance should be predicted by traits of the rearing adults. But if indirect benefits are more significant offspring performance should be predicted by traits of the adults at the nest-of-origin. We conducted cross-fostering experiments in great tits (Parus major) over four years, in two of which we manipulated environmental conditions by providing supplemental food. In a third year, some nestlings were directly supplemented with carotenoids. Nestlings in broods whose rearing adults received supplemental food were heavier and had improved immune responses even when controlling for body mass. Nestling immune function was related to measures of the yellow plumage color of both the rearing male and the putative father. Nestling body mass was influenced by the coloration of both the rearing female and the genetic mother. Our results suggest that features of both their social and putative genetic parents influence nestling health and growth. From this it would appear that females could be gaining both direct and indirect benefits through mate choice of male plumage traits and that it would be possible for males to similarly gain through mate choice of female traits.

  3. [Dynamic changes of the relationships between economic growth and environmental pressure in Gansu Province: a structural decomposition analysis].

    PubMed

    Zhang, Zi-Long; Chen, Xing-Peng; Yang, Jing; Xue, Bing; Li, Yong-Jin

    2010-02-01

    Based on the ideology of macro environmental economics, a function of environmental pressure represented by pollutant emission was built, and the relative importance of the driving factors in the dynamic changes of the relationships between economic growth and environmental pressure in Gansu Province in 1990 - 2005 was analyzed by using structural decomposition analysis (SDA) model combining with 'refined Laspeyres' method. In the study period, the environmental pressure in the Province was mainly caused by the emission of waste gases and solids in the process of economic growth, and showed a rapid increasing trend at the late stage of the period. Population factor had less impact on the increase of this environmental pressure, while economic growth factor had obvious impact on it. Technological progress did mitigate, but could not offset the impact of economic growth factor, and the impacts of economic growth and technological factors on the environmental pressure differed with the kinds of pollutants.

  4. Effect of antecedent growth conditions on sensitivity of Escherichia coli to chlorine dioxide.

    PubMed Central

    Berg, J D; Matin, A; Roberts, P V

    1982-01-01

    Bacterial resistance to inactivation by antibacterial agents that is induced by the growth environment was studied. Escherichia coli was grown in batch culture and in a chemostat, and the following parameters were varied: type of substrate, growth rate, temperature, and cell density during growth. Low doses (0.75 mg/liter) of chlorine dioxide were used to inactivate the cultures. The results demonstrated that populations grown under conditions that more closely approximated natural aquatic environments were more resistant than those grown under commonly employed batch culture conditions. In particular, bacteria grown at submaximal rates were more resistant than their counterparts grown at mumax. The most resistant populations encountered in this study were those grown at D values of 0.02 h-1 and 0.06 h-1 at 25 degrees C. Growth at 15 degrees C led to greater resistance than did growth at 37 degrees C. The conditions that produced relatively resistant phenotypes were much closer to those found in most natural environments than are the typical conditions of batch culture methods. The importance of major physiological changes that can be induced by the antecedent growth environment is discussed in light of the possible modes of action of several disinfectants. PMID:6756305

  5. Sleep deprivation impairs the extinction of cocaine-induced environmental conditioning in mice.

    PubMed

    Berro, L F; Hollais, A W; Patti, C L; Fukushiro, D F; Mári-Kawamoto, E; Talhati, F; Costa, J M; Zanin, K A; Lopes-Silva, L B; Ceccon, L M; Santos, R; Procópio-Souza, R; Trombin, T F; Yokoyama, T S; Wuo-Silva, R; Tufik, S; Andersen, M L; Frussa-Filho, R

    2014-09-01

    Persistence of a drug-environment conditioning induced by repeated psychostimulant treatment is thought to play a key role in the addictive cycle. In addition, sleep disorders are a common feature in patients with addictive disorders. Sleep deprivation shares similar neurobiological effects with psychostimulants. Therefore, we investigated whether sleep deprivation would impair the extinction of previously established conditioning between the drug effect and the environmental cues. Four cohorts of male adult mice underwent a behavioral sensitization procedure pairing drug (cocaine at 15 mg/kg, i.p.) or saline with environment (open-field apparatus). The extinction of conditioned locomotion was evaluated after control (home-cage maintained) or sleep deprivation (gentle handling method for 6h) conditions. Sleep deprivation both postponed the initiation and impaired the completeness of extinction of the conditioned locomotion promoted by previous drug-environment conditioning in cocaine-sensitized animals. While the cocaine control group required 5 free-drug sessions of exposure to the open-field apparatus to complete extinction of conditioned locomotion, the cocaine pre-treated group that experienced sleep deprivation before each extinction session still significantly differed from its respective control group on Day 5 of extinction. The possibility that the sleep condition can influence the extinction of a long-lasting association between drug effects and environmental cues can represent new outcomes for clinically relevant phenomena.

  6. Influence of beaver activity on summer growth and condition of age-2 Atlantic salmon parr

    USGS Publications Warehouse

    Sigourney, D.B.; Letcher, B.H.; Cunjak, R.A.

    2006-01-01

    The activity of beavers Castor canadensis in freshwater environments can have considerable localized impacts on the physical and biological components of riparian ecosystems. By changing the habitat of a stream, beaver dams can cause spatial variation in growth opportunity that may have direct consequences for the growth of resident fish. In a small stream in eastern Canada, we studied the effects of an ephemeral beaver pond on the growth and maturity of age-2 Atlantic salmon Salmo salar parr tagged with passive integrated transponder tags. Water temperature remained relatively uniform throughout the study site. We found very little movement of recaptured fish in the study site. Fish that were recaptured in the beaver pond displayed faster summer growth rates in both length and mass than fish that were recaptured immediately above or below the pond. We also found that parr in the pond maintained relatively high condition factors, whereas fish above and below the pond appeared to decrease in condition factor throughout the summer. In addition to growth, the maturation rates of age-2 males were higher above the dam than below. This study demonstrates the effect a beaver dam can have on individual growth rates. By influencing growth during sensitive periods, the beaver pond may also influence individual life history pathways. This information could be an important component in ecosystem models that predict the effect of beaver population dynamics on the growth of individual salmonids at the landscape scale. ?? Copyright by the American Fisheries Society 2006.

  7. Local weather conditions have complex effects on the growth of blue tit nestlings.

    PubMed

    Mainwaring, Mark C; Hartley, Ian R

    2016-08-01

    Adverse weather conditions are expected to result in impaired nestling development in birds, but empirical studies have provided equivocal support for such a relationship. This may be because the negative effects of adverse weather conditions are masked by parental effects. Globally, ambient temperatures, rainfall levels and wind speeds are all expected to increase in a changing climate and so there is a need for a better understanding of the relationship between weather conditions and nestling growth. Here, we describe a correlative study that examined the relationships between local temperatures, rainfall levels and wind speeds and the growth of individual blue tit (Cyanistes caeruleus) nestlings in relation to their hatching order and sex. We found that changes in a range of morphological characters were negatively related to both temperature and wind speed, but positively related to rainfall. These patterns were further influenced by the hatching order of the nestlings but not by nestling sex. This suggests that the predicted changes in local weather conditions may have complex effects on nestling growth, but that parents may be able to mitigate the adverse effects via adaptive parental effects. We therefore conclude that local weather conditions have complex effects on avian growth and the implications for patterns of avian growth in a changing climate are discussed.

  8. Examples of landscape indicators for assessing environmental conditions and problems in urban and suburban areas

    USGS Publications Warehouse

    Martin-Duque, J. F.; Godfrey, A.; Diez, A.; Cleaves, E.; Pedraza, J.; Sanz, M.A.; Carrasco, R.M.; Bodoque, J.; Brebbia, C.A.; Martin-Duque, J.F.; Wadhwa, L.C.

    2002-01-01

    Geo-indicators can help to assess environmental conditions in city urban and suburban areas. Those indicators should be meaningful for understanding environmental changes. From examples of Spanish and American cities, geo-indicators for assessing environmental conditions and changes in urban and suburban areas are proposed. The paper explore two types of geo-indicators. The first type presents general information that can be used to indicate the presence of a broad array of geologic conditions, either favouring or limiting various kinds of uses of the land. The second type of geo-indicator is the one most commonly used, and as a group most easily understood; these are site and problem specific and they are generally used after a problem is identified. Among them, watershed processes, seismicity and physiographic diversity are explained in more detail. A second dimension that is considered when discussing geo-indicators is the issue of scale. Broad scale investigations, covering extensive areas are only efficient at cataloguing general conditions common to much of the area or some outstanding feature within the area. This type of information is best used for policy type decisions. Detailed scale investigations can provide information about local conditions, but are not efficient at cataloguing vast areas. Information gathered at the detailed level is necessary for project design and construction.

  9. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    USGS Publications Warehouse

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of

  10. Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency.

    PubMed

    Martín-Estal, I; de la Garza, R G; Castilla-Cortázar, I

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone with several biological activities, such as proliferation, mitochondrial protection, cell survival, tissue growth and development, anti-inflammatory, antioxidant, antifibrogenic and antiaging. This hormone plays an important role in embryological and postnatal states, being essential for normal foetal and placental growth and differentiation. During gestation, the placenta is one of the major sources of IGF-1, among other hormones. This intrauterine organ expresses IGF-1 receptors and IGF-1 binding proteins (IGFBPs), which control IGF-1 activities. Intrauterine growth restriction (IUGR) is the second most frequent cause of perinatal morbidity and mortality, defined as the inability to achieve the expected weight for gestational age. Different studies have revealed that IUGR infants have placental dysfunction and low circulating levels of insulin, IGF-1, IGF-2 and IGFBPs. Such data suggest that IGF-1 deficiency in gestational state may be one of the major causes of foetal growth retardation. The aim of this review is to study the epidemiology, physiopathology and possible causes of IUGR. Also, it intends to study the possible role of the placenta as an IGF-1 target organ. The purpose is to establish if IUGR could be considered as a novel condition of IGF-1 deficiency and if its treatment with low doses of IGF-1 could be a suitable therapeutic strategy.

  11. An adaptive ant colony optimization framework for scheduling environmental flow management alternatives under varied environmental water availability conditions

    NASA Astrophysics Data System (ADS)

    Szemis, J. M.; Maier, H. R.; Dandy, G. C.

    2014-10-01

    Human water use is increasing and, as such, water for the environment is limited and needs to be managed efficiently. One method for achieving this is the scheduling of environmental flow management alternatives (EFMAs) (e.g., releases, wetland regulators), with these schedules generally developed over a number of years. However, the availability of environmental water changes annually as a result of natural variability (e.g., drought, wet years). To incorporate this variation and schedule EFMAs in a operational setting, a previously formulated multiobjective optimization approach for EFMA schedule development used for long-term planning has been modified and incorporated into an adaptive framework. As part of this approach, optimal schedules are updated at regular intervals during the planning horizon based on environmental water allocation forecasts, which are obtained using artificial neural networks. In addition, the changes between current and updated schedules can be minimized to reduce any disruptions to long-term planning. The utility of the approach is assessed by applying it to an 89km section of the River Murray in South Australia. Results indicate that the approach is beneficial under a range of hydrological conditions and an improved ecological response is obtained in a operational setting compared with previous long-term approaches. Also, it successfully produces trade-offs between the number of disruptions to schedules and the ecological response, with results suggesting that ecological response increases with minimal alterations required to existing schedules. Overall, the results indicate that the information obtained using the proposed approach potentially aides managers in the efficient management of environmental water.

