Gene-environment studies: any advantage over environmental studies?
Bermejo, Justo Lorenzo; Hemminki, Kari
2007-07-01
Gene-environment studies have been motivated by the likely existence of prevalent low-risk genes that interact with common environmental exposures. The present study assessed the statistical advantage of the simultaneous consideration of genes and environment to investigate the effect of environmental risk factors on disease. In particular, we contemplated the possibility that several genes modulate the environmental effect. Environmental exposures, genotypes and phenotypes were simulated according to a wide range of parameter settings. Different models of gene-gene-environment interaction were considered. For each parameter combination, we estimated the probability of detecting the main environmental effect, the power to identify the gene-environment interaction and the frequency of environmentally affected individuals at which environmental and gene-environment studies show the same statistical power. The proportion of cases in the population attributable to the modeled risk factors was also calculated. Our data indicate that environmental exposures with weak effects may account for a significant proportion of the population prevalence of the disease. A general result was that, if the environmental effect was restricted to rare genotypes, the power to detect the gene-environment interaction was higher than the power to identify the main environmental effect. In other words, when few individuals contribute to the overall environmental effect, individual contributions are large and result in easily identifiable gene-environment interactions. Moreover, when multiple genes interacted with the environment, the statistical benefit of gene-environment studies was limited to those studies that included major contributors to the gene-environment interaction. The advantage of gene-environment over plain environmental studies also depends on the inheritance mode of the involved genes, on the study design and, to some extend, on the disease prevalence.
Environmental confounding in gene-environment interaction studies.
Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar
2013-07-01
We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.
Environmental Interactions and Epistasis Are Revealed in the Proteomic Responses to Complex Stimuli
Samir, Parimal; Rahul; Slaughter, James C.; Link, Andrew J.
2015-01-01
Ultimately, the genotype of a cell and its interaction with the environment determine the cell’s biochemical state. While the cell’s response to a single stimulus has been studied extensively, a conceptual framework to model the effect of multiple environmental stimuli applied concurrently is not as well developed. In this study, we developed the concepts of environmental interactions and epistasis to explain the responses of the S. cerevisiae proteome to simultaneous environmental stimuli. We hypothesize that, as an abstraction, environmental stimuli can be treated as analogous to genetic elements. This would allow modeling of the effects of multiple stimuli using the concepts and tools developed for studying gene interactions. Mirroring gene interactions, our results show that environmental interactions play a critical role in determining the state of the proteome. We show that individual and complex environmental stimuli behave similarly to genetic elements in regulating the cellular responses to stimuli, including the phenomena of dominance and suppression. Interestingly, we observed that the effect of a stimulus on a protein is dominant over other stimuli if the response to the stimulus involves the protein. Using publicly available transcriptomic data, we find that environmental interactions and epistasis regulate transcriptomic responses as well. PMID:26247773
Yan, Lingjun; Chen, Fa; He, Baochang; Liu, Fengqiong; Liu, Fangping; Huang, Jiangfeng; Wu, Junfeng; Lin, Lisong; Qiu, Yu; Cai, Lin
2017-04-01
The objective of this study was to explore the collective effect of environmental factors and its interaction with familial susceptibility on oral cancer among non-smokers and non-drinkers (NSND). A hospital-based case-control study, including 319 oral cancer patients and 994 frequency-matched controls, was conducted in Fujian, China. We raised a weighed environmental exposure index according to nine significant environmental factors obtained from multivariable logistic regression model. And then, the index was classified into three categories according to the tertiles of controls (<1.34, 1.34-2.43, and >2.43). Multiplicative and additive interactions were evaluated between environmental exposure index and family cancer history. Our results showed that environmental exposure index was associated with an increased risk of oral cancer especially for those with family cancer history. Compared to subjects with low environmental exposure index and without family cancer history, those with high index and family cancer history showed the highest magnitude of OR in oral cancer risk (OR 10.40, 95% CI 5.46-19.80). Moreover, there was a multiplicative interaction between environmental exposure index and family cancer history for the risk of oral cancer (P < 0.001). This study puts forward a novel environmental exposure index, which enables a comprehensive evaluation on the overall effect of environmental risk factors on oral cancer among NSND and may interact with family cancer history. Further studies are warranted to explore the underlying mechanisms.
Design and analysis issues in gene and environment studies
2012-01-01
Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the “-omics” era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed. PMID:23253229
Design and analysis issues in gene and environment studies.
Liu, Chen-yu; Maity, Arnab; Lin, Xihong; Wright, Robert O; Christiani, David C
2012-12-19
Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the "-omics" era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed.
Ye, Dong-qing; Hu, Yi-song; Li, Xiang-pei; Huang, Fen; Yang, Shi-gui; Hao, Jia-hu; Yin, Jing; Zhang, Guo-qing; Liu, Hui-hui
2004-11-01
To explore the impact of environmental factors, daily lifestyle, psycho-social factors and the interactions between environmental factors and chemokines genes on systemic lupus erythematosus (SLE). Case-control study was carried out and environmental factors for SLE were analyzed by univariate and multivariate unconditional logistic regression. Interactions between environmental factors and chemokines polymorphism contributing to systemic lupus erythematosus were also analyzed by logistic regression model. There were nineteen factors associated with SLE when univariate unconditional logistic regression was used. However, when multivariate unconditional logistic regression was used, only five factors showed having impacts on the disease, in which drinking well water (OR=0.099) was protective factor for SLE, and multiple drug allergy (OR=8.174), over-exposure to sunshine (OR=18.339), taking antibiotics (OR=9.630) and oral contraceptives were risk factors for SLE. When unconditional logistic regression model was used, results showed that there was interaction between eating irritable food and -2518MCP-1G/G genotype (OR=4.387). No interaction between environmental factors was found that contributing to SLE in this study. Many environmental factors were related to SLE, and there was an interaction between -2518MCP-1G/G genotype and eating irritable food.
Challenges and Opportunities in Genome-Wide Environmental Interaction (GWEI) studies
Aschard, Hugues; Lutz, Sharon; Maus, Bärbel; Duell, Eric J.; Fingerlin, Tasha; Chatterjee, Nilanjan; Kraft, Peter; Van Steen, Kristel
2012-01-01
The interest in performing gene-environment interaction studies has seen a significant increase with the increase of advanced molecular genetics techniques. Practically, it became possible to investigate the role of environmental factors in disease risk and hence to investigate their role as genetic effect modifiers. The understanding that genetics is important in the uptake and metabolism of toxic substances is an example of how genetic profiles can modify important environmental risk factors to disease. Several rationales exist to set up gene-environment interaction studies and the technical challenges related to these studies – when the number of environmental or genetic risk factors is relatively small – has been described before. In the post-genomic era, it is now possible to study thousands of genes and their interaction with the environment. This brings along a whole range of new challenges and opportunities. Despite a continuing effort in developing efficient methods and optimal bioinformatics infrastructures to deal with the available wealth of data, the challenge remains how to best present and analyze Genome-Wide Environmental Interaction (GWEI) studies involving multiple genetic and environmental factors. Since GWEIs are performed at the intersection of statistical genetics, bioinformatics and epidemiology, usually similar problems need to be dealt with as for Genome-Wide Association gene-gene Interaction (GWAI) studies. However, additional complexities need to be considered which are typical for large-scale epidemiological studies, but are also related to “joining” two heterogeneous types of data in explaining complex disease trait variation or for prediction purposes. PMID:22760307
ERIC Educational Resources Information Center
Alvarado, Angelita P.
2010-01-01
One of the main goals of Environmental Education (EE) is to develop people's environmental stewardship, which includes people's capacity to take environmental action--their action competence (AC). The purposes of my study were to characterize the interactions found in an EE curriculum, science teachers' pedagogical content knowledge (PCK), and…
Observations on the interaction of nanomaterials with bacteria
NASA Astrophysics Data System (ADS)
Raja, P. M.; Ajayan, P. M.; Nalamasu, O.; Sharma, A.
2006-05-01
Large scale commercial manufacturing of nanomaterials raises the important issue of their environmental fate. With increased production (estimated to be in million gallon range) the nanomaterial interactions with environmental microbial ecology would be significant. However, there are scant studies that have addressed this concern. It is therefore essential to experimentally determine some fundamental parameters to ascertain any environmental stresses related to microbiological interactions of nanomaterials. There are concerns that such an interaction may be similar to the biogeochemical interactions of asbestos fibers, which continues to be an alarming environmental issue. Carbon nanotubes (CNTs) are newly emerging nanomaterials, with a wide range of potential electronic and medical applications. Though CNTs are dimensionally similar to the mineral fibers, they differ morphologically, and can possess different surface chemistries, capable of complex and varied biological interactions within the environment. In this study, we present experimental data that show discernible effects on microbial morphology, biofilm formation, substrate consumption rates and growth of Escherichia coli in the presence of carbon nanotubes with the aim of developing a fundamental understanding of the environmental implications of CNT-microbial interactions.
Grabich, Shannon C; Rappazzo, Kristen M; Gray, Christine L; Jagai, Jyotsna S; Jian, Yun; Messer, Lynne C; Lobdell, Danelle T
2016-01-01
Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI) domain indices on preterm birth in the Unites States from 2000 to 2005. The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built, and sociodemographic) using principal component analyses. County-level preterm birth rates ( n = 3141) were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PDs) and 95% confidence intervals (CIs) comparing worse environmental quality to the better quality for each model for (a) each individual domain main effect, (b) the interaction contrast, and (c) the two main effects plus interaction effect (i.e., the "net effect") to show departure from additivity for the all U.S. counties. Analyses were also performed for subgroupings by four urban/rural strata. We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction) associations. In the non-stratified model, we observed antagonistic interactions, between the sociodemographic/air domains [net effect (i.e., the association, including main effects and interaction effects) PD: -0.004 (95% CI: -0.007, 0.000), interaction contrast: -0.013 (95% CI: -0.020, -0.007)] and built/air domains [net effect PD: 0.008 (95% CI 0.004, 0.011), interaction contrast: -0.008 (95% CI: -0.015, -0.002)]. Most interactions were between the air domain and other respective domains. Interactions differed by urbanicity, with more interactions observed in non-metropolitan regions. Observed antagonistic associations may indicate that those living in areas with multiple detrimental domains may have other interfering factors reducing the burden of environmental exposure. This study is the first to explore interactions across different environmental domains and demonstrates the utility of the EQI to examine the relationship between environmental domain interactions and human health. While we did observe some departures from additivity, many observed effects were additive. This study demonstrated that interactions between environmental domains should be considered in future analyses.
Marr, A B; Arcese, P; Hochachka, W M; Reid, J M; Keller, L F
2006-11-01
1. Conservation biologists are concerned about the interactive effects of environmental stress and inbreeding because such interactions could affect the dynamics and extinction risk of small and isolated populations, but few studies have tested for these interactions in nature. 2. We used data from the long-term population study of song sparrows Melospiza melodia on Mandarte Island to examine the joint effects of inbreeding and environmental stress on four fitness traits that are known to be affected by the inbreeding level of adult birds: hatching success, laying date, male mating success and fledgling survival. 3. We found that inbreeding depression interacted with environmental stress to reduce hatching success in the nests of inbred females during periods of rain. 4. For laying date, we found equivocal support for an interaction between parental inbreeding and environmental stress. In this case, however, inbred females experienced less inbreeding depression in more stressful, cooler years. 5. For two other traits, we found no evidence that the strength of inbreeding depression varied with environmental stress. First, mated males fathered fewer nests per season if inbred or if the ratio of males to females in the population was high, but inbreeding depression did not depend on sex ratio. Second, fledglings survived poorly during rainy periods and if their father was inbred, but the effects of paternal inbreeding and rain did not interact. 6. Thus, even for a single species, interactions between the inbreeding level and environmental stress may not occur in all traits affected by inbreeding depression, and interactions that do occur will not always act synergistically to further decrease fitness.
Research of Environmental and Economic Interactions of Coke And By-Product Process
NASA Astrophysics Data System (ADS)
Mikhailov, Vladimir; Kiseleva, Tamara; Bugrova, Svetlana; Muromtseva, Alina; Mikhailova, Yana
2017-11-01
The issues of showing relations between environmental and economic indicators (further - environmental and economic interactions) of coke and by-product process are considered in the article. The purpose of the study is to reveal the regularities of the functioning of the local environmental and economic system on the basis of revealed spectrum of environmental and economic interactions. A simplified scheme of the environmental and economic system "coke and by-product process - the environment" was developed. The forms of the investigated environmental-economic interactions were visualized and the selective interpretation of the tightness of the established connection was made. The main result of the work is modeling system of environmental and economic interactions that allows increasing the efficiency of local ecological and economic system management and optimizing the "interests" of an industrial enterprise - the source of negative impact on the environment. The results of the survey can be recommended to government authorities and industrial enterprises with a wide range of negative impact forms to support the adoption of effective management decisions aimed at sustainable environmental and economic development of the region or individual municipalities.
Detecting regulatory gene-environment interactions with unmeasured environmental factors.
Fusi, Nicoló; Lippert, Christoph; Borgwardt, Karsten; Lawrence, Neil D; Stegle, Oliver
2013-06-01
Genomic studies have revealed a substantial heritable component of the transcriptional state of the cell. To fully understand the genetic regulation of gene expression variability, it is important to study the effect of genotype in the context of external factors such as alternative environmental conditions. In model systems, explicit environmental perturbations have been considered for this purpose, allowing to directly test for environment-specific genetic effects. However, such experiments are limited to species that can be profiled in controlled environments, hampering their use in important systems such as human. Moreover, even in seemingly tightly regulated experimental conditions, subtle environmental perturbations cannot be ruled out, and hence unknown environmental influences are frequent. Here, we propose a model-based approach to simultaneously infer unmeasured environmental factors from gene expression profiles and use them in genetic analyses, identifying environment-specific associations between polymorphic loci and individual gene expression traits. In extensive simulation studies, we show that our method is able to accurately reconstruct environmental factors and their interactions with genotype in a variety of settings. We further illustrate the use of our model in a real-world dataset in which one environmental factor has been explicitly experimentally controlled. Our method is able to accurately reconstruct the true underlying environmental factor even if it is not given as an input, allowing to detect genuine genotype-environment interactions. In addition to the known environmental factor, we find unmeasured factors involved in novel genotype-environment interactions. Our results suggest that interactions with both known and unknown environmental factors significantly contribute to gene expression variability. and implementation: Software available at http://pmbio.github.io/envGPLVM/. Supplementary data are available at Bioinformatics online.
Soliveres, Santiago; Torices, Rubén; Maestre, Fernando T.
2015-01-01
Positive and negative plant-plant interactions are major processes shaping plant communities. They are affected by environmental conditions and evolutionary relationships among the interacting plants. However, the generality of these factors as drivers of pairwise plant interactions and their combined effects remain virtually unknown. We conducted an observational study to assess how environmental conditions (altitude, temperature, irradiance and rainfall), the dispersal mechanism of beneficiary species and evolutionary relationships affected the co-occurrence of pairwise interactions in 11 Stipa tenacissima steppes located along an environmental gradient in Spain. We studied 197 pairwise plant-plant interactions involving the two major nurse plants (the resprouting shrub Quercus coccifera and the tussock grass S. tenacissima) found in these communities. The relative importance of the studied factors varied with the nurse species considered. None of the factors studied were good predictors of the co-ocurrence between S. tenacissima and its neighbours. However, both the dispersal mechanism of the beneficiary species and the phylogenetic distance between interacting species were crucial factors affecting the co-occurrence between Q. coccifera and its neighbours, while climatic conditions (irradiance) played a secondary role. Values of phylogenetic distance between 207-272.8 Myr led to competition, while values outside this range or fleshy-fruitness in the beneficiary species led to positive interactions. The low importance of environmental conditions as a general driver of pairwise interactions was caused by the species-specific response to changes in either rainfall or radiation. This result suggests that factors other than climatic conditions must be included in theoretical models aimed to generally predict the outcome of plant-plant interactions. Our study helps to improve current theory on plant-plant interactions and to understand how these interactions can respond to expected modifications in species composition and climate associated to ongoing global environmental change. PMID:25914426
Etiology in psychiatry: embracing the reality of poly‐gene‐environmental causation of mental illness
Uher, Rudolf; Zwicker, Alyson
2017-01-01
Intriguing findings on genetic and environmental causation suggest a need to reframe the etiology of mental disorders. Molecular genetics shows that thousands of common and rare genetic variants contribute to mental illness. Epidemiological studies have identified dozens of environmental exposures that are associated with psychopathology. The effect of environment is likely conditional on genetic factors, resulting in gene‐environment interactions. The impact of environmental factors also depends on previous exposures, resulting in environment‐environment interactions. Most known genetic and environmental factors are shared across multiple mental disorders. Schizophrenia, bipolar disorder and major depressive disorder, in particular, are closely causally linked. Synthesis of findings from twin studies, molecular genetics and epidemiological research suggests that joint consideration of multiple genetic and environmental factors has much greater explanatory power than separate studies of genetic or environmental causation. Multi‐factorial gene‐environment interactions are likely to be a generic mechanism involved in the majority of cases of mental illness, which is only partially tapped by existing gene‐environment studies. Future research may cut across psychiatric disorders and address poly‐causation by considering multiple genetic and environmental measures across the life course with a specific focus on the first two decades of life. Integrative analyses of poly‐causation including gene‐environment and environment‐environment interactions can realize the potential for discovering causal types and mechanisms that are likely to generate new preventive and therapeutic tools. PMID:28498595
Roetker, Nicholas S; Page, C David; Yonker, James A; Chang, Vicky; Roan, Carol L; Herd, Pamela; Hauser, Taissa S; Hauser, Robert M; Atwood, Craig S
2013-10-01
We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.
Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S
2017-07-01
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities. © 2016 John Wiley & Sons Ltd.
Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice.
Kang, Eun Yong; Han, Buhm; Furlotte, Nicholas; Joo, Jong Wha J; Shih, Diana; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.
Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice
Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study. PMID:24415945
Empirical research on international environmental migration: a systematic review.
Obokata, Reiko; Veronis, Luisa; McLeman, Robert
2014-01-01
This paper presents the findings of a systematic review of scholarly publications that report empirical findings from studies of environmentally-related international migration. There exists a small, but growing accumulation of empirical studies that consider environmentally-linked migration that spans international borders. These studies provide useful evidence for scholars and policymakers in understanding how environmental factors interact with political, economic and social factors to influence migration behavior and outcomes that are specific to international movements of people, in highlighting promising future research directions, and in raising important considerations for international policymaking. Our review identifies countries of migrant origin and destination that have so far been the subject of empirical research, the environmental factors believed to have influenced these migrations, the interactions of environmental and non-environmental factors as well as the role of context in influencing migration behavior, and the types of methods used by researchers. In reporting our findings, we identify the strengths and challenges associated with the main empirical approaches, highlight significant gaps and future opportunities for empirical work, and contribute to advancing understanding of environmental influences on international migration more generally. Specifically, we propose an exploratory framework to take into account the role of context in shaping environmental migration across borders, including the dynamic and complex interactions between environmental and non-environmental factors at a range of scales.
Ko, Yi-An; Mukherjee, Bhramar; Smith, Jennifer A; Kardia, Sharon L R; Allison, Matthew; Diez Roux, Ana V
2016-11-01
There has been an increased interest in identifying gene-environment interaction (G × E) in the context of multiple environmental exposures. Most G × E studies analyze one exposure at a time, but we are exposed to multiple exposures in reality. Efficient analysis strategies for complex G × E with multiple environmental factors in a single model are still lacking. Using the data from the Multiethnic Study of Atherosclerosis, we illustrate a two-step approach for modeling G × E with multiple environmental factors. First, we utilize common clustering and classification strategies (e.g., k-means, latent class analysis, classification and regression trees, Bayesian clustering using Dirichlet Process) to define subgroups corresponding to distinct environmental exposure profiles. Second, we illustrate the use of an additive main effects and multiplicative interaction model, instead of the conventional saturated interaction model using product terms of factors, to study G × E with the data-driven exposure subgroups defined in the first step. We demonstrate useful analytical approaches to translate multiple environmental exposures into one summary class. These tools not only allow researchers to consider several environmental exposures in G × E analysis but also provide some insight into how genes modify the effect of a comprehensive exposure profile instead of examining effect modification for each exposure in isolation.
Construction of Interaction Layer on Socio-Environmental Simulation
NASA Astrophysics Data System (ADS)
Torii, Daisuke; Ishida, Toru
In this study, we propose a method to construct a system based on a legacy socio-environmental simulator which enables to design more realistic interaction models in socio-environmetal simulations. First, to provide a computational model suitable for agent interactions, an interaction layer is constructed and connected from outside of a legacy socio-environmental simulator. Next, to configure the agents interacting ability, connection description for controlling the flow of information in the connection area is provided. As a concrete example, we realized an interaction layer by Q which is a scenario description language and connected it to CORMAS, a socio-envirionmental simulator. Finally, we discuss the capability of our method, using the system, in the Fire-Fighter domain.
Zill, Julie A; Gil, Michael A; Osenberg, Craig W
2017-03-01
Environmental stressors often interact, but most studies of multiple stressors have focused on combinations of abiotic stressors. Here we examined the potential interaction between a biotic stressor, the vermetid snail Ceraesignum maximum , and an abiotic stressor, high sedimentation, on the growth of reef-building corals. In a field experiment, we subjected juvenile massive Porites corals to four treatments: (i) neither stressor, (ii) sedimentation, (iii) vermetids or (iv) both stressors. Unexpectedly, we found no effect of either stressor in isolation, but a significant decrease in coral growth in the presence of both stressors. Additionally, seven times more sediment remained on corals in the presence (versus absence) of vermetids, likely owing to adhesion of sediments to corals via vermetid mucus. Thus, vermetid snails and high sedimentation can interact to drive deleterious effects on reef-building corals. More generally, our study illustrates that environmental factors can combine to have negative interactive effects even when individual effects are not detectable. Such 'ecological surprises' may be easily overlooked, leading to environmental degradation that cannot be anticipated through the study of isolated factors. © 2017 The Author(s).
The Molecular Recognition Paradigm of Environmental Chemicals with Biomacromolecules.
Zhang, Wenjing; Pan, Liumeng; Wang, Haifei; Lv, Xuan; Ding, Keke
2017-01-01
The interactions of ligands with biomacromolecules play a fundamental role in almost all bioprocesses occuring in living organisms. The binding of ligands can cause the conformational changes of biomacromolecules, possibly affecting their physiological functions. The interactions of ligands with biomacromolecules are thus becoming a research hotspot. However, till now, there still lacks a systematic compilation of review with the focus on the interactions between environmental chemicals and biomacromolecules. In this review, we focus on the molecular recognition paradigm of environmental chemicals with biomacromolecules and chemical basis for driving the complex formation. The state-of-the-art review on in vitro and in silico studies on interaction of organic chemicals with transport proteins, nuclear receptors and CYP450 enzymes was provided, and the enantioselective interactions of chiral environmental chemicals was also mentioned.
Interactions of environmental and safety measures for sustainable road transportation.
DOT National Transportation Integrated Search
2011-01-01
This study examined interactions of environmental and safety measures for road : transportation. The results showed that a vast majority of the examined measures support : both policy objectives and thereby contribute effectively to sustainable trans...
Chakraborty, Chiranjib; Mallick, Bidyut; Sharma, Ashish Ranjan; Sharma, Garima; Jagga, Supriya; Doss, C George Priya; Nam, Ju-Suk; Lee, Sang-Soo
2017-01-01
Druggability of a target protein depends on the interacting micro-environment between the target protein and drugs. Therefore, a precise knowledge of the interacting micro-environment between the target protein and drugs is requisite for drug discovery process. To understand such micro-environment, we performed in silico interaction analysis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-diabetic drugs (saxagliptin, linagliptin and vildagliptin). During the theoretical and bioinformatics analysis of micro-environmental properties, we performed drug-likeness study, protein active site predictions, docking analysis and residual interactions with the protein-drug interface. Micro-environmental landscape properties were evaluated through various parameters such as binding energy, intermolecular energy, electrostatic energy, van der Waals'+H-bond+desolvo energy (E VHD ) and ligand efficiency (LE) using different in silico methods. For this study, we have used several servers and software, such as Molsoft prediction server, CASTp server, AutoDock software and LIGPLOT server. Through micro-environmental study, highest log P value was observed for linagliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the binding plot. We also identified the number of H-bonds and residues involved in the hydrophobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases and DPP-4, respectively. Our in silico data obtained for drug-target interactions and micro-environmental signature demonstrates linagliptin as the most stable interacting drug among the tested anti-diabetic medicines.
ERIC Educational Resources Information Center
Budd, Julia M.; LaGrow, Steven J.
2000-01-01
A study investigated the efficacy of using the Buddy Road Kit, an interactive, wooden model, to teach environmental concepts to 4 children with visual impairments ages 7 to 11 years old. Results indicate the model was effective in teaching environmental concepts and traffic safety to the children involved. (Contains references.) (CR)
Wei, Peng; Tang, Hongwei; Li, Donghui
2014-01-01
Most complex human diseases are likely the consequence of the joint actions of genetic and environmental factors. Identification of gene-environment (GxE) interactions not only contributes to a better understanding of the disease mechanisms, but also improves disease risk prediction and targeted intervention. In contrast to the large number of genetic susceptibility loci discovered by genome-wide association studies, there have been very few successes in identifying GxE interactions which may be partly due to limited statistical power and inaccurately measured exposures. While existing statistical methods only consider interactions between genes and static environmental exposures, many environmental/lifestyle factors, such as air pollution and diet, change over time, and cannot be accurately captured at one measurement time point or by simply categorizing into static exposure categories. There is a dearth of statistical methods for detecting gene by time-varying environmental exposure interactions. Here we propose a powerful functional logistic regression (FLR) approach to model the time-varying effect of longitudinal environmental exposure and its interaction with genetic factors on disease risk. Capitalizing on the powerful functional data analysis framework, our proposed FLR model is capable of accommodating longitudinal exposures measured at irregular time points and contaminated by measurement errors, commonly encountered in observational studies. We use extensive simulations to show that the proposed method can control the Type I error and is more powerful than alternative ad hoc methods. We demonstrate the utility of this new method using data from a case-control study of pancreatic cancer to identify the windows of vulnerability of lifetime body mass index on the risk of pancreatic cancer as well as genes which may modify this association. PMID:25219575
Wei, Peng; Tang, Hongwei; Li, Donghui
2014-11-01
Most complex human diseases are likely the consequence of the joint actions of genetic and environmental factors. Identification of gene-environment (G × E) interactions not only contributes to a better understanding of the disease mechanisms, but also improves disease risk prediction and targeted intervention. In contrast to the large number of genetic susceptibility loci discovered by genome-wide association studies, there have been very few successes in identifying G × E interactions, which may be partly due to limited statistical power and inaccurately measured exposures. Although existing statistical methods only consider interactions between genes and static environmental exposures, many environmental/lifestyle factors, such as air pollution and diet, change over time, and cannot be accurately captured at one measurement time point or by simply categorizing into static exposure categories. There is a dearth of statistical methods for detecting gene by time-varying environmental exposure interactions. Here, we propose a powerful functional logistic regression (FLR) approach to model the time-varying effect of longitudinal environmental exposure and its interaction with genetic factors on disease risk. Capitalizing on the powerful functional data analysis framework, our proposed FLR model is capable of accommodating longitudinal exposures measured at irregular time points and contaminated by measurement errors, commonly encountered in observational studies. We use extensive simulations to show that the proposed method can control the Type I error and is more powerful than alternative ad hoc methods. We demonstrate the utility of this new method using data from a case-control study of pancreatic cancer to identify the windows of vulnerability of lifetime body mass index on the risk of pancreatic cancer as well as genes that may modify this association. © 2014 Wiley Periodicals, Inc.
Pereira, Ana Santos; Dâmaso-Rodrigues, Maria Luísa; Amorim, Ana; Daam, Michiel A; Cerejeira, Maria José
2018-06-16
Studies addressing the predicted effects of pesticides in combination with abiotic and biotic factors on aquatic biota in ditches associated with typical Mediterranean agroecosystems are scarce. The current study aimed to evaluate the predicted effects of pesticides along with environmental factors and biota interactions on macroinvertebrate, zooplankton and phytoplankton community compositions in ditches adjacent to Portuguese maize and tomato crop areas. Data was analysed with the variance partitioning procedure based on redundancy analysis (RDA). The total variance in biological community composition was divided into the variance explained by the multi-substance potentially affected fraction [(msPAF) arthropods and primary producers], environmental factors (water chemistry parameters), biotic interactions, shared variance, and unexplained variance. The total explained variance reached 39.4% and the largest proportion of this explained variance was attributed to msPAF (23.7%). When each group (phytoplankton, zooplankton and macroinvertebrates) was analysed separately, biota interactions and environmental factors explained the largest proportion of variance. Results of this study indicate that besides the presence of pesticide mixtures, environmental factors and biotic interactions also considerably influence field freshwater communities. Subsequently, to increase our understanding of the risk of pesticide mixtures on ecosystem communities in edge-of-field water bodies, variations in environmental and biological factors should also be considered.
Xavier, Alencar; Jarquin, Diego; Howard, Reka; Ramasubramanian, Vishnu; Specht, James E; Graef, George L; Beavis, William D; Diers, Brian W; Song, Qijian; Cregan, Perry B; Nelson, Randall; Mian, Rouf; Shannon, J Grover; McHale, Leah; Wang, Dechun; Schapaugh, William; Lorenz, Aaron J; Xu, Shizhong; Muir, William M; Rainey, Katy M
2018-02-02
Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations. Copyright © 2018 Xavier et al.
Studying plant–pollinator interactions in a changing climate: A review of approaches1
Byers, Diane L.
2017-01-01
Plant–pollinator interactions are potentially at risk due to climate change. Because of the spatial and temporal variation associated with the effects of climate change and the responses of both actors, research to assess this interaction requires creative approaches. This review focuses on assessments of plants’ and pollinators’ altered phenology in response to environmental changes, as phenology is one of the key responses. I reviewed research methods with the goal of presenting the wide diversity of available techniques for addressing changes in these interactions. Approaches ranged from use of historical specimens to multisite experimental community studies; while differing in depth of historical information and community interactions, all contribute to assessment of phenology changes. Particularly insightful were those studies that directly assessed the environmental changes across spatial and temporal scales and the responses of plants and pollinators at these scales. Longer-term studies across environmental gradients, potentially with reciprocal transplants, enable an assessment of climate impacts at both scales. While changes in phenology are well studied, the impacts of phenology changes are not. Future research should include approaches to address this gap. PMID:28690933
Soliveres, Santiago; Maestre, Fernando T; Bowker, Matthew A; Torices, Rubén; Quero, José L; García-Gómez, Miguel; Cabrera, Omar; Cea, Alex; Coaguila, Daniel; Eldridge, David J; Espinosa, Carlos I; Hemmings, Frank; Monerris, Jorge J; Tighe, Matthew; Delgado-Baquerizo, Manuel; Escolar, Cristina; García-Palacios, Pablo; Gozalo, Beatriz; Ochoa, Victoria; Blones, Julio; Derak, Mchich; Ghiloufi, Wahida; Gutiérrez, Julio R; Hernández, Rosa M; Noumi, Zouhaier
2014-08-20
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of -and interrelationships among- these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants' height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants.
Soliveres, Santiago; Maestre, Fernando T.; Bowker, Matthew A.; Torices, Rubén; Quero, José L.; García-Gómez, Miguel; Cabrera, Omar; Cea, Alex; Coaguila, Daniel; Eldridge, David J.; Espinosa, Carlos I.; Hemmings, Frank; Monerris, Jorge J.; Tighe, Matthew; Delgado-Baquerizo, Manuel; Escolar, Cristina; García-Palacios, Pablo; Gozalo, Beatriz; Ochoa, Victoria; Blones, Julio; Derak, Mchich; Ghiloufi, Wahida; Gutiérrez, Julio R.; Hernández, Rosa M.; Noumi, Zouhaier
2015-01-01
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of –and interrelationships among– these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants’ height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants. PMID:25914604
Exploring Environmental Identity and Behavioral Change in an Environmental Science Course
ERIC Educational Resources Information Center
Blatt, Erica N.
2013-01-01
This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…
Gene-environment interaction and suicidal behavior.
Roy, Alec; Sarchiopone, Marco; Carli, Vladimir
2009-07-01
Studies have increasingly shown that gene-environment interactions are important in psychiatry. Suicidal behavior is a major public health problem. Suicide is generally considered to be a multi-determined act involving various areas of proximal and distal risk. Genetic risk factors are estimated to account for approximately 30% to 40% of the variance in suicidal behavior. In this article, the authors review relevant studies concerning the interaction between the serotonin transporter gene and environmental variables as a model of gene-environment interactions that may have an impact on suicidal behavior. The findings reviewed here suggest that there may be meaningful interactions between distal and proximal suicide risk factors that may amplify the risk of suicidal behavior. Future studies of suicidal behavior should examine both genetic and environmental variables and examine for gene-environment interactions.
Pereyra, Silvana; Bertoni, Bernardo; Sapiro, Rossana
2016-07-01
Preterm birth (PTB) is a complex disease in which medical, social, cultural, and hereditary factors contribute to the pathogenesis of this adverse event. Interactions between genes and environmental factors may complicate our understanding of the relative influence of both effects on PTB. To overcome this, we combined data obtained from a cohort of newborns and their mothers with multiplex analysis of inflammatory-related genes and several environmental risk factors of PTB to describe the environmental-genetic influence on PTB. The study aimed to investigate the association between maternal and fetal genetic variations in genes related to the inflammation pathway with PTB and to assess the interaction between environmental factors with these variations. We conducted a case-control study at the Pereira Rossell Hospital Center, Montevideo, Uruguay. The study included 143 mother-offspring dyads who delivered at preterm (gestational age<37 weeks) and 108 mother-offspring dyads who delivered at term. We used real-time PCR followed by a high-resolution melting analysis to simultaneously identify gene variations involved in inflammatory pathways in the context of environmental variables. The genes analyzed were: Toll-like receptor 4 (TLR4), Interleukin 6 (IL6), Interleukin 1 beta (IL1B) and Interleukin 12 receptor beta (IL12RB). We detected a significant interaction between IL1B rs16944 polymorphism in maternal samples and IL6 rs1800795 polymorphism in newborns, emphasizing the role of the interaction of maternal and fetal genomes in PTB. In addition, smoke exposure and premature rupture of membranes (PROM) were significantly different between the premature group and controls. IL1B and IL6 polymorphisms in mothers were significantly associated with PTB when controlling for smoke exposure. TLR4 polymorphism and PROM were significantly associated with PTB when controlling for PROM, but only in the case of severe PTB. Interactions between maternal and fetal genomes may influence the timing of birth. By incorporating environmental data, we revealed genetic associations with PTB, a finding not found when we analyzed genetic data alone. Our results stress the importance of studying the effect of genotype interactions between mothers and children in the context of environmental factors because they substantially contribute to phenotype variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Almli, Lynn M; Duncan, Richard; Feng, Hao; Ghosh, Debashis; Binder, Elisabeth B; Bradley, Bekh; Ressler, Kerry J; Conneely, Karen N; Epstein, Michael P
2014-12-01
Genetic association studies of psychiatric outcomes often consider interactions with environmental exposures and, in particular, apply tests that jointly consider gene and gene-environment interaction effects for analysis. Using a genome-wide association study (GWAS) of posttraumatic stress disorder (PTSD), we report that heteroscedasticity (defined as variability in outcome that differs by the value of the environmental exposure) can invalidate traditional joint tests of gene and gene-environment interaction. To identify the cause of bias in traditional joint tests of gene and gene-environment interaction in a PTSD GWAS and determine whether proposed robust joint tests are insensitive to this problem. The PTSD GWAS data set consisted of 3359 individuals (978 men and 2381 women) from the Grady Trauma Project (GTP), a cohort study from Atlanta, Georgia. The GTP performed genome-wide genotyping of participants and collected environmental exposures using the Childhood Trauma Questionnaire and Trauma Experiences Inventory. We performed joint interaction testing of the Beck Depression Inventory and modified PTSD Symptom Scale in the GTP GWAS. We assessed systematic bias in our interaction analyses using quantile-quantile plots and genome-wide inflation factors. Application of the traditional joint interaction test to the GTP GWAS yielded systematic inflation across different outcomes and environmental exposures (inflation-factor estimates ranging from 1.07 to 1.21), whereas application of the robust joint test to the same data set yielded no such inflation (inflation-factor estimates ranging from 1.01 to 1.02). Simulated data further revealed that the robust joint test is valid in different heteroscedasticity models, whereas the traditional joint test is invalid. The robust joint test also has power similar to the traditional joint test when heteroscedasticity is not an issue. We believe the robust joint test should be used in candidate-gene studies and GWASs of psychiatric outcomes that consider environmental interactions. To make the procedure useful for applied investigators, we created a software tool that can be called from the popular PLINK package for analysis.
NASA Astrophysics Data System (ADS)
Sharma, Kapil K.; Pandey, S. N.
2016-12-01
In this article, the robustness of tripartite Greenberger-Horne-Zeilinger (GHZ) and W states is investigated against Dzyaloshinskii-Moriya (i.e. DM) interaction. We consider a closed system of three qubits and an environmental qubit. The environmental qubit interacts with any one of the three qubits through DM interaction. The tripartite system is initially prepared in GHZ and W states, respectively. The composite four qubits system evolve with unitary dynamics. We detach the environmental qubit by tracing out from four qubits, and profound impact of DM interaction is studied on the initial entanglement of the system. As a result, we find that the bipartite partitions of W states suffer from entanglement sudden death (i.e. ESD), while tripartite entanglement does not. On the other hand, bipartite partitions and tripartite entanglement in GHZ states do not feel any influence of DM interaction. So, we find that GHZ states have robust character than W states. In this work, we consider generalised GHZ and W states, and three π is used as an entanglement measure. This study can be useful in quantum information processing where unwanted DM interaction takes place.
Nagaie, Satoshi; Ogishima, Soichi; Nakaya, Jun; Tanaka, Hiroshi
2015-01-01
Genome-wide association studies (GWAS) and linkage analysis has identified many single nucleotide polymorphisms (SNPs) related to disease. There are many unknown SNPs whose minor allele frequencies (MAFs) as low as 0.005 having intermediate effects with odds ratio between 1.5~3.0. Low frequency variants having intermediate effects on disease pathogenesis are believed to have complex interactions with environmental factors called gene-environment interactions (GxE). Hence, we describe a model using 3D Manhattan plot called GxE landscape plot to visualize the association of p-values for gene-environment interactions (GxE). We used the Gene-Environment iNteraction Simulator 2 (GENS2) program to simulate interactions between two genetic loci and one environmental factor in this exercise. The dataset used for training contains disease status, gender, 20 environmental exposures and 100 genotypes for 170 subjects, and p-values were calculated by Cochran-Mantel-Haenszel chi-squared test on known data. Subsequently, we created a 3D GxE landscape plot of negative logarithm of the association of p-values for all the possible combinations of genetic and environmental factors with their hierarchical clustering. Thus, the GxE landscape plot is a valuable model to predict association of p-values for GxE and similarity among genotypes and environments in the context of disease pathogenesis. GxE - Gene-environment interactions, GWAS - Genome-wide association study, MAFs - Minor allele frequencies, SNPs - Single nucleotide polymorphisms, EWAS - Environment-wide association study, FDR - False discovery rate, JPT+CHB - HapMap population of Japanese in Tokyo, Japan - Han Chinese in Beijing.
Roetker, Nicholas S.; Yonker, James A.; Chang, Vicky; Roan, Carol L.; Herd, Pamela; Hauser, Taissa S.; Hauser, Robert M.
2013-01-01
Objectives. We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. Methods. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors—13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors—18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. Results. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. Conclusions. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic–environmental–sociobehavioral interactions in depressive symptoms. PMID:23927508
Comparing species interaction networks along environmental gradients.
Pellissier, Loïc; Albouy, Camille; Bascompte, Jordi; Farwig, Nina; Graham, Catherine; Loreau, Michel; Maglianesi, Maria Alejandra; Melián, Carlos J; Pitteloud, Camille; Roslin, Tomas; Rohr, Rudolf; Saavedra, Serguei; Thuiller, Wilfried; Woodward, Guy; Zimmermann, Niklaus E; Gravel, Dominique
2018-05-01
Knowledge of species composition and their interactions, in the form of interaction networks, is required to understand processes shaping their distribution over time and space. As such, comparing ecological networks along environmental gradients represents a promising new research avenue to understand the organization of life. Variation in the position and intensity of links within networks along environmental gradients may be driven by turnover in species composition, by variation in species abundances and by abiotic influences on species interactions. While investigating changes in species composition has a long tradition, so far only a limited number of studies have examined changes in species interactions between networks, often with differing approaches. Here, we review studies investigating variation in network structures along environmental gradients, highlighting how methodological decisions about standardization can influence their conclusions. Due to their complexity, variation among ecological networks is frequently studied using properties that summarize the distribution or topology of interactions such as number of links, connectance, or modularity. These properties can either be compared directly or using a procedure of standardization. While measures of network structure can be directly related to changes along environmental gradients, standardization is frequently used to facilitate interpretation of variation in network properties by controlling for some co-variables, or via null models. Null models allow comparing the deviation of empirical networks from random expectations and are expected to provide a more mechanistic understanding of the factors shaping ecological networks when they are coupled with functional traits. As an illustration, we compare approaches to quantify the role of trait matching in driving the structure of plant-hummingbird mutualistic networks, i.e. a direct comparison, standardized by null models and hypothesis-based metaweb. Overall, our analysis warns against a comparison of studies that rely on distinct forms of standardization, as they are likely to highlight different signals. Fostering a better understanding of the analytical tools available and the signal they detect will help produce deeper insights into how and why ecological networks vary along environmental gradients. © 2017 Cambridge Philosophical Society.
The Community, the Social Studies, and Student Environmental Awareness.
ERIC Educational Resources Information Center
Peters, Richard O.
An environmental education program that combines the social studies curriculum, community interaction, and the study of environment is described. Since man and nature live in a complex, continuous, and inseparable partnership, every environmental program should stress the interrelationships that exist between man and nature. Several ways by which…
Why study gene-environment interactions?
USDA-ARS?s Scientific Manuscript database
PURPOSE OF REVIEW: We examine the reasons for investigating gene-environment interactions and address recent reports evaluating interactions between genes and environmental modulators in relation to cardiovascular disease and its common risk factors. RECENT FINDINGS: Studies focusing on smoking, phy...
Gene–environment interaction in tobacco-related cancers
Taioli, Emanuela
2008-01-01
This review summarizes the carcinogenic effects of tobacco smoke and the basis for interaction between tobacco smoke and genetic factors. Examples of published papers on gene–tobacco interaction and cancer risk are presented. The assessment of gene–environment interaction in tobacco-related cancers has been more complex than originally expected for several reasons, including the multiplicity of genes involved in tobacco metabolism, the numerous substrates metabolized by the relevant genes and the interaction of smoking with other metabolic pathways. Future studies on gene–environment interaction and cancer risk should include biomarkers of smoking dose, along with markers of quantitative historical exposure to tobacco. Epigenetic studies should be added to classic genetic analyses, in order to better understand gene–environmental interaction and individual susceptibility. Other metabolic pathways in competition with tobacco genetic metabolism/repair should be incorporated in epidemiological studies to generate a more complete picture of individual cancer risk associated with environmental exposure to carcinogens. PMID:18550573
McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.
2002-01-01
The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.
Correcting Systematic Inflation in Genetic Association Tests That Consider Interaction Effects
Almli, Lynn M.; Duncan, Richard; Feng, Hao; Ghosh, Debashis; Binder, Elisabeth B.; Bradley, Bekh; Ressler, Kerry J.; Conneely, Karen N.; Epstein, Michael P.
2015-01-01
IMPORTANCE Genetic association studies of psychiatric outcomes often consider interactions with environmental exposures and, in particular, apply tests that jointly consider gene and gene-environment interaction effects for analysis. Using a genome-wide association study (GWAS) of posttraumatic stress disorder (PTSD), we report that heteroscedasticity (defined as variability in outcome that differs by the value of the environmental exposure) can invalidate traditional joint tests of gene and gene-environment interaction. OBJECTIVES To identify the cause of bias in traditional joint tests of gene and gene-environment interaction in a PTSD GWAS and determine whether proposed robust joint tests are insensitive to this problem. DESIGN, SETTING, AND PARTICIPANTS The PTSD GWAS data set consisted of 3359 individuals (978 men and 2381 women) from the Grady Trauma Project (GTP), a cohort study from Atlanta, Georgia. The GTP performed genome-wide genotyping of participants and collected environmental exposures using the Childhood Trauma Questionnaire and Trauma Experiences Inventory. MAIN OUTCOMES AND MEASURES We performed joint interaction testing of the Beck Depression Inventory and modified PTSD Symptom Scale in the GTP GWAS. We assessed systematic bias in our interaction analyses using quantile-quantile plots and genome-wide inflation factors. RESULTS Application of the traditional joint interaction test to the GTP GWAS yielded systematic inflation across different outcomes and environmental exposures (inflation-factor estimates ranging from 1.07 to 1.21), whereas application of the robust joint test to the same data set yielded no such inflation (inflation-factor estimates ranging from 1.01 to 1.02). Simulated data further revealed that the robust joint test is valid in different heteroscedasticity models, whereas the traditional joint test is invalid. The robust joint test also has power similar to the traditional joint test when heteroscedasticity is not an issue. CONCLUSIONS AND RELEVANCE We believe the robust joint test should be used in candidate-gene studies and GWASs of psychiatric outcomes that consider environmental interactions. To make the procedure useful for applied investigators, we created a software tool that can be called from the popular PLINK package for analysis. PMID:25354142
Richards, Stephanie L.; Lord, Cynthia C.; Pesko, Kendra; Tabachnick, Walter J.
2009-01-01
Complex interactions between environmental and biological factors influence the susceptibility of Culex pipiens quinquefasciatus to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown. PMID:19635881
Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra; Tabachnick, Walter J
2009-08-01
Complex interactions between environmental and biological factors influence the susceptibility of Culex pipiens quinquefasciatus to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown.
Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W
2007-08-01
Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.
Microbiota and environmental stress: how pollution affects microbial communities in Manila clams.
Milan, M; Carraro, L; Fariselli, P; Martino, M E; Cavalieri, D; Vitali, F; Boffo, L; Patarnello, T; Bargelloni, L; Cardazzo, B
2018-01-01
Given the crucial role of microbiota in host development, health, and environmental interactions, genomic analyses focusing on host-microbiota interactions should certainly be considered in the investigation of the adaptive mechanisms to environmental stress. Recently, several studies suggested that microbiota associated to digestive tract is a key, although still not fully understood, player that must be considered to assess the toxicity of environmental contaminants. Bacteria-dependent metabolism of xenobiotics may indeed modulate the host toxicity. Conversely, environmental variables (including pollution) may alter the microbial community and/or its metabolic activity leading to host physiological alterations that may contribute to their toxicity. Here, 16s rRNA gene amplicon sequencing has been applied to characterize the hepatopancreas microbiota composition of the Manila clam, Ruditapes philippinarum. The animals were collected in the Venice lagoon area, which is subject to different anthropogenic pressures, mainly represented by the industrial activities of Porto Marghera (PM). Seasonal and geographic differences in clam microbiotas were explored and linked to host response to chemical stress identified in a previous study at the transcriptome level, establishing potential interactions among hosts, microbes, and environmental parameters. The obtained results showed the recurrent presence of putatively detoxifying bacterial taxa in PM clams during winter and over-representation of several metabolic pathways involved in xenobiotic degradation, which suggested the potential for host-microbial synergistic detoxifying actions. Strong interaction between seasonal and chemically-induced responses was also observed, which partially obscured such potentially synergistic actions. Seasonal variables and exposure to toxicants were therefore shown to interact and substantially affect clam microbiota, which appeared to mirror host response to environmental variation. It is clear that understanding how animals respond to chemical stress cannot ignore a key component of such response, the microbiota. Copyright © 2017 Elsevier B.V. All rights reserved.
Akkermans, Simen; Noriega Fernandez, Estefanía; Logist, Filip; Van Impe, Jan F
2017-01-02
Efficient modelling of the microbial growth rate can be performed by combining the effects of individual conditions in a multiplicative way, known as the gamma concept. However, several studies have illustrated that interactions between different effects should be taken into account at stressing environmental conditions to achieve a more accurate description of the growth rate. In this research, a novel approach for modeling the interactions between the effects of environmental conditions on the microbial growth rate is introduced. As a case study, the effect of temperature and pH on the growth rate of Escherichia coli K12 is modeled, based on a set of computer controlled bioreactor experiments performed under static environmental conditions. The models compared in this case study are the gamma model, the model of Augustin and Carlier (2000), the model of Le Marc et al. (2002) and the novel multiplicative interaction model, developed in this paper. This novel model enables the separate identification of interactions between the effects of two (or more) environmental conditions. The comparison of these models focuses on the accuracy, interpretability and compatibility with efficient modeling approaches. Moreover, for the separate effects of temperature and pH, new cardinal parameter model structures are proposed. The novel interaction model contributes to a generic modeling approach, resulting in predictive models that are (i) accurate, (ii) easily identifiable with a limited work load, (iii) modular, and (iv) biologically interpretable. Copyright © 2016. Published by Elsevier B.V.
Bookman, Ebony B.; McAllister, Kimberly; Gillanders, Elizabeth; Wanke, Kay; Balshaw, David; Rutter, Joni; Reedy, Jill; Shaughnessy, Daniel; Agurs-Collins, Tanya; Paltoo, Dina; Atienza, Audie; Bierut, Laura; Kraft, Peter; Fallin, M. Daniele; Perera, Frederica; Turkheimer, Eric; Boardman, Jason; Marazita, Mary L.; Rappaport, Stephen M.; Boerwinkle, Eric; Suomi, Stephen J.; Caporaso, Neil E.; Hertz-Picciotto, Irva; Jacobson, Kristen C.; Lowe, William L.; Goldman, Lynn R.; Duggal, Priya; Gunnar, Megan R.; Manolio, Teri A.; Green, Eric D.; Olster, Deborah H.; Birnbaum, Linda S.
2011-01-01
Although it is recognized that many common complex diseases are a result of multiple genetic and environmental risk factors, studies of gene-environment interaction remain a challenge and have had limited success to date. Given the current state-of-the-science, NIH sought input on ways to accelerate investigations of gene-environment interplay in health and disease by inviting experts from a variety of disciplines to give advice about the future direction of gene-environment interaction studies. Participants of the NIH Gene-Environment Interplay Workshop agreed that there is a need for continued emphasis on studies of the interplay between genetic and environmental factors in disease and that studies need to be designed around a multifaceted approach to reflect differences in diseases, exposure attributes, and pertinent stages of human development. The participants indicated that both targeted and agnostic approaches have strengths and weaknesses for evaluating main effects of genetic and environmental factors and their interactions. The unique perspectives represented at the workshop allowed the exploration of diverse study designs and analytical strategies, and conveyed the need for an interdisciplinary approach including data sharing, and data harmonization to fully explore gene-environment interactions. Further, participants also emphasized the continued need for high-quality measures of environmental exposures and new genomic technologies in ongoing and new studies. PMID:21308768
Laskowski, Ryszard; Bednarska, Agnieszka J; Kramarz, Paulina E; Loureiro, Susana; Scheil, Volker; Kudłek, Joanna; Holmstrup, Martin
2010-08-15
The paper addresses problems arising from effects of natural environmental factors on toxicity of pollutants to organisms. Most studies on interactions between toxicants and natural factors, including those completed in the EU project NoMiracle (Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe) described herein, showed that effects of toxic chemicals on organisms can differ vastly depending purely on external conditions. We compiled data from 61 studies on effects of temperature, moisture and dissolved oxygen on toxicity of a range of chemicals representing pesticides, polycyclic aromatic hydrocarbons, plant protection products of bacterial origin and trace metals. In 62.3% cases significant interactions (p< or =0.05 or less) between natural factors and chemicals were found, reaching 100% for the effect of dissolved oxygen on toxicity of waterborne chemicals. The meta-analysis of the 61 studies showed that the null hypothesis assuming no interactions between toxic chemicals and natural environmental factors should be rejected at p=2.7 x 10(-82) (truncated product method probability). In a few cases of more complex experimental designs, also second-order interactions were found, indicating that natural factors can modify interactions among chemicals. Such data emphasize the necessity of including information on natural factors and their variation in time and across geographic regions in ecological risk assessment. This can be done only if appropriate ecotoxicological test designs are used, in which test organisms are exposed to toxicants at a range of environmental conditions. We advocate designing such tests for the second-tier ecological risk assessment procedures. Copyright 2010 Elsevier B.V. All rights reserved.
Simons, Ronald L.; Lei, Man Kit; Beach, Steven R.H.; Brody, Gene H.; Philibert, Robert A.; Gibbons, Frederick X.
2011-01-01
Although G×E studies are typically based on the assumption that some individuals possess genetic variants that enhance their vulnerability to environmental adversity, the differential susceptibility perspective posits that these individuals are simply more susceptible to environmental influence than others. An important implication of this model is that those persons most vulnerable to adverse social environments are the same ones who reap the most benefit from environmental support. The present study tested several implications of this proposition. Using longitudinal data from a sample of several hundred African Americans, we found that relatively common variants of the dopamine receptor gene and the serotonin transporter gene interact with social environmental conditions to predict aggression in a manner consonant with differential susceptibility. When the social environment was adverse, individuals with these genetic variants manifested more aggression than other genotypes, whereas when the environment was supportive they demonstrated less aggression than other genotypes. Further, we found that these genetic variants interact with environmental conditions to foster various cognitive schemas and emotions in a manner consistent with differential susceptibility and that a latent construct formed by these schemas and emotions mediated the effect of gene by environment interaction on aggression. PMID:22199399
Gene-Environment Interactions in Asthma: Genetic and Epigenetic Effects.
Lee, Jong-Uk; Kim, Jeong Dong; Park, Choon-Sik
2015-07-01
Over the past three decades, a large number of genetic studies have been aimed at finding genetic variants associated with the risk of asthma, applying various genetic and genomic approaches including linkage analysis, candidate gene polymorphism studies, and genome-wide association studies (GWAS). However, contrary to general expectation, even single nucleotide polymorphisms (SNPs) discovered by GWAS failed to fully explain the heritability of asthma. Thus, application of rare allele polymorphisms in well defined phenotypes and clarification of environmental factors have been suggested to overcome the problem of 'missing' heritability. Such factors include allergens, cigarette smoke, air pollutants, and infectious agents during pre- and post-natal periods. The first and simplest interaction between a gene and the environment is a candidate interaction of both a well known gene and environmental factor in a direct physical or chemical interaction such as between CD14 and endotoxin or between HLA and allergens. Several GWAS have found environmental interactions with occupational asthma, aspirin exacerbated respiratory disease, tobacco smoke-related airway dysfunction, and farm-related atopic diseases. As one of the mechanisms behind gene-environment interaction is epigenetics, a few studies on DNA CpG methylation have been reported on subphenotypes of asthma, pitching the exciting idea that it may be possible to intervene at the junction between the genome and the environment. Epigenetic studies are starting to include data from clinical samples, which will make them another powerful tool for re-search on gene-environment interactions in asthma.
ERIC Educational Resources Information Center
Schneekloth, Lynda H.; Day, Diane
The study compared the motor activities and environmental interactions of 36 sighted, partially sighted, and blind children (7 to 13 years old) during unstructured play. Objectives were to assess motor proficiency level; to establish frequency and kind of gross motor, manipulative self stimulation, and social/play behaviors; and to assess use of…
Gubbels, Jessica S; Van Kann, Dave Hh; de Vries, Nanne K; Thijs, Carel; Kremers, Stef Pj
2014-04-17
The ecological perspective holds that human behavior depends on the interaction of different environmental factors and personal characteristics, but it lacks validation and operationalization. In the current paper, an ecological view was adopted to examine the interactive impact of several ecological systems on children's dietary intake and physical activity at childcare or similar facilities. The ecological view was operationalized into three types of interaction: 1) interaction between types of childcare environment (physical, social, political, economic); 2) interaction between micro-systems (the childcare and home environment) in meso-systems; and 3) interaction between childcare environment and child characteristics. The predictive value of each of these interactions was tested based on a systematic review of the literature. Several studies support the hypothesis that the influence of the childcare environment on children's physical activity and diet is moderated by child characteristics (age, gender), but interaction between environmental types as well as between micro-systems is hardly examined in the field of behavioral nutrition and physical activity. Qualitative studies and general child development research provide some valuable insights, but we advocate quantitative research adopting an ecological perspective on environmental influences. Empirical studies operationalizing a true ecological view on diet and physical activity are scarce. Theorizing and assessment of interaction is advocated to become common practice rather than an exception in behavioral nutrition and physical activity research, in order to move the field forward.
2014-01-01
Background The ecological perspective holds that human behavior depends on the interaction of different environmental factors and personal characteristics, but it lacks validation and operationalization. In the current paper, an ecological view was adopted to examine the interactive impact of several ecological systems on children’s dietary intake and physical activity at childcare or similar facilities. The ecological view was operationalized into three types of interaction: 1) interaction between types of childcare environment (physical, social, political, economic); 2) interaction between micro-systems (the childcare and home environment) in meso-systems; and 3) interaction between childcare environment and child characteristics. The predictive value of each of these interactions was tested based on a systematic review of the literature. Discussion Several studies support the hypothesis that the influence of the childcare environment on children’s physical activity and diet is moderated by child characteristics (age, gender), but interaction between environmental types as well as between micro-systems is hardly examined in the field of behavioral nutrition and physical activity. Qualitative studies and general child development research provide some valuable insights, but we advocate quantitative research adopting an ecological perspective on environmental influences. Summary Empirical studies operationalizing a true ecological view on diet and physical activity are scarce. Theorizing and assessment of interaction is advocated to become common practice rather than an exception in behavioral nutrition and physical activity research, in order to move the field forward. PMID:24742167
Progress in the Analysis of Complex Atmospheric Particles.
Laskin, Alexander; Gilles, Mary K; Knopf, Daniel A; Wang, Bingbing; China, Swarup
2016-06-12
This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.
Horwitz, Allan V
2005-10-01
This article examines how genetic and environmental interactions associated with health inequalities are constructed and framed in the presentation of scientific research. It uses the example of a major article about depression in a longitudinal study of young adults that appeared in Science in 2003. This portrayal of findings related to health inequalities uses a genetic lens that privileges genetic influences and diminishes environmental ones. The emphasis on the genetic side of Gene x Environment interactions can serve to deflect attention away from the important impact of social inequalities on health.
The Comparative Toxicogenomics Database (CTD): A Resource for Comparative Toxicological Studies
CJ, Mattingly; MC, Rosenstein; GT, Colby; JN, Forrest; JL, Boyer
2006-01-01
The etiology of most chronic diseases involves interactions between environmental factors and genes that modulate important biological processes (Olden and Wilson, 2000). We are developing the publicly available Comparative Toxicogenomics Database (CTD) to promote understanding about the effects of environmental chemicals on human health. CTD identifies interactions between chemicals and genes and facilitates cross-species comparative studies of these genes. The use of diverse animal models and cross-species comparative sequence studies has been critical for understanding basic physiological mechanisms and gene and protein functions. Similarly, these approaches will be valuable for exploring the molecular mechanisms of action of environmental chemicals and the genetic basis of differential susceptibility. PMID:16902965
Eisenberg, Nancy; Sulik, Michael J.; Spinrad, Tracy L.; Edwards, Alison; Eggum, Natalie D.; Liew, Jeffrey; Sallquist, Julie; Popp, Tierney K.; Smith, Cynthia L.; Hart, Daniel
2012-01-01
The purpose of the current study was to predict the development of aggressive behavior from young children’s respiratory sinus arrhythmia (RSA) and environmental quality. In a longitudinal sample of 213 children, baseline RSA, RSA suppression in response to a film of crying babies, and a composite measure of environmental quality (incorporating socioeconomic status and marital adjustment) were measured, and parent-reported aggression was assessed from 18 to 54 months of age. Predictions based on biological sensitivity-to-context/differential susceptibility and diathesis-stress models, as well as potential moderation by child sex, were examined. The interaction of baseline RSA with environmental quality predicted the development (slope) and 54-month intercept of mothers’ reports of aggression. For girls only, the interaction between baseline RSA and environmental quality predicted the 18-month intercept of fathers’ reports. In general, significant negative relations between RSA and aggression were found primarily at high levels of environmental quality. In addition, we found a significant Sex × RSA interaction predicting the slope and 54-month intercept of fathers’ reports of aggression, such that RSA was negatively related to aggression for boys but not for girls. Contrary to predictions, no significant main effects or interactions were found for RSA suppression. The results provide mixed but not full support for differential susceptibility theory and provide little support for the diathesis-stress model. PMID:22182294
Polygenic interactions with environmental adversity in the aetiology of major depressive disorder.
Mullins, N; Power, R A; Fisher, H L; Hanscombe, K B; Euesden, J; Iniesta, R; Levinson, D F; Weissman, M M; Potash, J B; Shi, J; Uher, R; Cohen-Woods, S; Rivera, M; Jones, L; Jones, I; Craddock, N; Owen, M J; Korszun, A; Craig, I W; Farmer, A E; McGuffin, P; Breen, G; Lewis, C M
2016-03-01
Major depressive disorder (MDD) is a common and disabling condition with well-established heritability and environmental risk factors. Gene-environment interaction studies in MDD have typically investigated candidate genes, though the disorder is known to be highly polygenic. This study aims to test for interaction between polygenic risk and stressful life events (SLEs) or childhood trauma (CT) in the aetiology of MDD. The RADIANT UK sample consists of 1605 MDD cases and 1064 controls with SLE data, and a subset of 240 cases and 272 controls with CT data. Polygenic risk scores (PRS) were constructed using results from a mega-analysis on MDD by the Psychiatric Genomics Consortium. PRS and environmental factors were tested for association with case/control status and for interaction between them. PRS significantly predicted depression, explaining 1.1% of variance in phenotype (p = 1.9 × 10(-6)). SLEs and CT were also associated with MDD status (p = 2.19 × 10(-4) and p = 5.12 × 10(-20), respectively). No interactions were found between PRS and SLEs. Significant PRSxCT interactions were found (p = 0.002), but showed an inverse association with MDD status, as cases who experienced more severe CT tended to have a lower PRS than other cases or controls. This relationship between PRS and CT was not observed in independent replication samples. CT is a strong risk factor for MDD but may have greater effect in individuals with lower genetic liability for the disorder. Including environmental risk along with genetics is important in studying the aetiology of MDD and PRS provide a useful approach to investigating gene-environment interactions in complex traits.
Early Environmental Origins of Neurodegenerative Disease in Later Life
Landrigan, Philip J.; Sonawane, Babasaheb; Butler, Robert N.; Trasande, Leonardo; Callan, Richard; Droller, Daniel
2005-01-01
Parkinson disease (PD) and Alzheimer disease (AD), the two most common neurodegenerative disorders in American adults, are of purely genetic origin in a minority of cases and appear in most instances to arise through interactions among genetic and environmental factors. In this article we hypothesize that environmental exposures in early life may be of particular etiologic importance and review evidence for the early environmental origins of neurodegeneration. For PD the first recognized environmental cause, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), was identified in epidemiologic studies of drug abusers. Chemicals experimentally linked to PD include the insecticide rotenone and the herbicides paraquat and maneb; interaction has been observed between paraquat and maneb. In epidemiologic studies, manganese has been linked to parkinsonism. In dementia, lead is associated with increased risk in chronically exposed workers. Exposures of children in early life to lead, polychlorinated biphenyls, and methylmercury have been followed by persistent decrements in intelligence that may presage dementia. To discover new environmental causes of AD and PD, and to characterize relevant gene–environment interactions, we recommend that a large, prospective genetic and epidemiologic study be undertaken that will follow thousands of children from conception (or before) to old age. Additional approaches to etiologic discovery include establishing incidence registries for AD and PD, conducting targeted investigations in high-risk populations, and improving testing of the potential neurologic toxicity of chemicals. PMID:16140633
Genetic Interactions with Prenatal Social Environment: Effects on Academic and Behavioral Outcomes
ERIC Educational Resources Information Center
Conley, Dalton; Rauscher, Emily
2013-01-01
Numerous studies report gene-environment interactions, suggesting that specific alleles have different effects on social outcomes depending on environment. In all these studies, however, environmental conditions are potentially endogenous to unmeasured genetic characteristics. That is, it could be that the observed interaction effects actually…
Progress in the analysis of complex atmospheric particles
Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; ...
2016-06-01
This study presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.« less
IMPROVING ENVIRONMENTAL HEALTH DISPARITIES: A FUNDAMENTAL CAUSE APPROACH
Specific aims of the study are to examine the interactions between exposure to environmental hazards, racial residential segregation and access to care; and the direct and indirect effects of such environmental factors on incidence and delay in diagnosis of breast, cervical...
Lessons from a Dominican Republic Field Study
ERIC Educational Resources Information Center
Gunter, Michael M., Jr.
2010-01-01
Utilizing student-centered pedagogy, this case study explores an increasingly prominent and instructive addition to traditional academic coursework--the field study experience. This is particularly true in the arena of environmental education where students learn best by experiencing environmental problems first-hand and then interacting with…
Reimer, Jéssica; Maia, Caroline Marques; Santos, Eliana Ferraz
2016-01-01
Environmental enrichment has been widely used to improve conditions for nonhuman animals in captivity. However, there is no consensus about the best way to evaluate the success of enrichments. This study evaluated whether the proportion of time spent interacting with enrichments indicated the proportion of overall behavioral changes. Six environmental enrichments were introduced in succession to 16 captive macaws, and interaction of the animals with them as well as the behaviors of the group were recorded before and during the enrichments. All of the enrichments affected the proportions of time spent in different behaviors. Macaws interacted more with certain items (hibiscus and food tree) than with others (a toy or swings and stairs), but introduction of the enrichments that invoked the least interaction caused as many behavioral changes as those that invoked the most. Moreover, feeding behavior was only affected by the enrichment that invoked the least interaction, a change not detected by a general analysis of enrichment effects. In conclusion, little interaction with enrichment does not mean little change in behavior, and the effects of enrichments are more complex than previously considered.
Merlo, Domenico F; Filiberti, Rosangela; Kobernus, Michael; Bartonova, Alena; Gamulin, Marija; Ferencic, Zeljko; Dusinska, Maria; Fucic, Aleksandra
2012-06-28
Development of graphical/visual presentations of cancer etiology caused by environmental stressors is a process that requires combining the complex biological interactions between xenobiotics in living and occupational environment with genes (gene-environment interaction) and genomic and non-genomic based disease specific mechanisms in living organisms. Traditionally, presentation of causal relationships includes the statistical association between exposure to one xenobiotic and the disease corrected for the effect of potential confounders. Within the FP6 project HENVINET, we aimed at considering together all known agents and mechanisms involved in development of selected cancer types. Selection of cancer types for causal diagrams was based on the corpus of available data and reported relative risk (RR). In constructing causal diagrams the complexity of the interactions between xenobiotics was considered a priority in the interpretation of cancer risk. Additionally, gene-environment interactions were incorporated such as polymorphisms in genes for repair and for phase I and II enzymes involved in metabolism of xenobiotics and their elimination. Information on possible age or gender susceptibility is also included. Diagrams are user friendly thanks to multistep access to information packages and the possibility of referring to related literature and a glossary of terms. Diagrams cover both chemical and physical agents (ionizing and non-ionizing radiation) and provide basic information on the strength of the association between type of exposure and cancer risk reported by human studies and supported by mechanistic studies. Causal diagrams developed within HENVINET project represent a valuable source of information for professionals working in the field of environmental health and epidemiology, and as educational material for students. Cancer risk results from a complex interaction of environmental exposures with inherited gene polymorphisms, genetic burden collected during development and non genomic capacity of response to environmental insults. In order to adopt effective preventive measures and the associated regulatory actions, a comprehensive investigation of cancer etiology is crucial. Variations and fluctuations of cancer incidence in human populations do not necessarily reflect environmental pollution policies or population distribution of polymorphisms of genes known to be associated with increased cancer risk. Tools which may be used in such a comprehensive research, including molecular biology applied to field studies, require a methodological shift from the reductionism that has been used until recently as a basic axiom in interpretation of data. The complexity of the interactions between cells, genes and the environment, i.e. the resonance of the living matter with the environment, can be synthesized by systems biology. Within the HENVINET project such philosophy was followed in order to develop interactive causal diagrams for the investigation of cancers with possible etiology in environmental exposure. Causal diagrams represent integrated knowledge and seed tool for their future development and development of similar diagrams for other environmentally related diseases such as asthma or sterility. In this paper development and application of causal diagrams for cancer are presented and discussed.
Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno
2015-08-07
How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. © 2015 The Author(s).
Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno
2015-01-01
How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species–species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705
Abdullah, N; Abdul Murad, N A; Mohd Haniff, E A; Syafruddin, S E; Attia, J; Oldmeadow, C; Kamaruddin, M A; Abd Jalal, N; Ismail, N; Ishak, M; Jamal, R; Scott, R J; Holliday, E G
2017-08-01
Malaysia has a high and rising prevalence of type 2 diabetes (T2D). While environmental (non-genetic) risk factors for the disease are well established, the role of genetic variations and gene-environment interactions remain understudied in this population. This study aimed to estimate the relative contributions of environmental and genetic risk factors to T2D in Malaysia and also to assess evidence for gene-environment interactions that may explain additional risk variation. This was a case-control study including 1604 Malays, 1654 Chinese and 1728 Indians from the Malaysian Cohort Project. The proportion of T2D risk variance explained by known genetic and environmental factors was assessed by fitting multivariable logistic regression models and evaluating McFadden's pseudo R 2 and the area under the receiver-operating characteristic curve (AUC). Models with and without the genetic risk score (GRS) were compared using the log likelihood ratio Chi-squared test and AUCs. Multiplicative interaction between genetic and environmental risk factors was assessed via logistic regression within and across ancestral groups. Interactions were assessed for the GRS and its 62 constituent variants. The models including environmental risk factors only had pseudo R 2 values of 16.5-28.3% and AUC of 0.75-0.83. Incorporating a genetic score aggregating 62 T2D-associated risk variants significantly increased the model fit (likelihood ratio P-value of 2.50 × 10 -4 -4.83 × 10 -12 ) and increased the pseudo R 2 by about 1-2% and AUC by 1-3%. None of the gene-environment interactions reached significance after multiple testing adjustment, either for the GRS or individual variants. For individual variants, 33 out of 310 tested associations showed nominal statistical significance with 0.001 < P < 0.05. This study suggests that known genetic risk variants contribute a significant but small amount to overall T2D risk variation in Malaysian population groups. If gene-environment interactions involving common genetic variants exist, they are likely of small effect, requiring substantially larger samples for detection. Copyright © 2017 The Royal Society for Public Health. All rights reserved.
Review of pantograph and catenary interaction
NASA Astrophysics Data System (ADS)
Zhang, Weihua; Zou, Dong; Tan, Mengying; Zhou, Ning; Li, Ruiping; Mei, Guiming
2018-06-01
The application of electrified railway directly promotes relevant studies on pantograph-catenary interaction. With the increase of train running speed, the operating conditions for pantograph and catenary have become increasingly complex. This paper reviews the related achievements contributed by groups and institutions around the world. This article specifically focuses on three aspects: The dynamic characteristics of the pantograph and catenary components, the systems' dynamic properties, and the environmental influences on the pantograph-catenary interaction. In accordance with the existing studies, future research may prioritize the task of identifying the mechanism of contact force variation. This kind of study can be carried out by simplifying the pantograph-catenary interaction into a moving load problem and utilizing the theory of matching mechanical impedance. In addition, developing a computational platform that accommodates environmental interferences and multi-field coupling effects is necessary in order to further explore applications based on fundamental studies.
Nordin, Susanna; McKee, Kevin; Wallinder, Maria; von Koch, Lena; Wijk, Helle; Elf, Marie
2017-12-01
The physical environment is of particular importance for supporting activities and interactions among older people living in residential care facilities (RCFs) who spend most of their time inside the facility. More knowledge is needed regarding the complex relationships between older people and environmental aspects in long-term care. The present study aimed to explore how the physical environment influences resident activities and interactions at two RCFs by using a mixed-method approach. Environmental assessments were conducted via the Swedish version of the Sheffield Care Environment Assessment Matrix (S-SCEAM), and resident activities, interactions and locations were assessed through an adapted version of the Dementia Care Mapping (DCM). The Observed Emotion Rating Scale (OERS) was used to assess residents' affective states. Field notes and walk-along interviews were also used. Findings indicate that the design of the physical environment influenced the residents' activities and interactions. Private apartments and dining areas showed high environmental quality at both RCFs, whereas the overall layout had lower quality. Safety was highly supported. Despite high environmental quality in general, several factors restricted resident activities. To optimise care for older people, the design process must clearly focus on accessible environments that provide options for residents to use the facility independently. © 2016 The Authors. Scandinavian Journal of Caring Sciences published by John Wiley & Sons Ltd on behalf of Nordic College of Caring Science.
Soliveres, Santiago; Eldridge, David J.; Maestre, Fernando T.; Bowker, Matthew A.; Tighe, Matthew; Escudero, Adrián
2015-01-01
Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of plant communities to environmental change, and to clarify the relative importance of biotic interactions as a driver of such responses. PMID:25914601
Soliveres, Santiago; Eldridge, David J; Maestre, Fernando T; Bowker, Matthew A; Tighe, Matthew; Escudero, Adrián
2011-11-20
Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of plant communities to environmental change, and to clarify the relative importance of biotic interactions as a driver of such responses.
Understanding the spatial distribution of environmental amenities requires consideration of social and biogeophysical factors, and how they interact to produce patterns of environmental justice or injustice. In this study, we explicitly account for terrain, a key local environmen...
Environmental Scanning Is Vital to Strategic Planning.
ERIC Educational Resources Information Center
Poole, Molly Linda
1991-01-01
Educators involved in strategic planning can use environmental scanning techniques to anticipate social, economic, political, and technological changes that will affect their schools. Compared to more traditional data gathering, environmental scanning is wider in scope and more concerned with anticipating the future and studying the interaction of…
Interactions Between HIV/AIDS and the Environment: Toward a Syndemic Framework
Bolton, Susan; Walson, Judd L.
2013-01-01
Although the social, economic, and political dimensions of the HIV/AIDS epidemic have been studied in considerable depth, the relationship between HIV/AIDS and its environmental causes and consequences remains largely unexplored. We reviewed the evidence of interactions between ecosystem health and the HIV/AIDS pandemic. We hypothesized a syndemic between environmental degradation and HIV/AIDS; they exhibit bidirectional, self-reinforcing interactions. We have presented a syndemic framework detailing multiple synergistic relationships. This framework hinges on the vulnerability of populations as the linchpin between the pandemic and environmental health. A coherent research and practice agenda for addressing the syndemic that focuses on the 2 issues as not only concurrent but also intertwined phenomena is urgently needed. PMID:23237167
Gene-Environment Interactions in Cardiovascular Disease
Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.
2011-01-01
Background Historically, models to describe disease were exclusively nature-based or nurture-based. Current theoretical models for complex conditions such as cardiovascular disease acknowledge the importance of both biologic and non-biologic contributors to disease. A critical feature is the occurrence of interactions between numerous risk factors for disease. The interaction between genetic (i.e. biologic, nature) and environmental (i.e. non-biologic, nurture) causes of disease is an important mechanism for understanding both the etiology and public health impact of cardiovascular disease. Objectives The purpose of this paper is to describe theoretical underpinnings of gene-environment interactions, models of interaction, methods for studying gene-environment interactions, and the related concept of interactions between epigenetic mechanisms and the environment. Discussion Advances in methods for measurement of genetic predictors of disease have enabled an increasingly comprehensive understanding of the causes of disease. In order to fully describe the effects of genetic predictors of disease, it is necessary to place genetic predictors within the context of known environmental risk factors. The additive or multiplicative effect of the interaction between genetic and environmental risk factors is often greater than the contribution of either risk factor alone. PMID:21684212
Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto; Pazos, Florencio
2013-01-01
Intrinsically disordered proteins/regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase interaction speed. For this reason, molecular interactions mediated by IDPs/IDRs are particularly abundant in certain types of protein interactions, such as those of signaling and cell cycle control. We present the first large-scale study of IDPs in Arabidopsis thaliana, the most widely used model organism in plant biology, in order to get insight into the biological roles of these proteins in plants. The work includes a comparative analysis with the human proteome to highlight the differential use of disorder in both species. Results show that while human proteins are in general more disordered, certain functional classes, mainly related to environmental response, are significantly more enriched in disorder in Arabidopsis. We propose that because plants cannot escape from environmental conditions as animals do, they use disorder as a simple and fast mechanism, independent of transcriptional control, for introducing versatility in the interaction networks underlying these biological processes so that they can quickly adapt and respond to challenging environmental conditions.
Boosting for detection of gene-environment interactions.
Pashova, H; LeBlanc, M; Kooperberg, C
2013-01-30
In genetic association studies, it is typically thought that genetic variants and environmental variables jointly will explain more of the inheritance of a phenotype than either of these two components separately. Traditional methods to identify gene-environment interactions typically consider only one measured environmental variable at a time. However, in practice, multiple environmental factors may each be imprecise surrogates for the underlying physiological process that actually interacts with the genetic factors. In this paper, we develop a variant of L(2) boosting that is specifically designed to identify combinations of environmental variables that jointly modify the effect of a gene on a phenotype. Because the effect modifiers might have a small signal compared with the main effects, working in a space that is orthogonal to the main predictors allows us to focus on the interaction space. In a simulation study that investigates some plausible underlying model assumptions, our method outperforms the least absolute shrinkage and selection and Akaike Information Criterion and Bayesian Information Criterion model selection procedures as having the lowest test error. In an example for the Women's Health Initiative-Population Architecture using Genomics and Epidemiology study, the dedicated boosting method was able to pick out two single-nucleotide polymorphisms for which effect modification appears present. The performance was evaluated on an independent test set, and the results are promising. Copyright © 2012 John Wiley & Sons, Ltd.
Progress in the Analysis of Complex Atmospheric Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.
2016-06-16
This manuscript presents an overview on recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surfaces interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multi-modal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, they provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore environmental effects of air-surface interactions.« less
Environmental Identity Development through Social Interactions, Action, and Recognition
ERIC Educational Resources Information Center
Stapleton, Sarah Riggs
2015-01-01
This article uses sociocultural identity theory to explore how practice, action, and recognition can facilitate environmental identity development. Recognition, a construct not previously explored in environmental identity literature, is particularly examined. The study is based on a group of diverse teens who traveled to South Asia to participate…
ERIC Educational Resources Information Center
Hansen, Peter H.
1995-01-01
Describes environmental projects completed by Worcester Polytechnic Institute students in Bangkok, Venice, and Guayaquil as part of a program studying the interaction of science or technology and society. The lessons provide a model for environmental education at other institutions. These interdisciplinary projects promote environmental awareness…
Spatial heterogeneity and the distribution of bromeliad pollinators in the Atlantic Forest
NASA Astrophysics Data System (ADS)
Varassin, Isabela Galarda; Sazima, Marlies
2012-08-01
Interactions between plants and their pollinators are influenced by environmental heterogeneity, resulting in small-scale variations in interactions. This may influence pollinator co-existence and plant reproductive success. This study, conducted at the Estação Biológica de Santa Lúcia (EBSL), a remnant of the Atlantic Forest in southeastern Brazil, investigated the effect of small-scale spatial variations on the interactions between bromeliads and their pollinators. Overall, hummingbirds pollinated 19 of 23 bromeliad species, of which 11 were also pollinated by bees and/or butterflies. However, spatial heterogeneity unrelated to the spatial location of plots or bromeliad species abundance influenced the presence of pollinators. Hummingbirds were the most ubiquitous pollinators at the high-elevation transect, with insect participation clearly declining as transect elevation increased. In the redundancy analysis, the presence of the hummingbird species Phaethornis eurynome, Phaethornis squalidus, Ramphodon naevius, and Thalurania glaucopis, and the butterfly species Heliconius erato and Heliconius nattereri in each plot was correlated with environmental factors such as bromeliad and tree abundance, and was also correlated with horizontal diversity. Since plant-pollinator interactions varied within the environmental mosaics at the study site, this small-scale environmental heterogeneity may relax competition among pollinators, and may explain the high diversity of bromeliads and pollinators generally found in the Atlantic Forest.
Selection of trilateral continuums of life history strategies under food web interactions.
Fujiwara, Masami
2018-03-14
The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer-resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant.
Non-bonded interactions between model pesticides and organo-mineral surfaces have been studied using molecular mechanical conformational calculations and molecular dynamics simulations. The minimum energy conformations and relative binding energies for the interaction of atrazine...
Rhodes, Ryan E; Saelens, Brian E; Sauvage-Mar, Claire
2018-05-16
Few people in most developed nations engage in regular physical activity (PA), despite its well-established health benefits. Socioecological models highlight the potential interaction of multiple factors from policy and the built environment to individual social cognition in explaining PA. The purpose of this review was to appraise this interaction tenet of the socioecological model between the built environment and social cognition to predict PA. Eligible studies had to have been published in peer-reviewed journals in the English language, and included any tests of interaction between social cognition and the built environment with PA. Literature searches, concluded in October 2017, used five common databases. Findings were grouped by type of PA outcomes (leisure, transportation, total PA and total moderate-vigorous PA [MVPA]), then grouped by the type of interactions between social cognitive and built environment constructs. The initial search yielded 308 hits, which was reduced to 22 independent studies of primarily high- to medium-quality after screening for eligibility criteria. The interaction tenet of the socioecological model was not supported for overall MVPA and total PA. By contrast, while there was heterogeneity of findings for leisure-time PA, environmental accessibility/convenience interacted with intention, and environmental aesthetics interacted with affective judgments, to predict leisure-time PA. Interactions between the built environment and social cognition in PA for transport are limited, with current results failing to support an effect. The results provide some support for interactive aspects of the built environment and social cognition in leisure-time PA, and thus highlight potential areas for integrated intervention of individual and environmental change.
Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity.
Langenheder, Silke; Bulling, Mark T; Solan, Martin; Prosser, James I
2010-05-26
With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning.
Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by Environmental Complexity
Langenheder, Silke; Bulling, Mark T.; Solan, Martin; Prosser, James I.
2010-01-01
Background With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Methodology/Principal Findings Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Conclusions/Significance Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning. PMID:20520808
NASA Astrophysics Data System (ADS)
Verschut, Thomas A.; Meineri, Eric; Basset, Alberto
2015-05-01
It has previously been suggested that macroinvertebrates actively search for suitable patches to colonize. However, it is not well understood how the spatial arrangement of patches can affect colonization rates. In this study, we determined the importance of the environmental factors (distance, connectivity and resource availability) for patch colonization in an experimental system using Gammarus aequicauda (Amphipoda), Lekanesphaera hookeri (Isopoda) and Ecrobia ventrosa (Gastropoda). Furthermore, we also assessed how the relative importance of each of these environmental factors differed in interactions between the three species. The single species experiments showed that distance was the most important factor for G. aequicauda and E. ventrosa. However, while E. ventrosa preferred patches close to the release point, G. aequicauda strongly preferred patches further from the release point. High resource availability was a strong determinant for the patch colonization of G. aequicauda and L. hookeri. Connectivity was only of moderate importance in the study system for L. hookeri and E. ventrosa. The effects of the environmental factors were strongly affected by interspecific interactions in the multispecies experiments. For G. aequicauda, the distance preference was lowered in the presence of E. ventrosa. Moreover, while for L. hookeri the effect of resource availability was ruled out by the species interactions, resource availability gained importance for E. ventrosa in the presence of any of the other species. Our results suggest a strong link between environmental factors and biotic interactions in the colonization of habitat patches and indicate that the effect of biotic interactions is especially important for species sharing similar traits.
Can Parasites Really Reveal Environmental Impact?
This review assesses the usefulness of parasites as bioindicators of environmental impact. Relevant studies published in the past decade were compiled; factorial meta-analysis demonstrated significant effects and interactions between parasite levels and the presence and concentra...
Additive gene-environment effects on hippocampal structure in healthy humans.
Rabl, Ulrich; Meyer, Bernhard M; Diers, Kersten; Bartova, Lucie; Berger, Andreas; Mandorfer, Dominik; Popovic, Ana; Scharinger, Christian; Huemer, Julia; Kalcher, Klaudius; Pail, Gerald; Haslacher, Helmuth; Perkmann, Thomas; Windischberger, Christian; Brocke, Burkhard; Sitte, Harald H; Pollak, Daniela D; Dreher, Jean-Claude; Kasper, Siegfried; Praschak-Rieder, Nicole; Moser, Ewald; Esterbauer, Harald; Pezawas, Lukas
2014-07-23
Hippocampal volume loss has been related to chronic stress as well as genetic factors. Although genetic and environmental variables affecting hippocampal volume have extensively been studied and related to mental illness, limited evidence is available with respect to G × E interactions on hippocampal volume. The present MRI study investigated interaction effects on hippocampal volume between three well-studied functional genetic variants (COMT Val158Met, BDNF Val66Met, 5-HTTLPR) associated with hippocampal volume and a measure of environmental adversity (life events questionnaire) in a large sample of healthy humans (n = 153). All three variants showed significant interactions with environmental adversity with respect to hippocampal volume. Observed effects were additive by nature and driven by both recent as well as early life events. A consecutive analysis of hippocampal subfields revealed a spatially distinct profile for each genetic variant suggesting a specific role of 5-HTTLPR for the subiculum, BDNF Val66Met for CA4/dentate gyrus, and COMT Val158Met for CA2/3 volume changes. The present study underscores the importance of G × E interactions as determinants of hippocampal volume, which is crucial for the neurobiological understanding of stress-related conditions, such as mood disorders or post-traumatic stress disorder (PTSD). Copyright © 2014 the authors 0270-6474/14/349917-10$15.00/0.
Genotype-environment interaction and sociology: contributions and complexities.
Seabrook, Jamie A; Avison, William R
2010-05-01
Genotype-environment interaction (G x E) refers to situations in which genetic effects connected to a phenotype are dependent upon variability in the environment, or when genes modify an organism's sensitivity to particular environmental features. Using a typology suggested in the G x E literature, we provide an overview of recent papers that show how social context can trigger a genetic vulnerability, compensate for a genetic vulnerability, control behaviors for which a genetic vulnerability exists, and improve adaptation via proximal causes. We argue that to improve their understanding of social structure, sociologists can take advantage of research in behavior genetics by assessing the impact of within-group variance of various health outcomes and complex human behaviors that are explainable by genotype, environment and their interaction. Insights from life course sociology can aid in ensuring that the dynamic nature of the environment in G x E has been accounted for. Identification of an appropriate entry point for sociologists interested in G x E research could begin with the choice of an environmental feature of interest, a genetic factor of interest, and/or behavior of interest. Optimizing measurement in order to capture the complexity of G x E is critical. Examining the interaction between poorly measured environmental factors and well measured genetic variables will overestimate the effects of genetic variables while underestimating the effect of environmental influences, thereby distorting the interaction between genotype and environment. Although the expense of collecting environmental data is very high, reliable and precise measurement of an environmental pathogen enhances a study's statistical power. Copyright 2010 Elsevier Ltd. All rights reserved.
Mother-Child Referencing of Environmental Print and Its Relationship with Emergent Literacy Skills
ERIC Educational Resources Information Center
Neumann, Michelle M.; Hood, Michelle; Ford, Ruth
2013-01-01
Research Findings: Environmental print provides children with their earliest print experiences. This observational study investigated the frequency of mother-child environmental print referencing and its relationship with emergent literacy. A total of 35 mothers and their children (ages 3-4 years) were videotaped interacting in an environmental…
Klippel, Annelie; Reininghaus, Ulrich; Viechtbauer, Wolfgang; Decoster, Jeroen; Delespaul, Philippe; Derom, Cathérine; de Hert, Marc; Jacobs, Nele; Menne-Lothmann, Claudia; Rutten, Bart; Thiery, Evert; van Os, Jim; van Winkel, Ruud; Myin-Germeys, Inez; Wichers, Marieke
2018-02-23
Adolescents and young adults are highly focused on peer evaluation, but little is known about sources of their differential sensitivity. We examined to what extent sensitivity to peer evaluation is influenced by interacting environmental and genetic factors. A sample of 354 healthy adolescent twin pairs (n = 708) took part in a structured, laboratory task in which they were exposed to peer evaluation. The proportion of the variance in sensitivity to peer evaluation due to genetic and environmental factors was estimated, as was the association with specific a priori environmental risk factors. Differences in sensitivity to peer evaluation between adolescents were explained mainly by non-shared environmental influences. The results on shared environmental influences were not conclusive. No impact of latent genetic factors or gene-environment interactions was found. Adolescents with lower self-rated positions on the social ladder or who reported to have been bullied more severely showed significantly stronger responses to peer evaluation. Not genes, but subjective social status and past experience of being bullied seem to impact sensitivity to peer evaluation. This suggests that altered response to peer evaluation is the outcome of cumulative sensitization to social interactions.
Rosas, Lisa G; Trujillo, Celina; Camacho, Jose; Madrigal, Daniel; Bradman, Asa; Eskenazi, Brenda
2014-01-01
Objective To describe the acceptability of an interactive computer kiosk that provides environmental health education to low-income Latina prenatal patients. Methods A mixed-methods approach was used to assess the acceptability of the Prenatal Environmental Health Kiosk pregnant Latina women in Salinas, CA (n=152). The kiosk is a low literacy, interactive touch-screen computer program with an audio component and includes graphics and an interactive game. Results The majority had never used a kiosk before. Over 90% of women reported that they learned something new while using the kiosk. Prior to using the kiosk, 22% of women reported their preference of receiving health education from a kiosk over a pamphlet or video compared with 57% after using the kiosk (p<0.01). Qualitative data revealed: 1) benefit of exposure to computer use; 2) reinforcing strategy of health education; and 3) popularity of the interactive game. Conclusion The Prenatal Environmental Health Kiosk is an innovative patient health education modality that was shown to be acceptable among a population of low-income Latino pregnant women in a prenatal care clinic. Practice Implications This pilot study demonstrated that a health education kiosk was an acceptable strategy for providing Latina prenatal patients with information on pertinent environmental exposures. PMID:25085548
Rosas, Lisa G; Trujillo, Celina; Camacho, Jose; Madrigal, Daniel; Bradman, Asa; Eskenazi, Brenda
2014-11-01
To describe the acceptability of an interactive computer kiosk that provides environmental health education to low-income Latina prenatal patients. A mixed-methods approach was used to assess the acceptability of the Prenatal Environmental Health Kiosk pregnant Latina women in Salinas, CA (n=152). The kiosk is a low literacy, interactive touch-screen computer program with an audio component and includes graphics and an interactive game. The majority had never used a kiosk before. Over 90% of women reported that they learned something new while using the kiosk. Prior to using the kiosk, 22% of women reported their preference of receiving health education from a kiosk over a pamphlet or video compared with 57% after using the kiosk (p<0.01). Qualitative data revealed: (1) benefit of exposure to computer use; (2) reinforcing strategy of health education; and (3) popularity of the interactive game. The Prenatal Environmental Health Kiosk is an innovative patient health education modality that was shown to be acceptable among a population of low-income Latino pregnant women in a prenatal care clinic. This pilot study demonstrated that a health education kiosk was an acceptable strategy for providing Latina prenatal patients with information on pertinent environmental exposures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kurbasic, Azra; Poveda, Alaitz; Chen, Yan; Ågren, Åsa; Engberg, Elisabeth; Hu, Frank B.; Johansson, Ingegerd; Barroso, Ines; Brändström, Anders; Hallmans, Göran; Renström, Frida; Franks, Paul W.
2014-01-01
Most complex diseases have well-established genetic and non-genetic risk factors. In some instances, these risk factors are likely to interact, whereby their joint effects convey a level of risk that is either significantly more or less than the sum of these risks. Characterizing these gene-environment interactions may help elucidate the biology of complex diseases, as well as to guide strategies for their targeted prevention. In most cases, the detection of gene-environment interactions will require sample sizes in excess of those needed to detect the marginal effects of the genetic and environmental risk factors. Although many consortia have been formed, comprising multiple diverse cohorts to detect gene-environment interactions, few robust examples of such interactions have been discovered. This may be because combining data across studies, usually through meta-analysis of summary data from the contributing cohorts, is often a statistically inefficient approach for the detection of gene-environment interactions. Ideally, single, very large and well-genotyped prospective cohorts, with validated measures of environmental risk factor and disease outcomes should be used to study interactions. The presence of strong founder effects within those cohorts might further strengthen the capacity to detect novel genetic effects and gene-environment interactions. Access to accurate genealogical data would also aid in studying the diploid nature of the human genome, such as genomic imprinting (parent-of-origin effects). Here we describe two studies from northern Sweden (the GLACIER and VIKING studies) that fulfill these characteristics. PMID:25396097
Kurbasic, Azra; Poveda, Alaitz; Chen, Yan; Agren, Asa; Engberg, Elisabeth; Hu, Frank B; Johansson, Ingegerd; Barroso, Ines; Brändström, Anders; Hallmans, Göran; Renström, Frida; Franks, Paul W
2014-12-01
Most complex diseases have well-established genetic and non-genetic risk factors. In some instances, these risk factors are likely to interact, whereby their joint effects convey a level of risk that is either significantly more or less than the sum of these risks. Characterizing these gene-environment interactions may help elucidate the biology of complex diseases, as well as to guide strategies for their targeted prevention. In most cases, the detection of gene-environment interactions will require sample sizes in excess of those needed to detect the marginal effects of the genetic and environmental risk factors. Although many consortia have been formed, comprising multiple diverse cohorts to detect gene-environment interactions, few robust examples of such interactions have been discovered. This may be because combining data across studies, usually through meta-analysis of summary data from the contributing cohorts, is often a statistically inefficient approach for the detection of gene-environment interactions. Ideally, single, very large and well-genotyped prospective cohorts, with validated measures of environmental risk factor and disease outcomes should be used to study interactions. The presence of strong founder effects within those cohorts might further strengthen the capacity to detect novel genetic effects and gene-environment interactions. Access to accurate genealogical data would also aid in studying the diploid nature of the human genome, such as genomic imprinting (parent-of-origin effects). Here we describe two studies from northern Sweden (the GLACIER and VIKING studies) that fulfill these characteristics.
Li, Shi; Mukherjee, Bhramar; Taylor, Jeremy M G; Rice, Kenneth M; Wen, Xiaoquan; Rice, John D; Stringham, Heather M; Boehnke, Michael
2014-07-01
With challenges in data harmonization and environmental heterogeneity across various data sources, meta-analysis of gene-environment interaction studies can often involve subtle statistical issues. In this paper, we study the effect of environmental covariate heterogeneity (within and between cohorts) on two approaches for fixed-effect meta-analysis: the standard inverse-variance weighted meta-analysis and a meta-regression approach. Akin to the results in Simmonds and Higgins (), we obtain analytic efficiency results for both methods under certain assumptions. The relative efficiency of the two methods depends on the ratio of within versus between cohort variability of the environmental covariate. We propose to use an adaptively weighted estimator (AWE), between meta-analysis and meta-regression, for the interaction parameter. The AWE retains full efficiency of the joint analysis using individual level data under certain natural assumptions. Lin and Zeng (2010a, b) showed that a multivariate inverse-variance weighted estimator retains full efficiency as joint analysis using individual level data, if the estimates with full covariance matrices for all the common parameters are pooled across all studies. We show consistency of our work with Lin and Zeng (2010a, b). Without sacrificing much efficiency, the AWE uses only univariate summary statistics from each study, and bypasses issues with sharing individual level data or full covariance matrices across studies. We compare the performance of the methods both analytically and numerically. The methods are illustrated through meta-analysis of interaction between Single Nucleotide Polymorphisms in FTO gene and body mass index on high-density lipoprotein cholesterol data from a set of eight studies of type 2 diabetes. © 2014 WILEY PERIODICALS, INC.
Emerging methods to study bacteriophage infection at the single-cell level.
Dang, Vinh T; Sullivan, Matthew B
2014-01-01
Bacteria and their viruses (phages) are abundant across diverse ecosystems and their interactions influence global biogeochemical cycles and incidence of disease. Problematically, both classical and metagenomic methods insufficiently assess the host specificity of phages and phage-host infection dynamics in nature. Here we review emerging methods to study phage-host interaction and infection dynamics with a focus on those that offer resolution at the single-cell level. These methods leverage ever-increasing sequence data to identify virus signals from single-cell amplified genome datasets or to produce primers/probes to target particular phage-bacteria pairs (digital PCR and phageFISH), even in complex communities. All three methods enable study of phage infection of uncultured bacteria from environmental samples, while the latter also discriminates between phage-host interaction outcomes (e.g., lytic, chronic, lysogenic) in model systems. Together these techniques enable quantitative, spatiotemporal studies of phage-bacteria interactions from environmental samples of any ecosystem, which will help elucidate and predict the ecological and evolutionary impacts of specific phage-host pairings in nature.
NASA Astrophysics Data System (ADS)
Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua
2016-12-01
Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.
Childhood socioeconomic status amplifies genetic effects on adult intelligence.
Bates, Timothy C; Lewis, Gary J; Weiss, Alexander
2013-10-01
Studies of intelligence in children reveal significantly higher heritability among groups with high socioeconomic status (SES) than among groups with low SES. These interaction effects, however, have not been examined in adults, when between-families environmental effects are reduced. Using 1,702 adult twins (aged 24-84) for whom intelligence assessment data were available, we tested for interactions between childhood SES and genetic effects, between-families environmental effects, and unique environmental effects. Higher SES was associated with higher mean intelligence scores. Moreover, the magnitude of genetic influences on intelligence was proportional to SES. By contrast, environmental influences were constant. These results suggest that rather than setting lower and upper bounds on intelligence, genes multiply environmental inputs that support intellectual growth. This mechanism implies that increasing SES may raise average intelligence but also magnifies individual differences in intelligence.
Haerens, Leen; Craeynest, Mietje; Deforche, Benedicte; Maes, Lea; Cardon, Greet; De Bourdeaudhuij, Ilse
2009-01-01
The present study aimed at investigating the influence of home, neighbourhood and school environmental factors on adolescents' engagement in self-reported extracurricular physical activity and leisure time sports and on MVPA objectively measured by accelerometers. Environmental factors were assessed using questionnaires. Gender specific hierarchical regression analyses were conducted, with demographic variables entered in the first block, and environmental, psychosocial factors and interactions terms entered in the second block. Participation in extracurricular activities at school was positively related to the number of organized activities and the provision of supervision. Perceived accessibility of neighborhood facilities was not related to engagement in leisure time sports, whereas the availability of sedentary and physical activity equipment was. Findings were generally supportive of ecological theories stating that behaviors are influenced by personal and environmental factors that are constantly interacting. PMID:20041023
Justice, N. B.; Sczesnak, A.; Hazen, T. C.; ...
2017-08-04
A central goal of microbial ecology is to identify and quantify the forces that lead to observed population distributions and dynamics. However, these forces, which include environmental selection, dispersal, and organism interactions, are often difficult to assess in natural environments. Here in this paper, we present a method that links microbial community structures with selective and stochastic forces through highly replicated subsampling and enrichment of a single environmental inoculum. Specifically, groundwater from a well-studied natural aquifer was serially diluted and inoculated into nearly 1,000 aerobic and anaerobic nitrate-reducing cultures, and the final community structures were evaluated with 16S rRNA genemore » amplicon sequencing. We analyzed the frequency and abundance of individual operational taxonomic units (OTUs) to understand how probabilistic immigration, relative fitness differences, environmental factors, and organismal interactions contributed to divergent distributions of community structures. We further used a most probable number (MPN) method to estimate the natural condition-dependent cultivable abundance of each of the nearly 400 OTU cultivated in our study and infer the relative fitness of each. Additionally, we infer condition-specific organism interactions and discuss how this high-replicate culturing approach is essential in dissecting the interplay between overlapping ecological forces and taxon-specific attributes that underpin microbial community assembly. IMPORTANCEThrough highly replicated culturing, in which inocula are subsampled from a single environmental sample, we empirically determine how selective forces, interspecific interactions, relative fitness, and probabilistic dispersal shape bacterial communities. These methods offer a novel approach to untangle not only interspecific interactions but also taxon-specific fitness differences that manifest across different cultivation conditions and lead to the selection and enrichment of specific organisms. Additionally, we provide a method for estimating the number of cultivable units of each OTU in the original sample through the MPN approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Justice, N. B.; Sczesnak, A.; Hazen, T. C.
A central goal of microbial ecology is to identify and quantify the forces that lead to observed population distributions and dynamics. However, these forces, which include environmental selection, dispersal, and organism interactions, are often difficult to assess in natural environments. Here in this paper, we present a method that links microbial community structures with selective and stochastic forces through highly replicated subsampling and enrichment of a single environmental inoculum. Specifically, groundwater from a well-studied natural aquifer was serially diluted and inoculated into nearly 1,000 aerobic and anaerobic nitrate-reducing cultures, and the final community structures were evaluated with 16S rRNA genemore » amplicon sequencing. We analyzed the frequency and abundance of individual operational taxonomic units (OTUs) to understand how probabilistic immigration, relative fitness differences, environmental factors, and organismal interactions contributed to divergent distributions of community structures. We further used a most probable number (MPN) method to estimate the natural condition-dependent cultivable abundance of each of the nearly 400 OTU cultivated in our study and infer the relative fitness of each. Additionally, we infer condition-specific organism interactions and discuss how this high-replicate culturing approach is essential in dissecting the interplay between overlapping ecological forces and taxon-specific attributes that underpin microbial community assembly. IMPORTANCEThrough highly replicated culturing, in which inocula are subsampled from a single environmental sample, we empirically determine how selective forces, interspecific interactions, relative fitness, and probabilistic dispersal shape bacterial communities. These methods offer a novel approach to untangle not only interspecific interactions but also taxon-specific fitness differences that manifest across different cultivation conditions and lead to the selection and enrichment of specific organisms. Additionally, we provide a method for estimating the number of cultivable units of each OTU in the original sample through the MPN approach.« less
Gene-environment interactions in the aetiology of systemic lupus erythematosus.
Jönsen, Andreas; Bengtsson, Anders A; Nived, Ola; Truedsson, Lennart; Sturfelt, Gunnar
2007-12-01
Systemic lupus erythematosus (SLE) is a disease that displays a multitude of symptoms and a vast array of autoantibodies. The disease course may vary substantially between patients. The current understanding of SLE aetiology includes environmental factors acting on a genetically prone individual during an undetermined time period resulting in autoimmunity and finally surpassing that individual's disease threshold. Genetic differences and environmental factors may interact specifically in the pathogenetic processes and may influence disease development and modify the disease course. Identification of these factors and their interactions in the pathogenesis of SLE is vital in understanding the disease and may contribute to identify new treatment targets and perhaps also aid in disease prevention. However, there are several problems that need to be overcome, such as the protracted time frame of environmental influence, time dependent epigenetic alterations and the possibility that different pathogenetic pathways may result in a similar disease phenotype. This is mirrored by the relatively few studies that suggest specific gene-environment interactions. These include an association between SLE diagnosis and glutation S-transferase gene variants combined with occupational sun exposure as well as variants of the N-acetyl transferase gene in combination with either aromatic amine exposure or hydralazine. With increased knowledge on SLE pathogenesis, the role of environmental factors and their genetic interactions may be further elucidated.
NASA Astrophysics Data System (ADS)
Koliopoulos, T. C.; Koliopoulou, G.
2007-10-01
We present an input-output solution for simulating the associated behavior and optimized physical needs of an environmental system. The simulations and numerical analysis determined the accurate boundary loads and areas that were required to interact for the proper physical operation of a complicated environmental system. A case study was conducted to simulate the optimum balance of an environmental system based on an artificial intelligent multi-interacting input-output numerical scheme. The numerical results were focused on probable further environmental management techniques, with the objective of minimizing any risks and associated environmental impact to protect the quality of public health and the environment. Our conclusions allowed us to minimize the associated risks, focusing on probable cases in an emergency to protect the surrounded anthropogenic or natural environment. Therefore, the lining magnitude could be determined for any useful associated technical works to support the environmental system under examination, taking into account its particular boundary necessities and constraints.
Inbreeding depression by environment interactions in a free-living mammal population
Pemberton, J M; Ellis, P E; Pilkington, J G; Bérénos, C
2017-01-01
Experimental studies often find that inbreeding depression is more severe in harsh environments, but the few studies of in situ wild populations available to date rarely find strong support for this effect. We investigated evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation. All traits showed variation with population density and all traits showed some evidence for depression because of either an individual's own inbreeding or maternal inbreeding. However, only six traits showed evidence for an interaction in the expected direction, and only two interactions were statistically significant. We identify three possible reasons why wild population studies may generally fail to find strong support for interactions between inbreeding depression and environmental variation compared with experimental studies. First, for species with biparental inbreeding only, the amount of observed inbreeding in natural populations is generally low compared with that used in experimental studies. Second, it is possible that experimental studies sometimes actually impose higher levels of stress than organisms experience in the wild. Third, some purging of the deleterious recessive alleles that underpin interaction effects may occur in the wild. PMID:27876804
Inbreeding depression by environment interactions in a free-living mammal population.
Pemberton, J M; Ellis, P E; Pilkington, J G; Bérénos, C
2017-01-01
Experimental studies often find that inbreeding depression is more severe in harsh environments, but the few studies of in situ wild populations available to date rarely find strong support for this effect. We investigated evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation. All traits showed variation with population density and all traits showed some evidence for depression because of either an individual's own inbreeding or maternal inbreeding. However, only six traits showed evidence for an interaction in the expected direction, and only two interactions were statistically significant. We identify three possible reasons why wild population studies may generally fail to find strong support for interactions between inbreeding depression and environmental variation compared with experimental studies. First, for species with biparental inbreeding only, the amount of observed inbreeding in natural populations is generally low compared with that used in experimental studies. Second, it is possible that experimental studies sometimes actually impose higher levels of stress than organisms experience in the wild. Third, some purging of the deleterious recessive alleles that underpin interaction effects may occur in the wild.
Environmental interactions in space exploration: Environmental interactions working group
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.; Hillard, G. Barry
1992-01-01
With the advent of the Space Exploration Initiative, the possibility of designing and using systems on scales heretofore unattempted presents exciting new challenges in systems design and space science. The environments addressed by the Space Exploration Initiative include the surfaces of the Moon and Mars, as well as the varied plasma and field environments which will be encountered by humans and cargo enroute to these destinations. Systems designers will need to understand environmental interactions and be able to model these mechanisms from the earliest conceptual design stages through design completion. To the end of understanding environmental interactions and establishing robotic precursor mission requirements, an Environmental Interactions Working Group was established as part of the Robotic Missions Working Group. The working group is described, and its current activities are updated.
Teaching Ecological Principles as a Basis for Understanding Environmental Issues.
ERIC Educational Resources Information Center
Webb, Paul; Boltt, Gill
1989-01-01
Using case study data, determines high school pupils' and university students' (n=162) ability to predict possible outcomes of interactions between ecological populations . Results indicate the majority of respondents could predict interactive outcomes within a simple food web but not when the interaction involved multiple routes. (five…
Young-Wolff, Kelly C.; Enoch, Mary-Anne; Prescott, Carol A.
2011-01-01
Since 2005, a rapidly expanding literature has evaluated whether environmental factors such as socio-cultural context and environmental adversity interact with genetic influences on drinking behaviors. This article critically reviews empirical research on alcohol-related genotype-environment interactions (GxE) and provides a contextual framework for understanding how genetic factors combine with (or are shaped by) environmental influences to influence the development of drinking behaviors and alcohol use disorders. Collectively, evidence from twin, adoption, and molecular genetic studies indicates that the degree of importance of genetic influences on risk for drinking outcomes can vary in different populations and under different environmental circumstances. However, methodological limitations and lack of consistent replications in this literature make it difficult to draw firm conclusions regarding the nature and effect size of alcohol-related GxE. On the basis of this review, we describe several methodological challenges as they relate to current research on GxE in drinking behaviors and provide recommendations to aid future research. PMID:21530476
Kotta, Jonne; Oganjan, Katarina; Lauringson, Velda; Pärnoja, Merli; Kaasik, Ants; Rohtla, Liisa; Kotta, Ilmar; Orav-Kotta, Helen
2015-01-01
Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels.
Kotta, Jonne; Oganjan, Katarina; Lauringson, Velda; Pärnoja, Merli; Kaasik, Ants; Rohtla, Liisa; Kotta, Ilmar; Orav-Kotta, Helen
2015-01-01
Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels. PMID:26317668
NASA Astrophysics Data System (ADS)
Liu, Hui; Fogarty, Michael J.; Hare, Jonathan A.; Hsieh, Chih-hao; Glaser, Sarah M.; Ye, Hao; Deyle, Ethan; Sugihara, George
2014-03-01
The dynamics of marine fishes are closely related to lower trophic levels and the environment. Quantitatively understanding ecosystem dynamics linking environmental variability and prey resources to exploited fishes is crucial for ecosystem-based management of marine living resources. However, standard statistical models typically grounded in the concept of linear system may fail to capture the complexity of ecological processes. We have attempted to model ecosystem dynamics using a flexible, nonparametric class of nonlinear forecasting models. We analyzed annual time series of four environmental indices, 22 marine copepod taxa, and four ecologically and commercially important fish species during 1977 to 2009 on Georges Bank, a highly productive and intensively studied area of the northeast U.S. continental shelf ecosystem. We examined the underlying dynamic features of environmental indices and copepods, quantified the dynamic interactions and coherence with fishes, and explored the potential control mechanisms of ecosystem dynamics from a nonlinear perspective. We found: (1) the dynamics of marine copepods and environmental indices exhibiting clear nonlinearity; (2) little evidence of complex dynamics across taxonomic levels of copepods; (3) strong dynamic interactions and coherence between copepods and fishes; and (4) the bottom-up forcing of fishes and top-down control of copepods coexisting as target trophic levels vary. These findings highlight the nonlinear interactions among ecosystem components and the importance of marine zooplankton to fish populations which point to two forcing mechanisms likely interactively regulating the ecosystem dynamics on Georges Bank under a changing environment.
Bijou, Sidney W.; Peterson, Robert F.; Ault, Marion H.
1968-01-01
It is the thesis of this paper that data from descriptive and experimental field studies can be interrelated at the level of data and empirical concepts if both sets are derived from frequency-of-occurrence measures. The methodology proposed for a descriptive field study is predicated on three assumptions: (1) The primary data of psychology are the observable interactions of a biological organism and environmental events, past and present. (2) Theoretical concepts and laws are derived from empirical concepts and laws, which in turn are derived from the raw data. (3) Descriptive field studies describe interactions between behavioral and environmental events; experimental field studies provide information on their functional relationships. The ingredients of a descriptive field investigation using frequency measures consist of: (1) specifying in objective terms the situation in which the study is conducted, (2) defining and recording behavioral and environmental events in observable terms, and (3) measuring observer reliability. Field descriptive studies following the procedures suggested here would reveal interesting new relationships in the usual ecological settings and would also provide provocative cues for experimental studies. On the other hand, field-experimental studies using frequency measures would probably yield findings that would suggest the need for describing new interactions in specific natural situations. PMID:16795175
NASA Astrophysics Data System (ADS)
Ruljigaljig, T.; Huang, M. L.
2015-12-01
This study development interface for Mobile Application (App) use cloud technology, Web 2.0 and online community of technology to build the Environmental-Geological Disaster Network(EDN). The interaction App platform between expert knowledge and community is developed as a teaching tool, which bases on the open data released by Central Geological Survey. The APP can through Augmented Reality technology to potential hazards position through the camera lens, the real show in real-world environment. The interaction with experts in the community to improve the general public awareness of disaster. Training people to record the occurrence of geological disasters precursor, thereby awakened their to natural disaster consciousness and attention.General users obtain real-time information during travel, mountaineering and teaching process. Using App platform to upload and represent the environmental geological disaster data collected by themselves. It is expected that by public joint the open platform can accumulate environmental geological disaster data effectively, quickly, extensively and correctly. The most important thing of this study is rooting the concept of disaster prevention, reduction, and avoidance through public participation.
ERIC Educational Resources Information Center
Fatima, Johra Kayeser; Khan, Habib Zaman; Goh, Edmund
2016-01-01
Our study examines the environmental knowledge (EK) and behavioural outcomes of students studying ecotourism in Sydney, Australia. Three competing models were tested to examine the relationships between EK, participation intention (PI) in ecotourism programs, landscape likeability (LL) and social interactions (SI); and the study also tested the…
Li, Ke; Zhang, Peng; Crittenden, John C; Guhathakurta, Subhrajit; Chen, Yongsheng; Fernando, Harindra; Sawhney, Anil; McCartney, Peter; Grimm, Nancy; Kahhat, Ramzy; Joshi, Himanshu; Konjevod, Goran; Choi, Yu-Jin; Fonseca, Ernesto; Allenby, Braden; Gerrity, Daniel; Torrens, Paul M
2007-07-15
To encourage sustainable development, engineers and scientists need to understand the interactions among social decision-making, development and redevelopment, land, energy and material use, and their environmental impacts. In this study, a framework that connects these interactions was proposed to guide more sustainable urban planning and construction practices. Focusing on the rapidly urbanizing setting of Phoenix, Arizona, complexity models and deterministic models were assembled as a metamodel, which is called Sustainable Futures 2100 and were used to predict land use and development, to quantify construction material demands, to analyze the life cycle environmental impacts, and to simulate future ground-level ozone formation.