  12. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species

    SciTech Connect

    Bassow, S.L.; Bazzaz, F.A.

    1998-12-01

    Species composition of temperate forests vary with successional age and seems likely to change in response to significant global climate change. Because photosynthesis rates in co-occurring tree species can differ in their sensitivity to environmental conditions, these changes in species composition are likely to alter the carbon dynamics of temperate forests. To help improve their understanding of such atmosphere-biosphere interactions, the authors explored changes in leaf-level photosynthesis in a 60--70 yr old temperate mixed-deciduous forest in Petersham, Massachusetts (USA). Diurnally and seasonally varying environmental conditions differentially influenced in situ leaf-level photosynthesis rates in the canopies of four mature temperate deciduous tree species: red oak (Quercus rubra), red maple (Acer rubrum), white birch (Betula papyrifera), and yellow birch (Betula alleghaniensis). The authors measured in situ photosynthesis at two heights within the canopies through a diurnal time course on 7 d over two growing seasons. They simultaneously measured a suite of environmental conditions surrounding the leaf at the time of each measurement. The authors used path analysis to examine the influence of environmental factors on in situ photosynthesis in the tree canopies.

  13. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species.

    PubMed

    Köcher, Paul; Horna, Viviana; Leuschner, Christoph

    2012-08-01

    Tree ring analysis investigates growth processes at time horizons of several weeks to millennia, but lacks the detail of short-term fluctuation in cambial activity. This study used electronic high-precision dendrometry for analyzing the environmental factors controlling stem diameter variation and radial growth in daily resolution in five co-existing temperate broad-leaved tree species (genera Fraxinus, Acer, Carpinus, Tilia and Fagus) with different growth and survival strategies. Daily stem radius change (SRC(d)) was primarily influenced by the atmospheric demand for water vapor (expressed either as vapor pressure deficit (D) or relative air humidity (RH)) while rainfall, soil matrix potential, temperature and radiation were only secondary factors. SRC(d) increased linearly with increasing RH and decreasing D in all species. The positive effect of a low atmospheric water vapor demand on SRC(d) was largest in June during the period of maximal radial growth rate and persisted when observation windows of 7 or 21 days instead of 1 day were used. We found a high synchronicity in the day-to-day growth rate fluctuation among the species with increment peaks corresponding to air humidity maxima, even though the mean daily radial growth rate differed fivefold among the species. The five -species also differed in the positive slope of the growth/RH relationship with the steepest increase found in Fraxinus and the lowest in Fagus. We explain the strong positive effect of high RH and low D on radial stem increment by lowered transpiration which reduces negative pressure in the conducting system and increases turgor in the stem cambium cells, thereby favoring cell division and expansion. The results suggest that mechanistic models of tree growth need to consider the atmospheric water status in addition to the known controlling environmental factors: temperature, soil moisture and precipitation. The results further have implications for sensitivity analyses of tree growth to

  14. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt.

    PubMed

    Vrancken, G; Rimaux, T; Wouters, D; Leroy, F; De Vuyst, L

    2009-10-01

    The arginine deiminase (ADI) pathway is a means by which certain sourdough lactic acid bacteria (LAB) convert arginine into ornithine via citrulline while producing ammonia and ATP, thereby coping with acid stress and gaining an energetic advantage. Lactobacillus fermentum IMDO 130101, an isolate from a spontaneous laboratory rye sourdough, possesses an ADI pathway which is modulated by environmental pH. In the present study, a broader view of the activity of the ADI pathway in response to growth under two other commonly encountered stress factors, temperature and added salt, was obtained. In both cases, an increase in ornithine production was observed as a response to growth under both temperature and salt stress conditions. Biokinetic parameters were obtained to describe the kinetics of the ADI pathway as a function of temperature and added salt. The arginine conversion rate increased as a function of added NaCl concentrations but was hardly affected by temperature. In addition, arginine-into-citrulline conversion rate was not affected by temperature but increased with increasing NaCl concentrations. Citrulline-into-ornithine conversion rate increased with increasing temperature, while it dropped to zero with added salt. These findings suggest a more pronounced adaptation of the strain through the ADI pathway to added salt, as compared with different constant temperatures. Furthermore, these results suggest that the ADI pathway in L. fermentum IMDO 130101 is active in adapting to non-optimal growth conditions.

  15. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  16. [Development of a predictive program for microbial growth under various temperature conditions].

    PubMed

    Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi; Kimura, Bon; Fujii, Tateo

    2006-12-01

    A predictive program for microbial growth under various temperature conditions was developed with a mathematical model. The model was a new logistic model recently developed by us. The program predicts Escherichia coli growth in broth, Staphylococcus aureus growth and its enterotoxin production in milk, and Vibrio parahaemolyticus growth in broth at various temperature patterns. The program, which was built with Microsoft Excel (Visual Basic Application), is user-friendly; users can easily input the temperature history of a test food and obtain the prediction instantly on the computer screen. The predicted growth and toxin production can be important indices to determine whether a food is microbiologically safe or not. This program should be a useful tool to confirm the microbial safety of commercial foods.

  17. A microscopy study of hyphal growth of Penicillium rubens on gypsum under dynamic humidity conditions.

    PubMed

    van Laarhoven, Karel A; Huinink, Hendrik P; Adan, Olaf C G

    2016-05-01

    To remediate indoor fungal growth, understanding the moisture relations of common indoor fungi is crucial. Indoor moisture conditions are commonly quantified by the relative humidity (RH). RH is a major determinant of the availability of water in porous indoor surfaces that fungi grow on. The influence of steady-state RH on growth is well understood. Typically, however, the indoor RH constantly changes so that fungi have to endure frequent periods of alternating low and high RH. Knowledge of how common indoor fungi survive and are affected by the low-RH periods is limited. In particular, the specific effects of a drop in RH on the growth of the mycelium remain unclear. In this work, video microscopy was used to monitor hyphal growth of Penicillium rubens on gypsum substrates under controlled dynamic humidity conditions. The effect of a single period of low RH (RH = 50-90%) interrupting favourable conditions (RH = 97%) was tested. It was found that hyphal tips ceased to extend when exposed to any tested decrease in RH. However, new hyphal growth always emerges, seemingly from the old mycelium, suggesting that this indoor fungus does not rely only on conidia to survive the humidity patterns considered. These findings are a fundamental step in unravelling the effect of RH on indoor fungal growth.

  18. The role of the hok/sok locus in bacterial response to stressful growth conditions.

    PubMed

    Chukwudi, Chinwe U; Good, Liam

    2015-02-01

    The hok/sok locus is renowned for its plasmid stabilization effect via post-segregational killing of plasmid-free daughter cells. However, the function(s) of the chromosome-encoded loci, which are more abundant in pathogenic strains of a broad range of enteric bacteria, are yet to be understood. Also, the frequent occurrence of this toxin/antitoxin addiction system in multi-drug resistance plasmids suggests additional roles. In this study, the effects of the hok/sok locus on the growth of bacteria in stressful growth-limiting conditions such as high temperature and antibiotic burden were investigated using hok/sok plasmids. The results showed that the hok/sok locus prolonged the lag phase of host cell cultures, thereby enabling the cells to adapt, respond to the stress and eventually thrive in these growth-limiting conditions by increasing the growth rate at exponential phase. The hok/sok locus also enhanced the survival and growth of cells in low cell density cultures irrespective of unfavourable growth conditions, and may complement existing or defective SOS mechanism. In addition to the plasmid stabilization function, these effects would enhance the ability of pathogenic bacteria to establish infections and propagate the antibiotic resistance elements carried on these plasmids, thereby contributing to the virulence of such bacteria.

  19. Chemical and metallurgical aspects of environmentally assisted fatigue crack growth in 7075-T651 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Wei, R. P.; Pao, P. S.

    1988-07-01

    A comprehensive study has been carried out on a 7075-T651 alloy to examine the influence of water vapor on fatigue crack growth. The kinetics of fatigue crack growth were determined as a function of water vapor pressure at room temperature and at 353 K. Detailed fractographic analyses and surface chemistry studies were carried out to identify the micromechanisms and to quantify the chemical interactions for corrosion fatigue crack growth in this alloy. Experiments were also carried out in ultra-high vacuum and in oxygen to provide for comparisons. Two regions of fatigue crack growth response were identified. In the low pressure region (below 67 Pa at 5 Hz), crack growth is controlled by the rate of transport of water vapor to the crack tip, and the response can be described by a model for transport controlled crack growth. At pressures above 67 Pa, additional increases in crack growth rate occurred, which are attributed to the further reactions of water vapor with segregated magnesium in this alloy. Different micromechanisms for crack growth have been identified for vacuum, oxygen, and water vapor. These micromechanisms are considered in relation to the environmental parameters through a modified superposition model for corrosion fatigue.

  20. Physiological studies of chloramine resistance developed by Klebsiella pneumoniae under low-nutrient growth conditions.

    PubMed Central

    Stewart, M H; Olson, B H

    1992-01-01

    This study investigated the physiological mechanisms of resistance to chloramines developed by Klebsiella pneumoniae grown in a nutrient-limited environment. Growth under these conditions resulted in cells that were smaller than cells grown under high-nutrient conditions and extensively aggregated. Cellular aggregates ranged from 10 to more than 10,000 cells per aggregate, with a mean population aggregate size of 90 cells. This aggregation may have been facilitated by the presence of extracellular polymer material. By using glucose as a reference of capsule content, it was determined that growth under low-nutrient conditions produced cells with 8 x 10(-14) to 41 x 10(-14) g of carbohydrate per cell, with a mean +/- standard deviation of 27 x 10(-14) +/- 16 x 10(-14) g of carbohydrate per cell. In comparison, growth under high-nutrient conditions resulted in 2.7 x 10(-14) to 5.9 x 10(-14) g of carbohydrate per cell, with a mean and standard deviation of 4.3 x 10(-14) +/- 1.2 x 10(-14) g of carbohydrate per cell. Cell wall and cell membrane lipids also varied with growth conditions. The ratio of saturated to unsaturated fatty acids in cells grown under low-nutrient conditions was approximately five times greater than that in cells grown under high-nutrient conditions, suggesting possible differences in membrane permeability. An analysis of sulfhydryl (-SH) groups revealed no quantitative difference with respect to growth conditions. However, upon exposure to chloramines, only 33% of the -SH groups of cells grown under low-nutrient conditions were oxidized, compared with 80% oxidization of -SH groups in cells grown under high-nutrient conditions. The reduced effectiveness of chloramine oxidization of -SH groups in cells grown under low-nutrient conditions may be due to restricted penetration of chloramines into the cells, conformational changes of enzymes, or a combination of both factors. The results of this study suggest that chloramine resistance developed under

  1. A NEW CONDITION FOR THE TRANSITION FROM RUNAWAY TO OLIGARCHIC GROWTH

    SciTech Connect

    Ormel, C. W.; Dullemond, C. P.; Spaans, M. E-mail: dullemon@mpia.de

    2010-05-01

    Accretion among macroscopic bodies of {approx}km size or larger is enhanced significantly due to gravitational focusing. Two regimes can be distinguished. Initially, the system experiences runaway growth, in which the gravitational focusing factors increase, and bodies at the high-mass tail of the distribution grow fastest. However, at some point, the runaway body dynamically heats its environment, gravitational focusing factors decrease, and runaway growth passes into oligarchic growth. Based on the results of recent simulations, we reconsider the runaway growth-oligarchy transition. In contrast to oligarchy, we find that runaway growth cannot be approximated with a two-component model (of small and large bodies) and that the criterion of Ida and Makino, which is frequently adopted as the start of oligarchy, is not a sufficient condition to signify the transition. Instead, we propose a new criterion based on timescale arguments. We then find a larger value for the runaway growth-oligarchy transition: from several hundreds of km in the inner disk regions up to {approx}10{sup 3} km for the outer disk. These findings are consistent with the view that runaway growth has been responsible for the size distribution of the present-day Kuiper Belt objects. Our finding, furthermore, outlines the proper initial conditions at the start of the oligarchy stage.