Construction Management Planning. The Impact on Meeting Owner Goals.
1984-05-17
study, the CM company’s effectiveness was more a -4D Wd. .-. * *J 6 i David Allan Boothe result of an interaction of organizational and environmental ... company’s environmental concerns is when the firm is hired and the control it has over the establishment !S .. . . . . . . . . . . . . 51 *i- of the...significant relationship when either environmental or environmental / planning characteristics were controlled. What was indicated as being significant
ERIC Educational Resources Information Center
Lu, Chia-Chen
2017-01-01
Environmental experience can enhance the ideas of design students. Thus, this type of experience may interfere with the influence of design students' cognitive style on creativity. The aim of this study was to examine the influence of environmental experience on the relationship between innovative cognitive style and industrial design students'…
NASA Astrophysics Data System (ADS)
Šulčius, Sigitas; Reunamo, Anna; Paškauskas, Ričardas; Leskinen, Piia
2018-05-01
Coastal lagoons are continuously exposed to strong environmental gradients that determine the distribution and trophic interactions of microbial communities. Therefore, in this study we assessed whether and how environmental changes influence the bacterial community and its vulnerability to viral infection and lysis along the major environmental gradient in the Curonian Lagoon. We found significant differences in bacterial community profiles, their richness and evenness between the riverine, freshwater southern part and the Baltic Sea water intrusion-influenced northern part of the lagoon, suggesting strong environmental control of the structure of bacterial communities. Viruses were found to be play an important role in bacterial mortality in the Curonian Lagoon, being responsible for the removal of 20-50% of the bacterial standing stock. We observed differences in virioplankton decay rates and virus burst sizes between the northern and southern parts of the lagoon. However, no relationships were found between viral activity and bacterial communities within the lagoon ecosystem. The frequency of infected cells and virus-mediated bacterial mortality (VMBM) remained constant among the sampling sites irrespective of differences in bacteria community assemblages and environmental conditions. The results indicate that factors determining changes in bacterial diversity are different from the factors limiting their vulnerability to viral infection and lysis. This study also suggests that under changing environmental conditions, virus-bacteria interactions are more stable than the interacting viral and bacterial communities themselves. These findings are important for understanding the functioning of the coastal ecosystems under the rapidly changing local (spatial and temporal) and global (e.g. eutrophication, climate change) conditions.
Environmental and gene-environment interactions and risk of rheumatoid arthritis
Karlson, Elizabeth W.; Deane, Kevin
2012-01-01
Multiple environmental factors including hormones, dietary factors, infections and exposure to tobacco smoke as well as gene-environment interactions have been associated with increased risk for rheumatoid arthritis (RA). Importantly, the growing understanding of the prolonged period prior to the first onset of symptoms of RA suggests that these environmental and genetic factors are likely acting to drive the development of RA-related autoimmunity long before the appearance of the first joint symptoms and clinical findings that are characteristic of RA. Herein we will review these factors and interactions, especially those that have been investigated in a prospective fashion prior to the symptomatic onset of RA. We will also discuss how these factors may be explored in future study to further the understanding of the pathogenesis of RA, and ultimately perhaps develop preventive measures for this disease. PMID:22819092
Goodman, Michael; Dana Flanders, W
2007-04-01
We compare methodological approaches for evaluating gene-environment interaction using a planned study of pediatric leukemia as a practical example. We considered three design options: a full case-control study (Option I), a case-only study (Option II), and a partial case-control study (Option III), in which information on controls is limited to environmental exposure only. For each design option we determined its ability to measure the main effects of environmental factor E and genetic factor G, and the interaction between E and G. Using the leukemia study example, we calculated sample sizes required to detect and odds ratio (OR) of 2.0 for E alone, an OR of 10 for G alone and an interaction G x E of 3. Option I allows measuring both main effects and interaction, but requires a total sample size of 1,500 cases and 1,500 controls. Option II allows measuring only interaction, but requires just 121 cases. Option III allows calculating the main effect of E, and interaction, but not the main effect of G, and requires a total of 156 cases and 133 controls. In this case, the partial case-control study (Option III) appears to be more efficient with respect to its ability to answer the research questions for the amount of resources required. The design options considered in this example are not limited to observational epidemiology and may be applicable in studies of pharmacogenomics, survivorship, and other areas of pediatric ALL research.
NASA Astrophysics Data System (ADS)
Liu, H.; Minello, T.; Sutton, G.
2016-02-01
Coastal marine ecosystems are both productive and vulnerable to human and natural stressors. Examining the relative importance of fishing, environmental variability, and habitat alteration on ecosystem dynamics is challenging. Intensive harvest and habitat loss have resulted in widespread concerns related to declines in fisheries production, but causal mechanisms are rarely clear. In this study, we modeled trophic dynamics in Galveston Bay, Texas, using fishery-independent catch data for blue crab, shrimp, red drum, Atlantic croaker and spotted seatrout along with habitat information collected by the Texas Parks and Wildlife Department during 1984 - 2014. We developed a multispecies state-space model to examine ecological interactions and partition the relative effects of trophic interactions and environmental conditions on the community dynamics. Preliminary results showed the importance of salinity, density-dependence, and trophic interactions. We are continuing to explore these results from a perspective of fish community compensatory responses to exploitation, reflecting both direct and indirect effects of harvesting under the influence of climate variability.
MODELING THE INTERACTION OF AGROCHEMICALS WITH ENVIRONMENTAL SURFACES
The interactions between agrochemicals and organo-mineral surfaces were studied using molecular mechanical conformational calculations and molecular dynamics simulations. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), 2,4-D (1, 2-dichlorophenoxyacetic acid), and DD...
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.; Hillard, G. Barry
1991-01-01
With the advent of the Space Exploration Initiative, the possibility of designing and using systems on scales not heretofore attempted presents exciting new challenges in systems design and space science. The environments addressed by the Space Exploration Initiative include the surfaces of the Moon and Mars, as well as the varied plasma and field environments which will be encountered by humans and cargo enroute to these destinations. Systems designers will need to understand environmental interactions and be able to model these mechanisms from the earliest conceptual design stages through design completion. To the end of understanding environmental interactions and establishing robotic precursor mission requirements, an Environmental Interactions Working Group has been established as part of the Robotic Missions Working Group. The current paper describes the working group and gives an update of its current activities. Working group charter and operation are reviewed, background information on the environmental interactions and their characteristics is offered, and the current status of the group's activities is presented along with anticipations for the future.
Multiple-stressor impacts on Spartina alterniflora and Distichlis spicata
Salt marshes are subject to an array of environmental changes that have the potential to alter community structure and function. Manipulative experiments often study environmental changes in isolation, although changes may interactively affect plant and ecosystem response. We rep...
Interaction of perceived neighborhood walkability and self-efficacy on physical activity.
Kaczynski, Andrew T; Robertson-Wilson, Jennifer; Decloe, Melissa
2012-02-01
Few social ecological studies have considered the joint effects of intrapersonal and environmental influences on physical activity. This study investigated the interaction of self-efficacy and perceived neighborhood walkability in predicting neighborhood-based physical activity and how this relationship varied by gender and body mass index. Data were derived from a cross-sectional investigation of environmental and psychosocial correlates of physical activity among adults (n = 585). Participants completed a detailed 7-day physical activity log booklet, along with a questionnaire that included measures of neighborhood walkability, self-efficacy, and several sociodemographic items. Factorial analysis of variance tests were used to examine the main effects of and interaction between walkability and self-efficacy. In predicting neighborhood-based physical activity, significant interactions were observed between self-efficacy and neighborhood walkability for females (but not for males) and for overweight/obese participants (but not for healthy weight individuals). Women and overweight/obese individuals with low self-efficacy demonstrated substantially greater physical activity when living in a high walkable neighborhood. Physical activity research and promotion efforts should take into account both environmental and personal factors and the interrelationships between them that influence active living.
Genes and environment in neonatal intraventricular hemorrhage.
Ment, Laura R; Ådén, Ulrika; Bauer, Charles R; Bada, Henrietta S; Carlo, Waldemar A; Kaiser, Jeffrey R; Lin, Aiping; Cotten, Charles Michael; Murray, Jeffrey; Page, Grier; Hallman, Mikko; Lifton, Richard P; Zhang, Heping
2015-12-01
Emerging data suggest intraventricular hemorrhage (IVH) of the preterm neonate is a complex disorder with contributions from both the environment and the genome. Environmental analyses suggest factors mediating both cerebral blood flow and angiogenesis contribute to IVH, while candidate gene studies report variants in angiogenesis, inflammation, and vascular pathways. Gene-by-environment interactions demonstrate the interaction between the environment and the genome, and a non-replicated genome-wide association study suggests that both environmental and genetic factors contribute to the risk for severe IVH in very low-birth weight preterm neonates. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetic and Environmental Influences on Symptom Domains in Twins and Siblings with Autism
ERIC Educational Resources Information Center
Mazefsky, Carla A.; Goin-Kochel, Robin P.; Riley, Brien P.; Maes, Hermine H.
2008-01-01
Clarifying the sources of variation among autism symptom domains is important to the identification of homogenous subgroups for molecular genetic studies. This study explored the genetic and environmental bases of nonverbal communication and social interaction, two symptom domains that have also been related to treatment response, in 1294 child…
Effects of experimental seaweed deposition on lizard and ant predation in an island food web.
Piovia-Scott, Jonah; Spiller, David A; Schoener, Thomas W
2011-01-28
The effect of environmental change on ecosystems is mediated by species interactions. Environmental change may remove or add species and shift life-history events, altering which species interact at a given time. However, environmental change may also reconfigure multispecies interactions when both species composition and phenology remain intact. In a Caribbean island system, a major manifestation of environmental change is seaweed deposition, which has been linked to eutrophication, overfishing, and hurricanes. Here, we show in a whole-island field experiment that without seaweed two predators--lizards and ants--had a substantially greater-than-additive effect on herbivory. When seaweed was added to mimic deposition by hurricanes, no interactive predator effect occurred. Thus environmental change can substantially restructure food-web interactions, complicating efforts to predict anthropogenic changes in ecosystem processes.
Evidence for Gender-Dependent Genotype by Environment Interaction in Adult Depression.
Molenaar, Dylan; Middeldorp, Christel M; Willemsen, Gonneke; Ligthart, Lannie; Nivard, Michel G; Boomsma, Dorret I
2015-10-14
Depression in adults is heritable with about 40 % of the phenotypic variance due to additive genetic effects and the remaining phenotypic variance due to unique (unshared) environmental effects. Common environmental effects shared by family members are rarely found in adults. One possible explanation for this finding is that there is an interaction between genes and the environment which may mask effects of the common environment. To test this hypothesis, we investigated genotype by environment interaction in a large sample of female and male adult twins aged 18-70 years. The anxious depression subscale of the Adult Self Report from the Achenbach System of Empirically Based Assessment (Achenbach and Rescorla in Manual for the ASEBA adult: forms and profiles, 2003) was completed by 13,022 twins who participate in longitudinal studies of the Netherlands Twin Register. In a single group analysis, we found genotype by unique environment interaction, but no genotype by common environment interaction. However, when conditioning on gender, we observed genotype by common environment interaction in men, with larger common environmental variance in men who are genetically less at risk to develop depression. Although the effect size of the interaction is characterized by large uncertainty, the results show that there is at least some variance due to the common environment in adult depression in men.
Developing Students' Environmental Knowledge through Interactive Worksheets.
ERIC Educational Resources Information Center
Ballantyne, Roy; Witney, Eve; Tulip, David
1998-01-01
Environmental education is often characterized by a concern with developing attitudes and behavior rather than developing environmental knowledge and concepts. Students may thus unknowingly hold and later teach environmental misconceptions. Discusses the use of interactive worksheets to provide a time-effective means of developing students'…
Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate
Ortega, Ángeles; Berná, Genoveva; Rojas, Anabel; Martín, Franz; Soria, Bernat
2017-01-01
Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM. PMID:28574454
Genetic Expression Outside the Skin: Clues to Mechanisms of Genotype × Environment Interaction
Reiss, David; Leve, Leslie D.
2007-01-01
The rapidly moving study of Gene × Environment interaction needs interim conceptual tools to track progress, integrate findings, and apply this knowledge to preventive intervention. We define two closely related concepts: the social mediation of the expression of genetic influences and the interaction between the entire genotype and the social environment (Genotype × Environment interaction; G×E). G×E interaction, the primary focus of this report, assesses individual differences in the full genotype using twin, sibling, and adoption designs and, for the most part, employs fine-grained analyses of relational processes in the social environment. In comparison, studies of Allele × Environment interaction (A×E) assess the influence on development of one or more measured polymorphisms as modified by environmental factors. G×E studies build on work showing how the social environment responds to genetic influences and how genetic influences shape the social environment. Recent G×E research has yielded new insight into variations in the sensitivity of the social environment to genotypic influences and provides clues to the specificity and timing of these environmental responses that can be leveraged to inform preventive interventions aimed at reducing genetic risk for problem behavior. PMID:17931431
Gallardo-Pujol, D; Forero, C G; Maydeu-Olivares, A; Andrés-Pueyo, A
Antisocial behavior is a complex phenomenon with strong implications in neurology and psychiatry. In order to study the ontogenetic development of antisocial behavior, we must check for the existence of physiological mechanisms related to it, and to understand its environmentally-modulated functioning. To review the state-of-the-art of the development of antisocial behavior, and especially, of the interaction between environmental and genetic factors. Recent research has highlighted certain brain alterations linked to violent behavior, either at structural, or functional or biochemical levels. Genetic research has also made some advances in this field, discovering some genes--i.e. monoamineoxidase A (MAOA)--related to antisocial behavior. However, the importance of environmental factors in its development must not be left behind. Recent studies have shown that individuals carrying a low transcriptional activity allele of the MAOA gene, and that also suffered severe maltreatment are more prone to antisocial behavior. This interaction is biologically relevant, as there are underlying biological mechanisms that may be able to explain the ethiopathogeny of antisocial behavior. Although the works herein presented pioneered the field, they are limited by the fact that all the reviewed variables are associated to antisocial behavior, but they lack direct causal evidence of their effects on antisocial behavior. Undoubtedly, future research on psychobiological mechanisms and the understanding of their environmental modulation will help finding therapeutic targets and preventive strategies for antisocial behavior.
Zhao, Wei; Ware, Erin B; He, Zihuai; Kardia, Sharon L R; Faul, Jessica D; Smith, Jennifer A
2017-09-29
Obesity, which develops over time, is one of the leading causes of chronic diseases such as cardiovascular disease. However, hundreds of BMI (body mass index)-associated genetic loci identified through large-scale genome-wide association studies (GWAS) only explain about 2.7% of BMI variation. Most common human traits are believed to be influenced by both genetic and environmental factors. Past studies suggest a variety of environmental features that are associated with obesity, including socioeconomic status and psychosocial factors. This study combines both gene/regions and environmental factors to explore whether social/psychosocial factors (childhood and adult socioeconomic status, social support, anger, chronic burden, stressful life events, and depressive symptoms) modify the effect of sets of genetic variants on BMI in European American and African American participants in the Health and Retirement Study (HRS). In order to incorporate longitudinal phenotype data collected in the HRS and investigate entire sets of single nucleotide polymorphisms (SNPs) within gene/region simultaneously, we applied a novel set-based test for gene-environment interaction in longitudinal studies (LGEWIS). Childhood socioeconomic status (parental education) was found to modify the genetic effect in the gene/region around SNP rs9540493 on BMI in European Americans in the HRS. The most significant SNP (rs9540488) by childhood socioeconomic status interaction within the rs9540493 gene/region was suggestively replicated in the Multi-Ethnic Study of Atherosclerosis (MESA) ( p = 0.07).
Zhao, Wei; He, Zihuai; Kardia, Sharon L. R.; Faul, Jessica D.
2017-01-01
Obesity, which develops over time, is one of the leading causes of chronic diseases such as cardiovascular disease. However, hundreds of BMI (body mass index)-associated genetic loci identified through large-scale genome-wide association studies (GWAS) only explain about 2.7% of BMI variation. Most common human traits are believed to be influenced by both genetic and environmental factors. Past studies suggest a variety of environmental features that are associated with obesity, including socioeconomic status and psychosocial factors. This study combines both gene/regions and environmental factors to explore whether social/psychosocial factors (childhood and adult socioeconomic status, social support, anger, chronic burden, stressful life events, and depressive symptoms) modify the effect of sets of genetic variants on BMI in European American and African American participants in the Health and Retirement Study (HRS). In order to incorporate longitudinal phenotype data collected in the HRS and investigate entire sets of single nucleotide polymorphisms (SNPs) within gene/region simultaneously, we applied a novel set-based test for gene-environment interaction in longitudinal studies (LGEWIS). Childhood socioeconomic status (parental education) was found to modify the genetic effect in the gene/region around SNP rs9540493 on BMI in European Americans in the HRS. The most significant SNP (rs9540488) by childhood socioeconomic status interaction within the rs9540493 gene/region was suggestively replicated in the Multi-Ethnic Study of Atherosclerosis (MESA) (p = 0.07). PMID:28961216
Fan, Qiao; Wojciechowski, Robert; Kamran Ikram, M.; Cheng, Ching-Yu; Chen, Peng; Zhou, Xin; Pan, Chen-Wei; Khor, Chiea-Chuen; Tai, E-Shyong; Aung, Tin; Wong, Tien-Yin; Teo, Yik-Ying; Saw, Seang-Mei
2014-01-01
Refractive error is a complex ocular trait governed by both genetic and environmental factors and possibly their interplay. Thus far, data on the interaction between genetic variants and environmental risk factors for refractive errors are largely lacking. By using findings from recent genome-wide association studies, we investigated whether the main environmental factor, education, modifies the effect of 40 single nucleotide polymorphisms on refractive error among 8461 adults from five studies including ethnic Chinese, Malay and Indian residents of Singapore. Three genetic loci SHISA6-DNAH9, GJD2 and ZMAT4-SFRP1 exhibited a strong association with myopic refractive error in individuals with higher secondary or university education (SHISA6-DNAH9: rs2969180 A allele, β = −0.33 D, P = 3.6 × 10–6; GJD2: rs524952 A allele, β = −0.31 D, P = 1.68 × 10−5; ZMAT4-SFRP1: rs2137277 A allele, β = −0.47 D, P = 1.68 × 10−4), whereas the association at these loci was non-significant or of borderline significance in those with lower secondary education or below (P for interaction: 3.82 × 10−3–4.78 × 10−4). The evidence for interaction was strengthened when combining the genetic effects of these three loci (P for interaction = 4.40 × 10−8), and significant interactions with education were also observed for axial length and myopia. Our study shows that low level of education may attenuate the effect of risk alleles on myopia. These findings further underline the role of gene–environment interactions in the pathophysiology of myopia. PMID:24014484
Joosen, Ronny Viktor Louis; Arends, Danny; Li, Yang; Willems, Leo A.J.; Keurentjes, Joost J.B.; Ligterink, Wilco; Jansen, Ritsert C.; Hilhorst, Henk W.M.
2013-01-01
A complex phenotype such as seed germination is the result of several genetic and environmental cues and requires the concerted action of many genes. The use of well-structured recombinant inbred lines in combination with “omics” analysis can help to disentangle the genetic basis of such quantitative traits. This so-called genetical genomics approach can effectively capture both genetic and epistatic interactions. However, to understand how the environment interacts with genomic-encoded information, a better understanding of the perception and processing of environmental signals is needed. In a classical genetical genomics setup, this requires replication of the whole experiment in different environmental conditions. A novel generalized setup overcomes this limitation and includes environmental perturbation within a single experimental design. We developed a dedicated quantitative trait loci mapping procedure to implement this approach and used existing phenotypical data to demonstrate its power. In addition, we studied the genetic regulation of primary metabolism in dry and imbibed Arabidopsis (Arabidopsis thaliana) seeds. In the metabolome, many changes were observed that were under both environmental and genetic controls and their interaction. This concept offers unique reduction of experimental load with minimal compromise of statistical power and is of great potential in the field of systems genetics, which requires a broad understanding of both plasticity and dynamic regulation. PMID:23606598
Modifying and reacting to the environmental pH can drive bacterial interactions
Ratzke, Christoph
2018-01-01
Microbes usually exist in communities consisting of myriad different but interacting species. These interactions are typically mediated through environmental modifications; microbes change the environment by taking up resources and excreting metabolites, which affects the growth of both themselves and also other microbes. We show here that the way microbes modify their environment and react to it sets the interactions within single-species populations and also between different species. A very common environmental modification is a change of the environmental pH. We find experimentally that these pH changes create feedback loops that can determine the fate of bacterial populations; they can either facilitate or inhibit growth, and in extreme cases will cause extinction of the bacterial population. Understanding how single species change the pH and react to these changes allowed us to estimate their pairwise interaction outcomes. Those interactions lead to a set of generic interaction motifs—bistability, successive growth, extended suicide, and stabilization—that may be independent of which environmental parameter is modified and thus may reoccur in different microbial systems. PMID:29538378
ERIC Educational Resources Information Center
Eisenberg, Nancy; Sulik, Michael J.; Spinrad, Tracy L.; Edwards, Alison; Eggum, Natalie D.; Liew, Jeffrey; Sallquist, Julie; Popp, Tierney K.; Smith, Cynthia L.; Hart, Daniel
2012-01-01
The purpose of the current study was to predict the development of aggressive behavior from young children's respiratory sinus arrhythmia (RSA) and environmental quality. In a longitudinal sample of 213 children, baseline RSA, RSA suppression in response to a film of crying babies, and a composite measure of environmental quality (incorporating…
Liang, Yulan; Kelemen, Arpad
2017-01-01
Abstract Genetic and environmental (behavior, clinical, and demographic) factors are associated with increased risks of both myocardial infarction (MI) and high cholesterol (HC). It is known that HC is major risk factor that may cause MI. However, whether there are common single nucleotide polymorphism (SNPs) associated with both MI and HC is not firmly established, and whether there are modulate and modified effects (interactions of genetic and known environmental factors) on either HC or MI, and whether these joint effects improve the predictions of MI, is understudied. The purpose of this study is to identify novel shared SNPs and modifiable environmental factors on MI and HC. We assess whether SNPs from a metabolic pathway related to MI may relate to HC; whether there are moderate effects among SNPs, lifestyle (smoke and drinking), HC, and MI after controlling other factors [gender, body mass index (BMI), and hypertension (HTN)]; and evaluate prediction power of the joint and modulate genetic and environmental factors influencing the MI and HC. This is a retrospective study with residents of Erie and Niagara counties in New York with a history of MI or with no history of MI. The data set includes environmental variables (demographic, clinical, lifestyle). Thirty-one tagSNPs from a metabolic pathway related to MI are genotyped. Generalized linear models (GLMs) with imputation-based analysis are conducted for examining the common effects of tagSNPs and environmental exposures and their interactions on having a history of HC or MI. MI, BMI, and HTN are significant risk factors for HC. HC shows the strongest effect on risk of MI in addition to HTN; gender and smoking status while drinking status shows protective effect on MI. rs16944 (gene IL-1β) and rs17222772 (gene ALOX) increase the risks of HC, while rs17231896 (gene CETP) has protective effects on HC either with or without the clinical, behavioral, demographic factors with different effect sizes that may indicate the existence of moderate or modifiable effects. Further analysis with the inclusions of gene–gene and gene–environmental interactions shows interactions between rs17231896 (CETP) and rs17222772 (ALOX); rs17231896 (CETP) and gender. rs17237890 (CETP) and rs2070744 (NOS3) are found to be significantly associated with risks of MI adjusted by both SNPs and environmental factors. After multiple testing adjustments, these effects diminished as expected. In addition, an interaction between drinking and smoking status is significant. Overall, the prediction power in successfully classifying MI status is increased to 80% with inclusions of all significant tagSNPs and environmental factors and their interactions compared with environmental factors only (72%). Having a history of either HC or MI has significant effects on each other in both directions, in addition to HTN and gender. Genes/SNPs identified from this analysis that are associated with HC may be potentially linked to MI, which could be further examined and validated through haplotype-pairs analysis with appropriate population stratification corrections, and function/pathway regulation analysis to eliminate the limitations of the current analysis. PMID:28906356
Liang, Yulan; Kelemen, Arpad
2017-09-01
Genetic and environmental (behavior, clinical, and demographic) factors are associated with increased risks of both myocardial infarction (MI) and high cholesterol (HC). It is known that HC is major risk factor that may cause MI. However, whether there are common single nucleotide polymorphism (SNPs) associated with both MI and HC is not firmly established, and whether there are modulate and modified effects (interactions of genetic and known environmental factors) on either HC or MI, and whether these joint effects improve the predictions of MI, is understudied.The purpose of this study is to identify novel shared SNPs and modifiable environmental factors on MI and HC. We assess whether SNPs from a metabolic pathway related to MI may relate to HC; whether there are moderate effects among SNPs, lifestyle (smoke and drinking), HC, and MI after controlling other factors [gender, body mass index (BMI), and hypertension (HTN)]; and evaluate prediction power of the joint and modulate genetic and environmental factors influencing the MI and HC.This is a retrospective study with residents of Erie and Niagara counties in New York with a history of MI or with no history of MI. The data set includes environmental variables (demographic, clinical, lifestyle). Thirty-one tagSNPs from a metabolic pathway related to MI are genotyped. Generalized linear models (GLMs) with imputation-based analysis are conducted for examining the common effects of tagSNPs and environmental exposures and their interactions on having a history of HC or MI.MI, BMI, and HTN are significant risk factors for HC. HC shows the strongest effect on risk of MI in addition to HTN; gender and smoking status while drinking status shows protective effect on MI. rs16944 (gene IL-1β) and rs17222772 (gene ALOX) increase the risks of HC, while rs17231896 (gene CETP) has protective effects on HC either with or without the clinical, behavioral, demographic factors with different effect sizes that may indicate the existence of moderate or modifiable effects. Further analysis with the inclusions of gene-gene and gene-environmental interactions shows interactions between rs17231896 (CETP) and rs17222772 (ALOX); rs17231896 (CETP) and gender. rs17237890 (CETP) and rs2070744 (NOS3) are found to be significantly associated with risks of MI adjusted by both SNPs and environmental factors. After multiple testing adjustments, these effects diminished as expected. In addition, an interaction between drinking and smoking status is significant. Overall, the prediction power in successfully classifying MI status is increased to 80% with inclusions of all significant tagSNPs and environmental factors and their interactions compared with environmental factors only (72%).Having a history of either HC or MI has significant effects on each other in both directions, in addition to HTN and gender. Genes/SNPs identified from this analysis that are associated with HC may be potentially linked to MI, which could be further examined and validated through haplotype-pairs analysis with appropriate population stratification corrections, and function/pathway regulation analysis to eliminate the limitations of the current analysis.
Moderating role of the MAOA genotype in antisocial behaviour.
Fergusson, David M; Boden, Joseph M; Horwood, L John; Miller, Allison; Kennedy, Martin A
2012-02-01
Recent studies have examined gene×environment (G×E) interactions involving the monoamine oxidase A (MAOA) gene in moderating the associations between exposure to adversity and antisocial behaviour. The present study examined a novel method for assessing interactions between a single gene and multiple risk factors related to environmental and personal adversity. To test the hypothesis that the presence of the low-activity MAOA genotype was associated with an increased response to a series of risk factors. Participants were 399 males from the Christchurch Health and Development Study who had complete data on: (a) MAOA promoter region variable number tandem repeat genotype; (b) antisocial behaviour (criminal offending) to age 30 and convictions to age 21; and (c) maternal smoking during pregnancy, IQ, childhood maltreatment and school failure. Poisson regression models were fitted to three antisocial behaviour outcomes (property/violent offending ages 15-30; and convictions ages 17-21), using measures of exposure to adverse childhood circumstances. The analyses revealed consistent evidence of G x E interactions, such that those with the low-activity MAOA variant who were exposed to adversity in childhood were significantly more likely to report offending in late adolescence and early adulthood. The present findings add to the evidence suggesting that there is a stable G x E interaction involving MAOA, a range of adverse environmental and personal factors, and antisocial behaviour across the life course. These analyses also demonstrate the utility of using multiple environmental/personal exposures to test G×E interactions.
Lin, Eugene; Kuo, Po-Hsiu; Liu, Yu-Li; Yang, Albert C; Kao, Chung-Feng; Tsai, Shih-Jen
2017-04-11
Previous animal studies have indicated associations between circadian clock genes and cognitive impairment . In this study, we assessed whether 11 circadian clockgenes are associated with cognitive aging independently and/or through complex interactions in an old Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to evaluate cognitive function. Our data showed associations between cognitive aging and single nucleotide polymorphisms (SNPs) in 4 key circadian clock genes, CLOCK rs3749473 (p = 0.0017), NPAS2 rs17655330 (p = 0.0013), RORA rs13329238 (p = 0.0009), and RORB rs10781247 (p = 7.9 x 10-5). We also found that interactions between CLOCK rs3749473, NPAS2 rs17655330, RORA rs13329238, and RORB rs10781247 affected cognitive aging (p = 0.007). Finally, we investigated the influence of interactions between CLOCK rs3749473, RORA rs13329238, and RORB rs10781247 with environmental factors such as alcohol consumption, smoking status, physical activity, and social support on cognitive aging (p = 0.002 ~ 0.01). Our study indicates that circadian clock genes such as the CLOCK, NPAS2, RORA, and RORB genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-environment interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patriarca, Riccardo, E-mail: riccardo.patriarca@uniroma1.it; Di Gravio, Giulio; Costantino, Francesco
Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order tomore » define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.« less
Testing for gene-environment interaction under exposure misspecification.
Sun, Ryan; Carroll, Raymond J; Christiani, David C; Lin, Xihong
2017-11-09
Complex interplay between genetic and environmental factors characterizes the etiology of many diseases. Modeling gene-environment (GxE) interactions is often challenged by the unknown functional form of the environment term in the true data-generating mechanism. We study the impact of misspecification of the environmental exposure effect on inference for the GxE interaction term in linear and logistic regression models. We first examine the asymptotic bias of the GxE interaction regression coefficient, allowing for confounders as well as arbitrary misspecification of the exposure and confounder effects. For linear regression, we show that under gene-environment independence and some confounder-dependent conditions, when the environment effect is misspecified, the regression coefficient of the GxE interaction can be unbiased. However, inference on the GxE interaction is still often incorrect. In logistic regression, we show that the regression coefficient is generally biased if the genetic factor is associated with the outcome directly or indirectly. Further, we show that the standard robust sandwich variance estimator for the GxE interaction does not perform well in practical GxE studies, and we provide an alternative testing procedure that has better finite sample properties. © 2017, The International Biometric Society.
Genetic and environmental factors interact to influence anxiety.
Gross, Cornelius; Hen, René
2004-01-01
Both genetic and environmental factors influence normal anxiety traits as well as anxiety disorders. In addition it is becoming increasingly clear that these factors interact to produce specific anxiety-related behaviors. For example, in humans and in monkeys mutations in the gene encoding for the serotonin transporter result in increased anxiety in adult life when combined with a stressful environment during development. Another recent example comes from twin studies suggesting that a small hippocampus can be a predisposing condition that renders individuals susceptible to post traumatic stress disorder. Such examples illustrate how specific mutations leading to abnormal brain development may increase vulnerability to environmental insults which may in turn lead to specific anxiety disorders.
Su, G; Madsen, P; Lund, M S
2009-05-01
Crossbreeding is currently increasing in dairy cattle production. Several studies have shown an environment-dependent heterosis [i.e., an interaction between heterosis and environment (H x E)]. An H x E interaction is usually estimated from a few discrete environment levels. The present study proposes a reaction norm model to describe H x E interaction, which can deal with a large number of environment levels using few parameters. In the proposed model, total heterosis consists of an environment-independent part, which is described as a function of heterozygosity, and an environment-dependent part, which is described as a function of heterozygosity and environmental value (e.g., herd-year effect). A Bayesian approach is developed to estimate the environmental covariates, the regression coefficients of the reaction norm, and other parameters of the model simultaneously in both linear and nonlinear reaction norms. In the nonlinear reaction norm model, the H x E is approximated using linear splines. The approach was tested using simulated data, which were generated using an animal model with a reaction norm for heterosis. The simulation study includes 4 scenarios (the combinations of moderate vs. low heritability and moderate vs. low herd-year variation) of H x E interaction in a nonlinear form. In all scenarios, the proposed model predicted total heterosis very well. The correlation between true heterosis and predicted heterosis was 0.98 in the scenarios with low herd-year variation and 0.99 in the scenarios with moderate herd-year variation. This suggests that the proposed model and method could be a good approach to analyze H x E interactions and predict breeding values in situations in which heterosis changes gradually and continuously over an environmental gradient. On the other hand, it was found that a model ignoring H x E interaction did not significantly harm the prediction of breeding value under the simulated scenarios in which the variance for environment-dependent heterosis effects was small (as it generally is), and sires were randomly used over production environments.
Mode of action from dose-response microarray data: case study using 10 environmental chemicals
Ligand-activated nuclear receptors regulate many biological processes through complex interactions with biological macromolecules. Certain xenobiotics alter nuclear receptor signaling through direct or indirect interactions. Defining the mode of action of such xenobiotics is di...
Background: Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma; however appropriately designed studies are critical for these methods to...
Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra N; Tabachnick, Walter J
2010-07-01
Interactions between environmental and biological factors affect the vector competence of Culex pipiens quinquefasciatus for West Nile virus. Three age cohorts from two Cx. p. quinquefasciatus colonies were fed blood containing a low- or high-virus dose, and each group was held at two different extrinsic incubation temperatures (EIT) for 13 days. The colonies differed in the way that they responded to the effects of the environment on vector competence. The effects of mosquito age on aspects of vector competence were dependent on the EIT and dose, and they changed depending on the colony. Complex interactions must be considered in laboratory studies of vector competence, because the extent of the genetic and environmental variation controlling vector competence in nature is largely unknown. Differences in the environmental (EIT and dose) and biological (mosquito age and colony) effects from previous studies of Cx. p. quinquefasciatus vector competence for St. Louis encephalitis virus are discussed.
Gene-Environment Interaction in Adults’ IQ Scores: Measures of Past and Present Environment
Willemsen, Gonneke; de Geus, Eco J. C.; Boomsma, Dorret I.; Posthuma, Danielle
2008-01-01
Gene-environment interaction was studied in a sample of young (mean age 26 years, N = 385) and older (mean age 49 years, N = 370) adult males and females. Full scale IQ scores (FSIQ) were analyzed using biometric models in which additive genetic (A), common environmental (C), and unique environmental (E) effects were allowed to depend on environmental measures. Moderators under study were parental and partner educational level, as well as urbanization level and mean real estate price of the participants’ residential area. Mean effects were observed for parental education, partner education and urbanization level. On average, FSIQ scores were roughly 5 points higher in participants with highly educated parents, compared to participants whose parents were less well educated. In older participants, IQ scores were about 2 points higher when their partners were highly educated. In younger males, higher urbanization levels were associated with slightly higher FSIQ scores. Our analyses also showed increased common environmental variation in older males whose parents were more highly educated, and increased unique environmental effects in older males living in more affluent areas. Contrary to studies in children, however, the variance attributable to additive genetic effects was stable across all levels of the moderators under study. Most results were replicated for VIQ and PIQ. PMID:18535898
Sae-Lim, Panya; Komen, Hans; Kause, Antti; Mulder, Han A
2014-02-26
Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available.
2014-01-01
Background Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Methods Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. Results The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Conclusions Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available. PMID:24571451
ERIC Educational Resources Information Center
Winham, Stacey J.; Biernacka, Joanna M.
2013-01-01
Background: Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized…
Gene environment interaction studies in depression and suicidal behavior: An update.
Mandelli, Laura; Serretti, Alessandro
2013-12-01
Increasing evidence supports the involvement of both heritable and environmental risk factors in major depression (MD) and suicidal behavior (SB). Studies investigating gene-environment interaction (G × E) may be useful for elucidating the role of biological mechanisms in the risk for mental disorders. In the present paper, we review the literature regarding the interaction between genes modulating brain functions and stressful life events in the etiology of MD and SB and discuss their potential added benefit compared to genetic studies only. Within the context of G × E investigation, thus far, only a few reliable results have been obtained, although some genes have consistently shown interactive effects with environmental risk in MD and, to a lesser extent, in SB. Further investigation is required to disentangle the direct and mediated effects that are common or specific to MD and SB. Since traditional G × E studies overall suffer from important methodological limitations, further effort is required to develop novel methodological strategies with an interdisciplinary approach. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua
2016-01-01
Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples. PMID:27924944
Jacobson, Kristen C.; Hoffman, Christy L.; Vasilopoulos, Terrie; Kremen, William S.; Panizzon, Matthew S.; Grant, Michael D.; Lyons, Michael J.; Xian, Hong; Franz, Carol E.
2014-01-01
There is growing evidence that pet ownership and human–animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51–60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63–71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for <10% of the variance in adult frequency of pet play, and were not statistically significant. These results suggest that the effects of childhood exposure to pets on pet ownership and interaction patterns in adulthood may be mediated primarily by genetically-influenced characteristics. PMID:25580056
Jacobson, Kristen C; Hoffman, Christy L; Vasilopoulos, Terrie; Kremen, William S; Panizzon, Matthew S; Grant, Michael D; Lyons, Michael J; Xian, Hong; Franz, Carol E
2012-12-01
There is growing evidence that pet ownership and human-animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51-60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63-71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for <10% of the variance in adult frequency of pet play, and were not statistically significant. These results suggest that the effects of childhood exposure to pets on pet ownership and interaction patterns in adulthood may be mediated primarily by genetically-influenced characteristics.
Fabian, Jenny; Zlatanović, Sanja; Mutz, Michael; Grossart, Hans-Peter; van Geldern, Robert; Ulrich, Andreas; Gleixner, Gerd; Premke, Katrin
2018-01-01
In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photo-heterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a 13C-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems.
ERIC Educational Resources Information Center
Li, James J.; Lee, Steve S.
2012-01-01
Background: Although the association of the dopamine transporter (DAT1) gene and attention-deficit/hyperactivity disorder (ADHD) has been widely studied, far less is known about its potential interaction with environmental risk factors. Given that maltreatment is a replicated risk factor for ADHD, we explored the interaction between DAT1 and…
ERIC Educational Resources Information Center
Li, James J.; Lee, Steve S.
2012-01-01
Relatively little is known about the potential interplay between genetic and environmental influences on attention-deficit/hyperactivity disorder (ADHD), including gene-environment interaction (GxE). There is evidence that parenting behavior interacts with offspring genotype in the development of externalizing problems, but studies have largely…
Harden, K. Paige; Mendle, Jane
2014-01-01
Early pubertal timing places girls at elevated risk for a breadth of negative outcomes, including involvement in delinquent behavior. While previous developmental research has emphasized the unique social challenges faced by early maturing girls, this relation is complicated by genetic influences for both delinquent behavior and pubertal timing, which are seldom controlled for in existing research. The current study uses genetically informed data on 924 female-female twin and sibling pairs drawn from the National Longitudinal Study of Adolescent Health to (1) disentangle biological versus environmental mechanisms for the effects of early pubertal timing and (2) test for gene-environment interactions. Results indicate that early pubertal timing influences girls’ delinquency through a complex interplay between biological risk and environmental experiences. Genes related to earlier age at menarche and higher perceived development significantly predict increased involvement in both non-violent and violent delinquency. Moreover, after accounting for this genetic association between pubertal timing and delinquency, the impact of non-shared environmental influences on delinquency are significantly moderated by pubertal timing, such that the non-shared environment is most important among early maturing girls. This interaction effect is particularly evident for non-violent delinquency. Overall, results suggest early maturing girls are vulnerable to an interaction between genetic and environmental risks for delinquent behavior. PMID:21668078
Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems
NASA Astrophysics Data System (ADS)
Mihailovic, Dragutin T.; Balaz, Igor
The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as the exchange of biological, chemical and other physical quantities between interacting environmental interfaces can be represented by coupled maps. In this chapter we will address only two illustrative issues important for the modelling of interacting environmental interfaces regarded as complex systems. These are (i) use of algebra for modelling the autonomous establishment of local hierarchies in biophysical systems and (ii) numerical investigation of coupled maps representing exchange of energy, chemical and other relevant biophysical quantities between biophysical entities in their surrounding environment.
Autism risk factors: genes, environment, and gene-environment interactions
Chaste, Pauline; Leboyer, Marion
2012-01-01
The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors. PMID:23226953
NASA Astrophysics Data System (ADS)
Blatt, Erica N.
In recent years, the Environmental Science course has become increasingly integrated into the high school curriculum as a component of the core curriculum, an AP course, or as an elective (Edelson, 2007); however, little research has been conducted to evaluate the course's effectiveness in developing students' understanding of their relationship with the environment (Zelezny, 1999). Therefore, this ethnographic study at a public high school in the Northeastern United States focuses on the teacher's goals for the Environmental Science course, how students respond to the enactment of these objectives during activities in the classroom, and how the class impacts students' views of their relationship with the environment and their pro-environmental behavior. A sociocultural approach is utilized to explore how students' environmental identities, their interactions with the course content, as well as their social interactions affect their experiences in the Environmental Science classroom. The study's conceptual framework is based upon Kempton and Holland's (2003) stages of environmental identity development, as well as symbolic interactionist theories of emotion. The participants in this study are an Environmental Science teacher and the 10-12th grade students (N=17) in her semester-long elective, "Environmental Science." The researcher collected data for a period of six months during the spring semester of 2009, attending class on a daily basis. Data was collected through participant observation, videotaping, interviews, cogenerative dialogues, and various surveys. The objectives for the Environmental Science course explored in this research include the role of science content knowledge and critical thinking as students are exposed to new environmental information; developing students' emotional connection with environmental issues; influencing students' environmental behavior; and empowering students to feel that they can make a difference through their own actions. Through presentation of the students' reactions to their experiences in the classroom, the results of this study provide new information for educators working with students to help them define their relationship with the environment by illuminating the elements of various activities that are effective for individual students, as well as factors that may be prohibitive. Findings therefore provide insight for science teachers designing and incorporating environmental activities into the high school curriculum.
Wahl, Martin; Link, Heike; Alexandridis, Nicolaos; Thomason, Jeremy C.; Cifuentes, Mauricio; Costello, Mark J.; da Gama, Bernardo A. P.; Hillock, Kristina; Hobday, Alistair J.; Kaufmann, Manfred J.; Keller, Stefanie; Kraufvelin, Patrik; Krüger, Ina; Lauterbach, Lars; Antunes, Bruno L.; Molis, Markus; Nakaoka, Masahiro; Nyström, Julia; bin Radzi, Zulkamal; Stockhausen, Björn; Thiel, Martin; Vance, Thomas; Weseloh, Annika; Whittle, Mark; Wiesmann, Lisa; Wunderer, Laura; Yamakita, Takehisa; Lenz, Mark
2011-01-01
Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research. PMID:21611170
Study on the Mechanism of Interaction between Phthalate Acid Esters and Bovine Hemoglobin.
Chi, Zhenxing; Zhao, Jing; You, Hong; Wang, Mingjing
2016-08-03
Phthalate acid esters (PAEs) are widely used in plastic products as a series of chemical softeners. However, PAEs, which now exist in many environmental media such as the atmosphere, water, and soil, have been shown to be environmental endocrine disruptors. Hemoglobin is a functional protein that carries oxygen in the red blood cells of animals. This study aims at revealing the interactions between bovine hemoglobin (BHb) and PAEs using spectroscopic and molecular modeling methods. The results indicate that the selected representative PAEs-dimethyl phthalate (DMP), diethyl phthalate (DEP), and dibutyl phthalate (DBP)-can interact with BHb to form BHb-PAE complexes with one binding site, mainly relying on hydrophobic forces, with the affinity order DMP > DEP > DBP, opposite to the order of side-chain length. The binding of PAEs can cause conformational and micro-environmental changes in BHb, which may affect the physiological functions of Hb. Furthermore, molecular docking was applied to define the specific binding sites, the results of which show that all the three PAEs can bind into the central cavity of BHb. The study contributes to expound the toxic mechanism of PAEs in vivo from the point of hematological toxicology.
Hankett, Jeanne M; Collin, William R; Yang, Pei; Chen, Zhan; Duhaime, Melissa
2016-02-02
Despite the ever-increasing prevalence of plastic debris and endocrine disrupting toxins in aquatic ecosystems, few studies describe their interactions in freshwater environments. We present a model system to investigate the deposition/desorption behaviors of low-volatility lake ecosystem toxins on microplastics in situ and in real time. Molecular interactions of gas-phase nonylphenols (NPs) with the surfaces of two common plastics, poly(styrene) and poly(ethylene terephthalate), were studied using quartz crystal microbalance and sum frequency generation vibrational spectroscopy. NP point sources were generated under two model environments: plastic on land and plastic on a freshwater surface. We found the headspace above calm water provides an excellent environment for NP deposition and demonstrate significant NP deposition on plastic within minutes at relevant concentrations. Further, NP deposits and orders differently on both plastics under humid versus dry environments. We attributed the unique deposition behaviors to surface energy changes from increased water content during the humid deposition. Lastly, nanograms of NP remained on microplastic surfaces hours after initial NP introduction and agitating conditions, illustrating feasibility for plastic-bound NPs to interact with biota and surrounding matter. Our model studies reveal important interactions between low-volatility environmental toxins and microplastics and hold potential to correlate the environmental fate of endocrine disrupting toxins in the Great Lakes with molecular behaviors.
Interactions of Vibrio parahaemolyticus with oysters and oyster hemocytes were studied using three environmental isolates (1094, 1163 and ATCC 17802) and three clinical isolates (2030, 2062, 2107). Clinical isolates were from patients who became ill during the June 1998 food pois...
Early Life Precursors, Epigenetics, and the Development of Food Allergy1
Hong, Xiumei; Wang, Xiaobin
2012-01-01
Food allergy (FA), a major clinical and public health concern worldwide, is caused by a complex interplay of environmental exposures, genetic variants, gene-environment interactions, and epigenetic alterations. This review summarizes recent advances surrounding these key factors, with a particular focus on the potential role of epigenetics in the development of FA. Epidemiologic studies have reported a number of non-genetic factors that may influence the risk of FA, such as timing of food introduction and feeding pattern, diet/nutrition, exposure to environmental tobacco smoking, prematurity and low birthweight, microbial exposure, and race/ethnicity. Current studies on the genetics of FA are mainly conducted using candidate gene approaches, which have linked more than 10 genes to the genetic susceptibility of FA. Studies on gene-environment interactions of FA are very limited. Epigenetic alteration has been proposed as one of the mechanisms to mediate the influence of early-life environmental exposures and gene-environment interactions on the development of diseases later in life. The role of epigenetics in the regulation of the immune system and the epigenetic effects of some FA-associated environmental exposures are discussed in this review. There is a particular lack of large-scale prospective birth cohort studies that simultaneously assess the inter-relationships of early life exposures, genetic susceptibility, epigenomic alterations and the development of FA. The identification of these key factors and their independent and joint contributions to FA will allow us to gain important insight into the biological mechanisms by which environmental exposures and genetic susceptibility affect the risk of FA, and will provide essential information to develop more effective new paradigms in the diagnosis, prevention and management of FA. PMID:22777545
The nature of species interactions shifts profoundly between time periods
USDA-ARS?s Scientific Manuscript database
Species interactions change through time, for example ontogenetically, successionally, and evolutionarily. They also change as environmental conditions change, both within years (seasonally) and between years (year effects). The former are relatively well-studied, but the latter have received less a...
ERIC Educational Resources Information Center
Vandenbroucke, Loren; Spilt, Jantine; Verschueren, Karine; Piccinin, Claire; Baeyens, Dieter
2018-01-01
Executive functions (EFs), important cognitive processes that enable goal-directed behavior, develop due to maturation and environmental stimulation. The current study systematically reviews and synthesizes evidence on the association between teacher-student interactions and EFs. The search resulted in 28 studies, from which 23 studies provided…
NRC says integrated approach needed to understand, protect environment
NASA Astrophysics Data System (ADS)
Kolb, Charles E.; Loehr, Raymond C.; Gopnik, Morgan
A recent study by the National Research Council (NRC) advocates a more comprehensive and integrated approach to our nation's environmental research and development (R&D) activities. Because we face environmental problems of unprecedented complexity, the study maintains that the traditional practice of studying isolated environmental problems and devising narrowly focused control or remediation strategies to manage them will no longer suffice.In the report, Building a Foundation for Sound Environmental Decisions [National Academy Press, 1997], an NRC committee highlighted the need for developing a deeper scientific understanding of ecosystems, as well as the sociological and economic aspects of human interactions with the environment. To achieve these goals, the committee recommended a core research agenda for the Environmental Protection Agency (EPA) that has three components.
Additive interaction between heterogeneous environmental ...
BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI) domain indices on preterm birth in the Unites States from 2000-2005.METHODS: The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built and sociodemographic) using principal component analyses. County-level preterm birth rates (n=3141) were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PD) and 95% confidence intervals (CI) comparing worse environmental quality to the better quality for each model for a) each individual domain main effect b) the interaction contrast and c) the two main effects plus interaction effect (i.e. the “net effect”) to show departure from additive interaction for the all U.S counties. Analyses were also performed for subgroupings by four urban/rural strata. RESULTS: We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction) associations. In the non-stratified model, we observed antagonistic interac
O’Connor, Shannon M.; Klump, Kelly L.; VanHuysse, Jessica L.; McGue, Matt; Iacono, William
2015-01-01
Objective Previous research suggests that parental divorce moderates genetic influences on body dissatisfaction. Specifically, the heritability of body dissatisfaction is higher in children of divorced versus intact families, suggesting possible gene-environment interaction effects. However, prior research is limited to a single, self-report measure of body dissatisfaction. The primary aim of the present study was to examine whether these findings extend to a different dimension of body dissatisfaction, body image perceptions. Method Participants were 1,534 female twins from the Minnesota Twin Family Study, ages 16–20 years. The Body Rating Scale (BRS) was used to assess body image perceptions. Results Although BRS scores were heritable in twins from divorced and intact families, the heritability estimates in the divorced group were not significantly greater than estimates in the intact group. However, there were differences in nonshared environmental effects, where the magnitude of these environmental influences was larger in the divorced as compared to the intact families. Discussion Different dimensions of body dissatisfaction (i.e., negative self-evaluation versus body image perceptions) may interact with environmental risk, such as parental divorce, in discrete ways. Future research should examine this possibility and explore differential gene x environment interactions using diverse measures. PMID:26314278
Sousa, Ana Célia; Mendonça, Maria I; Pereira, Andreia; Gouveia, Sara; Freitas, Ana I; Guerra, Graça; Rodrigues, Mariana; Henriques, Eva; Freitas, Sónia; Borges, Sofia; Pereira, Décio; Brehm, António; Palma Dos Reis, Roberto
2017-10-01
Essential hypertension (EH) is a disease in which both environment and genes have an important role. This study was designed to identify the interaction model between genetic variants and environmental risk factors that most highly potentiates EH development. We performed a case-control study with 1641 participants (mean age 50.6 ± 8.1 years), specifically 848 patients with EH and 793 controls, adjusted for gender and age. Traditional risk factors, biochemical and genetic parameters, including the genotypic discrimination of 14 genetic variants previously associated with EH, were investigated. Multifactorial dimensionality reduction (MDR) software was used to analyze gene-environment interactions. Validation was performed using logistic regression analysis with environmental risk factors, significant genetic variants, and the best MDR model. The best model indicates that the interactions among the ADD1 rs4961 640T allele, diabetes, and obesity (body mass index ≥30) increase approximately four-fold the risk of EH (odds ratio = 3.725; 95% confidence interval: 2.945-4.711; p < 0.0001). This work showed that the interaction between the ADD1 rs4961 variant, obesity, and the presence of diabetes increased the susceptibility to EH four-fold. In these circumstances, lifestyle adjustment and diabetes control should be intensified in patients who carry the ADD1 variant.
O'Connor, Shannon M; Klump, Kelly L; VanHuysse, Jessica L; McGue, Matt; Iacono, William
2016-02-01
Previous research suggests that parental divorce moderates genetic influences on body dissatisfaction. Specifically, the heritability of body dissatisfaction is higher in children of divorced versus intact families, suggesting possible gene-environment interaction effects. However, prior research is limited to a single, self-reported measure of body dissatisfaction. The primary aim of this study was to examine whether these findings extend to a different dimension of body dissatisfaction: body image perceptions. Participants were 1,534 female twins from the Minnesota Twin Family Study, aged 16-20 years. The Body Rating Scale (BRS) was used to assess body image perceptions. Although BRS scores were heritable in twins from divorced and intact families, the heritability estimates in the divorced group were not significantly greater than estimates in the intact group. However, there were differences in nonshared environmental effects, where the magnitude of these environmental influences was larger in the divorced as compared with the intact families. Different dimensions of body dissatisfaction (i.e., negative self-evaluation versus body image perceptions) may interact with environmental risk, such as parental divorce, in discrete ways. Future research should examine this possibility and explore differential gene-environment interactions using diverse measures. © 2015 Wiley Periodicals, Inc.
Sánchez, Brisa N; Kang, Shan; Mukherjee, Bhramar
2012-06-01
Many existing cohort studies initially designed to investigate disease risk as a function of environmental exposures have collected genomic data in recent years with the objective of testing for gene-environment interaction (G × E) effects. In environmental epidemiology, interest in G × E arises primarily after a significant effect of the environmental exposure has been documented. Cohort studies often collect rich exposure data; as a result, assessing G × E effects in the presence of multiple exposure markers further increases the burden of multiple testing, an issue already present in both genetic and environment health studies. Latent variable (LV) models have been used in environmental epidemiology to reduce dimensionality of the exposure data, gain power by reducing multiplicity issues via condensing exposure data, and avoid collinearity problems due to presence of multiple correlated exposures. We extend the LV framework to characterize gene-environment interaction in presence of multiple correlated exposures and genotype categories. Further, similar to what has been done in case-control G × E studies, we use the assumption of gene-environment (G-E) independence to boost the power of tests for interaction. The consequences of making this assumption, or the issue of how to explicitly model G-E association has not been previously investigated in LV models. We postulate a hierarchy of assumptions about the LV model regarding the different forms of G-E dependence and show that making such assumptions may influence inferential results on the G, E, and G × E parameters. We implement a class of shrinkage estimators to data adaptively trade-off between the most restrictive to most flexible form of G-E dependence assumption and note that such class of compromise estimators can serve as a benchmark of model adequacy in LV models. We demonstrate the methods with an example from the Early Life Exposures in Mexico City to Neuro-Toxicants Study of lead exposure, iron metabolism genes, and birth weight. © 2011, The International Biometric Society.
Contribution of genome-environment interaction to pre-eclampsia in a Havana Maternity Hospital.
Lardoeyt, Roberto; Vargas, Gerardo; Lumpuy, Jairo; García, Ramón; Torres, Yuselis
2013-07-01
Pre-eclampsia is a major cause of morbidity and mortality during pregnancy worldwide and is among the leading causes of maternal mortality in Cuba. It is a complex, multifactoral disease, in which interaction of genetic and environmental factors should not be overlooked if the goal is proper risk assessment to support personalized preventive genetic counseling and more effective prenatal care to prevent pregnancy complications. Determine the contribution to pre-eclampsia of interaction between a predisposing genome and adverse environmental factors in pregnant women in a Havana maternity hospital. This was the exploratory phase of a hospital-based case-control study, using January 2007-December 2009 patient records from the Eusebio Hernández University Hospital, a provincial maternity hospital in Havana. Eighty pregnant women diagnosed with pre-eclampsia and 160 controls were studied. The main variables were age, parity, nutritional status (measured by BMI), alcohol use, tobacco use, and history of pre-eclampsia in relatives of the pregnant woman (proband) or of her partner. Pearson chi square and Fisher exact test were used to assess statistical significance of associations between variables and odds ratio as a measure of association strength. Familial aggregation was studied and a case-control design used to assess gene-environment interaction, using multiplicative and additive models. Among the environmental risk factors studied, alcohol showed the strongest effect on pre-eclampsia risk (OR 3.87, 95% CI 1.64-9.13). Familial pre-eclampsia clustering was observed; risk was increased for both first-degree (OR 2.43, 95% CI 1.62-3.73) and second-degree (OR 1.89, 95% CI 1.34-2.68) relatives as well as for husband's relatives (OR 2.32, 95% CI 1.40-3.86). There was evidence of interaction between alcohol consumption and family history. Familial aggregation of the disorder was demonstrated, the first Cuban epidemiological evidence of genetic and enviromental contributions to pre-eclampsia risk. Familial clustering among the husband's relatives demonstrates the fetal genome's importance in genesis of pre-eclampsia. The interaction of environmental risk factors with genetic ones produces increased pre-eclampsia risk, compared to expectations based on independent action of these variables. KEYWORDS Pre-eclampsia, toxemia of pregnancy, pregnancy outcome, environment, genetics, genome-environment interaction, genetic epidemiology, Cuba.
Gislason, Maya K; Andersen, Holly K
2016-01-01
We consider the case of intensive resource extractive projects in the Blueberry River First Nations in Northern British Columbia, Canada, as a case study. Drawing on the parallels between concepts of cumulative environmental and cumulative health impacts, we highlight three axes along which to gauge the effects of intensive extraction projects. These are environmental, health, and social justice axes. Using an intersectional analysis highlights the way in which using individual indicators to measure impact, rather than considering cumulative effects, hides the full extent by which the affected First Nations communities are impacted by intensive extraction projects. We use the case study to contemplate several mechanisms at the intersection of these axes whereby the negative effects of each not only add but also amplify through their interactions. For example, direct impact along the environmental axis indirectly amplifies other health and social justice impacts separately from the direct impacts on those axes. We conclude there is significant work still to be done to use cumulative indicators to study the impacts of extractive industry projects—like liquefied natural gas—on peoples, environments, and health. PMID:27763548
Austin, Christine; Gennings, Chris; Tammimies, Kristiina; Bölte, Sven; Arora, Manish
2017-01-01
Environmental exposures to essential and toxic elements may alter health trajectories, depending on the timing, intensity, and mixture of exposures. In epidemiologic studies, these factors are typically analyzed as a function of elemental concentrations in biological matrices measured at one or more points in time. Such an approach, however, fails to account for the temporal cyclicity in the metabolism of environmental chemicals, which if perturbed may lead to adverse health outcomes. Here, we conceptualize and apply a non-linear method–recurrence quantification analysis (RQA)–to quantify cyclical components of prenatal and early postnatal exposure profiles for elements essential to normal development, including Zn, Mn, Mg, and Ca, and elements associated with deleterious health effects or narrow tolerance ranges, including Pb, As, and Cr. We found robust evidence of cyclical patterns in the metabolic profiles of nutrient elements, which we validated against randomized twin-surrogate time-series, and further found that nutrient dynamical properties differ from those of Cr, As, and Pb. Furthermore, we extended this approach to provide a novel method of quantifying dynamic interactions between two environmental exposures. To achieve this, we used cross-recurrence quantification analysis (CRQA), and found that elemental nutrient-nutrient interactions differed from those involving toxicants. These rhythmic regulatory interactions, which we characterize in two geographically distinct cohorts, have not previously been uncovered using traditional regression-based approaches, and may provide a critical unit of analysis for environmental and dietary exposures in epidemiological studies. PMID:29112980
Skin microbiota and allergic symptoms associate with exposure to environmental microbes
Sinkko, Hanna; Hielm-Björkman, Anna; Tiira, Katriina; Laatikainen, Tiina; Mäkeläinen, Sanna; Kaukonen, Maria; Uusitalo, Liisa; Hanski, Ilkka; Lohi, Hannes; Ruokolainen, Lasse
2018-01-01
A rural environment and farming lifestyle are known to provide protection against allergic diseases. This protective effect is expected to be mediated via exposure to environmental microbes that are needed to support a normal immune tolerance. However, the triangle of interactions between environmental microbes, host microbiota, and immune system remains poorly understood. Here, we have studied these interactions using a canine model (two breeds, n = 169), providing an intermediate approach between complex human studies and artificial mouse model studies. We show that the skin microbiota reflects both the living environment and the lifestyle of a dog. Remarkably, the prevalence of spontaneous allergies is also associated with residential environment and lifestyle, such that allergies are most common among urban dogs living in single-person families without other animal contacts, and least common among rural dogs having opposite lifestyle features. Thus, we show that living environment and lifestyle concurrently associate with skin microbiota and allergies, suggesting that these factors might be causally related. Moreover, microbes commonly found on human skin tend to dominate the urban canine skin microbiota, while environmental microbes are rich in the rural canine skin microbiota. This in turn suggests that skin microbiota is a feasible indicator of exposure to environmental microbes. As short-term exposure to environmental microbes via exercise is not associated with allergies, we conclude that prominent and sustained exposure to environmental microbiotas should be promoted by urban planning and lifestyle changes to support health of urban populations. PMID:29686089
Skin microbiota and allergic symptoms associate with exposure to environmental microbes.
Lehtimäki, Jenni; Sinkko, Hanna; Hielm-Björkman, Anna; Salmela, Elina; Tiira, Katriina; Laatikainen, Tiina; Mäkeläinen, Sanna; Kaukonen, Maria; Uusitalo, Liisa; Hanski, Ilkka; Lohi, Hannes; Ruokolainen, Lasse
2018-05-08
A rural environment and farming lifestyle are known to provide protection against allergic diseases. This protective effect is expected to be mediated via exposure to environmental microbes that are needed to support a normal immune tolerance. However, the triangle of interactions between environmental microbes, host microbiota, and immune system remains poorly understood. Here, we have studied these interactions using a canine model (two breeds, n = 169), providing an intermediate approach between complex human studies and artificial mouse model studies. We show that the skin microbiota reflects both the living environment and the lifestyle of a dog. Remarkably, the prevalence of spontaneous allergies is also associated with residential environment and lifestyle, such that allergies are most common among urban dogs living in single-person families without other animal contacts, and least common among rural dogs having opposite lifestyle features. Thus, we show that living environment and lifestyle concurrently associate with skin microbiota and allergies, suggesting that these factors might be causally related. Moreover, microbes commonly found on human skin tend to dominate the urban canine skin microbiota, while environmental microbes are rich in the rural canine skin microbiota. This in turn suggests that skin microbiota is a feasible indicator of exposure to environmental microbes. As short-term exposure to environmental microbes via exercise is not associated with allergies, we conclude that prominent and sustained exposure to environmental microbiotas should be promoted by urban planning and lifestyle changes to support health of urban populations. Copyright © 2018 the Author(s). Published by PNAS.
Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma. However, appropriately designed studies are critical for these methods to reach the...
Studying Environmental Influence on Motor Development in Children
ERIC Educational Resources Information Center
Gabbard, Carl; Krebs, Ruy
2012-01-01
There is a good argument that in order to truly understand the influences that shape child motor development, one must consider environmental influences that reflect the multilevel ecological contexts that interact with the changing biological characteristics of the child. Although there are theories typically associated with motor development…
Human interaction as environmental enrichment for pair-housed wolves and wolf-dog crosses.
Mehrkam, Lindsay R; Verdi, Nicolle T; Wynne, Clive D L
2014-01-01
Private nonhuman animal sanctuaries are often financially limited in their ability to implement traditional environmental enrichment strategies. One possible solution may be to provide socialized animals with human interaction sessions. However, the merit of human interaction as enrichment has received little empirical attention to date. The present study aimed to evaluate whether human interaction could be enriching for socialized, pair-housed wolves and wolf-dog crosses at a private sanctuary. Observations of each subject were conducted in a reversal design to measure species-typical affiliation, activity levels, and aberrant behaviors when caretakers were both present and absent. The results demonstrate significantly higher levels of conspecific-directed affiliation and activity levels and reduced aberrant behavior when human interaction was available. Social play also increased when caregivers were present, supporting the hypothesis that play among conspecifics may be maintained by positive changes in an animal's environment. The potential for human interaction to be established as a scientifically validated, cost-effective enrichment strategy is supported by these findings.
The Childhood Leukemia International Consortium
Metayer, Catherine; Milne, Elizabeth; Clavel, Jacqueline; Infante-Rivard, Claire; Petridou, Eleni; Taylor, Malcolm; Schüz, Joachim; Spector, Logan G.; Dockerty, John D.; Magnani, Corrado; Pombo-de-Oliveira, Maria S.; Sinnett, Daniel; Murphy, Michael; Roman, Eve; Monge, Patricia; Ezzat, Sameera; Mueller, Beth A.; Scheurer, Michael E.; Armstrong, Bruce K.; Birch, Jill; Kaatsch, Peter; Koifman, Sergio; Lightfoot, Tracy; Bhatti, Parveen; Bondy, Melissa L.; Rudant, Jérémie; O’Neill, Kate; Miligi, Lucia; Dessypris, Nick; Kang, Alice Y.; Buffler, Patricia A.
2013-01-01
Background Acute leukemia is the most common cancer in children under 15 years of age; 80% are acute lymphoblastic leukemia (ALL) and 17% are acute myeloid leukemia (AML). Childhood leukemia shows further diversity based on cytogenetic and molecular characteristics, which may relate to distinct etiologies. Case–control studies conducted worldwide, particularly of ALL, have collected a wealth of data on potential risk factors and in some studies, biospecimens. There is growing evidence for the role of infectious/immunologic factors, fetal growth, and several environmental factors in the etiology of childhood ALL. The risk of childhood leukemia, like other complex diseases, is likely to be influenced both by independent and interactive effects of genes and environmental exposures. While some studies have analyzed the role of genetic variants, few have been sufficiently powered to investigate gene–environment interactions. Objectives The Childhood Leukemia International Consortium (CLIC) was established in 2007 to promote investigations of rarer exposures, gene–environment interactions and subtype-specific associations through the pooling of data from independent studies. Methods By September 2012, CLIC included 22 studies (recruitment period: 1962–present) from 12 countries, totaling approximately 31 000 cases and 50 000 controls. Of these, 19 case–control studies have collected detailed epidemiologic data, and DNA samples have been collected from children and child–parent trios in 15 and 13 of these studies, respectively. Two registry-based studies and one study comprising hospital records routinely obtained at birth and/or diagnosis have limited interview data or biospecimens. Conclusions CLIC provides a unique opportunity to fill gaps in knowledge about the role of environmental and genetic risk factors, critical windows of exposure, the effects of gene–environment interactions and associations among specific leukemia subtypes in different ethnic groups. PMID:23403126
The interaction of high voltage systems with the environments of the Moon and Mars
NASA Technical Reports Server (NTRS)
Hillard, G. Barry; Kolecki, Joseph C.
1993-01-01
High voltage systems designed for use on the lunar and Martian surfaces or in orbit will interact with environmental components such as electrically charged dust, low pressure atmospheres, ionospheric plasmas and neutrals, and chemically reactive species. As the Space Exploration Initiative (SEI) advances from the realm of feasibility study to that of conceptual design, guidelines will be required to ensure that these effects are properly accounted for. A first step in providing such guidelines is the prioritization of interactions for each of the space or surface environments that will be encountered. For those issues that are identified as high priority, the state of environmental knowledge, emphasizing essential data, must be determined. This report describes possible means of obtaining such information, including ground tests, modeling and analysis, and flight experiments. The development of computational tools which will enable engineers to simulate and thereby quantify the interactions will be especially considered. Our analysis is drawn from various study and workshop activities undertaken within the last two years.
Interaction of stress and dietary NaCl intake in hypertension: renal neural mechanisms.
DiBona, Gerald F
2013-10-01
A synthesizing concept of the development of primary hypertension is that it arises from an interaction of genetic and environmental factors. Of the environmental factors, dietary NaCl intake and mental stress are among the most thoroughly investigated. This review will focus on the interaction between genetic predisposition and the environmental influences of dietary NaCl intake and mental stress in the development of primary hypertension.
ERIC Educational Resources Information Center
Beenackers, Marielle A.; Kamphuis, Carlijn B. M.; Mackenbach, Johan P.; Burdorf, Alex; van Lenthe, Frank J.
2013-01-01
Although physical activity is often believed to be influenced by both environmental and individual factors, little is known about their interaction. This study explores interactions of perceived safety and social neighborhood factors with psychosocial cognitions for leisure-time walking. Cross-sectional data were obtained from residents (age 25-75…
Moderating role of the MAOA genotype in antisocial behaviour
Fergusson, David M.; Boden, Joseph M.; Horwood, L. John; Miller, Allison; Kennedy, Martin A.
2012-01-01
Background Recent studies have examined gene×environment (G×E) interactions involving the monoamine oxidase A (MAOA) gene in moderating the associations between exposure to adversity and antisocial behaviour. The present study examined a novel method for assessing interactions between a single gene and multiple risk factors related to environmental and personal adversity. Aims To test the hypothesis that the presence of the low-activity MAOA genotype was associated with an increased response to a series of risk factors. Method Participants were 399 males from the Christchurch Health and Development Study who had complete data on: (a) MAOA promoter region variable number tandem repeat genotype; (b) antisocial behaviour (criminal offending) to age 30 and convictions to age 21; and (c) maternal smoking during pregnancy, IQ, childhood maltreatment and school failure. Results Poisson regression models were fitted to three antisocial behaviour outcomes (property/violent offending ages 15–30; and convictions ages 17–21), using measures of exposure to adverse childhood circumstances. The analyses revealed consistent evidence of G x E interactions, such that those with the low-activity MAOA variant who were exposed to adversity in childhood were significantly more likely to report offending in late adolescence and early adulthood. Conclusions The present findings add to the evidence suggesting that there is a stable G x E interaction involving MAOA, a range of adverse environmental and personal factors, and antisocial behaviour across the life course. These analyses also demonstrate the utility of using multiple environmental/personal exposures to test G×E interactions. PMID:22297589
Maphosa, Lance; Kovalchuk, Alex
2017-01-01
Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat (Triticum aestivum) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. PMID:28546436
Liu, Xiaoqing; Nie, Zhiqiang; Chen, Jimei; Guo, Xiaoling; Ou, Yanqiu; Chen, Guanchun; Mai, Jinzhuang; Gong, Wei; Wu, Yong; Gao, Xiangmin; Qu, Yanji; Bell, Erin M; Lin, Shao; Zhuang, Jian
2018-03-01
Congenital heart defects (CHDs) are a major cause of death in infancy and childhood. Major risk factors for most CHDs, particularly those resulting from the combination of environmental exposures with social determinants and behaviors, are still unknown. This study evaluated the main effect of maternal environmental tobacco smoke (ETS), and its interaction with social-demographics and environmental factors on CHDs in China. A population-based, matched case-control study of 9452 live-born infants and stillborn fetuses was conducted using the Guangdong Registry of Congenital Heart Disease data (2004-2014). The CHDs were evaluated by obstetrician, pediatrician, or cardiologist, and confirmed by cardia tomography/catheterization. Controls were randomly chosen from singleton newborns without any malformation, born in the same hospital as the cases and 1:1 matched by infant sex, time of conception, and parental residence (same city and town to ensure sufficient geographical distribution for analyses). Face-to-face interviews were conducted to collect information on demographics, behavior patterns, maternal disease/medication, and environmental exposures. Conditional logistic regression was used to estimate odds ratios and 95% confidence intervals of ETS exposure on CHDs while controlling for all risk factors. Interactive effects were evaluated using a multivariate delta method for maternal demographics, behavior, and environmental exposures on the ETS-CHD relationship. Mothers exposed to ETS during the first trimester of pregnancy were more likely to have infants with CHD than mothers who did not (aOR = 1.44, 95% CI 1.25-1.66). We also observed a significant dose-response relationship when mothers were exposed to ETS and an increasing number of risk factors and CHDs. There were greater than additive interactions for maternal ETS and migrant status, low household income and paternal alcohol consumption on CHDs. Maternal low education also modified the ETS-CHD association on the multiplicative scale. These findings may help to identify high-risk populations for CHD, providing an opportunity for targeted preventive interventions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Inquiry in interaction: How local adaptations of curricula shape classroom communities
NASA Astrophysics Data System (ADS)
Enyedy, Noel; Goldberg, Jennifer
2004-11-01
In this study, we seek a better understanding of how individuals and their daily interactions shape and reshape social structures that constitute a classroom community. Moreover, we provide insight into how discourse and classroom interactions shape the nature of a learning community, as well as which aspects of the classroom culture may be consequential for learning. The participants in this study include two teachers who are implementing a new environmental science program, Global Learning through Observation to Benefit the Environment (GLOBE), and interacting with 54 children in an urban middle school. Both qualitative and quantitative data are analyzed and presented. To gain a better understanding of the inquiry teaching within classroom communities, we compare and contrast the discourse and interactions of the two teachers during three parallel environmental science lessons. The focus of our analysis includes (1) how the community identifies the object or goal of its activity; and (2) how the rights, rules, and roles for members are established and inhabited in interaction. Quantitative analyses of student pre- and posttests suggest greater learning for students in one classroom over the other, providing support for the influence of the classroom community and interactional choices of the teacher on student learning. Implications of the findings from this study are discussed in the context of curricular design, professional development, and educational reform. ? 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 905-935, 2004.
Meeting Report: Structural Determination of Environmentally Responsive Proteins
Reinlib, Leslie
2005-01-01
The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521
Tielbeek, Jorim J; Karlsson Linnér, Richard; Beers, Koko; Posthuma, Danielle; Popma, Arne; Polderman, Tinca J C
2016-07-01
Several studies have suggested an association between antisocial, aggressive, and delinquent behavior and the short variant of the serotonin transporter gene polymorphism (5-HTTLPR). Yet, genome wide and candidate gene studies in humans have not convincingly shown an association between these behaviors and 5-HTTLPR. Moreover, individual studies examining the effect of 5-HTTLPR in the presence or absence of adverse environmental factors revealed inconsistent results. We therefore performed a meta-analysis to test for the robustness of the potential interaction effect of the "long-short" variant of the 5-HTTLPR genotype and environmental adversities, on antisocial behavior. Eight studies, comprising of 12 reasonably independent samples, totaling 7,680 subjects with an effective sample size of 6,724, were included in the meta-analysis. Although our extensive meta-analysis resulted in a significant interaction effect between the 5-HTTLPR genotype and environmental adversities on antisocial behavior, the methodological constraints of the included studies hampered a confident interpretation of our results, and firm conclusions regarding the direction of effect. Future studies that aim to examine biosocial mechanisms that influence the etiology of antisocial behavior should make use of larger samples, extend to genome-wide genetic risk scores and properly control for covariate interaction terms, ensuring valid and well-powered research designs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cook, C. Justin; Fletcher, Jason M.
2013-01-01
A large literature links early environments and later outcomes, such as cognition; however, little is known about the mechanisms. One potential mechanism is sensitivity to early environments that is moderated or amplified by the genotype. With this mechanism in mind, a complementary literature outside economics examines the interaction between genes and environments, but often problems of endogeneity and bias in estimation are uncorrected. A key issue in the literature is exploring environmental variation that is not exogenous, which is potentially problematic if there are gene-environment correlation or gene-gene interactions. Using sibling pairs with genetic data in the Wisconsin Longitudinal Study we extend a previous, and widely cited, gene-environment study that explores an interaction between the FADS2 gene, which is associated with the processing of essential fatty acids related to cognitive development, and early life nutrition in explaining later-life IQ. Our base OLS findings suggest that individuals with specific FADS2 variants gain roughly 0.15 standard deviations in IQ for each standard deviation increase in birth weight, our measure of the early nutrition environment; while, individuals with other variants of FADS2 do not have a statistically significant association with early nutrition, implying the genotype is influencing the effects of environmental exposure. When including family-level fixed effects, however, the magnitude of the gene-environment interaction is reduced by half and statistical significance dissipates, implying the interaction between FADS2 and early nutrition in explaining later life IQ may in part be due to unobserved, family-level factors. The example has wider implications for the practice of investigating gene-environment interactions when the environmental exposure is not exogenous and robustness to unobserved variation in the genome is not controlled for in the analysis. PMID:24172871
Shang, Yu; Sikorski, Johannes; Bonkowski, Michael; Fiore-Donno, Anna-Maria; Kandeler, Ellen; Marhan, Sven; Boeddinghaus, Runa S.; Solly, Emily F.; Schrumpf, Marion; Schöning, Ingo; Wubet, Tesfaye; Buscot, Francois; Overmann, Jörg
2017-01-01
Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients. PMID:28288199
Role of CYP1A2 polymorphisms in breast cancer risk in women.
Ayari, Imene; Fedeli, Ugo; Saguem, Saad; Hidar, Samir; Khlifi, Saida; Pavanello, Sofia
2013-01-01
Cytochrome P4501A2 (CYP1A2) is a key enzyme in the etiology of breast cancer (BC). It is involved in breast carcinogen activation [aromatic (AAs) and heterocyclic amines (HAs), polycyclic aromatic hydrocarbons (PAHs)], in the production of beneficial oestrogen [2-hydroxyestrone (2-OHE1)] and in converting arachidonic acid (AAc) to epoxyeicosatrienoic acids (EETs), which have anti-inflammatory properties. Within a hospital-based case-control study, the effect of functional CYP1A2 variants [-3860G/A (rs2069514), -2467T/delT (rs3569413), -163C/A (rs762551)] and their interactions with environmental factors in BC risk was investigated. The study population included 125 BC cases and 43 non-cancer controls. Genotyping was performed in RT-PCR using Taqman assays. The gene-environment interaction was appraised using a case-only study design. We found that the -3860A variant, independently from environmental factors, as well as by interacting with fried foods (p=0.025) and indoor exposure to pollutants (p=0.050), reduced the risk of BC (p=0.025), whereas its interaction with coffee (p=0.045) increased the BC risk. This is the first study indicating that the -3860A variant, by decreasing CYP1A2 activity, modifies BC risk by interacting with environmental factors, thereby supporting the hypothesis that reduced CYP1A2 activity contributes to BC risk in different ways, for example, it may be protective by reducing the activation of pro-carcinogens such as AAs, HAs and PAHs, but would increase risk by reducing the beneficial formation of 2-OHE1 and EETs.
Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank report.
Hutter, Carolyn M; Mechanic, Leah E; Chatterjee, Nilanjan; Kraft, Peter; Gillanders, Elizabeth M
2013-11-01
Cancer risk is determined by a complex interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified hundreds of common (minor allele frequency [MAF] > 0.05) and less common (0.01 < MAF < 0.05) genetic variants associated with cancer. The marginal effects of most of these variants have been small (odds ratios: 1.1-1.4). There remain unanswered questions on how best to incorporate the joint effects of genes and environment, including gene-environment (G × E) interactions, into epidemiologic studies of cancer. To help address these questions, and to better inform research priorities and allocation of resources, the National Cancer Institute sponsored a "Gene-Environment Think Tank" on January 10-11, 2012. The objective of the Think Tank was to facilitate discussions on (1) the state of the science, (2) the goals of G × E interaction studies in cancer epidemiology, and (3) opportunities for developing novel study designs and analysis tools. This report summarizes the Think Tank discussion, with a focus on contemporary approaches to the analysis of G × E interactions. Selecting the appropriate methods requires first identifying the relevant scientific question and rationale, with an important distinction made between analyses aiming to characterize the joint effects of putative or established genetic and environmental factors and analyses aiming to discover novel risk factors or novel interaction effects. Other discussion items include measurement error, statistical power, significance, and replication. Additional designs, exposure assessments, and analytical approaches need to be considered as we move from the current small number of success stories to a fuller understanding of the interplay of genetic and environmental factors. © 2013 WILEY PERIODICALS, INC.
Gene-Environment Interactions in Cancer Epidemiology: A National Cancer Institute Think Tank Report
Hutter, Carolyn M.; Mechanic, Leah E.; Chatterjee, Nilanjan; Kraft, Peter; Gillander, Elizabeth M.
2014-01-01
Cancer risk is determined by a complex interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified hundreds of common (minor allele frequency [MAF]>0.05) and less common (0.01
Liu, Jia Jia; Wei, Ya Bin; Forsell, Yvonne; Lavebratt, Catharina
2017-11-01
Telomeres have been reported to be shorter in individuals exposed to psychosocial stress and in those with depression. Since negative environmental stress is a risk factor for depression, the present study tested whether stressors in childhood (CA) and recent adulthood (NLE) predicted telomere attrition directly and/or indirectly through individuals' depressive status 3-6 years before TL measurement; and then if social interaction and coping strategies in adulthood influenced the relationship between depressive status and TL. Participants were 337 individuals with a recent depression diagnosis and 574 screened controls that derived from a longitudinal population-based cohort study conducted in Stockholm, Sweden. Relative TL was determined using qPCR. Relationships between the key variables stressors, depressive status, social interaction, coping strategies and TL were explored by path analysis in males and females, adjusting for age. The key variables were correlated in expected directions. In females, depressive status and age had direct negative effects on TL (p < 0.05) and both CA (p = 0.025) and NLE (p < 0.003) had indirect negative effects on TL. For males, the effects of stressors and depressive status on TL were mediated by social interaction (p = 0.005) and the coping strategy worry (p = 0.005). In females, no mediation effect of social interaction and coping strategy was detected. Only little of the TL variation was explained by the models. The environmental stress information was limited. Our findings propose gender-specific paths from environmental stressors through depressive status, social interaction and coping strategy to TL. Copyright © 2017 Elsevier B.V. All rights reserved.
Kazma, Rémi; Bonaïti-Pellié, Catherine; Norris, Jill M; Génin, Emmanuelle
2010-01-01
Gene-environment interactions are likely to be involved in the susceptibility to multifactorial diseases but are difficult to detect. Available methods usually concentrate on some particular genetic and environmental factors. In this paper, we propose a new method to determine whether a given exposure is susceptible to interact with unknown genetic factors. Rather than focusing on a specific genetic factor, the degree of familial aggregation is used as a surrogate for genetic factors. A test comparing the recurrence risks in sibs according to the exposure of indexes is proposed and its power is studied for varying values of model parameters. The Exposed versus Unexposed Recurrence Analysis (EURECA) is valuable for common diseases with moderate familial aggregation, only when the role of exposure has been clearly outlined. Interestingly, accounting for a sibling correlation for the exposure increases the power of EURECA. An application on a sample ascertained through one index affected with type 2 diabetes is presented where gene-environment interactions involving obesity and physical inactivity are investigated. Association of obesity with type 2 diabetes is clearly evidenced and a potential interaction involving this factor is suggested in Hispanics (P=0.045), whereas a clear gene-environment interaction is evidenced involving physical inactivity only in non-Hispanic whites (P=0.028). The proposed method might be of particular interest before genetic studies to help determine the environmental risk factors that will need to be accounted for to increase the power to detect genetic risk factors and to select the most appropriate samples to genotype.
BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this ...
NASA Astrophysics Data System (ADS)
Wang, G.; Liu, L.; Chen, G.
2016-12-01
The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.
ERIC Educational Resources Information Center
Tiemeier, Henning; Velders, Fleur P.; Szekely, Eszter; Roza, Sabine J.; Dieleman, Gwen; Jaddoe, Vincent W. V.; Uitterlinden, Andre G.; White, Tonya J. H.; Bakermans-Kranenburg, Marian J.; Hofman, Albert; Van IJzendoorn, Marinus H.; Hudziak, James J.; Verhulst, Frank C.
2012-01-01
Objective: First, we give an overview of child psychiatric research in the Generation R Study, a population-based cohort from fetal life forward. Second, we examine within Generation R whether the functional polymorphism (5-HTTLPR) in the promoter of the serotonin transporter gene interacts with prenatal maternal chronic difficulties, prenatal…
NASA Astrophysics Data System (ADS)
Asteria, Donna; Herdiansyah, Herdis; Wayan Agus Apriana, I.
2016-02-01
This study is about experience of women's role in environmental management to raise environmental security and form of women's emancipation movement. Environmental concerns conducted by residents of urban women who become environmental activists based on environmental literacy. Because of that, women's experience in interacting with both physic and social environment have differences in managing the environment including managing household waste by applying the principles of the 3Rs (reduce, reuse, recycle) and their persuasive efforts on their communities. This is the key to achieving sustainable development by anticipating environmental problem and preserving the environment. This study is conducted qualitative research method and its type is descriptive-explanative. The result of this study is environmental literacy of women activist on pro-environment action in their community that has achieved spiritual environmental literacy. Environmental literacy may differ due to internal and external condition of each individual. Pro-environment activities conducted as a form of responsibility of environmental concern such as eco-management, educational, and economic action, by persuading residents to proactively and consistently continue to do environmental management and develop a sense of community in shaping the networks of environmental concern in local context for global effect.
Kerwin, Rachel E; Feusier, Julie; Muok, Alise; Lin, Catherine; Larson, Brandon; Copeland, Daniel; Corwin, Jason A; Rubin, Matthew J; Francisco, Marta; Li, Baohua; Joseph, Bindu; Weinig, Cynthia; Kliebenstein, Daniel J
2017-08-01
Despite the growing number of studies showing that genotype × environment and epistatic interactions control fitness, the influences of epistasis × environment interactions on adaptive trait evolution remain largely uncharacterized. Across three field trials, we quantified aliphatic glucosinolate (GSL) defense chemistry, leaf damage, and relative fitness using mutant lines of Arabidopsis thaliana varying at pairs of causal aliphatic GSL defense genes to test the impact of epistatic and epistasis × environment interactions on adaptive trait variation. We found that aliphatic GSL accumulation was primarily influenced by additive and epistatic genetic variation, leaf damage was primarily influenced by environmental variation and relative fitness was primarily influenced by epistasis and epistasis × environment interactions. Epistasis × environment interactions accounted for up to 48% of the relative fitness variation in the field. At a single field site, the impact of epistasis on relative fitness varied significantly over 2 yr, showing that epistasis × environment interactions within a location can be temporally dynamic. These results suggest that the environmental dependency of epistasis can profoundly influence the response to selection, shaping the adaptive trajectories of natural populations in complex ways, and deserves further consideration in future evolutionary studies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Burt, S. A.; Klump, K. L.
2018-01-01
Background Prior research has suggested that, consistent with the diathesis–stress model of gene–environment interaction (G × E), parent–child conflict activates genetic influences on antisocial/externalizing behaviors during adolescence. It remains unclear, however, whether this model is also important during childhood, or whether the moderation of child conduct problems by negative/conflictive parenting is better characterized as a bioecological interaction, in which environmental influences are enhanced in the presence of environmental risk whereas genetic influences are expressed most strongly in their absence. The current study sought to distinguish between these possibilities, evaluating how the parent–child relationship moderates the etiology of childhood-onset conduct problems. Method We conducted a series of ‘latent G by measured E’ interaction analyses, in which a measured environmental variable was allowed to moderate both genetic and environmental influences on child conduct problems. Participants included 500 child twin pairs from the Michigan State University Twin Registry (MSUTR). Results Shared environmental influences on conduct problems were found to be several-fold larger in those with high levels of parent–child conflict as compared with those with low levels. Genetic influences, by contrast, were proportionally more influential at lower levels of conflict than at higher levels. Conclusions Our findings suggest that, although the diathesis–stress form of G × E appears to underlie the relationship between parenting and conduct problems during adolescence, this pattern of moderation does not extend to childhood. Instead, results were more consistent with the bioecological form of G × E which postulates that, in some cases, genetic influences may be most fully manifested in the absence of environmental risk. PMID:23746066
Land Use, Livelihoods, Vulnerabilities, and Resilience in Coastal Bangladesh
NASA Astrophysics Data System (ADS)
Gilligan, J. M.; Ackerly, B.; Goodbred, S. L., Jr.; Wilson, C.
2014-12-01
The densely populated, low-lying coast of Bangladesh is famously associated with vulnerability to sea-level rise, storms, and flooding. Simultaneously, land-use change has significantly altered local sediment transport, causing elevation loss and degradation of drainage. The rapid growth of shrimp aquaculture has also affected soil chemistry in former agricultural areas and the stock of riverine fisheries through intense larval harvesting. To understand the net impact of these environmental changes on the region's communities, it is necessary to examine interactions across scale - from externally driven large scale environmental change to smaller scale, but often more intense, local change - and also between the physical environment and social, political, and economic conditions. We report on a study of interactions between changing communities and changing environment in coastal Bangladesh, exploring the role of societal and physical factors in shaping the different outcomes and their effects on people's lives. Land reclamation projects in the 1960s surrounded intertidal islands with embankments. This allowed rice farming to expand, but also produced significant elevation loss, which rendered many islands vulnerable to waterlogging and flooding from storm surges. The advent of large-scale shrimp aquaculture added environmental, economic, social, and political stresses, but also brought much export revenue to a developing nation. Locally, attempts to remedy environmental stresses have produced mixed results, with similar measures succeeding in some communities and failing in others. In this context, we find that people are continually adapting to changing opportunities and constraints for food, housing, and income. Niches that support different livelihood activities emerge and dwindle, and their occupants' desires affect the political context. Understanding and successfully responding to the impacts of environmental change requires understanding not only the physical environment, but also the human livelihoods, interpersonal interactions, and human-environmental interactions within a socio-ecological system.
Lunar and Martian environmental interactions with nuclear power system radiators
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Gaier, James R.; Katzan, Cynthia M.
1992-01-01
Future NASA space missions include a permanent manned presence on the moon and an expedition to the planet Mars. Such steps will require careful consideration of environmental interactions in the selection and design of required power systems. Several environmental constituents may be hazardous to performance integrity. Potential threats common to both the moon and Mars are low ambient temperatures, wide daily temperature swings, solar flux, and large quantities of dust. The surface of Mars provides the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. In this review, the anticipated environmental interactions with surface power system radiators are described, as well as the impacts of these interactions on radiator durability, which were identified at NASA Lewis Research Center.
Key genes and pathways in measles and their interaction with environmental chemicals.
Zhang, Rongqiang; Jiang, Hualin; Li, Fengying; Su, Ning; Ding, Yi; Mao, Xiang; Ren, Dan; Wang, Jing
2018-06-01
The aim of the present study was to explore key genes that may have a role in the pathology of measles virus infection and to clarify the interaction networks between environmental factors and differentially expressed genes (DEGs). After screening the database of the Gene Expression Omnibus of the National Center for Biotechnology Information, the dataset GSE5808 was downloaded and analyzed. A global normalization method was performed to minimize data inconsistencies and heterogeneity. DEGs during different stages of measles virus infection were explored using R software (v3.4.0). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs were performed using Cytoscape 3.4.0 software. A protein-protein interaction (PPI) network of the DEGs was obtained from the STRING database v9.05. A total of 43 DEGs were obtained from four analyzed sample groups, including 10 highly expressed genes and 33 genes with decreased expression. The most enriched pathways based on KEGG analysis were fatty acid elongation, cytokine-cytokine receptor interaction and RNA degradation. The genes mentioned in the PPI network were mainly associated with protein binding and chemokine activity. A total of 219 chemicals were identified that may, jointly or on their own, interact with the 6 DEGs between the control group and patients with measles (at hospital entry), including benzo(a)pyrene (BaP) and tetrachlorodibenzodioxin (TCDD). In conclusion, the present study revealed that chemokines and environmental chemicals, e.g. BaP and TCDD, may affect the development of measles.
The role of epigenetics in genetic and environmental epidemiology.
Ladd-Acosta, Christine; Fallin, M Daniele
2016-02-01
Epidemiology is the branch of science that investigates the causes and distribution of disease in populations in order to provide preventative measures and promote human health. The fields of genetic and environmental epidemiology primarily seek to identify genetic and environmental risk factors for disease, respectively. Epigenetics is emerging as an important piece of molecular data to include in these studies because it can provide mechanistic insights into genetic and environmental risk factors for disease, identify potential intervention targets, provide biomarkers of exposure, illuminate gene-environment interactions and help localize disease-relevant genomic regions. Here, we describe the importance of including epigenetics in genetic and environmental epidemiology studies, provide a conceptual framework when considering epigenetic data in population-based studies and touch upon the many challenges that lie ahead.
24 CFR 58.14 - Interaction with State, Federal and non-Federal entities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... environmental issues and there is a written agreement between the cooperating agencies which sets forth the..., Department of Housing and Urban Development ENVIRONMENTAL REVIEW PROCEDURES FOR ENTITIES ASSUMING HUD ENVIRONMENTAL RESPONSIBILITIES General Policy: Responsibilities of Responsible Entities § 58.14 Interaction with...
McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.
2012-01-01
Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems.
Facilitating Toddler Interaction through Interior Environmental Design in a Child Care Setting.
ERIC Educational Resources Information Center
Wynn, Ruth L.; And Others
This study was a joint undertaking of interior environmental designers and a child developmentalist. The goal of the study was to increase peer interation between children in two classes held in one classroom. Children were observed for 7 weeks, in three periods: weeks 2 and 3 (time 1); weeks 4 and 5 (time 2); and weeks 6 and 7 (time 3). Observers…
Handcock, Rebecca N.; Swain, Dave L.; Bishop-Hurley, Greg J.; Patison, Kym P.; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J.
2009-01-01
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle. PMID:22412327
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
Tsai, Sang-Bing; Chien, Min-Fang; Xue, Youzhi; Li, Lei; Jiang, Xiaodong; Chen, Quan; Zhou, Jie; Wang, Lei
2015-01-01
The method by which high-technology product manufacturers balance profits and environmental performance is of crucial concern for governments and enterprises. To examine the environmental performance of manufacturers, the present study applied Fuzzy-DEMATEL model to examine environmental performance of the PCB industry in Taiwan. Fuzzy theory was employed to examine the environmental performance criteria of manufacturers and analyse fuzzy linguistics. The fuzzy-DEMATEL model was then employed to assess the direction and level of interaction between environmental performance criteria. The core environmental performance criteria which were critical for enhancing environmental performance of the PCB industry in Taiwan were identified and presented. The present study revealed that green design (a1), green material procurement (a2), and energy consumption (b3) constitute crucial reason criteria, the core criteria influencing other criteria, and the driving factors for resolving problems. PMID:26052710
Tsai, Sang-Bing; Chien, Min-Fang; Xue, Youzhi; Li, Lei; Jiang, Xiaodong; Chen, Quan; Zhou, Jie; Wang, Lei
2015-01-01
The method by which high-technology product manufacturers balance profits and environmental performance is of crucial concern for governments and enterprises. To examine the environmental performance of manufacturers, the present study applied Fuzzy-DEMATEL model to examine environmental performance of the PCB industry in Taiwan. Fuzzy theory was employed to examine the environmental performance criteria of manufacturers and analyse fuzzy linguistics. The fuzzy-DEMATEL model was then employed to assess the direction and level of interaction between environmental performance criteria. The core environmental performance criteria which were critical for enhancing environmental performance of the PCB industry in Taiwan were identified and presented. The present study revealed that green design (a1), green material procurement (a2), and energy consumption (b3) constitute crucial reason criteria, the core criteria influencing other criteria, and the driving factors for resolving problems.
Genetic variation of apolipoproteins, diet and other environmental interactions; an updated review.
Sotos-Prieto, Mercedes; Peñalvo, José Luis
2013-01-01
This paper summarizes the recent findings from studies investigating the potential environmental modulation of the genetic variation of apolipoprotein genes on metabolic traits. We reviewed nutrigenetic studies evaluating variations on apolipoproteins-related genes and its associated response to nutrients (mostly dietary fatty acids) or any other dietary or environmental component. Most revised research studied single nucleotide polymorphism (SNP) and specific nutrients through small intervention studies, and only few interactions have been replicated in large and independent populations (as in the case of -265T > C SNP in APOA2 gene). Although current knowledge shows that variations on apolipoprotein genes may contribute to the different response on metabolic traits due to dietary interventions, evidence is still scarce and results are inconsistent. Success in this area will require going beyond the limitations of current experimental designs and explore the hypotheses within large populations. Some of these limitations are being covered by the rapidly advance in high-throughput technologies and large scale-genome wide association studies. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Hagopian, L P; Frank-Crawford, M A
2017-10-13
Self-injurious behaviour (SIB) is generally considered to be the product of interactions between dysfunction stemming from the primary developmental disability and experiences that occasion and reinforce SIB. As a result of these complex interactions, SIB presents as a heterogeneous problem. Recent research delineating subtypes of SIB that are nonsocially mediated, including one that is amenable to change and one that is highly invariant, enables classification of SIB across a broader continuum of relative environmental-biological influence. Directly examining how the functional classes of SIB differ has the potential to structure research, will improve our understanding this problem, and lead to more targeted behavioural and pharmacological interventions. Recognising that SIB is not a single entity but is composed of distinct functional classes would better align research with conceptual models that view SIB as the product of interactions between environmental and biological variables. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Teaching Ethics for Design for Sustainable Behaviour: A Pilot Study
ERIC Educational Resources Information Center
Lilley, Debra; Lofthouse, Vicky
2010-01-01
Design for sustainable behaviour is an emerging activity under the banner of sustainable design which aims to reduce the environmental and social impacts of products by moderating users' interaction with them. The intended outcome of design for sustainable behaviour is to reduce negative environmental and societal impacts. However, designers'…
Environmental links to disease are difficult to uncover because environmental exposures are variable in time and space, contaminants occur in complex mixtures, and many diseases have a long time delay between exposure and onset. Furthermore, individuals in a population have diff...
The Lone Ranger Mission: Understanding Synthetic Polymer Microbe Interactions In the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Mielke, R.; Neal, A.; Stam, C. N.; Ferry, J. G.; Schlegel, R.; Tsapin, A. I.; Park, S.; Bhartia, R.; Salas, E.; Hug, W.; Behar, A. E.; Nadeau, J.
2011-12-01
Pollution is one of the most ubiquitous and insidious problems currently facing the oceans. As synthetic polymer debris degrades, it becomes increasingly accessible to organisms that forage or absorb food particles. However, research on this significant environmental pollution problem has not been able to keep up with the scope of the issue, since some of the first studies published in 1972 by Edward Carpenter. In January 2011, The Lone Ranger Atlantic Expedition, a collaboration between Blue Ocean Sciences (BOS) and the Schmidt Ocean Institute (SOI) transected the Atlantic Ocean covering 3,100 nautical miles sampling the first 15cm of the water column to investigate microbial interactions with synthetic polymer marine debris. Using established and novel techniques of Fourier transform infrared spectroscopy (FT-IR), scanning transmission electron microscopy (STEM), environmental scanning electron microscopy (ESEM), and gas chromatography-mass spectrometry (GC-MS), we were able to image and locate material degradation of pre-production, association of microbial biofilms, and accumulation of persistent organic pollutants (POP's) on environmental microplastics. We then used Spectroscopic Organic Analysis and ArcGIS mapping systems to observe the material degradation and the associated biofilm lattice on the environmental microplastics. This data sheds light on possible mechanisms of material weathering of synthetic polymers in deep ocean environments and new methods for identifying POP's association with them. These new techniques are highly transferable to many studies on material biofilm interactions in the environment.
Genotype x Nutritional Environment Interaction in a Composite Beef Cattle Breed
USDA-ARS?s Scientific Manuscript database
Environmental effects have been shown to influence several economically important traits in beef cattle. In this study, genetic x nutritional environment interaction has been evaluated in a composite beef cattle breed(50% Red Angus, 25% Charolais, 25% Tarentaise).Cows were randomly assigned to be fe...
Disentangling Gene-Environment Correlations and Interactions on Adolescent Depressive Symptoms
ERIC Educational Resources Information Center
Lau, Jennifer Y. F.; Eley, Thalia C.
2008-01-01
Background: Genetic risks for depression may be expressed through greater exposure towards environmental stressors (gene-environment correlation, rGE) and increased susceptibility to these stressors (gene-environment interaction, G x E). While these effects are often studied independently, evidence supports their co-occurrence on depression.…
ERIC Educational Resources Information Center
Lee, Steve S.
2011-01-01
Although genetic and environmental factors are separately implicated in the development of antisocial behavior (ASB), interactive models have emerged relatively recently, particularly those incorporating molecular genetic data. Using a large sample of male Caucasian adolescents and young adults from the National Longitudinal Study of Adolescent…
Promoting Snack Time Interactions of Children with Autism in a Malaysian Preschool
ERIC Educational Resources Information Center
Lee, Soo Hoon; Lee, Lay Wah
2015-01-01
The purpose of this study was to examine the effects of a comprehensive social skills intervention package combining peer-mediated strategies and environmental arrangements on the peer interactions of three children with autism in a Malaysian preschool. Following baseline, nine typically developing children participated in social initiation…
Rhea, Sally Ann; Bricker, Josh B.; Corley, Robin P.; DeFries, John C.; Wadsworth, Sally J.
2013-01-01
This paper describes the Colorado Adoption Project (CAP), a longitudinal study in behavioral development, and discusses how adoption studies may be used to assess genetic and environmental etiologies of individual differences for important developmental outcomes. Previous CAP research on adjustment outcomes in childhood and adolescence which found significant interactions, including gene-environment interactions, is reviewed. New research suggests mediating effects of menarche and religiosity on age at first sex in this predominantly middle-class, Caucasian sample. PMID:23833552
Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C
2015-05-01
Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change.
Schwabe, Inga; Boomsma, Dorret I; van den Berg, Stéphanie M
2017-12-01
Genotype by environment interaction in behavioral traits may be assessed by estimating the proportion of variance that is explained by genetic and environmental influences conditional on a measured moderating variable, such as a known environmental exposure. Behavioral traits of interest are often measured by questionnaires and analyzed as sum scores on the items. However, statistical results on genotype by environment interaction based on sum scores can be biased due to the properties of a scale. This article presents a method that makes it possible to analyze the actually observed (phenotypic) item data rather than a sum score by simultaneously estimating the genetic model and an item response theory (IRT) model. In the proposed model, the estimation of genotype by environment interaction is based on an alternative parametrization that is uniquely identified and therefore to be preferred over standard parametrizations. A simulation study shows good performance of our method compared to analyzing sum scores in terms of bias. Next, we analyzed data of 2,110 12-year-old Dutch twin pairs on mathematical ability. Genetic models were evaluated and genetic and environmental variance components estimated as a function of a family's socio-economic status (SES). Results suggested that common environmental influences are less important in creating individual differences in mathematical ability in families with a high SES than in creating individual differences in mathematical ability in twin pairs with a low or average SES.
The role of gene-gene interaction in the prediction of criminal behavior.
Boutwell, Brian B; Menard, Scott; Barnes, J C; Beaver, Kevin M; Armstrong, Todd A; Boisvert, Danielle
2014-04-01
A host of research has examined the possibility that environmental risk factors might condition the influence of genes on various outcomes. Less research, however, has been aimed at exploring the possibility that genetic factors might interact to impact the emergence of human traits. Even fewer studies exist examining the interaction of genes in the prediction of behavioral outcomes. The current study expands this body of research by testing the interaction between genes involved in neural transmission. Our findings suggest that certain dopamine genes interact to increase the odds of criminogenic outcomes in a national sample of Americans. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.
2017-12-01
Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.
Jonassaint, Charles R.; Ashley-Koch, Allison; Whitfield, Keith E.; Hoyle, Rick H.; Richman, Laura Smart; Siegler, Ilene C.; Royal, Charmaine D.; Williams, Redford
2013-01-01
Here we examine the effects of both self-reported and independent observer-reported environmental risk indices, the serotonin transporter gene promoter (5HTTLPR) polymorphism, and their interaction on self-esteem. This trait was assessed during early and mid adolescence (mean age = 14 and 16.5, respectively) and young adulthood (mean age = 21.8) in a prospective cohort of 1214 unrelated participants in the Longitudinal Study of Adolescent Health (Add Health). Using structural equation modeling we identified a gene–environment (G × E) interaction using observer-report but not self-report measures of environmental stress exposure during adolescence: 5HTTLPR genotype and observer-reports of home and neighborhood quality (HNQ) during adolescence interacted to predict self-esteem levels in young adulthood (p < .004). Carriers of the s allele who lived in poor HNQ conditions during adolescence reported lower self-esteem in young adulthood than those with a good HNQ during adolescence. In contrast, among individuals with the l/l genotype, adolescent HNQ did not predict adulthood self-esteem. Genes may moderate the effect of adolescent environmental conditions on adulthood self-esteem. PMID:22659377
Islamic Education on Formation of Environmental Awareness in Pondok Pesantren Indonesia
NASA Astrophysics Data System (ADS)
La Fua, Jumardin; Umi Nurlila, Ratna; Gunawan, Fahmi; Suardi Wekke, Ismail
2018-05-01
This study aimed at exploring Islamic education strategy in shaping environmental awareness in Islamic Boarding School Gontor Putra, Southeast Sulawesi, Indonesia. This is a model for actualizing environmental education through environmental hygiene management based on the values of the Qur’an and the Hadisth. This research was qualitative descriptive study examining the Islamic community by using an ethnographic approach. The results showed that those educational strategies were (1) conducting participatory activities, such as cleaning Friday, arrangement of garden and surrounding environment, creation of green open space, and (2) building collective awareness about the importance of environmental management through daily activities. The strategy can ultimately create students who have a sense of eco-spirituality in interacting with nature.
Wade, Mark; Hoffmann, Thomas J.; Jenkins, Jennifer M.
2015-01-01
Theory of mind (ToM) is the ability to interpret and understand human behaviour by representing the mental states of others. Like many human capacities, ToM is thought to develop through both complex biological and socialization mechanisms. However, no study has examined the joint effect of genetic and environmental influences on ToM. This study examined how variability in the oxytocin receptor gene (OXTR) and parenting behaviour—two widely studied factors in ToM development—interacted to predict ToM in pre-school-aged children. Participants were 301 children who were part of an ongoing longitudinal birth cohort study. ToM was assessed at age 4.5 using a previously validated scale. Parenting was assessed through observations of mothers’ cognitively sensitive behaviours. Using a family-based association design, it was suggestive that a particular variant (rs11131149) interacted with maternal cognitive sensitivity on children’s ToM (P = 0.019). More copies of the major allele were associated with higher ToM as a function of increasing cognitive sensitivity. A sizeable 26% of the variability in ToM was accounted for by this interaction. This study provides the first empirical evidence of gene–environment interactions on ToM, supporting the notion that genetic factors may be modulated by potent environmental influences early in development. PMID:25977357
Alves, R S; Teodoro, P E; Farias, F C; Farias, F J C; Carvalho, L P; Rodrigues, J I S; Bhering, L L; Resende, M D V
2017-08-17
Cotton produces one of the most important textile fibers of the world and has great relevance in the world economy. It is an economically important crop in Brazil, which is the world's fifth largest producer. However, studies evaluating the genotype x environment (G x E) interactions in cotton are scarce in this country. Therefore, the goal of this study was to evaluate the G x E interactions in two important traits in cotton (fiber yield and fiber length) using the method proposed by Eberhart and Russell (simple linear regression) and reaction norm models (random regression). Eight trials with sixteen upland cotton genotypes, conducted in a randomized block design, were used. It was possible to identify a genotype with wide adaptability and stability for both traits. Reaction norm models have excellent theoretical and practical properties and led to more informative and accurate results than the method proposed by Eberhart and Russell and should, therefore, be preferred. Curves of genotypic values as a function of the environmental gradient, which predict the behavior of the genotypes along the environmental gradient, were generated. These curves make possible the recommendation to untested environmental levels.
Zheng, Bing Song; Le Gouis, Jacques; Leflon, Martine; Rong, Wen Ying; Laperche, Anne; Brancourt-Hulmel, Maryse
2010-11-01
Yield is known to be a complex trait, the expression of which interacts strongly with environmental conditions. Understanding the genetic basis of these genotype × environment interactions, particularly under limited input levels, is a key objective when selecting wheat genotypes adapted to specific environments. Our principal objectives were thus: (1) to identify genomic regions [quantitative trait loci (QTL)] involving QTL × environment interactions (QEI) and (2) to develop a strategy to understand the specificity of these regions to certain environments. The two main components of yield were studied: kernel number (KN) and thousand-kernel weight (TKW). The Arche × Récital doubled-haploid population of 222 lines was grown in replicated field trials during 2000 and 2001 at three locations in France, under two nitrogen levels. The 12 environments were characterized in terms of water deficit, radiation, temperature and nitrogen stress based on measurements conducted on the four-probe genotypes: Arche, Récital, Ritmo and Soissons. A four-step strategy was developed to explain QTL specificity to some environments: (1) the detection of QTL for KN and TKW in each environment; (2) the estimation of genotypic sensitivities as the factorial regression slope of KN and TKW to environmental covariates and the detection of QTL for these genotypic sensitivities; (3) study of the co-locations of QTL for KN and TKW and of the QTL for sensitivities; in the event of a co-location partitioning the QEI, appropriate covariates were employed; (4) a description of the environments where QTL were detected for KN and TKW using the environmental covariates. A total of 131 QTL were found to be associated with KN, TKW and their sensitivity to environmental covariates across the 12 environments. Four of these QTL, for both KN and TKW, were located on linkage groups 1B, 2D1, 4B and 5A1, and displayed pleiotropic effects. Factorial regression explained from 15.1 to 83.2% of the QEI for KN and involved three major environmental covariates: cumulative radiation-days ±3 days at meiosis, cumulative degree-days >25°C ±3 days at meiosis and nitrogen stress at flowering. For TKW, 13.5-81.8% of the effect of the QEI was partitioned and involved three major environmental covariates: water deficit from flowering to the milk stage, cumulative degree-days >0°C from the milk stage to maturity and soil water deficit at maturity. A comparative analysis was then performed on the QTL detected during this and previous studies published on QEI and some interacting QTL may be common to different genetic backgrounds. Focusing on these QTL common to different genetic backgrounds would give some guidance to understand genotype × environment interaction.
Niinemets, Ülo; Sun, Zhihong
2015-01-01
Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol–1 or elevated [CO2] of 780 μmol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006
Meyers, J L; Cerdá, M; Galea, S; Keyes, K M; Aiello, A E; Uddin, M; Wildman, D E; Koenen, K C
2013-08-13
Cigarette smoking is influenced both by genetic and environmental factors. Until this year, all large-scale gene identification studies on smoking were conducted in populations of European ancestry. Consequently, the genetic architecture of smoking is not well described in other populations. Further, despite a rich epidemiologic literature focused on the social determinants of smoking, few studies have examined the moderation of genetic influences (for example, gene-environment interactions) on smoking in African Americans. In the Detroit Neighborhood Health Study (DNHS), a sample of randomly selected majority African American residents of Detroit, we constructed a genetic risk score (GRS), in which we combined top (P-value <5 × 10(-7)) genetic variants from a recent meta-analysis conducted in a large sample of African Americans. Using regression (effective n=399), we first tested for association between the GRS and cigarettes per day, attempting to replicate the findings from the meta-analysis. Second, we examined interactions with three social contexts that may moderate the genetic association with smoking: traumatic events, neighborhood social cohesion and neighborhood physical disorder. Among individuals who had ever smoked cigarettes, the GRS significantly predicted the number of cigarettes smoked per day and accounted for ~3% of the overall variance in the trait. Significant interactions were observed between the GRS and number of traumatic events experienced, as well as between the GRS and average neighborhood social cohesion; the association between genetic risk and smoking was greater among individuals who had experienced an increased number of traumatic events in their lifetimes, and diminished among individuals who lived in a neighborhood characterized by greater social cohesion. This study provides support for the utility of the GRS as an alternative approach to replication of common polygenic variation, and in gene-environment interaction, for smoking behaviors. In addition, this study indicates that environmental determinants have the potential to both exacerbate (traumatic events) and diminish (neighborhood social cohesion) genetic influences on smoking behaviors.
Meyers, J L; Cerdá, M; Galea, S; Keyes, K M; Aiello, A E; Uddin, M; Wildman, D E; Koenen, K C
2013-01-01
Cigarette smoking is influenced both by genetic and environmental factors. Until this year, all large-scale gene identification studies on smoking were conducted in populations of European ancestry. Consequently, the genetic architecture of smoking is not well described in other populations. Further, despite a rich epidemiologic literature focused on the social determinants of smoking, few studies have examined the moderation of genetic influences (for example, gene–environment interactions) on smoking in African Americans. In the Detroit Neighborhood Health Study (DNHS), a sample of randomly selected majority African American residents of Detroit, we constructed a genetic risk score (GRS), in which we combined top (P-value <5 × 10−7) genetic variants from a recent meta-analysis conducted in a large sample of African Americans. Using regression (effective n=399), we first tested for association between the GRS and cigarettes per day, attempting to replicate the findings from the meta-analysis. Second, we examined interactions with three social contexts that may moderate the genetic association with smoking: traumatic events, neighborhood social cohesion and neighborhood physical disorder. Among individuals who had ever smoked cigarettes, the GRS significantly predicted the number of cigarettes smoked per day and accounted for ∼3% of the overall variance in the trait. Significant interactions were observed between the GRS and number of traumatic events experienced, as well as between the GRS and average neighborhood social cohesion; the association between genetic risk and smoking was greater among individuals who had experienced an increased number of traumatic events in their lifetimes, and diminished among individuals who lived in a neighborhood characterized by greater social cohesion. This study provides support for the utility of the GRS as an alternative approach to replication of common polygenic variation, and in gene–environment interaction, for smoking behaviors. In addition, this study indicates that environmental determinants have the potential to both exacerbate (traumatic events) and diminish (neighborhood social cohesion) genetic influences on smoking behaviors. PMID:23942621
Baxter, Amanda J.; Hughes, Maria Celia; Kvaskoff, Marina; Siskind, Victor; Shekar, Sri; Aitken, Joanne F.; Green, Adele C.; Duffy, David L.; Hayward, Nicholas K.; Martin, Nicholas G.; Whiteman, David C.