  2. High-salinity growth conditions promote Tat-independent secretion of Tat substrates in Bacillus subtilis.

    PubMed

    van der Ploeg, René; Monteferrante, Carmine G; Piersma, Sjouke; Barnett, James P; Kouwen, Thijs R H M; Robinson, Colin; van Dijl, Jan Maarten

    2012-11-01

    The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, such as the green fluorescent protein (GFP), are poor Tat substrates in this organism. Nevertheless, when expressed in Escherichia coli, both B. subtilis Tat translocases facilitated exclusively Tat-dependent export of folded GFP when the twin-arginine (RR) signal peptides of the E. coli AmiA, DmsA, or MdoD proteins were attached. Therefore, the present studies were aimed at determining whether the same RR signal peptide-GFP precursors would also be exported Tat dependently in B. subtilis. In addition, we investigated the secretion of GFP fused to the full-length YwbN protein, a strict Tat substrate in B. subtilis. Several investigated GFP fusion proteins were indeed secreted in B. subtilis, but this secretion was shown to be completely Tat independent. At high-salinity growth conditions, the Tat-independent secretion of GFP as directed by the RR signal peptides from the E. coli AmiA, DmsA, or MdoD proteins was significantly enhanced, and this effect was strongest in strains lacking the TatAy-TatCy translocase. This implies that high environmental salinity has a negative influence on the avoidance of Tat-independent secretion of AmiA-GFP, DmsA-GFP, and MdoD-GFP. We conclude that as-yet-unidentified control mechanisms reject the investigated GFP fusion proteins for translocation by the B. subtilis Tat machinery and, at the same time, set limits to their Tat-independent secretion, presumably via the Sec pathway.

  3. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions.

    PubMed

    Cobaxin, Mayra; Martínez, Haydee; Ayala, Guadalupe; Holmgren, Jan; Sjöling, Asa; Sánchez, Joaquín

    2014-01-01

    Vibrio cholerae O1 classical, El Tor and O139 are the primary biotypes that cause epidemic cholera, and they also express cholera toxin (CT). Although classical V. cholerae produces CT in various settings, the El Tor and O139 strains require specific growth conditions for CT induction, such as the so-called AKI conditions, which consist of growth in static conditions followed by growth under aerobic shaking conditions. However, our group has demonstrated that CT production may also take place in shallow static cultures. How these type of cultures induce CT production has been unclear, but we now report that in shallow culture growth conditions, there is virtual depletion of dissolved oxygen after 2.5 h of growth. Concurrently, during the first three to 4 h, endogenous CO2 accumulates in the media and the pH decreases. These findings may explain CT expression at the molecular level because CT production relies on a regulatory cascade, in which the key regulator AphB may be activated by anaerobiosis and by low pH. AphB activation stimulates TcpP synthesis, which induces ToxT production, and ToxT directly stimulates ctxAB expression, which encodes CT. Importantly, ToxT activity is enhanced by bicarbonate. Therefore, we suggest that in shallow cultures, AphB is activated by initial decreases in oxygen and pH, and subsequently, ToxT is activated by intracellular bicarbonate that has been generated from endogenous CO2. This working model would explain CT production in shallow cultures and, possibly, also in other growth conditions.

  4. Estimation of genetic parameters and environmental factors on early growth traits for Lori breed sheep using single trait animal model.

    PubMed

    Lavvaf, A; Noshary, A

    2008-01-01

    The effects of different environmental factors and estimation of genetic parameters on early growth traits for Lori breed sheep including birth weight, weaning weight and body weight at 6 months of age using 19960 records from 35 herds of Lorestan Jahad Agriculture Organization were studied in the cities of Aleshtar, Khorramabad and Poldokhtar from 1995 to 2003. The effect of herd, sex of lambs, dam age and birth year on all traits and birth type had significant effect only on weaning weight. Different single trait animal models estimated the components of direct additive genetic variance, maternal genetic variance and maternal permanent environment variance through restricted maximum likelihood using environmental factors as a fixe effect and different random effects. The results showed that direct additive genetic effect had additionally significant effect on all traits moreover maternal additive genetic and maternal permanent environment effects. Results also revealed that the maternal permanent environment variance for all traits is higher than maternal genetic variance. Also the direct heritability for all traits was higher than maternal heritability. Estimation of the direct heritability from the birth to 6 months of age showed a reducing trend that could arise from high dependence of birth and weaning weight on maternal environment conditions as compared with the age conditions afterward. The genetic assessment of growth traits in Lori breed sheep without inclusion of maternal effect in animal model causes decreased selection accuracy and incorrect genetic assessment of the lambs.

  5. Oil Recovery from Water under Environmentally Relevant Conditions Using Magnetic Nanoparticles.

    PubMed

    Mirshahghassemi, Seyyedali; Lead, Jamie R

    2015-10-06

    Large oil spills and oily wastewater discharges from ships and industrial activities can have serious impacts on the environment with potentially major economic impacts. Current oil remediation techniques are inefficient and may have deleterious environmental consequences. However, nanotechnology offers a new route to potentially remediate oil pollution. In this study, a cheap and facile hydrothermal method was developed to synthesize polyvinylpyrrolidone-coated magnetite nanoparticles to separate a reference MC252 oil from oil-water mixture under environmentally relevant conditions. Fluorescence and Proton nuclear magnetic resonance spectroscopy results showed near 100% oil removal from oil-water mixture in the ultrapure water under optimum condition. Based on gas chromatography-mass spectrometry data, approximately 100% of lower molecular mass alkanes (C9-C21) were removed within 10 min of magnetic separation and by increasing the separation time to 40 min, greater than 67% of C22-25 alkanes were removed. Moreover, nanoparticles removed near 100% oil from synthetic seawater solutions in the presence and absence of fulvic acid showing excellent oil removal capacity of the nanoparticles under different conditions. Results show that these nanoparticles can be utilized to remove oil over a short time with a high removal efficiency under environmentally relevant conditions.

  6. TCP Transcription Factors at the Interface between Environmental Challenges and the Plant's Growth Responses.

    PubMed

    Danisman, Selahattin

    2016-01-01

    Plants are sessile and as such their reactions to environmental challenges differ from those of mobile organisms. Many adaptions involve growth responses and hence, growth regulation is one of the most crucial biological processes for plant survival and fitness. The plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factor family is involved in plant development from cradle to grave, i.e., from seed germination throughout vegetative development until the formation of flowers and fruits. TCP transcription factors have an evolutionary conserved role as regulators in a variety of plant species, including orchids, tomatoes, peas, poplar, cotton, rice and the model plant Arabidopsis. Early TCP research focused on the regulatory functions of TCPs in the development of diverse organs via the cell cycle. Later research uncovered that TCP transcription factors are not static developmental regulators but crucial growth regulators that translate diverse endogenous and environmental signals into growth responses best fitted to ensure plant fitness and health. I will recapitulate the research on TCPs in this review focusing on two topics: the discovery of TCPs and the elucidation of their evolutionarily conserved roles across the plant kingdom, and the variety of signals, both endogenous (circadian clock, plant hormones) and environmental (pathogens, light, nutrients), TCPs respond to in the course of their developmental roles.

  7. TCP Transcription Factors at the Interface between Environmental Challenges and the Plant’s Growth Responses

    PubMed Central

    Danisman, Selahattin

    2016-01-01

    Plants are sessile and as such their reactions to environmental challenges differ from those of mobile organisms. Many adaptions involve growth responses and hence, growth regulation is one of the most crucial biological processes for plant survival and fitness. The plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factor family is involved in plant development from cradle to grave, i.e., from seed germination throughout vegetative development until the formation of flowers and fruits. TCP transcription factors have an evolutionary conserved role as regulators in a variety of plant species, including orchids, tomatoes, peas, poplar, cotton, rice and the model plant Arabidopsis. Early TCP research focused on the regulatory functions of TCPs in the development of diverse organs via the cell cycle. Later research uncovered that TCP transcription factors are not static developmental regulators but crucial growth regulators that translate diverse endogenous and environmental signals into growth responses best fitted to ensure plant fitness and health. I will recapitulate the research on TCPs in this review focusing on two topics: the discovery of TCPs and the elucidation of their evolutionarily conserved roles across the plant kingdom, and the variety of signals, both endogenous (circadian clock, plant hormones) and environmental (pathogens, light, nutrients), TCPs respond to in the course of their developmental roles. PMID:28066483

  8. Environmental conditions associated with bat white-nose syndrome in the north-eastern United States

    USGS Publications Warehouse

    Flory, Abigail R.; Kumar, Sunil; Stohlgren, Thomas J.; Cryan, Paul M.

    2012-01-01

    2. By 2010, the fungus G. destructans was detected in new areas of North America far from the area it was first observed, as well as in eight European bat species in different countries, yet mortality was not observed in many of these new areas of North America or in any part of Europe. This could be because of the differences in the fungus, rates of disease progression and/or in life-history or physiological traits of the affected bat species between different regions. Infection of bats by G. destructans without associated mortality might also suggest that certain environmental conditions might have to co-occur with fungal infection to cause mortality. 3. We tested the environmental conditions hypothesis using Maxent to map and model landscape surface conditions associated with WNS mortality. This approach was unique in that we modelled possible requisite environmental conditions for disease mortality and not simply the presence of the causative agent. 4. The top predictors of WNS mortality were land use/land cover types, mean air temperature of wettest quarter, elevation, frequency of precipitation and annual temperature range. Model results suggest that WNS mortality is most likely to occur in landscapes that are higher in elevation and topographically heterogeneous, drier and colder during winter, and more seasonally variable than surrounding landscapes. 5. Synthesis and applications. This study mapped the most likely environmental surface conditions associated with bat mortality owing to WNS in the north-eastern United Sates; maps can be used for selection of priority monitoring sites. Our results provide a starting point from which to investigate and predict the potential spread and population impacts of this catastrophic emerging disease.

  9. Social effects on foraging behavior and success depend on local environmental conditions

    PubMed Central

    Marshall, Harry H; Carter, Alecia J; Ashford, Alexandra; Rowcliffe, J Marcus; Cowlishaw, Guy

    2015-01-01

    In social groups, individuals' dominance rank, social bonds, and kinship with other group members have been shown to influence their foraging behavior. However, there is growing evidence that the particular effects of these social traits may also depend on local environmental conditions. We investigated this by comparing the foraging behavior of wild chacma baboons, Papio ursinus, under natural conditions and in a field experiment where food was spatially clumped. Data were collected from 55 animals across two troops over a 5-month period, including over 900 agonistic foraging interactions and over 600 food patch visits in each condition. In both conditions, low-ranked individuals received more agonism, but this only translated into reduced foraging performances for low-ranked individuals in the high-competition experimental conditions. Our results suggest one possible reason for this pattern may be low-ranked individuals strategically investing social effort to negotiate foraging tolerance, but the rank-offsetting effect of this investment being overwhelmed in the higher-competition experimental environment. Our results also suggest that individuals may use imbalances in their social bonds to negotiate tolerance from others under a wider range of environmental conditions, but utilize the overall strength of their social bonds in more extreme environments where feeding competition is more intense. These findings highlight that behavioral tactics such as the strategic investment of social effort may allow foragers to mitigate the costs of low rank, but that the effectiveness of these tactics is likely to be limited in certain environments. PMID:25691973

  10. Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions.