2013-01-01
Cutaneous malignant melanoma (CMM) is a major health issue in Queensland, Australia which has the world’s highest incidence. Recent molecular and epidemiologic studies suggest that CMM arises through multiple etiological pathways involving gene-environment interactions. Understanding the potential mechanisms leading to CMM requires larger studies than those previously conducted. This article describes the design and baseline characteristics of Q-MEGA, the Queensland study of Melanoma: Environmental and Genetic Associations, which followed-up four population-based samples of CMM patients in Queensland, including children, adolescents, men aged over 50, and a large sample of adult cases and their families, including twins. Q-MEGA aims to investigate the roles of genetic and environmental factors, and their interaction, in the etiology of melanoma. 3,471 participants took part in the follow-up study and were administered a computer-assisted telephone interview in 2002–2005. Updated data on environmental and phenotypic risk factors, and 2,777 blood samples were collected from interviewed participants as well as a subset of relatives. This study provides a large and well-described population-based sample of CMM cases with follow-up data. Characteristics of the cases and repeatability of sun exposure and phenotype measures between the baseline and the follow-up surveys, from six to 17 years later, are also described. PMID:18361720
HExpoChem: a systems biology resource to explore human exposure to chemicals.
Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian; Edsgärd, Daniel; Rigina, Olga; Gupta, Ramneek; Audouze, Karine
2013-05-01
Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical-protein interactions have been enriched with a quality-scored human protein-protein interaction network, a protein-protein association network and a chemical-chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic outcomes enrichment. HExpoChem is available at http://www.cbs.dtu.dk/services/HExpoChem-1.0/.
Gene-environment interaction in the etiology of mathematical ability using SNP sets.
Docherty, Sophia J; Kovas, Yulia; Plomin, Robert
2011-01-01
Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a 'SNP set' composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative.
Detecting population-environmental interactions with mismatched time series data.
Ferguson, Jake M; Reichert, Brian E; Fletcher, Robert J; Jager, Henriëtte I
2017-11-01
Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida's southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population-environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. © 2017 by the Ecological Society of America.
Detecting population–environmental interactions with mismatched time series data
Ferguson, Jake M.; Reichert, Brian E.; Fletcher, Robert J.; Jager, Henriëtte I.
2017-01-01
Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida’s southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population–environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. PMID:28759123
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems...
Marine extinction risk shaped by trait-environment interactions over 500 million years.
Orzechowski, Emily A; Lockwood, Rowan; Byrnes, Jarrett E K; Anderson, Sean C; Finnegan, Seth; Finkel, Zoe V; Harnik, Paul G; Lindberg, David R; Liow, Lee Hsiang; Lotze, Heike K; McClain, Craig R; McGuire, Jenny L; O'Dea, Aaron; Pandolfi, John M; Simpson, Carl; Tittensor, Derek P
2015-10-01
Perhaps the most pressing issue in predicting biotic responses to present and future global change is understanding how environmental factors shape the relationship between ecological traits and extinction risk. The fossil record provides millions of years of insight into how extinction selectivity (i.e., differential extinction risk) is shaped by interactions between ecological traits and environmental conditions. Numerous paleontological studies have examined trait-based extinction selectivity; however, the extent to which these patterns are shaped by environmental conditions is poorly understood due to a lack of quantitative synthesis across studies. We conducted a meta-analysis of published studies on fossil marine bivalves and gastropods that span 458 million years to uncover how global environmental and geochemical changes covary with trait-based extinction selectivity. We focused on geographic range size and life habit (i.e., infaunal vs. epifaunal), two of the most important and commonly examined predictors of extinction selectivity. We used geochemical proxies related to global climate, as well as indicators of ocean acidification, to infer average global environmental conditions. Life-habit selectivity is weakly dependent on environmental conditions, with infaunal species relatively buffered from extinction during warmer climate states. In contrast, the odds of taxa with broad geographic ranges surviving an extinction (>2500 km for genera, >500 km for species) are on average three times greater than narrow-ranging taxa (estimate of odds ratio: 2.8, 95% confidence interval = 2.3-3.5), regardless of the prevailing global environmental conditions. The environmental independence of geographic range size extinction selectivity emphasizes the critical role of geographic range size in setting conservation priorities. © 2015 John Wiley & Sons Ltd.
Gene-environment interplay in the etiology of psychosis.
Zwicker, Alyson; Denovan-Wright, Eileen M; Uher, Rudolf
2018-01-15
Schizophrenia and other types of psychosis incur suffering, high health care costs and loss of human potential, due to the combination of early onset and poor response to treatment. Our ability to prevent or cure psychosis depends on knowledge of causal mechanisms. Molecular genetic studies show that thousands of common and rare variants contribute to the genetic risk for psychosis. Epidemiological studies have identified many environmental factors associated with increased risk of psychosis. However, no single genetic or environmental factor is sufficient to cause psychosis on its own. The risk of developing psychosis increases with the accumulation of many genetic risk variants and exposures to multiple adverse environmental factors. Additionally, the impact of environmental exposures likely depends on genetic factors, through gene-environment interactions. Only a few specific gene-environment combinations that lead to increased risk of psychosis have been identified to date. An example of replicable gene-environment interaction is a common polymorphism in the AKT1 gene that makes its carriers sensitive to developing psychosis with regular cannabis use. A synthesis of results from twin studies, molecular genetics, and epidemiological research outlines the many genetic and environmental factors contributing to psychosis. The interplay between these factors needs to be considered to draw a complete picture of etiology. To reach a more complete explanation of psychosis that can inform preventive strategies, future research should focus on longitudinal assessments of multiple environmental exposures within large, genotyped cohorts beginning early in life.
Parent, Boris; Bonneau, Julien; Maphosa, Lance; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2017-07-01
Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat ( Triticum aestivum ) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. © 2017 American Society of Plant Biologists. All Rights Reserved.
The genetics of human longevity: an intricacy of genes, environment, culture and microbiome.
Dato, Serena; Rose, Giuseppina; Crocco, Paolina; Monti, Daniela; Garagnani, Paolo; Franceschi, Claudio; Passarino, Giuseppe
2017-07-01
Approximately one-quarter of the variation in lifespan in developed countries can be attributed to genetic factors. However, even large population based studies investigating genetic influence on human lifespan have been disappointing, identifying only a few genes accounting for genetic susceptibility to longevity. Some environmental and lifestyle determinants associated with longevity have been identified, which interplay with genetic factors in an intricate way. The study of gene-environment and gene-gene interactions can significantly improve our chance to disentangle this complex scenario. In this review, we first describe the most recent approaches for genetic studies of longevity, from those enriched with health parameters and frailty measures to pathway-based and SNP-SNP interaction analyses. Then, we go deeper into the concept of "environmental influences" in human aging and longevity, focusing on the contribution of life style changes, social and cultural influences, as important determinants of survival differences among individuals in a population. Finally, we discuss the contribution of the microbiome in human longevity, as an example of complex interaction between organism and environment. In conclusion, evidences collected from the latest studies on human longevity provide a support for the collection of life-long genetic and environmental/lifestyle variables with beneficial or detrimental effects on health, to improve our understanding of the determinants of human lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.
Synergistic interactions of biotic and abiotic environmental stressors on gene expression.
Altshuler, Ianina; McLeod, Anne M; Colbourne, John K; Yan, Norman D; Cristescu, Melania E
2015-03-01
Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis - cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) - using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, G
2004-02-05
Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutantsmore » at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with environmental materials. To achieve this goal, both fundamental and targeted studies of complex environmental systems at a molecular level are needed, and examples of both types of studies are presented herein. These examples illustrate the fact that MES SR studies have led to a revolution in our understanding of the fundamental physical and chemical aspects of natural systems. The MES SR user community has continued to experience strong growth at U.S. SR laboratories, with MES researchers comprising up to 15% of the total user base. Further growth and development of the MES community is being hindered by insufficient resources, including support personnel, materials preparation facilities, and available beam time at U.S. SR laboratories. ''EnviroSync'' recommends the following actions, in cooperation with U.S. SR laboratory directors, to meet the MES community's needs.« less
Li, Linlin; Gao, Kaiping; Zhao, Jingzhi; Feng, Tianping; Yin, Lei; Wang, Jinjin; Wang, Chongjian; Li, Chunyang; Wang, Yan; Wang, Qian; Zhai, Yujia; You, Haifei; Ren, Yongcheng; Wang, Bingyuan; Hu, Dongsheng
2014-01-25
Few genome-wide association studies have considered interactions between multiple genetic variants and environmental factors associated with disease. The interaction was examined between a glucagon gene (GCG) polymorphism and smoking, alcohol consumption and physical activity and the association with risk of type 2 diabetes mellitus (T2DM) in a case-control study of Chinese Han subjects. The rs12104705 polymorphism of GCG and interactions with environmental variables were analyzed for 9619 participants by binary multiple logistic regression. Smoking with the C-C haplotype of rs12104705 was associated with increased risk of T2DM (OR=1.174, 95% CI=1.013-1.361). Moderate and high physical activity with the C-C genotype was associated with decreased risk of T2DM as compared with low physical activity with the genotype (OR=0.251, 95% CI=0.206-0.306 and OR=0.190, 95% CI=0.164-0.220). However, the interaction of drinking and genotype was not associated with risk of T2DM. Genetic polymorphism in rs12104705 of GCG may interact with smoking and physical activity to modify the risk of T2DM. © 2013.
van Os, Jim; Rutten, Bart PF; Poulton, Richie
2008-01-01
Concern is building about high rates of schizophrenia in large cities, and among immigrants, cannabis users, and traumatized individuals, some of which likely reflects the causal influence of environmental exposures. This, in combination with very slow progress in the area of molecular genetics, has generated interest in more complicated models of schizophrenia etiology that explicitly posit gene-environment interactions (EU-GEI. European Network of Schizophrenia Networks for the Study of Gene Environment Interactions. Schizophrenia aetiology: do gene-environment interactions hold the key? [published online ahead of print April 25, 2008] Schizophr Res; S0920-9964(08) 00170–9). Although findings of epidemiological gene-environment interaction (G × E) studies are suggestive of widespread gene-environment interactions in the etiology of schizophrenia, numerous challenges remain. For example, attempts to identify gene-environment interactions cannot be equated with molecular genetic studies with a few putative environmental variables “thrown in”: G × E is a multidisciplinary exercise involving epidemiology, psychology, psychiatry, neuroscience, neuroimaging, pharmacology, biostatistics, and genetics. Epidemiological G × E studies using indirect measures of genetic risk in genetically sensitive designs have the advantage that they are able to model the net, albeit nonspecific, genetic load. In studies using direct molecular measures of genetic variation, a hypothesis-driven approach postulating synergistic effects between genes and environment impacting on a final common pathway, such as “sensitization” of mesolimbic dopamine neurotransmission, while simplistic, may provide initial focus and protection against the numerous false-positive and false-negative results that these investigations engender. Experimental ecogenetic approaches with randomized assignment may help to overcome some of the limitations of observational studies and allow for the additional elucidation of underlying mechanisms using a combination of functional enviromics and functional genomics. PMID:18791076
Karlsson, Torgny; Ek, Weronica E.
2017-01-01
Previous genome-wide association studies (GWAS) have identified hundreds of genetic loci to be associated with body mass index (BMI) and risk of obesity. Genetic effects can differ between individuals depending on lifestyle or environmental factors due to gene-environment interactions. In this study, we examine gene-environment interactions in 362,496 unrelated participants with Caucasian ancestry from the UK Biobank resource. A total of 94 BMI-associated SNPs, selected from a previous GWAS on BMI, were used to construct weighted genetic scores for BMI (GSBMI). Linear regression modeling was used to estimate the effect of gene-environment interactions on BMI for 131 lifestyle factors related to: dietary habits, smoking and alcohol consumption, physical activity, socioeconomic status, mental health, sleeping patterns, as well as female-specific factors such as menopause and childbirth. In total, 15 lifestyle factors were observed to interact with GSBMI, of which alcohol intake frequency, usual walking pace, and Townsend deprivation index, a measure of socioeconomic status, were all highly significant (p = 1.45*10−29, p = 3.83*10−26, p = 4.66*10−11, respectively). Interestingly, the frequency of alcohol consumption, rather than the total weekly amount resulted in a significant interaction. The FTO locus was the strongest single locus interacting with any of the lifestyle factors. However, 13 significant interactions were also observed after omitting the FTO locus from the genetic score. Our analyses indicate that many lifestyle factors modify the genetic effects on BMI with some groups of individuals having more than double the effect of the genetic score. However, the underlying causal mechanisms of gene-environmental interactions are difficult to deduce from cross-sectional data alone and controlled experiments are required to fully characterise the causal factors. PMID:28873402
NASA Astrophysics Data System (ADS)
Howitt, R. E.
2016-12-01
Hydro-economic models have been used to analyze optimal supply management and groundwater use for the past 25 years. They are characterized by an objective function that usually maximizes economic measures such as consumer and producer surplus subject to hydrologic equations of motion or water distribution systems. The hydrologic and economic components are sometimes fully integrated. Alternatively they may use an iterative interactive process. Environmental considerations have been included in hydro-economic models as inequality constraints. Representing environmental requirements as constraints is a rigid approximation of the range of management alternatives that could be used to implement environmental objectives. The next generation of hydro-economic models, currently being developed, require that the environmental alternatives be represented by continuous or semi-continuous functions which relate water resource use allocated to the environment with the probabilities of achieving environmental objectives. These functions will be generated by process models of environmental and biological systems which are now advanced to the state that they can realistically represent environmental systems and flexibility to interact with economic models. Examples are crop growth models, climate modeling, and biological models of forest, fish, and fauna systems. These process models can represent environmental outcomes in a form that is similar to economic production functions. When combined with economic models the interacting process models can reproduce a range of trade-offs between economic and environmental objectives, and thus optimize social value of many water and environmental resources. Some examples of this next-generation of hydro-enviro- economic models are reviewed. In these models implicit production functions for environmental goods are combined with hydrologic equations of motion and economic response functions. We discuss models that show interaction between environmental goods and agricultural production, and others that address alternative climate change policies, or habitat provision.
Decoherence, discord, and the quantum master equation for cosmological perturbations
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.; McDonald, Jamie I.
2017-05-01
We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.
Effects of Various Environmental Stressors on Cognitive Performance
1986-12-01
environmental effects. The stressors included: hypobaric hypoxia, cold, dehydration, and atropine. The paper describes both our research findings...Operation Everest II, and Tyrosine Evaluation studies inveatigated high altitude e-posure in a hypobaric chamber. Repeated testing procedures and...values on moot of the tasks, I.e. Coding, Grammatical Reasoning, Pattern Rscognition, Pattern Comparison , and Comaputer Interaction. COGNITIVE TASK
ERIC Educational Resources Information Center
Robottom, Ian Morris
Contestation can be defined as a process in which self-interested individuals and groups in a social organization cooperate, compete, and negotiate in a complex interaction aimed at solving social problems. This dissertation explores the notion of contestation in the field of environmental education. In the first part of the document a framework…
The Role of Environmental Hazard in Mothers' Beliefs about Appropriate Supervision
ERIC Educational Resources Information Center
Damashek, Amy; Borduin, Charles; Ronis, Scott
2014-01-01
Understanding factors that influence mothers' beliefs about appropriate levels of supervision for their children may assist in efforts to reduce child injury rates. This study examined the interaction of child (i.e. age, gender, and injury risk behavior) and maternal perception of environmental hazard (i.e. hazard level, injury likelihood,…
Environmental interactions of the Space Station Freedom electric power system
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Lu, Cheng-Yi
1991-01-01
The Space Station Freedom operates in a low earth orbit (LEO) environment. Such operation results in different potential interactions with the Space Station systems including the Electric Power System (EPS). These potential interactions result in environmental effects which include neutral species effects such as atomic oxygen erosion, effects of micrometeoroid and orbital debris impacts, plasma effects, ionizing radiation, and induced contamination degradation effects. The EPS design and its interactions with the LEO environment are briefly described and the results of analyses and testing programs planned and performed thus far to resolve environmental concerns related to the EPS and its function in LEO environment.
Du, Yanlei; Wan, Yu-Jui Yvonne
2009-12-01
Alcoholism is a polygenic disorder resulting from reward deficiency; polymorphisms in reward genes including serotonin transporter (5-HTT)-linked polymorphic region (5-HTTLPR), A118G in opioid receptor mu1 (OPRM1), and -141C Insertion/Deletion (Ins/Del) in dopamine receptor D2 (DRD2) as well as environmental factors (education and marital status) might affect the risk of alcoholism. Objective of the current study was to examine the main and interacting effect of these 3 polymorphisms and 2 environmental factors in contribution to alcoholism in Mexican Americans. Genotyping of 5-HTTLPR, OPRM1 A118G, and DRD2-141C Ins/Del was performed in 365 alcoholics and 338 nonalcoholic controls of Mexican Americans who were gender- and age-matched. Alcoholics were stratified according to tertiles of MAXDRINKS, which denotes the largest number of drinks consumed in one 24-hour period. Data analysis was done in the entire data set and in each alcoholic stratum. Multinomial logistic regression was conducted to explore the main effect of 3 polymorphisms and 2 environmental factors (education and marital status); classification tree, generalized multifactor dimensionality reduction (GMDR) analysis, and polymorphism interaction analysis version 2.0 (PIA 2) program were used to study factor interaction. Main effect of education, OPRM1, and DRD2 was detected in alcoholic stratum of moderate and/or largest MAXDRINKS with education < or =12 years, OPRM1 118 A/A, and DRD2 -141C Ins/Ins being risk factors. Classification tree analysis, GMDR analysis, and PIA 2 program all supported education*OPRM1 interaction in alcoholics of largest MAXDRINKS with education < or =12 years coupled with OPRM1 A/A being a high risk factor; dendrogram showed synergistic interaction between these 2 factors; dosage-effect response was also observed for education*OPRM1 interaction. No definite effect of marital status and 5-HTTLPR in pathogenesis of alcoholism was observed. Our results suggest main effect of education background, OPRM1 A118G, and DRD2 -141C Ins/Del as well as education*OPRM1 interaction in contribution to moderate and/or severe alcoholism in Mexican Americans. Functional relevance of these findings still needs to be explored.
Interaction between PON1 and population density in amyotrophic lateral sclerosis.
Diekstra, Frank P; Beleza-Meireles, Ana; Leigh, Nigel P; Shaw, Christopher E; Al-Chalabi, Ammar
2009-01-28
Paraoxonase polymorphisms have been associated with amyotrophic lateral sclerosis (ALS). Paraoxonases are detoxifying enzymes involved in the metabolism of organophosphates. We tested the hypothesis that genetic variation within paraoxonase genes would interact with the environmental exposure to paraoxonase substrates. We used population density in the location of residence of ALS patients as a surrogate marker for environmental exposure. Paraoxonase genotypes at previously associated single nucleotide polymorphisms rs662, rs854560, rs6954345, and rs11981433 were studied in 98 patients from the South East England ALS population-based register. A case-only analysis was carried out and median population density was used to categorize patients into rural or urban environments. We found a significant interaction with population density for marker rs854560 (L55M) in ALS.
ERIC Educational Resources Information Center
Portes, Pedro R.; And Others
The present study was designed to identify parent-child interaction patterns that might differentiate bright from below average elementary students in order to test the hypothesis that environmental processes related to regulation of executive processes influence both children's learning and developmental level. Thirty-two mother-child dyads (16…
Annual Research Review: Developmental Considerations of Gene by Environment Interactions
ERIC Educational Resources Information Center
Lenroot, Rhoshel K.; Giedd, Jay N.
2011-01-01
Biological development is driven by a complex dance between nurture and nature, determined not only by the specific features of the interacting genetic and environmental influences but also by the timing of their rendezvous. The initiation of large-scale longitudinal studies, ever-expanding knowledge of genetics, and increasing availability of…
USDA-ARS?s Scientific Manuscript database
Terpenes form a large class of compounds that have a variety of roles in mediating antagonistic and beneficial interactions among organisms. The trichothecenes are phytotoxic sesquiterpenoid compounds that have been extensively studied, mainly in the genus Fusarium, that can act as virulence factors...
ERIC Educational Resources Information Center
Ledford, Jennifer R.; Zimmerman, Kathleen N.; Chazin, Kate T.; Patel, Natasha M.; Morales, Vivian A.; Bennett, Brittany P.
2017-01-01
Paraprofessionals need adequate training and supports to assist young children with autism spectrum disorders to engage in appropriate social interactions during small group activities with their peers. In this study, we used in-situ coaching and brief post-session feedback to improve the use of environmental arrangement, prompting, and praise by…
ERIC Educational Resources Information Center
Ledford, Jennifer R.; Zimmerman, Kathleen N.; Chazin, Kate T.; Patel, Natasha M.; Morales, Vivian A.; Bennett, Brittany P.
2017-01-01
Paraprofessionals need adequate training and supports to assist young children with autism spectrum disorders to engage in appropriate social interactions during small group activities with their peers. In this study, we used in situ coaching and brief post-session feedback to improve the use of environmental arrangement, prompting, and praise by…
Weimin Xi; Szu-Hung Chen; Andrew G. Birt; John D. Waldron; Charles W. Lafon; David M. Cairns; Maria D. Tchakerian; Kier D. Klepzig; Robert N. Coulson
2011-01-01
Southern Appalachian forests face multiple environmental threats, including periodic fires, insect outbreaks, and more recently, exotic invasive plants. Past studies suggest these multiple disturbances interact to shape species-rich forest landscape, and they hypothesize that changes in fire regimes and increasing landscape fragmentation may influence invasive...
ERIC Educational Resources Information Center
Driscoll, Charles T.; Lambert, Kathy Fallon; Weathers, Kathleen C.
2011-01-01
Scientists, related professionals, and the public have for decades called for greater interaction among scientists, policymakers, and the media to address contemporary environmental challenges. Practical examples of effective "real-world" programs designed to catalyze interactions and provide relevant science are few. Existing successful models…
Perez, Barbara C; Mehrkam, Lindsay R; Foltz, Amanda R; Dorey, Nicole R
2018-01-01
Environmental enrichment is a crucial element of promoting welfare for animals in captivity. However, enrichment programs are not always formally evaluated for their efficacy. Furthermore, there is little empirical evidence of enrichment evaluation for species of small cetaceans in zoological settings. A wide range of variables may potentially influence enrichment efficacy and how it in turn affects behavior. The purpose of this study was to determine the most preferred environmental enrichment, and method of presentation, for a species that has not been well studied in captivity, the pantropical spotted dolphin (Stenella attenuata). In order to determine which enrichment items and method of presentation were most effective at eliciting enrichment interaction, we systematically examined how several variables of enrichment influenced enrichment interaction. The results suggested that presenting enrichment after training sessions influenced interaction with the enrichment. The results also indicated preference for enrichment type and a specific enrichment device. Finally, factors that influenced interaction were also found to influence aberrant behavior. The results support the premise that enrichment be "redefined" for each species and each individual.
Dalle Molle, Roberta; Fatemi, Hajar; Dagher, Alain; Levitan, Robert D.; Silveira, Patricia P.; Dubé, Laurette
2017-01-01
The differential susceptibility model states that a given genetic variant is associated with an increased risk of pathology in negative environments but greater than average resilience in enriched ones. While this theory was first implemented in psychiatric-genetic research, it may also help us to unravel the complex ways that genes and environments interact to influence feeding behavior and obesity. We reviewed evidence on gene vs. environment interactions that influence obesity development, aiming to support the applicability of the differential susceptibility model for this condition, and propose that various environmental “layers” relevant for human development should be considered when bearing the differential susceptibility model in mind. Mother-child relationship, socioeconomic status and individual's response are important modifiers of BMI and food intake when interacting with gene variants, “for better and for worse”. While only a few studies to date have investigated obesity outcomes using this approach, we propose that the differential susceptibility hypothesis is in fact highly applicable to the study of genetic and environmental influences on feeding behavior and obesity risk. PMID:28024828
Study-simulation of space station dynamics
NASA Technical Reports Server (NTRS)
Gaitens, M. J.
1971-01-01
Matrix algebra translator and executor /MATE/ takes equations describing structural control system environmental interaction problem for flexible spacecraft components and loads them into self programming computer.
A facile fluorescent "turn-off" method for sensing paraquat based on pyranine-paraquat interaction
NASA Astrophysics Data System (ADS)
Zhao, Zuzhi; Zhang, Fengwei; Zhang, Zipin
2018-06-01
Development of a technically simple yet effective method for paraquat (PQ) detection is of great importance due to its high clinical and environmental relevance. In this study, we developed a pyranine-based fluorescent "turn-off" method for PQ sensing based on pyranine-PQ interaction. We investigated the dependence of analytical performance of this method on the experimental conditions, such as the ion strength, medium pH, and so on. Under the optimized conditions, the method is sensitive and selective, and could be used for PQ detection in real-world sample. This study essentially provides a readily accessible fluorescent system for PQ sensing which is cheap, robust, and technically simple, and it is envisaged to find more interesting clinical and environmental applications.
Purohit, Sharad; Sharma, Ashok; She, Jin-Xiong
2015-01-01
Complex interactions between a series of environmental factors and genes result in progression to clinical type 1 diabetes in genetically susceptible individuals. Despite several decades of research in the area, these interactions remain poorly understood. Several studies have yielded associations of certain foods, infections, and immunizations with the onset and progression of diabetes autoimmunity, but most findings are still inconclusive. Environmental triggers are difficult to identify mainly due to (i) large number and complex nature of environmental exposures, including bacteria, viruses, dietary factors, and environmental pollutants, (ii) reliance on low throughput technology, (iii) less efforts in quantifying host response, (iv) long silent period between the exposure and clinical onset of T1D which may lead to loss of the exposure fingerprints, and (v) limited sample sets. Recent development in multiplex technologies has enabled systematic evaluation of different classes of molecules or macroparticles in a high throughput manner. However, the use of multiplex assays in type 1 diabetes research is limited to cytokine assays. In this review, we will discuss the potential use of multiplex high throughput technologies in identification of environmental triggers and host response in type 1 diabetes.
Interactions between genetic variation and cellular environment in skeletal muscle gene expression.
Taylor, D Leland; Knowles, David A; Scott, Laura J; Ramirez, Andrea H; Casale, Francesco Paolo; Wolford, Brooke N; Guan, Li; Varshney, Arushi; Albanus, Ricardo D'Oliveira; Parker, Stephen C J; Narisu, Narisu; Chines, Peter S; Erdos, Michael R; Welch, Ryan P; Kinnunen, Leena; Saramies, Jouko; Sundvall, Jouko; Lakka, Timo A; Laakso, Markku; Tuomilehto, Jaakko; Koistinen, Heikki A; Stegle, Oliver; Boehnke, Michael; Birney, Ewan; Collins, Francis S
2018-01-01
From whole organisms to individual cells, responses to environmental conditions are influenced by genetic makeup, where the effect of genetic variation on a trait depends on the environmental context. RNA-sequencing quantifies gene expression as a molecular trait, and is capable of capturing both genetic and environmental effects. In this study, we explore opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-environment interactions (GxE)-genetic effects on gene expression that depend on an environmental condition. Treating 17 common, clinical traits as approximations of the cellular environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect GxE effects, replication of such signals can be challenging as validation requires harmonization of environmental traits across cohorts and a sufficient sampling of heterozygotes for a transcribed SNP. Comprehensive discovery and replication will require large human transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with standardized clinical phenotyping.
Key genes and pathways in measles and their interaction with environmental chemicals
Zhang, Rongqiang; Jiang, Hualin; Li, Fengying; Su, Ning; Ding, Yi; Mao, Xiang; Ren, Dan; Wang, Jing
2018-01-01
The aim of the present study was to explore key genes that may have a role in the pathology of measles virus infection and to clarify the interaction networks between environmental factors and differentially expressed genes (DEGs). After screening the database of the Gene Expression Omnibus of the National Center for Biotechnology Information, the dataset GSE5808 was downloaded and analyzed. A global normalization method was performed to minimize data inconsistencies and heterogeneity. DEGs during different stages of measles virus infection were explored using R software (v3.4.0). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs were performed using Cytoscape 3.4.0 software. A protein-protein interaction (PPI) network of the DEGs was obtained from the STRING database v9.05. A total of 43 DEGs were obtained from four analyzed sample groups, including 10 highly expressed genes and 33 genes with decreased expression. The most enriched pathways based on KEGG analysis were fatty acid elongation, cytokine-cytokine receptor interaction and RNA degradation. The genes mentioned in the PPI network were mainly associated with protein binding and chemokine activity. A total of 219 chemicals were identified that may, jointly or on their own, interact with the 6 DEGs between the control group and patients with measles (at hospital entry), including benzo(a)pyrene (BaP) and tetrachlorodibenzodioxin (TCDD). In conclusion, the present study revealed that chemokines and environmental chemicals, e.g. BaP and TCDD, may affect the development of measles. PMID:29805511
Breaking evolutionary constraint with a tradeoff ratchet
de Vos, Marjon G. J.; Dawid, Alexandre; Sunderlikova, Vanda; Tans, Sander J.
2015-01-01
Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype–environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor–operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that cross-environmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance. PMID:26567153
Domen, Patrick; Michielse, Stijn; Peeters, Sanne; Viechtbauer, Wolfgang; van Os, Jim; Marcelis, Machteld
2018-05-29
Decreased white matter (WM) integrity in patients with psychotic disorder has been a consistent finding in diffusion tensor imaging (DTI) studies. However, the contribution of environmental risk factors to these WM alterations is rarely investigated. The current study examines whether individuals with (increased risk for) psychotic disorder will show increased WM integrity change over time with increasing levels of childhood trauma and cannabis exposure. DTI scans were obtained from 85 patients with a psychotic disorder, 93 non-psychotic siblings and 80 healthy controls, of which 60% were rescanned 3 years later. In a whole-brain voxel-based analysis, associations between change in fractional anisotropy (ΔFA) and environmental exposures as well as interactions between group and environmental exposure in the model of FA and ΔFA were investigated. Analyses were adjusted for a priori hypothesized confounding variables: age, sex, and level of education. At baseline, no significant associations were found between FA and both environmental risk factors. At follow-up as well as over a 3-year interval, significant interactions between group and, respectively, cannabis exposure and childhood trauma exposure in the model of FA and ΔFA were found. Patients showed more FA decrease over time compared with both controls and siblings when exposed to higher levels of cannabis or childhood trauma. Higher levels of cannabis or childhood trauma may compromise connectivity over the course of the illness in patients, but not in individuals at low or higher than average genetic risk for psychotic disorder, suggesting interactions between the environment and illness-related factors.
The environmental literacy of urban middle school teachers
NASA Astrophysics Data System (ADS)
Owens, Marcia Allen
This dissertation study assessed the environmental literacy of 292 urban, middle school teachers using the Wisconsin Environmental Literacy Survey (WELS). Environmental literacy may be defined in terms of observable behaviors. Specifically, the study examined four dimensions of participants' environmental literacy: (a) attitudes toward the environment, (b) beliefs about their own power and responsibility to affect environmental change, (c) personal behaviors and actions toward the environment, and (d) knowledge regarding ecology and environmental issues. The WELS measures these components of environmental literacy through a Likert-type attitude survey, a self-reporting behavior instrument, and a multiple choice measure of cognitive learning outcomes or environmental knowledge. These scores were combined to derive a total environmental literacy score. In addition, the study explored differences between African American and European American female teachers' environmental literacy; interactions between demographic variables; and patterns of frequently missed questions, environmental attitudes, or environmental behaviors. Differences in teachers' environmental literacy were examined relative to gender, racial/ethnic background, number of preservice environmental courses taken, number of inservice environmental courses taken, years of teaching experience, and subject area taught. Overall, teachers in the present study demonstrated nominal environmental literacy. Significant differences in scores on various subscales were found among teachers according to racial/ethnic background, subject area taught, and years of teaching experience. Taking preservice and inservice environmental courses appears to have a positive impact on environmental behavior, environmental sensitivity, awareness and values, but not appear to impact environmental knowledge. This study underscores the need for further descriptive environmental literacy research on urban, minority, and poor students and their teachers. In addition, future research should focus on further describing aspects of urban teachers' environmental literacy, and teacher preparation in environmental education as a means to increase the environmental literacy of students through their teachers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianguo; Hull, Vanessa; Batistella, Mateus
Interactions between distant places are increasingly widespread and influential, often leading to unexpected outcomes with profound implications for sustainability. Numerous sustainability studies have been conducted within a particular place with little attention to the impacts of distant interactions on sustainability in multiple places. Although distant forces have been studied, they are usually treated as exogenous variables and feedbacks have been rarely considered. To understand and integrate various distant interactions better, we propose an integrated framework based on telecoupling – an umbrella concept that refers to socioeconomic and environmental interactions over distances. The concept of telecoupling is a logical extension ofmore » research on coupled human and natural systems, in which human and natural systems interact within particular places. The telecoupling framework contains five major interrelated components (coupled human and natural systems, agents, flows, causes, and effects). We illustrate the framework using two examples of distant interactions, highlight the implications of the framework, and discuss research needs and approaches to move research on telecouplings forward. The framework can help better analyze system components and their interrelationships, identify research gaps, detect hidden costs and untapped benefits, provide a useful means to incorporate feedbacks as well as trade-offs and synergies across multiple places (sending, receiving, and spillover systems), and improve the understanding of distant interactions and the effectiveness of policies for socioeconomic and environmental sustainability from local to global levels.« less
A novel approach to simulate gene-environment interactions in complex diseases.
Amato, Roberto; Pinelli, Michele; D'Andrea, Daniel; Miele, Gennaro; Nicodemi, Mario; Raiconi, Giancarlo; Cocozza, Sergio
2010-01-05
Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.
Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia
2015-01-01
Background: Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. Methods: In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Results: Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Conclusions: Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. PMID:25522433
Exploring environmental identity and behavioral change in an Environmental Science course
NASA Astrophysics Data System (ADS)
Blatt, Erica N.
2013-06-01
This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures, impact the environmental identity and behavior of students. In this investigation, the identity theory of emotion of Stryker (2004) from the field of sociology is utilized in the interpretation of students' reactions to classroom experiences as they proceed through the Environmental Science course. The participants in this study are an Environmental Science teacher and the 10-12th grade students in her Environmental Science elective course. The researcher collected data for a period of six months, attending class on a daily basis. Data was collected through participant observation, videotaping, interviews, and cogenerative dialogues. The results of this study inform science educators by illuminating important elements, such as students' emotional responses to activities in class, conflicting elements of students' identities, and students' openness and willingness to critically reflect upon new information, which contribute to whether a student is likely to change their views towards the environment and pro-environmental behaviors.
2011-01-01
Background The identification of genes or quantitative trait loci that are expressed in response to different environmental factors such as temperature and light, through functional mapping, critically relies on precise modeling of the covariance structure. Previous work used separable parametric covariance structures, such as a Kronecker product of autoregressive one [AR(1)] matrices, that do not account for interaction effects of different environmental factors. Results We implement a more robust nonparametric covariance estimator to model these interactions within the framework of functional mapping of reaction norms to two signals. Our results from Monte Carlo simulations show that this estimator can be useful in modeling interactions that exist between two environmental signals. The interactions are simulated using nonseparable covariance models with spatio-temporal structural forms that mimic interaction effects. Conclusions The nonparametric covariance estimator has an advantage over separable parametric covariance estimators in the detection of QTL location, thus extending the breadth of use of functional mapping in practical settings. PMID:21269481
Soliveres, Santiago; Smit, Christian; Maestre, Fernando T.
2015-01-01
Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant–plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant–plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant–plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant–plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity–ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes. PMID:24774563
Soliveres, Santiago; Smit, Christian; Maestre, Fernando T
2015-02-01
Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant-plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant-plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant-plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant-plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity-ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Inoculation Stress Hypothesis of Environmental Enrichment
Crofton, Elizabeth J.; Zhang, Yafang; Green, Thomas A.
2014-01-01
One hallmark of psychiatric conditions is the vast continuum of individual differences in susceptibility vs. resilience resulting from the interaction of genetic and environmental factors. The environmental enrichment paradigm is an animal model that is useful for studying a range of psychiatric conditions, including protective phenotypes in addiction and depression models. The major question is how environmental enrichment, a non-drug and non-surgical manipulation, can produce such robust individual differences in such a wide range of behaviors. This paper draws from a variety of published sources to outline a coherent hypothesis of inoculation stress as a factor producing the protective enrichment phenotypes. The basic tenet suggests that chronic mild stress from living in a complex environment and interacting non-aggressively with conspecifics can inoculate enriched rats against subsequent stressors and/or drugs of abuse. This paper reviews the enrichment phenotypes, mulls the fundamental nature of environmental enrichment vs. isolation, discusses the most appropriate control for environmental enrichment, and challenges the idea that cortisol/corticosterone equals stress. The intent of the inoculation stress hypothesis of environmental enrichment is to provide a scaffold with which to build testable hypotheses for the elucidation of the molecular mechanisms underlying these protective phenotypes and thus provide new therapeutic targets to treat psychiatric/neurological conditions. PMID:25449533
Inoculation stress hypothesis of environmental enrichment.
Crofton, Elizabeth J; Zhang, Yafang; Green, Thomas A
2015-02-01
One hallmark of psychiatric conditions is the vast continuum of individual differences in susceptibility vs. resilience resulting from the interaction of genetic and environmental factors. The environmental enrichment paradigm is an animal model that is useful for studying a range of psychiatric conditions, including protective phenotypes in addiction and depression models. The major question is how environmental enrichment, a non-drug and non-surgical manipulation, can produce such robust individual differences in such a wide range of behaviors. This paper draws from a variety of published sources to outline a coherent hypothesis of inoculation stress as a factor producing the protective enrichment phenotypes. The basic tenet suggests that chronic mild stress from living in a complex environment and interacting non-aggressively with conspecifics can inoculate enriched rats against subsequent stressors and/or drugs of abuse. This paper reviews the enrichment phenotypes, mulls the fundamental nature of environmental enrichment vs. isolation, discusses the most appropriate control for environmental enrichment, and challenges the idea that cortisol/corticosterone equals stress. The intent of the inoculation stress hypothesis of environmental enrichment is to provide a scaffold with which to build testable hypotheses for the elucidation of the molecular mechanisms underlying these protective phenotypes and thus provide new therapeutic targets to treat psychiatric/neurological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Nonlinear Model for Gene-Based Gene-Environment Interaction.
Sa, Jian; Liu, Xu; He, Tao; Liu, Guifen; Cui, Yuehua
2016-06-04
A vast amount of literature has confirmed the role of gene-environment (G×E) interaction in the etiology of complex human diseases. Traditional methods are predominantly focused on the analysis of interaction between a single nucleotide polymorphism (SNP) and an environmental variable. Given that genes are the functional units, it is crucial to understand how gene effects (rather than single SNP effects) are influenced by an environmental variable to affect disease risk. Motivated by the increasing awareness of the power of gene-based association analysis over single variant based approach, in this work, we proposed a sparse principle component regression (sPCR) model to understand the gene-based G×E interaction effect on complex disease. We first extracted the sparse principal components for SNPs in a gene, then the effect of each principal component was modeled by a varying-coefficient (VC) model. The model can jointly model variants in a gene in which their effects are nonlinearly influenced by an environmental variable. In addition, the varying-coefficient sPCR (VC-sPCR) model has nice interpretation property since the sparsity on the principal component loadings can tell the relative importance of the corresponding SNPs in each component. We applied our method to a human birth weight dataset in Thai population. We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using the Bonferroni correction method and one suggestive interaction. The model performance was further evaluated through simulation studies. Our model provides a system approach to evaluate gene-based G×E interaction.
Miller, Gregory G.; Sweet, Leonard I.; Adams, Jean V.; Omann, Geneva M.; Passino-Reader, Dora R.; Meier, Peter G.
2002-01-01
The immunotoxicity of chemical combinations commonly encountered by the lake trout (Salvelinus namaycush) immune system was the focus of this study. It was hypothesised that combinations of an environmental contaminant (mercuric chloride or Aroclor 1254) and an immunomodulatory agent (bacterial endotoxin or cortisol) might interact to produce a greater toxicity than that of the environmental contaminant alone at concentrations typically encountered in piscine blood and other tissues. Thus lake trout thymocytes were isolated and treated with mercuric chloride or Aroclor 1254 in the presence and absence of cortisol or lipopolysaccharide. Incubations were performed for 6 or 20 h at 4° C or 10° C. Lipopolysaccharide did not affect the toxicity of either contaminant. In contrast, cortisol enhanced the toxicity of both environmental contaminants. Hence, stressors that lead to increased cortisol production, but not lipopolysaccharide directly, may increase the toxicity of mercury and Aroclor 1254 to lake trout thymocytes.
Wu, Xinwei; Griffin, John N; Sun, Shucun
2014-05-01
Studies of grazing food webs show that species traits can interact with environmental factors to determine the strength of trophic cascades, but analogous context dependencies in detrital food webs remain poorly understood. In predator-detritivore-plant interaction chains, predators are expected to indirectly suppress plant biomass by reducing the density of plant-facilitating detritivores. However, this outcome can be reversed where above-ground predators drive burrowing detritivores to lower soil levels, strengthening their plant-facilitating effects. Here, we show that these trait-mediated indirect interactions further depend on environmental context in a Tibetan alpine meadow. In our study system, undulating topography generates higher (dry soil) patches interspersed with lower (wet soil) patches. Because the ability of detritivores to form deep burrows is likely to be limited by oxygen availability in low patches (wet soil), we hypothesized that (i) burrowing detritivores would undergo a vertical habitat shift, allowing them to more effectively avoid predation, in high - but not low - patches, and (ii) this shift would transmit positive effects of predators to plants in high patches by improving conditions in the lower soil layer. We tested these hypotheses using complementary field and glasshouse experiments examining whether the cascading effects of above-ground predatory beetles (presence/absence) on the density and behaviour of tunnel-forming detritivorous beetles, soil properties, and plant growth varied with patch type (low/high). Results revealed that predatory beetles did not reduce the density of detritivores in either patch type but had context-dependent trait-mediated effects, increasing the tunnelling depth of detritivores, improving soil conditions and ultimately increasing plant biomass in the high but not low patches. This study adds to an emerging predictive framework linking predators to plants in detritus food webs, demonstrating that these indirect interactions depend not just on the relative habitat domains of predators and prey, but also on environmental conditions that can predictably constrain the behavioural response of detritivores to predation risk. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Nickels, Stefan; Truong, Thérèse; Hein, Rebecca; Stevens, Kristen; Buck, Katharina; Behrens, Sabine; Eilber, Ursula; Schmidt, Martina; Häberle, Lothar; Vrieling, Alina; Gaudet, Mia; Figueroa, Jonine; Schoof, Nils; Spurdle, Amanda B.; Rudolph, Anja; Fasching, Peter A.; Hopper, John L.; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Beckmann, Matthias W.; Ekici, Arif B.; Fletcher, Olivia; Gibson, Lorna; dos Santos Silva, Isabel; Peto, Julian; Humphreys, Manjeet K.; Wang, Jean; Cordina-Duverger, Emilie; Menegaux, Florence; Nordestgaard, Børge G.; Bojesen, Stig E.; Lanng, Charlotte; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Clarke, Christina A.; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Brauch, Hiltrud; Brüning, Thomas; Harth, Volker; The GENICA Network; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; kConFab; Group, AOCS Management; Lambrechts, Diether; Smeets, Dominiek; Neven, Patrick; Paridaens, Robert; Flesch-Janys, Dieter; Obi, Nadia; Wang-Gohrke, Shan; Couch, Fergus J.; Olson, Janet E.; Vachon, Celine M.; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Offit, Kenneth; John, Esther M.; Miron, Alexander; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Chanock, Stephen J.; Lissowska, Jolanta; Liu, Jianjun; Cox, Angela; Cramp, Helen; Connley, Dan; Balasubramanian, Sabapathy; Dunning, Alison M.; Shah, Mitul; Trentham-Dietz, Amy; Newcomb, Polly; Titus, Linda; Egan, Kathleen; Cahoon, Elizabeth K.; Rajaraman, Preetha; Sigurdson, Alice J.; Doody, Michele M.; Guénel, Pascal; Pharoah, Paul D. P.; Schmidt, Marjanka K.; Hall, Per; Easton, Doug F.; Garcia-Closas, Montserrat; Milne, Roger L.; Chang-Claude, Jenny
2013-01-01
Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity) in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene–environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4×10−6) and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1×10−4). Overall, the per-allele odds ratio (95% confidence interval) for LSP1-rs3817198 was 1.08 (1.01–1.16) in nulliparous women and ranged from 1.03 (0.96–1.10) in parous women with one birth to 1.26 (1.16–1.37) in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85–0.98) in those with an alcohol intake of <20 g/day and 1.45 (1.14–1.85) in those who drank ≥20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3×10−5), with a per-allele OR of 1.14 (1.11–1.17) in parous women and 0.98 (0.92–1.05) in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors. PMID:23544014
Genetics of Addiction: Future Focus on Gene × Environment Interaction?
Vink, Jacqueline M
2016-09-01
The heritability of substance use is moderate to high. Successful efforts to find genetic variants associated with substance use (smoking, alcohol, cannabis) have been undertaken by large consortia. However, the proportion of phenotypic variance explained by the identified genetic variants is small. Interestingly, there is overlap between the genetic variants that influence different substances. Moreover, there are sets of "substance-specific" genes and sets of genes contributing to a "vulnerability for addictive behavior" in general. It is important to recognize that genes alone do not determine addiction phenotypes: Environmental factors such as parental monitoring, peer pressure, or socioeconomic status also play an important role. Despite a rich epidemiologic literature focused on the social determinants of substance use, few studies have examined the moderation of genetic influences like gene-environment (G × E) interactions. Understanding this balance may hold the key to understanding the individual differences in substance use, abuse, and addictive behavior. Recommendations for future research are described in this commentary and include increasing the power of G × E studies by using state-of-the-art methods such as polygenic risk scores instead of single genetic variants and taking genetic overlap between substances into account. Future genetic studies should also investigate environmental risk factors for addictive behavior more extensively to unravel the interaction between nature and nurture. Focusing on G × E interactions not only will give insight into the underlying biological mechanism but will also characterize subgroups (based on environmental factors) at high risk for addictive behaviors. With this information, we could bridge the gap between fundamental research and applications for society.
Assessment of possible environmental effects of space shuttle operations
NASA Technical Reports Server (NTRS)
Cicerone, R. J.; Stedman, D. H.; Stolarski, R. S.; Dingle, A. N.; Cellarius, R. A.
1973-01-01
The potential of shuttle operations to contribute to atmospheric pollution is investigated. Presented in this interim report are results of the study to date on rocket exhaust inventory, exhaust interactions, dispersion of the ground cloud, detection and measurement of hydrochloric acid and aluminum oxide, environmental effects of hydrochloric acid and aluminum oxide, stratospheric effects of shuttle effluents, and mesospheric and ionospheric effects of orbiter reentry. The results indicate space shuttle operation will not result in adverse environmental effects if appropriate launch constraints are met.
Niinemets, Ülo; Sun, Zhihong
2015-02-01
Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Garnier, Aurélie; Pennekamp, Frank; Lemoine, Mélissa; Petchey, Owen L
2017-12-01
Global environmental change has negative impacts on ecological systems, impacting the stable provision of functions, goods, and services. Whereas effects of individual environmental changes (e.g. temperature change or change in resource availability) are reasonably well understood, we lack information about if and how multiple changes interact. We examined interactions among four types of environmental disturbance (temperature, nutrient ratio, carbon enrichment, and light) in a fully factorial design using a microbial aquatic ecosystem and observed responses of dissolved oxygen saturation at three temporal scales (resistance, resilience, and return time). We tested whether multiple disturbances combine in a dominant, additive, or interactive fashion, and compared the predictability of dissolved oxygen across scales. Carbon enrichment and shading reduced oxygen concentration in the short term (i.e. resistance); although no other effects or interactions were statistically significant, resistance decreased as the number of disturbances increased. In the medium term, only enrichment accelerated recovery, but none of the other effects (including interactions) were significant. In the long term, enrichment and shading lengthened return times, and we found significant two-way synergistic interactions between disturbances. The best performing model (dominant, additive, or interactive) depended on the temporal scale of response. In the short term (i.e. for resistance), the dominance model predicted resistance of dissolved oxygen best, due to a large effect of carbon enrichment, whereas none of the models could predict the medium term (i.e. resilience). The long-term response was best predicted by models including interactions among disturbances. Our results indicate the importance of accounting for the temporal scale of responses when researching the effects of environmental disturbances on ecosystems. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Molenaar, Dylan; van der Sluis, Sophie; Boomsma, Dorret I.; Haworth, Claire M. A.; Hewitt, John K.; Martin, Nicholas G.; Plomin, Robert; Wright, Margie J.; Dolan, Conor V.
2014-01-01
A large part of the variation in cognitive ability is known to be due to genetic factors. Researchers have tried to identify modifiers that influence the heritability of cognitive ability, indicating a genotype by environment interaction (GxE). To date, such modifiers include measured variables like income and socioeconomic status. The present paper focuses on GxE in cognitive ability where the environmental variable is an unmeasured environmental factor that is uncorrelated in family members. We examined this type of GxE in the GHCA-database (Haworth et al., 2009), which comprises data of 14 different cognition studies from 4 different countries including participants of different ages. Results indicate that for younger participants (4–13 years), the strength of E decreases across the additive genetic factor A, but that this effect reverts for older participants (17–34 years). However, a clear and general conclusion about the presence of a genuine GxE is hampered by differences between the individual studies with respect to environmental and genetic influences on cognitive ability. PMID:23397253
NASA Astrophysics Data System (ADS)
Hauffe, T.; Albrecht, C.; Wilke, T.
2015-09-01
The Balkan Lake Ohrid is the oldest and most speciose freshwater lacustrine system in Europe. However, it remains unclear whether the diversification of its endemic taxa is mainly driven by neutral processes, environmental factors, or species interactions. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics. Such a unifying framework - the metacommunity speciation model - considers how community assembly affects diversification and vice versa by assessing the relative contribution of the three main community assembly processes, dispersal limitation, environmental filtering, and species interaction. The current study therefore used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process based metacommunity analyses. Specifically, the study aimed at (i) identifying the relative importance of the three community assembly processes and (ii) to test whether the importance of these individual processes changes gradually with lake depth or whether they are distinctively related to eco-zones. Based on specific simulation steps for each of the three processes, it could be demonstrated that dispersal limitation had the strongest influence on gastropod community structures in Lake Ohrid. However, it was not the exclusive assembly process but acted together with the other two processes - environmental filtering, and species interaction. In fact, the relative importance of the three community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter. The study thus corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community structure) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the SCOPSCO initiative - inferring the drivers of biotic evolution - and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.
Advances in environmental and occupational disorders in 2012.
Peden, David B; Bush, Robert K
2013-03-01
The year 2012 produced a number of advances in our understanding of the effect of environmental factors on allergic diseases, identification of new allergens, immune mechanisms in host defense, factors involved in asthma severity, and therapeutic approaches. This review focuses on the articles published in the Journal in 2012 that enhance our knowledge base of environmental and occupational disorders. Identification of novel allergens can improve diagnostics, risk factor analysis can aid preventative approaches, and studies of genetic-environmental interactions and immune mechanisms will lead to better therapeutics. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Wade, Mark; Hoffmann, Thomas J; Jenkins, Jennifer M
2015-12-01
Theory of mind (ToM) is the ability to interpret and understand human behaviour by representing the mental states of others. Like many human capacities, ToM is thought to develop through both complex biological and socialization mechanisms. However, no study has examined the joint effect of genetic and environmental influences on ToM. This study examined how variability in the oxytocin receptor gene (OXTR) and parenting behavior--two widely studied factors in ToM development-interacted to predict ToM in pre-school-aged children. Participants were 301 children who were part of an ongoing longitudinal birth cohort study. ToM was assessed at age 4.5 using a previously validated scale. Parenting was assessed through observations of mothers' cognitively sensitive behaviours. Using a family-based association design, it was suggestive that a particular variant (rs11131149) interacted with maternal cognitive sensitivity on children's ToM (P = 0.019). More copies of the major allele were associated with higher ToM as a function of increasing cognitive sensitivity. A sizeable 26% of the variability in ToM was accounted for by this interaction. This study provides the first empirical evidence of gene-environment interactions on ToM, supporting the notion that genetic factors may be modulated by potent environmental influences early in development. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Gene × Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms
Tordjman, Sylvie; Somogyi, Eszter; Coulon, Nathalie; Kermarrec, Solenn; Cohen, David; Bronsard, Guillaume; Bonnot, Olivier; Weismann-Arcache, Catherine; Botbol, Michel; Lauth, Bertrand; Ginchat, Vincent; Roubertoux, Pierre; Barburoth, Marianne; Kovess, Viviane; Geoffray, Marie-Maude; Xavier, Jean
2014-01-01
Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal, and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene × environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention, and early therapeutic intervention of ASD. PMID:25136320
Wallace, M Ariel Geer; Kormos, Tzipporah M; Pleil, Joachim D
2016-01-01
Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.
ERIC Educational Resources Information Center
Epstein, Marina; Hill, Karl G.; Bailey, Jennifer A.; Hawkins, J. David
2013-01-01
Previous research has shown that the development of alcohol and tobacco dependence is linked and that both are influenced by environmental and intrapersonal factors, many of which likely interact over the life course. The present study examines the effects of general and alcohol- and tobacco-specific environmental influences in the family of…
Jackson, Fatimah L C; Niculescu, Mihai D; Jackson, Robert T
2013-10-01
Social and behavioral research in public health is often intimately tied to profound, but frequently neglected, biological influences from underlying genetic, environmental, and epigenetic events. The dynamic interplay between the life, social, and behavioral sciences often remains underappreciated and underutilized in addressing complex diseases and disorders and in developing effective remediation strategies. Using a case-study format, we present examples as to how the inclusion of genetic, environmental, and epigenetic data can augment social and behavioral health research by expanding the parameters of such studies, adding specificity to phenotypic assessments, and providing additional internal control in comparative studies. We highlight the important roles of gene-environment interactions and epigenetics as sources of phenotypic change and as a bridge between the life and social and behavioral sciences in the development of robust interdisciplinary analyses.
Correlates of Positive Parenting Behaviors.
Woodward, Kerri E; Boeldt, Debra L; Corley, Robin P; DiLalla, Lisabeth; Friedman, Naomi P; Hewitt, John K; Mullineaux, Paula Y; Robinson, JoAnn; Rhee, Soo Hyun
2018-06-06
The present study examined the influence of maternal and child characteristics on parenting behaviors in a genetically informative study. The participants were 976 twins and their mothers from the Colorado Longitudinal Twin Study and the Twin Infant Project. Indicators of positive parenting were coded during parent-child interactions when twins were 7-36 months old. Child cognitive abilities and affection were independent correlates of positive parenting. There were significant gender differences in the magnitude of genetic and environmental influences on positive parenting, with shared environmental influences on parenting of girls and additive genetic influences on parenting of boys. Girls received significantly more positive parenting than boys. Differences in etiology of positive parenting may be explained by developmental gender differences in child cognitive abilities and affection, such that girls may have more rewarding interactions with parents, evoking more positive parenting.
Kanda, L Leann; Abdulhay, Amir; Erickson, Caitlin
2017-05-01
Individual animal personalities interact with environmental conditions to generate differences in behavior, a phenomenon of growing interest for understanding the effects of environmental enrichment on captive animals. Wheels are common environmental enrichment for laboratory rodents, but studies conflict on how this influences behavior, and interaction of wheels with individual personalities has rarely been examined. We examined whether wheel access altered personality profiles in adult Siberian dwarf hamsters. We assayed animals in a tunnel maze twice for baseline personality, then again at two and at seven weeks after the experimental group was provisioned with wheels in their home cages. Linear mixed model selection was used to assess changes in behavior over time and across environmental gradient of wheel exposure. While animals showed consistent inter-individual differences in activity, activity personality did not change upon exposure to a wheel. Boldness also varies among individuals, and there is evidence for female boldness scores converging after wheel exposure, that is, opposite shifts in behavior by high and low boldness individuals, although sample size is too small for the mixed model results to be robust. In general, Siberian dwarf hamsters appear to show low behavioral plasticity, particularly in general activity, in response to running wheels. Copyright © 2017 Elsevier B.V. All rights reserved.