    PubMed

    Battipaglia, Giovanna; De Micco, Veronica; Brand, Willi A; Linke, Petra; Aronne, Giovanna; Saurer, Matthias; Cherubini, Paolo

    2010-12-01

    Woody species in Mediterranean ecosystems form intra-annual density fluctuations (IADFs) in tree rings in response to changes in environmental conditions, especially water availability. Dendrochronology, quantitative wood anatomy and high-resolution isotopic analysis (using a laser ablation technique) were used to characterize IADFs in Arbutus unedo shrubs grown on two sites with different water availability on the island of Elba (Italy). Our findings show that IADF characterization can provide information about the relationship between environmental factors and tree growth at the seasonal level. At the more xeric site, IADFs mainly located in the early and middle parts of the annual ring, showed a decrease in vessel size and an increase in δ(13) C as a result of drought deficit. Opposite trends were found at the more mesic site, with IADFs located at the end of the ring and associated with a lower δ(13) C. Moreover, at the first site, IADFs are induced by drought deficit, while at the second site IADFs are linked with the regrowth in the last part of the growing season triggered by favourable wet conditions. This combined approach is a promising way for dating problematic wood samples and interpreting the phenomena that trigger the formation of IADFs in the Mediterranean environment.

  11. Status report on assessment of environmentally assisted fatigue for LWR extended service conditions

    SciTech Connect

    Mohanty, S.; Soppet, W. K.; Majumdar, S.; Natesan, K.

    2014-07-09

    This report provides an update on an earlier assessment of environmentally assisted fatigue for light water reactor (LWR) materials under extended service conditions. This report is a deliverable in September 2013, under the work package for environmentally assisted fatigue in the Light Water Reactor Sustainability (LWRS) program. The overall objective of this LWRS project is to assess the degradation by environmentally assisted cracking/fatigue of LWR materials, such as various alloy base metals and their welds used in reactor coolant system piping. This effort is to support the U.S. Department of Energy LWRS program for developing tools to predict the aging/failure mechanism and to correspondingly predict the remaining life of LWR components for anticipated 60-80 year operation.

  12. Laboratory appraisal of optimal gaseous conditions for growth of zoonotic Helicobacter felis ATCC 49179.

    PubMed

    Shiohara, Mayumi; Kawakubo, Masatomo; Matsumoto, Takehisa; Kumagai, Toshiko; Yamauchi, Kazuyoshi; Oana, Kozue; Ota, Hiroyoshi; Kawakami, Yoshiyuki

    2009-05-01

    An attempt was made to assess the hitherto undescribed optimal gaseous conditions for growth of zoonotic Helicobacter felis, focusing on the ratio of spiral-forms amongst the whole cells examined. The largest mean colony diameter was obtained under the gaseous condition of O(2) 12% and CO(2) 10%. In analyzing the five day old colonies, the highest percentage of spiral forms (85.5%) was observed under the condition of O(2) 18% and CO(2) 5%. In contrast, the lowest percentage of spiral forms (2.3%) was demonstrated under the condition of O(2) 1% and CO(2) 10%. The condition of O(2) 12% and CO(2) 10% was concluded to be optimal for obtaining cells with the largest colony sizes, although colonies proliferated under such conditions definitely contain many more coccoid cells than spiral forms. In culturing H. felis strains, optimal gaseous conditions should be employed according to the purposes or preferences of study designs.

  13. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    PubMed

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  14. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.

    PubMed

    Esteve-Núñez, Abraham; Rothermich, Mary; Sharma, Manju; Lovley, Derek

    2005-05-01

    A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.

  15. Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions

    NASA Astrophysics Data System (ADS)

    Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.

    2009-08-01

    A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.

  16. Survival and growth of Listeria innocua treated by pulsed light technology: impact of post-treatment temperature and illumination conditions.

    PubMed

    Lasagabaster, Amaia; de Marañón, Iñigo Martínez

    2014-08-01

    Inactivation of Listeria innocua by pulsed light (PL) was evaluated at different post-treatment temperature and illumination conditions. The impact of post-PL-treatment temperature on L. innocua culturability was evaluated for cells cultured at 37 °C (optimal growth temperature) and 4 °C (classical refrigerated food temperature). For both culture conditions, significant higher reductions (up to 3 log) were observed after post-PL-treatment temperature of 4 °C than of 37 °C. Contrarily, L. innocua culturability after PL treatment increased up to 2.2 log in presence of daylight illumination in comparison to dark storage. This photorepair mechanism was quickly activated reaching the maximum photoreactivation level after only 30 min of illumination. Moreover, photorepair capacity was rapidly reduced by increasing the time in darkness from PL treatment to samples illumination, being completely lost after time in darkness equal or greater than 5 h. According to these findings, the combination of PL with post-treatment temperature of 4 °C has a synergistic effect on the inactivation of L. innocua, whereas post-treatment daylight illumination has an antagonic effect on PL antimicrobial efficacy. Post-PL-treatment temperature and illumination conditions could be thereby considered important environmental factors to activate, inhibit or control the repair and/or growth of L. innocua survivors after PL treatment.

  17. Investigating the genetic architecture of conditional strategies using the environmental threshold model

    PubMed Central

    Hazel, Wade N.; Tomkins, Joseph L.

    2015-01-01

    The threshold expression of dichotomous phenotypes that are environmentally cued or induced comprise the vast majority of phenotypic dimorphisms in colour, morphology, behaviour and life history. Modelled as conditional strategies under the framework of evolutionary game theory, the quantitative genetic basis of these traits is a challenge to estimate. The challenge exists firstly because the phenotypic expression of the trait is dichotomous and secondly because the apparent environmental cue is separate from the biological signal pathway that induces the switch between phenotypes. It is the cryptic variation underlying the translation of cue to phenotype that we address here. With a ‘half-sib common environment’ and a ‘family-level split environment’ experiment, we examine the environmental and genetic influences that underlie male dimorphism in the earwig Forficula auricularia. From the conceptual framework of the latent environmental threshold (LET) model, we use pedigree information to dissect the genetic architecture of the threshold expression of forceps length. We investigate for the first time the strength of the correlation between observable and cryptic ‘proximate’ cues. Furthermore, in support of the environmental threshold model, we found no evidence for a genetic correlation between cue and the threshold between phenotypes. Our results show strong correlations between observable and proximate cues and less genetic variation for thresholds than previous studies have suggested. We discuss the importance of generating better estimates of the genetic variation for thresholds when investigating the genetic architecture and heritability of threshold traits. By investigating genetic architecture by means of the LET model, our study supports several key evolutionary ideas related to conditional strategies and improves our understanding of environmentally cued decisions. PMID:26674955

  18. Investigating the genetic architecture of conditional strategies using the environmental threshold model.

    PubMed

    Buzatto, Bruno A; Buoro, Mathieu; Hazel, Wade N; Tomkins, Joseph L

    2015-12-22

    The threshold expression of dichotomous phenotypes that are environmentally cued or induced comprise the vast majority of phenotypic dimorphisms in colour, morphology, behaviour and life history. Modelled as conditional strategies under the framework of evolutionary game theory, the quantitative genetic basis of these traits is a challenge to estimate. The challenge exists firstly because the phenotypic expression of the trait is dichotomous and secondly because the apparent environmental cue is separate from the biological signal pathway that induces the switch between phenotypes. It is the cryptic variation underlying the translation of cue to phenotype that we address here. With a 'half-sib common environment' and a 'family-level split environment' experiment, we examine the environmental and genetic influences that underlie male dimorphism in the earwig Forficula auricularia. From the conceptual framework of the latent environmental threshold (LET) model, we use pedigree information to dissect the genetic architecture of the threshold expression of forceps length. We investigate for the first time the strength of the correlation between observable and cryptic 'proximate' cues. Furthermore, in support of the environmental threshold model, we found no evidence for a genetic correlation between cue and the threshold between phenotypes. Our results show strong correlations between observable and proximate cues and less genetic variation for thresholds than previous studies have suggested. We discuss the importance of generating better estimates of the genetic variation for thresholds when investigating the genetic architecture and heritability of threshold traits. By investigating genetic architecture by means of the LET model, our study supports several key evolutionary ideas related to conditional strategies and improves our understanding of environmentally cued decisions.

  19. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions.

    PubMed

    Godbold, Jasmin A; Solan, Martin

    2013-01-01

    Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete (Alitta virens) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing.

  20. The ammonium excretion of the shore crab, carcinus maenas, in relation to environmental osmotic conditions

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.

    Ammonia concentrations were measured in blood and external media of shore crabs, Carcinus maenas, acclimated to 6 different salinities at high (20° C) and low (4° C) temperatures. It is seen that environmental osmotic conditions (temperature and salinity) have a major influence on NH 4+ formation and thus on protein (amino acid) catabolism. Blood ammonia concentrations appear to be strongly stabilized, independent of environmental osmotic conditions, ranging between 0.25 and 0.55 mmol·l -1. At normal, low environmental NH 4+ concentrations blood NH 4+ is strongly hyper-ionic compared to external concentrations; at high environmental NH 4+ concentrations (even when artificially raised to 2.5 mmol·l -1), blood NH 4+ is strongly hypo-ionic. Regulation of the blood NH 4+ concentrations takes place by a variable efflux of NH 4+; at high environmental NH 4+ concentrations (> 0.28 mmol · l -1), in addition to a high NH 4+ efflux, stabilization of the blood NH 4+ concentrations is effectuated by the formation of urea. Ammonia efflux to the surrounding water is highly dependent to the osmotic conditions of the environment: viz. positively related to temperature and inversely related to external salinity, with relatively stable value near the isosmotic salinity. Related to the strong variations in ammonia efflux, external NH 4+ concentrations in a closed volume of water are highly variable. In the course of time very high values develop in media of low salinity at high temperature. A close connection between NH 4+ excretion and extracellular ion regulation is indicated.

  1. Environmental conditions and community evenness determine the outcome of biological invasion.

    PubMed

    De Roy, Karen; Marzorati, Massimo; Negroni, Andrea; Thas, Olivier; Balloi, Annalisa; Fava, Fabio; Verstraete, Willy; Daffonchio, Daniele; Boon, Nico

    2013-01-01

    Biological invasion is widely studied, however, conclusions on the outcome of this process mainly originate from observations in systems that leave a large number of experimental variables uncontrolled. Here using a fully controlled system consisting of assembled bacterial communities, we evaluate the degree of invasion and the effect on the community functionality in relation to the initial community evenness under specific environmental stressors. We show that evenness influences the level of invasion and that the introduced species can promote functionality under stress. The evenness-invasibility relationship is negative in the absence and neutral in the presence of stress. Under these conditions, the introduced species is able to maintain the functionality of uneven communities. These results indicate that communities, initially having the same genetic background, in the presence of the same invader, react in a different way with respect to invasibility and functionality depending on specific environmental conditions and community evenness.

  2. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  3. Environmental Conditions Influence Allometric Patterns in the Blow Fly, Chrysomya albiceps

    PubMed Central

    Horenstein, M Battán; Peretti, Av

    2011-01-01

    The objective of this research was to study variations in allometry of body characters in females and males of two populations of blow flies, Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae), under different environmental conditions to establish patterns of morphological variation. Body size of both males and females in the experimental population was significantly higher than in the individuals of the natural population, indicating an important influence of food on body size. All genitalic and non-genitalic characters in males and females of the two populations showed a trend towards negative allometry rather than isometry. Allometric patterns were modified in both sexes and between populations. The data show generally larger allometric slopes in females than in males. We confirmed that the environmental conditions have an important effect on allometric patterns and body size. PMID:22224467

  4. Effects of Lead Exposure, Environmental Conditions, and Metapopulation Processes on Population Dynamics of Spectacled Eiders.

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.; Petersen, Margaret; Rockwell, Robert F.

    2016-01-01

    Spectacled eider Somateria fischeri numbers have declined and they are considered threatened in accordance with the US Endangered Species Act throughout their range. We synthesized the available information for spectacled eiders to construct deterministic, stochastic, and metapopulation models for this species that incorporated current estimates of vital rates such as nest success, adult survival, and the impact of lead poisoning on survival. Elasticities of our deterministic models suggested that the populations would respond most dramatically to changes in adult female survival and that the reductions in adult female survival related to lead poisoning were locally important. We also examined the sensitivity of the population to changes in lead exposure rates. With the knowledge that some vital rates vary with environmental conditions, we cast stochastic models that mimicked observed variation in productivity. We also used the stochastic model to examine the probability that a specific population will persist for periods of up to 50 y. Elasticity analysis of these models was consistent with that for the deterministic models, with perturbations to adult female survival having the greatest effect on population projections. When used in single population models, demographic data for some localities predicted rapid declines that were inconsistent with our observations in the field. Thus, we constructed a metapopulation model and examined the predictions for local subpopulations and the metapopulation over a wide range of dispersal rates. Using the metapopulation model, we were able to simulate the observed stability of local subpopulations as well as that of the metapopulation. Finally, we developed a global metapopulation model that simulates periodic winter habitat limitation, similar to that which might be experienced in years of heavy sea ice in the core wintering area of spectacled eiders in the central Bering Sea. Our metapopulation analyses suggested that no

  5. Environmental regulation of bivalve growth in the southern Barents Sea: A combined ecological and geochemical approach

    NASA Astrophysics Data System (ADS)

    Carroll, M. L.; Johnson, B. J.; Henkes, G. A.; McMahon, K. W.; Voronkov, A.; Ambrose, W. G., Jr.; Denisenko, S. G.

    2009-04-01

    Ecological and geochemical analyses of bivalve shells provide potentially complimentary information on patterns and drivers of natural variability in Arctic marine populations, yet are rarely considered together. We analyzed growth rates and shell geochemistry of the Greenland Smooth Cockle (Serripes groenlandicus) from the southern Barents Sea between 1882 and 1968. Growth, stable isotope (oxygen and carbon), and trace elemental (Mg, Sr, Ba, Mn) patterns were linked to environmental variations on weekly to decadal scales. Standardized growth rates exhibited multi-year periodicity inversely related to the North Atlantic Oscillation Index (NAO) and positively related to river discharge. Up to 60% of the interannual variability in Ba/Ca could be explained by variations in river discharge at stations closest to the rivers, but the relationship disappeared at a more distant location. Stable isotope data (18O, 13C), and Sr/Ca patterns suggest that bivalve growth ceases at elevated temperatures during the fall and recommences at the coldest temperatures in the early spring, implying that food, rather than temperature, is the primary driver of the annual growth cycle. Combining annually-integrated growth results and higher resolution geochemical results thus elucidated the annual growth cycle of an Arctic bivalve and mechanisms of biophysical coupling over a range of temporal and spatial scales.

  6. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales.

    PubMed

    Shabangu, Fannie W; Yemane, Dawit; Stafford, Kathleen M; Ensor, Paul; Findlay, Ken P

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is

  7. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales

    PubMed Central

    Shabangu, Fannie W.; Yemane, Dawit; Stafford, Kathleen M.; Ensor, Paul; Findlay, Ken P.

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is

  8. The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions

    PubMed Central

    Song, Young Hun

    2016-01-01

    Plants have become physiologically adapted to a seasonally shifting environment by evolving many sensory mechanisms. Seasonal flowering is a good example of adaptation to local environmental demands and is crucial for maximizing reproductive fitness. Photoperiod and temperature are major environmental stimuli that control flowering through expression of a floral inducer, FLOWERING LOCUS T (FT) protein. Recent discoveries made using the model plant Arabidopsis thaliana have shown that the functions of photoreceptors are essential for the timing of FT gene induction, via modulation of the transcriptional activator CONSTANS (CO) at transcriptional and posttranslational levels in response to seasonal variations. The activation of FT transcription by the fine-tuned CO protein enables plants to switch from vegetative growth to flowering under inductive environmental conditions. The present review briefly summarizes our current understanding of the molecular mechanisms by which the information of environmental stimuli is sensed and transduced to trigger FT induction in leaves. PMID:27788575

  9. The Effects of Data Processing and Environmental Conditions on the Accuracy of the USNO Timescale

    DTIC Science & Technology

    1988-12-01

    THE EFFECTS OF DATA PROCESSING AND ENVIRONMENTAL CONDITIONS ON THE ACCURACY OF THE USNO TIMESCALE Lee A. Breakiron U. S. Naval Observatory Time ...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U. S. Naval Observatory, Time Service Department,34th and Massachusetts Avenue, N. W.,Washington,DC

  10. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions.

    PubMed

    Hahm, Mi-Seon; Sumayo, Marilyn; Hwang, Ye-Ji; Jeon, Seon-Ae; Park, Sung-Jin; Lee, Jai Youl; Ahn, Joon-Hyung; Kim, Byung-Soo; Ryu, Choong-Min; Ghim, Sa-Youl

    2012-06-01

    Plant growth promoting rhizobacteria Ochrobactrum lupini KUDC1013 and Novosphingobium pentaromativorans KUDC1065 isolated from Dokdo Island, S. Korea are capable of eliciting induced systemic resistance (ISR) in pepper against bacterial spot disease. The present study aimed to determine whether plant growth-promoting rhizobacteria (PGPR) strains including strain KUDC1013, strain KUDC1065, and Paenibacillus polymyxa E681 either singly or in combinations were evaluated to have the capacity for potential biological control and plant growth promotion effect in the field trials. Under greenhouse conditions, the induced systemic resistance (ISR) effect of treatment with strains KUDC1013 and KUDC1065 differed according to pepper growth stages. Drenching of 3-week-old pepper seedlings with the KUDC-1013 strain significantly reduced the disease symptoms. In contrast, treatment with the KUDC1065 strain significantly protected 5-week-old pepper seedlings. Under field conditions, peppers treated with PGPR mixtures containing E681 and KUDC1013, either in a two-way combination, were showed greater effect on plant growth than those treated with an individual treatment. Collectively, the application of mixtures of PGPR strains on pepper might be considered as a potential biological control under greenhouse and field conditions.

  11. Growth and physiological condition of black ducks reared on acidified wetlands

    USGS Publications Warehouse

    Rattner, B.A.; Haramis, G.M.; Chu, D.S.; Bunck, C.M.; Scanes, C.G.

    1987-01-01

    Acid deposition has been identified as one of several possible factors contributing to the decline of some waterfowl populations in North America. In an effort to examine the effects of acidification on black duck (Anas rubripes) recruitment, growth and physiological condition were monitored in ducklings foraging for a 10-day trial (days 10-20 of life) on acidified (pH 5.0) and : circumneutral (pH 6.8) fish-free emergent wetlands. Acidification of these wetlands suppressed phytoplankton and algal growth, and reduced invertebrate biomass. Ducklings maintained on acidified wetlands grew poorly compared with ducklings reared on circumneutral wetlands, as evidenced by lower final body weight and culmen and tarsus length. Plasma growth hormone concentration was elevated and triiodothyronine levels were lower in stunted ducklings, in part substantiating impairment of growth-regulating processes. Ducklings exhibiting poor growth tended to have lower hematocrit, lower plasma protein, glucose, and cholesterol concentrations, and higher uric acid levels, presumably reflecting alterations in metabolism and development due to inanition. These findings suggest that acid deposition may lower food production in wetlands and ultimately impair duckling growth, condition, and survival.

  12. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  13. Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate

    PubMed Central

    Douhard, Mathieu; Plard, Floriane; Gaillard, Jean-Michel; Capron, Gilles; Delorme, Daniel; Klein, François; Duncan, Patrick; Loe, Leif Egil; Bonenfant, Christophe

    2014-01-01

    The predictive adaptive response (PAR) hypothesis proposes that animals adjust their physiology and developmental trajectory during early life in anticipation of their future environments. Accordingly, when environmental conditions in early life match environmental conditions during adulthood, individual fitness should be greater. Here, we test this hypothesis in a long-lived mammal, the roe deer, using data from two contrasting populations, intensively monitored for more than 35 years. In the highly productive site, the fitness of female roe deer increased with the quality of environment during adulthood and, contrary to predictions of PAR, individuals born in good conditions always outperformed those born under poor conditions. In the resource-limited site, the fitness of female roe deer born in poor years was better than those born in good conditions in poor years when the animals were adult, but not in good years. Although consistent with predictions of PAR, we showed that this pattern is likely to be a consequence of increased viability selection during the juvenile stage for animals born in poor years. While PARs are often advanced in evolutionary medicine, our findings suggest that detailed biological processes should be investigated before drawing conclusions about the existence of this phenomenon. PMID:24789898

  14. Optimal environmental conditions to detect moisture in ancient buildings: case studies in Northern Italy

    NASA Astrophysics Data System (ADS)

    Rosina, Elisabetta; Ludwig, Nicola; Rosi, Lorenzo

    1998-03-01

    IR thermography allows to identify the thermal anomalies due to moisture in ancient walls. Wet zones can appear warmer or colder in IR images, according to the atmospheric conditions during the scanning; furthermore, thermal monitoring, even in qualitative thermography, allows to obtain a more effective diagnosis of the defects because it records thermal behaviors of the material in different environmental conditions. Thermographic system allows an accurate analysis of transpiration effects on buildings and precise measurements of water content starting from environmental temperature, relative balance and wind speed. These variables play a major role in the causes of damages in buildings. Particularly, the evaluation of transpiration is essential to determine the evaporative rate of water content within the wall. The research has been carried out on two ancient buildings during a period of several months. The main experimental tests were on the church of 'Guardia di Sotto', Corsico, a seventeenth century building on the bank of Pavese Canal. Five thermal scanning have been disposed in different seasons from March 14, 1996 to June 16, 1997. The causes of the wet zones were identified at the basis of the walls were rising damp and rain spread in the ground. The repeated thermographies and thermo-hygrometric test allowed to distinguish the size and the location of the areas damaged by the different causes. In other cases studied - Addolorate Church, Gessate the thermal scanning and the other supporting tests confirmed the list of optimal environmental condition required to detect humidity in walls by thermography.

  15. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.