Rudolph, Anja; Milne, Roger L.; Truong, Thérèse; Knight, Julia A.; Seibold, Petra; Flesch-Janys, Dieter; Behrens, Sabine; Eilber, Ursula; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Dunning, Alison M.; Shah, Mitul; Munday, Hannah R.; Darabi, Hatef; Eriksson, Mikael; Brand, Judith S.; Olson, Janet; Vachon, Celine M.; Hallberg, Emily; Castelao, J. Esteban; Carracedo, Angel; Torres, Maria; Li, Jingmei; Humphreys, Keith; Cordina-Duverger, Emilie; Menegaux, Florence; Flyger, Henrik; Nordestgaard, Børge G.; Nielsen, Sune F.; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Engelhardt, Ellen G.; Broeks, Annegien; Rutgers, Emiel J.; Glendon, Gord; Mulligan, Anna Marie; Cross, Simon; Reed, Malcolm; Gonzalez-Neira, Anna; Perez, José Ignacio Arias; Provenzano, Elena; Apicella, Carmel; Southey, Melissa C.; Spurdle, Amanda; Investigators, kConFab; Group, AOCS; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; McLean, Catriona; Baglietto, Laura; Chanock, Stephen J.; Lissowska, Jolanta; Sherman, Mark E.; Brüning, Thomas; Hamann, Ute; Ko, Yon-Dschun; Orr, Nick; Schoemaker, Minouk; Ashworth, Alan; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Mannermaa, Arto; Swerdlow, Anthony; Giles, Graham G.; Brenner, Hermann; Fasching, Peter A.; Chenevix-Trench, Georgia; Hopper, John; Benítez, Javier; Cox, Angela; Andrulis, Irene L.; Lambrechts, Diether; Gago-Dominguez, Manuela; Couch, Fergus; Czene, Kamila; Bojesen, Stig E.; Easton, Doug F.; Schmidt, Marjanka K.; Guénel, Pascal; Hall, Per; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Chang-Claude, Jenny
2014-01-01
A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (pint) <1.1×10−3. None of the observed interactions was significant after accounting for multiple testing. The Bayesian False Discovery Probability was used to rank the findings, which indicated three interactions as being noteworthy at 1% prior probability of interaction. SNP rs6828523 was associated with increased ER-negative BC risk in women ≥170cm (OR=1.22, p=0.017), but inversely associated with ER-negative BC risk in women <160cm (OR=0.83, p=0.039, pint=1.9×10−4). The inverse association between rs4808801 and overall BC risk was stronger for women who had had four or more pregnancies (OR=0.85, p=2.0×10−4), and absent in women who had had just one (OR=0.96, p=0.19, pint = 6.1×10−4). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR=0.93, p=2.8×10−5), but no association was observed in current smokers (OR=1.07, p=0.14, pint = 3.4×10−4). In conclusion, recently identified breast cancer susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies. PMID:25227710
Rudolph, Anja; Milne, Roger L; Truong, Thérèse; Knight, Julia A; Seibold, Petra; Flesch-Janys, Dieter; Behrens, Sabine; Eilber, Ursula; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dunning, Alison M; Shah, Mitul; Munday, Hannah R; Darabi, Hatef; Eriksson, Mikael; Brand, Judith S; Olson, Janet; Vachon, Celine M; Hallberg, Emily; Castelao, J Esteban; Carracedo, Angel; Torres, Maria; Li, Jingmei; Humphreys, Keith; Cordina-Duverger, Emilie; Menegaux, Florence; Flyger, Henrik; Nordestgaard, Børge G; Nielsen, Sune F; Yesilyurt, Betul T; Floris, Giuseppe; Leunen, Karin; Engelhardt, Ellen G; Broeks, Annegien; Rutgers, Emiel J; Glendon, Gord; Mulligan, Anna Marie; Cross, Simon; Reed, Malcolm; Gonzalez-Neira, Anna; Arias Perez, José Ignacio; Provenzano, Elena; Apicella, Carmel; Southey, Melissa C; Spurdle, Amanda; Häberle, Lothar; Beckmann, Matthias W; Ekici, Arif B; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; McLean, Catriona; Baglietto, Laura; Chanock, Stephen J; Lissowska, Jolanta; Sherman, Mark E; Brüning, Thomas; Hamann, Ute; Ko, Yon-Dschun; Orr, Nick; Schoemaker, Minouk; Ashworth, Alan; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M; Mannermaa, Arto; Swerdlow, Anthony; Giles, Graham G; Brenner, Hermann; Fasching, Peter A; Chenevix-Trench, Georgia; Hopper, John; Benítez, Javier; Cox, Angela; Andrulis, Irene L; Lambrechts, Diether; Gago-Dominguez, Manuela; Couch, Fergus; Czene, Kamila; Bojesen, Stig E; Easton, Doug F; Schmidt, Marjanka K; Guénel, Pascal; Hall, Per; Pharoah, Paul D P; Garcia-Closas, Montserrat; Chang-Claude, Jenny
2015-03-15
A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (pint ) <1.1 × 10(-3) . None of the observed interactions was significant after accounting for multiple testing. The Bayesian False Discovery Probability was used to rank the findings, which indicated three interactions as being noteworthy at 1% prior probability of interaction. SNP rs6828523 was associated with increased ER-negative BC risk in women ≥170 cm (OR = 1.22, p = 0.017), but inversely associated with ER-negative BC risk in women <160 cm (OR = 0.83, p = 0.039, pint = 1.9 × 10(-4) ). The inverse association between rs4808801 and overall BC risk was stronger for women who had had four or more pregnancies (OR = 0.85, p = 2.0 × 10(-4) ), and absent in women who had had just one (OR = 0.96, p = 0.19, pint = 6.1 × 10(-4) ). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR = 0.93, p = 2.8 × 10(-5) ), but no association was observed in current smokers (OR = 1.07, p = 0.14, pint = 3.4 × 10(-4) ). In conclusion, recently identified BC susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies. © 2014 UICC.
Gene-environment interaction and male reproductive function
Axelsson, Jonatan; Bonde, Jens Peter; Giwercman, Yvonne L.; Rylander, Lars; Giwercman, Aleksander
2010-01-01
As genetic factors can hardly explain the changes taking place during short time spans, environmental and lifestyle-related factors have been suggested as the causes of time-related deterioration of male reproductive function. However, considering the strong heterogeneity of male fecundity between and within populations, genetic variants might be important determinants of the individual susceptibility to the adverse effects of environment or lifestyle. Although the possible mechanisms of such interplay in relation to the reproductive system are largely unknown, some recent studies have indicated that specific genotypes may confer a larger risk of male reproductive disorders following certain exposures. This paper presents a critical review of animal and human evidence on how genes may modify environmental effects on male reproductive function. Some examples have been found that support this mechanism, but the number of studies is still limited. This type of interaction studies may improve our understanding of normal physiology and help us to identify the risk factors to male reproductive malfunction. We also shortly discuss other aspects of gene-environment interaction specifically associated with the issue of reproduction, namely environmental and lifestyle factors as the cause of sperm DNA damage. It remains to be investigated to what extent such genetic changes, by natural conception or through the use of assisted reproductive techniques, are transmitted to the next generation, thereby causing increased morbidity in the offspring. PMID:20348940
The politics of environmental concern: A cross-national analysis*
Nawrotzki, Raphael J.
2016-01-01
Prior research in the U.S. has found that liberals are generally more environmentally concerned than conservatives. The present study explores whether conservatives’ opposition to environmental protection is solely a U.S. or a universal phenomenon and whether this association is contingent on country-level characteristics such as development, environmental conditions, and communist history. Employing data for 19 countries from the ISSP module “Environment II,” this paper explores inter-country variations in the relationship between individual conservatism and environmental concern using multilevel modeling with cross-level interactions. The models reveal a number of intriguing associations. Most important, conservatives’ support for environmental protection varies by country. This variation is a function of country-level characteristics. The strongest opposition of conservatives’ toward environmental protection was observed in developed, capitalist nations, with superior environmental conditions. On the other hand, in less developed countries, and countries characterized by poor environmental quality, conservatives are more environmentally concerned than liberals. PMID:27616877
USDA-ARS?s Scientific Manuscript database
Environmental effects have been shown to influence several economically important traits in beef cattle. In this study, genetic x nutritional environment interaction has been evaluated in a composite beef cattle breed (50% Red Angus, 25% Charolais, 25% Tarentaise). Four nutritional environments (MAR...
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
Information theoretic measures can be used to identify nonlinear interactions between source and target variables through reductions in uncertainty. In information partitioning, multivariate mutual information is decomposed into synergistic, unique, and redundant components. Synergy is information shared only when sources influence a target together, uniqueness is information only provided by one source, and redundancy is overlapping shared information from multiple sources. While this partitioning has been applied to provide insights into complex dependencies, several proposed partitioning methods overestimate redundant information and omit a component of unique information because they do not account for source dependencies. Additionally, information partitioning has only been applied to time-series data in a limited context, using basic pdf estimation techniques or a Gaussian assumption. We develop a Rescaled Redundancy measure (Rs) to solve the source dependency issue, and present Gaussian, autoregressive, and chaotic test cases to demonstrate its advantages over existing techniques in the presence of noise, various source correlations, and different types of interactions. This study constitutes the first rigorous application of information partitioning to environmental time-series data, and addresses how noise, pdf estimation technique, or source dependencies can influence detected measures. We illustrate how our techniques can unravel the complex nature of forcing and feedback within an ecohydrologic system with an application to 1 min environmental signals of air temperature, relative humidity, and windspeed. The methods presented here are applicable to the study of a broad range of complex systems composed of interacting variables.
McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O
2012-08-01
Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
Rodrigues, Aurélie P; Santos, Lúcia H M L M; Oliva-Teles, Maria Teresa; Delerue-Matos, Cristina; Guimarães, Laura
2014-11-01
Concurrent exposure of estuarine organisms to man-made and natural stressors has become a common occurrence. Numerous interactions of multiple stressors causing synergistic or antagonistic effects have been described. However, limited information is available on combined effects of emerging pharmaceuticals and natural stressors. This study investigated the joint effects of the antidepressant sertraline and salinity on Carcinus maenas. To improve knowledge about interactive effects and potential vulnerability, experiments were performed with organisms from two estuaries with differing histories of exposure to environmental contamination. Biomarkers related to mode of action of sertraline were employed to assess effects of environmentally realistic concentrations of sertraline at two salinity levels. Synergism and antagonism were identified for biomarkers of cholinergic neurotransmission, energy production, anti-oxidant defences and oxidative damage. Different interactions were found for the two study sites highlighting the need to account for differences in tolerance of local ecological receptors in risk evaluations. Copyright © 2014 Elsevier B.V. All rights reserved.
Carver, Scott; Mills, James N.; Parmenter, Cheryl A.; Parmenter, Robert R.; Richardson, Kyle S.; Harris, Rachel L.; Douglass, Richard J.; Kuenzi, Amy J.; Luis, Angela D.
2015-01-01
Understanding the environmental drivers of zoonotic reservoir and human interactions is crucial to understanding disease risk, but these drivers are poorly predicted. We propose a mechanistic understanding of human–reservoir interactions, using hantavirus pulmonary syndrome as a case study. Crucial processes underpinning the disease's incidence remain poorly studied, including the connectivity among natural and peridomestic deer mouse host activity, virus transmission, and human exposure. We found that disease cases were greatest in arid states and declined exponentially with increasing precipitation. Within arid environments, relatively rare climatic conditions (e.g., El Niño) are associated with increased rainfall and reservoir abundance, producing more frequent virus transmission and host dispersal. We suggest that deer mice increase their occupancy of peridomestic structures during spring–summer, amplifying intraspecific transmission and human infection risk. Disease incidence in arid states may increase with predicted climatic changes. Mechanistic approaches incorporating reservoir behavior, reservoir–human interactions, and pathogen spillover could enhance our understanding of global hantavirus ecology, with applications to other directly transmitted zoonoses. PMID:26955081
Larson, Tracy A; Normand, Matthew P; Morley, Allison J; Miller, Bryon G
2014-01-01
Inadequate physical activity increases the risks related to several health problems in children; however, increasing physical activity mitigates these risks. In this study, we examined the relations between moderate-to-vigorous physical activity (MVPA) and several environmental conditions (attention, interactive play, alone, escape) with 4 preschool children. We compared the experimental conditions to a control condition and a naturalistic baseline according to a combined multielement and reversal design. Results indicated that all participants were most active in the interactive play condition and that the percentage of MVPA varied across experimental and control conditions. In addition, the frequency and duration of bouts of MVPA were greatest in the interactive play condition. The current study presents a methodology for the identification of environmental contingencies that support increased levels of MVPA in young children, and it holds promise for improving our understanding of the variables related to physical activity. © Society for the Experimental Analysis of Behavior.
Rubaltelli, Enrico; Scrimin, Sara; Moscardino, Ughetta; Priolo, Giulia; Buodo, Giulia
2018-03-02
Terrorist attacks have a destabilizing impact on the general population, causing distress and fear. However, not all individuals are equally susceptible to the effects of terror threat. This study aimed to examine whether exposure to terrorism-related pictures interacted with individual differences in environmental sensitivity and psychophysiological response to stress to explain people's risk perception, operationalized as perceived likelihood of a terrorist attack and willingness to trade off one's privacy to increase national security. Ninety-five university students were randomly assigned to one of two conditions (terrorism-related vs. neutral pictures). After watching the pictures, they answered questions concerning risk perception and completed questionnaires. Stress was induced by the Mannheim Multicomponent Stress Test, during which heart rate was recorded. Results showed that the perceived likelihood of future attacks was affected by the interaction between exposure to terrorism pictures and psychophysiological reactivity to stress, whereas willingness to trade off one's privacy to improve national security was influenced by the interaction between exposure to terrorism pictures and environmental sensitivity. The study suggests that individuals high in sensitivity and psychophysiological stress reactivity are particularly affected by terrorism-related pictures. Psychologists should direct their efforts to raise general awareness of the negative effects, especially for some people, of such media coverage. © 2018 The British Psychological Society.
Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.
Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz
2015-06-07
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
The Environmental Dependence of Inbreeding Depression in a Wild Bird Population
Szulkin, Marta; Sheldon, Ben C.
2007-01-01
Background Inbreeding depression occurs when the offspring produced as a result of matings between relatives show reduced fitness, and is generally understood as a consequence of the elevated expression of deleterious recessive alleles. How inbreeding depression varies across environments is of importance for the evolution of inbreeding avoidance behaviour, and for understanding extinction risks in small populations. However, inbreeding-by-environment (I×E) interactions have rarely been investigated in wild populations. Methodology/Principal Findings We analysed 41 years of breeding events from a wild great tit (Parus major) population and used 11 measures of the environment to categorise environments as relatively good or poor, testing whether these measures influenced inbreeding depression. Although inbreeding always, and environmental quality often, significantly affected reproductive success, there was little evidence for statistically significant I×E interactions at the level of individual analyses. However, point estimates of the effect of the environment on inbreeding depression were sometimes considerable, and we show that variation in the magnitude of the I×E interaction across environments is consistent with the expectation that this interaction is more marked across environmental axes with a closer link to overall fitness, with the environmental dependence of inbreeding depression being elevated under such conditions. Hence, our analyses provide evidence for an environmental dependence of the inbreeding×environment interaction: effectively an I×E×E. Conclusions/Significance Overall, our analyses suggest that I×E interactions may be substantial in wild populations, when measured across relevant environmental contrasts, although their detection for single traits may require very large samples, or high rates of inbreeding. PMID:17925875
Nilsson, Kent W; Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia
2014-12-10
Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17-18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. © The Author 2015. Published by Oxford University Press on behalf of CINP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.
2011-09-01
Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases.more » During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. “Risk” has two components: (1) The likelihood, or “probability”, of the occurrence of a given interaction or event, and (2) the potential “consequence” if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, “consequence”, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.« less
Type 1 diabetes: prospective cohort studies for identification of the environmental trigger.
Rønningen, Kjersti S
2013-12-01
Type 1 diabetes (T1D) is one of the most common chronic diseases with childhood onset, and the disease incidence has increased two to fivefold over the past half century by as yet unknown means. T1D occurs when the body's immune system turns against itself, destroying in a very specific and targeted way-the pancreatic β-cells. T1D results from poorly defined interactions between susceptibility genes and environmental determinants. In contrast to the rapid progress in finding T1D genes, identification and confirmation of environmental determinants remain a formidable challenge. This review article will give an overview of ongoing prospective cohort studies aiming to identify the environmental trigger(s) causing T1D.
Supporting Data for Fiscal Year 1994. Budget Estimate Submission
1993-04-01
0603401F 405 36 Space Systems Environmental Interactions Technology 0603410F 416 38 Conventional Weapons Technology 0603601F 423 39 Advanced Radiation...Transfer Pilot Program (SBIR/STTR) 0603302F Space and Missile Rocket Propulsion 31 392 060341OF Space Systems Environmental Interactions Technology 36...Deliver Interactive Decode (Rapid Message Processing) capability in Communications Element. - (U) Conduct maintainability demonstration. - (U) Begin Initial
Dardiotis, Efthimios; Xiromerisiou, Georgia; Hadjichristodoulou, Christos; Tsatsakis, Aristidis M; Wilks, Martin F; Hadjigeorgiou, Georgios M
2013-05-10
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra. Several genetic and environmental factors have been implicated in the pathogenesis of PD. Single risk factors are likely to exert relatively minor effects, whereas their interaction may prove to be sufficient to cause PD. In the present review we summarize current knowledge from human genetic association studies regarding the interaction between gene polymorphisms and pesticide exposure in the risk of PD. A number of genetic association studies have investigated joint effects between genes and pesticides on PD risk. They have provided some evidence that genetic susceptibility either in metabolism, elimination and transport of pesticides or in the extent of mitochondrial dysfunction, oxidative stress and neuronal loss may predispose individuals to PD if they have been exposed to pesticides. These findings confirm the importance of considering pesticide-gene interactions in future studies in order to gain a better understanding of the pathogenic mechanisms of PD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hunter, Lori M.; Strife, Susie; Twine, Wayne
2009-01-01
The state of the local environment shapes the well-being of millions of rural residents in developing nations. Still, we know little of these individuals’ environmental perceptions. This study analyzes survey data collected in an impoverished, rural region in northeast South Africa, to understand the factors that shape concern with local environmental issues. We use the “post-materialist thesis” to explore the different explanations for environmental concern in less developed regions of the world, with results revealing the importance of both cultural and physical context. In particular, gendered interaction with natural resources shapes perceptions, as does the local setting. Both theoretical and policy implications are discussed. PMID:20514147
Suor, Jennifer H; Sturge-Apple, Melissa L; Davies, Patrick T; Cicchetti, Dante
2017-08-01
Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and children's problem-solving outcomes across tasks varying in ecological relevance. In addition, we utilize an evolutionary model of temperament toward further specifying whether hawk temperament traits moderate these associations. Two hundred and one mother-child dyads participated in a prospective multimethod study when children were 2 and 4 years old. At age 2, environmental harshness was assessed via maternal report of earned income and observations of maternal disengagement during a parent-child interaction task. Children's hawk temperament traits were assessed from a series of unfamiliar episodes. At age 4, children's reward-oriented and visual problem-solving were measured. Path analyses revealed early environmental harshness and children's hawk temperament traits predicted worse visual problem-solving. Results showed a significant two-way interaction between children's hawk temperament traits and environmental harshness on reward-oriented problem-solving. Simple slope analyses revealed the effect of environmental harshness on reward-oriented problem-solving was specific to children with higher levels of hawk traits. Results suggest early experiences of environmental harshness and child hawk temperament traits shape children's trajectories of problem-solving in an environment-fitting manner. © 2017 Association for Child and Adolescent Mental Health.
Keers, Robert; Pluess, Michael
2017-12-01
While environmental adversity has been shown to increase risk for psychopathology, individuals differ in their sensitivity to these effects. Both genes and childhood experiences are thought to influence sensitivity to the environment, and these factors may operate synergistically such that the effects of childhood experiences on later sensitivity are greater in individuals who are more genetically sensitive. In line with this hypothesis, several recent studies have reported a significant three-way interaction (Gene × Environment × Environment) between two candidate genes and childhood and adult environment on adult psychopathology. We aimed to replicate and extend these findings in a large, prospective multiwave longitudinal study using a polygenic score of environmental sensitivity and objectively measured childhood and adult material environmental quality. We found evidence for both Environment × Environment and Gene × Environment × Environment effects on psychological distress. Children with a poor-quality material environment were more sensitive to the negative effects of a poor environment as adults, reporting significantly higher psychological distress scores. These effects were further moderated by a polygenic score of environmental sensitivity. Genetically sensitive children were more vulnerable to adversity as adults, if they had experienced a poor childhood environment but were significantly less vulnerable if their childhood environment was positive. These findings are in line with the differential susceptibility hypothesis and suggest that a life course approach is necessary to elucidate the role of Gene × Environment in the development of mental illnesses.
Tuomisto, Hanna L.; Scheelbeek, Pauline F.D.; Chalabi, Zaid; Green, Rosemary; Smith, Richard D.; Haines, Andy; Dangour, Alan D.
2017-01-01
Environmental changes are likely to affect agricultural production over the next decades. The interactions between environmental change, agricultural yields and crop quality, and the critical pathways to future diets and health outcomes are largely undefined. There are currently no quantitative models to test the impact of multiple environmental changes on nutrition and health outcomes. Using an interdisciplinary approach, we developed a framework to link the multiple interactions between environmental change, agricultural productivity and crop quality, population-level food availability, dietary intake and health outcomes, with a specific focus on fruits and vegetables. The main components of the framework consist of: i) socio-economic and societal factors, ii) environmental change stressors, iii) interventions and policies, iv) food system activities, v) food and nutrition security, and vi) health and well-being outcomes. The framework, based on currently available evidence, provides an overview of the multidimensional and complex interactions with feedback between environmental change, production of fruits and vegetables, diets and health, and forms the analytical basis for future modelling and scenario testing. PMID:29511740
In-situ molecular-level elucidation of organofluorine binding sites in a whole peat soil.
Longstaffe, James G; Courtier-Murias, Denis; Soong, Ronald; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Hutchins, Howard; Krishnamurthy, Sridevi; Struppe, Jochem; Alaee, Mehran; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Simpson, André J
2012-10-02
The chemical nature of xenobiotic binding sites in soils is of vital importance to environmental biogeochemistry. Interactions between xenobiotics and the naturally occurring organic constituents of soils are strongly correlated to environmental persistence, bioaccessibility, and ecotoxicity. Nevertheless, because of the complex structural and chemical heterogeneity of soils, studies of these interactions are most commonly performed indirectly, using correlative methods, fractionation, or chemical modification. Here we identify the organic components of an unmodified peat soil where some organofluorine xenobiotic compounds interact using direct molecular-level methods. Using (19)F→(1)H cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, the (19)F nuclei of organofluorine compounds are used to induce observable transverse magnetization in the (1)H nuclei of organic components of the soil with which they interact after sorption. The observed (19)F→(1)H CP-MAS spectra and dynamics are compared to those produced using model soil organic compounds, lignin and albumin. It is found that lignin-like components can account for the interactions observed in this soil for heptafluoronaphthol (HFNap) while protein structures can account for the interactions observed for perfluorooctanoic acid (PFOA). This study employs novel comprehensive multi-phase (CMP) NMR technology that permits the application of solution-, gel-, and solid-state NMR experiments on intact soil samples in their swollen state.
Neas, Lucas M.; Blach, Colette; Haynes, Carol S.; LaRocque-Abramson, Karen; Grass, Elizabeth; Dowdy, Z. Elaine; Devlin, Robert B.; Diaz-Sanchez, David; Cascio, Wayne E.; Miranda, Marie Lynn; Gregory, Simon G.; Shah, Svati H.; Kraus, William E.; Hauser, Elizabeth R.
2017-01-01
Air pollution is a worldwide contributor to cardiovascular disease mortality and morbidity. Traffic-related air pollution is a widespread environmental exposure and is associated with multiple cardiovascular outcomes such as coronary atherosclerosis, peripheral arterial disease, and myocardial infarction. Despite the recognition of the importance of both genetic and environmental exposures to the pathogenesis of cardiovascular disease, studies of how these two contributors operate jointly are rare. We performed a genome-wide interaction study (GWIS) to examine gene-traffic exposure interactions associated with coronary atherosclerosis. Using race-stratified cohorts of 538 African-Americans (AA) and 1562 European-Americans (EA) from a cardiac catheterization cohort (CATHGEN), we identify gene-by-traffic exposure interactions associated with the number of significantly diseased coronary vessels as a measure of chronic atherosclerosis. We found five suggestive (P<1x10-5) interactions in the AA GWIS, of which two (rs1856746 and rs2791713) replicated in the EA cohort (P < 0.05). Both SNPs are in the PIGR-FCAMR locus and are eQTLs in lymphocytes. The protein products of both PIGR and FCAMR are implicated in inflammatory processes. In the EA GWIS, there were three suggestive interactions; none of these replicated in the AA GWIS. All three were intergenic; the most significant interaction was in a regulatory region associated with SAMSN1, a gene previously associated with atherosclerosis and B cell activation. In conclusion, we have uncovered several novel genes associated with coronary atherosclerosis in individuals chronically exposed to increased ambient concentrations of traffic air pollution. These genes point towards inflammatory pathways that may modify the effects of air pollution on cardiovascular disease risk. PMID:28355232
Matosin, Natalie; Halldorsdottir, Thorhildur; Binder, Elisabeth B
2018-05-15
Epidemiologic and genetic studies suggest common environmental and genetic risk factors for a number of psychiatric disorders, including depression, bipolar disorder, and schizophrenia. Genetic and environmental factors, especially adverse life events, not only have main effects on disease development but also may interact to shape risk and resilience. Such gene by adversity interactions have been described for FKBP5, an endogenous regulator of the stress-neuroendocrine system, conferring risk for a number of psychiatric disorders. In this review, we present a molecular and cellular model of the consequences of FKBP5 by early adversity interactions. We illustrate how altered genetic and epigenetic regulation of FKBP5 may contribute to disease risk by covering evidence from clinical and preclinical studies of FKBP5 dysregulation, known cell-type and tissue-type expression patterns of FKBP5 in humans and animals, and the role of FKBP5 as a stress-responsive molecular hub modulating many cellular pathways. FKBP5 presents the possibility to better understand the molecular and cellular factors contributing to a disease-relevant gene by environment interaction, with implications for the development of biomarkers and interventions for psychiatric disorders. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Gene-Environment Interaction in the Etiology of Mathematical Ability Using SNP Sets
Kovas, Yulia; Plomin, Robert
2010-01-01
Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a ‘SNP set’ composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative. PMID:20978832
The joint effect of air pollution exposure and copy number variation on risk for autism.
Kim, Dokyoon; Volk, Heather; Girirajan, Santhosh; Pendergrass, Sarah; Hall, Molly A; Verma, Shefali S; Schmidt, Rebecca J; Hansen, Robin L; Ghosh, Debashis; Ludena-Rodriguez, Yunin; Kim, Kyoungmi; Ritchie, Marylyn D; Hertz-Picciotto, Irva; Selleck, Scott B
2017-09-01
Autism spectrum disorder is a complex trait with a high degree of heritability as well as documented susceptibility from environmental factors. In this study the contributions of copy number variation, exposure to air pollutants, and the interaction between the two on autism risk, were evaluated in the population-based case-control Childhood Autism Risks from Genetics and Environment (CHARGE) Study. For the current investigation, we included only those CHARGE children (a) who met criteria for autism or typical development and (b) for whom our team had conducted both genetic evaluation of copy number burden and determination of environmental air pollution exposures based on mapping addresses from the pregnancy and early childhood. This sample consisted of 158 cases of children with autism and 147 controls with typical development. Multiple logistic regression models were fit with and without environmental variable-copy number burden interactions. We found no correlation between average air pollution exposure from conception to age 2 years and the child's CNV burden. We found a significant interaction in which a 1SD increase in duplication burden combined with a 1SD increase in ozone exposure was associated with an elevated autism risk (OR 3.4, P < 0.005) much greater than the increased risks associated with either genomic duplication (OR 1.85, 95% CI 1.25-2.73) or ozone (OR 1.20, 95% CI 0.93-1.54) alone. Similar results were obtained when CNV and ozone were dichotomized to compare those in the top quartile relative to those having a smaller CNV burden and lower exposure to ozone, and when exposures were assessed separately for pregnancy, the first year of life, and the second year of life. No interactions were observed for other air pollutants, even those that demonstrated main effects; ozone tends to be negatively correlated with the other pollutants examined. While earlier work has demonstrated interactions between the presence of a pathogenic CNV and an environmental exposure [Webb et al., 2016], these findings appear to be the first indication that global copy number variation may increase susceptibility to certain environmental factors, and underscore the need to consider both genomics and environmental exposures as well as the mechanisms by which each may amplify the risks for autism associated with the other. Autism Res 2017, 10: 1470-1480. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Puerta, Patricia; Hunsicker, Mary E.; Quetglas, Antoni; Álvarez-Berastegui, Diego; Esteban, Antonio; González, María; Hidalgo, Manuel
2015-01-01
Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable approach for understanding the spatially variant ecology of cephalopod populations, which is important for fisheries and ecosystem management. PMID:26201075
Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G
2017-06-01
Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Brooker, Rohan M; Brandl, Simon J; Dixson, Danielle L
2016-01-04
Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance.
Policy interactions and underperforming emission trading markets in China.
Zhang, Bing; Zhang, Hui; Liu, Beibei; Bi, Jun
2013-07-02
Emission trading is considered to be cost-effective environmental economic instrument for pollution control. However, the ex post analysis of emission trading program found that cost savings have been smaller and the trades fewer than might have been expected at the outset of the program. Besides policy design issues, pre-existing environmental regulations were considered to have a significant impact on the performance of the emission trading market in China. Taking the Jiangsu sulfur dioxide (SO2) market as a case study, this research examined the impact of policy interactions on the performance of the emission trading market. The results showed that cost savings associated with the Jiangsu SO2 emission trading market in the absence of any policy interactions were CNY 549 million or 12.5% of total pollution control costs. However, policy interactions generally had significant impacts on the emission trading system; the lone exception was current pollution levy system. When the model accounted for all four kinds of policy interactions, the total pollution control cost savings from the emission trading market fell to CNY 39.7 million or 1.36% of total pollution control costs. The impact of policy interactions would reduce 92.8% of cost savings brought by emission trading program.
Cenci, Simone; Montero-Castaño, Ana; Saavedra, Serguei
2018-01-21
A major challenge in community ecology is to understand how species respond to environmental changes. Previous studies have shown that the reorganization of interactions among co-occurring species can modulate their chances to adapt to novel environmental conditions. Moreover, empirical evidence has shown that these ecological dynamics typically facilitate the persistence of groups of species rather than entire communities. However, so far, we have no systematic methodology to identify those groups of species with the highest or lowest chances to adapt to new environments through a reorganization of their interactions. Yet, this could prove extremely valuable for developing new conservation strategies. Here, we introduce a theoretical framework to estimate the effect of the reorganization of interactions on the adaptability of a group of species, within a community, to novel environmental conditions. We introduce the concept of the adaptation space of a group of species based on a feasibility analysis of a population dynamics model. We define the adaptation space of a group as the set of environmental conditions that can be made compatible with its persistence thorough the reorganization of interactions among species within the group. The larger the adaptation space of a group, the larger its likelihood to adapt to a novel environment. We show that the interactions in the community outside a group can act as structural constraints and be used to quantitatively compare the size of the adaptation space among different groups of species within a community. To test our theoretical framework, we perform a data analysis on several pairs of natural and artificially perturbed ecological communities. Overall, we find that the groups of species present in both control and perturbed communities are among the ones with the largest adaptation space. We believe that the results derived from our framework point out towards new directions to understand and estimate the adaptability of species to changing environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Describing and understanding behavioral responses to multiple stressors and multiple stimuli.
Hale, Robin; Piggott, Jeremy J; Swearer, Stephen E
2017-01-01
Understanding the effects of environmental change on natural ecosystems is a major challenge, particularly when multiple stressors interact to produce unexpected "ecological surprises" in the form of complex, nonadditive effects that can amplify or reduce their individual effects. Animals often respond behaviorally to environmental change, and multiple stressors can have both population-level and community-level effects. However, the individual, not combined, effects of stressors on animal behavior are commonly studied. There is a need to understand how animals respond to the more complex combinations of stressors that occur in nature, which requires a systematic and rigorous approach to quantify the various potential behavioral responses to the independent and interactive effects of stressors. We illustrate a robust, systematic approach for understanding behavioral responses to multiple stressors based on integrating schemes used to quantitatively classify interactions in multiple-stressor research and to qualitatively view interactions between multiple stimuli in behavioral experiments. We introduce and unify the two frameworks, highlighting their conceptual and methodological similarities, and use four case studies to demonstrate how this unification could improve our interpretation of interactions in behavioral experiments and guide efforts to manage the effects of multiple stressors. Our unified approach: (1) provides behavioral ecologists with a more rigorous and systematic way to quantify how animals respond to interactions between multiple stimuli, an important theoretical advance, (2) helps us better understand how animals behave when they encounter multiple, potentially interacting stressors, and (3) contributes more generally to the understanding of "ecological surprises" in multiple stressors research.
Contextual influences on environmental concerns cross-nationally: A multilevel investigation.
Marquart-Pyatt, Sandra T
2012-09-01
Environmental issues continue to grow in international prominence, as environmental conditions are recognized as some of the most important problems facing the world. Research examining this globalization of environmental concern shown in public opinion surveys emphasizes the importance of context yet is currently underspecified. To address this gap, this research uses a multi-level, cross-national study to examine individual-level and country-level influences on three measures of environmental concern: environmental threat awareness, environmental efficacy, and willingness to pay. At the individual level, education, age, and gender affect environmental concerns. At the national level, economic, political, and environmental factors affect environmental concerns. Importantly, contextual factors differ in their effects depending on the dimension of environmental concern measured. Results from cross-level interactions for education confirm these complexities across these measures, supporting a dimensionality argument. The importance of the measurement of environmental concern shown in this research is emphasized for future cross-national scholarship. Copyright © 2012 Elsevier Inc. All rights reserved.
Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky
2010-01-01
Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...
Schmukat, A; Duester, L; Goryunova, E; Ecker, D; Heininger, P; Ternes, T A
2016-03-05
Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material. Copyright © 2015 Elsevier B.V. All rights reserved.
Yuan, Yue; Wang, Kaiyun; Li, Dezhi; Pan, Yu; Lv, Yuanyuan; Zhao, Meixia; Gao, JinJin
2013-01-01
The invasive species Spartina alterniora Loisel was introduced to the eastern coast of China in the 1970s and 1980s for the purposes of land reclamation and the prevention of soil erosion. The resulting interspecific competition had an important influence on the distribution of native vegetation, which makes studying the patterns and mechanisms of the interactions between Spartina alterniora Loisel and the native species Phragmites australis (Cav.) Trin ex Steud in this region very important. There have been some researches on the interspecific interactions between P. australis and S. alterniora in the Dongtan wetland of Chongming, east China, most of which has focused on the comparison of their physiological characteristics. In this paper, we conducted a neighbor removal experiment along a tidal gradient to evaluate the relative competitive abilities of the two species by calculating their relative neighbor effect (RNE) index. We also looked at the influence of environmental stress and disturbance on the competitive abilities of the two species by comparing interaction strength (I) among different tidal zones both for P. australis and S. alterniora. Finally, we measured physiological characteristics of the two species to assess the physiological mechanisms behind their different competitive abilities. Both negative and positive interactions were found between P. australis and S. alterniora along the environmental gradient. When the direction of the competitive intensity index for P. australis and S. alterniora was consistent, the competitive or facilitative effect of S. alterniora on P. australis was stronger than that of P. australis on S. alterniora. The interspecific interactions of P. australis and S. alterniora varied with environmental conditions, as well as with the method used, to measure interspecific interactions.
Contextual Predictive Factors of Child Sexual Abuse: The Role of Parent-Child Interaction
ERIC Educational Resources Information Center
Ramirez, Clemencia; Pinzon-Rondon, Angela Maria; Botero, Juan Carlos
2011-01-01
Objectives: To determine the prevalence of child sexual abuse in the Colombian coasts, as well as to assess the role of parent-child interactions on its occurrence and to identify factors from different environmental levels that predict it. Methods: This cross-sectional study explores the results of 1,089 household interviews responded by mothers.…
ERIC Educational Resources Information Center
Chappell, Patricia F.
This paper reports an observational study of the effects of handling on the social behavior of squirrel monkeys who received a protein deficient diet. After birth, experimental animals received a low-protein diet for a 6-week period. A subgroup of these animals were handled between 3 and 12 weeks of age. All of the animals interacted (in four…
Brian E. Roth; Eric J. Jokela; Timothy A. Martin; Dudley A. Huber; Timothy L. White
2010-01-01
Few studies have quantified the combined effects of silvicultural treatments and genetic improvement on unit area production of full-sib family blocks of loblolly and slash pine. We examined genotype (family) by environmental interactions (G x E) through age five years using a factorial experiment consisting of silvicultural treatment intensity, planting density and...
Space station propulsion-ECLSS interaction study
NASA Technical Reports Server (NTRS)
Brennan, Scott M.
1986-01-01
The benefits of the utilization of effluents of the Space Station Environmental Control and Life Support (ECLS) system are examined. Various ECLSS-propulsion system interaction options are evaluated and compared on the basis of weight, volume, and power requirements. Annual propulsive impulse to maintain station altitude during a complete solar cycle of eleven years and the effect on station resupply are considered.
Kordas, Rebecca L.; Harley, Christopher D. G.
2017-01-01
Changes in the Earth's environment are now sufficiently complex that our ability to forecast the emergent ecological consequences of ocean acidification (OA) is limited. Such projections are challenging because the effects of OA may be enhanced, reduced or even reversed by other environmental stressors or interactions among species. Despite an increasing emphasis on multifactor and multispecies studies in global change biology, our ability to forecast outcomes at higher levels of organization remains low. Much of our failure lies in a poor mechanistic understanding of nonlinear responses, a lack of specificity regarding the levels of organization at which interactions can arise, and an incomplete appreciation for linkages across these levels. To move forward, we need to fully embrace interactions. Mechanistic studies on physiological processes and individual performance in response to OA must be complemented by work on population and community dynamics. We must also increase our understanding of how linkages and feedback among multiple environmental stressors and levels of organization can generate nonlinear responses to OA. This will not be a simple undertaking, but advances are of the utmost importance as we attempt to mitigate the effects of ongoing global change. PMID:28356409
Kroeker, Kristy J; Kordas, Rebecca L; Harley, Christopher D G
2017-03-01
Changes in the Earth's environment are now sufficiently complex that our ability to forecast the emergent ecological consequences of ocean acidification (OA) is limited. Such projections are challenging because the effects of OA may be enhanced, reduced or even reversed by other environmental stressors or interactions among species. Despite an increasing emphasis on multifactor and multispecies studies in global change biology, our ability to forecast outcomes at higher levels of organization remains low. Much of our failure lies in a poor mechanistic understanding of nonlinear responses, a lack of specificity regarding the levels of organization at which interactions can arise, and an incomplete appreciation for linkages across these levels. To move forward, we need to fully embrace interactions. Mechanistic studies on physiological processes and individual performance in response to OA must be complemented by work on population and community dynamics. We must also increase our understanding of how linkages and feedback among multiple environmental stressors and levels of organization can generate nonlinear responses to OA. This will not be a simple undertaking, but advances are of the utmost importance as we attempt to mitigate the effects of ongoing global change. © 2017 The Authors.
1997-09-30
Environmental Science ,Chesapeake Biological Laboratory,PO Box 38,Solomons,MD,20688 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...DYNAMICS OF EXPLOITED MARINE POPULATIONS: PHYSICAL-BIOLOGICAL INTERACTIONS Michael J. Fogarty University of Maryland Center for Environmental Science Chesapeake
Space environmental interactions with spacecraft surfaces
NASA Technical Reports Server (NTRS)
Stevens, J. N.
1979-01-01
Environmental interactions are defined as the response of spacecraft surfaces to the charged-particle environment. These interactions are divided into two broad categories: spacecraft passive, in which the environment acts on the surfaces and spacecraft active, in which the spacecraft or a system on the spacecraft causes the interaction. The principal spacecraft passive interaction of concern is the spacecraft charging phenomenon. The spacecraft active category introduces the concept of interactions with the thermal plasma environment and Earth's magnetic fields, which are important at all altitudes and must be considered the designs of proposed large space structures and space power systems. The status of the spacecraft charging investigations is reviewed along with the spacecraft active interactions.
NASA Astrophysics Data System (ADS)
Kolodziej, E. P.; Jones, G.; Cwiertny, D. M.; Qu, S.
2013-12-01
In general, the existing regulatory and risk assessment paradigm for veterinary pharmaceuticals and other potential environmental contaminants is relatively simplistic as it equates contaminant degradation with significant reduction in associated ecological risk. However, it is becoming clear that there exist a number of environmental contaminants whose behaviors in the environment confound this assessment paradigm and whose environmental risk cannot be accurately assessed by laboratory studies demonstrating degradation or attenuation of compound concentrations in model environmental systems. For example, trenbolone acetate (TBA) is an androgenic growth promoting steroid used widely in animal agriculture in the United States, with the vast majority of U.S. beef cattle receiving TBA implants. Despite their significant economic value ( $1 billion annually), TBA metabolites can be potent endocrine disrupting compounds for sensitive species of aquatic organisms, capable of endocrine disruption at low ng/L concentrations. TBA metabolites are often considered rather reactive and prone to degradation, and risk assessment studies specifically point to their rapid degradation as evidence for limited ecological risks. However, we have recently demonstrated a most unexpected observation for TBA metabolite fate in environmental systems: namely that product-to-parent reversion is possible for certain TBA metabolites. Also, a variety of structural analogs and stereoisomers can arise from environmental transformation processes of TBA metabolites, potentially yielding a range of uncharacterized steroid structures capable of receptor interactions. None of these possibilities are accounted for in current risk assessment approaches for trenbolone or any other veterinary pharmaceutical. These observations confound most all current environmental risk assessment and contaminant fate models, and therefore improving our approach to environmental risk assessment needs to specifically account for these possibilities. The implications of this data suggest that improved environmental risk assessment should include a more complete characterization of transformation products and identification of possible non-target receptor interactions as part of exposure assessment process.
Parasite responses to pollution: what we know and where we go in 'Environmental Parasitology'.
Sures, Bernd; Nachev, Milen; Selbach, Christian; Marcogliese, David J
2017-02-06
Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem health. Therefore, this review highlights the application of parasites as indicators at different biological scales, from the organismal to the ecosystem.
Clark, Nicholas J; Wells, Konstans; Lindberg, Oscar
2018-05-16
Inferring interactions between co-occurring species is key to identify processes governing community assembly. Incorporating interspecific interactions in predictive models is common in ecology, yet most methods do not adequately account for indirect interactions (where an interaction between two species is masked by their shared interactions with a third) and assume interactions do not vary along environmental gradients. Markov random fields (MRF) overcome these limitations by estimating interspecific interactions, while controlling for indirect interactions, from multispecies occurrence data. We illustrate the utility of MRFs for ecologists interested in interspecific interactions, and demonstrate how covariates can be included (a set of models known as Conditional Random Fields, CRF) to infer how interactions vary along environmental gradients. We apply CRFs to two data sets of presence-absence data. The first illustrates how blood parasite (Haemoproteus, Plasmodium, and nematode microfilaria spp.) co-infection probabilities covary with relative abundance of their avian hosts. The second shows that co-occurrences between mosquito larvae and predatory insects vary along water temperature gradients. Other applications are discussed, including the potential to identify replacement or shifting impacts of highly connected species along climate or land-use gradients. We provide tools for building CRFs and plotting/interpreting results as an R package. © 2018 by the Ecological Society of America.
Schüz, Benjamin; Wurm, Susanne; Ziegelmann, Jochen P; Wolff, Julia K; Warner, Lisa M; Schwarzer, Ralf; Tesch-Römer, Clemens
2012-11-01
Although health behavior theories assume a role of the context in health behavior self-regulation, this role is often weakly specified and rarely examined. The two studies in this article test whether properties of the environment (districts) affect if and how health-related cognitions are translated into physical activity. Multilevel modeling was used to examine the assumed cross-level interactions. Study 1 is a large-scale survey representative of the German adult population (N = 6,201). Gross domestic product (GDP) on the level of administrative districts was used to indicate environmental opportunities and barriers. Study 2 examined cross-level interactions of proximal predictors of physical activity (intentions, action planning, and coping planning) in older adults with multiple illnesses (N = 309), a high-risk group for health deteriorations. Study 1 showed that on the individual level, health attitudes (B = .11) and education (B = .71) were significantly associated with physical activity. GDP moderated the attitudes-behavior relation (B = .01), with higher attitude-behavior relations in districts with higher GDP. Study 2 finds that intention (B = .16), action planning (B = .17), and coping planning (B = .13) significantly predict activity. In addition, district-level GDP significantly moderated the relations between action planning and coping planning, but not intention, on physical activity. Results suggest that the effects of health attitudes and planning on physical activity are moderated by environmental factors. Districts with higher GDP provide better contextual opportunities for the enactment of concrete if-then plans for physical activity. This has implications for both theory and health promotion.
Dressler, William W; Balieiro, Mauro C; Ferreira de Araújo, Luiza; Silva, Wilson A; Ernesto Dos Santos, José
2016-07-01
Research on gene-environment interaction was facilitated by breakthroughs in molecular biology in the late 20th century, especially in the study of mental health. There is a reliable interaction between candidate genes for depression and childhood adversity in relation to mental health outcomes. The aim of this paper is to explore the role of culture in this process in an urban community in Brazil. The specific cultural factor examined is cultural consonance, or the degree to which individuals are able to successfully incorporate salient cultural models into their own beliefs and behaviors. It was hypothesized that cultural consonance in family life would mediate the interaction of genotype and childhood adversity. In a study of 402 adult Brazilians from diverse socioeconomic backgrounds, conducted from 2011 to 2014, the interaction of reported childhood adversity and a polymorphism in the 2A serotonin receptor was associated with higher depressive symptoms. Further analysis showed that the gene-environment interaction was mediated by cultural consonance in family life, and that these effects were more pronounced in lower social class neighborhoods. The findings reinforce the role of the serotonergic system in the regulation of stress response and learning and memory, and how these processes in turn interact with environmental events and circumstances. Furthermore, these results suggest that gene-environment interaction models should incorporate a wider range of environmental experience and more complex pathways to better understand how genes and the environment combine to influence mental health outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Org, Elin; Mehrabian, Margarete; Lusis, Aldons J.
2015-01-01
Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. PMID:26071662
Selected environmental risk factors and congenital heart defects.
Kuciene, Renata; Dulskiene, Virginija
2008-01-01
The aim of the article is to review the published scientific literature and epidemiological studies about the effect of selected environmental risk factors on congenital heart defects in infants. According to recent reports, the prevalence of congenital heart defects is around 1% of live births. Congenital heart malformations are the leading cause of infant mortality. Unfortunately, the majority of the causes of heart defects remain unknown. These malformations are caused by interaction of genetic and environmental factors. The article reviews selected environmental risk factors: maternal illnesses and conditions associated with metabolic disorder (maternal diabetes, obesity, phenylketonuria), maternal lifestyle factors (alcohol use, smoking), which may increase the risk of congenital heart defects.
Keller, Matthew C
2014-01-01
Candidate gene × environment (G × E) interaction research tests the hypothesis that the effects of some environmental variable (e.g., childhood maltreatment) on some outcome measure (e.g., depression) depend on a particular genetic polymorphism. Because this research is inherently nonexperimental, investigators have been rightly concerned that detected interactions could be driven by confounders (e.g., ethnicity, gender, age, socioeconomic status) rather than by the specified genetic or environmental variables per se. In an attempt to eliminate such alternative explanations for detected G × E interactions, investigators routinely enter the potential confounders as covariates in general linear models. However, this practice does not control for the effects these variables might have on the G × E interaction. Rather, to properly control for confounders, researchers need to enter the covariate × environment and the covariate × gene interaction terms in the same model that tests the G × E term. In this manuscript, I demonstrate this point analytically and show that the practice of improperly controlling for covariates is the norm in the G × E interaction literature to date. Thus, many alternative explanations for G × E findings that investigators had thought were eliminated have not been. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Plasticity of genetic interactions in metabolic networks of yeast.
Harrison, Richard; Papp, Balázs; Pál, Csaba; Oliver, Stephen G; Delneri, Daniela
2007-02-13
Why are most genes dispensable? The impact of gene deletions may depend on the environment (plasticity), the presence of compensatory mechanisms (mutational robustness), or both. Here, we analyze the interaction between these two forces by exploring the condition-dependence of synthetic genetic interactions that define redundant functions and alternative pathways. We performed systems-level flux balance analysis of the yeast (Saccharomyces cerevisiae) metabolic network to identify genetic interactions and then tested the model's predictions with in vivo gene-deletion studies. We found that the majority of synthetic genetic interactions are restricted to certain environmental conditions, partly because of the lack of compensation under some (but not all) nutrient conditions. Moreover, the phylogenetic cooccurrence of synthetically interacting pairs is not significantly different from random expectation. These findings suggest that these gene pairs have at least partially independent functions, and, hence, compensation is only a byproduct of their evolutionary history. Experimental analyses that used multiple gene deletion strains not only confirmed predictions of the model but also showed that investigation of false predictions may both improve functional annotation within the model and also lead to the discovery of higher-order genetic interactions. Our work supports the view that functional redundancy may be more apparent than real, and it offers a unified framework for the evolution of environmental adaptation and mutational robustness.
Mechanistic Indicators of Childhood Asthma (MICA) Study
The Mechanistic Indicators of Childhood Asthma (MICA) Study has been designed to incorporate state-of-the-art technologies to examine the physiological and environmental factors that interact to increase the risk of asthmatic responses. MICA is primarily a clinically-bases obser...
Christensen, Peer; Fusaroli, Riccardo; Tylén, Kristian
2016-01-01
Where does linguistic structure come from? Recent gesture elicitation studies have indicated that constituent order (corresponding to for instance subject-verb-object, or SVO in English) may be heavily influenced by human cognitive biases constraining gesture production and transmission. Here we explore the alternative hypothesis that syntactic patterns are motivated by multiple environmental and social-interactional constraints that are external to the cognitive domain. In three experiments, we systematically investigate different motivations for structure in the gestural communication of simple transitive events. The first experiment indicates that, if participants communicate about different types of events, manipulation events (e.g. someone throwing a cake) and construction events (e.g. someone baking a cake), they spontaneously and systematically produce different constituent orders, SOV and SVO respectively, thus following the principle of structural iconicity. The second experiment shows that participants' choice of constituent order is also reliably influenced by social-interactional forces of interactive alignment, that is, the tendency to re-use an interlocutor's previous choice of constituent order, thus potentially overriding affordances for iconicity. Lastly, the third experiment finds that the relative frequency distribution of referent event types motivates the stabilization and conventionalization of a single constituent order for the communication of different types of events. Together, our results demonstrate that constituent order in emerging gestural communication systems is shaped and stabilized in response to multiple external environmental and social factors: structural iconicity, interactive alignment and distributional frequency. Copyright © 2015 Elsevier B.V. All rights reserved.
Species interactions in occurrence data for a community of tick-transmitted pathogens
Estrada-Peña, Agustín; de la Fuente, José
2016-01-01
Interactions between tick species, their realized range of hosts, the pathogens they carry and transmit, and the geographic distribution of species in the Western Palearctic were determined based on evidence published between 1970–2014. These relationships were linked to remotely sensed features of temperature and vegetation and used to extract the network of interactions among the organisms. The resulting datasets focused on niche overlap among ticks and hosts, species interactions, and the fraction of the environmental niche in which tick-borne pathogens may circulate as a result of interactions and overlapping environmental traits. The resulting datasets provide a valuable resource for researchers interested in tick-borne pathogens, as they conciliate the abiotic and biotic sides of their niche, allowing exploration of the importance of each host species acting as a vertebrate reservoir in the circulation of tick-transmitted pathogens in the environmental niche. PMID:27479213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copping, Andrea E.; Hanna, Luke A.
2011-11-01
Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energymore » devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.« less
Kar, Indra Neal; Li, Kaigang; Haynie, Denise L; Simons-Morton, Bruce G
2017-03-01
The aim was to examine the moderation effect of driving licensure status on the association between different environmental contexts and transportation-related physical activity to and from school and/or work (TPA-SW) among emerging adults. The data were from Wave 4 (n=2026, year 2013) of the NEXT Generation Health Study, an annual assessment of a nationally representative cohort across the nine U.S. Census Divisions. The outcome variable, TPA-SW, was derived from walking or cycling as modes of travel to and from school and/or work. Environmental context variables included residence, college attendance, and work status. Driving licensure status indicated whether or not participants had an independent driver's license. Poisson regression models, adjusted for potential confounders, were used to test interactions between environmental context and driving licensure. There were significant interactions between environmental context and licensure. Interaction contrasts indicated that participants who did not have a driver's license engaged in more TPA-SW than their licensed counterparts if they were living at home (β=1.10, p<0.001), not attending school (β=0.73, p<0.001), attending a technical school/community college (β=1.13, p<0.001), working 1-30 hours/week (β=0.69, p<0.001), or working 30+hours/week (β=1.12, p<0.001). Among non-workers, those without a license engaged in less TPA-SW than participants with a license (β=-0.22, p=0.05). Among emerging adults in certain environmental contexts, delayed driver licensing may result in more physical activity with the possible tradeoff of less transportation mobility. Published by Elsevier Inc.
Kar, Indra Neal; Li, Kaigang; Haynie, Denise L.; Simons-Morton, Bruce G.
2017-01-01
The aim was to examine the moderation effect of driving licensure status on the association between different environmental contexts and transportation-related physical activity to and from school and/or work (TPA-SW) among emerging adults. The data were from Wave 4 (n = 2,026, year 2013) of the NEXT Generation Health Study, an annual assessment of a nationally representative cohort across the nine U.S. Census Divisions. The outcome variable, TPA-SW, was derived from walking or cycling as modes of travel to and from school and/or work. Environmental context variables included residence, college attendance, and work status. Driving licensure status indicated whether or not participants had an independent driver’s license. Poisson regression models, adjusted for potential confounders, were used to test interactions between environmental context and driving licensure. There were significant interactions between environmental context and licensure. Interaction contrasts indicated that participants who did not have a driver’s license engaged in more TPA-SW than their licensed counterparts if they were living at home (β = 1.10, p < 0.001), not attending school (β = 0.73, p < 0.001), attending a technical school/community college (β = 1.13, p < 0.001), working 1–30 hours/week (β = 0.69, p < 0.001), or working 30+ hours/week (β = 1.12, p < 0.001). Among nonworkers, those without a license engaged in less TPA-SW than participants with a license (β = − 0.22, p = 0.05). Among emerging adults in certain environmental contexts, delayed driver licensing may result in more physical activity with the possible tradeoff of less transportation mobility. PMID:28011136
Childhood problem behavior and parental divorce: evidence for gene-environment interaction.
Robbers, Sylvana; van Oort, Floor; Huizink, Anja; Verhulst, Frank; van Beijsterveldt, Catharina; Boomsma, Dorret; Bartels, Meike
2012-10-01
The importance of genetic and environmental influences on children's behavioral and emotional problems may vary as a function of environmental exposure. We previously reported that 12-year-olds with divorced parents showed more internalizing and externalizing problems than children with married parents, and that externalizing problems in girls precede and predict later parental divorce. The aim of the current study was to investigate as to whether genetic and environmental influences on internalizing and externalizing problems were different for children from divorced versus non-divorced families. Maternal ratings on internalizing and externalizing problems were collected with the Child Behavior Checklist in 4,592 twin pairs at ages 3 and 12 years, of whom 367 pairs had experienced a parental divorce between these ages. Variance in internalizing and externalizing problems at ages 3 and 12 was analyzed with biometric models in which additive genetic and environmental effects were allowed to depend on parental divorce and sex. A difference in the contribution of genetic and environmental influences between divorced and non-divorced groups would constitute evidence for gene-environment interaction. For both pre- and post-divorce internalizing and externalizing problems, the total variances were larger for children from divorced families, which was mainly due to higher environmental variances. As a consequence, heritabilities were lower for children from divorced families, and the relative contributions of environmental influences were higher. Environmental influences become more important in explaining variation in children's problem behaviors in the context of parental divorce.
Li, Qi; Lin, Feibi; Yang, Chen; Wang, Juanping; Lin, Yan; Shen, Mengyuan; Park, Min S.; Li, Tao; Zhao, Jindong
2018-01-01
Cyanobacterial blooms are worldwide issues of societal concern and scientific interest. Lake Taihu and Lake Dianchi, two of the largest lakes in China, have been suffering from annual Microcystis-based blooms over the past two decades. These two eutrophic lakes differ in both nutrient load and environmental parameters, where Microcystis microbiota consisting of different Microcystis morphospecies and associated bacteria (epibionts) have dominated. We conducted a comprehensive metagenomic study that analyzed species diversity, community structure, functional components, metabolic pathways and networks to investigate functional interactions among the members of six Microcystis-epibiont communities in these two lakes. Our integrated metagenomic pipeline consisted of efficient assembly, binning, annotation, and quality assurance methods that ensured high-quality genome reconstruction. This study provides a total of 68 reconstructed genomes including six complete Microcystis genomes and 28 high quality bacterial genomes of epibionts belonging to 14 distinct taxa. This metagenomic dataset constitutes the largest reference genome catalog available for genome-centric studies of the Microcystis microbiome. Epibiont community composition appears to be dynamic rather than fixed, and the functional profiles of communities were related to the environment of origin. This study demonstrates mutualistic interactions between Microcystis and epibionts at genetic and metabolic levels. Metabolic pathway reconstruction provided evidence for functional complementation in nitrogen and sulfur cycles, fatty acid catabolism, vitamin synthesis, and aromatic compound degradation among community members. Thus, bacterial social interactions within Microcystis-epibiont communities not only shape species composition, but also stabilize the communities functional profiles. These interactions appear to play an important role in environmental adaptation of Microcystis colonies. PMID:29731741
Environmental Education Activities & Programs 1998-1999.