    PubMed

    Praetorius, Antonia; Labille, Jérôme; Scheringer, Martin; Thill, Antoine; Hungerbühler, Konrad; Bottero, Jean-Yves

    2014-09-16

    The heteroaggregation of engineered nanoparticles (ENPs) with natural colloids (NCs), which are ubiquitous in natural surface waters, is a crucial process affecting the environmental transport and fate of ENPs. Attachment efficiencies for heteroaggregation, α hetero, are required as input parameters in environmental fate models to predict ENP concentrations and contribute to ENP risk assessment. Here, we present a novel method for determining α hetero values by using a combination of laser diffraction measurements and aggregation modeling based on the Smoluchowski equation. Titanium dioxide nanoparticles (TiO2 NPs, 15 nm) were used to demonstrate this new approach together with larger silicon dioxide particles (SiO2, 0.5 μm) representing NCs. Heteroaggregation experiments were performed at different environmentally relevant solution conditions. At pH 5 the TiO2 NPs and the SiO2 particles are of opposite charge, resulting in α hetero values close to 1. At pH 8, where all particles are negatively charged, α hetero was strongly affected by the solution conditions, with α hetero ranging from <0.001 at low ionic strength to 1 at conditions with high NaCl or CaCl2 concentrations. The presence of humic acid stabilized the system against heteroaggregation.

  16. Dietary CDP-choline supplementation prevents memory impairment caused by impoverished environmental conditions in rats.

    PubMed

    Teather, Lisa A; Wurtman, Richard J

    2005-01-01

    We previously showed that dietary cytidine (5')-diphosphocholine (CDP-choline) supplementation could protect against the development of memory deficits in aging rats. In the present study, younger rats exposed to impoverished environmental conditions and manifesting hippocampal-dependent memory impairments similar to those observed in the aging rodents were given CDP-choline, and its effects on this cognitive deficit were assessed. Male Sprague-Dawley rats reared for 3 mo in impoverished (IC) or enriched environmental (EC) conditions concurrently received either a control diet or a diet supplemented with CDP-choline (approximately 500 mg/kg/d). After 3 mo, rats were trained to perform spatial and cued versions of the Morris water maze, and their rates of acquisition and retention were compared. Impoverished rats exhibited a selective deficit in hippocampal-dependent spatial memory which could be ameliorated by feeding them CDP-choline. The CDP-choline had no memory-enhancing effect in enriched rats, nor did it prevent the memory impairment of impoverished rats if the animals consumed it for the initial or final months instead of for the entire 3-mo period. These findings indicate that long-term dietary CDP-choline supplementation can ameliorate the hippocampal-dependent memory impairment caused by impoverished environmental conditions in rats, and suggest that its actions result, in part, from a long-term effect such as enhanced membrane phosphatide synthesis, an effect shown to require long-term dietary supplementation with CDP-choline.

  17. Dietary CDP-choline supplementation prevents memory impairment caused by impoverished environmental conditions in rats

    PubMed Central

    Teather, Lisa A.; Wurtman, Richard J.

    2005-01-01

    We previously showed that dietary cytidine (5′)-diphosphocholine (CDP-choline) supplementation could protect against the development of memory deficits in aging rats. In the present study, younger rats exposed to impoverished environmental conditions and manifesting hippocampal-dependent memory impairments similar to those observed in the aging rodents were given CDP-choline, and its effects on this cognitive deficit were assessed. Male Sprague-Dawley rats reared for 3 mo in impoverished (IC) or enriched environmental (EC) conditions concurrently received either a control diet or a diet supplemented with CDP-choline (∼500 mg/kg/d). After 3 mo, rats were trained to perform spatial and cued versions of the Morris water maze, and their rates of acquisition and retention were compared. Impoverished rats exhibited a selective deficit in hippocampal-dependent spatial memory which could be ameliorated by feeding them CDP-choline. The CDP-choline had no memory-enhancing effect in enriched rats, nor did it prevent the memory impairment of impoverished rats if the animals consumed it for the initial or final months instead of for the entire 3-mo period. These findings indicate that long-term dietary CDP-choline supplementation can ameliorate the hippocampal-dependent memory impairment caused by impoverished environmental conditions in rats, and suggest that its actions result, in part, from a long-term effect such as enhanced membrane phosphatide synthesis, an effect shown to require long-term dietary supplementation with CDP-choline. PMID:15647594

  18. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain.

    PubMed

    Cao, Ana; Santiago, Rogelio; Ramos, Antonio J; Souto, Xosé C; Aguín, Olga; Malvar, Rosa Ana; Butrón, Ana

    2014-05-02

    In northwestern Spain, where weather is rainy and mild throughout the year, Fusarium verticillioides is the most prevalent fungus in kernels and a significant risk of fumonisin contamination has been exposed. In this study, detailed information about environmental and maize genotypic factors affecting F. verticillioides infection, fungal growth and fumonisin content in maize kernels was obtained in order to establish control points to reduce fumonisin contamination. Evaluations were conducted in a total of 36 environments and factorial regression analyses were performed to determine the contribution of each factor to variability among environments, genotypes, and genotype × environment interactions for F. verticillioides infection, fungal growth and fumonisin content. Flowering and kernel drying were the most critical periods throughout the growing season for F. verticillioides infection and fumonisin contamination. Around flowering, wetter and cooler conditions limited F. verticillioides infection and growth, and high temperatures increased fumonisin contents. During kernel drying, increased damaged kernels favored fungal growth, and higher ear damage by corn borers and hard rainfall favored fumonisin accumulation. Later planting dates and especially earlier harvest dates reduced the risk of fumonisin contamination, possibly due to reduced incidence of insects and accumulation of rainfall during the kernel drying period. The use of maize varieties resistant to Sitotroga cerealella, with good husk coverage and non-excessive pericarp thickness could also be useful to reduce fumonisin contamination of maize kernels.

  19. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions

    PubMed Central

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2015-01-01

    Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM) DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h−1 at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h−1 and D. geothermalis DSM-11302 biomass reached 1.4 g·L−1 in 20 h. Then, 1.4 gDryCellWeight of biomass (X) was obtained from 5.6 g glucose (Glc) consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc−1; cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX−1·h−1, respectively, and the respiratory quotient (QR) value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture. PMID:27682099

  20. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions.

    PubMed

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2015-08-20

    Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM) DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h(-1) at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h(-1) and D. geothermalis DSM-11302 biomass reached 1.4 g·L(-1) in 20 h. Then, 1.4 gDryCellWeight of biomass (X) was obtained from 5.6 g glucose (Glc) consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc(-1); cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX(-1)·h(-1), respectively, and the respiratory quotient (QR) value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture.

  1. Using time-dependent models to investigate body condition and growth rate of the giant gartersnake

    USGS Publications Warehouse

    Coates, P.S.; Wylie, G.D.; Halstead, B.J.; Casazza, M.L.

    2009-01-01

    Identifying links between phenotypic attributes and fitness is a primary goal of reproductive ecology. Differences in within-year patterns of body condition between sexes of gartersnakes in relation to reproduction and growth are not fully understood. We conducted an 11-year field study of body condition and growth rate of the giant gartersnake Thamnophis gigas across 13 study areas in the Central Valley of California, USA. We developed a priori mixed effects models of body condition index (BCI), which included covariates of time, sex and snout-vent length and reported the best-approximating models using an information theoretic approach. Also, we developed models of growth rate index (GRI) using covariates of sex and periods based on reproductive behavior. The largest difference in BCI between sexes, as predicted by a non-linear (cubic) time model, occurred during the mating period when female body condition (0.014??0.001 se) was substantially greater than males (-0.027??0.002 se). Males likely allocated energy to search for mates, while females likely stored energy for embryonic development. We also provided evidence that males use more body energy reserves than females during hibernation, perhaps because of different body temperatures between sexes. We found GRI of male snakes was substantially lower during the mating period than during a non-mating period, which indicated that a trade-off existed between searching for mates and growth. These findings contribute to our understanding of snake ecology in a Mediterranean climate. ?? 2009 The Zoological Society of London.

  2. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  3. Noninvasive Quantitative Measurement of Bacterial Growth in Porous Media Under Unsaturated-Flow Conditions

    SciTech Connect

    Yarwood, Rocky; Rockhold, Mark L. ); Niemet, Mike; Selker, John S.; Bottomley, Peter J.

    2002-07-01

    Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r{sup 2}=0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously determined growth parameters of HK44 (predicted, 1.2 x 10{sup 12} cells; calculated, 1.7 x 10{sup 12} cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.

  4. Noninvasive Quantitative Measurement of Bacterial Growth in Porous Media under Unsaturated-Flow Conditions

    PubMed Central

    Yarwood, R. R.; Rockhold, M. L.; Niemet, M. R.; Selker, J. S.; Bottomley, P. J.

    2002-01-01

    Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r2 = 0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously established growth parameters of HK44 (predicted, 1.2 × 1012 cells; calculated, 1.7 × 1012 cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media. PMID:12089048

  5. Noninvasive quantitative measurement of bacterial growth in porous media under unsaturated-flow conditions.

    PubMed

    Yarwood, R R; Rockhold, M L; Niemet, M R; Selker, J S; Bottomley, P J

    2002-07-01

    Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r(2) = 0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously established growth parameters of HK44 (predicted, 1.2 x 10(12) cells; calculated, 1.7 x 10(12) cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.

  6. Growth and Modeling of Staphylococcus aureus in Flour Products under Isothermal and Nonisothermal Conditions.

    PubMed

    Cao, Hui; Wang, Tingting; Yuan, Min; Yu, Jingsong; Xu, Fei

    2017-03-01

    This study was conducted to investigate the growth of Staphylococcus aureus in traditional Chinese flour products under isothermal (10, 15, 20, 25, 30, and 37°C) and nonisothermal (10 to 20, 20 to 30, and 25 to 37°C) conditions. Then, models for the growth of S. aureus in flour products as a function of storage temperature, pH, and water activity (aw) were developed, and the goodness of fit of models was evaluated using the determination coefficient (R(2)), root mean square error (RMSE), bias factor (Bf), and accuracy factor (Af). Based on the above information, S. aureus growth in steamed bread under nonisothermal conditions was predicted from experiments performed under isothermal conditions. It was shown that different combinations of temperature and aw in flour products have a strong influence on the growth of S. aureus . The modified Gompertz model was found to be more suitable for describing the growth data of S. aureus in flour products, with an R(2) of >0.99 and an RMSE of <0.37. The newly developed secondary models were validated, and for the specific growth rate and the lag time, the R(2) values were 0.96 and 0.97, Af was 1.12 and 1.06, and Bf was 1.13 and 1.05, respectively. The predicted nonisothermal growth curves of S. aureus were in agreement with the reported experimental ones, with RMSE <0.29, Af value 1.02 to 1.09, and Bf value 0.92 to 0.99. These results indicated that the predictive models provided useful information for the establishment of safety standards and a risk assessment for S. aureus in flour products.

  7. Environmentally Assisted Crack Growth in Structural Alloys: Perspectives and New Directions.

    DTIC Science & Technology

    1987-12-01

    the fundamental issues, and has served as a basis for the utilization of data in design. Chemical and microstruc - tural modeling of stress corrosion...aspects of environmentally assisted crack growth. More recently, this ef- fort has been extended to include the influence of microstruc - ture. Sustained...of more ft than one reaction step. For example, for the case of 7075 -T651 f.% aluminum alloy (Fig. 10), the additional enhancement at the higher

  8. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Perrin, R.L.; Buchanan, R.A.

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  9. Role of phenotypic plasticity and population differentiation in adaptation to novel environmental conditions.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat

    2015-09-01

    Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new

  10. An interactive environmental model for economic growth: evidence from a panel of countries.

    PubMed

    Ramakrishnan, Suresh; Hishan, Sanil S; Nabi, Agha Amad; Arshad, Zeeshan; Kanjanapathy, Malini; Zaman, Khalid; Khan, Faisal

    2016-07-01

    This study aims to determine an interactive environmental model for economic growth that would be supported by the "sustainability principles" across the globe. The study examines the relationship between environmental pollutants (i.e., carbon dioxide emission, sulfur dioxide emission, mono-nitrogen oxide, and nitrous oxide emission); population growth; energy use; trade openness; per capita food production; and it's resulting impact on the real per capita GDP and sectoral growth (i.e., share of agriculture, industry, and services in GDP) in a panel of 34 high-income OECD, high-income non-OECD, and Europe and Central Asian countries, for the period of 1995-2014. The results of the panel fixed effect regression show that per capita GDP are influenced by sulfur dioxide emission, population growth, and per capita food production variability, while energy and trade openness significantly increases per capita income of the region. The results of the panel Seemingly Unrelated Regression (SUR) show that carbon dioxide emission significantly decreases the share of agriculture and industry in GDP, while it further supports the share of services sector to GDP. Both the sulfur dioxide and mono-nitrogen oxide emission decreases the share of services in GDP; nitrous oxide decreases the share of industry in GDP; while mono-nitrogen oxide supports the industrial activities. The following key growth-specific results has been obtained from the panel SUR estimation, i.e., (i) Both the food production per capita and trade openness significantly associated with the increasing share of agriculture, (ii) food production and energy use significantly increases the service sectors' productivity; (iii) food production decreases the industrial activities; (iv) trade openness decreases the share of services to GDP while it supports the industrial share to GDP; and finally, (v) energy demand decreases along with the increase agricultural share in the region. The results emphasize the need for

  11. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    NASA Astrophysics Data System (ADS)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2016-10-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  12. Environmental Enteropathy, Oral Vaccine Failure and Growth Faltering in Infants in Bangladesh

    PubMed Central

    Naylor, Caitlin; Lu, Miao; Haque, Rashidul; Mondal, Dinesh; Buonomo, Erica; Nayak, Uma; Mychaleckyj, Josyf C.; Kirkpatrick, Beth; Colgate, Ross; Carmolli, Marya; Dickson, Dorothy; van der Klis, Fiona; Weldon, William; Steven Oberste, M.; Ma, Jennie Z.; Petri, William A.

    2015-01-01

    Background Environmental enteropathy (EE) is a subclinical enteric condition found in low-income countries that is characterized by intestinal inflammation, reduced intestinal absorption, and gut barrier dysfunction. We aimed to assess if EE impairs the success of oral polio and rotavirus vaccines in infants in Bangladesh. Methods We conducted a prospective observational study of 700 infants from an urban slum of Dhaka, Bangladesh from May 2011 to November 2014. Infants were enrolled in the first week of life and followed to age one year through biweekly home visits with EPI vaccines administered and growth monitored. EE was operationally defied as enteric inflammation measured by any one of the fecal biomarkers reg1B, alpha-1-antitrypsin, MPO, calprotectin, or neopterin. Oral polio vaccine success was evaluated by immunogenicity, and rotavirus vaccine response was evaluated by immunogenicity and protection from disease. This study is registered with ClinicalTrials.gov, number NCT01375647. Findings EE was present in greater than 80% of infants by 12 weeks of age. Oral poliovirus and rotavirus vaccines failed in 20.2% and 68.5% of the infants respectively, and 28.6% were malnourished (HAZ < − 2) at one year of age. In contrast, 0%, 9.0%, 7.9% and 3.8% of infants lacked protective levels of antibody from tetanus, Haemophilus influenzae type b, diphtheria and measles vaccines respectively. EE was negatively associated with oral polio and rotavirus response but not parenteral vaccine immunogenicity. Biomarkers of systemic inflammation and measures of maternal health were additionally predictive of both oral vaccine failure and malnutrition. The selected biomarkers from multivariable analysis accounted for 46.3% variation in delta HAZ. 24% of Rotarix® IgA positive individuals can be attributed to the selected biomarkers. Interpretation EE as well as systemic inflammation and poor maternal health were associated with oral but not parenteral vaccine

  13. Environmental and genetic effects on early growth traits in Moghani sheep breeds.

    PubMed

    Lavvaf, A; Noshary, A; Keshtkaran, A

    2007-08-01

    The effects of environmental factors on early growth traits (birth weight, weaning weight, body weight at 6 months of age and daily gain from birth to weaning and weaning to 6 months of age) using 10432 records in Moghani sheep breed were studied and Genetic and Environmental variance component were estimated using 8468 records of Jafarabad Animal Breeding Station from 1999 to 2004. Birth year on all traits and dam age had significant effect only for birth and weaning weight. Sex of lambs and birth type had no significant effect only daily gain from weaning to 6 months of age. Additive genetic direct variance, maternal environmental variance and heritability were estimate by REML fitting two different Animal models. The estimate of maternal environment variance was higher than additive genetic direct variance in some traits. Estimates of direct heritability for all traits were low.

  14. Australia is 'free to choose' economic growth and falling environmental pressures.

    PubMed

    Hatfield-Dodds, Steve; Schandl, Heinz; Adams, Philip D; Baynes, Timothy M; Brinsmead, Thomas S; Bryan, Brett A; Chiew, Francis H S; Graham, Paul W; Grundy, Mike; Harwood, Tom; McCallum, Rebecca; McCrea, Rod; McKellar, Lisa E; Newth, David; Nolan, Martin; Prosser, Ian; Wonhas, Alex

    2015-11-05

    Over two centuries of economic growth have put undeniable pressure on the ecological systems that underpin human well-being. While it is agreed that these pressures are increasing, views divide on how they may be alleviated. Some suggest technological advances will automatically keep us from transgressing key environmental thresholds; others that policy reform can reconcile economic and ecological goals; while a third school argues that only a fundamental shift in societal values can keep human demands within the Earth's ecological limits. Here we use novel integrated analysis of the energy-water-food nexus, rural land use (including biodiversity), material flows and climate change to explore whether mounting ecological pressures in Australia can be reversed, while the population grows and living standards improve. We show that, in the right circumstances, economic and environmental outcomes can be decoupled. Although economic growth is strong across all scenarios, environmental performance varies widely: pressures are projected to more than double, stabilize or fall markedly by 2050. However, we find no evidence that decoupling will occur automatically. Nor do we find that a shift in societal values is required. Rather, extensions of current policies that mobilize technology and incentivize reduced pressure account for the majority of differences in environmental performance. Our results show that Australia can make great progress towards sustainable prosperity, if it chooses to do so.

  15. Australia is ‘free to choose’ economic growth and falling environmental pressures

    NASA Astrophysics Data System (ADS)

    Hatfield-Dodds, Steve; Schandl, Heinz; Adams, Philip D.; Baynes, Timothy M.; Brinsmead, Thomas S.; Bryan, Brett A.; Chiew, Francis H. S.; Graham, Paul W.; Grundy, Mike; Harwood, Tom; McCallum, Rebecca; McCrea, Rod; McKellar, Lisa E.; Newth, David; Nolan, Martin; Prosser, Ian; Wonhas, Alex

    2015-11-01

    Over two centuries of economic growth have put undeniable pressure on the ecological systems that underpin human well-being. While it is agreed that these pressures are increasing, views divide on how they may be alleviated. Some suggest technological advances will automatically keep us from transgressing key environmental thresholds; others that policy reform can reconcile economic and ecological goals; while a third school argues that only a fundamental shift in societal values can keep human demands within the Earth’s ecological limits. Here we use novel integrated analysis of the energy-water-food nexus, rural land use (including biodiversity), material flows and climate change to explore whether mounting ecological pressures in Australia can be reversed, while the population grows and living standards improve. We show that, in the right circumstances, economic and environmental outcomes can be decoupled. Although economic growth is strong across all scenarios, environmental performance varies widely: pressures are projected to more than double, stabilize or fall markedly by 2050. However, we find no evidence that decoupling will occur automatically. Nor do we find that a shift in societal values is required. Rather, extensions of current policies that mobilize technology and incentivize reduced pressure account for the majority of differences in environmental performance. Our results show that Australia can make great progress towards sustainable prosperity, if it chooses to do so.

  16. Growth and cell wall changes in stem organs under microgravity and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    Gravity strongly influences plant growth and development, which is fundamentally brought about by modifications to the properties of the cell wall. We have examined the changes in growth and cell wall properties in seedling organs under hypergravity conditions produced by centrifugation and under microgravity conditions in space. Hypergravity stimuli have been shown to decrease the growth rate of various seedling organs. When hypergravity suppressed elongation growth, a decrease in cell wall extensibility (an increase in cell wall rigidity) was induced. Hypergravity has also been shown to increase cell wall thickness in various mate-rials. In addition, a polymerization of certain matrix polysaccharides was brought about by hypergravity: in dicotyledons hypergravity increased the molecular size of xyloglucans, whereas hypergravity increased that of 1,3,1,4-β-glucans in monocotyledonous Gramineae. These mod-ifications to cell wall metabolism may be responsible for a decrease in cell wall extensibility, leading to growth suppression under hypergravity conditions. How then does microgravity in-fluence growth and cell wall properties? Here, there was a possibility that microgravity might induce changes similar to those by hypergravity, because plants have evolved and adapted to 1 g condition for more than 400 million years. However, the changes observed under microgravity conditions in space were just opposite to those induced by hypergravity: stimulation of elonga-tion growth, an increase in cell wall extensibility, and a decrease in cell wall thickness as well as depolymerization of cell wall polysaccharides were brought about in space. Furthermore, growth and cell wall properties varied in proportion to the logarithm of the magnitude of grav-ity in the range from microgravity to hypergravity, as shown in the dose-response relation in light and hormonal responses. Thus, microgravity may be a `stress-less' environment for plant seedlings to grow and develop

  17. Environmental conditions for alternative tree-cover states in high latitudes

    NASA Astrophysics Data System (ADS)

    Abis, Beniamino; Brovkin, Victor

    2017-02-01

    Previous analysis of the vegetation cover from remote sensing revealed the existence of three alternative modes in the frequency distribution of boreal tree cover: a sparsely vegetated treeless state, an open woodland state, and a forest state. Identifying which are the regions subject to multimodality, and assessing which are the main factors underlying their existence, is important to project future change of natural vegetation cover and its effect on climate.We study the link between the tree-cover fraction distribution and eight globally observed environmental factors: mean annual rainfall, mean minimum temperature, growing degree days above 0 °C, permafrost distribution, mean spring soil moisture, wildfire occurrence frequency, soil texture, and mean thawing depth. Through the use of generalised additive models, conditional histograms, and phase-space analysis, we find that environmental conditions exert a strong control over the tree-cover distribution, uniquely determining its state among the three dominant modes in ˜ 95 % of the cases. Additionally, we find that the link between individual environmental variables and tree cover is different within the four boreal regions considered here, namely eastern North Eurasia, western North Eurasia, eastern North America, and western North America. Furthermore, using a classification based on rainfall, minimum temperatures, permafrost distribution, soil moisture, wildfire frequency, and soil texture, we show the location of areas with potentially alternative tree-cover states under the same environmental conditions in the boreal region. These areas, although encompassing a minor fraction of the boreal area ( ˜ 5 %), correspond to possible transition zones with a reduced resilience to disturbances. Hence, they are of interest for a more detailed analysis of land-atmosphere interactions.

  18. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.

    PubMed

    Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar

    2016-10-01

    The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters.

  19. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.

  20. Optimizing environmental conditions for mass application of mechano-dwarfing stimuli to Arabidopsis

    NASA Technical Reports Server (NTRS)

    Montgomery, Jill A.; Bressan, Ray A.; Mitchell, Cary A.