ERIC Educational Resources Information Center
Bureau of Reclamation (Dept. of Interior), Denver, CO.
This document features descriptions of interactive learning models and presentations in environmental education concerning groundwater, geology, the environment, weather, water activities, and interactive games. Activities include: (1) GW-Standard; (2) GW-w/no Leaky Underground Storage Tank (No UST); (3) GW-Karst; (4) GW-Landfill Models--Standard…
De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A
2016-11-01
The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.
De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A
2016-01-01
The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene–environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene–environment interactions in children treated with r-hGH. PMID:26503811
Spatial vs. individual variability with inheritance in a stochastic Lotka-Volterra system
NASA Astrophysics Data System (ADS)
Dobramysl, Ulrich; Tauber, Uwe C.
2012-02-01
We investigate a stochastic spatial Lotka-Volterra predator-prey model with randomized interaction rates that are either affixed to the lattice sites and quenched, and / or specific to individuals in either population. In the latter situation, we include rate inheritance with mutations from the particles' progenitors. Thus we arrive at a simple model for competitive evolution with environmental variability and selection pressure. We employ Monte Carlo simulations in zero and two dimensions to study the time evolution of both species' densities and their interaction rate distributions. The predator and prey concentrations in the ensuing steady states depend crucially on the environmental variability, whereas the temporal evolution of the individualized rate distributions leads to largely neutral optimization. Contrary to, e.g., linear gene expression models, this system does not experience fixation at extreme values. An approximate description of the resulting data is achieved by means of an effective master equation approach for the interaction rate distribution.
Extended cognition and the space of social interaction.
Krueger, Joel
2011-09-01
The extended mind thesis (EM) asserts that some cognitive processes are (partially) composed of actions consisting of the manipulation and exploitation of environmental structures. Might some processes at the root of social cognition have a similarly extended structure? In this paper, I argue that social cognition is fundamentally an interactive form of space management--the negotiation and management of "we-space"--and that some of the expressive actions involved in the negotiation and management of we-space (gesture, touch, facial and whole-body expressions) drive basic processes of interpersonal understanding and thus do genuine social-cognitive work. Social interaction is a kind of extended social cognition, driven and at least partially constituted by environmental (non-neural) scaffolding. Challenging the Theory of Mind paradigm, I draw upon research from gesture studies, developmental psychology, and work on Moebius Syndrome to support this thesis. Copyright © 2010 Elsevier Inc. All rights reserved.
Rúa, Megan A.; Wilson, Emily C.; Steele, Sarah; Munters, Arielle R.; Hoeksema, Jason D.; Frank, Anna C.
2016-01-01
Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic species interactions and environmental filtering are important for structuring microbial communities but emphasize the need for more research into these interactions. PMID:27065966
Interaction of acidic trace gases with ice from a surface science perspective
NASA Astrophysics Data System (ADS)
Waldner, A.; Kong, X.; Ammann, M.; Orlando, F.; Birrer, M.; Artiglia, L.; Bartels-Rausch, T.
2016-12-01
Acidic trace gases, such as HCOOH, HCl and HONO, play important roles in atmospheric chemistry. The presence of ice is known to have the capability to modify this chemistry (Neu et al. 2012). The molecular level processes of the interaction of acidic trace gases with ice are still a matter of debate and a quantification of the uptake is difficult (Dash et al. 2006, Bartels-Rausch et al. 2014, Huthwelker et al. 2006). This hampers a proper inclusion of ice as a substrate in models of various scales as for example in global chemistry climate models that would among others allow predicting large-scale effects of ice clouds. So far, direct observations of the ice surface and of the interaction with trace gases at temperatures and concentrations relevant to the environment are very limited. In this study, we take advantage of the surface and analytical sensitivity as well as the chemical selectivity of photoemission and absorption spectroscopy performed at ambient pressure using the near ambient pressure photoemission endstation (NAPP) at Swiss Light Source to overcome this limitation in environmental science (Orlando et al. 2016). Specifically, ambient pressure X-ray Photoelectron Spectroscopy (XPS) allows us to get information about chemical state and concentration depth profiles of dopants. The combination of XPS with auger electron yield Near-Edge X-ray Absorption Fine Structure (NEXAFS) enables us to locate the dopant and analyse wheather the interaction leads to enhanced surface disorder and to what extent different disorders influences the uptake of the trace gas. For the first time, this study looks directly at the interaction of HCOOH, the strongest organic acid, with ice at 2 different temperatures (233 and 253 K) relevant for environmental science by means of electron spectroscopy. XPS depth profiles indicate that the HCOOH basically remains within the topmost ice layers and O K-edge NEXAFS analysis show that the interaction ice-HCOOH does not lead to enhanced surface disorder at environmentally relevant conditions.
Genotype × Environment Interaction in Smoking Behaviors: A Systematic Review.
Do, Elizabeth K; Maes, Hermine H
2017-04-01
There has been rapid growth in research exploring gene-environment interaction (G×E) contributing to smoking behaviors. Yet, no systematic review exists to date. This article aims to review evidence on the contribution of G×E to the risk of smoking. Through a search of electronic databases (ie, Google Scholar, PubMed, ScienceDirect, and Elsevier) up until May 2014, 16 studies of G×E focused on smoking behaviors were identified. These studies were compared in terms of: research design and sample studied, measure of smoking behavior and environments used, genes explored, and G×E in relation to these factors. Thirteen of 16 studies (81.2%) found at least one significant G×E association. Wide variation in analytic methods was found across studies, especially with respect to the phenotypes of interest, environmental measures used, and tests conducted to estimate G×E. Heterogeneity across studies made it difficult to compare findings and evaluate the strength of evidence for G×E. G×E research on smoking contains studies that are methodologically different, making it difficult to assess the current state of the evidence. To decrease heterogeneity, we offer recommendations related to: (1) choice of measurement for environmental variables, (2) testing and reporting of main and interaction effects, (3) treatment of covariates, (4) reporting gene-environment correlation, and (5) conducting sensitivity analyses and checking for scaling artifacts. Continued study is needed to identify mechanisms by which genes and environmental factors combine to influence smoking behaviors. No comprehensive review of G×E studies of smoking behavior has previously been published. The present article seeks to fill this gap by providing a comprehensive review of: how G×E has been defined, how twin and molecular genetic methodologies have been used to test for G×E, and which genes and environmental factors are associated with smoking behaviors. Variations in methodological approaches make it difficult to interpret and summarize findings, so recommendations for future research are provided as a means to more easily compare and replicate findings across studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Using the satellite-derived NDVI to assess ecological responses to environmental change.
Pettorelli, Nathalie; Vik, Jon Olav; Mysterud, Atle; Gaillard, Jean-Michel; Tucker, Compton J; Stenseth, Nils Chr
2005-09-01
Assessing how environmental changes affect the distribution and dynamics of vegetation and animal populations is becoming increasingly important for terrestrial ecologists to enable better predictions of the effects of global warming, biodiversity reduction or habitat degradation. The ability to predict ecological responses has often been hampered by our rather limited understanding of trophic interactions. Indeed, it has proven difficult to discern direct and indirect effects of environmental change on animal populations owing to limited information about vegetation at large temporal and spatial scales. The rapidly increasing use of the Normalized Difference Vegetation Index (NDVI) in ecological studies has recently changed this situation. Here, we review the use of the NDVI in recent ecological studies and outline its possible key role in future research of environmental change in an ecosystem context.
Environment and the inflammatory bowel diseases
Frolkis, Alexandra; Dieleman, Levinus A; Barkema, Herman W; Panaccione, Remo; Ghosh, Subrata; Fedorak, Richard N; Madsen, Karen; Kaplan, Gilaad G
2013-01-01
Inflammatory bowel diseases (IBD), which consists of Crohn disease and ulcerative colitis, are chronic inflammatory conditions of the gas-trointestinal tract. In genetically susceptible individuals, the interaction between environmental factors and normal intestinal commensal flora is believed to lead to an inappropriate immune response that results in chronic inflammation. The incidence of IBD have increased in the past century in developed and developing countries. The purpose of the present review is to summarize the current knowledge of the association between environmental risk factors and IBD. A number of environmental risk factors were investigated including smoking, hygiene, microorganisms, oral contraceptives, antibiotics, diet, breast-feeding, geographical factors, pollution and stress. Inconsistent findings among the studies highlight the complex pathogenesis of IBD. Additional studies are necessary to identify and elucidate the role of environmental factors in IBD etiology. PMID:23516681
Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know?
Simonds, Naoko I; Ghazarian, Armen A; Pimentel, Camilla B; Schully, Sheri D; Ellison, Gary L; Gillanders, Elizabeth M; Mechanic, Leah E
2016-07-01
Risk of cancer is determined by a complex interplay of genetic and environmental factors. Although the study of gene-environment interactions (G×E) has been an active area of research, little is reported about the known findings in the literature. To examine the state of the science in G×E research in cancer, we performed a systematic review of published literature using gene-environment or pharmacogenomic flags from two curated databases of genetic association studies, the Human Genome Epidemiology (HuGE) literature finder and Cancer Genome-Wide Association and Meta Analyses Database (CancerGAMAdb), from January 1, 2001, to January 31, 2011. A supplemental search using HuGE was conducted for articles published from February 1, 2011, to April 11, 2013. A 25% sample of the supplemental publications was reviewed. A total of 3,019 articles were identified in the original search. From these articles, 243 articles were determined to be relevant based on inclusion criteria (more than 3,500 interactions). From the supplemental search (1,400 articles identified), 29 additional relevant articles (1,370 interactions) were included. The majority of publications in both searches examined G×E in colon, rectal, or colorectal; breast; or lung cancer. Specific interactions examined most frequently included environmental factors categorized as energy balance (e.g., body mass index, diet), exogenous (e.g., oral contraceptives) and endogenous hormones (e.g., menopausal status), chemical environment (e.g., grilled meats), and lifestyle (e.g., smoking, alcohol intake). In both searches, the majority of interactions examined were using loci from candidate genes studies and none of the studies were genome-wide interaction studies (GEWIS). The most commonly reported measure was the interaction P-value, of which a sizable number of P-values were considered statistically significant (i.e., <0.05). In addition, the magnitude of interactions reported was modest. Observations of published literature suggest that opportunity exists for increased sample size in G×E research, including GWAS-identified loci in G×E studies, exploring more GWAS approaches in G×E such as GEWIS, and improving the reporting of G×E findings. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Review of the Gene-Environment Interaction Literature in Cancer: What do we know?
Simonds, Naoko I.; Ghazarian, Armen A.; Pimentel, Camilla B.; Schully, Sheri D.; Ellison, Gary L.; Gillanders, Elizabeth M.; Mechanic, Leah E.
2016-01-01
Background Risk of cancer is determined by a complex interplay of genetic and environmental factors. Although the study of gene-environment (GxE) interactions has been an active area of research, little is reported about the known findings in the literature. Methods To examine the state of the science in GxE research in cancer, we performed a systematic review of published literature using gene-environment or pharmacogenomic flags from two curated databases of genetic association studies, the Human Genome Epidemiology (HuGE) literature finder and Cancer Genome-Wide Association and Meta Analyses Database (CancerGAMAdb), from January 1, 2001, to January 31, 2011. A supplemental search using HuGE was conducted for articles published February 1, 2011, to April 11, 2013. A 25% sample of the supplemental publications was reviewed. Results A total of 3,019 articles were identified in the original search. From these articles, 243 articles were determined to be relevant based on inclusion criteria (more than 3,500 interactions). From the supplemental search (1,400 articles identified), 29 additional relevant articles (1,370 interactions) were included. The majority of publications in both searches examined GxE in colon, rectal, or colorectal cancer types; breast; or lung cancer. Specific interactions examined most frequently included environmental factors categorized as energy balance (e.g., body mass index (BMI), diet), exogenous (e.g., oral contraceptives) and endogenous hormones (e.g., menopausal status), chemical environment (e.g., grilled meats), and lifestyle (e.g., smoking, alcohol intake). In both searches, the majority of interactions examined were using loci from candidate genes studies and none of the studies were genome-wide interaction studies (GEWIS). The most commonly reported measure was the interaction p-value, of which a sizable number of p-values were considered statistically significant (i.e., < 0.05). In addition, the magnitudes of interactions reported were modest. Conclusion Observations of published literature suggest that opportunity exists for increased sample size in GxE research, including GWAS identified loci in GxE studies, exploring more GWAS approaches in GxE such as GEWIS, and improving the reporting of GxE findings. PMID:27061572
Sawyer, Alexia D M; Jones, Russell; Ucci, Marcella; Smith, Lee; Kearns, Ade; Fisher, Abi
2017-01-01
Understanding the environmental determinants of physical activity in populations at high risk of inactivity could contribute to the development of effective interventions. Socioecological models of activity propose that environmental factors have independent and interactive effects of physical activity but there is a lack of research into interactive effects. This study aimed to explore independent and interactive effects of social and physical environmental factors on self-reported physical activity in income-deprived communities. Participants were 5,923 adults in Glasgow, United Kingdom. Features of the social environment were self-reported. Quality of the physical environment was objectively-measured. Neighbourhood walking and participation in moderate physical activity [MPA] on ≥5 days/week was self-reported. Multilevel multivariate logistic regression models tested independent and interactive effects of environmental factors on activity. 'Social support' (walking: OR:1.22,95%CI = 1.06-1.41,p<0.01; MPA: OR:0.79,95%CI = 0.67-0.94,p<0.01), 'social interaction' (walking: OR:1.25,95%CI = 1.10-1.42,p<0.01; MPA: OR:6.16,95%CI = 5.14-7.37,p<0.001) and 'cohesion and safety' (walking: OR:1.78,95%CI = 1.56-2.03,p<0.001; MPA: OR:1.93,95%CI = 1.65-2.27,p<0.001), but not 'trust and empowerment', had independent effects on physical activity. 'Aesthetics of built form' (OR:1.47,95%CI = 1.22-1.77,p<0.001) and 'aesthetics and maintenance of open space' (OR:1.32, 95%CI = 1.13-1.54,p<0.01) were related to walking. 'Physical disorder' (OR:1.63,95%CI = 1.31-2.03,p<0.001) had an independent effect on MPA. Interactive effects of social and physical factors on walking and MPA were revealed. Findings suggest that intervening to create activity-supportive environments in deprived communities may be most effective when simultaneously targeting the social and physical neighbourhood environment.
Community-based approaches to strategic environmental assessment: Lessons from Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, A. John; Sims, Laura; Spaling, Harry
This paper describes a community-based approach to strategic environmental assessment (SEA) using a case study of the Instituto Costarricense de Electricidad's (ICE) watershed management agricultural program (WMAP) in Costa Rica. The approach focused on four highly interactive workshops that used visioning, brainstorming and critical reflection exercises. Each workshop represented a critical step in the SEA process. Through this approach, communities in two rural watersheds assessed the environmental, social and economic impacts of a proposed second phase for WMAP. Lessons from this community-based approach to strategic environmental assessment include a recognition of participants learning what a participatory SEA is conceptually andmore » methodologically; the role of interactive techniques for identifying positive and negative impacts of the proposed program and generating creative mitigation strategies; the effect of workshops in reducing power differentials among program participants (proponent, communities, government agencies); and, the logistical importance of notice, timing and location for meaningful participation. The community-based approach to SEA offers considerable potential for assessing regional (watershed) development programs focused on sustainable resource-based livelihoods.« less
Trojsi, Francesca; Monsurrò, Maria Rosaria; Tedeschi, Gioacchino
2013-01-01
There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS), a fatal neuromuscular disease, is caused by gene-environment interactions. In fact, given that only about 10% of all ALS diagnosis has a genetic basis, gene-environmental interaction may give account for the remaining percentage of cases. However, relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron degeneration leading to ALS, although exposure to chemicals—including lead and pesticides—agricultural environments, smoking, intense physical activity, trauma and electromagnetic fields have been associated with an increased risk of ALS. This review provides an overview of our current knowledge of potential toxic etiologies of ALS with emphasis on the role of cyanobacteria, heavy metals and pesticides as potential risk factors for developing ALS. We will summarize the most recent evidence from epidemiological studies and experimental findings from animal and cellular models, revealing that potential causal links between environmental toxicants and ALS pathogenesis have not been fully ascertained, thus justifying the need for further research. PMID:23887652
Beliefs and environmental behavior: the moderating effect of emotional intelligence.
Aguilar-Luzón, Maria Carmen; Calvo-Salguero, Antonia; Salinas, Jose Maria
2014-12-01
Recent decades have seen a proliferation of studies aiming to explain how pro-environmental behavior is shaped by attitudes, values and beliefs. In this study, we have included an aspect in our analysis that has been rarely touched upon until now, that is, the intelligent use of emotions as a possible component of pro-environmental behavior. We applied the Trait Meta Mood Scale-24 (TMMS-24) and the New Environmental Paradigm scale to a sample of 184 male and female undergraduate students. We also carried out correlation and hierarchical regression analyses of blocks. The results show the interaction effects of the system of environmental beliefs and the dimensions of emotional intelligence on glass recycling attitudes, intentions and behavior. The results are discussed from the perspective of research on how the management of emotions guides thought and behavior. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
How will biotic interactions influence climate change-induced range shifts?
HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J
2013-09-01
Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. © 2013 New York Academy of Sciences.
Japanese vs. Caucasian Intelligence and Social Attainment.
ERIC Educational Resources Information Center
Nagoshi, Craig T.
1998-01-01
Summarizes a series of studies from the Hawaii Family Study of Cognition on possible genetic and social environmental determinants of individual differences in and racial/ethnic differences between groups on intelligence and attainment. These studies, which focused on Japanese and Caucasian Americans, illustrate the complex, interactive, and…
The rich and the poor: environmental biodiversity protecting from allergy.
Ruokolainen, Lasse; Fyhrquist, Nanna; Haahtela, Tari
2016-10-01
It has been proposed that biodiversity loss leads to reduced interaction between environmental and human microbiotas. This, in turn, may lead to immune dysfunction and impaired tolerance mechanisms in humans. That is, contact with environmental biodiversity is expected to protect from allergies. However, direct evidence linking contact with biodiversity and risk of allergy has been lacking. In this review, we consider the latest research on the biodiversity hypothesis of allergy. It is becoming clear that what you eat, drink, inhale, and touch all contribute to the grand scheme of host-microbial crosstalk that is needed for a balanced, healthy immune system to develop and maintain a healthy recognition between harmful and harmless invasions. Microbes can either communicate directly with host immune cells or affect the host via metabolism that can even lead to epigenetic modifications. Our living environment plays a key role in this process. Although especially, early exposure to diverse, beneficial microbiota from the environment is repeatedly found crucial, studies on immigrants demonstrate that condition in later life can also be decisive. We are still lacking a more detailed understanding of the interaction between natural, environmental biodiversity, and health, which calls for new innovative and more long-term investigations. The outcomes should be utilized in policy and urban planning efforts, promoting human interaction with natural biodiversity, and supporting a healthy lifestyle.
Increased risk for CRC in diabetic patients with the nonrisk allele of SNPs at 8q24.
Ishimaru, Shinya; Mimori, Koshi; Yamamoto, Ken; Inoue, Hiroshi; Imoto, Seiya; Kawano, Shuichi; Yamaguchi, Rui; Sato, Tetsuya; Toh, Hiroyuki; Iinuma, Hisae; Maeda, Toyoki; Ishii, Hideshi; Suzuki, Sadao; Tokudome, Shinkan; Watanabe, Masahiko; Tanaka, Jun-ichi; Kudo, Shin-ei; Sugihara, Ken-ichi; Hase, Kazuo; Mochizuki, Hidetaka; Kusunoki, Masato; Yamada, Kazutaka; Shimada, Yasuhiro; Moriya, Yoshihiro; Barnard, Graham F; Miyano, Satoru; Mori, Masaki
2012-09-01
Colorectal cancer (CRC) oncogenesis was considered to be determined by interactions between genetic and environmental factors. Specific interacting factors that influence CRC morbidity have yet to be fully investigated. A multi-institutional collaborative study with 1511 CRC patients and 2098 control subjects was used to compare the odds ratios for the occurrence of polymorphisms at 11 known single nucleotide polymorphisms (SNPs). TaqMan PCR and questionnaires were used to evaluate the effects of environmental exposures. Variants of rs6983267 on 8q24 were the most significant markers of risk for CRC (odds ratio 1.16, 95% confidence interval 1.06-1.27, P = 0.0015). Non-insulin-dependent diabetes mellitus (DM), a higher body mass index at age 20, and meat consumption were environmental risk factors, whereas a tuna-rich diet and vitamin intake were protective factors. The cohort of rs6983267 SNP major (T) allele at 8q24 and DM had a 1.66-fold higher risk ratio than the cohort of major allele patients without DM. We confirmed that interactions between the genetic background and environmental factors are associated with increased risk for CRC. There is a robust risk of the minor G allele at the 8q24 rs6983267 SNP; however, a major T allele SNP could more clearly reveal a correlation with CRC specifically when DM is present.
The cause of global amphibian declines: a developmental endocrinologist's perspective.
Hayes, T B; Falso, P; Gallipeau, S; Stice, M
2010-03-15
Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis.
The cause of global amphibian declines: a developmental endocrinologist's perspective
Hayes, T. B.; Falso, P.; Gallipeau, S.; Stice, M.
2010-01-01
Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis. PMID:20190117
NASA Technical Reports Server (NTRS)
Daly, J. K.; Torian, J. G.
1979-01-01
Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program.
Inflammatory bowel disease: pathogenesis.
Zhang, Yi-Zhen; Li, Yong-Yu
2014-01-07
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by chronic relapsing intestinal inflammation. It has been a worldwide health-care problem with a continually increasing incidence. It is thought that IBD results from an aberrant and continuing immune response to the microbes in the gut, catalyzed by the genetic susceptibility of the individual. Although the etiology of IBD remains largely unknown, it involves a complex interaction between the genetic, environmental or microbial factors and the immune responses. Of the four components of IBD pathogenesis, most rapid progress has been made in the genetic study of gut inflammation. The latest internationally collaborative studies have ascertained 163 susceptibility gene loci for IBD. The genes implicated in childhood-onset and adult-onset IBD overlap, suggesting similar genetic predispositions. However, the fact that genetic factors account for only a portion of overall disease variance indicates that microbial and environmental factors may interact with genetic elements in the pathogenesis of IBD. Meanwhile, the adaptive immune response has been classically considered to play a major role in the pathogenesis of IBD, as new studies in immunology and genetics have clarified that the innate immune response maintains the same importance in inducing gut inflammation. Recent progress in understanding IBD pathogenesis sheds lights on relevant disease mechanisms, including the innate and adaptive immunity, and the interactions between genetic factors and microbial and environmental cues. In this review, we provide an update on the major advances that have occurred in above areas.
de Zeeuw, Patrick; van Belle, Janna; van Dijk, Sarai; Weusten, Juliette; Koeleman, Bobby; Janson, Esther; van Engeland, Herman; Durston, Sarah
2012-01-01
This study investigates the effects of XKR4, a recently identified candidate gene for Attention-Deficit/Hyperactivity Disorder (ADHD), birth weight, and their interaction on brain volume in ADHD. XKR4 is expressed in cerebellum and low birth weight has been associated both with changes in cerebellum and with ADHD, probably due to its relation with prenatal adversity. Anatomical MRI scans were acquired in 58 children with ADHD and 64 typically developing controls and processed to obtain volumes of cerebrum, cerebellum and gray and white matter in each structure. DNA was collected from saliva. Analyses including data on birth weight were conducted in a subset of 37 children with ADHD and 51 controls where these data were retrospectively collected using questionnaires. There was an interaction between genotype and birth weight for cerebellum gray matter volume (p = .020). The combination of homozygosity for the G-allele (the allele previously found to be overtransmitted in ADHD) and higher birth weight was associated with smaller volume. Furthermore, birth weight was positively associated with cerebellar white matter volume in controls, but not ADHD (interaction: p = .021). The interaction of genotype with birth weight affecting cerebellum gray matter is consistent with models that emphasize increased influence of genetic risk-factors in an otherwise favorable prenatal environment. The absence of an association between birth weight and cerebellum white matter volume in ADHD suggests that other genetic or environmental effects may be at play, unrelated to XKR4. These results underscore the importance of considering environmental effects in imaging genetics studies. PMID:24179763
Environmental Effects of Offshore Wind Development. Fiscal Year 2012 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copping, Andrea E.; Hanna, Luke A.; Butner, R. Scott
Potential environmental effects of offshore wind (OSW) energy projects are not well understood, and regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. To examine the environmental risks associated with OSW developments in the U.S. Pacific Northwest National Laboratory (PNNL) focused on the following four priority research areas in FY 2012: • Environmental Risk Evaluationmore » System (ERES) - Followed project developments on the two OSW projects that PNNL screened in FY 2011 for environmental consequence: Fishermen’s Energy off the coast of Atlantic City, NJ and LEEDCo. near Cleveland, OH in Lake Erie. • Tethys - Developed a smart knowledge base which houses environmental research, data and information pertaining to OSW energy: • Technical Assessment - Produced a new software to create an automated process of identifying and differentiating between flying organism such as birds and bats by using thermal imagery; and • North Atlantic Right Whales - Developed an environmental risk management system to mitigate the impacts on North Atlantic Right Whales (NARW) during installation and piledriving stages of OSW developments. By identifying and addressing the highest priority environmental risks for OSW devices and associated installations the ERES process assists project proponents, regulators, and stakeholders to engage in the most efficient and effective siting and permitting pathways.« less
Environmental risk factors for inflammatory bowel diseases: Evidence based literature review
Abegunde, Ayokunle T; Muhammad, Bashir H; Bhatti, Owais; Ali, Tauseef
2016-01-01
AIM: Advances in genetics and immunology have contributed to the current understanding of the pathogenesis of inflammatory bowel diseases (IBD). METHODS: The current opinion on the pathogenesis of IBD suggests that genetically susceptible individuals develop intolerance to dysregulated gut microflora (dysbiosis) and chronic inflammation develops as a result of environmental insults. Environmental exposures are innumerable with varying effects during the life course of individuals with IBD. Studying the relationship between environmental factors and IBD may provide the missing link to increasing our understanding of the etiology and increased incidence of IBD in recent years with implications for prevention, diagnosis, and treatment. Environmental factors are heterogeneous and genetic predisposition, immune dysregulation, or dysbiosis do not lead to the development of IBD in isolation. RESULTS: Current challenges in the study of environmental factors and IBD are how to effectively translate promising results from experimental studies to humans in order to develop models that incorporate the complex interactions between the environment, genetics, immunology, and gut microbiota, and limited high quality interventional studies assessing the effect of modifying environmental factors on the natural history and patient outcomes in IBD. CONCLUSION: This article critically reviews the current evidence on environmental risk factors for IBD and proposes directions for future research. PMID:27468219
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
Toward Political Ecologies of Environmental Education
ERIC Educational Resources Information Center
Henderson, Joseph A.; Zarger, Rebecca K.
2017-01-01
Drawing a causal line between educational practice and ecological impact is a difficult intellectual task given the complexity of variables at work between educational event and ecological effect. This is further complicated by the anthropological fact that diverse peoples interact with nature in myriad ways. Our environmental interactions are…
Tire/pavement and environmental traffic noise research study : interim report - 2009 testing.
DOT National Transportation Integrated Search
2011-01-01
This research study is being conducted in response to CDOTs interest in traffic noise in general, and the tire/pavement : interaction in particular. Following a rigid set of testing protocols, data is being collected on highway traffic noise : cha...
Education and alcohol use: A study of gene-environment interaction in young adulthood.
Barr, Peter B; Salvatore, Jessica E; Maes, Hermine; Aliev, Fazil; Latvala, Antti; Viken, Richard; Rose, Richard J; Kaprio, Jaakko; Dick, Danielle M
2016-08-01
The consequences of heavy alcohol use remain a serious public health problem. Consistent evidence has demonstrated that both genetic and social influences contribute to alcohol use. Research on gene-environment interaction (GxE) has also demonstrated that these social and genetic influences do not act independently. Instead, certain environmental contexts may limit or exacerbate an underlying genetic predisposition. However, much of the work on GxE and alcohol use has focused on adolescence and less is known about the important environmental contexts in young adulthood. Using data from the young adult wave of the Finnish Twin Study, FinnTwin12 (N = 3402), we used biometric twin modeling to test whether education moderated genetic risk for alcohol use as assessed by drinking frequency and intoxication frequency. Education is important because it offers greater access to personal resources and helps determine one's position in the broader stratification system. Results from the twin models show that education did not moderate genetic variance components and that genetic risk was constant across levels of education. Instead, education moderated environmental variance so that under conditions of low education, environmental influences explained more of the variation in alcohol use outcomes. The implications and limitations of these results are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Education and Alcohol Use: A Study of Gene-Environment Interaction in Young Adulthood
Barr, Peter B.; Salvatore, Jessica E.; Maes, Hermine; Aliev, Fazil; Latvala, Antti; Viken, Richard; Rose, Richard J.; Kaprio, Jaakko; Dick, Danielle M.
2016-01-01
The consequences of heavy alcohol use remain a serious public health problem. Consistent evidence has demonstrated that both genetic and social influences contribute to alcohol use. Research on gene-environment interaction (GxE) has also demonstrated that these social and genetic influences do not act independently. Instead, certain environmental contexts may limit or exacerbate an underlying genetic predisposition. However, much of the work on GxE and alcohol use has focused on adolescence and less is known about the important environmental contexts in young adulthood. Using data from the young adult wave of the Finnish Twin Study, FinnTwin12 (N=3,402), we used biometric twin modeling to test whether education moderated genetic risk for alcohol use as assessed by drinking frequency and intoxication frequency. Education is important because it offers greater access to personal resources and helps determine one’s position in the broader stratification system. Results from the twin models show that education did not moderate genetic variance components and that genetic risk was constant across levels of education. Instead, education moderated environmental variance so that under conditions of low education, environmental influences explained more of the variation in alcohol use outcomes. The implications and limitations of these results are discussed. PMID:27367897
Improved LANDSAT to give better view of earth resources
NASA Technical Reports Server (NTRS)
1978-01-01
The launch data of LANDSAT 3 is announced. The improved capability of the spacecrafts' remote sensors (the return beam vidicon and the multispectral scanner) and application of LANDSAT data to the study of energy supplies, food production, and global large-scale environmental monitoring are discussed along with the piggyback amateur radio communication satellite-OSCAR-D, the plasma Interaction Experiment, and the data collection system onboard LANDSAT 3. An assessment of the utility of LANDSAT multispectral data is given based on the research results to data from studies of LANDSAT 1 and 2 data. Areas studied include agriculture, rangelands, forestry, water resources, environmental and marine resources, environmental and marine resources, cartography, land use, demography, and geological surveys and mineral/petroleum exploration.
Keegan, Richard; Middleton, Geoff; Henderson, Hannah; Girling, Mica
2016-05-26
There is a lack of understanding of work aged adults' (30-60 years old) perspectives on the motivation of physical activity versus sedentariness. This study aims to: (1) identify which socio-environmental factors motivate physical activity and/or sedentary behavior, in adults aged 30-60 years; and (2) explore how these motivators interact and combine. Fifteen work-aged adults who, were able to engage in physical activity (Mean age = 43.9 years; SD 9.6, range 31-59), participated in semi-structured interviews. Inductive content analysis was used to generate an inventory of socio-environmental factors and their specific influences on motivation towards physical activity or sedentariness. Key socio-environmental agents found to influence motivation included: Spouse/partner, parents, children, siblings, whole family, grandchildren, friends, work-mates, neighbors, strangers, team-mates and class-mates, instructors, health care professionals, employers, gyms and health companies, governments, media and social media, cultural norms, and the physical environment. Mechanisms fell into five broad themes of socio-environmental motivation for both physical activity and sedentariness: (1) competence and progress; (2) informational influences, (3) emotional influences, (4) pragmatics and logistics, and (5) relationships. Similar socio-environmental factors were frequently reported as able to motivate both activity and sedentariness. Likewise, individual categories of influence could also motivate both behaviors, depending on context. The findings of this paper 'unpack' theoretical concepts into specific and targeted behavioral recommendations. The data suggested no simple solutions for promoting physical activity or reducing sedentariness, but rather complex and interacting systems surrounding work-aged adults. Findings also suggest that health professionals should be encouraged to support adults' health by examining the socio-environmental motivational influences, or 'motivational atmosphere'.
Using Motivational Interviewing to reduce threats in conversations about environmental behavior
Klonek, Florian E.; Güntner, Amelie V.; Lehmann-Willenbrock, Nale; Kauffeld, Simone
2015-01-01
Human behavior contributes to a waste of environmental resources and our society is looking for ways to reduce this problem. However, humans may perceive feedback about their environmental behavior as threatening. According to self-determination theory (SDT), threats decrease intrinsic motivation for behavior change. According to self-affirmation theory (SAT), threats can harm individuals’ self-integrity. Therefore, individuals should show self-defensive biases, e.g., in terms of presenting counter-arguments when presented with environmental behavior change. The current study examines how change recipients respond to threats from change agents in interactions about environmental behavior change. Moreover, we investigate how Motivational Interviewing (MI) — an intervention aimed at increasing intrinsic motivation — can reduce threats at both the social and cognitive level. We videotaped 68 dyadic interactions with change agents who either did or did not use MI (control group). We coded agents verbal threats and recipients’ verbal expressions of motivation. Recipients also rated agents’ level of confrontation and empathy (i.e., cognitive reactions). As hypothesized, threats were significantly lower when change agents used MI. Perceived confrontations converged with observable social behavior of change agents in both groups. Moreover, behavioral threats showed a negative association with change recipients’ expressed motivation (i.e., reasons to change). Contrary to our expectations, we found no relation between change agents’ verbal threats and change recipients’ verbally expressed self-defenses (i.e., sustain talk). Our results imply that MI reduces the adverse impact of threats in conversations about environmental behavior change on both the social and cognitive level. We discuss theoretical implications of our study in the context of SAT and SDT and suggest practical implications for environmental change agents in organizations. PMID:26257676
Janssens, Lizanne; Stoks, Robby
2013-01-01
Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance). Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i) were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii) strongly differed depending on the fitness-related variable under study, (iii) were not always predictable based on the effect of the environmental condition in isolation, and (iv) bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities. PMID:23840819
Using Motivational Interviewing to reduce threats in conversations about environmental behavior.
Klonek, Florian E; Güntner, Amelie V; Lehmann-Willenbrock, Nale; Kauffeld, Simone
2015-01-01
Human behavior contributes to a waste of environmental resources and our society is looking for ways to reduce this problem. However, humans may perceive feedback about their environmental behavior as threatening. According to self-determination theory (SDT), threats decrease intrinsic motivation for behavior change. According to self-affirmation theory (SAT), threats can harm individuals' self-integrity. Therefore, individuals should show self-defensive biases, e.g., in terms of presenting counter-arguments when presented with environmental behavior change. The current study examines how change recipients respond to threats from change agents in interactions about environmental behavior change. Moreover, we investigate how Motivational Interviewing (MI) - an intervention aimed at increasing intrinsic motivation - can reduce threats at both the social and cognitive level. We videotaped 68 dyadic interactions with change agents who either did or did not use MI (control group). We coded agents verbal threats and recipients' verbal expressions of motivation. Recipients also rated agents' level of confrontation and empathy (i.e., cognitive reactions). As hypothesized, threats were significantly lower when change agents used MI. Perceived confrontations converged with observable social behavior of change agents in both groups. Moreover, behavioral threats showed a negative association with change recipients' expressed motivation (i.e., reasons to change). Contrary to our expectations, we found no relation between change agents' verbal threats and change recipients' verbally expressed self-defenses (i.e., sustain talk). Our results imply that MI reduces the adverse impact of threats in conversations about environmental behavior change on both the social and cognitive level. We discuss theoretical implications of our study in the context of SAT and SDT and suggest practical implications for environmental change agents in organizations.
NASA Astrophysics Data System (ADS)
Wang, Bo
We are living an era wherein nanoparticles (NPs) have been widely applied in our lives. Dendrimers are special polymeric NPs with unique physiochemical properties, which have been intensely explored for a variety of applications. Current studies on dendrimers are bottlenecked by insufficient understandings of their structure and dynamic behaviors from a molecular level. With primarily computational approaches supplemented by many other experimental technics, this dissertation aims to establish structure-function relationships of dendrimers in environmental and biomedical applications. More specifically, it thoroughly investigates the interactions between dendrimers and different biomolecules including carbon-based NPs, metal-based NPs, and proteins/peptides. Those results not only provide profound knowledge for evaluating the impacts of dendrimers on environmental and biological systems but also facilitate designing next-generation functional polymeric nanomaterials. The dissertation is organized as following. Chapter 1 provides an overview of current progresses on dendrimer studies, where methodology of Discrete Molecular Dynamics (DMD), my major research tool, is also introduced. Two directions of utilizing dendrimers will be discussed in following chapters. Chapter 2 will focus on environmental applications of dendrimers, where two back-to-back studies are presented. I will start from describing some interesting observations from experiments i.e. dendrimers dispersed model oil molecules. Then, I will reveal why surface chemistries of dendrimers lead to different remediation efficiencies by computational modelings. Finally, I will demonstrate different scenarios of dendrimer-small molecules association. Chapter 3 is centered on dendrimers in the biomedical applications including two subtopics. In the first topic, we will discuss dendrimers as surfactants that modulating the interactions between proteins and NPs. Some fundamental concepts regarding to NPs-Protein interactions such as NP-protein corona are also explained. In the following topic, I will look into amyloid protein aggregation mediated by dendrimers, which is of high expectations for combating amyloidogenic-related diseases. Chapter 4 concludes the whole dissertation. It also briefly introduces my ongoing projects and future research directions about dendrimers. This dissertation has presented a systematic study of dendrimers in environmental and biomedical applications which might provide valuable information for future dendrimer design thus benefit the nanobiotechnology.
Pak, Victoria; Souders, Margaret C
2012-01-01
In this article we provide nurses with information on the importance of studying environmental exposures during fetal, infant, and childhood development in the National Children's Study. Nurses should be aware of this study to aid in mitigating the complex health problems that arise from environment-health interactions. Nurses may help to educate the public, patients, and caregivers and are in an ideal position to be strong advocates for policy change and regulatory monitoring and enforcement. © 2012 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
1991-01-01
Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.
Indirect evolutionary rescue: prey adapts, predator avoids extinction
Yamamichi, Masato; Miner, Brooks E
2015-01-01
Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196
Buchman, N; Cuddington, K
2009-08-01
It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.
Gärtner, Matti; Grimm, Simone; Aust, Sabine; Fan, Yan; von Scheve, Christian; Bajbouj, Malek
2017-07-07
Converging evidence suggests that well-being plays an important role in promoting and maintaining mental health across the life span. It has been shown that well-being has a considerable heritable component, but little is known about the specific genes involved. In this study, we investigated a healthy sample (N = 298) that was genotyped for the serotonin transporter-linked polymorphic region (5-HTTLPR). We hypothesized that 5-HTTLPR gene variation would influence well-being, and additionally investigated interaction effects with age and the environmental influence of early life stress (ELS). Using multiple regression, our results showed a significant three-way interaction between genotype, ELS, and age. Exploration of this interaction showed that young subjects had decreased levels of well-being if they were exposed to ELS and homozygous for the short variant of 5-HTTLPR. This relationship was reversed in old age: subjects that were exposed to ELS and carried the long variant of 5-HTTLPR had decreased levels of well-being. Our results indicate that genetic and environmental factors have joint effects on well-being that are susceptible to profound changes across the life span.
Koss, Kalsea J.; Cummings, E. Mark; Davies, Patrick T.; Hetzel, Susan; Cicchetti, Dante
2016-01-01
Objective Depressive symptoms are prevalent and rise during adolescence. The present study is a prospective investigation of environmental and genetic factors that contribute to the growth in depressive symptoms and the frequency of heightened symptoms during adolescence. Method Participants included 206 mother-father-adolescent triads (M age at T1 = 13.06 years, SD = .51, 52% female). Harsh parenting was observationally assessed during a family conflict paradigm. DNA was extracted from saliva samples and genotyped for the 5-HTTLPR and BDNF Val66Met polymorphisms. Adolescents provide self-reports of depressive symptoms annually across early adolescence. Results The results reveal gene-by-environment (GxE) interactions as predictors of adolescent depressive symptom trajectories in the context of harsh parenting as an environmental risk factor. A BDNF Val66Met x harsh parenting interaction predicted the rise in depressive symptoms across a three-year period while a 5-HTTLPR x harsh parenting interaction predicted greater frequency in elevated depressive symptoms. Conclusions The findings highlight the importance of unique genetic and environmental influences in the development and course of heightened depressive symptoms during adolescence. PMID:27736236
ERIC Educational Resources Information Center
Maramba, Dina C.; Museus, Samuel D.
2013-01-01
The purpose of this study is to explore how campus climate, ethnic group cohesion and cross cultural interaction influence Filipino American college students' sense of belonging in college. Specifically, we examine the impact of three environmental and behavioral factors on students' sense of belonging: 1) campus racial climate, 2) ethnic group…
Nutrigenomics and nutrigenetics in inflammatory bowel diseases.
Gruber, Lisa; Lichti, Pia; Rath, Eva; Haller, Dirk
2012-10-01
Inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn's disease are chronically relapsing, immune-mediated disorders of the gastrointestinal tract. A major challenge in the treatment of IBD is the heterogenous nature of these pathologies. Both, ulcerative colitis and Crohn's disease are of multifactorial etiology and feature a complex interaction of host genetic susceptibility and environmental factors such as diet and gut microbiota. Genome-wide association studies identified disease-relevant single-nucleotide polymorphisms in approximately 100 genes, but at the same time twin studies also clearly indicated a strong environmental impact in disease development. However, attempts to link dietary factors to the risk of developing IBD, based on epidemiological observations showed controversial outcomes. Yet, emerging high-throughput technologies implying complete biological systems might allow taking nutrient-gene interactions into account for a better classification of patient subsets in the future. In this context, 2 new scientific fields, "nutrigenetics" and "nutrigenomics" have been established. "Nutrigenetics," studying the effect of genetic variations on nutrient-gene interactions and "Nutrigenomics," describing the impact of nutrition on physiology and health status on the level of gene transcription, protein expression, and metabolism. It is hoped that the integration of both research areas will promote the understanding of the complex gene-environment interaction in IBD etiology and in the long-term will lead to personalized nutrition for disease prevention and treatment. This review briefly summarizes data on the impact of nutrients on intestinal inflammation, highlights nutrient-gene interactions, and addresses the potential of applying "omic" technologies in the context of IBD.
Fu, Lingyu; Zhang, Jianming; Jin, Lei; Zhang, Yao; Cui, Saisai; Chen, Meng
2018-03-01
The aim of this study was to evaluate new and previously hypothesized environmental risk factors and their interaction with rheumatoid arthritis (RA). Four hundred patients recently diagnosed with RA and 400 controls frequency-matched by gender and birth year using Propensity Score Matching (PSM) were selected from northern China. Investigation was performed using self-reported data from interviewer-administered surveys. Associations between exposure variables and risk of RA were evaluated using multifactor non-conditional logistic regression. It showed that damp localities, draft indoor, abdominal obesity (AO), and family history of RA among first-degree relatives were independent risk factors and drinking of milk was independent protective factors for RA. Besides these risk factors, in women, infrequent delivery times, early age at menopause, and late age at menarche were also independent risk factors for RA. Both the additive model and the multiplication model suggested that there was an interaction relationship between AO and damp localities (p < .001), and only the additive model suggested that there was interaction relationship between AO and no milk drinking (p < .001) in our study population. In women, there was interaction relationship between AO and damp localities (p < .001) and between AO and age at menopause (p < .001). In northern China, damp localities, draft indoor, AO, family history of RA among first-degree relatives, and no milk drinking may be important risk factors of RA patients.
Stability and change in temperament during adolescence.
Ganiban, Jody M; Saudino, Kimberly J; Ulbricht, Jennifer; Neiderhiser, Jenae M; Reiss, David
2008-07-01
This study assessed genetic and environmental contributions to temperament during adolescence within the Nonshared Environment and Adolescent Development project (NEAD; D. Reiss, J. M. Neiderhiser, E. M. Hetherington, & R. Plomin, 2000). NEAD is a national study that includes twins and other sibling types who vary in regard to genetic relatedness. Seven hundred twenty sibling pairs (aged 12.1-13.5 years) participated at Time 1, and 395 sibling pairs (aged 14.7-16.2 years) participated again at Time 2. At both Times, mothers and fathers rated their children's temperament (emotionality, activity, sociability, and shyness). At Times 1 and 2, genetic and nonshared environmental factors accounted for variance in temperament, whereas shared environmental contributions were negligible. However, at Time 1, genetic contributions were inflated, and shared environmental contributions were masked if sibling contrast effects were not taken into account. At Time 2, sibling interaction effects had little impact on estimates of genetic and environmental contributions to temperament. Last, temperament stability was primarily explained by genetic factors, whereas both genetic and nonshared environmental factors accounted for change.
Ussar, Siegfried; Griffin, Nicholas W; Bezy, Olivier; Fujisaka, Shiho; Vienberg, Sara; Softic, Samir; Deng, Luxue; Bry, Lynn; Gordon, Jeffrey I; Kahn, C Ronald
2015-09-01
Obesity, diabetes, and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly used inbred strains of mice-obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ from Jackson Laboratory, and obesity-prone but diabetes-resistant 129S6/SvEvTac from Taconic-plus three derivative lines generated by breeding these strains in a new, common environment. Analysis of metabolic parameters and gut microbiota in all strains and their environmentally normalized derivatives revealed strong interactions between microbiota, diet, breeding site, and metabolic phenotype. Strain-dependent and strain-independent correlations were found between specific microbiota and phenotypes, some of which could be transferred to germ-free recipient animals by fecal transplantation. Environmental reprogramming of microbiota resulted in 129S6/SvEvTac becoming obesity resistant. Thus, development of obesity/metabolic syndrome is the result of interactions between gut microbiota, host genetics, and diet. In permissive genetic backgrounds, environmental reprograming of microbiota can ameliorate development of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.
Robinson, Joshua F; Port, Jesse A; Yu, Xiaozhong; Faustman, Elaine M
2010-10-01
To understand the complex etiology of developmental disorders, an understanding of both genetic and environmental risk factors is needed. Human and rodent genetic studies have identified a multitude of gene candidates for specific developmental disorders such as neural tube defects (NTDs). With the emergence of toxicogenomic-based assessments, scientists now also have the ability to compare and understand the expression of thousands of genes simultaneously across strain, time, and exposure in developmental models. Using a systems-based approach in which we are able to evaluate information from various parts and levels of the developing organism, we propose a framework for integrating genetic information with toxicogenomic-based studies to better understand gene-environmental interactions critical for developmental disorders. This approach has allowed us to characterize candidate genes in the context of variables critical for determining susceptibility such as strain, time, and exposure. Using a combination of toxicogenomic studies and complementary bioinformatic tools, we characterize NTD candidate genes during normal development by function (gene ontology), linked phenotype (disease outcome), location, and expression (temporally and strain-dependent). In addition, we show how environmental exposures (cadmium, methylmercury) can influence expression of these genes in a strain-dependent manner. Using NTDs as an example of developmental disorder, we show how simple integration of genetic information from previous studies into the standard microarray design can enhance analysis of gene-environment interactions to better define environmental exposure-disease pathways in sensitive and resistant mouse strains. © Wiley-Liss, Inc.
Rule-Based Models of the Interplay between Genetic and Environmental Factors in Childhood Allergy
Melén, Erik; Bergström, Anna; Torabi Moghadam, Behrooz; Pulkkinen, Ville; Acevedo, Nathalie; Orsmark Pietras, Christina; Ege, Markus; Braun-Fahrländer, Charlotte; Riedler, Josef; Doekes, Gert; Kabesch, Michael; van Hage, Marianne; Kere, Juha; Scheynius, Annika; Söderhäll, Cilla; Pershagen, Göran; Komorowski, Jan
2013-01-01
Both genetic and environmental factors are important for the development of allergic diseases. However, a detailed understanding of how such factors act together is lacking. To elucidate the interplay between genetic and environmental factors in allergic diseases, we used a novel bioinformatics approach that combines feature selection and machine learning. In two materials, PARSIFAL (a European cross-sectional study of 3113 children) and BAMSE (a Swedish birth-cohort including 2033 children), genetic variants as well as environmental and lifestyle factors were evaluated for their contribution to allergic phenotypes. Monte Carlo feature selection and rule based models were used to identify and rank rules describing how combinations of genetic and environmental factors affect the risk of allergic diseases. Novel interactions between genes were suggested and replicated, such as between ORMDL3 and RORA, where certain genotype combinations gave odds ratios for current asthma of 2.1 (95% CI 1.2-3.6) and 3.2 (95% CI 2.0-5.0) in the BAMSE and PARSIFAL children, respectively. Several combinations of environmental factors appeared to be important for the development of allergic disease in children. For example, use of baby formula and antibiotics early in life was associated with an odds ratio of 7.4 (95% CI 4.5-12.0) of developing asthma. Furthermore, genetic variants together with environmental factors seemed to play a role for allergic diseases, such as the use of antibiotics early in life and COL29A1 variants for asthma, and farm living and NPSR1 variants for allergic eczema. Overall, combinations of environmental and life style factors appeared more frequently in the models than combinations solely involving genes. In conclusion, a new bioinformatics approach is described for analyzing complex data, including extensive genetic and environmental information. Interactions identified with this approach could provide useful hints for further in-depth studies of etiological mechanisms and may also strengthen the basis for risk assessment and prevention. PMID:24260339
Beyond mice and men: Environmental change, immunity and infections in wild ungulates
Jolles, Anna E.; Beechler, Brianna R.; Dolan, Brian P.
2014-01-01
In the face of rapid environmental change, anticipating shifts in microparasite and macroparasite dynamics, including emergence events, is an enormous challenge. We argue that immunological studies in natural populations are pivotal to meeting this challenge: Many components of environmental change – shifts in biotic assemblages, altered climate patterns, and reduced environmental predictability – may affect host immunity. We suggest that wild ungulates can serve as model systems aiding the discovery of immunological mechanisms that link environmental change with parasite transmission dynamics. Our review of eco-immunological studies in wild ungulates reveals progress in understanding how co-infections affect immunity and parasite transmission; and how environmental and genetic factors interact to shape immunity. Changes in bioavailability of micronutrients have been linked to immunity and health in wild ungulates. Although physiological stress in response to environmental change has been assessed, downstream effects on immunity have not been studied. Moreover, the taxonomic range of ungulates studied is limited to bovids (bighorn sheep, Soay sheep, chamois, musk oxen, bison, African buffalo) and a few cervids (red deer, black-tailed deer). We discuss areas where future studies in ungulates could lead to significant contributions in understanding patterns of immunity and infection in natural populations and across species. PMID:25354672
Corte, Guilherme N; Gonçalves-Souza, Thiago; Checon, Helio H; Siegle, Eduardo; Coleman, Ross A; Amaral, A Cecília Z
2018-05-01
Community ecology has traditionally assumed that the distribution of species is mainly influenced by environmental processes. There is, however, growing evidence that environmental (habitat characteristics and biotic interactions) and spatial processes (factors that affect a local assemblage regardless of environmental conditions - typically related to dispersal and movement of species) interactively shape biological assemblages. A metacommunity, which is a set of local assemblages connected by dispersal of individuals, is spatial in nature and can be used as a straightforward approach for investigating the interactive and independent effects of both environmental and spatial processes. Here, we examined (i) how environmental and spatial processes affect the metacommunity organization of marine macroinvertebrates inhabiting the intertidal sediments of a biodiverse coastal ecosystem; (ii) whether the influence of these processes is constant through time or is affected by extreme weather events (storms); and (iii) whether the relative importance of these processes depends on the dispersal abilities of organisms. We found that macrobenthic assemblages are influenced by each of environmental and spatial variables; however, spatial processes exerted a stronger role. We also found that this influence changes through time and is modified by storms. Moreover, we observed that the influence of environmental and spatial processes varies according to the dispersal capabilities of organisms. More effective dispersers (i.e., species with planktonic larvae) are more affected by spatial processes whereas environmental variables had a stronger effect on weaker dispersers (i.e. species with low motility in larval and adult stages). These findings highlight that accounting for spatial processes and differences in species life histories is essential to improve our understanding of species distribution and coexistence patterns in intertidal soft-sediments. Furthermore, it shows that storms modify the structure of coastal assemblages. Given that the influence of spatial and environmental processes is not consistent through time, it is of utmost importance that future studies replicate sampling over different periods so the influence of temporal and stochastic factors on macrobenthic metacommunities can be better understood. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhu, Yu-Xi; Song, Yue-Ling; Zhang, Yan-Kai; Hoffmann, Ary A; Zhou, Jin-Cheng; Sun, Jing-Tao; Hong, Xiao-Yue
2018-03-15
Spider mites are frequently associated with multiple endosymbionts whose infection patterns often exhibit spatial and temporal variation. However, the association between endosymbiont prevalence and environmental factors remains unclear. Here, we surveyed endosymbionts in natural populations of the spider mite, Tetranychus truncatus , in China, screening 935 spider mites from 21 localities and 12 host plant species. Three facultative endosymbiont lineages, Wolbachia , Cardinium , and Spiroplasma , were detected at different infection frequencies (52.5%, 26.3%, and 8.6%, respectively). Multiple endosymbiont infections were observed in most local populations, and the incidence of individuals with the Wolbachia - Spiroplasma coinfection was higher than expected from the frequency of each infection within a population. Endosymbiont infection frequencies exhibited associations with environmental factors: Wolbachia infection rates increased at localities with higher annual mean temperatures, while Cardinium and Spiroplasma infection rates increased at localities from higher altitudes. Wolbachia was more common in mites from Lycopersicon esculentum and Glycine max compared to those from Zea mays This study highlights that host-endosymbiont interactions may be associated with environmental factors, including climate and other geographically linked factors, as well as the host's food plant. IMPORTANCE The aim of this study was to examine the incidence of endosymbiont distribution and the infection patterns in spider mites. The main findings are that multiple endosymbiont infections were more common than expected and that endosymbiont infection frequencies were associated with environmental factors. This work highlights that host-endosymbiont interactions need to be studied within an environmental and geographic context. Copyright © 2018 American Society for Microbiology.
Allele-specific gene expression in a wild nonhuman primate population
Tung, J.; Akinyi, M. Y.; Mutura, S.; Altmann, J.; Wray, G. A.; Alberts, S. C.
2015-01-01
Natural populations hold enormous potential for evolutionary genetic studies, especially when phenotypic, genetic and environmental data are all available on the same individuals. However, untangling the genotype-phenotype relationship in natural populations remains a major challenge. Here, we describe results of an investigation of one class of phenotype, allele-specific gene expression (ASGE), in the well-studied natural population of baboons of the Amboseli basin, Kenya. ASGE measurements identify cases in which one allele of a gene is overexpressed relative to the alternative allele of the same gene, within individuals, thus providing a control for background genetic and environmental effects. Here, we characterize the incidence of ASGE in the Amboseli baboon population, focusing on the genetic and environmental contributions to ASGE in a set of eleven genes involved in immunity and defence. Within this set, we identify evidence for common ASGE in four genes. We also present examples of two relationships between cis-regulatory genetic variants and the ASGE phenotype. Finally, we identify one case in which this relationship is influenced by a novel gene-environment interaction. Specifically, the dominance rank of an individual’s mother during its early life (an aspect of that individual’s social environment) influences the expression of the gene CCL5 via an interaction with cis-regulatory genetic variation. These results illustrate how environmental and ecological data can be integrated into evolutionary genetic studies of functional variation in natural populations. They also highlight the potential importance of early life environmental variation in shaping the genetic architecture of complex traits in wild mammals. PMID:21226779
Pathways of Understanding: the Interactions of Humanity and Global Environmental Change
NASA Technical Reports Server (NTRS)
Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen
1992-01-01
How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...
NASA Astrophysics Data System (ADS)
Hartman, Steven; Ogilvie, A. E. J.; Ingimundarson, Jón Haukur; Dugmore, A. J.; Hambrecht, George; McGovern, T. H.
2017-09-01
This paper contributes to recent studies exploring the longue durée of human impacts on island landscapes, the impacts of climate and other environmental changes on human communities, and the interaction of human societies and their environments at different spatial and temporal scales. In particular, the paper addresses Iceland during the medieval period (with a secondary, comparative focus on Norse Greenland) and discusses episodes where environmental and climatic changes have appeared to cross key thresholds for agricultural productivity. The paper draws upon international, interdisciplinary research in the North Atlantic region led by the North Atlantic Biocultural Organization (NABO) and the Nordic Network for Interdisciplinary Environmental Studies (NIES) in the Circumpolar Networks program of the Integrated History and Future of People on Earth (IHOPE). By interlinking analyses of historically grounded literature with archaeological studies and environmental science, valuable new perspectives can emerge on how these past societies may have understood and coped with such impacts. As climate and other environmental changes do not operate in isolation, vulnerabilities created by socioeconomic factors also beg consideration. The paper illustrates the benefits of an integrated environmental-studies approach that draws on data, methodologies and analytical tools of environmental humanities, social sciences, and geosciences to better understand long-term human ecodynamics and changing human-landscape-environment interactions through time. One key goal is to apply previously unused data and concerted expertise to illuminate human responses to past changes; a secondary aim is to consider how lessons derived from these cases may be applicable to environmental threats and socioecological risks in the future, especially as understood in light of the New Human Condition, the concept transposed from Hannah Arendt's influential framing of the human condition that is foregrounded in the present special issue. This conception admits human agency's role in altering the conditions for life on earth, in large measure negatively, while acknowledging the potential of this self-same agency, if effectively harnessed and properly directed, to sustain essential planetary conditions through a salutary transformation of human perception, understanding and remedial action. The paper concludes that more long-term historical analyses of cultures and environments need to be undertaken at various scales. Past cases do not offer perfect analogues for the future, but they can contribute to a better understanding of how resilience and vulnerability occur, as well as how they may be compromised or mitigated.
Chatterjee, Nilanjan; Kalaylioglu, Zeynep; Moslehi, Roxana; Peters, Ulrike; Wacholder, Sholom
2006-12-01
In modern genetic epidemiology studies, the association between the disease and a genomic region, such as a candidate gene, is often investigated using multiple SNPs. We propose a multilocus test of genetic association that can account for genetic effects that might be modified by variants in other genes or by environmental factors. We consider use of the venerable and parsimonious Tukey's 1-degree-of-freedom model of interaction, which is natural when individual SNPs within a gene are associated with disease through a common biological mechanism; in contrast, many standard regression models are designed as if each SNP has unique functional significance. On the basis of Tukey's model, we propose a novel but computationally simple generalized test of association that can simultaneously capture both the main effects of the variants within a genomic region and their interactions with the variants in another region or with an environmental exposure. We compared performance of our method with that of two standard tests of association, one ignoring gene-gene/gene-environment interactions and the other based on a saturated model of interactions. We demonstrate major power advantages of our method both in analysis of data from a case-control study of the association between colorectal adenoma and DNA variants in the NAT2 genomic region, which are well known to be related to a common biological phenotype, and under different models of gene-gene interactions with use of simulated data.
Wang, Youshi; Yang, Zhiyong; Zhou, Shurong; Soininen, Janne; Ai, Dexiecuo; Li, Yali; Chu, Chengjin
2013-01-01
It has been demonstrated that the interplay between negative and positive interactions simultaneously shapes community structure and composition. However, few studies have attempted to examine the effect of facilitation on compositional changes in communities through time. Additionally, due to the difficulties in collecting the long-term data, it would be useful to indicate the rate of temporal turnover using a readily obtainable metric. Using an individual-based model incorporating plant strategies, we examined the role of facilitation on the temporal turnover of communities located at different positions along an environmental gradient for three model scenarios: CM without facilitation; CFM-U, a unimodal relationship between facilitation and environmental severity; and CFM-L, a positively linear relationship between facilitation and environmental severity. Our results demonstrated that facilitation could increase, decrease or have no remarkable effect on temporal turnover. The specific outcome depended on the location of the focal community across the environmental gradient and the model employed. Compared with CM, the inclusion of positive interactions (i.e. CFM-U and CFM-L), at intermediate environmental stress levels (such as S = 0.7 and 0.8) resulted in lower Bray-Curtis similarity values; at other severity levels, facilitation slowed down (such as S = 0.3 and 0.4 at low to medium stress levels, and S = 0.9 at high stress levels) or had only a subtle effect (such as at S = 0.1) on temporal turnover. We also found that the coefficient of variation (CV) in species abundances and the rate of temporal variability showed a significant quadratic relationship. Our theoretical analysis contributes to the understanding of factors driving temporal turnover in biotic communities, and presents a potential metric (i.e. CV in species abundances) assessing the consequences of ongoing environmental change on community structure.
Wang, Youshi; Yang, Zhiyong; Zhou, Shurong; Soininen, Janne; Ai, Dexiecuo; Li, Yali; Chu, Chengjin
2013-01-01
It has been demonstrated that the interplay between negative and positive interactions simultaneously shapes community structure and composition. However, few studies have attempted to examine the effect of facilitation on compositional changes in communities through time. Additionally, due to the difficulties in collecting the long-term data, it would be useful to indicate the rate of temporal turnover using a readily obtainable metric. Using an individual-based model incorporating plant strategies, we examined the role of facilitation on the temporal turnover of communities located at different positions along an environmental gradient for three model scenarios: CM without facilitation; CFM-U, a unimodal relationship between facilitation and environmental severity; and CFM-L, a positively linear relationship between facilitation and environmental severity. Our results demonstrated that facilitation could increase, decrease or have no remarkable effect on temporal turnover. The specific outcome depended on the location of the focal community across the environmental gradient and the model employed. Compared with CM, the inclusion of positive interactions (i.e. CFM-U and CFM-L), at intermediate environmental stress levels (such as S = 0.7 and 0.8) resulted in lower Bray-Curtis similarity values; at other severity levels, facilitation slowed down (such as S = 0.3 and 0.4 at low to medium stress levels, and S = 0.9 at high stress levels) or had only a subtle effect (such as at S = 0.1) on temporal turnover. We also found that the coefficient of variation (CV) in species abundances and the rate of temporal variability showed a significant quadratic relationship. Our theoretical analysis contributes to the understanding of factors driving temporal turnover in biotic communities, and presents a potential metric (i.e. CV in species abundances) assessing the consequences of ongoing environmental change on community structure. PMID:24265708
In Silico Studies of the Toxcast Chemicals Interacting with Biomolecular targets
Molecular docking, a structure-based in silico tool for chemical library pre-screening in drug discovery, can be used to explore the potential toxicity of environmental chemicals acting at specific biomelcular targets.
Prevention of asthma: where are we in the 21st century?
Propp, Phaedra; Becker, Allan
2013-12-01
Asthma is the most common chronic disease of childhood and, in the latter part of the 20th century, reached epidemic proportions. Asthma is generally believed to result from gene-environment interactions. There is consensus that a 'window of opportunity' exists during pregnancy and early in life when environmental factors may influence its development. We review multiple environmental, biologic and sociologic factors that may be important in the development of asthma. Meta-analyses of studies have demonstrated that multifaceted interventions are required in order to develop asthma prevention. Multifaceted allergen reduction studies have shown clinical benefits. Asthma represents a dysfunctional interaction with our genes and the environment to which they are exposed, especially in fetal and early infant life. The increasing prevalence of asthma also may be an indication of increased population risk for the development of other chronic non-communicable autoimmune diseases. This review will focus on the factors which may be important in the primary prevention of asthma. Better understanding of the complex gene-environment interactions involved in the development of asthma will provide insight into personalized interventions for asthma prevention.
Lazary, Judit
2017-12-01
Although genetic studies have improved a lot in recent years, without clinical relevance sometimes their significance is devalued. Reviewing the major milestones of psychogenomics it can be seen that break-through success is just a question of time. Investigations of direct effect of genetic variants on phenotypes have not yielded positive findings. However, an important step was taken by adapting the gene-environment interaction model. In this model genetic vulnerability stepped into the place of "stone craved" pathology. Further progress happened when studies of environmental factors were combined with genetic function (epigenetics). This model provided the possibility for investigation of therapeutic interventions as environmental factors and it was proven that effective treatments exert a modifying effect on gene expression. Moreover, recent developments focus on therapeutic manipulation of gene function (e.g. chemogenetics). Instead of "stone craved" genes up-to-date dynamically interacting gene function became the basis of psychogenomics in which correction of the expression is a potential therapeutic tool. Keeping in mind these trends and developments, there is no doubt that genetics will be a fundamental part of daily clinical routine in the future.
Effect of exit beam phase aberrations on coherent x-ray reconstructions of Au nanocrystals
NASA Astrophysics Data System (ADS)
Hruszkewycz, Stephan; Harder, Ross; Fuoss, Paul
2010-03-01
Current studies in coherent x-ray diffractive imaging (CXDI) are focusing on in-situ imaging under a variety of environmental conditions. Such studies often involve environmental sample chambers through which the x-ray beam must pass before and after interacting with the sample: i.e. cryostats or high pressure cells. Such sample chambers usually contain polycrystalline x-ray windows with structural imperfections that can in turn interact with the diffracted beam. A phase object in the near field that interacts with the beam exiting the sample can introduce distortions at the detector plane that may affect coherent reconstructions. We investigate the effects of a thin beryllium membrane on the coherent exit beam of a gold nanoparticle. We compare three dimensional reconstructions from experimental diffraction patterns measured with and without a 380 micron thick Be dome and find that the reconstructions are reproducible within experimental errors. Simulated near-field distortions of the exit beam consistent with micron sized voids in Be establish a ``worst case scenario'' where distorted diffraction patterns inhibit accurate inversions.
Stanley, Mary Jo; Rojas, Deb
2014-01-01
Schools of nursing are challenged to find clinical placements in public health settings. Use of simulation can address situations unique to public health, with attention to specific concerns, such as environmental health. Environmental health is an integral part of public health nursing and is a standard of professional practice. Current simulations focus on acute care situations, offering limited scenarios with a public health perspective and excluding environmental health. This study's simulation scenario was created to enhance nursing students' understanding of public health concepts within an environmental health context. Outcomes from the simulation include the need for integration of environmental issues in public health teaching. Students stated that this scenario provided a broader understanding of the environmental influences that can affect the client's and family's health. This scenario fills a void in simulation content, while providing an interactive teaching and learning strategy to help students to apply knowledge to practice. Copyright 2014, SLACK Incorporated.
Stough-Hunter, Anjel; Lekies, Kristi S; Donnermeyer, Joseph F
2014-12-01
Little research has considered how residents' perceptions of their local environment may interact with efforts to increase environmental concern, particularly in areas in need of remediation. This study examined the process by which local environmental action may affect environmental concern. A model was presented for exploring the effects of community-based watershed organizations (CWOs) on environmental concern that also incorporates existing perceptions of the local environment. Survey data were collected from area residents in two watersheds in southwestern Pennsylvania, USA, an area affected by abandoned mine drainage. The findings suggest that residents' perceptions of local water quality and importance of improving water quality are important predictors of level of environmental concern and desire for action; however, in this case, having an active or inactive CWO did not influence these perceptions. The implications of these findings raise important questions concerning strategies and policy making around environmental remediation at the local level.
Organizational Adaptative Behavior: The Complex Perspective of Individuals-Tasks Interaction
NASA Astrophysics Data System (ADS)
Wu, Jiang; Sun, Duoyong; Hu, Bin; Zhang, Yu
Organizations with different organizational structures have different organizational behaviors when responding environmental changes. In this paper, we use a computational model to examine organizational adaptation on four dimensions: Agility, Robustness, Resilience, and Survivability. We analyze the dynamics of organizational adaptation by a simulation study from a complex perspective of the interaction between tasks and individuals in a sales enterprise. The simulation studies in different scenarios show that more flexible communication between employees and less hierarchy level with the suitable centralization can improve organizational adaptation.
Gene-environment interactions and construct validity in preclinical models of psychiatric disorders.
Burrows, Emma L; McOmish, Caitlin E; Hannan, Anthony J
2011-08-01
The contributions of genetic risk factors to susceptibility for brain disorders are often so closely intertwined with environmental factors that studying genes in isolation cannot provide the full picture of pathogenesis. With recent advances in our understanding of psychiatric genetics and environmental modifiers we are now in a position to develop more accurate animal models of psychiatric disorders which exemplify the complex interaction of genes and environment. Here, we consider some of the insights that have emerged from studying the relationship between defined genetic alterations and environmental factors in rodent models. A key issue in such animal models is the optimization of construct validity, at both genetic and environmental levels. Standard housing of laboratory mice and rats generally includes ad libitum food access and limited opportunity for physical exercise, leading to metabolic dysfunction under control conditions, and thus reducing validity of animal models with respect to clinical populations. A related issue, of specific relevance to neuroscientists, is that most standard-housed rodents have limited opportunity for sensory and cognitive stimulation, which in turn provides reduced incentive for complex motor activity. Decades of research using environmental enrichment has demonstrated beneficial effects on brain and behavior in both wild-type and genetically modified rodent models, relative to standard-housed littermate controls. One interpretation of such studies is that environmentally enriched animals more closely approximate average human levels of cognitive and sensorimotor stimulation, whereas the standard housing currently used in most laboratories models a more sedentary state of reduced mental and physical activity and abnormal stress levels. The use of such standard housing as a single environmental variable may limit the capacity for preclinical models to translate into successful clinical trials. Therefore, there is a need to optimize 'environmental construct validity' in animal models, while maintaining comparability between laboratories, so as to ensure optimal scientific and medical outcomes. Utilizing more sophisticated models to elucidate the relative contributions of genetic and environmental factors will allow for improved construct, face and predictive validity, thus facilitating the identification of novel therapeutic targets. Copyright © 2010 Elsevier Inc. All rights reserved.
A Twin Study of Heritable and Shared Environmental Contributions to Autism
ERIC Educational Resources Information Center
Frazier, Thomas W.; Thompson, Lee; Youngstrom, Eric A.; Law, Paul; Hardan, Antonio Y.; Eng, Charis; Morris, Nathan
2014-01-01
The present study examined genetic and shared environment contributions to quantitatively-measured autism symptoms and categorically-defined autism spectrum disorders (ASD). Participants included 568 twins from the Interactive Autism Network. Autism symptoms were obtained using the Social Communication Questionnaire and Social Responsiveness…
Evidence for Interactions between Surface Water and Periphyton Biofilms in Artificial Streams
Studies suggest that periphyton in streambeds can harbor fecal indicator bacteria (FIB) and, under certain circumstances, can be transferred from the periphyton biofilm into the surface water. An indoor mesocosm study was conducted at the U.S. Environmental Protection Agency Expe...
Buchanan, Jacob P; McGue, Matt; Keyes, Margaret; Iacono, William G
2009-09-01
The failure to identify specific non-shared environmental influences on behavior coupled with the belief that shared environmental factors contribute minimally to individual differences in behavior has led to the concern that major environmental determinants of behavior may be idiosyncratic, and therefore undetectable. We used data on adoptive (N = 246) and biologically related (N = 130) same-sex sibling pairs (mean ages = 16.1 years older sibling; 13.8 years younger sibling) from the Sibling Interaction and Behavior Study (SIBS) to determine whether non-idiosyncratic environmental factors shared by siblings contributed to individual differences in a diverse set of behavioral outcomes. Evidence for shared environmental influence was sought for eight composite measures covering a wide array of adolescent functioning: Academic Achievement, Total IQ, Substance Use Disorders, Externalizing Disorders, Internalizing Disorders, Peer Groups, Disinhibited Personality, and Negative Emotionality. For six of eight composites, significant shared environmental effects, accounting for 14-22% of the variance, were observed for these same-sex sibling pairs. These findings support the use of adoptive sibling designs to directly estimate shared environmental effects and implicate the existence of systematic environmental influences on behavior that are potentially detectable.
Najdegerami, Ismaeil Hossein; Maghami, Parvaneh; Sheikh-Hasani, Vahid; Hosseinzadeh, Ghader; Sheibani, Nader; Moosavi-Movahedi, Ali A
2017-05-01
Because of the extensive use of methyl tert-butyl ether (MTBE) as an additive to increase the octane quality of gasoline, the environmental pollution by this compound has increased in recent decades. Environmental release of MTBE may lead to its entry to the blood stream through inhalation or drinking of contaminated water, and its interactions with biological molecules such as proteins. The present study was proposed to comparatively investigate the interactions of MTBE with hemoglobin (Hb) from diabetic and nondiabetic individuals using various spectroscopic methods including UV-visible, fluorescence, chemiluminescence, and circular dichroism. These results demonstrated the effects of MTBE on heme degradation of Hb and the reaction of these degradation products with water generating reactive oxygen species. Interaction of Hb with MTBE enhanced its aggregation rate and decreased lag time, indicating the antichaperone activity of MTBE upon interaction with Hb. Furthermore, the diabetic Hb showed more severe effects of MTBE, including heme degradation, reactive oxygen species production, unfolding, and antichaperone behavior than the nondiabetic Hb. The results from molecular docking suggested that the special interaction site of MTBE in the vicinity of Hb heme group is responsible for heme degradation. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Ye; Zhang, Ping; Qin, Yujia
When trying to discern network interactions among different species/populations in microbial communities interests have been evoked in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. We modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the networkmore » interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140–269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. In particular, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations.« less
Interactive 3D geodesign tool for multidisciplinary wind turbine planning.
Rafiee, Azarakhsh; Van der Male, Pim; Dias, Eduardo; Scholten, Henk
2018-01-01
Wind turbine site planning is a multidisciplinary task comprising of several stakeholder groups from different domains and with different priorities. An information system capable of integrating the knowledge on the multiple aspects of a wind turbine plays a crucial role on providing a common picture to the involved groups. In this study, we have developed an interactive and intuitive 3D system (Falcon) for planning wind turbine locations. This system supports iterative design loops (wind turbine configurations), based on the emerging field of geodesign. The integration of GIS, game engine and the analytical models has resulted in an interactive platform with real-time feedback on the multiple wind turbine aspects which performs efficiently for different use cases and different environmental settings. The implementation of tiling techniques and open standard web services support flexible and on-the-fly loading and querying of different (massive) geospatial elements from different resources. This boosts data accessibility and interoperability that are of high importance in a multidisciplinary process. The incorporation of the analytical models in Falcon makes this system independent from external tools for different environmental impacts estimations and results in a unified platform for performing different environmental analysis in every stage of the scenario design. Game engine techniques, such as collision detection, are applied in Falcon for the real-time implementation of different environmental models (e.g. noise and visibility). The interactivity and real-time performance of Falcon in any location in the whole country assist the stakeholders in the seamless exploration of various scenarios and their resulting environmental effects and provides a scope for an interwoven discussion process. The flexible architecture of the system enables the effortless application of Falcon in other countries, conditional to input data availability. The embedded open web standards in Falcon results in a smooth integration of different input data which are increasingly available online and through standardized access mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Qing; Zhang, Siyu; Zhang, Xuejiao; Lei, Lei; Ma, Wei; Ma, Chuanxin; Song, Lei; Chen, Jingwen; Pan, Bo; Xing, Baoshan
2017-12-05
Cation-pi attraction is a major force that determines macromolecular structures and drug-receptor interactions. However, the role of the cation-pi interaction in sorption of fluoroquinolone antibiotics by pyrogenic carbonaceous materials (PCMs) has not been addressed. We studied sorption of ciprofloxacin (CIP) on graphite to quantify the contribution of the cation-pi interaction. Through competition experiments, the decreased amount of sorbed CIP by sequential treatment with hexadecane, phenanthrene and benzylamine represents the contribution of hydrophobic, pi-pi and cation-pi interactions, respectively. Benzylamine competed more strongly with CIP than n-hexadecane and phenanthrene, indicating that cation-pi is a major force. Cation-pi interactions accounted for up to 72.6% of the total sorption at an initial CIP concentration of 0.000015 mmol/L. Importantly, species transformation (CIP(0) captures H + from water to form CIP(+1)) induced by cation-pi interactions was verified both experimentally and theoretically and can be used to explain the environmental behavior of other fluoroquinolone antibiotics and biochemical processes of amino acids that interact with aromatic moieties. Because of the significant role of cation-pi interactions, CIP desorption increased up to 2.32 times when Na + increased from 0.01 mM to 0.45 mM, which is an environmentally relevant scenario at river estuaries. Hence, behaviors of fluoroquinolone antibiotics that are affected by ionic strength changes need to be carefully evaluated, especially in river estuaries.
Brooker, Rohan M.; Brandl, Simon J.; Dixson, Danielle L.
2016-01-01
Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance. PMID:26725835
Food web structure and interaction strength pave the way for vulnerability to extinction.
Karlsson, Patrik; Jonsson, Tomas; Jonsson, Annie
2007-11-07
This paper focuses on how food web structure and interactions among species affects the vulnerability, due to environmental variability, to extinction of species at different positions in model food webs. Vulnerability is here not measured by a traditional extinction threshold but is instead inspired by the IUCN criteria for endangered species: an observed rapid decline in population abundance. Using model webs influenced by stochasticity with zero autocorrelation, we investigate the ecological determinants of species vulnerability, i.e. the trophic interactions between species and food web structure and how these interact with the risk of sudden drops in abundance of species. We find that (i) producers fulfil the criterion of vulnerable species more frequently than other species, (ii) food web structure is related to vulnerability, and (iii) the vulnerability of species is greater when involved in a strong trophic interaction than when not. We note that our result on the relationship between extinction risk and trophic position of species contradict previous suggestions and argue that the main reason for the discrepancy probably is due to the fact that we study the vulnerability to environmental stochasticity and not extinction risk due to overexploitation, habitat destruction or interactions with introduced species. Thus, we suggest that the vulnerability of species to environmental stochasticity may be differently related to trophic position than the vulnerability of species to other factors. Earlier research on species extinctions has looked for intrinsic traits of species that correlate with increased vulnerability to extinction. However, to fully understand the extinction process we must also consider that species interactions may affect vulnerability and that not all extinctions are the result of long, gradual reductions in species abundances. Under environmental stochasticity (which importance frequently is assumed to increase as a result of climate change) and direct and indirect interactions with other species some extinctions may occur rapidly and apparently unexpectedly. To identify the first declines of population abundances that may escalate and lead to extinctions as early as possible, we need to recognize which species are at greatest risk of entering such dangerous routes and under what circumstances. This new perspective may contribute to our understanding of the processes leading to extinction of populations and eventually species. This is especially urgent in the light of the current biodiversity crisis where a large fraction of the world's biodiversity is threatened.
Creating Meaningful Partnerships Between Communities and Environmental Health Researchers
De Souza, Rachael; Aguilar, Genevieve C.; de Castro, A. B.
2014-01-01
Community engagement is a necessary, although challenging, element of environmental health research in communities. To facilitate the engagement process, direct action community organizing agencies can be useful in bringing together communities and researchers. This article describes the preliminary activities that one direct action community organizing agency used in partnership with researchers to improve community engagement in the first 6 months of an environmental health study conducted in a major U.S. city. Activities included developing communication strategies, creating opportunities for researcher–community interaction, and sustaining project momentum. To conduct environmental research that is both scientifically rigorous and relevant to communities, collaborating partners had to develop professional skills and strategies outside of their areas of expertise. PMID:23875568
Xiao, Jingcheng; Wang, Qi; Bircsak, Kristin M.; Wen, Xia; Aleksunes, Lauren M.
2015-01-01
The BCRP (ABCG2) transporter is responsible for the efflux of chemicals from the placenta to the maternal circulation. Inhibition of BCRP activity could enhance exposure of offspring to environmental chemicals leading to altered reproductive, endocrine, and metabolic development. The purpose of this study was to characterize environmental chemicals as potential substrates and inhibitors of the human placental BCRP transporter. The interaction of BCRP with a panel of environmental chemicals was assessed using the ATPase and inverted plasma membrane vesicle assays as well as a cell-based fluorescent substrate competition assay. Human HEK cells transfected with wild-type BCRP or the Q141K genetic variant, as well as BeWo placental cells that endogenously express BCRP were used to further test inhibitor and substrate interactions. To varying degrees, the eleven chemicals inhibited BCRP activity in activated ATPase membranes and inverted membrane vesicles. Further, genistein, zearalenone, and tributyltin increased the retention of the fluorescent BCRP substrate, Hoechst 33342, between 50–100% in BeWo cells. Additional experiments characterized the mycotoxin and environmental estrogen, zearalenone, as a novel substrate and inhibitor of BCRP in WT-BCRP and BeWo cells. Interestingly, the BCRP genetic variant Q141K exhibited reduced efflux of zearalenone compared to the wild-type protein. Taken together, screening assays and direct quantification experiments identified zearalenone as a novel human BCRP substrate. Additional in vivo studies are needed to directly determine whether placental BCRP prevents fetal exposure to zearalenone. PMID:26052432
van der Aa, Niels; Boomsma, Dorret I; Rebollo-Mesa, Irene; Hudziak, James J; Bartels, Meike
2010-04-01
Adolescents' evaluations of family functioning may have a significant impact on their subjective well-being and adjustment. The aim of the study was to investigate the degree to which genetic and environmental influences affect variation in evaluations of general family functioning, family conflict, and quality of life and the overlap between them. We assessed whether genetic and environmental influences are moderated by parental divorce by analyzing self-report data from 6,773 adolescent twins and their non-twin siblings. Genetic, shared, and nonshared environmental influences accounted for variation in general family functioning and family conflict, with genetic influences being relatively more important in girls than boys in general family functioning. Genetic and nonshared environmental influences accounted for variation in quality of life, with genetic influences being relatively more important in girls. Evidence was found for interaction between genetic factors and parental divorce: genetic influence on general family functioning was larger in participants from divorced families. The overlap between general family functioning and quality of life, and family conflict and quality of life was accounted for the largest part by genetic effects, with nonshared environmental effects accounting for the remaining part. By examining the data from monozygotic twins, we found evidence for interaction between genotype and nonshared, non-measured, environmental influences on evaluations of general family functioning, family conflict, and quality of life.
Cyprus as a degraded landscape or resilient environment in the wake of colonial intrusion
Harris, Sarah E.
2012-01-01
Concerns about global warming, degradation of fragile ecosystems, and environmental and societal collapse have increased interest for lessons and/or solutions for today's environmental issues. Popular writers have turned to a classic degradation thesis of deforestation and presumed desertification within the Eastern Mediterranean as a cautionary tale of how past societies have committed ecological suicide. However, degradation and/or collapse is far more complex than the thesis permits, and uncritical adoption of such simplified stories encourages continued use of inaccurate assumptions about human–environment interaction. In Cyprus, such a degradation story materialized 150 y ago, and its promoters aimed to impress on readers their responsibility to reverse past environmental mistakes. Both the British Colonial authorities (1878–1960) and the post-Independence Cypriot government used it to justify their environmental policies. Unfortunately, this thesis was formed around several misunderstandings about Cypriot environments and society: (i) judgment of degradation without appropriate consideration of the difference between degradation and change; (ii) oversimplified representation of ruling powers and those people ruled; and (iii) denigration of the shepherd lifestyle and its presumed environmental impact. A multimethod approach using archival and field research offers a more nuanced understanding of the complexity of human–environment interaction, the underappreciated environmental and societal resilience of areas classified as degraded, and the importance of placing events within changing socioeconomic and political contexts. This study of natural resource management and environmental resilience illustrates that the practices that the colonial government viewed as unsustainable likely were sustainable. PMID:22371577
Cyprus as a degraded landscape or resilient environment in the wake of colonial intrusion.
Harris, Sarah E
2012-03-06
Concerns about global warming, degradation of fragile ecosystems, and environmental and societal collapse have increased interest for lessons and/or solutions for today's environmental issues. Popular writers have turned to a classic degradation thesis of deforestation and presumed desertification within the Eastern Mediterranean as a cautionary tale of how past societies have committed ecological suicide. However, degradation and/or collapse is far more complex than the thesis permits, and uncritical adoption of such simplified stories encourages continued use of inaccurate assumptions about human-environment interaction. In Cyprus, such a degradation story materialized 150 y ago, and its promoters aimed to impress on readers their responsibility to reverse past environmental mistakes. Both the British Colonial authorities (1878-1960) and the post-Independence Cypriot government used it to justify their environmental policies. Unfortunately, this thesis was formed around several misunderstandings about Cypriot environments and society: (i) judgment of degradation without appropriate consideration of the difference between degradation and change; (ii) oversimplified representation of ruling powers and those people ruled; and (iii) denigration of the shepherd lifestyle and its presumed environmental impact. A multimethod approach using archival and field research offers a more nuanced understanding of the complexity of human-environment interaction, the underappreciated environmental and societal resilience of areas classified as degraded, and the importance of placing events within changing socioeconomic and political contexts. This study of natural resource management and environmental resilience illustrates that the practices that the colonial government viewed as unsustainable likely were sustainable.
Ocean plankton. Determinants of community structure in the global plankton interactome.
Lima-Mendez, Gipsi; Faust, Karoline; Henry, Nicolas; Decelle, Johan; Colin, Sébastien; Carcillo, Fabrizio; Chaffron, Samuel; Ignacio-Espinosa, J Cesar; Roux, Simon; Vincent, Flora; Bittner, Lucie; Darzi, Youssef; Wang, Jun; Audic, Stéphane; Berline, Léo; Bontempi, Gianluca; Cabello, Ana M; Coppola, Laurent; Cornejo-Castillo, Francisco M; d'Ovidio, Francesco; De Meester, Luc; Ferrera, Isabel; Garet-Delmas, Marie-José; Guidi, Lionel; Lara, Elena; Pesant, Stéphane; Royo-Llonch, Marta; Salazar, Guillem; Sánchez, Pablo; Sebastian, Marta; Souffreau, Caroline; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Gorsky, Gabriel; Not, Fabrice; Ogata, Hiroyuki; Speich, Sabrina; Stemmann, Lars; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G; Sunagawa, Shinichi; Bork, Peer; Sullivan, Matthew B; Karsenti, Eric; Bowler, Chris; de Vargas, Colomban; Raes, Jeroen
2015-05-22
Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models. Copyright © 2015, American Association for the Advancement of Science.
Org, Elin; Mehrabian, Margarete; Lusis, Aldons J
2015-08-01
Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Modeling Gene-Environment Interactions With Quasi-Natural Experiments.
Schmitz, Lauren; Conley, Dalton
2017-02-01
This overview develops new empirical models that can effectively document Gene × Environment (G×E) interactions in observational data. Current G×E studies are often unable to support causal inference because they use endogenous measures of the environment or fail to adequately address the nonrandom distribution of genes across environments, confounding estimates. Comprehensive measures of genetic variation are incorporated into quasi-natural experimental designs to exploit exogenous environmental shocks or isolate variation in environmental exposure to avoid potential confounders. In addition, we offer insights from population genetics that improve upon extant approaches to address problems from population stratification. Together, these tools offer a powerful way forward for G×E research on the origin and development of social inequality across the life course. © 2015 Wiley Periodicals, Inc.
Environmental Microbial Community Proteomics: Status, Challenges and Perspectives.
Wang, Da-Zhi; Kong, Ling-Fen; Li, Yuan-Yuan; Xie, Zhang-Xian
2016-08-05
Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment.
What Causes Environmental Inequalities and Related Health Effects? An Analysis of Evolving Concepts
Kruize, Hanneke; Droomers, Mariël; van Kamp, Irene; Ruijsbroek, Annemarie
2014-01-01
Early environmental justice studies were exposure-oriented, lacked an integrated approach, and did not address the health impact of environmental inequalities. A coherent conceptual framework, needed to understand and tackle environmental inequalities and the related health effects, was lacking. We analyzed the more recent environmental justice literature to find out how conceptual insights have evolved. The conceptual framework of the WHO Commission on Social Determinants of Health (CSDH) was analyzed for additional explanations for environmental inequalities and the related health effects. This paper points out that recent environmental justice studies have broadened their scope by incorporating a broader set of physical and social environmental indicators, and by focusing on different geographic levels and on health impacts of environmental inequalities. The CSDH framework provided additional elements such as the role of structural determinants, the role of health-related behavior in relation to the physical and social environment, access to health care, as well as the life course perspective. Incorporating elements of the CSDH framework into existing environmental justice concepts, and performing more empirical research on the interactions between the different determinants at different geographical levels would further improve our understanding of environmental inequalities and their health effects and offer new opportunities for policy action. PMID:24886752
Structure and dynamics of microbe-exuded polymers and their interactions with calcite surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cygan, Randall Timothy; Mitchell, Ralph; Perry, Thomas D.
2005-12-01
Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these organo-cation interactions are well suited to predictive molecular modeling studies for investigating the roles of conformation and configuration of polysaccharides on cation binding. In this study, alginic acid was chosen as a model polymer and representative disaccharide and polysaccharide subunits were modeled. The ability of disaccharide subunits to bind calcium and to associate with the surface of calcite was investigated. The findings were extended to modeling polymer interactions with calcium ions.
Schoeps, Anja; Rudolph, Anja; Seibold, Petra; Dunning, Alison M.; Milne, Roger L.; Bojesen, Stig E.; Swerdlow, Anthony; Andrulis, Irene; Brenner, Hermann; Behrens, Sabine; Orr, Nicholas; Jones, Michael; Ashworth, Alan; Li, Jingmei; Cramp, Helen; Connley, Dan; Czene, Kamila; Darabi, Hatef; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Knight, Julia; Glendon, Gord; Mulligan, Anna M.; Dumont, Martine; Severi, Gianluca; Baglietto, Laura; Olson, Janet; Vachon, Celine; Purrington, Kristen; Moisse, Matthieu; Neven, Patrick; Wildiers, Hans; Spurdle, Amanda; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Hamann, Ute; Ko, Yon-Dschun; Dieffenbach, Aida K.; Arndt, Volker; Stegmaier, Christa; Malats, Núria; Arias Perez, JoséI.; Benítez, Javier; Flyger, Henrik; Nordestgaard, Børge G.; Truong, Théresè; Cordina-Duverger, Emilie; Menegaux, Florence; Silva, Isabel dos Santos; Fletcher, Olivia; Johnson, Nichola; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Braaf, Linde; Atsma, Femke; van den Broek, Alexandra J.; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Cox, Angela; Simard, Jacques; Giles, Graham G.; Lambrechts, Diether; Mannermaa, Arto; Brauch, Hiltrud; Guénel, Pascal; Peto, Julian; Fasching, Peter A.; Hopper, John; Flesch-Janys, Dieter; Couch, Fergus; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Schmidt, Marjanka K.; Hall, Per; Easton, Douglas F.; Chang-Claude, Jenny
2014-01-01
Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10−07), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m2 (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m2 or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10−05). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci. PMID:24248812
The interaction between environmental insults and human health is complex. Environmental exposures tend to cluster, with disamenities (e.g., landfills, industrial plants) often located in high-minority and largely poor neighborhoods, while wealthier neighborhoods contain amenitie...
Non-Genetic Determinants of Mosquito Competence for Malaria Parasites
Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna
2013-01-01
Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841
A network-based approach to disturbance transmission through microbial interactions
Hunt, Dana E.; Ward, Christopher S.
2015-01-01
Microbes numerically dominate aquatic ecosystems and play key roles in the biogeochemistry and the health of these environments. Due to their short generations times and high diversity, microbial communities are among the first responders to environmental changes, including natural and anthropogenic disturbances such as storms, pollutant releases, and upwelling. These disturbances affect members of the microbial communities both directly and indirectly through interactions with impacted community members. Thus, interactions can influence disturbance propagation through the microbial community by either expanding the range of organisms affected or buffering the influence of disturbance. For example, interactions may expand the number of disturbance-affected taxa by favoring a competitor or buffer the impacts of disturbance when a potentially disturbance-responsive clade’s growth is limited by an essential microbial partner. Here, we discuss the potential to use inferred ecological association networks to examine how disturbances propagate through microbial communities focusing on a case study of a coastal community’s response to a storm. This approach will offer greater insight into how disturbances can produce community-wide impacts on aquatic environments following transient changes in environmental parameters. PMID:26579091
A new method to study the change of miRNA-mRNA interactions due to environmental exposures.
Petralia, Francesca; Aushev, Vasily N; Gopalakrishnan, Kalpana; Kappil, Maya; W Khin, Nyan; Chen, Jia; Teitelbaum, Susan L; Wang, Pei
2017-07-15
Integrative approaches characterizing the interactions among different types of biological molecules have been demonstrated to be useful for revealing informative biological mechanisms. One such example is the interaction between microRNA (miRNA) and messenger RNA (mRNA), whose deregulation may be sensitive to environmental insult leading to altered phenotypes. The goal of this work is to develop an effective data integration method to characterize deregulation between miRNA and mRNA due to environmental toxicant exposures. We will use data from an animal experiment designed to investigate the effect of low-dose environmental chemical exposure on normal mammary gland development in rats to motivate and evaluate the proposed method. We propose a new network approach-integrative Joint Random Forest (iJRF), which characterizes the regulatory system between miRNAs and mRNAs using a network model. iJRF is designed to work under the high-dimension low-sample-size regime, and can borrow information across different treatment conditions to achieve more accurate network inference. It also effectively takes into account prior information of miRNA-mRNA regulatory relationships from existing databases. When iJRF is applied to the data from the environmental chemical exposure study, we detected a few important miRNAs that regulated a large number of mRNAs in the control group but not in the exposed groups, suggesting the disruption of miRNA activity due to chemical exposure. Effects of chemical exposure on two affected miRNAs were further validated using breast cancer human cell lines. R package iJRF is available at CRAN. pei.wang@mssm.edu or susan.teitelbaum@mssm.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Development based on carrying capacity. A strategy for environmental protection
Carey, D.I.
1993-01-01
Environmental degradation has accelerated in recent years because economic development activities have been inconsistent with a sustainable environment. In human ecology, the concept of 'carrying capacity' implies an optimum level of development and population size based on a complex of interacting factors - physical, institutional, social, and psychological. Development studies which have explicitly recognized carrying capacity have shown that this approach can be used to promote economic activities which are consistent with a sustainable social and physical environment. The concept of carrying capacity provides a framework for integrating physical, socioeconomic, and environmental systems into planning for a sustainable environment. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Recent investigations of water quality criteria have frequently examined the effects of a pollutant; however, a more realistic investigation would consider effects of multiple environmental factors and their interactions with the pollutant. Awareness of selenium as a pollutant is increasing. The growing sulfur and petroleum industries are only two of the potential sources of the element on the Texas coast. This study examined the toxicity of selenium to hermit crab Clibanarius vittatus (Bosc) under twelve different combinations of temperature and salinity. Additionally, the impact of the organisms' original environment was considered as an environmental factor.
NASA Astrophysics Data System (ADS)
Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying
2014-06-01
Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.
Human-building interaction at work: Findings from an interdisciplinary cross-country survey in Italy
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Oca, Simona; Pisello, Anna Laura; De Simone, Marilena
This study presents results from an interdisciplinary survey assessing contextual and behavioral factors driving occupants’ interaction with building and systems in offices located across three different Mediterranean climates in Turin (Northern), Perugia (Central), and Rende (Southern) Italy. The survey instrument is grounded in an interdisciplinary framework that bridges the gap between building physics and social science environments on the energy- and comfort-related human-building interaction in the workspace. Outcomes of the survey questionnaire provide insights into four key learning objectives: (1) individual occupant's motivational drivers regarding interaction with shared building environmental controls (such as adjustable thermostats, operable windows, blinds and shades,more » and artificial lighting), (2) group dynamics such as perceived social norms, attitudes, and intention to share controls, (3) occupant perception of the ease of use and knowledge of how to operate control systems, and (4) occupant-perceived comfort, satisfaction, and productivity. The study attempts to identify climatic, cultural, and socio-demographic influencing factors, as well as to establish the validity of the survey instrument and robustness of outcomes for future studies. Also, the paper aims at illustrating why and how social science insights can bring innovative knowledge into the adoption of building technologies in shared contexts, thus enhancing perceived environmental satisfaction and effectiveness of personal indoor climate control in office settings and impacting office workers’ productivity and reduced operational energy costs.« less
Human-building interaction at work: Findings from an interdisciplinary cross-country survey in Italy
D'Oca, Simona; Pisello, Anna Laura; De Simone, Marilena; ...
2018-01-31
This study presents results from an interdisciplinary survey assessing contextual and behavioral factors driving occupants’ interaction with building and systems in offices located across three different Mediterranean climates in Turin (Northern), Perugia (Central), and Rende (Southern) Italy. The survey instrument is grounded in an interdisciplinary framework that bridges the gap between building physics and social science environments on the energy- and comfort-related human-building interaction in the workspace. Outcomes of the survey questionnaire provide insights into four key learning objectives: (1) individual occupant's motivational drivers regarding interaction with shared building environmental controls (such as adjustable thermostats, operable windows, blinds and shades,more » and artificial lighting), (2) group dynamics such as perceived social norms, attitudes, and intention to share controls, (3) occupant perception of the ease of use and knowledge of how to operate control systems, and (4) occupant-perceived comfort, satisfaction, and productivity. The study attempts to identify climatic, cultural, and socio-demographic influencing factors, as well as to establish the validity of the survey instrument and robustness of outcomes for future studies. Also, the paper aims at illustrating why and how social science insights can bring innovative knowledge into the adoption of building technologies in shared contexts, thus enhancing perceived environmental satisfaction and effectiveness of personal indoor climate control in office settings and impacting office workers’ productivity and reduced operational energy costs.« less
Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang
2016-01-01
The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.
Truzzi, Anna; Bornstein, Marc H.; Senese, Vincenzo P.; Shinohara, Kazuyuki; Setoh, Peipei; Esposito, Gianluca
2017-01-01
Adults' adaptive interactions with intimate partners enhance well-being. Here we hypothesized that adult males' physiological responses to opposite-sex conspecifics' distress result from an interaction between an environmental factor (early social interaction with caregivers) and a genetic factor (a polymorphism within the promoter region of the serotonin transporter gene, 5-HTTLPR). We assessed heart rate changes in 42 non-married male adults to distress vocalizations (female, infant, and bonobo cries). Males' early interaction with parents was assessed using the Parental Bonding Instrument. Buccal mucosa cell samples were collected to assess their 5-HTTLPR genotype. A significant interaction emerged between early experience and genetic predisposition. Males with a genetic predisposition for higher sensitivity to environmental factors showed atypical physiological responses to adult female cries according to their experienced early maternal parenting. Environmental experiences and genetic characteristics are associated with adult males' physiological responses to socially meaningfully stimuli. Understanding the mechanisms that modulate responses to opposite-sex conspecifics may improve personal well-being and social adaptiveness. PMID:28293197
Human-pet interaction and loneliness: a test of concepts from Roy's adaptation model.
Calvert, M M
1989-01-01
This research used two key concepts from Roy's adaptation model of nursing to examine the relationship between human-pet interaction and loneliness in nursing home residents. These concepts included (a) environmental stimuli as factors influencing adaptation and (b) interdependence as a mode of response to the environment. The hypothesis of this study asserted that the residents of a nursing home who had greater levels of interaction with a pet program would experience less loneliness than those who had lower levels of interaction with a pet. The study used an ex post facto nonexperimental design with 65 subjects. The simplified version of the revised UCLA loneliness scale was used to measure loneliness. Reported level of human-pet interaction was measured according to a four-point scale (1 = no interaction, 4 = quite a lot of interaction). The hypothesis was supported at the p less than 0.03 level of significance. Implications for practice through organizing pet programs in situations where loneliness exists are discussed. Recommendations for future research include replicating the study using a larger sample and developing a comprehensive human-pet interaction tool.
NASA Astrophysics Data System (ADS)
Gilligan, J. M.; Ackerly, B.; Goodbred, S. L.
2013-12-01
In populated delta environments, it is impossible to separate human and natural systems. Human activities change the landscape by altering the dynamics of water and sediment and in return, humans themselves are affected by the natural and anthropogenic changes to the landscape. Such interactions can also have significant impacts on the ecology and natural resources of a delta system, affecting local and regional food supply, livelihoods, and economies, particularly in developing nations. Successful adaptation to environmental change in a strongly coupled human-natural system, such as the Bengal delta, requires understanding how the physical environment and the changing social, political, and economic conditions of people's lives interact. Research on human-delta interactions has largely focused on macro-scale effects from major dams, water diversions, and catchment-scale land use; but at the smaller scale of households and communities, decisions, actions, and outcomes may occur abruptly and have significant local impacts (positive or negative). Southwest Bangladesh experiences profound environmental problems at the local human-landscape interface, including groundwater salinity, soil fertility, conflicting land-use practices, management of engineering structures, and declining land-surface elevations. The impacts of climate-induced sea-level rise, especially with respect to population migration, receive great attention and concern, but neither sea level rise nor migration occurs against a background of static physical or human environments. For example, changing land use (e.g., building embankments, which affect drainage, sediment transport, and the evolution of tidal channels; and the transformation of rice fields to shrimp aquaculture, which affects soil chemistry, labor markets, river ecology, and possibly the integrity of embankments) can significantly change the impact that sea level rise will have on flood hazards and the resulting effect on people living on the delta. Assessing the impacts of climate change and other environmental stresses on delta populations and designing effective responses will require understanding interactions between the physical and human environments at multiple scales. As part of a multidisciplinary research project drawing on sedimentology, hydrology, remote-sensing, engineering, political science, sociology, psychology, and anthropology we are studying the interactions of human and natural systems in coastal Bangladesh to understand conditions that contribute to vulnerability and resilience at both the household and the community level. Building on Elinor Ostrom's socioecological systems approach, we have developed a theoretical framework for studying vulnerability and resilience when coupled human-natural systems are subject to significant changes and exogenous forcings. We will report on this framework using examples of successful and unsuccessful interventions to manage or mitigate exposure to environmental hazards, and we will also report on progress toward using our framework to identify and understand factors that contribute to the success or failure of such projects.
NASA Astrophysics Data System (ADS)
Ortt, D.; Chen, S. S.
2007-12-01
The interaction of the environmental water vapor distribution around a tropical cyclone (TC), rainbands, and inner- core dynamics can affect hurricane structure and intensity change, which is not well understood. Although previous studies have addressed various aspects of this problem, a full three way interaction and its implications for hurricane intensity change has not been documented. Using data collected during the Hurricane Rainband and Intensity Experiment (RAINEX) in Hurricanes Katrina and Rita, the three way interaction of the environment moisture, rainbands, and inner-core dynamics can be evaluated. The TRMM TMI total precipitable water (PW) data with 1/4 degree horizontal resolution, TRMM TMI rainrate data with a 4 km horizontal resolution and the GPS dropsondes with a ½ second temporal resolution are used to characterize the environmental moisture. The high resolution model output from the real-time MM5 forecasts of Hurricanes Katrina and Rita are used to investigate the complex interactions in both storms. The model forecasts were made using a vortex-following nested grid with horizontal resolutions of 15, 5, and 1.67km, respectively. There were 28 vertical sigma levels. The Goddard microphysics scheme was used. The TRMM PW and the GPS dropsonde data show strong moisture gradients in the outer rainband region in Rita with a dry outer environment, which may contribute to the development of outer rainbands with a high circularity. It created a secondary ring of potential vorticity (PV). In addition, the vortex Rossby waves (VRW) propagating radialy outward from the eyewall were unable to propagate beyond the secondary ring of PV. The combination of these VRW and the environmental water vapor distribution may play a role in enhancing the rainbands that developed into a secondary eyewall, which leads to a temporary weakening of the hurricane. In contrast, Katrina had a relative weak moisture gradient surrounding the storm. There were not persistent outer rainbands with high circularity, which may explain the different evolution in Katrina compared with Rita.
Lima, Mauricio; Christie, Duncan A; Santoro, M Calogero; Latorre, Claudio
2016-01-01
Socio-economic and environmental changes are well known causes of demographic collapse of agrarian cultures. The collapse of human societies is a complex phenomenon where historical and cultural dimensions play a key role, and they may interact with the environmental context. However, the importance of the interaction between socio-economic and climatic factors in explaining possible breakdowns in Native American societies has been poorly explored. The aim of this study is to test the role of socio-economic causes and rainfall variability in the collapse suffered by the Aymara people of the semiarid Andean region of Tarapacá during the period 1820-1970. Our motivation is to demonstrate that simple population dynamic models can be helpful in understanding the causes and relative importance of population changes in Andean agro-pastoral societies in responses to socio-environmental variability. Simple logistic models that combine the effects of external socio-economic causes and past rainfall variability (inferred from Gross Domestic Product [GDP] and tree-rings, respectively) were quite accurate in predicting the sustained population decline of the Aymara people. Our results suggest that the depopulation in the semiarid Tarapacá province was caused by the interaction among external socio-economic pressures given by the economic growth of the lowlands and demands for labor coupled with a persistent decline in rainfall. This study constitutes an example of how applied ecological knowledge, in particular the application of the logistic equation and theories pertaining to nonlinear population dynamics and exogenous perturbations, can be used to better understand major demographic changes in human societies.
Lima, Mauricio; Christie, Duncan A.; Santoro, M. Calogero; Latorre, Claudio
2016-01-01
Socio-economic and environmental changes are well known causes of demographic collapse of agrarian cultures. The collapse of human societies is a complex phenomenon where historical and cultural dimensions play a key role, and they may interact with the environmental context. However, the importance of the interaction between socio-economic and climatic factors in explaining possible breakdowns in Native American societies has been poorly explored. The aim of this study is to test the role of socio-economic causes and rainfall variability in the collapse suffered by the Aymara people of the semiarid Andean region of Tarapacá during the period 1820–1970. Our motivation is to demonstrate that simple population dynamic models can be helpful in understanding the causes and relative importance of population changes in Andean agro-pastoral societies in responses to socio-environmental variability. Simple logistic models that combine the effects of external socio-economic causes and past rainfall variability (inferred from Gross Domestic Product [GDP] and tree-rings, respectively) were quite accurate in predicting the sustained population decline of the Aymara people. Our results suggest that the depopulation in the semiarid Tarapacá province was caused by the interaction among external socio-economic pressures given by the economic growth of the lowlands and demands for labor coupled with a persistent decline in rainfall. This study constitutes an example of how applied ecological knowledge, in particular the application of the logistic equation and theories pertaining to nonlinear population dynamics and exogenous perturbations, can be used to better understand major demographic changes in human societies. PMID:27560499
Zhou, Jin; Song, Xiao; Zhang, Chun-Yun; Chen, Guo-Fu; Lao, Yong-Min; Jin, Hui; Cai, Zhong-Hua
2018-02-14
A central goal in marine microecology is to understand the ecological factors shaping spatiotemporal microbial patterns and the underlying processes. We hypothesized that abiotic and/or biotic interactions are probably more important for explaining the distribution patterns of marine bacterioplankton than environmental filtering. In this study, surface seawater samples were collected about 7000 miles from the Mediterranean Sea, transecting the North Atlantic Ocean, to the Brazilian marginal sea. In bacterial biosphere, SAR11, SAR86, Rhodobacteraceae, and Rhodospiriaceae were predominant in the Mediterranean Sea; Prochlorococcus was more frequent in Atlantic Ocean; whereas in the Brazilian coastal sea, the main bacterial members were Synechococcus and SAR11. With respect to archaea, Euryarchaeota were predominant in the Atlantic Ocean and Thaumarchaeota in the Mediterranean Sea. With respect to the eukaryotes, Syndiniales, Spumellaria, Cryomonadida, and Chlorodendrales were predominant in the open ocean, while diatoms and microzooplankton were dominant in the coastal sea. Distinct clusters of prokaryotes and eukaryotes displayed clear spatial heterogeneity. Among the environmental parameters measured, temperature and salinity were key factors controlling bacterial and archaeal community structure, respectively, whereas N/P/Si contributed to eukaryotic variation. The relative contribution of environmental parameters to the microbial distribution pattern was 45.2%. Interaction analysis showed that Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the keystone taxa within the positive-correlation network, while Thermoplasmata was the main contributor in the negative-correlation network. Our study demonstrated that microbial communities are co-governed by environmental filtering and biotic interactions, which are the main deterministic driving factors modulating the spatiotemporal patterns of marine plankton synergistically at the regional or global levels.
Martin, Nina C; Felton, Julia W; Cole, David A
2016-01-01
Framed by a previously established conceptual model of youths' posttraumatic stress (PTS) responses following a disaster, the current longitudinal study examined the relation of predisaster child characteristics (age, gender, depressive symptoms, ruminative coping), predisaster environmental characteristics (negative life events and supportive and negative friendship interactions), and level of disaster exposure to youths' PTS symptoms in the wake of a natural disaster. Prior to the 2010 Nashville, Tennessee, flood, 239 predominantly Caucasian youth from four elementary and middle schools (ages = 10-15, 56% girls) completed measures of depressive symptoms, rumination, negative life events, and social support in the form of both supportive and negative friendship interactions. Approximately 10 days after returning to school, 125 completed measures of disaster exposure and postflood PTS symptoms. Bivariate correlations revealed that disaster-related PTS symptoms were unrelated to age, gender, or predisaster supportive friendship interactions and significantly positively related to level of disaster exposure and predisaster levels of negative life events, depressive symptoms, rumination, and negative friendship interactions. After controlling for level of disaster exposure and other predisaster child and environmental characteristics, depressive symptoms and negative friendship interactions predicted postdisaster PTS symptoms. The effect of child's flood-related experiences on PTS symptoms was not moderated by any of the preexisting child characteristics or environmental indicators. Faced with limited resources after a natural disaster, school counselors and other health professionals should focus special attention on youths who experienced high levels of disaster-related losses and whose predisaster emotional and interpersonal lives were problematic.
Culumber, Zachary W; Schumer, Molly; Monks, Scott; Tobler, Michael
2015-02-01
Theory predicts that environmental heterogeneity offers a potential solution to the maintenance of genetic variation within populations, but empirical evidence remains sparse. The live-bearing fish Xiphophorus variatus exhibits polymorphism at a single locus, with different alleles resulting in up to five distinct melanistic "tailspot" patterns within populations. We investigated the effects of heterogeneity in two ubiquitous environmental variables (temperature and food availability) on two fitness-related traits (upper thermal limits and body condition) in two different tailspot types (wild-type and upper cut crescent). We found gene-by-environment (G × E) interactions between tailspot type and food level affecting upper thermal limits (UTL), as well as between tailspot type and thermal environment affecting body condition. Exploring mechanistic bases underlying these G × E patterns, we found no differences between tailspot types in hsp70 gene expression despite significant overall increases in expression under both thermal and food stress. Similarly, there was no difference in routine metabolic rates between the tailspot types. The reversal of relative performance of the two tailspot types under different environmental conditions revealed a mechanism by which environmental heterogeneity can balance polymorphism within populations through selection on different fitness-related traits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Inferring the rules of social interaction in migrating caribou.
Torney, Colin J; Lamont, Myles; Debell, Leon; Angohiatok, Ryan J; Leclerc, Lisa-Marie; Berdahl, Andrew M
2018-05-19
Social interactions are a significant factor that influence the decision-making of species ranging from humans to bacteria. In the context of animal migration, social interactions may lead to improved decision-making, greater ability to respond to environmental cues, and the cultural transmission of optimal routes. Despite their significance, the precise nature of social interactions in migrating species remains largely unknown. Here we deploy unmanned aerial systems to collect aerial footage of caribou as they undertake their migration from Victoria Island to mainland Canada. Through a Bayesian analysis of trajectories we reveal the fine-scale interaction rules of migrating caribou and show they are attracted to one another and copy directional choices of neighbours, but do not interact through clearly defined metric or topological interaction ranges. By explicitly considering the role of social information on movement decisions we construct a map of near neighbour influence that quantifies the nature of information flow in these herds. These results will inform more realistic, mechanism-based models of migration in caribou and other social ungulates, leading to better predictions of spatial use patterns and responses to changing environmental conditions. Moreover, we anticipate that the protocol we developed here will be broadly applicable to study social behaviour in a wide range of migratory and non-migratory taxa.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Authors.
An Interactive Environmental Science Course for Education Science Majors
ERIC Educational Resources Information Center
Lunsford, Suzanne K.; Slattery, William
2006-01-01
An interactive environmental science course was designed to provide a set of learning experiences that connect chemistry, geology, biology, physics, and math with the future careers as teachers. The environment deals with many factors contributing with the quality of life, such as the air, the water and the protective shelter of the atmosphere.
Flexible Environmental Modeling with Python and Open - GIS
NASA Astrophysics Data System (ADS)
Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann
2015-04-01
Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.
Environmental Interactions Technology Status
1986-10-01
4 1 - 3 - - 3 - High-Voltage Interactions 4 4 1 3 3 1 3 3 1 HIGH ENERGY RADIATION: - Radiation Damage to: - Electronics - 4 4 - 4 4 - 4 4 - Solar ...3), High Energy Radiation Environments (Section 4), Neutral Environments (Section 5), Particle Environments (Section 6), Solar Radiation Environments...secondary mirror, and light collector surrounding the small solar cell. No cover glass is required. Only recently has a study been undertaken to evaluate the
Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C
2016-04-01
High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.