    2004-01-01

    Obtaining uniform mechano-dwarfing of Arabidopsis thaliana (L.) Heynh. seedlings within dense plantings is problematic. Alternative forms of mechano-stimulation were applied to seedlings in effort to obtain uniform growth reduction compared with undisturbed controls in both greenhouse and controlled growth environments. Arabidopsis grown under low photosynthetic photon flux (PPF) artificial light grew upright with limited leaf expansion, which enhanced mechano-responsiveness compared to that of rosette-growing plants under filtered sunlight or high PPF artificial light. Hypocotyls of seedlings grown at PPFs > 60 micromoles m-2 s-1 elongated less and had 6% less sensitivity to mechanical stress than seedlings grown at PPFs < 60 micromoles m-2 s-1. Fluorescent lamps alone (F) or fluorescent plus incandescent (F+I) lamps were compared for seedling responses to mechanical stress. Under F lighting, hypocotyl elongation was reduced 25% to 40% by twice-daily brush or plate treatments, and brushed seedlings exhibited more growth reduction than did plate treatments. Seedlings grown under F+I lamps exhibited similar stress-induced growth reduction compared to seedlings grown under F only, but stressed F+I seedlings lodged to a greater extent due to excessive hypocotyl elongation. Temperature-response studies using standardized F-only lighting indicated increased hypocotyl elongation but decreased leaf expansion, and decreased mechano-responsivity to brushing over the temperature range from 20 to 28 degrees C. Daylength studies indicated similar degrees of mechano-inhibition of hypocotyl elongation over the daylength range of 12, 16, 20, and 24 hours, whereas fresh weight of stressed seedling shoots declined compared to controls. A combination of environmental growth parameters that give repeatable, visual mechanical dwarfing of Arabidopsis include low-PPF fluorescent lighting from 55 to 60 micromoles m-2 s-1, ambient temperatures from 22 to 25 degrees C, and twice

  1. Environmental influences on human growth and development: historical review and case study of contemporary influences.

    PubMed

    Schell, Lawrence M; Gallo, Mia V; Ravenscroft, Julia

    2009-01-01

    Over the past 100 years, the study of environmental influences on human physical growth and development has focused on the influences of social and economic factors; family and household characteristics; urbanization/modernization; nutrition; and features of the physical environment such as altitude, temperature and climate. Continuing in this tradition are current investigations into the roles of pollutants and other aspects of the human-made environment in affecting patterns of human growth and development, specifically the timing of sexual maturation and the development of obesity. Some of the methodological problems in conducting such studies are presented, as are results from an ongoing investigation among one Native American community that show relationships of pollutants to sexual maturation, overweight/obesity and thyroid system function which can impact growth and maturation.

  2. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.

    PubMed

    Ozga, Jocelyn A; Kaur, Harleen; Savada, Raghavendra P; Reinecke, Dennis M

    2016-12-23

    Legume crops are grown throughout the world and provide an excellent food source of digestible protein and starch, as well as dietary fibre, vitamins, minerals, and flavonoids. Fruit and seeds from legumes are also an important source of vegetables for a well-balanced diet. A trend in elevated temperature as a result of climate change increases the risk of a heat stress-induced reduction in legume crop yield. High temperatures during the crop reproductive development phase are particularly detrimental to fruit/seed production because the growth and development of the reproductive tissues are sensitive to small changes in temperature. Hormones are signalling molecules that play important roles in a plant's ability to integrate different environmental inputs and modify their developmental processes to optimize growth, survival, and reproduction. This review focuses on the hormonal regulation of reproductive development and heat stress-induced alteration of this regulation during (i) pollination, (ii) early fruit set, and (iii) seed development that affects fruit/seed yield in legume and other model crops. Further understanding of hormone-regulated reproductive growth under non-stress and heat-stress conditions can aid in trait selection and the development of gene modification strategies and cultural practices to improve heat tolerance in legume crops contributing to improved food security.

  3. Growth of copper sulfide dendrites and nanowires from elemental sulfur on TEM Cu grids under ambient conditions.

    PubMed

    Han, Qiaofeng; Sun, Shanshan; Li, Jiansheng; Wang, Xin

    2011-04-15

    Copper sulfide dendrites and subsequent uniform nanowires up to tens of micrometers long can be grown on carbon-coated transmission electron microscopy (TEM) Cu grids from elemental sulfur at room temperature under ambient conditions without any solvent and surfactants. TEM and high-resolution TEM studies demonstrated the morphology evolution of Cu₂S from dendrites into ultra-long nanowires with increasing ageing time. The sulfur species influenced significantly the growth rate of Cu₂S dendrites and nanowires, but the final morphology remained the same. The native oxide on the surface of Cu grids played a critical role in the formation of Cu₂S dendrites and nanowires. The crystal structures and phase purity of Cu₂S samples were confirmed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDX). A solid-liquid-solid growth model may be considered a potential mechanism in Cu₂S morphology evolution on the basis of the experimental results. Most importantly, the present study provides a simple and environmentally friendly route for the growth of one-dimensional (1D) Cu₂S on Cu substrate.

  4. Clinically Relevant Growth Conditions Alter Acinetobacter baumannii Antibiotic Susceptibility and Promote Identification of Novel Antibacterial Agents

    PubMed Central

    Colquhoun, Jennifer M.; Wozniak, Rachel A. F.; Dunman, Paul M.

    2015-01-01

    Biological processes that govern bacterial proliferation and survival in the host-environment(s) are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s). Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in traditional

  5. Influence of soil conditions on dissolved organic matter leached from forest and wetland soils: a controlled growth chamber study.

    PubMed

    Kim, Eun-Ah; Nguyen, Hang Vo-Minh; Oh, Hae Sung; Hur, Jin; Choi, Jung Hyun

    2016-03-01

    This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation-emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.

  6. Auxin polar transport in arabidopsis under simulated microgravity conditions - relevance to growth and development

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Oka, M.; Yamamoto, R.; Masuda, Y.; Hoson, T.; Kamisaka, S.; Ueda, J.

    1999-01-01

    Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.

  7. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    SciTech Connect

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  8. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.

    PubMed

    Lam, Raymond H W; Cui, Xin; Guo, Weijin; Thorsen, Todd

    2016-04-26

    Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' device offering controls of multiple microenvironmental factors (e.g. nutrients, growth factors, dissolved gases, and seeded cell populations) for quantitative characteristics of long-term dental bacteria growth and biofilm development. This 'artificial teeth' device contains multiple (up to 128) incubation chambers to perform parallel cultivation and analyses (e.g. biofilm thickness, viable-dead cell ratio, and spatial distribution of multiple bacterial species) of bacteria samples under a matrix of different combinations of microenvironmental factors, further revealing possible developmental mechanisms of dental biofilms. Specifically, we applied the 'artificial teeth' to investigate the growth of two key dental bacteria, Streptococci species and Fusobacterium nucleatum, in the biofilm under different dissolved gas conditions and sucrose concentrations. Together, this high-throughput microfluidic platform can provide extended applications for general biofilm research, including screening of the biofilm properties developing under combinations of specified growth parameters such as seeding bacteria populations, growth medium compositions, medium flow rates and dissolved gas levels.

  9. Growth of Continuous Monolayer Graphene with Millimeter-sized Domains Using Industrially Safe Conditions

    PubMed Central

    Wu, Xingyi; Zhong, Guofang; D'Arsié, Lorenzo; Sugime, Hisashi; Esconjauregui, Santiago; Robertson, Alex W.; Robertson, John

    2016-01-01

    We demonstrate the growth of continuous monolayer graphene films with millimeter-sized domains on Cu foils under intrinsically safe, atmospheric pressure growth conditions, suitable for application in roll-to-roll reactors. Previous attempts to grow large domains in graphene have been limited to isolated graphene single crystals rather than as part of an industrially useable continuous film. With both appropriate pre-treatment of the Cu and optimization of the CH4 supply, we show that it is possible to grow continuous films of monolayer graphene with millimeter scale domains within 80 min by chemical vapour deposition. The films are grown under industrially safe conditions, i.e., the flammable gases (H2 and CH4) are diluted to well below their lower explosive limit. The high quality, spatial uniformity, and low density of domain boundaries are demonstrated by charge carrier mobility measurements, scanning electron microscope, electron diffraction study, and Raman mapping. The hole mobility reaches as high as ~5,700 cm2 V−1 s−1 in ambient conditions. The growth process of such high-quality graphene with a low H2 concentration and short growth times widens the possibility of industrial mass production. PMID:26883292

  10. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat

    NASA Astrophysics Data System (ADS)

    Shimazu, T.; Yuda, T.; Miyamoto, K.; Yamashita, M.; Ueda, J.

    Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.

  11. Relationships between environmental conditions and the morphological variability of planktonic testate amoeba in four neotropical floodplains.

    PubMed

    Arrieira, Rodrigo Leite; Schwind, Leilane Talita Fatoreto; Joko, Ciro Yoshio; Alves, Geziele Mucio; Velho, Luiz Felipe Machado; Lansac-Tôha, Fábio Amodêo

    2016-10-01

    Planktonic testate amoebae in floodplains exhibit a broad-range of morphological variability. The variation size is already known, but it is necessary to know how this is for morphological variables. This study aimed to identify the relationships between testate amoebae morphology and environmental factors in four neotropical floodplains. We conducted detailed morphometric analyses on 27 common species of planktonic testate amoebae from genera Arcella, Centropyxis, Cucurbitella, Suiadifflugia, Difflugia, Lesquereusia and Netzelia. We sampled subsurface water from each lake in 72 lakes in four Brazilian floodplain lakes. Our goals were to assess: (1) the range of their morphological variability (a) over space within each floodplain, and (b) among the four floodplains, and (c) over time, and (2) which environmental factors explained this variation. Mean shell height and breadth varied considerably among the different floodplain lakes, especially in the Pantanal and Amazonian floodplains. The morphological variability of testate amoeba was correlated to environmental conditions (ammonia, nitrate, phosphate, chlorophyll-a, turbidity, temperature, and depth). Thus, understanding the morphological variation of the testate amoeba species can elucidate many questions involving the ecology of these organisms. Furthermore, could help molecular studies, bioindicator role of these organisations, environmental reconstruction, among others.

  12. Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient.

    PubMed

    Moeller, Holly V; Peay, Kabir G; Fukami, Tadashi

    2014-03-01

    Multispecies mutualisms, such as the association between trees and ectomycorrhizal fungi, are often shaped by environmental context. Here, we explored the functional mechanisms underlying this environmental filtering. Using a single population of Pinus muricata (Bishop pine) growing along a strong edaphic gradient, we examined how environmental stress affected ectomycorrhizal fungi. The gradient spans c. 400000 years of soil age, and reduced nutrient availability and increased water stress dwarf trees on older sites. Fungal community composition shifted with nutrient and water availability and with the stature of the P. muricata host trees. Not only did pygmy trees host a taxonomically different fungal subset as compared to nonpygmy trees, but associated fungal communities also differed in life history strategies: trees in more stressful conditions hosted fungi with more carbon-intensive foraging strategies. Our results indicate a link between environmental controls of host nutritional status and turnover in the ectomycorrhizal fungal community. The transition to more energy-intensive strategies under nutrient stress may allow for close recycling of recalcitrant nutrient pools within the root zone and facilitate transport of nutrients and water over long distances. These results highlight the value of life history data to understanding the mechanistic underpinnings of species distributions.

  13. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions.

    PubMed

    Kwon, JuYoun; Choi, Jeongwha

    2013-07-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  14. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions

    PubMed Central

    2013-01-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing