The Environmental Kuznets Curve and Japan
Uemura, K.
1995-12-31
Theodore Panayotou found an interesting relationship between {open_quotes}the economic development and environmental (degradation): environmental degradation rises at first and then falls in the course of economic development.{close_quotes}. This relationship resembles the Simon Kuznets hypothesis that {open_quotes}in a course of economic development income disparities rise at first and then begin to fall. This inverted U-shape relationship between income in- equality and income per capita, . . . , came to be known as the Kuznets curve.{close_quotes} Panayotou therefore named his finding above as the Environmental Kuznets Curve ({open_quotes}EKC{close_quotes}). In fact, Panayotou and others tested the EKC against various developing and developed countries and confirmed such an inverse relationship between income growth and environmental degradation existed. Also Panayotou suggested that the critical level of income per capita at which the environmental degradation started to slow down was US$800- 5,500. In this short paper, without using sophisticated statistical techniques, I am going to test the EKC hypothesis against Japan and see if the EKC hypothesis applies to Japan and also if the US$ 800-5,500 per capita figure holds true with Japan.
Theoretical foundations for environmental Kuznets curve analysis
NASA Astrophysics Data System (ADS)
Lantz, Van
This thesis provides a dynamic theory for analyzing the paths of aggregate output and pollution in a country over time. An infinite horizon, competitive growth-pollution model is explored in order to determine the role that economic scale, production techniques, and pollution regulations play in explaining the inverted U-shaped relationship between output and some forms of pollution (otherwise known as the Environmental Kuznets Curve, or EKC). Results indicate that the output-pollution relationship may follow a strictly increasing, strictly decreasing (but bounded), inverted U-shaped, or some combination of curves. While the 'scale' effect may cause output and pollution to exhibit a monotonic relationship, 'technique' and 'regulation' effects may ultimately cause a de-linking of these two variables. Pollution-minimizing energy regulation policies are also investigated within this framework. It is found that the EKC may be 'flattened' or even eliminated moving from a poorly-regulated economy to one that minimizes pollution. The model is calibrated to the US economy for output (gross national product, GNP) and two pollutants (sulfur dioxide, SO2, and carbon dioxide, CO2) over the period 1900 to 1990. Results indicate that the model replicates the observations quite well. The predominance of 'scale' effects cause aggregate SO2 and CO2 levels to increase with GNP in the early stages of development. Then, in the case of SO 2, 'technique' and 'regulation' effects may be the cause of falling SO2 levels with continued economic growth (establishing the EKC). CO2 continues to monotonically increase as output levels increase over time. The positive relationship may be due to the lack of regulations on this pollutant. If stricter regulation policies were instituted in the two case studies, an improved allocation of resources may result. While GNP may be 2.596 to 20% lower than what has been realized in the US economy (depending on the pollution variable analyzed), individual
Growing Up and Cleaning Up: The Environmental Kuznets Curve Redux.
Franklin, Rachel S; Ruth, Matthias
2012-01-01
Borrowing from the Kuznets curve literature, researchers have coined the term "environmental Kuznets curve" or EKC to characterize the relationship between pollution levels and income: pollution levels will increase with income but some threshold of income will eventually be reached, beyond which pollution levels will decrease. The link between the original Kuznets curve, which posited a similar relationship between income and inequality, and its pollution-concerned offspring lies primarily with the shape of both curves (an upside-down U) and the central role played by income change. Although the EKC literature has burgeoned over the past several years, few concrete conclusions have been drawn, the main themes of the literature have remained constant, and no consensus has been reached regarding the existence of an environmental Kuznets curve. EKC research has used a variety of types of data and a range of geographical units to examine the effects of income levels on pollution. Changes in pollution levels might also be at least partly explained by countries' position in the demographic transition and their general population structure, however little research has included this important aspect in the analysis. In addition, few analyses confine themselves to an evaluation for one country of the long-term relationship between income and pollution. Using United States CO2 emissions as well as demographic, employment, trade and energy price data, this paper seeks to highlight the potential impact of population and economic structure in explaining the relationship between income and pollution levels.
Growing Up and Cleaning Up: The Environmental Kuznets Curve Redux.
Franklin, Rachel S; Ruth, Matthias
2012-01-01
Borrowing from the Kuznets curve literature, researchers have coined the term "environmental Kuznets curve" or EKC to characterize the relationship between pollution levels and income: pollution levels will increase with income but some threshold of income will eventually be reached, beyond which pollution levels will decrease. The link between the original Kuznets curve, which posited a similar relationship between income and inequality, and its pollution-concerned offspring lies primarily with the shape of both curves (an upside-down U) and the central role played by income change. Although the EKC literature has burgeoned over the past several years, few concrete conclusions have been drawn, the main themes of the literature have remained constant, and no consensus has been reached regarding the existence of an environmental Kuznets curve. EKC research has used a variety of types of data and a range of geographical units to examine the effects of income levels on pollution. Changes in pollution levels might also be at least partly explained by countries' position in the demographic transition and their general population structure, however little research has included this important aspect in the analysis. In addition, few analyses confine themselves to an evaluation for one country of the long-term relationship between income and pollution. Using United States CO2 emissions as well as demographic, employment, trade and energy price data, this paper seeks to highlight the potential impact of population and economic structure in explaining the relationship between income and pollution levels. PMID:25214678
Growing Up and Cleaning Up: The Environmental Kuznets Curve Redux
Franklin, Rachel S.; Ruth, Matthias
2014-01-01
Borrowing from the Kuznets curve literature, researchers have coined the term “environmental Kuznets curve” or EKC to characterize the relationship between pollution levels and income: pollution levels will increase with income but some threshold of income will eventually be reached, beyond which pollution levels will decrease. The link between the original Kuznets curve, which posited a similar relationship between income and inequality, and its pollution-concerned offspring lies primarily with the shape of both curves (an upside-down U) and the central role played by income change. Although the EKC literature has burgeoned over the past several years, few concrete conclusions have been drawn, the main themes of the literature have remained constant, and no consensus has been reached regarding the existence of an environmental Kuznets curve. EKC research has used a variety of types of data and a range of geographical units to examine the effects of income levels on pollution. Changes in pollution levels might also be at least partly explained by countries’ position in the demographic transition and their general population structure, however little research has included this important aspect in the analysis. In addition, few analyses confine themselves to an evaluation for one country of the long-term relationship between income and pollution. Using United States CO2 emissions as well as demographic, employment, trade and energy price data, this paper seeks to highlight the potential impact of population and economic structure in explaining the relationship between income and pollution levels. PMID:25214678
Economic growth and energy regulation in the environmental Kuznets curve.
Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín
2016-08-01
This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution. PMID:27164892
Economic growth and energy regulation in the environmental Kuznets curve.
Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín
2016-08-01
This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution.
Revisiting the environmental Kuznets curve hypothesis in a tourism development context.
de Vita, Glauco; Katircioglu, Salih; Altinay, Levent; Fethi, Sami; Mercan, Mehmet
2015-11-01
This study investigates empirically an extended version of the Environmental Kuznets Curve model that controls for tourism development. We find that international tourist arrivals into Turkey alongside income, squared income and energy consumption, cointegrate with CO2 emissions. Tourist arrivals, growth, and energy consumption exert a positive and significant impact on CO2 emissions in the long-run. Our results provide empirical support to EKC hypothesis showing that at exponential levels of growth, CO2 emissions decline. The findings suggest that despite the environmental degradation stemming from tourism development, policies aimed at environmental protection should not be pursued at the expense of tourism-led growth. PMID:26081781
Revisiting the environmental Kuznets curve hypothesis in a tourism development context.
de Vita, Glauco; Katircioglu, Salih; Altinay, Levent; Fethi, Sami; Mercan, Mehmet
2015-11-01
This study investigates empirically an extended version of the Environmental Kuznets Curve model that controls for tourism development. We find that international tourist arrivals into Turkey alongside income, squared income and energy consumption, cointegrate with CO2 emissions. Tourist arrivals, growth, and energy consumption exert a positive and significant impact on CO2 emissions in the long-run. Our results provide empirical support to EKC hypothesis showing that at exponential levels of growth, CO2 emissions decline. The findings suggest that despite the environmental degradation stemming from tourism development, policies aimed at environmental protection should not be pursued at the expense of tourism-led growth.
Wong, Yoon Loong Andrew; Lewis, Lynne
2013-12-15
The literature is flush with articles focused on estimating the Environmental Kuznets Curve (EKC) for various pollutants and various locations. Most studies have utilized air pollution variables; far fewer have utilized water quality variables, all with mixed results. We suspect that mixed evidence of the EKC stems from model and error specification. We analyze annual data for four water quality indicators, three of them previously unstudied - total phosphorus (TOTP), dissolved oxygen (DO), ammonium (NH4) and nitrites (NO2) - from the Lower Mekong Basin region to determine whether an Environmental Kuznets Curve (EKC) is evident for a transboundary river in a developing country and whether that curve is dependent on model specification and/or pollutant. We build upon previous studies by correcting for the problems of heteroskedasticity, serial correlation and cross-sectional dependence. Unlike multi-country EKC studies, we mitigate for potential distortion from pooling data across geographically heterogeneous locations by analyzing data drawn from proximate locations within a specific international river basin in Southeast Asia. We also attempt to identify vital socioeconomic determinants of water pollution by including a broad list of explanatory variables alongside the income term. Finally, we attempt to shed light on the pollution-income relationship as it pertains to trans-boundary water pollution by examining data from an international river system. We do not find consistent evidence of an EKC for any of the 4 pollutant indicators in this study, but find the results are entirely dependent on model and error specification as well as pollutant.
Ozturk, Ilhan; Al-Mulali, Usama; Saboori, Behnaz
2016-01-01
The main objective of this study is to examine the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an environment indicator and GDP from tourism as the economic indicator. To achieve this goal, an environmental degradation model is established during the period of 1988-2008 for 144 countries. The results from the time series generalized method of moments (GMM) and the system panel GMM revealed that the number of countries that have a negative relationship between the ecological footprint and its determinants (GDP growth from tourism, energy consumption, trade openness, and urbanization) is more existent in the upper middle- and high-income countries. Moreover, the EKC hypothesis is more present in the upper middle- and high-income countries than the other income countries. From the outcome of this research, a number of policy recommendations were provided for the investigated countries. PMID:26408117
Ozturk, Ilhan; Al-Mulali, Usama; Saboori, Behnaz
2016-01-01
The main objective of this study is to examine the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an environment indicator and GDP from tourism as the economic indicator. To achieve this goal, an environmental degradation model is established during the period of 1988-2008 for 144 countries. The results from the time series generalized method of moments (GMM) and the system panel GMM revealed that the number of countries that have a negative relationship between the ecological footprint and its determinants (GDP growth from tourism, energy consumption, trade openness, and urbanization) is more existent in the upper middle- and high-income countries. Moreover, the EKC hypothesis is more present in the upper middle- and high-income countries than the other income countries. From the outcome of this research, a number of policy recommendations were provided for the investigated countries.
Environmental costs and renewable energy: re-visiting the Environmental Kuznets Curve.
López-Menéndez, Ana Jesús; Pérez, Rigoberto; Moreno, Blanca
2014-12-01
The environmental costs of economic development have received increasing attention during the last years. According to the World Energy Outlook (2013) sustainable energy policies should be promoted in order to spur economic growth and environmental protection in a global context, particularly in terms of reducing greenhouse gas emissions that contribute to climate change. Within this framework, the European Union aims to achieve the "20-20-20" targets, including a 20% reduction in EU greenhouse gas emissions from 1990 levels, a raise in the share of EU energy consumption produced from renewable resources to 20% and a 20% improvement in the EU's energy efficiency. Furthermore, the EU "Energy Roadmap 2050" has been recently adopted as a basis for developing a long-term European energy framework, fighting against climate change through the implementation of energy efficiency measures and the reduction of emissions. This paper focuses on the European context and attempts to explain the impact of economic growth on CO2 emissions through the estimation of an Environmental Kuznets Curve (EKC) using panel data. Moreover, since energy seems to be at the heart of the environmental problem it should also form the core of the solution, and therefore we provide some extensions of the EKC by including renewable energy sources as explanatory variables in the proposed models. Our data sets are referred to the 27 countries of the European Union during the period 1996-2010. With this information, our empirical results provide some interesting evidence about the significant impacts of renewable energies on CO2 emissions, suggesting the existence of an extended EKC.
Wong, Yoon Loong Andrew; Lewis, Lynne
2013-12-15
The literature is flush with articles focused on estimating the Environmental Kuznets Curve (EKC) for various pollutants and various locations. Most studies have utilized air pollution variables; far fewer have utilized water quality variables, all with mixed results. We suspect that mixed evidence of the EKC stems from model and error specification. We analyze annual data for four water quality indicators, three of them previously unstudied - total phosphorus (TOTP), dissolved oxygen (DO), ammonium (NH4) and nitrites (NO2) - from the Lower Mekong Basin region to determine whether an Environmental Kuznets Curve (EKC) is evident for a transboundary river in a developing country and whether that curve is dependent on model specification and/or pollutant. We build upon previous studies by correcting for the problems of heteroskedasticity, serial correlation and cross-sectional dependence. Unlike multi-country EKC studies, we mitigate for potential distortion from pooling data across geographically heterogeneous locations by analyzing data drawn from proximate locations within a specific international river basin in Southeast Asia. We also attempt to identify vital socioeconomic determinants of water pollution by including a broad list of explanatory variables alongside the income term. Finally, we attempt to shed light on the pollution-income relationship as it pertains to trans-boundary water pollution by examining data from an international river system. We do not find consistent evidence of an EKC for any of the 4 pollutant indicators in this study, but find the results are entirely dependent on model and error specification as well as pollutant. PMID:24211570
Arbulú, Italo; Lozano, Javier; Rey-Maquieira, Javier
2015-12-01
The relationship between tourism growth and municipal solid waste (MSW) generation has been, until now, the subject of little research. This is puzzling since the tourism sector is an important MSW generator and, at the same time, is willing to avoid negative impacts from MSW mismanagement. This paper aims to provide tools for tourism and MSW management by assessing the effects of tourism volume, tourism quality and tourism specialization on MSW generation in the UE. This is done using the Environmental Kuznets Curve (EKC) framework. The study considers a panel data for 32 European economies in the 1997-2010 periods. Empirical results support the EKC hypothesis for MSW and shows that northern countries tend to have lower income elasticity than less developed countries; furthermore, results confirm a non-linear and significant effect of tourism arrivals, expenditure per tourist and tourism specialization on MSW generation.
Analysis of the Validity of Environmental Kuznets Curve for the Baltic States
NASA Astrophysics Data System (ADS)
Lapinskienė, Giedrė; Tvaronavičienė, Manuela; Vaitkus, Pranas
2013-12-01
The paper analyses a traditional Environmental Kuznets Curve (EKC) relationship between greenhouse gases (GHG) and gross domestic product (GDP), extending the research to include some additional factors, such as environmental tax, research and development expenditure, implicit tax rate on energy, primary production of coal and lignite, energy intensity of the economy taken from the Eurostat database. The EKC indicates that, at the early stages of economic growth, pollution increases with the growing use of resources, but when a certain level of income per capita is reached, the trend reverses so that, at a higher development stage, further economic growth leads to the improvement of the environment. In the first part of the research, the validity of the reduced EKC for the Baltic region for the period 1995-2008 is determined. In the second part, the impact of selected factors is statistically tested. In both cases, the standard cubic equation is used because it is believed that this model is the most accurate for the development stage of this region. The research results may be useful for climate change policy design.
NASA Astrophysics Data System (ADS)
Kornhuber, Kai; Rybski, Diego; Costa, Luis; Reusser, Dominik E.; Kropp, Jürgen P.
2014-05-01
The Environmental Kuznets Curves (EKC) postulates that pollution increases with the income per capita up to a maximum, above which it decreases with the further increase in income per capita, i.e. following an inverse U-shape in the pollution vs. income per capita. It is commonly believed that EKC occurs for "local" pollutants such as nitrogen oxide and sulfur dioxide, but does not hold for CO2 emissions. This is attributed to the fact that while "local" pollutants cause a visible environmental damage on the local/regional scale (which authorities/governments seek to avoid), the consequences of CO2 emission have no immediate attributable local/regional consequences. We review EKC for CO2 exploring its relation between CO2 per capita and the Human Development Index (HDI) between 1990 and 2010 obtained from the World Bank database. We find evidence for a reduction in CO2 emissions per capita in highly developed countries. We propose a model according to which the emissions per capita of a country are composed of a component related to the actual state of development and a component related to the change of development. The model leads to four distinct cases of which two have EKC shape and two imply saturation. This outcome is in line with previously suggested qualitative relations. Our analysis indicates that the EKC shaped cases better describes the empirical values. We explore the less extreme version corresponding to the so-called conventional EKC and study the maximum of the fitted curve, providing a threshold-value for the HDI and a typical maximum value for the emissions per capita. We find that approx. 5 countries have crossed the CO2-HDI maximum, corresponding to approx. 1.5% of the world population.
Congregado, Emilio; Feria-Gallardo, Julia; Golpe, Antonio A; Iglesias, Jesús
2016-09-01
In this paper, we analyze the existence of the environmental Kuznets curve as reported by Kuznets (Am Econ Rev 5:1-28, 1955) by using the methodology proposed by Kejriwal and Perron (J Econ 146:59-73, 2008, J Bus Econ Stat 28:503-522, 2010) and applying Jaunky's (Energy Policy 39(3):1228-1240, 2011) specification using quarterly data from 1973:1 to 2015:2. We also allow different behaviors across time and identify it by economic sectors. Our results show the existence of the environmental Kuznets curve (EKC) in the USA only when we allow for structural breaks. Interestingly, the industrial sector shows a different pattern than do other economic sectors; with the beginning of the economic crisis, it appears to have abandoned the objective of the environmental stabilization found until then. PMID:27282372
Congregado, Emilio; Feria-Gallardo, Julia; Golpe, Antonio A; Iglesias, Jesús
2016-09-01
In this paper, we analyze the existence of the environmental Kuznets curve as reported by Kuznets (Am Econ Rev 5:1-28, 1955) by using the methodology proposed by Kejriwal and Perron (J Econ 146:59-73, 2008, J Bus Econ Stat 28:503-522, 2010) and applying Jaunky's (Energy Policy 39(3):1228-1240, 2011) specification using quarterly data from 1973:1 to 2015:2. We also allow different behaviors across time and identify it by economic sectors. Our results show the existence of the environmental Kuznets curve (EKC) in the USA only when we allow for structural breaks. Interestingly, the industrial sector shows a different pattern than do other economic sectors; with the beginning of the economic crisis, it appears to have abandoned the objective of the environmental stabilization found until then.
Lantz, Van; Martínez-Espiñeira, Roberto
2008-04-01
The traditional environmental Kuznets curve (EKC) hypothesis postulates that environmental degradation follows an inverted U-shaped relationship with gross domestic product (GDP) per capita. We tested the EKC hypothesis with bird populations in 5 different habitats as environmental quality indicators. Because birds are considered environmental goods, for them the EKC hypothesis would instead be associated with a U-shaped relationship between bird populations and GDP per capita. In keeping with the literature, we included other variables in the analysis-namely, human population density and time index variables (the latter variable captured the impact of persistent and exogenous climate and/or policy changes on bird populations over time). Using data from 9 Canadian provinces gathered over 37 years, we used a generalized least-squares regression for each bird habitat type, which accounted for the panel structure of the data, the cross-sectional dependence across provinces in the residuals, heteroskedasticity, and fixed- or random-effect specifications of the models. We found evidence that supports the EKC hypothesis for 3 of the 5 bird population habitat types. In addition, the relationship between human population density and the different bird populations varied, which emphasizes the complex nature of the impact that human populations have on the environment. The relationship between the time-index variable and the different bird populations also varied, which indicates there are other persistent and significant influences on bird populations over time. Overall our EKC results were consistent with those found for threatened bird species, indicating that economic prosperity does indeed act to benefit some bird populations.
Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang
2013-01-01
This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area. PMID:24171160
Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang
2013-01-01
This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.
Liu, Xiao-Hui; Wang, Wei-Liang; Lu, Shao-Yong; Wang, Yu-Fan; Ren, Zongming
2016-08-01
In Zaozhuang, economic development affects the discharge amount of industrial wastewater, chemical oxygen demand (COD), and ammonia nitrogen (NH3-N). To reveal the trend of water environmental quality related to the economy in Zaozhuang, this paper simulated the relationships between industrial wastewater discharge, COD, NH3-N load, and gross domestic product (GDP) per capita for Zaozhuang (2002-2012) using environmental Kuznets curve (EKC) models. The results showed that the added value of industrial GDP, the per capita GDP, and wastewater emission had average annual growth rates of 16.62, 16.19, and 17.89 %, respectively, from 2002 to 2012, while COD and NH3-N emission in 2012, compared with 2002, showed average annual decreases of 10.70 and 31.12 %, respectively. The export of EKC models revealed that industrial wastewater discharge had a typical inverted-U-shaped relationship with per capita GDP. However, both COD and NH3-N showed the binding curve of the left side of the "U" curve and left side U-shaped curve. The economy in Zaozhuang had been at the "fast-growing" stage, with low environmental pollution according to the industrial pollution level. In recent years, Zaozhuang has abated these heavy-pollution industries emphatically, so pollutants have been greatly reduced. Thus, Zaozhuang industrial wastewater treatment has been quite effective, with water quality improved significantly. The EKC models provided scientific evidence for estimating industrial wastewater discharge, COD, and NH3-N load as well as their changeable trends for Zaozhuang from an economic perspective.
NASA Astrophysics Data System (ADS)
Kornhuber, Kai; Reusser, Dominik E.; Costa, Luis; Kropp, Jürgen P.; Rybski, Diego
2015-04-01
Pollution may increase with the income per capita up to a maximum, above which it decreases with the further increase in income per capita, i.e. following an inverse U-shape in the pollution vs. income per capita. Such a behaviour is called the Environmental Kuznets Curves (EKC). In a previous presentation, we reviewed EKC for CO2 exploring its relation between CO2 per capita and the Human Development Index (HDI) between 1990 and 2013. We find evidence for a reduction in CO2 emissions per capita in highly developed countries. We present an updated model according to which the emissions per capita of a country are composed of a component related to the actual state of development and a component related to the change of development. The model leads to four distinct cases of which two have EKC shape and two imply saturation. This outcome is in line with previously suggested qualitative relations. Based on the past trend in parameters of the less extreme version of the EKC curve, we formulate a scenario for the future and contrast it against the RCP scenarios. We find that the mechanisms behind the EKC are unlikely to be sufficient to limit global warming below the 2°C target.
Spencer, James Herbert
2013-04-01
The literature on development has focused on the concept of transition in understanding the emergent challenges facing poor but rapidly developing countries. Scholars have focused extensively on the health and urban transitions associated with this change and, in particular, its use for understanding emerging infectious diseases. However, few have developed explicit empirical measures to quantify the extent to which a transitions focus is useful for theory, policy, and practice. Using open source data on avian influenza in 2004 and 2005 and the Vietnam Census of Population and Housing, this paper introduces the Kuznets curve as a tool for empirically estimating transition and disease. Findings suggest that the Kuznets curve is a viable tool for empirically assessing the role of transitional dynamics in the emergence of new infectious diseases.
Environmental bias and elastic curves on surfaces
NASA Astrophysics Data System (ADS)
Guven, Jemal; María Valencia, Dulce; Vázquez-Montejo, Pablo
2014-09-01
The behavior of an elastic curve bound to a surface will reflect the geometry of its environment. This may occur in an obvious way: the curve may deform freely along directions tangent to the surface, but not along the surface normal. However, even if the energy itself is symmetric in the curve's geodesic and normal curvatures, which control these modes, very distinct roles are played by the two. If the elastic curve binds preferentially on one side, or is itself assembled on the surface, not only would one expect the bending moduli associated with the two modes to differ, binding along specific directions, reflected in spontaneous values of these curvatures, may be favored. The shape equations describing the equilibrium states of a surface curve described by an elastic energy accommodating environmental factors will be identified by adapting the method of Lagrange multipliers to the Darboux frame associated with the curve. The forces transmitted to the surface along the surface normal will be determined. Features associated with a number of different energies, both of physical relevance and of mathematical interest, are described. The conservation laws associated with trajectories on surface geometries exhibiting continuous symmetries are also examined.
Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.
von der Assen, Niklas; Müller, Leonard J; Steingrube, Annette; Voll, Philip; Bardow, André
2016-02-01
Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases.
Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.
von der Assen, Niklas; Müller, Leonard J; Steingrube, Annette; Voll, Philip; Bardow, André
2016-02-01
Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases. PMID:26752014
Master curves for gas amplification in low vacuum and environmental scanning electron microscopy.
Thiel, Bradley L
2004-02-01
The concept of universal amplification profiles for gas cascade amplification of signals in low vacuum and environmental scanning electron microscopes is demonstrated both experimentally and theoretically using water vapor. For a given gas, cascade amplification gain profiles can be plotted onto a single master curve where the independent reduced parameter is the ratio of pressure to amplification field strength. When plotted in this fashion, both desired secondary electron and spurious background signal components fall onto respective master curves, with the amplitude being a function of anode bias only. These master curves can be described by simple Townsend Gas Capacitor equations using only two gas-specific parameters. As long as single scattering conditions apply, this approach allows for simplified, direct comparison of the gain characteristics of different gases and allows more intelligent selection of imaging conditions. The utility of treating signal amplification in this manner is demonstrated through a series of images collected under a variety of conditions, but with the ratio of pressure to amplification field strength kept constant. In practice, the range of operational parameter space in which this description can be applied to imaging is limited, as images typically have a mixture of secondary and backscattered contributions.
The environmental impact of poverty: evidence from firewood collection in rural Nepal.
Baland, Jean-Marie; Bardhan, Pranab; Das, Sanghamitra; Mookherjee, Dilip; Sarkar, Rinki
2010-01-01
We investigate determinants of household firewood collection in rural Nepal, using 1995-96 and 2002-3 World Bank Living Standards Measurement Survey (LSMS) data. We incorporate village fixed effects, endogenous censoring, measurement error in living standards and heterogeneous effects of different household assets. We find no evidence in favor of the poverty-environment hypothesis. The evidence for the environmental Kuznets curve depends on the precise measure of living standards and time period studied. Firewood collections fall with a transition to modern occupations and rise with increasing population and household division. The local interhousehold collection externality is negligible, indicating that policy interventions are justified only by ecological considerations or nonlocal spillovers.
[Investigation and analysis of China residents' environmental conservation desire].
Cao, Shi-Xiong; Chen, Jun; Chen, Li; Gao, Wang-Sheng; Yin, Hong-Wei
2007-09-01
From the viewpoints of country's safety and residents' desire, this paper investigated and analyzed the factors affecting China residents' attitudes on environmental protection policies, and the implementing results of these polices. It was indicated that people have an enhanced consciousness on environmental protection, and the relations between this consciousness and economic growth fit Kuznets curve, because most of the poor people are living in the suburban or remote regions with bad or seriously degraded environment, while the fast development of urbanization accelerates the deterioration of urban environment. People are more concerned about environment deterioration, and support the governments' policies of environmental conservation. The environment policy-making should put more emphasis on developing economics, strengthening education, and improving residents' livelihood.
Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.
2012-01-01
Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.
Environmental standards for ionizing radiation: theoretical basis for dose-response curves.
Upton, A C
1983-10-01
The types of injury attributable to ionizing radiation are subdivided, for purposes of risk assessment and radiological protection, into two broad categories: stochastic effects and nonstochastic effects. Stochastic effects are viewed as probablistic phenomena, varying in frequency but not severity as a function of the dose, without any threshold; nonstochastic effects are viewed as deterministic phenomena, varying in both frequency and severity as a function of the dose, with clinical thresholds. Included among stochastic effects are heritable effects (mutations and chromosome aberrations) and carcinogenic effects. Both types of effects are envisioned as unicellular phenomena which can result from nonlethal injury of individual cells, without the necessity of damage to other cells. For the induction of mutations and chromosome aberrations in the low-to-intermediate dose range, the dose-response curve with high-linear energy transfer (LET) radiation generally conforms to a linear nonthreshold relationship and varies relatively little with the dose rate. In contrast, the curve with low-LET radiation generally conforms to a linear-quadratic relationship, rising less steeply than the curve with high-LET radiation and increasing in slope with increasing dose and dose rate. The dose-response curve for carcinogenic effects varies widely from one type of neoplasm to another in the intermediate-to-high dose range, in part because of differences in the way large doses of radiation can affect the promotion and progression of different neoplasms. Information about dose-response relations for low-level irradiation is fragmentary but consistent, in general, with the hypothesis that the neoplastic transformation may result from mutation, chromosome aberration or genetic recombination in a single susceptible cell.
Forbes, Thomas P; Najarro, Marcela
2016-07-21
The discriminative potential of an ion mobility spectrometer (IMS) for trace detection of illicit narcotics relative to environmental background was investigated with a receiver operating characteristic (ROC) curve framework. The IMS response of cocaine, heroin, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), and Δ(9)-tetrahydro-cannabinol (THC) was evaluated against environmental background levels derived from the screening of incoming delivery vehicles at a federal facility. Over 20 000 samples were collected over a multiyear period under two distinct sets of instrument operating conditions, a baseline mode and an increased desorption/drift tube temperature and sampling time mode. ROC curves provided a quantifiable representation of the interplay between sensitivity (true positive rate, TPR) and specificity (1 - false positive rate, FPR). A TPR of 90% and minimized FPR were targeted as the detection limits of IMS for the selected narcotics. MDMA, THC, and cocaine demonstrated single nanogram sensitivity at 90% TPR and <10% FPR, with improvements to both MDMA and cocaine in the elevated temperature/increased sampling mode. Detection limits in the tens of nanograms with poor specificity (FPR ≈ 20%) were observed for methamphetamine and heroin under baseline conditions. However, elevating the temperature reduced the background in the methamphetamine window, drastically improving its response (90% TPR and 3.8% FPR at 1 ng). On the contrary, the altered mode conditions increased the level of background for THC and heroin, partially offsetting observed enhancements to desorption. The presented framework demonstrated the significant effect environmental background distributions have on sensitivity and specificity.
Forbes, Thomas P; Najarro, Marcela
2016-07-21
The discriminative potential of an ion mobility spectrometer (IMS) for trace detection of illicit narcotics relative to environmental background was investigated with a receiver operating characteristic (ROC) curve framework. The IMS response of cocaine, heroin, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), and Δ(9)-tetrahydro-cannabinol (THC) was evaluated against environmental background levels derived from the screening of incoming delivery vehicles at a federal facility. Over 20 000 samples were collected over a multiyear period under two distinct sets of instrument operating conditions, a baseline mode and an increased desorption/drift tube temperature and sampling time mode. ROC curves provided a quantifiable representation of the interplay between sensitivity (true positive rate, TPR) and specificity (1 - false positive rate, FPR). A TPR of 90% and minimized FPR were targeted as the detection limits of IMS for the selected narcotics. MDMA, THC, and cocaine demonstrated single nanogram sensitivity at 90% TPR and <10% FPR, with improvements to both MDMA and cocaine in the elevated temperature/increased sampling mode. Detection limits in the tens of nanograms with poor specificity (FPR ≈ 20%) were observed for methamphetamine and heroin under baseline conditions. However, elevating the temperature reduced the background in the methamphetamine window, drastically improving its response (90% TPR and 3.8% FPR at 1 ng). On the contrary, the altered mode conditions increased the level of background for THC and heroin, partially offsetting observed enhancements to desorption. The presented framework demonstrated the significant effect environmental background distributions have on sensitivity and specificity. PMID:27206280
The Kuznets Curve of Education: A Global Perspective on Education Inequalities. CEE DP 116
ERIC Educational Resources Information Center
Morrison, Christian; Murtin, Fabrice
2010-01-01
Education is recognized to be a key factor of economic development, not only giving access to technological progress as emphasized by the Schumpeterian growth theory, but also entailing numerous social externalities such as the demographic transition (Murtin, 2009) or democratization (Murtin and Wacziarg, 2010). If the evolution of world…
Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André
2015-07-01
The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.
Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André
2015-07-01
The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany. PMID:26061620
Okada, Mika; Kawano, Kimiko; Kura, Fumiaki; Amemura-Maekawa, Junko; Watanabe, Haruo; Yagita, Kenji; Endo, Takuro; Suzuki, Sen
2005-06-01
In July 2002, a large outbreak of legionellosis occurred in a bathhouse with spa facilities in Miyazaki Prefecture. Two hundred-ninety-five patients (including suspected cases) that had pneumonia and/or symptoms of fever, cough and so forth were reported; 37% of them were hospitalized and seven people died. In environmental investigations, Legionella pneumophila serogroups (SGs) land 8, L. dumoffii, L. londiniensis, some other Legionella species and many kinds of amoeba were isolated from 55 samples of bathtub water, tank water, filters and so forth in the spa facilities. The dominant isolates from the bathtab waters belonged to L. londiniensis, L. dumoffii and L. pneumophila SG1, and their maximum concentrations were 1.5 x 10(6), 5.2 x 10(5) and 1.6 x 10(5) cfu/100 mL, respectively. L. pneumophila SG1 strains isolated from bathtub water, tank water, filters and sputa of patients showed a indistinguishable DNA fingerprint pattern by pulsed-field gel electrophoresis (PFGE), confirming that the source of infection was the spa water. Our study indicate that spas may be a significant health hazard if hygienic management fails.
Evaluating the Relative Environmental Impact of Countries
Bradshaw, Corey J. A.; Giam, Xingli; Sodhi, Navjot S.
2010-01-01
Environmental protection is critical to maintain ecosystem services essential for human well-being. It is important to be able to rank countries by their environmental impact so that poor performers as well as policy ‘models’ can be identified. We provide novel metrics of country-specific environmental impact ranks – one proportional to total resource availability per country and an absolute (total) measure of impact – that explicitly avoid incorporating confounding human health or economic indicators. Our rankings are based on natural forest loss, habitat conversion, marine captures, fertilizer use, water pollution, carbon emissions and species threat, although many other variables were excluded due to a lack of country-specific data. Of 228 countries considered, 179 (proportional) and 171 (absolute) had sufficient data for correlations. The proportional index ranked Singapore, Korea, Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines and Netherlands as having the highest proportional environmental impact, whereas Brazil, USA, China, Indonesia, Japan, Mexico, India, Russia, Australia and Peru had the highest absolute impact (i.e., total resource use, emissions and species threatened). Proportional and absolute environmental impact ranks were correlated, with mainly Asian countries having both high proportional and absolute impact. Despite weak concordance among the drivers of environmental impact, countries often perform poorly for different reasons. We found no evidence to support the environmental Kuznets curve hypothesis of a non-linear relationship between impact and per capita wealth, although there was a weak reduction in environmental impact as per capita wealth increases. Using structural equation models to account for cross-correlation, we found that increasing wealth was the most important driver of environmental impact. Our results show that the global community not only has to encourage better environmental performance in less
Evaluating the relative environmental impact of countries.
Bradshaw, Corey J A; Giam, Xingli; Sodhi, Navjot S
2010-05-03
Environmental protection is critical to maintain ecosystem services essential for human well-being. It is important to be able to rank countries by their environmental impact so that poor performers as well as policy 'models' can be identified. We provide novel metrics of country-specific environmental impact ranks - one proportional to total resource availability per country and an absolute (total) measure of impact - that explicitly avoid incorporating confounding human health or economic indicators. Our rankings are based on natural forest loss, habitat conversion, marine captures, fertilizer use, water pollution, carbon emissions and species threat, although many other variables were excluded due to a lack of country-specific data. Of 228 countries considered, 179 (proportional) and 171 (absolute) had sufficient data for correlations. The proportional index ranked Singapore, Korea, Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines and Netherlands as having the highest proportional environmental impact, whereas Brazil, USA, China, Indonesia, Japan, Mexico, India, Russia, Australia and Peru had the highest absolute impact (i.e., total resource use, emissions and species threatened). Proportional and absolute environmental impact ranks were correlated, with mainly Asian countries having both high proportional and absolute impact. Despite weak concordance among the drivers of environmental impact, countries often perform poorly for different reasons. We found no evidence to support the environmental Kuznets curve hypothesis of a non-linear relationship between impact and per capita wealth, although there was a weak reduction in environmental impact as per capita wealth increases. Using structural equation models to account for cross-correlation, we found that increasing wealth was the most important driver of environmental impact. Our results show that the global community not only has to encourage better environmental performance in less
Evaluating the relative environmental impact of countries.
Bradshaw, Corey J A; Giam, Xingli; Sodhi, Navjot S
2010-01-01
Environmental protection is critical to maintain ecosystem services essential for human well-being. It is important to be able to rank countries by their environmental impact so that poor performers as well as policy 'models' can be identified. We provide novel metrics of country-specific environmental impact ranks - one proportional to total resource availability per country and an absolute (total) measure of impact - that explicitly avoid incorporating confounding human health or economic indicators. Our rankings are based on natural forest loss, habitat conversion, marine captures, fertilizer use, water pollution, carbon emissions and species threat, although many other variables were excluded due to a lack of country-specific data. Of 228 countries considered, 179 (proportional) and 171 (absolute) had sufficient data for correlations. The proportional index ranked Singapore, Korea, Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines and Netherlands as having the highest proportional environmental impact, whereas Brazil, USA, China, Indonesia, Japan, Mexico, India, Russia, Australia and Peru had the highest absolute impact (i.e., total resource use, emissions and species threatened). Proportional and absolute environmental impact ranks were correlated, with mainly Asian countries having both high proportional and absolute impact. Despite weak concordance among the drivers of environmental impact, countries often perform poorly for different reasons. We found no evidence to support the environmental Kuznets curve hypothesis of a non-linear relationship between impact and per capita wealth, although there was a weak reduction in environmental impact as per capita wealth increases. Using structural equation models to account for cross-correlation, we found that increasing wealth was the most important driver of environmental impact. Our results show that the global community not only has to encourage better environmental performance in less
Concentration Response Curve for Ozone related Mortality at High Concentrations Ana G. Rappold, James Crooks, Lucas M. Neas Background Rising temperatures and decreased global circulation in the upcoming decades are expected to have a detrimental impact on air quality, particular...
Essays in environmental economics
NASA Astrophysics Data System (ADS)
Bartz-Marvez, Sherry L.
This body of work contributes to the literature on two current topics in environmental economics: (1) the relationship between economic development and environmental degradation; and (2) the effectiveness of mandatory information disclosure as a regulatory instrument. For the first topic, we link theoretical and empirical Environmental Kuznets Curve research by using calibration and simulation to test a growth model with environmental quality as a normal good and emissions as a factor of production. We use U.S. macroeconomic, emissions and compliance data to calibrate parameters representing preferences for environmental quality and marginal abatement costs. We simulate the model starting from a less-developed initial condition and compare the predicted pollution-income relationship with that in the data. Our results are mixed. Some support exists for the theory that an inverted U-shape results from a corner solution in which less developed countries do not abate pollution. However, pollution peaks at a level of per capita income which is much lower than that observed in the U.S. data. For the second topic, we study the effectiveness of mandatory information disclosure as environmental regulation. Community-right-to-know programs such as the EPA's Toxic Release Inventory (TRI) use mandatory information disclosure to "shame" dirty firms into reducing emissions. The idea is that the public---armed with previously unavailable emissions information---will pressure firms with higher-than-expected emissions to "clean-up." We use the electricity industry to study the impact of price-and-entry deregulation on the effectiveness of the TRI. Using event studies, we find that, on average, utilities experience losses in firm value immediately following TRI announcements. Using panel regressions, we show that toxic emissions released in regulated states are associated with decreases in firm value while those released in deregulated states are associated with increases in firm
Ma, Dun-Chao; Hu, Shan-Ying; Chen, Ding-Jiang; Li, You-Run
2012-04-01
Substance flow analysis was used to construct a model to analyze change traits of China's phosphorous (P) consumption structure from 1980 to 2008 and their influences on environmental phosphorous loads, then the correlation between several socioeconomic factors and phosphorous consumption pollution was investigated. It is found that phosphorous nutrient inputs of urban life and rural life on a per capita level climbed to 1.20 kg x a(-1) and 0.99 kg x a(-1) from 0.83 kg x a(-1) and 0.75 kg x a(-1) respectively, but phosphorous recycling ratios of urban life fell to 15.6% from 62.6%. P inputs of animal husbandry and planting also kept increasing, but the recycling ratio of the former decreased from 67.5% to 40.5%, meanwhile much P input of the latter was left in agricultural soil. Correlation coefficients were all above 0.90, indicating that population, urbanization level, development levels of planting and animal husbandry were important incentives for P consumption pollution in China. Environmental Kuznets curve showed that China still stayed in the early development stage, promoting economic growth at an expense of environmental quality. This study demonstrates that China's P consumption system is being transformed into a linear and open structure, and that P nutrient loss and environmental P loads increase continually.
Gosselin-Théberge, Maxime; Taboada, Eduardo; Guy, Rebecca A
2016-10-01
Campylobacter is a major public health and economic burden in developed and developing countries. This study evaluated published real-time PCR (qPCR) assays for detection of Campylobacter to enable selection of the best assays for quantification of C. spp. and C. jejuni in environmental water samples. A total of 9 assays were compared: three for thermotolerant C. spp. targeting the 16S rRNA and six for C. jejuni targeting different genes. These assays were tested in the wet-lab for specificity and sensitivity against a collection of 60, genetically diverse, Campylobacter isolates from environmental water. All three qPCR assays targeting C. spp. were positive when tested against the 60 isolates, whereas, assays targeting C. jejuni differed among each other in terms of specificity and sensitivity. Three C. jejuni-specific assays that demonstrated good specificity and sensitivity when tested in the wet-lab showed concordant results with in silico-predicted results obtained against a set of 211 C. jejuni and C. coli genome sequences. Two of the assays targeting C. spp. and C. jejuni were selected to compare DNA concentration estimation, using spectrophotometry and digital PCR (dPCR), in order to calibrate standard curves (SC) for greater accuracy of qPCR-based quantification. Average differences of 0.56±0.12 and 0.51±0.11 log fold copies were observed between the spectrophotometry-based SC preparation and the dPCR preparation for C. spp. and C. jejuni, respectively, demonstrating an over-estimation of Campylobacter concentration when spectrophotometry was used to calibrate the DNA SCs. Our work showed differences in quantification of aquatic environmental isolates of Campylobacter between qPCR assays and method-specific bias in SC preparation. This study provided an objective analysis of qPCR assays targeting Campylobacter in the literature and provides a framework for evaluating novel assays. PMID:27485709
ERIC Educational Resources Information Center
Rousseau, Ronald
1994-01-01
Discussion of informetric distributions shows that generalized Leimkuhler functions give proper fits to a large variety of Bradford curves, including those exhibiting a Groos droop or a rising tail. The Kolmogorov-Smirnov test is used to test goodness of fit, and least-square fits are compared with Egghe's method. (Contains 53 references.) (LRW)
ERIC Educational Resources Information Center
Yates, Robert C.
This volume, a reprinting of a classic first published in 1952, presents detailed discussions of 26 curves or families of curves, and 17 analytic systems of curves. For each curve the author provides a historical note, a sketch or sketches, a description of the curve, a discussion of pertinent facts, and a bibliography. Depending upon the curve,…
Cho, Sunggoo
2016-09-01
Conics and Cartesian ovals are extremely important curves in various fields of science. In addition, aspheric curves based on conics are useful in optical design. Superconic curves, recently suggested by Greynolds, are extensions of both conics and Cartesian ovals and have been applied to optical design. However, they are not extensions of aspheric curves based on conics. In this work, we investigate another type of superconic curves. These superconic curves are extensions of not only conics and Cartesian ovals but also aspheric curves based on conics. Moreover, these are represented in explicit form, while Greynolds's superconic curves are in implicit form. PMID:27607506
Dossi, Carlo; Monticelli, Damiano; Pozzi, Andrea; Recchia, Sandro; Vezzoli, Luigina
2002-04-01
High-altitude alpine valleys may be considered as ideal field laboratories for the interdisciplinary teaching of Environmental Sciences to undergraduate students in a Laurea degree, since different typologies of sampling sites (rivers, lakes, glaciers) may be found within walking distance, and students are encouraged to develop cooperative learning activities. Scientific data have been collected by 1st year students at the University of Insubria in Como during a teaching program in Ventina Valley and Caronno Valley near Sondrio (Italy). Analytical and geochemical results will be presented and discussed on the basis of organic deposition and water-rock interactions.
ERIC Educational Resources Information Center
Nordmark, Arne; Essen, Hanno
2007-01-01
The equilibrium of a flexible inextensible string, or chain, in the centrifugal force field of a rotating reference frame is investigated. It is assumed that the end points are fixed on the rotation axis. The shape of the curve, the skipping rope curve or "troposkien", is given by the Jacobi elliptic function sn. (Contains 3 figures.)
Anodic Polarization Curves Revisited
ERIC Educational Resources Information Center
Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin
2013-01-01
An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…
Chalam, K V; Shah, Vinay A; Tripathi, Ramesh C
2004-01-01
A curved vitrectomy probe for better accessibility of the peripheral retina in phakic eyes is described. The specially designed curved vitrectomy probe has a 20-gauge pneumatic cutter. The radius of curvature at the shaft is 19.4 mm and it is 25 mm long. The ora serrata is accessed through a 3.0- or 4.0-mm sclerotomy in phakic eyes without touching the crystalline lens. Use of this instrument avoids inadvertent trauma to the clear lens in phakic eyes requiring vitreous base excision. This curved vitrectomy instrument complements wide-angle viewing systems and endoscopes for safe surgical treatment of peripheral retinal pathology in phakic eyes. PMID:15185799
Leslie, Mark; Holloway, Charles A
2006-01-01
When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.
Textbook Factor Demand Curves.
ERIC Educational Resources Information Center
Davis, Joe C.
1994-01-01
Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)
ERIC Educational Resources Information Center
Harper, Suzanne R.; Driskell, Shannon
2005-01-01
Graphic tips for using the Geometer's Sketchpad (GSP) are described. The methods to import an image into GSP, define a coordinate system, plot points and curve fit the function using a graphical calculator are demonstrated where the graphic features of GSP allow teachers to expand the use of the technology application beyond the classroom.
ERIC Educational Resources Information Center
Lawes, Jonathan F.
2013-01-01
Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…
ERIC Educational Resources Information Center
Paulton, Richard J. L.
1991-01-01
A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)
Comparing Item Characteristic Curves.
ERIC Educational Resources Information Center
Rosenbaum, Paul R.
1987-01-01
This paper develops and applies three nonparametric comparisons of the shapes of two item characteristic surfaces: (1) proportional latent odds; (2) uniform relative difficulty; and (3) item sensitivity. A method is presented for comparing the relative shapes of two item characteristic curves in two examinee populations who were administered an…
Straightening Out Learning Curves
ERIC Educational Resources Information Center
Corlett, E. N.; Morecombe, V. J.
1970-01-01
The basic mathematical theory behind learning curves is explained, together with implications for clerical and industrial training, evaluation of skill development, and prediction of future performance. Brief studies of textile worker and typist training are presented to illustrate such concepts as the reduction fraction (a consistent decrease in…
Factorization with genus 2 curves
NASA Astrophysics Data System (ADS)
Cosset, Romain
2010-04-01
The elliptic curve method (ECM) is one of the best factorization methods available. It is possible to use hyperelliptic curves instead of elliptic curves but it is in theory slower. We use special hyperelliptic curves and Kummer surfaces to reduce the complexity of the algorithm. Our implementation GMP-HECM is faster than GMP-ECM for factoring large numbers.
NASA Astrophysics Data System (ADS)
Brandenburg, J. P.
2013-08-01
Fault-propagation folds form an important trapping element in both onshore and offshore fold-thrust belts, and as such benefit from reliable interpretation. Building an accurate geologic interpretation of such structures requires palinspastic restorations, which are made more challenging by the interplay between folding and faulting. Trishear (Erslev, 1991; Allmendinger, 1998) is a useful tool to unravel this relationship kinematically, but is limited by a restriction to planar fault geometries, or at least planar fault segments. Here, new methods are presented for trishear along continuously curved reverse faults defining a flat-ramp transition. In these methods, rotation of the hanging wall above a curved fault is coupled to translation along a horizontal detachment. Including hanging wall rotation allows for investigation of structures with progressive backlimb rotation. Application of the new algorithms are shown for two fault-propagation fold structures: the Turner Valley Anticline in Southwestern Alberta, and the Alpha Structure in the Niger Delta.
Multivariate curve-fitting in GAUSS
Bunck, C.M.; Pendleton, G.W.
1988-01-01
Multivariate curve-fitting techniques for repeated measures have been developed and an interactive program has been written in GAUSS. The program implements not only the one-factor design described in Morrison (1967) but also includes pairwise comparisons of curves and rates, a two-factor design, and other options. Strategies for selecting the appropriate degree for the polynomial are provided. The methods and program are illustrated with data from studies of the effects of environmental contaminants on ducklings, nesting kestrels and quail.
Schulz, Douglas A.
2007-10-08
A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.
Anatomical curve identification
Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise
2015-01-01
Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943
NASA Astrophysics Data System (ADS)
Şenyurt, Süleyman; Altun, Yasin; Cevahir, Ceyda
2016-04-01
In this paper, we investigate the Smarandache curves according to Sabban frame of fixed pole curve which drawn by the unit Darboux vector of the Bertrand partner curve. Some results have been obtained. These results were expressed as the depends Bertrand curve.
Magnetism in curved geometries
NASA Astrophysics Data System (ADS)
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-09-01
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
Magnetism in curved geometries
NASA Astrophysics Data System (ADS)
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-09-01
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
NASA Astrophysics Data System (ADS)
Mölder, S.
2016-07-01
Curved shock theory (CST) is introduced, developed and applied to relate pressure gradients, streamline curvatures, vorticity and shock curvatures in flows with planar or axial symmetry. Explicit expressions are given, in an influence coefficient format, that relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. The effect of pre-shock flow divergence/convergence, on vorticity generation, is related to the transverse shock curvature. A novel derivation for the post-shock vorticity is presented that includes the effects of pre-shock flow non-uniformities. CST applicability to unsteady flows is discussed.
The Characteristic Curves of Water
NASA Astrophysics Data System (ADS)
Neumaier, Arnold; Deiters, Ulrich K.
2016-09-01
In 1960, E. H. Brown defined a set of characteristic curves (also known as ideal curves) of pure fluids, along which some thermodynamic properties match those of an ideal gas. These curves are used for testing the extrapolation behaviour of equations of state. This work is revisited, and an elegant representation of the first-order characteristic curves as level curves of a master function is proposed. It is shown that Brown's postulate—that these curves are unique and dome-shaped in a double-logarithmic p, T representation—may fail for fluids exhibiting a density anomaly. A careful study of the Amagat curve (Joule inversion curve) generated from the IAPWS-95 reference equation of state for water reveals the existence of an additional branch.
Titration Curves: Fact and Fiction.
ERIC Educational Resources Information Center
Chamberlain, John
1997-01-01
Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…
Generating Resources Supply Curves.
United States. Bonneville Power Administration. Division of Power Resources Planning.
1985-07-01
This report documents Pacific Northwest supply curve information for both renewable and other generating resources. Resources are characterized as ''Renewable'' and ''Other'' as defined in section 3 or the Pacific Northwest Electric Power Planning and Conservation Act. The following resources are described: renewable: (cogeneration; geothermal; hydroelectric (new); hydroelectric (efficiency improvement); solar; and wind); other (nonrenewable generation resources: coal; combustion turbines; and nuclear. Each resource has the following information documented in tabular format: (1) Technical Characteristics; (2) Costs (capital and O and M); (3) Energy Distribution by Month; and (4) Supply Forecast (energy). Combustion turbine (CT) energy supply is not forecasted because of CT's typical peaking application. Their supply is therefore unconstrained in order to facilitate analysis of their operation in the regional electrical supply system. The generic nuclear resource is considered unavailable to the region over the planning horizon.
Classification and properties of UV extinction curves
NASA Astrophysics Data System (ADS)
Barbaro, G.; Mazzei, P.; Morbidelli, L.; Patriarchi, P.; Perinotto, M.
2001-01-01
The catalog of Savage et al. (\\cite{ref27}) reporting colour excesses of 1415 stars from ANS photometry offers the opportunity to deeply investigate the characteristics of UV extinction curves which differ from the standard extinction of the diffuse interstellar medium. To this aim we have selected a sample of 252 curves, which have been compared with the relations derived by Cardelli et al. (\\cite{ref4}; CCM in the following) for a variety of R_V values in the range 2.4-5 and have been classified as normal if they fit at least one of the CCM curves or anomalous otherwise. We find that normal curves with small R_V are just as numerous as those with large R_V. The anomalous objects are arranged into two groups according to the strength of the bump at 0.217 mu . For a given value of c_2 this increases along the sequence: type A anomalous, normals and type B anomalous, suggesting that this sequence should correspond to an increase of the amount of small grains along the sightline. Considerations concerning the environmental characteristics indicate that the anomalous behaviour is not necessarily tied to the existence of dense gas clouds along the line of sight.
Langevin Equation on Fractal Curves
NASA Astrophysics Data System (ADS)
Satin, Seema; Gangal, A. D.
2016-07-01
We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus.
NASA Technical Reports Server (NTRS)
Allard, Robert; Calve, Andrew; Pastreck, Edwin; Padden, Edward
1992-01-01
Tool for use in electrical-discharge machining (EDM) guides EDM electrode in making curved holes. Guide rod fits in slot in arm, which moves through arc. Motion drives electrode into workpiece along desired curved path. Electrode burns into workpiece while arm rotates on spindle. Discharge cuts hole of same radius of curvature.
Poiseuille flow in curved spaces.
Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J
2016-04-01
We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.
Magnetic Curves in Cosymplectic Manifolds
NASA Astrophysics Data System (ADS)
Druţă-Romaniuc, Simona-Luiza; Inoguchi, Jun-ichi; Munteanu, Marian Ioan; Nistor, Ana Irina
2016-08-01
In this paper we classify the magnetic trajectories with respect to contact magnetic fields in cosymplectic manifolds of arbitrary dimension. We classify Killing magnetic curves in product spaces M2 × R , recalling also explicit description of magnetic curves in E3 , S2 × R and H2 × R . Finally, we prove a reduction theorem for magnetic curves in the cosymplectic space form M bar 2 n(k) × R , in order to show that the (2n+1)-dimensional case reduces to the 3-dimensional one.
Curved characteristics behind blast waves.
NASA Technical Reports Server (NTRS)
Laporte, O.; Chang, T. S.
1972-01-01
The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.
Parabolic curves in Lie groups
Pauley, Michael
2010-05-15
To interpolate a sequence of points in Euclidean space, parabolic splines can be used. These are curves which are piecewise quadratic. To interpolate between points in a (semi-)Riemannian manifold, we could look for curves such that the second covariant derivative of the velocity is zero. We call such curves Jupp and Kent quadratics or JK-quadratics because they are a special case of the cubic curves advocated by Jupp and Kent. When the manifold is a Lie group with bi-invariant metric, we can relate JK-quadratics to null Lie quadratics which arise from another interpolation problem. We solve JK-quadratics in the Lie groups SO(3) and SO(1,2) and in the sphere and hyperbolic plane, by relating them to the differential equation for a quantum harmonic oscillator00.
Flow over riblet curved surfaces
NASA Astrophysics Data System (ADS)
Loureiro, J. B. R.; Silva Freire, A. P.
2011-12-01
The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).
Debt, Democratization, and Development in Latin America: How Policy Can Affect Global Warming
ERIC Educational Resources Information Center
Aubourg, Rene W.; Good, David H.; Krutilla, Kerry
2008-01-01
The environmental Kuznets curve (EKC) hypothesis conjectures a nonlinear relationship between pollution and economic growth, such that pollution per capita initially increases as countries economically develop, but then reaches a maximum point before ultimately declining. Much of the EKC literature has focused on testing this basic hypothesis and,…
Cochlear microphonic broad tuning curves
NASA Astrophysics Data System (ADS)
Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani
2015-12-01
It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the
Relative Locality in Curved Spacetime
NASA Astrophysics Data System (ADS)
Kowalski-Glikman, Jerzy; Rosati, Giacomo
2013-07-01
In this paper we construct the action describing dynamics of the particle moving in curved spacetime, with a nontrivial momentum space geometry. Curved momentum space is the core feature of theories where relative locality effects are present. So far aspects of nonlinearities in momentum space have been studied only for flat or constantly expanding (de Sitter) spacetimes, relying on their maximally symmetric nature. The extension of curved momentum space frameworks to arbitrary spacetime geometries could be relevant for the opportunities to test Planck-scale curvature/deformation of particles momentum space. As a first example of this construction we describe the particle with κ-Poincaré momentum space on a circular orbit in Schwarzschild spacetime, where the contributes of momentum space curvature turn out to be negligible. The analysis of this problem relies crucially on the solution of the soccer ball problem.
Algebraic curves of maximal cyclicity
NASA Astrophysics Data System (ADS)
Caubergh, Magdalena; Dumortier, Freddy
2006-01-01
The paper deals with analytic families of planar vector fields, studying methods to detect the cyclicity of a non-isolated closed orbit, i.e. the maximum number of limit cycles that can locally bifurcate from it. It is known that this multi-parameter problem can be reduced to a single-parameter one, in the sense that there exist analytic curves in parameter space along which the maximal cyclicity can be attained. In that case one speaks about a maximal cyclicity curve (mcc) in case only the number is considered and of a maximal multiplicity curve (mmc) in case the multiplicity is also taken into account. In view of obtaining efficient algorithms for detecting the cyclicity, we investigate whether such mcc or mmc can be algebraic or even linear depending on certain general properties of the families or of their associated Bautin ideal. In any case by well chosen examples we show that prudence is appropriate.
Potential Energy Curves for CO
NASA Technical Reports Server (NTRS)
Tobias, Irwin; Fallon, Robert J.; Vanderslice, Joseph T.
1960-01-01
Potential energy curves for the Chi (sup 1) Epsilon (sup plus), alpha (sup 3) II (sub r), alpha prime (sup 3) epsilon (sup plus), d (sup 3) delta, e (sup 3) Epsilon (sup minus), Alpha (sup 1) II, and Beta (sup 1) Epsilon (sup plus), electronic states of the CO molecule have been calculated by the Rydberg-Klein-Rees method. The curve for the A III state will have to bend sharply in the range between 1.9 and 2.1 angstroms or it will have to pass through a maximum to reach the proper dissociation limit.
Curved branes with regular support
NASA Astrophysics Data System (ADS)
Antoniadis, Ignatios; Cotsakis, Spiros; Klaoudatou, Ifigeneia
2016-09-01
We study spacetime singularities in a general five-dimensional braneworld with curved branes satisfying four-dimensional maximal symmetry. The bulk is supported by an analog of perfect fluid with the time replaced by the extra coordinate. We show that contrary to the existence of finite-distance singularities from the brane location in any solution with flat (Minkowski) branes, in the case of curved branes there are singularity-free solutions for a range of equations of state compatible with the null energy condition.
NEXT Performance Curve Analysis and Validation
NASA Technical Reports Server (NTRS)
Saripalli, Pratik; Cardiff, Eric; Englander, Jacob
2016-01-01
Performance curves of the NEXT thruster are highly important in determining the thruster's ability in performing towards mission-specific goals. New performance curves are proposed and examined here. The Evolutionary Mission Trajectory Generator (EMTG) is used to verify variations in mission solutions based on both available thruster curves and the new curves generated. Furthermore, variations in BOL and EOL curves are also examined. Mission design results shown here validate the use of EMTG and the new performance curves.
Interpolation and Polynomial Curve Fitting
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Supply Curves of Conserved Energy
Meier, Alan Kevin
1982-05-01
Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.
Elliptic curves and primality proving
NASA Astrophysics Data System (ADS)
Atkin, A. O. L.; Morain, F.
1993-07-01
The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. Problema, numeros primos a compositis dignoscendi, hosque in factores suos primos resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et geometrarum tum veterum tum recentiorum industriam ac sagacitatem occupavisse, tam notum est, ut de hac re copiose loqui superfluum foret.
Breakpoint chlorination curves of greywater.
March, J G; Gual, M
2007-08-01
A study on chlorination of raw greywater with hypochlorite is reported in this paper. Samples were chlorinated in a variety of conditions, and residual chlorine (Cl2) was measured spectrophotometrically. For each sample, the chlorination curve (chlorine residuals versus chlorine dose) was obtained. Curves showed the typical hump-and-dip profile attributable to the formation and destruction of chloramines. It was observed that, after reactions with strong reductants and chloramines-forming compounds, the remaining organic matter exerted a certain demand of chlorine. The evolution of chlorination curves with addition of ammonia and dodecylbencene sulfonate sodium salt and with dilution of the greywater sample were studied. In addition, chlorination curves at several contact times have been obtained, resulting in slower chlorine decay in the hump zone than in the dip zone. In addition, the decay of coliforms in chlorinated samples was also investigated. It was found that, for a chlorination dosage corresponding to the maximum of the hump zone (average 8.9 mg Cl2/ L), samples were negative in coliforms after 10 to 30 minutes of contact time. After-growth was not observed within 3 days after chlorination. Implications in chlorination treatments of raw greywater can be derived from these results. PMID:17824528
Breakpoint chlorination curves of greywater.
March, J G; Gual, M
2007-08-01
A study on chlorination of raw greywater with hypochlorite is reported in this paper. Samples were chlorinated in a variety of conditions, and residual chlorine (Cl2) was measured spectrophotometrically. For each sample, the chlorination curve (chlorine residuals versus chlorine dose) was obtained. Curves showed the typical hump-and-dip profile attributable to the formation and destruction of chloramines. It was observed that, after reactions with strong reductants and chloramines-forming compounds, the remaining organic matter exerted a certain demand of chlorine. The evolution of chlorination curves with addition of ammonia and dodecylbencene sulfonate sodium salt and with dilution of the greywater sample were studied. In addition, chlorination curves at several contact times have been obtained, resulting in slower chlorine decay in the hump zone than in the dip zone. In addition, the decay of coliforms in chlorinated samples was also investigated. It was found that, for a chlorination dosage corresponding to the maximum of the hump zone (average 8.9 mg Cl2/ L), samples were negative in coliforms after 10 to 30 minutes of contact time. After-growth was not observed within 3 days after chlorination. Implications in chlorination treatments of raw greywater can be derived from these results.
Analysis of Exoplanet Light Curves
NASA Astrophysics Data System (ADS)
Erdem, A.; Budding, E.; Rhodes, M. D.; Püsküllü, Ç.; Soydugan, F.; Soydugan, E.; Tüysüz, M.; Demircan, O.
2015-07-01
We have applied the close binary system analysis package WINFITTER to a variety of exoplanet transiting light curves taken both from the NASA Exoplanet Archive and our own ground-based observations. WINFitter has parameter options for a realistic physical model, including gravity brightening and structural parameters derived from Kopal's applications of the relevant Radau equation, and it includes appropriate tests for determinacy and adequacy of its best fitting parameter sets. We discuss a number of issues related to empirical checking of models for stellar limb darkening, surface maculation, Doppler beaming, microvariability, and transit time variation (TTV) effects. The Radau coefficients used in the light curve modeling, in principle, allow structural models of the component stars to be tested.
Quantum walking in curved spacetime
NASA Astrophysics Data System (ADS)
Arrighi, Pablo; Facchini, Stefano; Forets, Marcelo
2016-08-01
A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs admit a continuum limit, leading to familiar PDEs (e.g., the Dirac equation). In this paper, we study the continuum limit of a wide class of QWs and show that it leads to an entire class of PDEs, encompassing the Hamiltonian form of the massive Dirac equation in (1+1) curved spacetime. Therefore, a certain QW, which we make explicit, provides us with a unitary discrete toy model of a test particle in curved spacetime, in spite of the fixed background lattice. Mathematically, we have introduced two novel ingredients for taking the continuum limit of a QW, but which apply to any quantum cellular automata: encoding and grouping.
Flow Through Randomly Curved Manifolds
Mendoza, M.; Succi, S.; Herrmann, H. J.
2013-01-01
We present a computational study of the transport properties of campylotic (intrinsically curved) media. It is found that the relation between the flow through a campylotic media, consisting of randomly located curvature perturbations, and the average Ricci scalar of the system, exhibits two distinct functional expressions, depending on whether the typical spatial extent of the curvature perturbation lies above or below the critical value maximizing the overall scalar of curvature. Furthermore, the flow through such systems as a function of the number of curvature perturbations is found to present a sublinear behavior for large concentrations, due to the interference between curvature perturbations leading to an overall less curved space. We have also characterized the flux through such media as a function of the local Reynolds number and the scale of interaction between impurities. For the purpose of this study, we have also developed and validated a new lattice Boltzmann model. PMID:24173367
NASA Astrophysics Data System (ADS)
Koten, Pavel; Borovička, Jiří
2001-11-01
The results of the light curves analysis of 234 meteors observed and recorded within the double-station image intensifier observations at the Ondřejov observatory are presented. Double-station observations allow to compute the meteor trajectory in the solar system and in the atmosphere as well as to determinate the absolute magnitude of meteor and its mass. Light curves and heights data of all major meteor showers - Lyrids, η-Aquarids, Perseids, Orionids, Leonids, Geminids as well as many sporadic meteors - were analysed. The differences between individual showers were found, e.g. Perseids appear to be more compact than Leonids. There is also difference between 1998 and 1999 Leonids. This suggests different composition or structure of parent bodies. Our data show that the beginning heights of Perseids, Orionids and Leonids are weakly dependent on meteor mass, although the dust-ball theory assumes they should be mass independent.
Isoperformance curves in applied psychology.
Jones, M B; Kennedy, R S
1996-03-01
Isoperformance is a technique for reading information out of a data-analytic model, comparable to expected mean square or omega squared analyses. It results in a trade-off function (an isoperformance curve) among the determinants of performance. The technique was developed primarily to generate trade-off functions between personnel aptitude and time in training or on the job. However, the technique is general and can be applied in any trade-off situation. In part, the purpose of this paper is to recall the antecedents of isoperformance in psychophysics and to recount the origins and development of the isoperformance readout. Its main purpose, however, is to present several examples of isoperformance curves in applied psychology and to make the case for their usefulness.
Infinite swapping in curved spaces
NASA Astrophysics Data System (ADS)
Curotto, E.; Mella, Massimo
2014-01-01
We develop an extension of the infinite swapping and partial infinite swapping techniques [N. Plattner, J. D. Doll, P. Dupuis, H. Wang, Y. Liu, and J. E. Gubernatis, J. Chem. Phys. 135, 134111 (2011)] to curved spaces. Furthermore, we test the performance of infinite swapping and partial infinite swapping in a series of flat spaces characterized by the same potential energy surface model. We develop a second order variational algorithm for general curved spaces without the extended Lagrangian formalism to include holonomic constraints. We test the new methods by carrying out NVT classical ensemble simulations on a set of multidimensional toroids mapped by stereographic projections and characterized by a potential energy surface built from a linear combination of decoupled double wells shaped purposely to create rare events over a range of temperatures.
Optical conductivity of curved graphene.
Chaves, A J; Frederico, T; Oliveira, O; de Paula, W; Santos, M C
2014-05-01
We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far- and mid-infrared frequencies for periodicities ∼100 nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthermore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.
Accelerating Around an Unbanked Curve
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2006-02-01
The December 2004 issue of TPT presented a problem concerning how a car should accelerate around an unbanked curve of constant radius r starting from rest if it is to avoid skidding. Interestingly enough, two solutions were proffered by readers.2 The purpose of this note is to compare and contrast the two approaches. Further experimental investigation of various turning strategies using a remote-controlled car and overhead video analysis could make for an interesting student project.
USE OF MECHANISTIC DATA TO HELP DEFINE DOSE-RESPONSE CURVES
Use of Mechanistic Data to Help Define Dose-Response Curves
The cancer risk assessment process described by the U.S. EPA necessitates a description of the dose-response curve for tumors in humans at low (environmental) exposures. This description can either be a default l...
Compression of contour data through exploiting curve-to-curve dependence
NASA Technical Reports Server (NTRS)
Yalabik, N.; Cooper, D. B.
1975-01-01
An approach to exploiting curve-to-curve dependencies in order to achieve high data compression is presented. One of the approaches to date of along curve compression through use of cubic spline approximation is taken and extended by investigating the additional compressibility achievable through curve-to-curve structure exploitation. One of the models under investigation is reported on.
NLINEAR - NONLINEAR CURVE FITTING PROGRAM
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1994-01-01
A common method for fitting data is a least-squares fit. In the least-squares method, a user-specified fitting function is utilized in such a way as to minimize the sum of the squares of distances between the data points and the fitting curve. The Nonlinear Curve Fitting Program, NLINEAR, is an interactive curve fitting routine based on a description of the quadratic expansion of the chi-squared statistic. NLINEAR utilizes a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the chi-square that is to be minimized. The inputs to the program are the mathematical form of the fitting function and the initial values of the parameters to be estimated. This approach provides the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model. In the mathematical formulation of the algorithm, the Taylor expansion of chi-square is first introduced, and justification for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra. To achieve convergence, the algorithm requires meaningful initial estimates for the parameters of the fitting function. NLINEAR is written in Fortran 77 for execution on a CDC Cyber 750 under NOS 2.3. It has a central memory requirement of 5K 60 bit words. Optionally, graphical output of the fitting function can be plotted. Tektronix PLOT-10 routines are required for graphics. NLINEAR was developed in 1987.
Seeing effects on occultation curves.
NASA Technical Reports Server (NTRS)
Young, A. T.
1971-01-01
Evaluation of seeing effects on the light curve of a stellar occultation by the moon. Some theoretical studies of Fried (1966) and Hulett (1967) on the linear size of the downward-looking seeing disk are cited, showing that the seeing blur amounts to a few centimeters for a star in the zenith and that the linear blur must grow approximately as (sec z) to the 3/2 power. For most observations the seeing blur will not exceed 8 to 10 cm. The limitation on angular resolution imposed by this seeing effect is calculated.
Curved microchannels and bacterial streamers
NASA Astrophysics Data System (ADS)
Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard
2010-03-01
Bacterial biofilms are commonly identified as microbial communities attached to a surface and encased in a self-secreted extracellular matrix. Due to their increased resistance to antimicrobial agents, biofilms have an enormous impact on health and medicine (e.g., wound healing, implant-associated infections, disease transmission). On the other hand, they constitute a major component of the stream ecosystem by increasing transport of nutrients and retention of suspended particles. In this talk, we present an experimental study of bacterial biofilm development in a microfluidic device. In particular, we show the formation of filamentous structures, or streamers, in curved channels and how these suspended biofilms are linked to the underlying hydrodynamics.
Miniature curved artificial compound eyes
Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas
2013-01-01
In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574
2008-01-01
Hip resurfacing is an attractive concept because it preserves rather than removes the femoral head and neck. Most early designs had high failure rates, but one unique design had a femoral stem. Because that particular device appeared to have better implant survival, this study assessed the clinical outcome and long-term survivorship of a hip resurfacing prosthesis. Four hundred forty-five patients (561 hips) were retrospectively reviewed after a minimum of 20 years’ followup or until death; 23 additional patients were lost to followup. Patients received a metal femoral prosthesis with a small curved stem. Three types of acetabular reconstructions were used: (1) cemented polyurethane; (2) metal-on-metal; and (3) polyethylene secured with cement or used as the liner of a two-piece porous-coated implant. Long-term results were favorable with the metal-on-metal combination only. The mean overall Harris hip score was 92 at 2 years of followup. None of the 121 patients (133 hips) who received metal-on-metal articulation experienced failure. The failure rate with polyurethane was 100%, and the failure rate with cemented polyethylene was 41%. Hip resurfacing with a curved-stem femoral component had a durable clinical outcome when a metal-on-metal articulation was used. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18338217
Miniature curved artificial compound eyes.
Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas
2013-06-01
In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574
Miniature curved artificial compound eyes.
Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas
2013-06-01
In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories.
Thermoluminescence glow curve analysis and CGCD method for erbium doped CaZrO3 phosphor
NASA Astrophysics Data System (ADS)
Tiwari, Ratnesh; Chopra, Seema
2016-05-01
The manuscript report the synthesis, thermoluminescence study at fixed concentration of Er3+ (1 mol%) doped CaZrO3 phosphor. The phosphors were prepared by modified solid state reaction method. The powder sample was characterized by thermoluminescence (TL) glow curve analysis. In TL glow curve the optimized concentration in 1mol% for UV irradiated sample. The kinetic parameters were calculated by computerized glow curve deconvolution (CGCD) techniaue. Trapping parameters gives the information of dosimetry loss in prepared phosphor and its usability in environmental monitoring and for personal monitoring. CGCD is the advance tool for analysis of complicated TL glow curves.
The general efficiency curve for air propellers
NASA Technical Reports Server (NTRS)
Diehl, Walter S
1924-01-01
This report presents a formula which may be used to obtain a "general efficiency curve" in addition to the well-known maximum efficiency curve. These two curves, when modified somewhat by experimental data, enable performance calculations to be made without detailed knowledge of the propeller. The curves may also be used to estimate the improvement in efficiency due to reduction gearing, or to judge the performance of a new propeller design.
Large Deformation Diffeomorphic Metric Curve Mapping
Glaunès, Joan; Miller, Michael I.; Younes, Laurent
2010-01-01
We present a matching criterion for curves and integrate it into the large deformation diffeomorphic metric mapping (LDDMM) scheme for computing an optimal transformation between two curves embedded in Euclidean space ℝd. Curves are first represented as vector-valued measures, which incorporate both location and the first order geometric structure of the curves. Then, a Hilbert space structure is imposed on the measures to build the norm for quantifying the closeness between two curves. We describe a discretized version of this, in which discrete sequences of points along the curve are represented by vector-valued functionals. This gives a convenient and practical way to define a matching functional for curves. We derive and implement the curve matching in the large deformation framework and demonstrate mapping results of curves in ℝ2 and ℝ3. Behaviors of the curve mapping are discussed using 2D curves. The applications to shape classification is shown and experiments with 3D curves extracted from brain cortical surfaces are presented. PMID:20419045
NASA Astrophysics Data System (ADS)
Foray, Vincent; Gibert, Patricia; Desouhant, Emmanuel
2011-08-01
Environmental variability is expected to be important in shaping performance curves, reaction norms of phenotypic traits related to fitness. Models predict that the breadth of performance curves should increase with environmental variability at the expense of maximal performance. In this study, we compared the thermal performance curves of two sympatric populations of the parasitoid Venturia canescens that were observed under contrasting thermal regimes in their respective preferred habitats and differing in their modes of reproduction. Our results confirm the large effect of developmental temperature on phenotypic traits of insects and demonstrate that thelytokous and arrhenotokous wasps respond differently to temperature during development, in agreement with model predictions. For traits related to fecundity, thelytokous parasitoids, which usually occur in stable thermal conditions, exhibit specialist performance curves, maximising their reproductive success under a restricted range of temperature. In contrast, arrhenotokous parasitoids, which occur in variable climates, exhibit generalist performance curves, in keeping with the hypothesis "jack of all temperatures, master of none".
Bacterial streamers in curved microchannels
NASA Astrophysics Data System (ADS)
Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard
2009-11-01
Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.
Sustainability and Environmental Economics: Some Critical Foci
I present five seminal concepts of environmental economic thought and discuss their applicability to the idea of sustainability. These five, Maximum Sustainable Yield and Steady-state, The Environmental Kuznet’s curve, Substitutability, Discount rate and Intergenerational equity...
AKLSQF - LEAST SQUARES CURVE FITTING
NASA Technical Reports Server (NTRS)
Kantak, A. V.
1994-01-01
The Least Squares Curve Fitting program, AKLSQF, computes the polynomial which will least square fit uniformly spaced data easily and efficiently. The program allows the user to specify the tolerable least squares error in the fitting or allows the user to specify the polynomial degree. In both cases AKLSQF returns the polynomial and the actual least squares fit error incurred in the operation. The data may be supplied to the routine either by direct keyboard entry or via a file. AKLSQF produces the least squares polynomial in two steps. First, the data points are least squares fitted using the orthogonal factorial polynomials. The result is then reduced to a regular polynomial using Sterling numbers of the first kind. If an error tolerance is specified, the program starts with a polynomial of degree 1 and computes the least squares fit error. The degree of the polynomial used for fitting is then increased successively until the error criterion specified by the user is met. At every step the polynomial as well as the least squares fitting error is printed to the screen. In general, the program can produce a curve fitting up to a 100 degree polynomial. All computations in the program are carried out under Double Precision format for real numbers and under long integer format for integers to provide the maximum accuracy possible. AKLSQF was written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler. It has been implemented under DOS 3.2.1 using 23K of RAM. AKLSQF was developed in 1989.
Caloric curve of star clusters.
Casetti, Lapo; Nardini, Cesare
2012-06-01
Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results. PMID:23005049
Caloric curve of star clusters.
Casetti, Lapo; Nardini, Cesare
2012-06-01
Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results.
Learning curve of speech recognition.
Kauppinen, Tomi A; Kaipio, Johanna; Koivikko, Mika P
2013-12-01
Speech recognition (SR) speeds patient care processes by reducing report turnaround times. However, concerns have emerged about prolonged training and an added secretarial burden for radiologists. We assessed how much proofing radiologists who have years of experience with SR and radiologists new to SR must perform, and estimated how quickly the new users become as skilled as the experienced users. We studied SR log entries for 0.25 million reports from 154 radiologists and after careful exclusions, defined a group of 11 experienced radiologists and 71 radiologists new to SR (24,833 and 122,093 reports, respectively). Data were analyzed for sound file and report lengths, character-based error rates, and words unknown to the SR's dictionary. Experienced radiologists corrected 6 characters for each report and for new users, 11. Some users presented a very unfavorable learning curve, with error rates not declining as expected. New users' reports were longer, and data for the experienced users indicates that their reports, initially equally lengthy, shortened over a period of several years. For most radiologists, only minor corrections of dictated reports were necessary. While new users adopted SR quickly, with a subset outperforming experienced users from the start, identification of users struggling with SR will help facilitate troubleshooting and support.
Understanding Guyton's venous return curves
Feigl, Eric O.
2011-01-01
Based on observations that as cardiac output (as determined by an artificial pump) was experimentally increased the right atrial pressure decreased, Arthur Guyton and coworkers proposed an interpretation that right atrial pressure represents a back pressure restricting venous return (equal to cardiac output in steady state). The idea that right atrial pressure is a back pressure limiting cardiac output and the associated idea that “venous recoil” does work to produce flow have confused physiologists and clinicians for decades because Guyton's interpretation interchanges independent and dependent variables. Here Guyton's model and data are reanalyzed to clarify the role of arterial and right atrial pressures and cardiac output and to clearly delineate that cardiac output is the independent (causal) variable in the experiments. Guyton's original mathematical model is used with his data to show that a simultaneous increase in arterial pressure and decrease in right atrial pressure with increasing cardiac output is due to a blood volume shift into the systemic arterial circulation from the systemic venous circulation. This is because Guyton's model assumes a constant blood volume in the systemic circulation. The increase in right atrial pressure observed when cardiac output decreases in a closed circulation with constant resistance and capacitance is due to the redistribution of blood volume and not because right atrial pressure limits venous return. Because Guyton's venous return curves have generated much confusion and little clarity, we suggest that the concept and previous interpretations of venous return be removed from educational materials. PMID:21666119
Finite transformers for construction of fractal curves
Lisovik, L.P.
1995-01-01
In this paper we continue the study of infinite R{sup n}-transformers that can be used to define real functions and three-dimensional curves. An R{sup n}-transformer A generates an output n-tuple A(x) = (Y{sub 1},...,Y{sub n}), consisting of output binary representations. We have previously shown that finite R{sup n}-transformers with n = 1, 2 can be used to define a continuous, nowhere differentiable function and a Peano curve. Curves of this kind are objects of fractal geometry. Here we show that some other fractal curves, which are analogs of the Koch curve and the Sierpinski napkin, can be defined by finite R{sup 2}-transformers. R{sup n}-transformers (and also finite R{sup n}-transformers) thus provide a convenient tool for definition of fractal curves.
NASA Technical Reports Server (NTRS)
Giersch, Louis R.; Knarr, Kevin
2010-01-01
Structures capable of deployment into complex, three-dimensional trusses have well known space technology applications such as the support of spacecraft payloads, communications antennas, radar reflectors, and solar concentrators. Such deployable trusses could also be useful in terrestrial applications such as the rapid establishment of structures in military and emergency service situations, in particular with regard to the deployment of enclosures for habitat or storage. To minimize the time required to deploy such an enclosure, a single arch-shaped truss is preferable to multiple straight trusses arranged vertically and horizontally. To further minimize the time required to deploy such an enclosure, a synchronous deployment with a single degree of freedom is also preferable. One method of synchronizing deployment of a truss is the use of a series of gears; this makes the deployment sequence predictable and testable, allows the truss to have a minimal stowage volume, and the deployed structure exhibits the excellent stiffness-to-mass and strength-to-mass ratios characteristic of a truss. A concept for using gears with varying ratios to deploy a truss into a curved shape has been developed and appears to be compatible with both space technology applications as well as potential use in terrestrial applications such as enclosure deployment. As is the case with other deployable trusses, this truss is formed using rigid elements (e.g., composite tubes) along the edges, one set of diagonal elements composed of either cables or folding/hinged rigid members, and the other set of diagonal elements formed by a continuous cable that is tightened by a motor or hand crank in order to deploy the truss. Gears of varying ratios are used to constrain the deployment to a single degree of freedom, making the deployment synchronous, predictable, and repeatable. The relative sizes of the gears and the relative dimensions of the diagonal elements determine the deployed geometry (e
A kill curve for Phanerozoic marine species
NASA Technical Reports Server (NTRS)
Raup, D. M.
1991-01-01
A kill curve for Phanerozoic species is developed from an analysis of the stratigraphic ranges of 17,621 genera, as compiled by Sepkoski. The kill curve shows that a typical species' risk of extinction varies greatly, with most time intervals being characterized by very low risk. The mean extinction rate of 0.25/m.y. is thus a mixture of long periods of negligible extinction and occasional pulses of much higher rate. Because the kill curve is merely a description of the fossil record, it does not speak directly to the causes of extinction. The kill curve may be useful, however, to li inverted question markmit choices of extinction mechanisms.
Composite curved frames for helicopter fuselage structure
NASA Technical Reports Server (NTRS)
Rich, M. J.; Lowry, D. W.
1984-01-01
This paper presents the results of analysis and testing of composite curved frames. A major frame was selected from the UH-60 Black Hawk helicopter and designed as a composite structure. The curved beam effects were expected to increase flange axial stresses and induce transverse bending. A NASTRAN finite element analysis was conducted and the results were used in the design of composite curved frame specimens. Three specimens were fabricated and five static tests were conducted. The NASTRAN analysis and test results are compared for axial, transverse, and Web strains. Results show the curved beam effects are closely predicted by a NASTRAN analysis and the effects increase with loading on the composite frames.
Dissociative Recombination without a Curve Crossing
NASA Technical Reports Server (NTRS)
Guberman, Steven L.
1994-01-01
Ab initio calculations show that a curve crossing is not always needed for a high dissociative- recombination cross section. For HeH(+), in which no neutral states cross the ion potential curve, dissociative recombination is driven by the nuclear kinetic-energy operator on adiabatic potential curves. The kinetic-energy derivative operator allows for capture into repulsive curves that are outside of the classical turning points for the nuclear motion. The dominant dissociative route is the C (2)Sigma(+) state leading to H(n = 2) atoms. An analogous mechanism is proposed for the dissociative recombination of H3(+).
NASA Astrophysics Data System (ADS)
Armstrong McKay, David I.; Dearing, John A.; Dyke, James G.; Poppy, Guy; Firbank, Les
2016-04-01
yield. Soil erosion / suspended sediment transport and atmospheric pollution have also declined, but some biodiversity degradation metrics continue to rise. Environmental degradation resulting from agriculture in this region appears to have followed the trajectory of an Environmental Kuznets Curve, with recent years showing that regional GDP growth has begun to decouple from ecological deterioration. The history of South-West England is complicated by the significant drop in livestock density as a result of the 2001 foot-and-mouth disease outbreak and highly variable erosion data, but in general a similar pattern of increasing degradation in the 1980s and a gradual recovery since ~2000 is observed. Data with higher spatial and temporal resolution is required in order to further investigate the differing behaviour of the agri-environment system in each region. Based on this analysis, the preliminary results of a prototype dynamical systems model of regional agri-environment systems in the UK is also presented. Further development of this model will enhance our ability to identify regional social-ecological system boundaries and to detect the potential presence of tipping points within them.
Analytical investigation of curved steel girder behaviour
NASA Astrophysics Data System (ADS)
Simpson, Michael Donald
Horizontally curved bridges meet an increasing demand for complex highway geometries in congested urban areas. A popular type of curved bridge consists of steel I-girders interconnected by cross-frames and a composite concrete deck slab. Prior to hardening of the concrete deck each I-girder is susceptible to a lateral torsional buckling-type failure. Unlike a straight I-girder, a curved I-girder resists major components of stress resulting from strong axis bending, weak axis bending and warping. The combination of these stresses reduce the available strength of a curved girder versus that of an equivalent straight girder. Experiments demonstrating the ultimate strength characteristics of curved girders are few in number. Of the available experimental research, few studies have used full scale-tests and boundary conditions indicative of those found in an actual bridge structure. Unlike straight girders, curved girders are characterized by nonlinear out-of-plane deformations which, depending upon the magnitude of curvature, may occur at very low load levels. Because of the inherent nonlinear behaviour, some have questioned the application of the term lateral torsional buckling to curved girders; rather curved girders behave in a manner consistent with a deflection-amplification problem. Even with the advent of sophisticated analytical techniques, there is a glaring void in the documented literature regarding calibration of these techniques with known experimental curved girder behaviour. Presented here is an analytical study of the nonlinear modelling of curved steel girders and bridges. This is accomplished by incorporating large deflection and nonlinear material behaviour into three dimensional finite element models generated using the program ANSYS. Emphasis is placed on the calibration of the finite method with known experimental ultimate strength data. It is demonstrated that accurate predictions of load deformation and ultimate strength are attainable via the
Parallel Curves: Getting There and Getting Back
ERIC Educational Resources Information Center
Agnew, A. F.; Mathews, J. H.
2006-01-01
This note takes up the issue of parallel curves while illustrating the utility of "Mathematica" in computations. This work complements results presented earlier. The presented treatment, considering the more general case of parametric curves, provides an analysis of the appearance of cusp singularities, and emphasizes the utility of symbolic…
Mixture Modeling of Individual Learning Curves
ERIC Educational Resources Information Center
Streeter, Matthew
2015-01-01
We show that student learning can be accurately modeled using a mixture of learning curves, each of which specifies error probability as a function of time. This approach generalizes Knowledge Tracing [7], which can be viewed as a mixture model in which the learning curves are step functions. We show that this generality yields order-of-magnitude…
Heterozygote PCR product melting curve prediction.
Dwight, Zachary L; Palais, Robert; Kent, Jana; Wittwer, Carl T
2014-03-01
Melting curve prediction of PCR products is limited to perfectly complementary strands. Multiple domains are calculated by recursive nearest neighbor thermodynamics. However, the melting curve of an amplicon containing a heterozygous single-nucleotide variant (SNV) after PCR is the composite of four duplexes: two matched homoduplexes and two mismatched heteroduplexes. To better predict the shape of composite heterozygote melting curves, 52 experimental curves were compared with brute force in silico predictions varying two parameters simultaneously: the relative contribution of heteroduplex products and an ionic scaling factor for mismatched tetrads. Heteroduplex products contributed 25.7 ± 6.7% to the composite melting curve, varying from 23%-28% for different SNV classes. The effect of ions on mismatch tetrads scaled to 76%-96% of normal (depending on SNV class) and averaged 88 ± 16.4%. Based on uMelt (www.dna.utah.edu/umelt/umelt.html) with an expanded nearest neighbor thermodynamic set that includes mismatched base pairs, uMelt HETS calculates helicity as a function of temperature for homoduplex and heteroduplex products, as well as the composite curve expected from heterozygotes. It is an interactive Web tool for efficient genotyping design, heterozygote melting curve prediction, and quality control of melting curve experiments. The application was developed in Actionscript and can be found online at http://www.dna.utah.edu/hets/.
Forces in the complex octonion curved space
NASA Astrophysics Data System (ADS)
Weng, Zi-Hua
2016-04-01
The paper aims to extend major equations in the electromagnetic and gravitational theories from the flat space into the complex octonion curved space. Maxwell applied simultaneously the quaternion analysis and vector terminology to describe the electromagnetic theory. It inspires subsequent scholars to study the electromagnetic and gravitational theories with the complex quaternions/octonions. Furthermore Einstein was the first to depict the gravitational theory by means of tensor analysis and curved four-space-time. Nowadays some scholars investigate the electromagnetic and gravitational properties making use of the complex quaternion/octonion curved space. From the orthogonality of two complex quaternions, it is possible to define the covariant derivative of the complex quaternion curved space, describing the gravitational properties in the complex quaternion curved space. Further it is possible to define the covariant derivative of the complex octonion curved space by means of the orthogonality of two complex octonions, depicting simultaneously the electromagnetic and gravitational properties in the complex octonion curved space. The result reveals that the connection coefficient and curvature of the complex octonion curved space will exert an influence on the field strength and field source of the electromagnetic and gravitational fields, impacting the linear momentum, angular momentum, torque, energy, and force and so forth.
Electrical-Discharge Machining Of Curved Passages
NASA Technical Reports Server (NTRS)
Guirguis, Kamal S.
1993-01-01
Electrical-discharge machining (EDM) used to cut deep hole with bends. EDM process done with articulating segmented electrode. Originally straight, electrode curved as it penetrates part, forming long, smoothly curving hole. After hole cut, honed with slurry to remove thin layer of recast metal created by EDM. Breakage of tools, hand deburring, and drilling debris eliminated.
Measuring Model Rocket Engine Thrust Curves
ERIC Educational Resources Information Center
Penn, Kim; Slaton, William V.
2010-01-01
This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…
Electron differaction patterns with curved Kikuchi lines
NASA Astrophysics Data System (ADS)
Karakhanyan, R. K.; Karakhanyan, K. R.
2007-09-01
Curved Kikuchi lines have been observed in electron diffraction patterns obtained for silicon by transmission electron microscopy. It is found that the curvature of Kikuchi lines is related to the shift of point reflections from their normal positions. The formation of curved Kikuchi lines stems from the local structural defects in the crystals under study.
Mechanism of formation of curved Kikuchi lines
NASA Astrophysics Data System (ADS)
Karakhanyan, R. K.; Karakhanyan, K. R.
2008-07-01
The mechanism of formation of curved Kikuchi lines, observed at displacement of point reflections from their normal positions, is proposed. Curving of Kikuchi lines is explained taking into account the participation of diffracted electron beams in the formation of Kikuchi electron diffraction patterns.
Forgetting Curves: Implications for Connectionist Models
ERIC Educational Resources Information Center
Sikstrom, Sverker
2002-01-01
Forgetting in long-term memory, as measured in a recall or a recognition test, is faster for items encoded more recently than for items encoded earlier. Data on forgetting curves fit a power function well. In contrast, many connectionist models predict either exponential decay or completely flat forgetting curves. This paper suggests a…
DELightcurveSimulation: Light curve simulation code
NASA Astrophysics Data System (ADS)
Connolly, Samuel D.
2016-02-01
DELightcurveSimulation simulates light curves with any given power spectral density and any probability density function, following the algorithm described in Emmanoulopoulos et al. (2013). The simulated products have exactly the same variability and statistical properties as the observed light curves. The code is a Python implementation of the Mathematica code provided by Emmanoulopoulos et al.
Curved and conformal high-pressure vessel
Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping
2016-10-25
A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.
A digital algorithm for characteristic film curves
NASA Technical Reports Server (NTRS)
Buckner, J.; Cash, T.; Craven, P.; Edwards, T.
1975-01-01
The task of establishing a film calibration scheme for magnitude studies of Skylab photographic images of Comet Kohoutek is examined. Since the data are recorded in terms of film density and have to be used in terms of exposure, the conversion from density to exposure is critical. In this film calibration scheme, the hardware deals with the data sources, recording medium, and data conversion to a computer compatible program, whereas the software deals with signal to noise enhancement, stepwedge calibration curve and leads to modeling of the film characteristic curves. A mathematical model of the characteristic curve is obtained using a modified version of Efroymson's (1960) stepwise multiple linear regression algorithm, which gives log exposure as a function of density. The difference in the calibration curves from pre- and postflight exposures is well accounted for in the model as a result of sensitive statistical tests. The characteristic curve modeling program requires about 4K of core and is executed in about 3 min.
Computer-aided engineering of belt conveyor systems with horizontal curves
Bahke, T.
1983-11-01
The application of belt conveyors with vertical as well as horizontal curves is of great advantage for the continuous transport of bulk materials free of transfer points. A simulation program has been developed and is discussed in this article for the technical and economical optimization of such plants. The complex interdependencies for calculating stable curve tracking can be processed quickly for all operating and load states. In practice, belt guidance effected by gravity and/or friction without additional wear parts has been successful and also economical. The usual conveyor belts and framework designs are used without any great additional structural work as done for straight belt conveyor systems. No belt damage or wear resulting from horizontal curve tracking has been established on curved belt conveyors built to date. The entire route of the curved conveyor is protected by removable covers to prevent environmental pollution being caused by the weather.
"Universal" Recession Curves and their Geomorphological Roots
NASA Astrophysics Data System (ADS)
Marani, M.; Biswal, B.
2011-12-01
The basic structural organization of channel networks, and of the connected hillslopes, have been shown to be intimately linked to basin responses to rainfall events, leading to geomorphological theories of the hydrologic response. Here, We identify a previously undetected link between the river network morphology and key recession curves properties. We show that the power-law exponent of -dQ/dt vs. Q curves is related to the power-law exponent of N(l) vs. G(l) curves (which we show to be connected to Hack's law), where l is the downstream distance from the channel heads, N(l) is the number of channel reaches exactly located at a distance l from their channel head, and G(l) is the total length of the network located at a distance greater or equal to l from channel heads. We then generalize the power-law expressions of recession curves, to identify "universal" curves, independent of the initial moisture conditions and of basin area, by making the -dQ/dt vs. Q curve non-dimensional using an index discharge representative of initial moisture conditions. We subsequently rescale the geomorphic recession curve, N(l) vs. G(l), producing a collapse of the geomorphic recession curves constructed from the DTM's of 67 US study basins. Finally, by use of the specific discharge u = Q/A, we link the two previous results and define the specific recession curves, whose collapse across basins within homogeneous geographical areas lends further, decisive, support to the notion that the statistical properties of observational recession curves bear the signature of the geomorphological structure of the networks producing them.
Three-body choreographies in given curves
NASA Astrophysics Data System (ADS)
Ozaki, Hiroshi; Fukuda, Hiroshi; Fujiwara, Toshiaki
2009-10-01
As shown by Johannes Kepler in 1609, in the two-body problem, the shape of the orbit, a given ellipse, and a given non-vanishing constant angular momentum determine the motion of the planet completely. Even in the three-body problem, in some cases, the shape of the orbit, conservation of the center of mass and a constant of motion (the angular momentum or the total energy) determine the motion of the three bodies. We show, by a geometrical method, that choreographic motions, in which equal mass three bodies chase each other around the same curve, will be uniquely determined for the following two cases. (i) Convex curves that have point symmetry and non-vanishing angular momentum are given. (ii) Eight-shaped curves which are similar to the curve for the figure-eight solution and the energy constant are given. The reality of the motion should be tested whether the motion satisfies an equation of motion or not. Extensions of the method for generic curves are shown. The extended methods are applicable to generic curves which do not have point symmetry. Each body may have its own curve and its own non-vanishing masses.
Statistical aspects of modeling the labor curve.
Zhang, Jun; Troendle, James; Grantz, Katherine L; Reddy, Uma M
2015-06-01
In a recent review by Cohen and Friedman, several statistical questions on modeling labor curves were raised. This article illustrates that asking data to fit a preconceived model or letting a sufficiently flexible model fit observed data is the main difference in principles of statistical modeling between the original Friedman curve and our average labor curve. An evidence-based approach to construct a labor curve and establish normal values should allow the statistical model to fit observed data. In addition, the presence of the deceleration phase in the active phase of an average labor curve was questioned. Forcing a deceleration phase to be part of the labor curve may have artificially raised the speed of progression in the active phase with a particularly large impact on earlier labor between 4 and 6 cm. Finally, any labor curve is illustrative and may not be instructive in managing labor because of variations in individual labor pattern and large errors in measuring cervical dilation. With the tools commonly available, it may be more productive to establish a new partogram that takes the physiology of labor and contemporary obstetric population into account.
Investigation of learning and experience curves
Krawiec, F.; Thornton, J.; Edesess, M.
1980-04-01
The applicability of learning and experience curves for predicting future costs of solar technologies is assessed, and the major test case is the production economics of heliostats. Alternative methods for estimating cost reductions in systems manufacture are discussed, and procedures for using learning and experience curves to predict costs are outlined. Because adequate production data often do not exist, production histories of analogous products/processes are analyzed and learning and aggregated cost curves for these surrogates estimated. If the surrogate learning curves apply, they can be used to estimate solar technology costs. The steps involved in generating these cost estimates are given. Second-generation glass-steel and inflated-bubble heliostat design concepts, developed by MDAC and GE, respectively, are described; a costing scenario for 25,000 units/yr is detailed; surrogates for cost analysis are chosen; learning and aggregate cost curves are estimated; and aggregate cost curves for the GE and MDAC designs are estimated. However, an approach that combines a neoclassical production function with a learning-by-doing hypothesis is needed to yield a cost relation compatible with the historical learning curve and the traditional cost function of economic theory.
Are Driving and Overtaking on Right Curves More Dangerous than on Left Curves?
Othman, Sarbaz; Thomson, Robert; Lannér, Gunnar
2010-01-01
It is well known that crashes on horizontal curves are a cause for concern in all countries due to the frequency and severity of crashes at curves compared to road tangents. A recent study of crashes in western Sweden reported a higher rate of crashes in right curves than left curves. To further understand this result, this paper reports the results of novel analyses of the responses of vehicles and drivers during negotiating and overtaking maneuvers on curves for right hand traffic. The overall objectives of the study were to find road parameters for curves that affect vehicle dynamic responses, to analyze these responses during overtaking maneuvers on curves, and to link the results with driver behavior for different curve directions. The studied road features were speed, super-elevation, radius and friction including their interactions, while the analyzed vehicle dynamic factors were lateral acceleration and yaw angular velocity. A simulation program, PC-Crash, has been used to simulate road parameters and vehicle response interaction in curves. Overtaking maneuvers have been simulated for all road feature combinations in a total of 108 runs. Analysis of variances (ANOVA) was performed, using two sided randomized block design, to find differences in vehicle responses for the curve parameters. To study driver response, a field test using an instrumented vehicle and 32 participants was reviewed as it contained longitudinal speed and acceleration data for analysis. The simulation results showed that road features affect overtaking performance in right and left curves differently. Overtaking on right curves was sensitive to radius and the interaction of radius with road condition; while overtaking on left curves was more sensitive to super-elevation. Comparisons of lateral acceleration and yaw angular velocity during these maneuvers showed different vehicle response configurations depending on curve direction and maneuver path. The field test experiments also showed
Are driving and overtaking on right curves more dangerous than on left curves?
Othman, Sarbaz; Thomson, Robert; Lannér, Gunnar
2010-01-01
It is well known that crashes on horizontal curves are a cause for concern in all countries due to the frequency and severity of crashes at curves compared to road tangents. A recent study of crashes in western Sweden reported a higher rate of crashes in right curves than left curves. To further understand this result, this paper reports the results of novel analyses of the responses of vehicles and drivers during negotiating and overtaking maneuvers on curves for right hand traffic. The overall objectives of the study were to find road parameters for curves that affect vehicle dynamic responses, to analyze these responses during overtaking maneuvers on curves, and to link the results with driver behavior for different curve directions. The studied road features were speed, super-elevation, radius and friction including their interactions, while the analyzed vehicle dynamic factors were lateral acceleration and yaw angular velocity. A simulation program, PC-Crash, has been used to simulate road parameters and vehicle response interaction in curves. Overtaking maneuvers have been simulated for all road feature combinations in a total of 108 runs. Analysis of variances (ANOVA) was performed, using two sided randomized block design, to find differences in vehicle responses for the curve parameters. To study driver response, a field test using an instrumented vehicle and 32 participants was reviewed as it contained longitudinal speed and acceleration data for analysis. The simulation results showed that road features affect overtaking performance in right and left curves differently. Overtaking on right curves was sensitive to radius and the interaction of radius with road condition; while overtaking on left curves was more sensitive to super-elevation. Comparisons of lateral acceleration and yaw angular velocity during these maneuvers showed different vehicle response configurations depending on curve direction and maneuver path. The field test experiments also showed
Replication and Analysis of Ebbinghaus’ Forgetting Curve
Murre, Jaap M. J.; Dros, Joeri
2015-01-01
We present a successful replication of Ebbinghaus’ classic forgetting curve from 1880 based on the method of savings. One subject spent 70 hours learning lists and relearning them after 20 min, 1 hour, 9 hours, 1 day, 2 days, or 31 days. The results are similar to Ebbinghaus' original data. We analyze the effects of serial position on forgetting and investigate what mathematical equations present a good fit to the Ebbinghaus forgetting curve and its replications. We conclude that the Ebbinghaus forgetting curve has indeed been replicated and that it is not completely smooth but most probably shows a jump upwards starting at the 24 hour data point. PMID:26148023
Cosmic string lensing and closed timelike curves
NASA Astrophysics Data System (ADS)
Shlaer, Benjamin; Tye, S.-H. Henry
2005-08-01
In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.
Effects of rail dynamics and friction characteristics on curve squeal
NASA Astrophysics Data System (ADS)
Ding, B.; Squicciarini, G.; Thompson, D. J.
2016-09-01
Curve squeal in railway vehicles is an instability mechanism that arises in tight curves under certain running and environmental conditions. In developing a model the most important elements are the characterisation of friction coupled with an accurate representation of the structural dynamics of the wheel. However, the role played by the dynamics of the rail is not fully understood and it is unclear whether this should be included in a model or whether it can be safely neglected. This paper makes use of previously developed time domain and frequency domain curve squeal models to assess whether the presence of the rail and the falling characteristics of the friction force can modify the instability mechanisms and the final response. For this purpose, the time-domain model has been updated to include the rail dynamics in terms of its state space representation in various directions. Frequency domain and time domain analyses results show that falling friction is not the only reason for squeal and rail dynamics can play an important role, especially under constant friction conditions.
Roadblocks on the kill curve: Testing the Raup hypothesis
Poag, C.W.
1997-01-01
The documented presence of two large (???100-km diameter), possibly coeval impact craters of late Eocene age, requires modification of the impact-kill curve proposed by David M. Raup. Though the estimated meteorite size for each crater alone is large enough to have produced considerable global environmental stress, no horizons of mass mortality or pulsed extinction are known to be associated with either crater or their ejecta deposits. Thus, either there is no fixed relationship between extinction magnitude and crater diameter, or a meteorite that would produce a crater of >100-km diameter is required to raise extinction rates significantly above a ???5% background level. Both impacts took place ???1-2 m.y. before the "Terminal Eocene Event"( =early Oligocene pulsed extinction). Their collective long-term environmental effects, however, may have either delayed that extinction pulse or produced threshold conditions necessary for it to take place.
Infiltration formulas by curve number procedure.
Chen, C.-L.
1982-01-01
The Soil Conservation Service (SCS) curve number procedure for estimating runoff volume is examined in terms of the validity and applicability of the derived infiltration equations. -from ASCE Publications Abstracts
Modeling Type IIn Supernova Light Curves
NASA Astrophysics Data System (ADS)
De La Rosa, Janie; Roming, Peter; Fryer, Chris
2016-01-01
We present near-by Type IIn supernovae observed with Swift's Ultraviolet/Optical Telescope (UVOT). Based on the diversity of optical light curve properties, this Type II subclass is commonly referred to as heterogeneous. At the time of discovery, our IIn sample is ~ 2 magnitudes brighter at ultraviolet wavelengths than at optical wavelengths, and ultraviolet brightness decays faster than the optical brightness. We use a semi-analytical supernova (SN) model to better understand our IIn observations, and focus on matching specific observed light curves features, i.e peak luminosity and decay rate. The SN models are used to study the effects of initial SN conditions on early light curves, and to show the extent of the "uniqueness" problem in SN light curves. We gratefully acknowledge the contributions from members of the Swift UVOT team, the NASA astrophysics archival data analysis program, and the NASA Swift guest investigator program.
Biological variability model of cell survival curves
Domon, M.
1980-06-01
The radiation sensitivity of a mammalian cell population has been conventionally characterized by the survival curve parameters, n and D/sub 0/. The present correspondence concerns the interpretation of these parameters when there is biological variability in the radiation sensitivity of a cell population. To derive a relationship between the survival curve parameters and the biological variability, a log-normal distribution was assumed for the sensitivity variability. For a given spread of the distribution, a survival curve on a semilogarithmic scale was obtained graphically. Analysis of such survival curves led to the conclusion that n is inversely related to the spread and the D/sub 0/ is determined by both the LD/sub 50/ and the spread of the log-normal distribution.
Classification of ASKAP Vast Radio Light Curves
NASA Technical Reports Server (NTRS)
Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.
2012-01-01
The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.
Solid-state curved focal plane arrays
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)
2010-01-01
The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.
Estimating power curves of flying vertebrates.
Rayner, J M
1999-12-01
The power required for flight in any flying animal is a function of flight speed. The power curve that describes this function has become an icon of studies of flight mechanics and physiology because it encapsulates the accessible animal's flight performance. The mechanical or aerodynamic power curve, describing the increase in kinetic energy of the air due to the passage of the bird, is necessarily U-shaped, for aerodynamic reasons, and can be estimated adequately by lifting-line theory. Predictions from this and related models agree well with measured mechanical work in flight and with results from flow visualization experiments. The total or metabolic power curve also includes energy released by the animal as heat, and is more variable in shape. These curves may be J-shaped for smaller birds and bats, but are difficult to predict theoretically owing to uncertainty about internal physiological processes and the efficiency of the flight muscles. The limitations of some existing models aiming to predict metabolic power curves are considered. The metabolic power curve can be measured for birds or bats flying in wind tunnels at controlled speeds. Simultaneous determination in European starlings Sturnus vulgaris of oxygen uptake, total metabolic rate (using labelled isotopes), aerodynamic power output and heat released (using digital video thermography) enable power curves to be determined with confidence; flight muscle efficiency is surprisingly low (averaging 15-18 %) and increases moderately with flight speed, so that the metabolic power curve is shallower than predicted by models. Accurate knowledge of the power curve is essential since extensive predictions of flight behaviour have been based upon it. The hypothesis that the power curve may not in fact exist, in the sense that the cost of flight may not be perceived by a bird as a continuous smooth function of air speed, is advanced but has not yet formally been tested. This hypothesis is considered together with
Isentropic fluid dynamics in a curved pipe
NASA Astrophysics Data System (ADS)
Colombo, Rinaldo M.; Holden, Helge
2016-10-01
In this paper we study isentropic flow in a curved pipe. We focus on the consequences of the geometry of the pipe on the dynamics of the flow. More precisely, we present the solution of the general Cauchy problem for isentropic fluid flow in an arbitrarily curved, piecewise smooth pipe. We consider initial data in the subsonic regime, with small total variation about a stationary solution. The proof relies on the front-tracking method and is based on [1].
Learning curves in health professions education.
Pusic, Martin V; Boutis, Kathy; Hatala, Rose; Cook, David A
2015-08-01
Learning curves, which graphically show the relationship between learning effort and achievement, are common in published education research but are not often used in day-to-day educational activities. The purpose of this article is to describe the generation and analysis of learning curves and their applicability to health professions education. The authors argue that the time is right for a closer look at using learning curves-given their desirable properties-to inform both self-directed instruction by individuals and education management by instructors.A typical learning curve is made up of a measure of learning (y-axis), a measure of effort (x-axis), and a mathematical linking function. At the individual level, learning curves make manifest a single person's progress towards competence including his/her rate of learning, the inflection point where learning becomes more effortful, and the remaining distance to mastery attainment. At the group level, overlaid learning curves show the full variation of a group of learners' paths through a given learning domain. Specifically, they make overt the difference between time-based and competency-based approaches to instruction. Additionally, instructors can use learning curve information to more accurately target educational resources to those who most require them.The learning curve approach requires a fine-grained collection of data that will not be possible in all educational settings; however, the increased use of an assessment paradigm that explicitly includes effort and its link to individual achievement could result in increased learner engagement and more effective instructional design. PMID:25806621
Learning curves in health professions education.
Pusic, Martin V; Boutis, Kathy; Hatala, Rose; Cook, David A
2015-08-01
Learning curves, which graphically show the relationship between learning effort and achievement, are common in published education research but are not often used in day-to-day educational activities. The purpose of this article is to describe the generation and analysis of learning curves and their applicability to health professions education. The authors argue that the time is right for a closer look at using learning curves-given their desirable properties-to inform both self-directed instruction by individuals and education management by instructors.A typical learning curve is made up of a measure of learning (y-axis), a measure of effort (x-axis), and a mathematical linking function. At the individual level, learning curves make manifest a single person's progress towards competence including his/her rate of learning, the inflection point where learning becomes more effortful, and the remaining distance to mastery attainment. At the group level, overlaid learning curves show the full variation of a group of learners' paths through a given learning domain. Specifically, they make overt the difference between time-based and competency-based approaches to instruction. Additionally, instructors can use learning curve information to more accurately target educational resources to those who most require them.The learning curve approach requires a fine-grained collection of data that will not be possible in all educational settings; however, the increased use of an assessment paradigm that explicitly includes effort and its link to individual achievement could result in increased learner engagement and more effective instructional design.
Anomalies in curved spacetime at finite temperature
Boschi-Filho, H. Departamento de Fisica e Quimica, Universidade Estadual Paulista, Campus de Guaratingueta, 12500 Guaratingueta, Caixa Postal 205 Sao Paulo ); Natividade, C.P. )
1992-12-15
We discuss the problem of the breakdown of conformal and gauge symmetries at finite temperature in curved-spacetime background, when the changes in the background are gradual, in order to have a well-defined quantum field theory at finite temperature. We obtain the expressions for Seeley's coefficients and the heat-kernel expansion in this regime. As applications, we consider the self-interacting [lambda][phi][sup 4] and chiral Schwinger models in curved backgrounds at finite temperature.
Piecewise power laws in individual learning curves.
Donner, Yoni; Hardy, Joseph L
2015-10-01
The notion that human learning follows a smooth power law (PL) of diminishing gains is well-established in psychology. This characteristic is observed when multiple curves are averaged, potentially masking more complex dynamics underpinning the curves of individual learners. Here, we analyzed 25,280 individual learning curves, each comprising 500 measurements of cognitive performance taken from four cognitive tasks. A piecewise PL (PPL) model explained the individual learning curves significantly better than a single PL, controlling for model complexity. The PPL model allows for multiple PLs connected at different points in the learning process. We also explored the transition dynamics between PL curve component pieces. Performance in later pieces typically surpassed that in earlier pieces, after a brief drop in performance at the transition point. The transition rate was negatively associated with age, even after controlling for overall performance. Our results suggest at least two processes at work in individual learning curves: locally, a gradual, smooth improvement, with diminishing gains within a specific strategy, which is modeled well as a PL; and globally, a discrete sequence of strategy shifts, in which each strategy is better in the long term than the ones preceding it. The piecewise extension of the classic PL of practice has implications for both individual skill acquisition and theories of learning.
Probing exoplanet clouds with optical phase curves.
Muñoz, Antonio García; Isaak, Kate G
2015-11-01
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.
Comparative power curves in bird flight.
Tobalske, B W; Hedrick, T L; Dial, K P; Biewener, A A
2003-01-23
The relationship between mechanical power output and forward velocity in bird flight is controversial, bearing on the comparative physiology and ecology of locomotion. Applied to flying birds, aerodynamic theory predicts that mechanical power should vary as a function of forward velocity in a U-shaped curve. The only empirical test of this theory, using the black-billed magpie (Pica pica), suggests that the mechanical power curve is relatively flat over intermediate velocities. Here, by integrating in vivo measurements of pectoralis force and length change with quasi-steady aerodynamic models developed using data on wing and body movement, we present mechanical power curves for cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria). In contrast to the curve reported for magpies, the power curve for cockatiels is acutely concave, whereas that for doves is intermediate in shape and shows higher mass-specific power output at most speeds. We also find that wing-beat frequency and mechanical power output do not necessarily share minima in flying birds. Thus, aspects of morphology, wing kinematics and overall style of flight can greatly affect the magnitude and shape of a species' power curve. PMID:12540899
Piecewise power laws in individual learning curves.
Donner, Yoni; Hardy, Joseph L
2015-10-01
The notion that human learning follows a smooth power law (PL) of diminishing gains is well-established in psychology. This characteristic is observed when multiple curves are averaged, potentially masking more complex dynamics underpinning the curves of individual learners. Here, we analyzed 25,280 individual learning curves, each comprising 500 measurements of cognitive performance taken from four cognitive tasks. A piecewise PL (PPL) model explained the individual learning curves significantly better than a single PL, controlling for model complexity. The PPL model allows for multiple PLs connected at different points in the learning process. We also explored the transition dynamics between PL curve component pieces. Performance in later pieces typically surpassed that in earlier pieces, after a brief drop in performance at the transition point. The transition rate was negatively associated with age, even after controlling for overall performance. Our results suggest at least two processes at work in individual learning curves: locally, a gradual, smooth improvement, with diminishing gains within a specific strategy, which is modeled well as a PL; and globally, a discrete sequence of strategy shifts, in which each strategy is better in the long term than the ones preceding it. The piecewise extension of the classic PL of practice has implications for both individual skill acquisition and theories of learning. PMID:25711183
Probing exoplanet clouds with optical phase curves.
Muñoz, Antonio García; Isaak, Kate G
2015-11-01
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5. PMID:26489652
Gottschlich, Carsten
2012-04-01
Gabor filters (GFs) play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved GFs that locally adapt their shape to the direction of flow. These curved GFs enable the choice of filter parameters that increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved GFs are applied to the curved ridge and valley structures of low-quality fingerprint images. First, we combine two orientation-field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation. Subsequently, these curved regions are used for estimating the local ridge frequency. Finally, curved GFs are defined based on curved regions, and they apply the previously estimated orientations and ridge frequencies for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison with state-of-the-art enhancement methods.
Tulasi, S.J.; Ramana Rao, J.V.
1989-02-01
Haemocyanin serves as normal transporter of oxygen in many Arthropods. The oxygen equilibrium curves have been described for the haemocyanins of many Arthropods and Molluscs. Oxygen equilibrium curves of the blood reveal the relationship between the oxygen tension and the percentage saturation of the haemocyanin. The shape of the oxygen equilibrium curves vary in position from sigmoid to hyperbolic in different animals or even undulatory as shown in some chitons. Oxygen equilibrium curves are known to be influenced by pH, temperature and inorganic ions. The effect of environmental pollutants like the heavy metals on the oxygen equilibrium curves of the fresh water crab has not been previously reported. One of the toxic heavy metals with regard to aquatic organisms is lead. Hence the present study was designed to determine the effect of organic and inorganic lead on the oxygen equilibrium curve of the fresh water crab, Barytelphusa guerini.
MCMC curve sampling and geometric conditional simulation
NASA Astrophysics Data System (ADS)
Fan, Ayres; Fisher, John W., III; Kane, Jonathan; Willsky, Alan S.
2008-02-01
We present an algorithm to generate samples from probability distributions on the space of curves. Traditional curve evolution methods use gradient descent to find a local minimum of a specified energy functional. Here, we view the energy functional as a negative log probability distribution and sample from it using a Markov chain Monte Carlo (MCMC) algorithm. We define a proposal distribution by generating smooth perturbations to the normal of the curve, update the curve using level-set methods, and show how to compute the transition probabilities to ensure that we compute samples from the posterior. We demonstrate the benefits of sampling methods (such as robustness to local minima, better characterization of multi-modal distributions, and access to some measures of estimation error) on medical and geophysical applications. We then use our sampling framework to construct a novel semi-automatic segmentation approach which takes in partial user segmentations and conditionally simulates the unknown portion of the curve. This allows us to dramatically lower the estimation variance in low-SNR and ill-posed problems.
Updated U.S. Geothermal Supply Curve
Augustine, C.; Young, K. R.; Anderson, A.
2010-02-01
This paper documents the approach used to update the U.S. geothermal supply curve. The analysis undertaken in this study estimates the supply of electricity generation potential from geothermal resources in the United States and the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs associated with developing these geothermal resources. Supply curves were developed for four categories of geothermal resources: identified hydrothermal (6.4 GWe), undiscovered hydrothermal (30.0 GWe), near-hydrothermal field enhanced geothermal systems (EGS) (7.0 GWe) and deep EGS (15,900 GWe). Two cases were considered: a base case and a target case. Supply curves were generated for each of the four geothermal resource categories for both cases. For both cases, hydrothermal resources dominate the lower cost range of the combined geothermal supply curve. The supply curves indicate that the reservoir performance improvements assumed in the target case could significantly lower EGS costs and greatly increase EGS deployment over the base case.
Probing exoplanet clouds with optical phase curves
Muñoz, Antonio García; Isaak, Kate G.
2015-01-01
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve—from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4–0.5. PMID:26489652
Lin, Maozi; Wang, Zhiwei; He, Lingchao; Xu, Kang; Cheng, Dongliang; Wang, Genxuan
2015-01-01
Photosynthesis-irradiance (PI) curves are extensively used in field and laboratory research to evaluate the photon-use efficiency of plants. However, most existing models for PI curves focus on the relationship between the photosynthetic rate (Pn) and photosynthetically active radiation (PAR), and do not take account of the influence of environmental factors on the curve. In the present study, we used a new non-competitive inhibited Michaelis-Menten model (NIMM) to predict the co-variation of Pn, PAR, and the relative pollution index (I). We then evaluated the model with published data and our own experimental data. The results indicate that the Pn of plants decreased with increasing I in the environment and, as predicted, were all fitted well by the NIMM model. Therefore, our model provides a robust basis to evaluate and understand the influence of environmental pollution on plant photosynthesis. PMID:26561863
Lin, Maozi; Wang, Zhiwei; He, Lingchao; Xu, Kang; Cheng, Dongliang; Wang, Genxuan
2015-01-01
Photosynthesis-irradiance (PI) curves are extensively used in field and laboratory research to evaluate the photon-use efficiency of plants. However, most existing models for PI curves focus on the relationship between the photosynthetic rate (Pn) and photosynthetically active radiation (PAR), and do not take account of the influence of environmental factors on the curve. In the present study, we used a new non-competitive inhibited Michaelis-Menten model (NIMM) to predict the co-variation of Pn, PAR, and the relative pollution index (I). We then evaluated the model with published data and our own experimental data. The results indicate that the Pn of plants decreased with increasing I in the environment and, as predicted, were all fitted well by the NIMM model. Therefore, our model provides a robust basis to evaluate and understand the influence of environmental pollution on plant photosynthesis.
Stability of patterns on thin curved surfaces.
Nampoothiri, Sankaran
2016-08-01
We consider reaction-diffusion equations on a thin curved surface and obtain a set of effective reaction-diffusion (R-D) equations to O(ε^{2}), where ε is the surface thickness. We observe that the R-D systems on these curved surfaces can have space-dependent reaction kinetics. Further, we use linear stability analysis to study the Schnakenberg model on spherical and cylindrical geometries. The dependence of the steady state on the thickness is determined for both cases, and we find that a change in the thickness can stabilize the unstable modes, and vice versa. The combined effect of thickness and curvature can play an important role in the rearrangement of spatial patterns on thin curved surfaces. PMID:27627331
Experimental simulation of closed timelike curves.
Ringbauer, Martin; Broome, Matthew A; Myers, Casey R; White, Andrew G; Ralph, Timothy C
2014-01-01
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into nonlinearities and the emergence of causal structures in quantum mechanics--essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the nonlinear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction and the influence of decoherence.
Fractionalization of interstitials in curved colloidal crystals
NASA Astrophysics Data System (ADS)
Irvine, William T. M.; Bowick, Mark J.; Chaikin, Paul M.
2012-11-01
Understanding the effect of curvature and topological frustration in crystals yields insights into the fragility of the ordered state. For instance, a one-dimensional crystal of identical charged particles can accommodate an extra particle (interstitial) if all the particle positions are readjusted, yet in a planar hexagonal crystal interstitials remain trapped between lattice sites and diffuse by hopping. Using optical tweezers operated independently of three-dimensional imaging, we inserted interstitials in a lattice of similar colloidal particles sitting on flat or curved oil/glycerol interfaces, and imaged the ensuing dynamics. We find that, unlike in flat space, the curved crystals self-heal through a collective particle rearrangement that redistributes the increased density associated with the interstitial. This process can be interpreted in terms of the out-of-equilibrium interaction of topological defects with each other and with the underlying curvature. Our observations suggest the existence of particle fractionalization on curved surface crystals.
Stability of patterns on thin curved surfaces
NASA Astrophysics Data System (ADS)
Nampoothiri, Sankaran
2016-08-01
We consider reaction-diffusion equations on a thin curved surface and obtain a set of effective reaction-diffusion (R-D) equations to O (ɛ2) , where ɛ is the surface thickness. We observe that the R-D systems on these curved surfaces can have space-dependent reaction kinetics. Further, we use linear stability analysis to study the Schnakenberg model on spherical and cylindrical geometries. The dependence of the steady state on the thickness is determined for both cases, and we find that a change in the thickness can stabilize the unstable modes, and vice versa. The combined effect of thickness and curvature can play an important role in the rearrangement of spatial patterns on thin curved surfaces.
Smoothing Rotation Curves in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Berrier, Joel C.; Sellwood, Jerry
2014-05-01
We present evidence that spiral activity is responsible for the creation of featureless rotation curves. We examine a variety of simulations of disk galaxies beginning in equilibrium and allow them to evolve while adding particles in annuli to the hot disk using a variety of rules. Two unstable spiral modes develop when this new material forms a ridge-like feature in the surface density profile of the disk. The extra material is redistributed radially by the spiral activity, and the associated angular momentum changes remove more particles from the ridge than are added to it. This process eventually removes the density feature from the galaxy and creates a locally flat rotation curve. We argue that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called ``disk-halo conspiracy'', could also be accounted for by this mechanism.
Diffusion-limited aggregation on curved surfaces
NASA Astrophysics Data System (ADS)
Choi, J.; Crowdy, D.; Bazant, M. Z.
2010-08-01
We develop a general theory of transport-limited aggregation phenomena occurring on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the complex plane. To illustrate the theory, we use stereographic projections to simulate diffusion-limited aggregation (DLA) on surfaces of constant Gaussian curvature, including the sphere (K>0) and the pseudo-sphere (K<0), which approximate "bumps" and "saddles" in smooth surfaces, respectively. Although the curvature affects the global morphology of the aggregates, the fractal dimension (in the curved metric) is remarkably insensitive to curvature, as long as the particle size is much smaller than the radius of curvature. We conjecture that all aggregates grown by conformally invariant transport on curved surfaces have the same fractal dimension as DLA in the plane. Our simulations suggest, however, that the multifractal dimensions increase from hyperbolic (K<0) to elliptic (K>0) geometry, which we attribute to curvature-dependent screening of tip branching.
Plasticity and rectangularity in survival curves
Weon, Byung Mook; Je, Jung Ho
2011-01-01
Living systems inevitably undergo a progressive deterioration of physiological function with age and an increase of vulnerability to disease and death. To maintain health and survival, living systems should optimize survival strategies with adaptive interactions among molecules, cells, organs, individuals, and environments, which arises plasticity in survival curves of living systems. In general, survival dynamics in a population is mathematically depicted by a survival rate, which monotonically changes from 1 to 0 with age. It would be then useful to find an adequate function to describe complicated survival dynamics. Here we describe a flexible survival function, derived from the stretched exponential function by adopting an age-dependent shaping exponent. We note that the exponent is associated with the fractal-like scaling in cumulative mortality rate. The survival function well depicts general features in survival curves; healthy populations exhibit plasticity and evolve towards rectangular-like survival curves, as examples in humans or laboratory animals. PMID:22355622
The genus curve of the Abell clusters
NASA Technical Reports Server (NTRS)
Rhoads, James E.; Gott, J. Richard, III; Postman, Marc
1994-01-01
We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).
Geometric Mechanics of Curved Crease Origami
NASA Astrophysics Data System (ADS)
Dias, Marcelo A.; Dudte, Levi H.; Mahadevan, L.; Santangelo, Christian D.
2012-09-01
Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations that allow us to generalize our analysis to study structures with multiple curved creases.
Geometric mechanics of curved crease origami.
Dias, Marcelo A; Dudte, Levi H; Mahadevan, L; Santangelo, Christian D
2012-09-14
Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations that allow us to generalize our analysis to study structures with multiple curved creases. PMID:23005633
Experimental simulation of closed timelike curves
NASA Astrophysics Data System (ADS)
Ringbauer, Martin; Broome, Matthew A.; Myers, Casey R.; White, Andrew G.; Ralph, Timothy C.
2014-06-01
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein’s field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into nonlinearities and the emergence of causal structures in quantum mechanics—essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the nonlinear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction and the influence of decoherence.
Mathematical design of a highway exit curve
NASA Astrophysics Data System (ADS)
Pakdemirli, Mehmet
2016-01-01
A highway exit curve is designed under the assumption that the tangential and normal components of the acceleration of the vehicle remain constant throughout the path. Using fundamental principles of physics and calculus, the differential equation determining the curve function is derived. The equation and initial conditions are cast into a dimensionless form first for universality of the results. It is found that the curves are effected by only one dimensionless parameter which is the ratio of the tangential acceleration to the normal acceleration. For no tangential acceleration, the equation can be solved analytically yielding a circular arc solution as expected. For nonzero tangential acceleration, the function is complicated and no closed-form solutions exist for the differential equation. The equation is solved numerically for various acceleration ratios. Discussions for applications to highway exits are given.
Experimental simulation of closed timelike curves.
Ringbauer, Martin; Broome, Matthew A; Myers, Casey R; White, Andrew G; Ralph, Timothy C
2014-01-01
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into nonlinearities and the emergence of causal structures in quantum mechanics--essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the nonlinear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction and the influence of decoherence. PMID:24942489
Charged particles constrained to a curved surface
NASA Astrophysics Data System (ADS)
Müller, Thomas; Frauendiener, Jörg
2013-01-01
We study the motion of charged particles constrained to arbitrary two-dimensional curved surfaces but interacting in three-dimensional space via the Coulomb potential. To speed up the interaction calculations, we use the parallel compute capability of the Compute Unified Device Architecture of today's graphics boards. The particles and the curved surfaces are shown using the Open Graphics Library. This paper is intended to give graduate students, who have basic experiences with electrostatics and the Lagrangian formalism, a deeper understanding of charged particle interactions and a short introduction of how to handle a many particle system using parallel computing on a single home computer.
The learning curves of competitive programming
NASA Astrophysics Data System (ADS)
Garcia, Jose R.; Aguirre, Vanessa E.
2014-10-01
Universities around the world have implemented competitive programming as an approach to teach computer science courses. They have empirically validated this approach as a successful pedagogical tool. However, there are no conclusive results that describe the degree in which competitive programming affects the learning process of the students. In this paper, we report on the learning curves obtained from analyzing ten years of TopCoder algorithm competitions. We discuss on how these learning curves apply to university courses and can help us explain the influence of competitive programming in a class.
Dynamic critical curve of a synthetic antiferromagnet
NASA Astrophysics Data System (ADS)
Pham, Huy; Cimpoesu, Dorin; Plamadǎ, Andrei-Valentin; Stancu, Alexandru; Spinu, Leonard
2009-11-01
In this letter, a dynamic generalization of static critical curves (sCCs) for synthetic antiferromagnet (SAF) structures is presented, analyzing the magnetization switching of SAF elements subjected to pulsed magnetic fields. The dependence of dynamic critical curves (dCCs) on field pulse's shape and length, on damping, and on magnetostatic coupling is investigated. Comparing sCCs, which are currently used for studying the switching in toggle magnetic random access memories, with dCCs, it is shown that a consistent switching can be achieved only under specific conditions that take into account the dynamics of the systems. The study relies on the Landau-Lifshitz-Gilbert equation.
Making Curved Frequency-Selective Microwave Reflectors
NASA Technical Reports Server (NTRS)
Hickey, Gregory S.; Wu, Te-Kao
1995-01-01
Prototype curved lightweight dichroic microwave reflectors designed to be highly reflective in X and K(suba) frequency bands and highly transmissive in K(subu) and S bands. Conductive grid elements formed photolithographically on curved reflector surfaces. Intended for use as subreflectors of main paraboloidal antenna reflector to enable simultaneous operation in both prime-focus configuration in K(subu) and S bands and Cassegrain configuration in X and K(suba) bands. Basic concepts of reflectors described in "Frequency-Selective Microwave Reflectors" (NPO-18701). "Double Square-Loop Dichroic Microwave Reflector" (NPO-18676), "Triband Circular-Loop Dichroic Microwave Reflector" (NPO-18714), and "Improved Dichroic Microwave Reflector" (NPO-18664).
NASA Astrophysics Data System (ADS)
Gottschlich, Carsten
2012-04-01
Gabor filters play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved Gabor filters which locally adapt their shape to the direction of flow. These curved Gabor filters enable the choice of filter parameters which increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved Gabor filters are applied to the curved ridge and valley structure of low-quality fingerprint images. First, we combine two orientation field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation and they are used for estimating the local ridge frequency. Lastly, curved Gabor filters are defined based on curved regions and they are applied for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison to state-of-the-art enhancement methods.
A synthetic light curve solution of the OAO-2 ultraviolet light curves of u Herculis
NASA Technical Reports Server (NTRS)
Eaton, J. A.
1978-01-01
OAO 2 ultraviolet photometry of the eclipsing binary u Her is reported and interpreted. The light curve of u Her is found to be intrinsically variable, the variable light curve is rectified, and the adjusted light and color curves are plotted. A simultaneous solution to three adjusted OAO 2 light curves (at respective wavelengths of 3320, 1910, and 1550 A) is obtained by using the Roche model. The results indicate that the system is semidetached if the gravity darkening of the secondary is not significantly larger than expected. It is suggested that the primary is responsible for the variable light curve, that the monochromatic albedo of the secondary is very low at short wavelengths, and that the depth of primary eclipse is strongly dependent on the primary's limb darkening.
Double-mass curves; with a section fitting curves to cyclic data
Searcy, James K.; Hardison, Clayton H.; Langein, Walter B.
1960-01-01
The double.-mass curve is used to check the consistency of many kinds of hydrologic data by comparing data for a single station with that of a pattern composed of the data from several other stations in the area The double-mass curve can be used to adjust inconsistent precipitation data. The graph of the cumulative data of one variable versus the cumulative data of a related variable is a straight line so long as the relation between the variables is a fixed ratio. Breaks in the double-mass curve of such variables are caused by changes in the relation between the variables. These changes may be due to changes in the method of data collection or to physical changes that affect the relation. Applications of the double-mass curve to precipitation, streamflow, and sediment data, and to precipitation-runoff relations are described. A statistical test for significance of an apparent break in the slope of the double-mass curve is described by an example. Poor correlation between the variables can prevent detection of inconsistencies in a record, but an increase in the length of record tends to offset the effect of poor correlation. The residual-mass curve, which is a modification of the double-mass curve, magnifies imperceptible breaks in the double-mass curve for detailed study. Of the several methods of fitting a smooth curve to cyclic or periodic data, the moving-arc method and the double-integration method deserve greater use in hydrology. Both methods are described in this manual. The moving-arc method has general applicability, and the double integration method is useful in fitting a curve to cycles of sinusoidal form.
Serial Position Curves in Free Recall
ERIC Educational Resources Information Center
Laming, Donald
2010-01-01
The scenario for free recall set out in Laming (2009) is developed to provide models for the serial position curves from 5 selected sets of data, for final free recall, and for multitrial free recall. The 5 sets of data reflect the effects of rate of presentation, length of list, delay of recall, and suppression of rehearsal. Each model…
The Ultimate Spitzer Phase Curve Survey
NASA Astrophysics Data System (ADS)
Stevenson, Kevin; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Feng, Y. Katherina; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam
2016-08-01
Exoplanet phase curves are sure to be one of the main enduring legacies of Spitzer. They provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that will continue to open new doors of scientific inquiry and propel future investigations for years to come. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. Instead, a new potential trend is emerging, one that connects heat redistribution efficiency with planet rotation rate. We will test this hypothesis by performing Spitzer phase curve observations of seven exoplanets with physical properties that span the parameter space. We have identified high-contrast targets with short orbital periods around bright host stars to ensure the observations reveal robust phase curve results. Spitzer is uniquely suited for this program because we can achieve our primary goals using broadband photometry. Part of the phase curve legacy will be to combine our archived Spitzer data with transmission and dayside emission spectra from HST and JWST. Adding energy transport and cloud coverage constraints to the measured dayside abundances and thermal profiles will yield a fundamental understanding of these exoplanets' atmospheres that can be leveraged into new avenues of investigation.
Jet flow on ribbed curved surfaces
NASA Astrophysics Data System (ADS)
Lashkov, Iu. A.; Sokolova, I. N.; Shumilkina, E. A.
1992-02-01
The objective of the study was to investigate the possibility of using microribbing to reduce turbulent friction in Coanda flows over curved surfaces. It is shown that ribs make it possible to reduce the effect of a jet impinging on an obstacle and to prevent the Coanda effect when jet attachment is undesirable. The optimal rib parameters are determined.
Liquefaction probability curves for surficial geologic deposits
Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.
2011-01-01
Liquefaction probability curves that predict the probability of surface manifestations of earthquake-induced liquefaction are developed for 14 different types of surficial geologic units. The units consist of alluvial fan, beach ridge, river delta topset and foreset beds, eolian dune, point bar, flood basin, natural river and alluvial fan levees, abandoned river channel, deep-water lake, lagoonal, sandy artificial fill, and valley train deposits. Probability is conditioned on earthquake magnitude and peak ground acceleration. Curves are developed for water table depths of 1.5 and 5.0 m. Probabilities are derived from complementary cumulative frequency distributions of the liquefaction potential index (LPI) that were computed from 927 cone penetration tests. For natural deposits with a water table at 1.5 m and subjected to a M7.5 earthquake with peak ground acceleration (PGA) = 0.25g, probabilities range from 0.5 for beach ridge, point bar, and deltaic deposits. The curves also were used to assign ranges of liquefaction probabilities to the susceptibility categories proposed previously for different geologic deposits. For the earthquake described here, probabilities for susceptibility categories have ranges of 0–0.08 for low, 0.09–0.30 for moderate, 0.31–0.62 for high, and 0.63–1.00 for very high. Retrospective predictions of liquefaction during historical earthquakes based on the curves compare favorably to observations.
Least-squares fitting Gompertz curve
NASA Astrophysics Data System (ADS)
Jukic, Dragan; Kralik, Gordana; Scitovski, Rudolf
2004-08-01
In this paper we consider the least-squares (LS) fitting of the Gompertz curve to the given nonconstant data (pi,ti,yi), i=1,...,m, m≥3. We give necessary and sufficient conditions which guarantee the existence of the LS estimate, suggest a choice of a good initial approximation and give some numerical examples.
Fermat's Technique of Finding Areas under Curves
ERIC Educational Resources Information Center
Staples, Ed
2004-01-01
Perhaps next time teachers head towards the fundamental theorem of calculus in their classroom, they may wish to consider Fermat's technique of finding expressions for areas under curves, beautifully outlined in Boyer's History of Mathematics. Pierre de Fermat (1601-1665) developed some important results in the journey toward the discovery of the…
"The Bell Curve": Review of Reviews.
ERIC Educational Resources Information Center
Parker, Franklin; Parker, Betty J.
This paper reviews the book "The Bell Curve" by Harvard psychologist Richard J. Herrnstein and political scientist Charles Alan Murray. The paper asserts as the book's main points and implications: (1) one's socioeconomic place in life is now determined by IQ rather than family wealth and influence; (2) ruling white elites, who have benefited from…
Curved apparent motion induced by amodal completion
Feldman, Jacob; Singh, Manish
2012-01-01
We investigated whether amodal completion can bias apparent motion (AM) to deviate from its default straight path toward a longer curved path, which would violate the well-established principle that AM follows the shortest possible path. Observers viewed motion sequences of two alternating rectangular tokens positioned at the ends of a semicircular occluder, with varying interstimulus intervals (ISIs; 100–500 ms). At short ISIs, observers tended to report simple straight-path motion—that is, outside the occluder. But at long ISIs, they became increasingly likely to report a curved-path motion behind the occluder. This tendency toward reporting curved-path motion was influenced by the shape of tokens, display orientation, the gap between tokens and the occluder, and binocular depth cues. Our results suggest that the visual system tends to minimize unexplained absence of a moving object, as well as its path length, such that AM deviates from the shortest path when amodal integration of motion trajectory behind the curved occluder can account for the objective invisibility of the object during the ISI. PMID:22069082
Marginal Utility and Convex Indifference Curves.
ERIC Educational Resources Information Center
Jackson, A.A.
1981-01-01
Reviews discussion of the relationship between marginal utility and indifference curves which has been presented in recent issues of "Economics." Concludes that indifference analysis does not embody the assumptions of marginal utility theory and that there is no simple relationship between these concepts that does not entail unacceptable…
Measuring Systematic Error with Curve Fits
ERIC Educational Resources Information Center
Rupright, Mark E.
2011-01-01
Systematic errors are often unavoidable in the introductory physics laboratory. As has been demonstrated in many papers in this journal, such errors can present a fundamental problem for data analysis, particularly when comparing the data to a given model. In this paper I give three examples in which my students use popular curve-fitting software…
UBVRI Photometry of Mecury's Integral Phase Curve
NASA Astrophysics Data System (ADS)
Bergfors, Carolina; Warell, J.
2007-10-01
We present results from a photometric survey of Mecury's survey of Mecury's integral phase curve in the Johnson UBVRI system, obtained with the 0.9-m Westerlund Telescope in Uppsala, Sweden. CCD observations of the integrated disk have been obtained for the phase angle range 22-152 degrees. This is the first integral phase curve survey covering the extended visible spectrum of Mecury. We have derived absolute magnitudes and color indices from which Bond albedo, geometric albedo and phase integral have been determined for all bands. We have fitted the data in each band with the Mallama et a. (2002) V-band phase curve which is based on a wider range of more densely sampled phase angles. A magnitude-scaled Mallama phase curve provided adequate fits for each band within the photometric error budget. This implies no evidence of phase reddening in any color, which is in contrast to the Moon. The phase reddening for the Moon was determined by Lane and Irvine (1973) to 0.001 mag/degree between the wavelengths 445 nm and 550 nm. These data will be modeled to derive light scattering properties of the regolith. Of particular interest is the prediction of a disk-averaged normal albedo at 1064 nm with implications for the returned signal strength of the BepiColombo laser altimeter BELA (Gunderson et al, 2006).
Pleats in crystals on curved surfaces.
Irvine, William T M; Vitelli, Vincenzo; Chaikin, Paul M
2010-12-16
Hexagons can easily tile a flat surface, but not a curved one. Introducing heptagons and pentagons (defects with topological charge) makes it easier to tile curved surfaces; for example, soccer balls based on the geodesic domes of Buckminster Fuller have exactly 12 pentagons (positive charges). Interacting particles that invariably form hexagonal crystals on a plane exhibit fascinating scarred defect patterns on a sphere. Here we show that, for more general curved surfaces, curvature may be relaxed by pleats: uncharged lines of dislocations (topological dipoles) that vanish on the surface and play the same role as fabric pleats. We experimentally investigate crystal order on surfaces with spatially varying positive and negative curvature. On cylindrical capillary bridges, stretched to produce negative curvature, we observe a sequence of transitions-consistent with our energetic calculations-from no defects to isolated dislocations, which subsequently proliferate and organize into pleats; finally, scars and isolated heptagons (previously unseen) appear. This fine control of crystal order with curvature will enable explorations of general theories of defects in curved spaces. From a practical viewpoint, it may be possible to engineer structures with curvature (such as waisted nanotubes and vaulted architecture) and to develop novel methods for soft lithography and directed self-assembly.
Mass Distributions Implying Flat Galactic Rotation Curves
ERIC Educational Resources Information Center
Keeports, David
2010-01-01
The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…
"The Bell Curve" on Separated Twins.
ERIC Educational Resources Information Center
Fancher, Raymond E.
1995-01-01
"The Bell Curve" declares that studies of separated identical twins--the "purest" of "direct" methods for estimating IQ heritability--indicate a value of +.75-+.80. But, the main study cited suggests a heritability of "two-thirds" for the middle class, and Herrnstein and Murray neglect to mention numerous complicating factors in twin studies that…
Symmetric Monotone Venn Diagrams with Seven Curves
NASA Astrophysics Data System (ADS)
Cao, Tao; Mamakani, Khalegh; Ruskey, Frank
An n-Venn diagram consists of n curves drawn in the plane in such a way that each of the 2 n possible intersections of the interiors and exteriors of the curves forms a connected non-empty region. A k-region in a diagram is a region that is in the interior of precisely k curves. A n-Venn diagram is symmetric if it has a point of rotation about which rotations of the plane by 2π/n radians leaves the diagram fixed; it is polar symmetric if it is symmetric and its stereographic projection about the infinite outer face is isomorphic to the projection about the innermost face. A Venn diagram is monotone if every k-region is adjacent to both some (k - 1)-region (if k > 0) and also to some k + 1 region (if k < n). A Venn diagram is simple if at most two curves intersect at any point. We prove that the "Grünbaum" encoding uniquely identifies monotone simple symmetric n-Venn diagrams and describe an algorithm that produces an exhaustive list of all of the monotone simple symmetric n-Venn diagrams. There are exactly 23 simple monotone symmetric 7-Venn diagrams, of which 6 are polar symmetric.
The Lorenz Curve and the Gini Coefficient.
ERIC Educational Resources Information Center
Rycroft, Robert
2003-01-01
States that the Lorenz Curve and the Gini Coefficient is a Web-based interactive tutorial developed for students in an upper level, undergraduate, elective economics course about income and wealth distribution, poverty, and discrimination. States that students achieve mastery because they cannot complete the tutorial without adequate understanding…
Demonstrating e Using Areas under Curves
ERIC Educational Resources Information Center
Plant, Allison
2009-01-01
The number "e" is one of those fascinating numbers whose properties are of special interest to mathematicians. In this article, the author aims to provide a method of introducing a visual concept of the number "e". These ideas are suitable for secondary school and undergraduate tertiary students. The main concept involves areas under curves.…
The wavelength dependence of Triton's light curve
NASA Technical Reports Server (NTRS)
Hillier, J.; Veverka, J.; Helfenstein, P.; Mcewen, A.
1991-01-01
Using Voyager observations, it is demonstrated that Triton's orbital light curve is strongly wavelength-dependent, a characteristic which readily explains some of the apparent discrepancies among pre-Voyager telescopic measurements. Specifically, a light curve amplitude (peak to peak) is found that decreases systematically with increasing wavelength from about 0.08 magnitude (peak to peak) near 200 nm to less than 0.02 magnitude near 1000 nm. Peak brightness occurs near 90 deg orbital longitude (leading hemisphere). The brightness variation across this hemisphere is close to sinusoidal; the variation across the darker hemisphere is more complex. The decrease in light curve amplitude with increasing wavelength appears to be due to a decrease in contrast among surface markings, rather than to atmospheric obscuration. The model also explains the observed decrease in the amplitude of Triton's light curve at visible wavelengths over the past decade, a decrease related to the current migration of the subsolar latitude toward the south pole; it is predicted that this trend will continue into the 1990s.
Light extraction block with curved surface
Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.
2016-03-22
Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.
Sediment transport in a curved channel
Altunin, V.S.; Larinova, L.V.; Martinkus, A.T.; Novikova, N.M.
1987-11-01
The authors construct mathematical and experimental flow models to describe the hydrodynamic behavior of sediments eroding into hydroelectric plant waterways for purposes of arriving at sediment reclamation scenarios as well as optimizing waterway design parameters for the minimization of erosion. The models simulate both straight and curved waterways and also allow the determination of the cross-sectional design.
Is the Water Heating Curve as Described?
ERIC Educational Resources Information Center
Riveros, H. G.; Oliva, A. I.
2008-01-01
We analysed the heating curve of water which is described in textbooks. An experiment combined with some simple heat transfer calculations is discussed. The theoretical behaviour can be altered by changing the conditions under which the experiment is modelled. By identifying and controlling the different parameters involved during the heating…
Growth Curves for Girls with Turner Syndrome
Bertapelli, Fabio; Barros-Filho, Antonio de Azevedo; Antonio, Maria Ângela Reis de Góes Monteiro; Barbeta, Camila Justino de Oliveira; de Lemos-Marini, Sofia Helena Valente
2014-01-01
The objective of this study was to review the growth curves for Turner syndrome, evaluate the methodological and statistical quality, and suggest potential growth curves for clinical practice guidelines. The search was carried out in the databases Medline and Embase. Of 1006 references identified, 15 were included. Studies constructed curves for weight, height, weight/height, body mass index, head circumference, height velocity, leg length, and sitting height. The sample ranged between 47 and 1,565 (total = 6,273) girls aged 0 to 24 y, born between 1950 and 2006. The number of measures ranged from 580 to 9,011 (total = 28,915). Most studies showed strengths such as sample size, exclusion of the use of growth hormone and androgen, and analysis of confounding variables. However, the growth curves were restricted to height, lack of information about selection bias, limited distributional properties, and smoothing aspects. In conclusion, we observe the need to construct an international growth reference for girls with Turner syndrome, in order to provide support for clinical practice guidelines. PMID:24949463
Nonlinear Growth Curves in Developmental Research
ERIC Educational Resources Information Center
Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki
2011-01-01
Developmentalists are often interested in understanding change processes, and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and…
The learning curve in robotic distal pancreatectomy.
Napoli, Niccolò; Kauffmann, Emanuele F; Perrone, Vittorio Grazio; Miccoli, Mario; Brozzetti, Stefania; Boggi, Ugo
2015-09-01
No data are available on the learning curve in robotic distal pancreatectomy (RADP). The learning curve in RADP was assessed in 55 consecutive patients using the cumulative sum method, based on operative time. Data were extracted from a prospectively maintained database and analyzed retrospectively considering all events occurring within 90 days of surgery. No operation was converted to laparoscopic or open surgery and no patient died. Post-operative complications occurred in 34 patients (61.8%), being of Clavien-Dindo grade I-II in 32 patients (58.1%), including pancreatic fistula in 29 patients (52.7%). No grade C pancreatic fistula occurred. Four patients received blood transfusions (7.2%), three were readmitted (5.4%) and one required repeat surgery (1.8%). Based on the reduction of operative times (421.1 ± 20.5 vs 248.9 ± 9.3 min; p < 0.0001), completion of the learning curve was achieved after ten operations. Operative time of the first 10 operations was associated with a positive slope (0.47 + 1.78* case number; R (2) 0.97; p < 0.0001*), while that of the following 45 procedures showed a negative slope (23.52 - 0.39* case number; R (2) 0.97; p < 0.0001*). After completion of the learning curve, more patients had a malignant histology (0 vs 35.6%; p = 0.002), accounting for both higher lymph node yields (11.1 ± 12.2 vs 20.9 ± 18.5) (p = 0.04) and lower rate of spleen preservation (90 vs 55.6%) (p = 0.04). RADP was safely feasible in selected patients and the learning curve was completed after ten operations. Improvement in clinical outcome was not demonstrated, probably because of the limited occurrence of outcome comparators.
The learning curve in robotic distal pancreatectomy.
Napoli, Niccolò; Kauffmann, Emanuele F; Perrone, Vittorio Grazio; Miccoli, Mario; Brozzetti, Stefania; Boggi, Ugo
2015-09-01
No data are available on the learning curve in robotic distal pancreatectomy (RADP). The learning curve in RADP was assessed in 55 consecutive patients using the cumulative sum method, based on operative time. Data were extracted from a prospectively maintained database and analyzed retrospectively considering all events occurring within 90 days of surgery. No operation was converted to laparoscopic or open surgery and no patient died. Post-operative complications occurred in 34 patients (61.8%), being of Clavien-Dindo grade I-II in 32 patients (58.1%), including pancreatic fistula in 29 patients (52.7%). No grade C pancreatic fistula occurred. Four patients received blood transfusions (7.2%), three were readmitted (5.4%) and one required repeat surgery (1.8%). Based on the reduction of operative times (421.1 ± 20.5 vs 248.9 ± 9.3 min; p < 0.0001), completion of the learning curve was achieved after ten operations. Operative time of the first 10 operations was associated with a positive slope (0.47 + 1.78* case number; R (2) 0.97; p < 0.0001*), while that of the following 45 procedures showed a negative slope (23.52 - 0.39* case number; R (2) 0.97; p < 0.0001*). After completion of the learning curve, more patients had a malignant histology (0 vs 35.6%; p = 0.002), accounting for both higher lymph node yields (11.1 ± 12.2 vs 20.9 ± 18.5) (p = 0.04) and lower rate of spleen preservation (90 vs 55.6%) (p = 0.04). RADP was safely feasible in selected patients and the learning curve was completed after ten operations. Improvement in clinical outcome was not demonstrated, probably because of the limited occurrence of outcome comparators. PMID:25990666
Curved bones: An adaptation to habitual loading.
Milne, Nick
2016-10-21
Why are long bones curved? It has long been considered a paradox that many long bones supporting mammalian bodies are curved, since this curvature results in the bone undergoing greater bending, with higher strains and so greater fracture risk under load. This study develops a theoretical model wherein the curvature is a response to bending strains imposed by the requirements of locomotion. In particular the radioulna of obligate quadrupeds is a lever operated by the triceps muscle, and the bending strains induced by the triceps muscle counter the bending resulting from longitudinal loads acting on the curved bone. Indeed the theoretical model reverses this logic and suggests that the curvature is itself a response to the predictable bending strains induced by the triceps muscle. This, in turn, results in anatomical arrangements of bone, muscle and tendon that create a simple physiological mechanism whereby the bone can resist the bending due to the action of triceps in supporting and moving the body. The model is illustrated by contrasting the behaviour of a finite element model of a llama radioulna to that of a straightened version of the same bone. The results show that longitudinal and flexor muscle forces produce bending strains that effectively counter strains due to the pull of the triceps muscle in the curved but not in the straightened model. It is concluded that the curvature of these and other curved bones adds resilience to the skeleton by acting as pre-stressed beams or strainable pre-buckled struts. It is also proposed that the cranial bending strains that result from triceps, acting on the lever that is the radioulna, can explain the development of the curvature of such bones. PMID:27444401
A "chaos" of Phanerozoic eustatic curves
NASA Astrophysics Data System (ADS)
Ruban, Dmitry A.
2016-04-01
The knowledge of eustasy has changed during the past two decades. Although there is not any single global sea-level curve for the entire Phanerozoic, new curves have been proposed for all periods. For some geological time intervals, there are two and more alternative reconstructions, from which it is difficult to choose. A significant problem is the available eustatic curves are justified along different geological time scales (sometimes without proper explanations), which permits to correlate eustatic events with the possible error of 1-3 Ma. This degree of error permits to judge about only substage- or stage-order global sea-level changes. Close attention to two geological time slices, namely the late Cambrian (Epoch 3‒Furongian) and the Late Cretaceous, implies that only a few eustatic events (6 events in the case of the late Cambrian and 9 events in the case of the Late Cretaceous) appear on all available alternative curves for these periods, and different (even opposite) trends of eustatic fluctuations are shown on these curves. This reveals significant uncertainty in our knowledge of eustasy that restricts our ability to decipher factors responsible for regional transgressions and regressions and relative sea-level changes. A big problem is also inadequate awareness of the geological research community of the new eustatic developments. Generally, the situation with the development and the use of the Phanerozoic eustatic reconstructions seems to be "chaotic". The example of the shoreline shifts in Northern Africa during the Late Cretaceous demonstrates the far-going consequences of this situation. The practical recommendations to avoid this "chaos" are proposed. Particularly, these claim for good awareness of all eustatic developments, their critical discussion, and clear explanation of the employed geological time scale.
Trend analyses with river sediment rating curves
Warrick, Jonathan A.
2015-01-01
Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended-sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies it is assumed that rating curves have a power-law form (i.e., C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) How well to the parameters, a and b, characterize trends in the data? (ii) Are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers, but rather strongly dependent on b and Q. Here it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge-normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply, or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time-dependent rates and trends of river water, sediment concentrations, and sediment discharge.
Modeling and Fitting Exoplanet Transit Light Curves
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Ruch, G. T.
2013-01-01
We present a numerical model along with an original fitting routine for the analysis of transiting extra-solar planet light curves. Our light curve model is unique in several ways from other available transit models, such as the analytic eclipse formulae of Mandel & Agol (2002) and Giménez (2006), the modified Eclipsing Binary Orbit Program (EBOP) model implemented in Southworth’s JKTEBOP code (Popper & Etzel 1981; Southworth et al. 2004), or the transit model developed as a part of the EXOFAST fitting suite (Eastman et al. in prep.). Our model employs Keplerian orbital dynamics about the system’s center of mass to properly account for stellar wobble and orbital eccentricity, uses a unique analytic solution derived from Kepler’s Second Law to calculate the projected distance between the centers of the star and planet, and calculates the effect of limb darkening using a simple technique that is different from the commonly used eclipse formulae. We have also devised a unique Monte Carlo style optimization routine for fitting the light curve model to observed transits. We demonstrate that, while the effect of stellar wobble on transit light curves is generally small, it becomes significant as the planet to stellar mass ratio increases and the semi-major axes of the orbits decrease. We also illustrate the appreciable effects of orbital ellipticity on the light curve and the necessity of accounting for its impacts for accurate modeling. We show that our simple limb darkening calculations are as accurate as the analytic equations of Mandel & Agol (2002). Although our Monte Carlo fitting algorithm is not as mathematically rigorous as the Markov Chain Monte Carlo based algorithms most often used to determine exoplanetary system parameters, we show that it is straightforward and returns reliable results. Finally, we show that analyses performed with our model and optimization routine compare favorably with exoplanet characterizations published by groups such as the
Modeling the impact of spatial relationships on horizontal curve safety.
Findley, Daniel J; Hummer, Joseph E; Rasdorf, William; Zegeer, Charles V; Fowler, Tyler J
2012-03-01
The curved segments of roadways are more hazardous because of the additional centripetalforces exerted on a vehicle, driver expectations, and other factors. The safety of a curve is dependent on various factors, most notably by geometric factors, but the location of a curve in relation to other curves is also thought to influence the safety of those curves because of a driver's expectation to encounter additional curves. The link between an individual curve's geometric characteristics and its safety performance has been established, but spatial considerations are typically not included in a safety analysis. The spatial considerations included in this research consisted of four components: distance to adjacent curves, direction of turn of the adjacent curves, and radius and length of the adjacent curves. The primary objective of this paper is to quantify the spatial relationship between adjacent horizontal curves and horizontal curve safety using a crash modification factor. Doing so enables a safety professional to more accurately estimate safety to allocate funding to reduce or prevent future collisions and more efficiently design new roadway sections to minimize crash risk where there will be a series of curves along a route. The most important finding from this research is the statistical significance of spatial considerations for the prediction of horizontal curve safety. The distances to adjacent curves were found to be a reliable predictor of observed collisions. This research recommends a model which utilizes spatial considerations for horizontal curve safety prediction in addition to current Highway Safety Manual prediction capabilities using individual curve geometric features.
Analytical drafting curves provide exact equations for plotted data
NASA Technical Reports Server (NTRS)
Stewart, R. B.
1967-01-01
Analytical drafting curves provide explicit mathematical expressions for any numerical data that appears in the form of graphical plots. The curves each have a reference coordinate axis system indicated on the curve as well as the mathematical equation from which the curve was generated.
Surface family with a common involute asymptotic curve
NASA Astrophysics Data System (ADS)
Bayram, Ergi˙n; Bi˙li˙ci˙, Mustafa
2016-03-01
We construct a surface family possessing an involute of a given curve as an asymptotic curve. We express necessary and sufficient conditions for that curve with the above property. We also present natural results for such ruled surfaces. Finally, we illustrate the method with some examples, e.g. circles and helices as given curves.
Inferring cardiac phase response curve in vivo
NASA Astrophysics Data System (ADS)
Pikovsky, Arkady; Kralemann, Bjoern; Fruehwirth, Matthias; Rosenblum, Michael; Kenner, Thomas; Schaefer, Jochen; Moser, Maximilian
2014-03-01
Characterizing properties of biological oscillators with phase response cirves (PRC) is one of main theoretical tools in neuroscience, cardio-respiratory physiology, and chronobiology. We present a technique that allows the extraction of the PRC from a non-invasive observation of a system consisting of two interacting oscillators, in this case heartbeat and respiration, in its natural environment and under free-running conditions. We use this method to obtain the phase coupling functions describing cardio-respiratory interactions and the phase response curve of 17 healthy humans. We show at which phase the cardiac beat is susceptible to respiratory drive and extract the respiratory-related component of heart rate variability. This non-invasive method of bivariate data analysis for the determination of phase response curves of coupled oscillators may find application in other biological and physical systems.
Knots, BPS States, and Algebraic Curves
NASA Astrophysics Data System (ADS)
Garoufalidis, Stavros; Kucharski, Piotr; Sułkowski, Piotr
2016-08-01
We analyze relations between BPS degeneracies related to Labastida-Mariño-Ooguri-Vafa (LMOV) invariants and algebraic curves associated to knots. We introduce a new class of such curves, which we call extremal A-polynomials, discuss their special properties, and determine exact and asymptotic formulas for the corresponding (extremal) BPS degeneracies. These formulas lead to nontrivial integrality statements in number theory, as well as to an improved integrality conjecture, which is stronger than the known M-theory integrality predictions. Furthermore, we determine the BPS degeneracies encoded in augmentation polynomials and show their consistency with known colored HOMFLY polynomials. Finally, we consider refined BPS degeneracies for knots, determine them from the knowledge of super-A-polynomials, and verify their integrality. We illustrate our results with twist knots, torus knots, and various other knots with up to 10 crossings.
New approach to curved projective superspace
NASA Astrophysics Data System (ADS)
Butter, Daniel
2015-10-01
We present a new formulation of curved projective superspace. The 4 D N =2 supermanifold M4 |8 (four bosonic and eight Grassmann coordinates) is extended by an auxiliary SU(2) manifold, which involves introducing a vielbein and related connections on the full M7 |8=M4 |8×SU (2 ) . Constraints are chosen so that it is always possible to return to the central basis where the auxiliary SU(2) manifold largely decouples from the curved manifold M4 |8 describing 4 D N =2 conformal supergravity. We introduce the relevant projective superspace action principle in the analytic subspace of M7 |8 and construct its component reduction in terms of a five-form J living on M4×C , with C a contour in SU(2). This approach is inspired by and generalizes the original approach, which can be identified with a complexified version of the central gauge of the formulation presented here.
From smooth curves to universal metrics
NASA Astrophysics Data System (ADS)
Gürses, Metin; Şişman, Tahsin ćaǧrı; Tekin, Bayram
2016-08-01
A special class of metrics, called universal metrics, solves all gravity theories defined by covariant field equations purely based on the metric tensor. Since we currently lack the knowledge of what the full quantum-corrected field equations of gravity are at a given microscopic length scale, these metrics are particularly important in understanding quantum fields in curved backgrounds in a consistent way. However, finding explicit universal metrics has been a difficult problem as there does not seem to be a procedure for it. In this work, we overcome this difficulty and give a construction of universal metrics of d -dimensional spacetime from curves constrained to live in a (d -1 )-dimensional Minkowski spacetime or a Euclidean space.
An introduction to curved space-times.
NASA Astrophysics Data System (ADS)
Williams, R. M.
1991-07-01
These lectures focus on understanding relativity from a geometrical viewpoint, based on the use of space-time diagrams and without the tools of tensor calculus. After a brief discussion of flat space-times, curved space-times are introduced and it is shown how many of their properties may be deduced from their metric interval. The space-time around a spherically symmetric star and its possible collapse to form a black hole is described. Finally, some simple cosmological models are discussed, with emphasis on their causal properties and the existence of horizons. The titles of the lectures are: I. Flat space-times. II. Curved space-times. III. Spherical stars and stellar collapse. IV. Some simple cosmological models.
Curved butterfly bileaflet prosthetic cardiac valve
McQueen, David M.; Peskin, Charles S.
1991-06-25
An annular valve body having a central passageway for the flow of blood therethrough with two curved leaflets each of which is pivotally supported on an accentric positioned axis in the central passageway for moving between a closed position and an open position. The leaflets are curved in a plane normal to the eccentric axis and positioned with the convex side of the leaflets facing each other when the leaflets are in the open position. Various parameters such as the curvature of the leaflets, the location of the eccentric axis, and the maximum opening angle of the leaflets are optimized according to the following performance criteria: maximize the minimum peak velocity through the valve, maximize the net stroke volume, and minimize the mean forward pressure difference, thereby reducing thrombosis and improving the hemodynamic performance.
Free Vibration of Curved Layered Composite Beams
NASA Astrophysics Data System (ADS)
Yavuz, Mustafa; Ergzgüven, M. Ertaç
In practice, fibrous and layered composite beams have periodically and locally curved layers because of the design considerations and manufacturing processes. In this study, the effect of these curvatures and composite material properties to the natural frequencies of the beams is investigated. The periodically curved layered composite material of the considered beam is modelled with the use of the continuum theory proposed by Akbarov and Guz. The free vibration problems are solved by employing the finite element method. Obtained natural frequencies of the beams are presented for the different parameters of the curvature, modulus of elasticity and support condition of the beams. For the case that the ratio of the modulus of elasticity of the layers equals to one and the parameter of the curvature equals to zero, the results converge to natural frequencies of a classical Euler-Bernoulli beam. Results are in good agreement with the literature.
Modeling Light Curves for Improved Classification
NASA Astrophysics Data System (ADS)
Faraway, Julian; Mahabal, Ashish; Sun, Jiayang; Wang, Xiaofeng; Yi; Zhang, Lingsong
2016-02-01
Many synoptic surveys are observing large parts of the sky multiple times. The resulting lightcurves provide a wonderful window to the dynamic nature of the universe. However, there are many significant challenges in analyzing these light curves. These include heterogeneity of the data, irregularly sampled data, missing data, censored data, known but variable measurement errors, and most importantly, the need to classify in astronomical objects in real time using these imperfect light curves. We describe a modeling-based approach using Gaussian process regression for generating critical measures representing features for the classification of such lightcurves. We demonstrate that our approach performs better by comparing it with past methods. Finally, we provide future directions for use in sky-surveys that are getting even bigger by the day.
Making Internal Molds Of Long, Curved Tubes
NASA Technical Reports Server (NTRS)
Burley, Richard K.
1989-01-01
Mold material carried to internal weld joint and removed after impression taken. Remotely operated device makes impression mold of interior surface of tube at weld joint. Mold provides indication of extent of mismatch between members at joint. Maneuvered to weld inspected through curved tube 3 in. in diameter by 50 in. long. Readily adapted to making molds to measure depth of corrosion in boiler tubes or other pipes.
Least-Squares Curve-Fitting Program
NASA Technical Reports Server (NTRS)
Kantak, Anil V.
1990-01-01
Least Squares Curve Fitting program, AKLSQF, easily and efficiently computes polynomial providing least-squares best fit to uniformly spaced data. Enables user to specify tolerable least-squares error in fit or degree of polynomial. AKLSQF returns polynomial and actual least-squares-fit error incurred in operation. Data supplied to routine either by direct keyboard entry or via file. Written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler.
The Astral Curved Disc of Chevroches (France)
NASA Astrophysics Data System (ADS)
Devevey, F. Rousseau, A.
2009-08-01
The excavation of the unexplored secondary agglomeration in Chevroches (Nièvre), from 2001 to 2002, directed by F. Devevey (INRAP), has led to the discovery of an astrological bronze curved disc of a type unknown in the ancient world; it is inscribed with three lines in Greek transcribing Egyptian an Roman months, and the twelve signs of the zodiac. This article presents the first observations.
NASA Technical Reports Server (NTRS)
Cole, S. W.
1983-01-01
Electronic load circuit for displaying current/voltage characteristic curves of power sources uses low-cost low-power CMOS operational amplifiers to control load current flowing through power MOSFET Q2 and main load transistor Q3. Thermal cutoff device turns off transistor Q3 in case of overload. To maximize battery life, battery is connected via "push-to-read" momentary-contact pushbutton switch.
Ab initio melting curve of osmium
NASA Astrophysics Data System (ADS)
Burakovsky, L.; Burakovsky, N.; Preston, D. L.
2015-11-01
The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P =0 melting point of Os is 3370 ±75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)], 10.1595/147106705X70264 that the melting temperature of pure Os is 3400 ±50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T =0 equation of state (EOS) of Os and the P dependence of the optimized c /a ratio for the hexagonal unit cell, both to pressures ˜900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P ≲80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir.
SS433 Trek 2: light curve analysis.
NASA Astrophysics Data System (ADS)
Fukue, J.; Obana, Y.; Okugami, M.
The authors have calculated theoretical light curves of SS433 during eclipse and precession, using a model in which SS433 consists of a geometrically thick torus around a compact star and a companion star filling the Roche lobe. The favorite combination is that the mass ratio is about 2 (a compact star is a black hole) and the surface temperature of the companion is around 17000K.
Potential Energy Curves of Hydrogen Fluoride
NASA Technical Reports Server (NTRS)
Fallon, Robert J.; Vanderslice, Joseph T.; Mason, Edward A.
1960-01-01
Potential energy curves for the X(sup 1)sigma+ and V(sup 1)sigma+ states of HF and DF have been calculated by the Rydberg-Klein-Rees method. The results calculated from the different sets of data for HF and DF are found to be in very good agreement. The theoretical results of Karo are compared to the experimental results obtained here.
Atlas of Secular Light Curves of Comets
NASA Astrophysics Data System (ADS)
Ferrin, Ignacio
2007-12-01
We have completed work on the secular light curves of 30 periodic and non-periodic comets. The objectives and approach of this project has been explained in Ferrin (Icarus, 178, 493-516, 2005). Each comet requires 2 plots. The time plot shows the reduced (to Δ = 1 AU) magnitude of the comet as a function of time, thus displaying the brightness history of the object. The log plot is a reflected double log plot. The reflection takes place at R=1 AU, to allow the determination of the absolute magnitude by extrapolation. 22 photometric parameters are measured from the plots, most of them new. The plots have been collected in a document that constitutes "The Atlas". We have defined a photometric age, P-AGE, that attempts to measure the age of a comet based on its activity. P-AGE has been scaled to human ages to help in its interpretation. We find that comets Hale-Bopp and 29P/SW 1, are baby comets (P-AGE < 3 comet years), while 107P, 162P and 169P are methuselah comets (P-AGE > 100 cy). The secular light curve of 9P/Tempel 1 exhibits sublimation due to H2O and due to CO. Comet 67P/Churyumov-Gerasimento to be visited by the Rossetta spacecraft in 2014 exhibits a photometric anomaly. Comet 65P/Gunn exhibits a lag in maximum brightness of LAG = + 254 days after perihelion. We suggest that the pole is pointing to the sun at that time. The secular light curves will be presented and a preliminary interpretation will be advanced. The secular light curves present complexity beyond current understanding. The observations described in this work were carried out at the National Observatory of Venezuela (ONV), managed by the Center for Research in Astronomy (CIDA), for the Ministry of Science and Technology (MinCyT).
Analysis of light curve of LP Camelopardalis
NASA Astrophysics Data System (ADS)
Prudil, Z.; Skarka, M.; Zejda, M.
2016-05-01
We present photometric analysis of the RRab type pulsating star LP Cam. The star was observed at Brno Observatory and Planetarium during nine nights. Measurements were calibrated to the Johnson photometric system. Four captured and thirteen previously published maxima timings allowed us to refine the pulsation period and the zero epoch. The light curve was Fourier decomposed to estimate physical parameters using empirical relations. Our results suggest that LP Cam is a common RR Lyrae star with high, almost solar metallicity.
Science 101: What Makes a Curveball Curve?
ERIC Educational Resources Information Center
Robertson, William C.
2009-01-01
Ah, springtime, and young people's thoughts turn to... baseball, of course. But this column is not about "how" to throw a curveball, so you'll have to look that up on your own. Here, the focus is on the "why" of the curveball. There are two different things that cause a spinning ball to curve. One is known as the "Bernoulli effect" and the other…
OPTICAL PHASE CURVES OF KEPLER EXOPLANETS
Esteves, Lisa J.; De Mooij, Ernst J. W.; Jayawardhana, Ray E-mail: demooij@astro.utoronto.ca
2013-07-20
We conducted a comprehensive search for optical phase variations of all close-in (a/R{sub *} < 10) planet candidates in 15 quarters of Kepler space telescope data. After correcting for systematics, we found eight systems that show secondary eclipses as well as phase variations. Of these, five (Kepler-5, Kepler-6, Kepler-8, KOI-64, and KOI-2133) are new and three (TrES-2, HAT-P-7, and KOI-13) have published phase curves, albeit with many fewer observations. We model the full phase curve of each planet candidate, including the primary and secondary transits, and derive their albedos, dayside and nightside temperatures, ellipsoidal variations, and Doppler beaming. We find that KOI-64 and KOI-2133 have nightside temperatures well above their equilibrium values (while KOI-2133 also has an albedo, >1), so we conclude that they are likely to be self-luminous objects rather than planets. The other six candidates have characteristics consistent with their being planets with low geometric albedos (<0.3). For TrES-2 and KOI-13, the Kepler bandpass appears to probe atmospheric layers hotter than the planet's equilibrium temperature. For KOI-13, we detect a never-before-seen third cosine harmonic with an amplitude of 6.7 {+-} 0.3 ppm and a phase shift of -1.1 {+-} 0.1 rad in the phase curve residual, possibly due to its spin-orbit misalignment. We report derived planetary parameters for all six planets, including masses from ellipsoidal variations and Doppler beaming, and compare our results to published values when available. Our results nearly double the number of Kepler exoplanets with measured phase curve variations, thus providing valuable constraints on the properties of hot Jupiters.
Lightweight Composite Core For Curved Composite Mirrors
NASA Technical Reports Server (NTRS)
Porter, Christopher C.; Jacoy, Paul J.; Schmitigal, Wesley P.
1991-01-01
New type of composite core material for curved composite mirrors proposed. Strips cut from corrugated sheets of graphite/epoxy bonded together at crests and valleys. In comparison with honeycomb and other lightweight core materials, structure less mechanically anisotropic, tailored to have less distortion due to temperature changes, naturally vented, and easily fabricated. Conforms readily to spherical and paraboloidal curvatures and fabricated in large sizes.
Lower extremity kinematics of athletics curve sprinting.
Alt, Tobias; Heinrich, Kai; Funken, Johannes; Potthast, Wolfgang
2015-01-01
Curve running requires the generation of centripetal force altering the movement pattern in comparison to the straight path run. The question arises which kinematic modulations emerge while bend sprinting at high velocities. It has been suggested that during curve sprints the legs fulfil different functions. A three-dimensional motion analysis (16 high-speed cameras) was conducted to compare the segmental kinematics of the lower extremity during the stance phases of linear and curve sprints (radius: 36.5 m) of six sprinters of national competitive level. Peak joint angles substantially differed in the frontal and transversal plane whereas sagittal plane kinematics remained unchanged. During the prolonged left stance phase (left: 107.5 ms, right: 95.7 ms, straight: 104.4 ms) the maximum values of ankle eversion (left: 12.7°, right: 2.6°, straight: 6.6°), hip adduction (left: 13.8°, right: 5.5°, straight: 8.8°) and hip external rotation (left: 21.6°, right: 12.9°, straight: 16.7°) were significantly higher. The inside leg seemed to stabilise the movement in the frontal plane (eversion-adduction strategy) whereas the outside leg provided and controlled the motion in the horizontal plane (rotation strategy). These results extend the principal understanding of the effects of curve sprinting on lower extremity kinematics. This helps to increase the understanding of nonlinear human bipedal locomotion, which in turn might lead to improvements in athletic performance and injury prevention. PMID:25495196
Phase-response curves of coupled oscillators.
Ko, Tae-Wook; Ermentrout, G Bard
2009-01-01
Many real oscillators are coupled to other oscillators, and the coupling can affect the response of the oscillators to stimuli. We investigate phase-response curves (PRCs) of coupled oscillators. The PRCs for two weakly coupled phase-locked oscillators are analytically obtained in terms of the PRC for uncoupled oscillators and the coupling function of the system. Through simulation and analytic methods, the PRCs for globally coupled oscillators are also discussed.
Robotic lobectomy: flattening the learning curve.
Hernandez, Jonathan M; Humphries, Leigh Ann; Keeling, W Brent; Golkar, Farhaad; Dimou, Francesca; Garrett, Joseph; Sommers, K Eric
2012-03-01
Early experience with robotic technology in pulmonary resection has emphasized a steep learning curve. We initiated a robotic thoracic surgical program with the goal of minimizing complications, operative times, and hospital stays. We implemented robotic lobe resections at our institution with the intent of performing an operationally analogous procedure to that of the open technique. Specifically, we used single docking of the robotic cart, innovative retraction, single interspace port placement, and dockings specific to the resected lobe. We reviewed outcomes for patients undergoing robotic lobectomy at our institution. Data is presented as mean ± standard deviation. 20 patients (69 ± 12 years) underwent robotic lobe resections. American Joint Committee on Cancer staging for 14 patients undergoing resections for non-small cell lung cancers were Stage I (10), Stage II (2), and Stage III (2). Operative times for 20 patients undergoing robotic lobectomies were 203 ± 53 min. Median postoperative hospital stay was 3 days. Conversions to open procedures were required in two patients secondary to failure to progress (1) and bleeding (1). Complications occurred in four (20%) patients and included atelectasis (2), myocardial infarction (1), and atrial fibrillation (1). No fatalities occurred. The perception that robotic pulmonary resection involves a steep learning curve may not be universally accurate; our operative times and hospital stays are consistent with those reported by established programs. For surgeons experienced in open and thoracoscopic lobectomy, appropriate patient selection coupled with the specific robotic techniques described may flatten the learning curve.
Psychophysical tuning curves at very high frequencies
NASA Astrophysics Data System (ADS)
Yasin, Ifat; Plack, Christopher J.
2005-10-01
For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.
Incorporating Experience Curves in Appliance Standards Analysis
Garbesi, Karina; Chan, Peter; Greenblatt, Jeffery; Kantner, Colleen; Lekov, Alex; Meyers, Stephen; Rosenquist, Gregory; Buskirk, Robert Van; Yang, Hung-Chia; Desroches, Louis-Benoit
2011-10-31
The technical analyses in support of U.S. energy conservation standards for residential appliances and commercial equipment have typically assumed that manufacturing costs and retail prices remain constant during the projected 30-year analysis period. There is, however, considerable evidence that this assumption does not reflect real market prices. Costs and prices generally fall in relation to cumulative production, a phenomenon known as experience and modeled by a fairly robust empirical experience curve. Using price data from the Bureau of Labor Statistics, and shipment data obtained as part of the standards analysis process, we present U.S. experience curves for room air conditioners, clothes dryers, central air conditioners, furnaces, and refrigerators and freezers. These allow us to develop more representative appliance price projections than the assumption-based approach of constant prices. These experience curves were incorporated into recent energy conservation standards for these products. The impact on the national modeling can be significant, often increasing the net present value of potential standard levels in the analysis. In some cases a previously cost-negative potential standard level demonstrates a benefit when incorporating experience. These results imply that past energy conservation standards analyses may have undervalued the economic benefits of potential standard levels.
The biology behind lichenometric dating curves.
Loso, Michael G; Doak, Daniel F
2006-03-01
Lichenometry is used to date late-Holocene terminal moraines that record glacier fluctuations. Traditionally, it relies upon dating curves that relate diameters of the largest lichens in a population to surface ages. Although widely used, the technique remains controversial, in part because lichen biology is poorly understood. We use size-frequency distributions of lichens growing on well-dated surfaces to fit demographic models for Rhizocarpon geographicum and Pseudophebe pubescens, two species commonly used for lichenometry. We show that both species suffer from substantial mortality of 2-3% per year, and grow slowest when young-trends that explain a long-standing contradiction between the literatures of lichenometry and lichen biology. Lichenometrists interpret the shape of typical dating curves to indicate a period of rapid juvenile "great growth," contrary to the growth patterns expected by biologists. With a simulation, we show how the "great growth" pattern can be explained by mortality alone, which ensures that early colonists are rarely found on the oldest surfaces. The consistency of our model predictions with biological theory and observations, and with dozens of lichenometric calibration curves from around the world, suggests opportunities to assess quantitatively the accuracy and utility of this common dating technique.
Shape optimization of self-avoiding curves
NASA Astrophysics Data System (ADS)
Walker, Shawn W.
2016-04-01
This paper presents a softened notion of proximity (or self-avoidance) for curves. We then derive a sensitivity result, based on shape differential calculus, for the proximity. This is combined with a gradient-based optimization approach to compute three-dimensional, parameterized curves that minimize the sum of an elastic (bending) energy and a proximity energy that maintains self-avoidance by a penalization technique. Minimizers are computed by a sequential-quadratic-programming (SQP) method where the bending energy and proximity energy are approximated by a finite element method. We then apply this method to two problems. First, we simulate adsorbed polymer strands that are constrained to be bound to a surface and be (locally) inextensible. This is a basic model of semi-flexible polymers adsorbed onto a surface (a current topic in material science). Several examples of minimizing curve shapes on a variety of surfaces are shown. An advantage of the method is that it can be much faster than using molecular dynamics for simulating polymer strands on surfaces. Second, we apply our proximity penalization to the computation of ideal knots. We present a heuristic scheme, utilizing the SQP method above, for minimizing rope-length and apply it in the case of the trefoil knot. Applications of this method could be for generating good initial guesses to a more accurate (but expensive) knot-tightening algorithm.
Smoothing Rotation Curves and Mass Profiles
NASA Astrophysics Data System (ADS)
Berrier, Joel C.; Sellwood, J. A.
2015-02-01
We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modes develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called "disk-halo conspiracy," could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.
The biology behind lichenometric dating curves.
Loso, Michael G; Doak, Daniel F
2006-03-01
Lichenometry is used to date late-Holocene terminal moraines that record glacier fluctuations. Traditionally, it relies upon dating curves that relate diameters of the largest lichens in a population to surface ages. Although widely used, the technique remains controversial, in part because lichen biology is poorly understood. We use size-frequency distributions of lichens growing on well-dated surfaces to fit demographic models for Rhizocarpon geographicum and Pseudophebe pubescens, two species commonly used for lichenometry. We show that both species suffer from substantial mortality of 2-3% per year, and grow slowest when young-trends that explain a long-standing contradiction between the literatures of lichenometry and lichen biology. Lichenometrists interpret the shape of typical dating curves to indicate a period of rapid juvenile "great growth," contrary to the growth patterns expected by biologists. With a simulation, we show how the "great growth" pattern can be explained by mortality alone, which ensures that early colonists are rarely found on the oldest surfaces. The consistency of our model predictions with biological theory and observations, and with dozens of lichenometric calibration curves from around the world, suggests opportunities to assess quantitatively the accuracy and utility of this common dating technique. PMID:16237538
PSD analysis of optical QSO light curves
NASA Astrophysics Data System (ADS)
Simm, Torben; Salvato, M.; Saglia, R.; Ponti, G.; Lanzuisi, G.; Trakhtenbrot, B.; Nandra, K.; Bender, R.
2016-08-01
One of the elementary properties of quasar activity is continuous variability in the UV/optical bands. The power spectral density (PSD) potentially contains information about the underlying processes connected to variability. We applied a novel method based on continuous-time autoregressive moving average (CARMA) models (Kelly et al. 2014) to derive the PSD even for irregularly sampled light curves. Using a sample of ~100 X-ray selected non-local QSOs from the XMM-COSMOS catalog and optical light curves provided by the Pan-STARRS1 MDF survey we find that the PSD resembles a broken power-law with a high-frequency slope significantly steeper than observed in X-ray studies. The PSD normalization is observed to scale inversely with bolometric luminosity and Eddington ratio, whereas there is no correlation between the characteristic bend timescale and black hole mass. We find a weak tendency for QSOs with higher black hole mass to have steeper high-frequency PSD slopes. In an ongoing work we extend these studies employing a sample of ~700 variable broad-line QSOs with high-quality black hole mass estimates and well-sampled light curves from the SDSS-RM project.
Characterization of running with compliant curved legs.
Jun, Jae-Yun; Clark, Jonathan E
2015-07-07
Running with compliant curved legs involves the progression of the center of pressure, the changes of both the leg's stiffness and effective rest length, and the shift of the location of the maximum stress point along the leg. These phenomena are product of the geometric and material properties of these legs, and the rolling motion produced during stance. We examine these aspects with several reduced-order dynamical models to relate the leg's design parameters (such as normalized foot radius, leg's effective stiffness, location of the maximum stress point and leg shape) to running performance (such as robustness and efficiency). By using these models, we show that running with compliant curved legs can be more efficient, robust with fast recovery behavior from perturbations than running with compliant straight legs. Moreover, the running performance can be further improved by tuning these design parameters in the context of running with rolling. The results shown in this work may serve as potential guidance for future compliant curved leg designs that may further improve the running performance.
SMOOTHING ROTATION CURVES AND MASS PROFILES
Berrier, Joel C.; Sellwood, J. A.
2015-02-01
We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modes develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called ''disk-halo conspiracy'', could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.
A learning curve for solar thermal power
NASA Astrophysics Data System (ADS)
Platzer, Werner J.; Dinter, Frank
2016-05-01
Photovoltaics started its success story by predicting the cost degression depending on cumulated installed capacity. This so-called learning curve was published and used for predictions for PV modules first, then predictions of system cost decrease also were developed. This approach is less sensitive to political decisions and changing market situations than predictions on the time axis. Cost degression due to innovation, use of scaling effects, improved project management, standardised procedures including the search for better sites and optimization of project size are learning effects which can only be utilised when projects are developed. Therefore a presentation of CAPEX versus cumulated installed capacity is proposed in order to show the possible future advancement of the technology to politics and market. However from a wide range of publications on cost for CSP it is difficult to derive a learning curve. A logical cost structure for direct and indirect capital expenditure is needed as the basis for further analysis. Using derived reference cost for typical power plant configurations predictions of future cost have been derived. Only on the basis of that cost structure and the learning curve levelised cost of electricity for solar thermal power plants should be calculated for individual projects with different capacity factors in various locations.
Bayesian ROC curve estimation under verification bias.
Gu, Jiezhun; Ghosal, Subhashis; Kleiner, David E
2014-12-20
Receiver operating characteristic (ROC) curve has been widely used in medical science for its ability to measure the accuracy of diagnostic tests under the gold standard. However, in a complicated medical practice, a gold standard test can be invasive, expensive, and its result may not always be available for all the subjects under study. Thus, a gold standard test is implemented only when it is necessary and possible. This leads to the so-called 'verification bias', meaning that subjects with verified disease status (also called label) are not selected in a completely random fashion. In this paper, we propose a new Bayesian approach for estimating an ROC curve based on continuous data following the popular semiparametric binormal model in the presence of verification bias. By using a rank-based likelihood, and following Gibbs sampling techniques, we compute the posterior distribution of the binormal parameters intercept and slope, as well as the area under the curve by imputing the missing labels within Markov Chain Monte-Carlo iterations. Consistency of the resulting posterior under mild conditions is also established. We compare the new method with other comparable methods and conclude that our estimator performs well in terms of accuracy. PMID:25269427
NASA Astrophysics Data System (ADS)
Shrader, Chris; Titarchuk, Lev
2002-04-01
We describe recent work in which we revisit the database of historical X-Ray nova (XRN) light curves compiled by Chen, Shrader & Livio (1997, ApJ 491, 312), augmented by subsequent events recorded by RXTE, in an attempt to gain a better understanding of the outburst phenomenon. Previously, we demonstrated that, given the occurrence of an instability in the mass transfer rate from the secondary, a model based on viscous diffusion of matter through the disk (Wood et al, 2001, astro-ph/0108189) we could reproduce a large number of fast-rise exponential decay (FRED) type XRN light curves. We augment this effort by considering deviations from the FRED form, such as plateaus and power-law decay forms are also considered within this framework. More complex structures are, in a number of instances, successfully modeled as a superposition of mass- injection, diffusive propagation events. In addition, for a large number of cases, we perform a joint analysis of optical light curve data. In particular, we will attempt to characterize empirical characteristics such as possible tie lags, and relative decay time scales, and then interpret such effects withing the context of diffusive propagation in the disk.
Ultraviolet light curves of V535 Arae
NASA Technical Reports Server (NTRS)
Eaton, Joel A.
1991-01-01
The light curve of V535 Ara is determined from observations of this long-period W UMa binary in the UV, and its gravity darkening is estimated. The UV colors and spectral type correspond to (B - V)0 = 0.24, or A8V, and imply that the star should have very little residual convection in its envelope. It is concluded that the gravity darkening is large, as in a radiative star, unless it is modified by circulation in the common envelope, or unless all stars this warm are convective. Four solutions are obtained to a combination of optical and UV light curves, two for high radiative gravity darkening, and two for low convective gravity darkening. The light curves were fitted equally well in all four cases, while in all but the one with low-gravity darkening and a hot inner face there was a rather large global temperature difference between the two stars. It is suggested that the W UMa binaries are found only at spectral types later than about A8 because their outer envelopes must be convective to transfer luminosity.
Open timelike curves violate Heisenberg's uncertainty principle.
Pienaar, J L; Ralph, T C; Myers, C R
2013-02-01
Toy models for quantum evolution in the presence of closed timelike curves have gained attention in the recent literature due to the strange effects they predict. The circuits that give rise to these effects appear quite abstract and contrived, as they require nontrivial interactions between the future and past that lead to infinitely recursive equations. We consider the special case in which there is no interaction inside the closed timelike curve, referred to as an open timelike curve (OTC), for which the only local effect is to increase the time elapsed by a clock carried by the system. Remarkably, circuits with access to OTCs are shown to violate Heisenberg's uncertainty principle, allowing perfect state discrimination and perfect cloning of coherent states. The model is extended to wave packets and smoothly recovers standard quantum mechanics in an appropriate physical limit. The analogy with general relativistic time dilation suggests that OTCs provide a novel alternative to existing proposals for the behavior of quantum systems under gravity.
Hong, Y Mark; Sutherland, Douglas E; Linder, Brian; Engel, Jason D
2010-03-01
The use of robot-assisted laparoscopic radical prostatectomy (RALP) is widespread in the community. A definitive RALP "learning curve" has not been defined and existing learning curves do not account for urologists without prior advanced laparoscopic skills. Therefore, an easily evaluable metric, the "oncological experience curve," would be clinically useful to all urologists performing RALP. Positive surgical margin (PSM) status for all subjects undergoing RALP during the first 4 years of a single surgeon's experience was assessed. Univariate and multivariate analyses and logistic regression identified predictors of PSM creation and their correlation with surgeon case volume. The oncological experience curve was defined as the case point at which only pT2 stage, not surgeon volume (and thus surgeon inexperience), predicted PSM in the logistic regression. A total of 469 consecutive subjects comprised our cohort. Overall pT2 and pT3 PSM rates were 20% and 40%, respectively. Preoperative prostate-specific antigen, pathologic stage, and year of surgery were associated with PSM occurrence. Pathologic stage exclusively correlated to PSM in pT2 specimens for the first time during the fourth year, after 290 subjects had been treated. pT2 PSM rate before and after Case 290 was 25% and 10%, respectively (p < 0.001). The oncological experience curve is a clinically meaningful measure to evaluate the RALP learning curve for non-fellowship-trained urologists. The oncological experience curve may be much longer than the previously reported learning curves. Surgeons should consider whether they can build enough experience to minimize suboptimal oncological outcomes before embarking on or continuing a RALP program.
Phase-ordering kinetics on curved surfaces
NASA Astrophysics Data System (ADS)
Schoenborn, Oliver Lars
I investigate phase-ordering kinetics on static curved surfaces, starting from a well-known time-dependent Ginzburg-Landau equation, known as model A and valid in flat two-dimensional systems, and generalizing this to apply on curved surfaces. I develop and implement an interface formalism for model A, valid in both curved and flat surfaces. This is based on an interface velocity equation explicitly showing how interface motion couples to local surface geometry. I discuss extensively both theoretical and numerical aspects of this formalism. I derive a coupled set of curvature equations and use them to obtain an approximate expression for the curvature autocorrelation function (CAF) in the flat case. This is compared for the first time to numerical simulation results and shows that the CAF provides dynamical information not readily available from the traditional order-parameter structure-factor, yet is far easier to compute than the latter. A dominant length-scale is observed for the first time, in the domain interface undulations, even in Euclidean model A dynamics. I discuss how this affects the interpretation of what is needed for a system to exhibit dynamical scaling. I look at the effect of surface Gauss curvature on the growth rate of domains and show that when the phase-ordering occurs on a corrugated surface, metastable long-range disorder may result. I show how these effects cause a break-down of dynamical scaling and power-law growth, how they bring about the elimination of the zero-temperature fixed point of Euclidean model A, and how phase-ordering in curved lipid-bilayer membranes should be affected. A new very-late stage regime appears for simulations of model A on sinusoid (i.e. egg-carton-like) surfaces. These features indicate that thermal noise should be included in future studies of phase ordering kinetics on curved surfaces. They also indicate that even before the order-parameter is explicitly coupled to surface quantities such as the local mean
Variation of curve number with storm depth
NASA Astrophysics Data System (ADS)
Banasik, K.; Hejduk, L.
2012-04-01
The NRCS Curve Number (known also as SCS-CN) method is well known as a tool in predicting flood runoff depth from small ungauged catchment. The traditional way of determination the CNs, based on soil characteristics, land use and hydrological conditions, seemed to have tendency to overpredict the floods in some cases. Over 30 year rainfall-runoff data, collected in two small (A=23.4 & 82.4 km2), lowland, agricultural catchments in Center of Poland (Banasik & Woodward 2010), were used to determine runoff Curve Number and to check a tendency of changing. The observed CN declines with increasing storm size, which according recent views of Hawkins (1993) could be classified as a standard response of watershed. The analysis concluded, that using CN value according to the procedure described in USDA-SCS Handbook one receives representative value for estimating storm runoff from high rainfall depths in the analyzes catchments. This has been confirmed by applying "asymptotic approach" for estimating the watershed curve number from the rainfall-runoff data. Furthermore, the analysis indicated that CN, estimated from mean retention parameter S of recorded events with rainfall depth higher than initial abstraction, is also approaching the theoretical CN. The observed CN, ranging from 59.8 to 97.1 and from 52.3 to 95.5, in the smaller and the larger catchment respectively, declines with increasing storm size, which has been classified as a standard response of watershed. The investigation demonstrated also changeability of the CN during a year, with much lower values during the vegetation season. Banasik K. & D.E. Woodward (2010). "Empirical determination of curve number for a small agricultural watrshed in Poland". 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1, 2010 (http://acwi.gov/sos/pubs/2ndJFIC/Contents/10E_Banasik_ 28_02_10. pdf). Hawkins R. H. (1993). "Asymptotic determination of curve numbers from data". Journal of Irrigation and Drainage
Curved spiral antennas for underwater biological applications
NASA Astrophysics Data System (ADS)
Llamas, Ruben
We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes
Christensen, S. W.; Goodyear, C. P.; Kirk, B. L.
1982-03-01
This report addresses the validity of the utilities' use of the Ricker stock-recruitment model to extrapolate the combined entrainment-impingement losses of young fish to reductions in the equilibrium population size of adult fish. In our testimony, a methodology was developed and applied to address a single fundamental question: if the Ricker model really did apply to the Hudson River striped bass population, could the utilities' estimates, based on curve-fitting, of the parameter alpha (which controls the impact) be considered reliable. In addition, an analysis is included of the efficacy of an alternative means of estimating alpha, termed the technique of prior estimation of beta (used by the utilities in a report prepared for regulatory hearings on the Cornwall Pumped Storage Project). This validation methodology should also be useful in evaluating inferences drawn in the literature from fits of stock-recruitment models to data obtained from other fish stocks.
Robust Entrainment of Circadian Oscillators Requires Specific Phase Response Curves
Pfeuty, Benjamin; Thommen, Quentin; Lefranc, Marc
2011-01-01
The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evolved so as to be robust to fluctuations in the signal that entrains them. To support this hypothesis, we analyze the synchronization behavior of weakly and periodically forced oscillators in terms of their phase response curve (PRC), which measures phase changes induced by a perturbation applied at different times of the cycle. We establish a general relationship between the robustness of key entrainment properties, such as stability and oscillator phase, on the one hand, and the shape of the PRC as characterized by a specific curvature or the existence of a dead zone, on the other hand. The criteria obtained are applied to computational models of circadian clocks and account for the disparate robustness properties of various forcing schemes. Finally, the analysis of PRCs measured experimentally in several organisms strongly suggests a case of convergent evolution toward an optimal strategy for maintaining a clock that is accurate and robust to environmental fluctuations. PMID:21641300
Creating A Light Curve Using Gathered Data
NASA Astrophysics Data System (ADS)
Wiggs, Joseph; Stolarz, S. A.; DePorto, R. W.; Shake, W. J.; Piper, M.; Linder, T. R.; Holmes, R.; Conwell, J.
2012-01-01
Our group of students with the support of educators and astronomers carried out a program to do astrometric and photometric analysis on the asteroid 2000 SO1 with the objective of obtaining a more in depth analysis of this asteroid and publishing light curve data describing the period of the asteroid. We chose our target asteroid using the minor planet center database, choosing an object that would have an acceptable Right Ascension, Declination, magnitude, and air mass for the ARO (Astronomical Research Observatory)-30 inch telescope operated by the SKYNET program. Our journey began with using Astrometrica for the IASC/WISE Program to identify and find new asteroids in the sky and add data to the Minor Planet Center Database. We then used MPO (Minor Planet Observatory) Canopus to form a light curve and conduct a fourier analysis on an example asteroid to familiarize ourselves with the program and used the program again to conduct fourier analysis on asteroid 2000 SO1. The educational goal in mind was to (a) learn the process of collecting and analyzing data using Astrometrica, MPO Canopus, the Minor Planet Center, and SKYNET and (b) create a poster to display the steps used in the process of surveying taken images and the production of a light curve. We collected 300 images a night, while discarding all the corrupted images, until we had enough data to accurately represent the object.Our work was successful due to resources from; Eastern Illinois University's Physics Department, the Astronomical Research Observatory, the University of Chicago's Yerkes Observatory, the SKYNET network, NASA's IASC/WISE (International Astronomical Search Collaboration/ Wide-Field Infrared Survey Explorer), NITARP (NASA/IPAC Teacher Archive Research Program) and Lincoln-Way North High School.
Measuring Cooling Curves Following Magnetar Outbursts
NASA Astrophysics Data System (ADS)
Kaspi, Victoria
2012-09-01
Magnetars have been observed to increase their flux output by several orders of magnitude in outbursts. Following outbursts they cool on timescales of months to years. We propose to observe two magnetars, Swift J1822.3-1606 and 1E 1547.0-5408, using Chandra as they approach their quiescent state following their recent outbursts in 2011 and 2009, respectively. We will apply a newly developed crustal cooling model to these cooling curves to constrain the properties of the magnetars, such as the crust thickness and heat capacity, and of their outbursts, such as the location of energy deposition.
Calibrating Curved Crystals Used for Plasma Spectroscopy
Haugh, M. J., Jacoby, K. D., Ross, P. W., Rochau, G. Wu, M., Regan, S. P., Barrios, M. A.
2012-10-29
The throughput and resolving power of an X-ray spectrometer that uses a curved crystal as the diffraction element is determined primarily by the crystal X-ray reflectivity properties. This poster presents a measurement technique for these crystal parameters using a simple diode source to produce a narrow spectral band. The results from measurements on concave elliptical polyethylene terephthalate (PET) crystals and convex potassium acid phthalate (KAP) crystals show large variations in the key parameters compared to those from the flat crystal.
Curve of Spee - from orthodontic perspective
Dhiman, Sushma
2015-01-01
The presence of a curve of Spee (COS) of variable depth is common finding in the occlusal arrangement and is sixth key of occlusion The understanding of COS in the field of orthodontics is very important as orthodontists deal with it in virtually every patient they treat. An excessive COS is a common form of malocclusion that may be addressed in many ways, including posterior extrusion, anterior intrusion, and incisor proclination. The specific approach to leveling of COS should be selected based on each patient's needs. Soft tissue, crown–gingival relations, occlusal plane, and skeletofacial concerns are among the special considerations for treatment planning for leveling of COS. PMID:26752075
Asymptotic curved interface models in piezoelectric composites
NASA Astrophysics Data System (ADS)
Serpilli, Michele
2016-10-01
We study the electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic shell-like thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic analysis in a general curvilinear framework. After defining a small real dimensionless parameter ε, which will tend to zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong piezoelectric curved interface models, respectively. Moreover, we identify the non-classical electromechanical transmission conditions at the interface between the two three-dimensional bodies.
Enumeration of curves with one singular point
NASA Astrophysics Data System (ADS)
Basu, Somnath; Mukherjee, Ritwik
2016-06-01
In this paper we obtain an explicit formula for the number of curves in P2, of degree d, passing through (d(d + 3) / 2 - k) generic points and having a singularity X, where X is of type Ak≤7 ,Dk≤7 or Ek≤7. Our method comprises of expressing the enumerative problem as the Euler class of an appropriate bundle and using a purely topological method to compute the degenerate contribution to the Euler class. These numbers have also been computed by M. Kazarian using the existence of universal formulas for Thom polynomials.
SPECTRA AND LIGHT CURVES OF FAILED SUPERNOVAE
Fryer, Chris L.; Dahl, Jon A.; Fontes, Christopher J. E-mail: dahl@lanl.go
2009-12-10
Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae (SNe), they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here, we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these 'failed' SNe: SNe with considerable fallback, accretion-induced collapse of white dwarfs, and energetic helium flashes (also known as type Ia SNe).
How a Curved Elastic Strip Opens
NASA Astrophysics Data System (ADS)
Barois, Thomas; Tadrist, Loïc; Quilliet, Catherine; Forterre, Yoël
2014-11-01
An elastic strip is transversely clamped in a curved frame. The induced curvature decreases as the strip opens and connects to its flat natural shape. Various ribbon profiles are measured and the scaling law for the opening length validates a description where the in-plane stretching gradually relaxes the bending stress. An analytical model of the strip profile is proposed and a quantitative agreement is found with both experiments and simulations of the plates equations. This result provides a unique illustration of smooth nondevelopable solutions in thin sheets.
Flow in a rotating curved circular pipe.
Zhang, Jinsuo; Li, Ning; Zhang, Benzhao
2003-05-01
The flow in a rotating curved pipe with circular cross section is investigated theoretically and numerically. A perturbation solution up to the second order is obtained. A numerical procedure is used to solve the full governing equations and the simplified governing equations in the small curvature limit. Comparisons are made between the numerical and perturbation results, elucidating the lost information due to simplification and the valid range of the perturbation solution. The flow characteristics, including the secondary flow, the axial flow, and the friction factor ratio, are examined in detail.
Light-curve Analysis of Neon Novae
NASA Astrophysics Data System (ADS)
Hachisu, Izumi; Kato, Mariko
2016-01-01
We analyzed light curves of five neon novae, QU Vul, V351 Pup, V382 Vel, V693 CrA, and V1974 Cyg, and determined their white dwarf (WD) masses and distance moduli on the basis of theoretical light curves composed of free-free and photospheric emission. For QU Vul, we obtained a distance of d ˜ 2.4 kpc, reddening of E(B - V) ˜ 0.55, and WD mass of MWD = 0.82-0.96 {M}⊙ . This suggests that an oxygen-neon WD lost a mass of more than ˜ 0.1 {M}⊙ since its birth. For V351 Pup, we obtained d˜ 5.5 {{kpc}}, E(B-V)˜ 0.45, and {M}{{WD}}=0.98-1.1 {M}⊙ . For V382 Vel, we obtained d˜ 1.6 {{kpc}}, E(B-V)˜ 0.15, and {M}{{WD}}=1.13-1.28 {M}⊙ . For V693 CrA, we obtained d˜ 7.1 {{kpc}}, E(B-V)˜ 0.05, and {M}{{WD}}=1.15-1.25 {M}⊙ . For V1974 Cyg, we obtained d˜ 1.8 {{kpc}}, E(B-V)˜ 0.30, and {M}{{WD}}=0.95-1.1 {M}⊙ . For comparison, we added the carbon-oxygen nova V1668 Cyg to our analysis and obtained d˜ 5.4 {{kpc}}, E(B-V)˜ 0.30, and {M}{{WD}}=0.98-1.1 {M}⊙ . In QU Vul, photospheric emission contributes 0.4-0.8 mag at most to the optical light curve compared with free-free emission only. In V351 Pup and V1974 Cyg, photospheric emission contributes very little (0.2-0.4 mag at most) to the optical light curve. In V382 Vel and V693 CrA, free-free emission dominates the continuum spectra, and photospheric emission does not contribute to the optical magnitudes. We also discuss the maximum magnitude versus rate of decline relation for these novae based on the universal decline law.
Template Reproduction of GRB Pulse Light Curves
NASA Astrophysics Data System (ADS)
Hakkila, Jon E.; Preece, R. D.; Loredo, T. J.; Wolpert, R. L.; Broadbent, M. E.
2014-01-01
A study of well-isolated pulses in gamma ray burst light curves indicates that simple models having smooth and monotonic pulse rises and decays are inadequate. Departures from the Norris et al. (2005) pulse shape are in the form of a wave-like pre-peak residual that is mirrored and stretched following the peak. Pulse shape departures are present in GRB pulses of all durations, but placement of the departures relative to pulse peaks correlates with asymmetry. This establishes an additional link between temporal structure and spectral evolution, as pulse asymmetry is related to initial hardness while pulse duration indicates the rate of hard-to-soft pulse evolution.
Spatially varying dispersion to model breakthrough curves.
Li, Guangquan
2011-01-01
Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. PMID:21143474
Bell-Curve Based Evolutionary Optimization Algorithm
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.
1998-01-01
The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.
Forces due to curving protofilaments in microtubules
NASA Astrophysics Data System (ADS)
Vichare, Shirish; Jain, Ishutesh; Inamdar, Mandar M.; Padinhateeri, Ranjith
2013-12-01
Microtubules consist of 13 protofilaments arranged in the form of a cylinder. The protofilaments are composed of longitudinally attached tubulin dimers that can exist in either a less curved state [GTP-bound tubulin (T)] or a more curved state [GDP-bound tubulin (D)]. Hydrolysis of T into D leaves the straight and laterally attached protofilaments of the microtubule in a mechanically stressed state, thus leading to their unzipping. The elastic energy in the unzipping protofilaments can be harnessed by a force transducer such as the Dam1-kinetochore ring complex in order to exert pulling force on chromosomes during cell division. In the present paper we develop a simple continuum model to obtain this pulling force as a function of the mechanical properties of protofilaments and the size of the Dam1-kinetochore ring. We also extend this model to investigate the role played by the T subunits found at the plus end of the microtubule (the T cap) on the mechanical stability of microtubules.
Accurate determination of characteristic relative permeability curves
NASA Astrophysics Data System (ADS)
Krause, Michael H.; Benson, Sally M.
2015-09-01
A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.
High speed curved position sensitive detector
Hendricks, Robert W.; Wilson, Jack W.
1989-01-01
A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.
Spherical nanoindentation stress–strain curves
Pathak, Siddhartha; Kalidindi, Surya R.
2015-03-24
Although indentation experiments have long been used to measure the hardness and Young's modulus, the utility of this technique in analyzing the complete elastic–plastic response of materials under contact loading has only been realized in the past few years – mostly due to recent advances in testing equipment and analysis protocols. This paper provides a timely review of the recent progress made in this respect in extracting meaningful indentation stress–strain curves from the raw datasets measured in instrumented spherical nanoindentation experiments. These indentation stress–strain curves have produced highly reliable estimates of the indentation modulus and the indentation yield strength inmore » the sample, as well as certain aspects of their post-yield behavior, and have been critically validated through numerical simulations using finite element models as well as direct in situ scanning electron microscopy (SEM) measurements on micro-pillars. Much of this recent progress was made possible through the introduction of a new measure of indentation strain and the development of new protocols to locate the effective zero-point of initial contact between the indenter and the sample in the measured datasets. As a result, this has led to an important key advance in this field where it is now possible to reliably identify and analyze the initial loading segment in the indentation experiments.« less
Coexistence Curve of Perfluoromethylcyclohexane-Isopropyl Alcohol
NASA Technical Reports Server (NTRS)
Jacobs, D. T.; Kuhl, D. E.; Selby, C. E.
1996-01-01
The coexistence curve of the binary fluid mixture perfluoromethylcyclohexane-isopropyl alcohol was determined by precisely measuring the refractive index both above and below its upper critical consolute point. Sixty-seven two-phase data points were obtained over a wide range of reduced temperatures, 10(exp -5) less than t less than 2.5 x 10(exp -1), to determine the location of the critical point: critical temperature=89.901 C, and critical composition = 62.2% by volume perfluoromethylcyclohexane. These data were analyzed to determine the critical exponent 8 close to the critical point, the amplitude B, and the anomaly in the diameter. The volume-fraction coexistence curve is found to be as symmetric as any composition like variable. Correction to scaling is investigated as well as the need for a crossover theory. A model is proposed that describes the asymptotic approach to zero of the effective exponent Beta, which allows an estimation of the temperature regime free of crossover effects.
Curved Piezoelectric Actuators for Stretching Optical Fibers
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.
Spherical nanoindentation stress–strain curves
Pathak, Siddhartha; Kalidindi, Surya R.
2015-03-24
Although indentation experiments have long been used to measure the hardness and Young's modulus, the utility of this technique in analyzing the complete elastic–plastic response of materials under contact loading has only been realized in the past few years – mostly due to recent advances in testing equipment and analysis protocols. This paper provides a timely review of the recent progress made in this respect in extracting meaningful indentation stress–strain curves from the raw datasets measured in instrumented spherical nanoindentation experiments. These indentation stress–strain curves have produced highly reliable estimates of the indentation modulus and the indentation yield strength in the sample, as well as certain aspects of their post-yield behavior, and have been critically validated through numerical simulations using finite element models as well as direct in situ scanning electron microscopy (SEM) measurements on micro-pillars. Much of this recent progress was made possible through the introduction of a new measure of indentation strain and the development of new protocols to locate the effective zero-point of initial contact between the indenter and the sample in the measured datasets. As a result, this has led to an important key advance in this field where it is now possible to reliably identify and analyze the initial loading segment in the indentation experiments.
Paschen Curve Observations at Liquid Nitrogen Temperatures
NASA Astrophysics Data System (ADS)
Dugger, Chip; Rielage, Keith; Elliott, Steven; Massarczyk, Ralph; Chu, Pinghan
2015-10-01
Paschen's Law states an equation giving the relationship between variables involved when forming an electrical arc between two conductive objects, otherwise known as the breakdown voltage. This equation for the breakdown voltage VB is as follows: VB =apd/ln (pd) + b where p is the pressure in Atmospheres (or Bar), d is the gap or distance between the two conductive objects, and both a and b are constants that depend on the composition of the gas. In our experiment, the Paschen curve for gases (such as nitrogen) at temperatures lower than -200 degrees Celsius will be measured. The Paschen curve for air at room temperature will also be measured in order to test and calibrate our system. The goal of this experiment is to test how accurately Paschen's Law can predict the breakdown voltage in these specific, cold conditions. This experiment is being performed to gather information for a possible future experiment, which might use high purity germanium (HPGe) detectors in a similar cold environment to search for neutrinoless double beta decay, a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. This work is being supported by the DOE through the LANL LDRD program. Charles ``Chip'' Dugger, Los Alamos National Laboratory and New Mexico Institute of Mining and Technology.
R-curve behavior in ferrite ceramics
Beauchamp, E.K.; Monroe, S.L.
1990-01-01
The unusual dependence of the fracture mode of ferrite ceramics on the stress intensity factor in the subcritical crack growth regime was used to create flaws with different concentrations of crack-interface bridges. Flaws with numerous bridges were produced by indenting under dry silicone oil, while flaws with essentially no bridges were produced by indenting under water. Plots of log failure stress as a function of log indenter load for the two types of flaws reflect the differences in bridging. Those with extensive bridging showed pronounced R-curve behavior. The curve for those initially devoid of bridges showed no plateau but did show deviations from a {minus}1/3 slope that correspond to those predicted by Bennison and Lawn for this type of flaw. The ferrite studies was 62.4 Fe{sub 2}O{sub 3} 26.6 MnO, 11.2nO, and .04 V{sub 2}O{sub 5}. 10 figs.
Tuning Response Curves for Synthetic Biology
2013-01-01
Synthetic biology may be viewed as an effort to establish, formalize, and develop an engineering discipline in the context of biological systems. The ability to tune the properties of individual components is central to the process of system design in all fields of engineering, and synthetic biology is no exception. A large and growing number of approaches have been developed for tuning the responses of cellular systems, and here we address specifically the issue of tuning the rate of response of a system: given a system where an input affects the rate of change of an output, how can the shape of the response curve be altered experimentally? This affects a system’s dynamics as well as its steady-state properties, both of which are critical in the design of systems in synthetic biology, particularly those with multiple components. We begin by reviewing a mathematical formulation that captures a broad class of biological response curves and use this to define a standard set of varieties of tuning: vertical shifting, horizontal scaling, and the like. We then survey the experimental literature, classifying the results into our defined categories, and organizing them by regulatory level: transcriptional, post-transcriptional, and post-translational. PMID:23905721
Separation of magnetic susceptibility components from magnetization curves
NASA Astrophysics Data System (ADS)
Kosareva, L.; Nourgaliev, D.; Kuzina, D.; Spassov, S.; Fattakhov, A.
2014-12-01
Modern lake sediments are a unique source of information for climate changes, regionally and globally, because all environmental variations are recorded by these sediments with high resolution. The magnetic properties of Chernyshov Bay (Aral Sea) sediments we investigated from core number 4 (N45o57'04.2''; E59o17'14.3'') are taken at far water depth of 9.5 m. The length of the core is 4.16 m. Samples for measurements were taken to plastic sample boxes with internal dimensions 2x2x2 cm. Remanent magnetization curves were measured by coercivity spectrometer for the separate determination of the different contributions to the total bulk magnetic susceptibility. There was measured also magnetic susceptibility using MS2 susceptibility meter. Those operations were done for data comparison between 2 susceptibilities obtained from different equipment. Our goal is to decipher the magnetic susceptibility signal in lake sediments by decomposing the bulk susceptibility signal of a lake sediment sequence into ferromagnetic (χf), dia-/paramagnetic (χp) and superparamagnetic (χsp) components using data from remanent and indused magnetization curves Each of these component has a different origin: paramagnetic minerals are usually attributed to terrigenous sediment input, ferromagnetics are of biogenic origin, and superparamagnetic minerals may be of either biogenic or terrigenous origin. Comparison between susceptibility measurements of MS2-Bartington susceptometer and of the coercivity spectrometer has shown good correlation. The susceptibility values measured in two different equipment are fairly close and indicate thus the reliability the proposed method. In research also has shown water level changes in Aral Sea based on magnetic susceptibility. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University also by RFBR research projects No. 14-05-31376 - а, 14-05-00785- а.
van Stralen, Marijn; Chu, Winnie C. W.; Lam, Tsz-Ping; Ng, Bobby K. W.; Vincken, Koen L.; Cheng, Jack C. Y.; Castelein, René M.
2016-01-01
Introduction Although much attention has been given to the global three-dimensional aspect of adolescent idiopathic scoliosis (AIS), the accurate three-dimensional morphology of the primary and compensatory curves, as well as the intervening junctional segments, in the scoliotic spine has not been described before. Methods A unique series of 77 AIS patients with high-resolution CT scans of the spine, acquired for surgical planning purposes, were included and compared to 22 healthy controls. Non-idiopathic curves were excluded. Endplate segmentation and local longitudinal axis in endplate plane enabled semi-automatic geometric analysis of the complete three-dimensional morphology of the spine, taking inter-vertebral rotation, intra-vertebral torsion and coronal and sagittal tilt into account. Intraclass correlation coefficients for interobserver reliability were 0.98–1.00. Coronal deviation, axial rotation and the exact length discrepancies in the reconstructed sagittal plane, as defined per vertebra and disc, were analyzed for each primary and compensatory curve as well as for the junctional segments in-between. Results The anterior-posterior difference of spinal length, based on “true” anterior and posterior points on endplates, was +3.8% for thoracic and +9.4% for (thoraco)lumbar curves, while the junctional segments were almost straight. This differed significantly from control group thoracic kyphosis (-4.1%; P<0.001) and lumbar lordosis (+7.8%; P<0.001). For all primary as well as compensatory curves, we observed linear correlations between the coronal Cobb angle, axial rotation and the anterior-posterior length difference (r≥0.729 for thoracic curves; r≥0.485 for (thoraco)lumbar curves). Conclusions Excess anterior length of the spine in AIS has been described as a generalized growth disturbance, causing relative anterior spinal overgrowth. This study is the first to demonstrate that this anterior overgrowth is not a generalized phenomenon. It is
Mougabure-Cueto, G; Sfara, V
2016-04-25
Dose-response relations can be obtained from systems at any structural level of biological matter, from the molecular to the organismic level. There are two types of approaches for analyzing dose-response curves: a deterministic approach, based on the law of mass action, and a statistical approach, based on the assumed probabilities distribution of phenotypic characters. Models based on the law of mass action have been proposed to analyze dose-response relations across the entire range of biological systems. The purpose of this paper is to discuss the principles that determine the dose-response relations. Dose-response curves of simple systems are the result of chemical interactions between reacting molecules, and therefore are supported by the law of mass action. In consequence, the shape of these curves is perfectly sustained by physicochemical features. However, dose-response curves of bioassays with quantal response are not explained by the simple collision of molecules but by phenotypic variations among individuals and can be interpreted as individual tolerances. The expression of tolerance is the result of many genetic and environmental factors and thus can be considered a random variable. In consequence, the shape of its associated dose-response curve has no physicochemical bearings; instead, they are originated from random biological variations. Due to the randomness of tolerance there is no reason to use deterministic equations for its analysis; on the contrary, statistical models are the appropriate tools for analyzing these dose-response relations.
Mougabure-Cueto, G; Sfara, V
2016-04-25
Dose-response relations can be obtained from systems at any structural level of biological matter, from the molecular to the organismic level. There are two types of approaches for analyzing dose-response curves: a deterministic approach, based on the law of mass action, and a statistical approach, based on the assumed probabilities distribution of phenotypic characters. Models based on the law of mass action have been proposed to analyze dose-response relations across the entire range of biological systems. The purpose of this paper is to discuss the principles that determine the dose-response relations. Dose-response curves of simple systems are the result of chemical interactions between reacting molecules, and therefore are supported by the law of mass action. In consequence, the shape of these curves is perfectly sustained by physicochemical features. However, dose-response curves of bioassays with quantal response are not explained by the simple collision of molecules but by phenotypic variations among individuals and can be interpreted as individual tolerances. The expression of tolerance is the result of many genetic and environmental factors and thus can be considered a random variable. In consequence, the shape of its associated dose-response curve has no physicochemical bearings; instead, they are originated from random biological variations. Due to the randomness of tolerance there is no reason to use deterministic equations for its analysis; on the contrary, statistical models are the appropriate tools for analyzing these dose-response relations. PMID:26952004
Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels
Chopra, O.K.; Shack, W.J.
1998-03-01
The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented.
Transport Sector Marginal Abatement Cost Curves in Computable General Equilibrium Model
NASA Astrophysics Data System (ADS)
Tippichai, Atit; Fukuda, Atsushi; Morisugi, Hisayoshi
In the last decade, computable general equilibrium (CGE) models have emerged a standard tool for climate policy evaluation due to their abilities to prospectively elucidate the character and magnitude of the economic impacts of energy and environmental policies. Furthermore, marginal abatement cost (MAC) curves which represent GHG emissions reduction potentials and costs can be derived from these top-down economic models. However, most studies have never address MAC curves for a specific sector that have a large coverage of countries which are needed for allocation of optimal emission reductions. This paper aims to explicitly describe the meaning and character of MAC curves for transport sector in a CGE context through using the AIM/CGE Model developed by Toshihiko Masui. It found that the MAC curves derived in this study are the inverse of the general equilibrium reduction function for CO2 emissions. Moreover, the transport sector MAC curves for six regions including USA, EU-15, Japan, China, India, and Brazil, derived from this study are compared to the reduction potentials under 100 USD/tCO2 in 2020 from a bottom-up study. The results showed that the ranking of the regional reduction potentials in transport sector from this study are almost same with the bottom-up study except the ranks of the EU-15 and China. In addition, the range of the reduction potentials from this study is wider and only the USA has higher potentials than those derived from the bottom-up study.
Using Dragon Curves To Learn about Length and Area.
ERIC Educational Resources Information Center
Smith, Lyle R.
1999-01-01
Utilizes dragon curves which are made with three tiles and can be used to create fascinating patterns to help students understand the concepts of length, area, and perimeter of regions as defined by dragon curves. (ASK)
Curved centerline air intake for a gas turbine engine
NASA Technical Reports Server (NTRS)
Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)
1980-01-01
An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.
49 CFR 213.57 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum elevation of the outside rail of a curve may not be more than 8... operating speed for each curve is determined by the following formula— ER13MR13.007 Where— Vmax =...
49 CFR 213.57 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined...
49 CFR 213.329 - Curves, elevation and speed limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is...
49 CFR 213.329 - Curves, elevation and speed limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is...
49 CFR 213.57 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined...
49 CFR 213.329 - Curves, elevation and speed limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is...
49 CFR 213.57 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum elevation of the outside rail of a curve may not be more than 8... operating speed for each curve is determined by the following formula— ER13MR13.007 Where— Vmax =...
49 CFR 213.57 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined...
Retiring the Short-Run Aggregate Supply Curve
ERIC Educational Resources Information Center
Elwood, S. Kirk
2010-01-01
The author argues that the aggregate demand/aggregate supply (AD/AS) model is significantly improved--although certainly not perfected--by trimming it of the short-run aggregate supply (SRAS) curve. Problems with the SRAS curve are shown first for the AD/AS model that casts the AD curve as identifying the equilibrium level of output associated…
Spider diffraction: a comparison of curved and straight legs
Richter, J.L.
1984-06-15
It has been known for some time that, if curved legs rather than the usual straight ones are used in the spider that supports the secondary optics in certain telescopes, the visible diffraction effect is reduced. Fraunhofer theory is used to calculate the diffraction effects due to the curved leg spider. Calculated and photographic diffraction patterns are compared for straight and curved leg spiders.
Creative Tiling: A Story of 1000-and-1 Curves
ERIC Educational Resources Information Center
Al-Darwish, Nasir
2012-01-01
We describe a procedure that utilizes symmetric curves for building artistic tiles. One particular curve was found to mesh nicely with hundreds other curves, resulting in eye-catching tiling designs. The results of our work serve as a good example of using ideas from 2-D graphics and algorithms in a practical web-based application.
49 CFR 213.59 - Elevation of curved track; runoff.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Elevation of curved track; runoff. 213.59 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Geometry § 213.59 Elevation of curved track; runoff. (a) If a curve is elevated, the full elevation shall be provided throughout the...
Diversions: Hilbert and Sierpinski Space-Filling Curves, and beyond
ERIC Educational Resources Information Center
Gough, John
2012-01-01
Space-filling curves are related to fractals, in that they have self-similar patterns. Such space-filling curves were originally developed as conceptual mathematical "monsters", counter-examples to Weierstrassian and Reimannian treatments of calculus and continuity. These were curves that were everywhere-connected but nowhere-differentiable (or…
Mathematics analysis of polymerase chain reaction kinetic curves.
Sochivko, D G; Fedorov, A A; Varlamov, D A; Kurochkin, V E; Petrov, R V
2016-01-01
The paper reviews different approaches to the mathematical analysis of polymerase chain reaction (PCR) kinetic curves. The basic principles of PCR mathematical analysis are presented. Approximation of PCR kinetic curves and PCR efficiency curves by various functions is described. Several PCR models based on chemical kinetics equations are suggested. Decision criteria for an optimal function to describe PCR efficiency are proposed.
Section Curve Reconstruction and Mean-Camber Curve Extraction of a Point-Sampled Blade Surface
Li, Wen-long; Xie, He; Li, Qi-dong; Zhou, Li-ping; Yin, Zhou-ping
2014-01-01
The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization. PMID:25551467
Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface.
Li, Wen-long; Xie, He; Li, Qi-dong; Zhou, Li-ping; Yin, Zhou-ping
2014-01-01
The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization.
Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface.
Li, Wen-long; Xie, He; Li, Qi-dong; Zhou, Li-ping; Yin, Zhou-ping
2014-01-01
The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization. PMID:25551467
Dirac equation on a curved surface
NASA Astrophysics Data System (ADS)
Brandt, F. T.; Sánchez-Monroy, J. A.
2016-09-01
The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein-Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles.
Medical learning curves and the Kantian ideal.
Le Morvan, P; Stock, B
2005-09-01
A hitherto unexamined problem for the "Kantian ideal" that one should always treat patients as ends in themselves, and never only as a means to other ends, is explored in this paper. The problem consists of a prima facie conflict between this Kantian ideal and the reality of medical practice. This conflict arises because, at least presently, medical practitioners can only acquire certain skills and abilities by practising on live, human patients, and given the inevitability and ubiquity of learning curves, this learning requires some patients to be treated only as a means to this end. A number of ways of attempting to establish the compatibility of the Kantian Ideal with the reality of medical practice are considered. Each attempt is found to be unsuccessful. Accordingly, until a way is found to reconcile them, we conclude that the Kantian ideal is inconsistent with the reality of medical practice. PMID:16131552
ENERGY SOURCES AND LIGHT CURVES OF MACRONOVAE
Kisaka, Shota; Ioka, Kunihito; Takami, Hajime E-mail: takami@post.kek.jp
2015-04-01
A macronova (kilonova) was discovered with a short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of r-process elements synthesized in the ejecta of a neutron star (NS)–binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or NS, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we develop analytical formulae for the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and a better fit to observations than the r-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of the central engine and the r-process nucleosynthesis.
Curved VPH gratings for novel spectrographs
NASA Astrophysics Data System (ADS)
Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.
2014-07-01
The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.
Particle Behavior at Anisotropically Curved Liquid Interfaces
NASA Astrophysics Data System (ADS)
McEnnis, Kathleen; Zeng, Chuan; Davidovitch, Benny; Dinsmore, Anthony; Russell, Thomas
2011-03-01
A particle bound to an anisotropically curved liquid interface, such as a cylinder or catenoid, cannot maintain a constant contact angle without deforming the interface. Theory suggests that the particles will experience a force that depends on the interfacial shape and migrate to minimize the total interfacial energy. To test these predictions, particles were deposited on top of liquid semi-cylinders of ionic liquid or melted polystyrene confined on chemically patterned surfaces. Particles were also deposited on liquid catenoid structures created by placing a melted polymer film under an electric field. The location of the particles on these structures was observed by optical, confocal, and scanning electron microscopy. The implications for the directed assembly of particles and stability of Pickering emulsions are also discussed.
Predicting unknown species numbers using discovery curves
Bebber, Daniel P; Marriott, Francis H.C; Gaston, Kevin J; Harris, Stephen A; Scotland, Robert W
2007-01-01
A common approach to estimating the total number of extant species in a taxonomic group is to extrapolate from the temporal pattern of known species descriptions. A formal statistical approach to this problem is provided. The approach is applied to a number of global datasets for birds, ants, mosses, lycophytes, monilophytes (ferns and horsetails), gymnosperms and also to New World grasses and UK flowering plants. Overall, our results suggest that unless the inventory of a group is nearly complete, estimating the total number of species is associated with very large margins of error. The strong influence of unpredictable variations in the discovery process on species accumulation curves makes these data unreliable in estimating total species numbers. PMID:17456460
Competency and the colonoscopist: a learning curve.
Parry, B R; Williams, S M
1991-06-01
The first 334 consecutive unassisted studies of a trainee colonoscopist were audited to analyse the relationship between experience and a target 90% completion rate of colonoscopy. The cumulative sum (cusum) score was applied to examine the time trend for the attaining of the target 90% completion rate. This technique described a learning curve which showed, in this instance, that approximately 100 studies were necessary before a 90% completion rate was approached. A further 100 studies were required before this target completion rate was achieved consistently. A trend for continued improvement above the 90% completion rate level was also seen after 200 studies. Polypectomy was completed in 117 of the 123 studies where indicated. Cusum analysis may be a useful method for monitoring the progress of the trainee colonoscopist and the attainment of satisfactory competence. Training requirements, therefore, might better emphasize the attainment of an acceptable completion rate rather than an arbitrary quota per se.
Illuminated curved vitrectomy probe for vitreoretinal surgery.
Chalam, K V; Gupta, Shailesh K; Agarwal, Swati
2007-01-01
A new self-illuminated and curved vitrectomy probe was designed for better accessibility of the peripheral retina, particularly in phakic patients. This probe has a 20-gauge pneumatic cutter. The curvature at the shaft has a 19.4-mm radius and is 25 mm long. A 2.5-cm piece of polyethylene terephthalate tubing (heat-shrink tubing) is threaded over both the probe and the 0.5-mm diameter fiberoptic light source to assemble the illuminated probe. Use of this instrument avoids inadvertent trauma to the clear lens in phakic eyes and allows the surgeon to illuminate the anterior vitreous with one hand while the other hand can be used to depress the sclera. This instrument complements wide-angle viewing for safe and quick surgical treatment of peripheral retinal pathology in phakic patients. PMID:18050823
SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION
Dexter, Jason; Kasen, Daniel
2013-07-20
Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.
Curved Radio Spectra of Weak Cluster Shocks
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Ryu, Dongsu
2015-08-01
In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.
THE WISE LIGHT CURVES OF POLARS
Harrison, Thomas E.; Campbell, Ryan K. E-mail: Ryan.Campbell@humboldt.edu
2015-08-15
We have extracted the WISE (Wide-field Infrared Survey Explorer) single-exposure data for a sample of 72 polars, which are highly magnetic cataclysmic variables (CVs). We combine these data with both published and unpublished optical and infrared data to explore the origins of the large amplitude variations seen in these systems. In nearly every case, we find evidence for cyclotron emission in the WISE bandpasses. We find that the derived magnetic field strengths for some polars are either too high, or cyclotron emission from lower field components, located spatially coincident to the main accreting poles, must be occurring. We have also estimated field strengths for a number of polars where no such values exist. In addition, contrary to expectations, we find that emission from the fundamental cyclotron harmonic (n = 1) appears to be nearly always present when the magnetic field is of the appropriate strength that it falls within a WISE bandpass. We find that the light curves for RBS 490, an ultrashort-period (46 minutes) CV, suggest that it is a polar. Modeling its spectrum indicates that its donor star is much hotter than expected. Nearly all of the detected polars show 11.5 μm (“W3 band”) excesses. The general lack of variability seen in the W3 bandpass light curves for higher-field polars demonstrates that these excesses are probably not due to cyclotron emission. There is circumstantial evidence that these excesses can be attributed to bremsstrahlung emission from their accretion streams. Reduction of the Spitzer 24 μm image of V1500 Cyg shows that it appears to be located at the center of a small nebula.
Lactation curves of commercial ewes rearing lambs.
Cardellino, R A; Benson, M E
2002-01-01
Three-hour milk production measurements determined by machine milking at 3-d intervals throughout a 63-d lactation period were used to describe lactation curves for crossbred ewes lambing at 1 and 2 yr of age and rearing single and twin lambs. Age of ewe, type of rearing, and day of lactation affected (P < 0.05) milk production. Over the 63-d lactation, average daily milk production was 2.56 and 2.63 kg, respectively, for 1- and 2-yr-old ewes rearing single lambs and 2.73 and 3.47 kg, respectively, for 1- and 2-yr-old ewes rearing twins. Milk production of 2-yr-old ewes rearing twin lambs peaked at 21 d of lactation, and that of 1- and 2-yr-old ewes rearing singles peaked between 27 and 30 d of lactation. The largest differences in the lactation curves among age and rearing ewe classes were found in early lactation. These differences were reduced by midlactation, and by late lactation, milk production for all ewes was similar. Diurnal variation in milk production by ewes was evaluated in an 8 x 8 Latin square design. Diurnal variation in milk yield measurements of eight mature ewes, each bearing and rearing twin lambs, was similar between d 21 and 24 of lactation. Time of milk production measurements within a day did not affect yield determinations. Extrapolation from 3-h production estimates to daily milk production is valid in determining a ewe's milk contribution in support of lamb growth.
Dissipative dark matter explains rotation curves
NASA Astrophysics Data System (ADS)
Foot, R.
2015-06-01
Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.
The rotation curves of gas and stars
NASA Astrophysics Data System (ADS)
Westfall, Kyle; Bershady, Matthew A.; MaNGA Team
2016-01-01
In its first year alone, the SDSS-IV/MaNGA survey has provided kinematic data useful for determining the rotation curves of both the ionized-gas and stellar components for hundreds of disk galaxies. We use these data to study the well-known Tully-Fisher relation in the local Universe, as well as the difference between the ionized-gas and stellar rotation curves in a novel study of asymmetric drift. The physical scenario for the latter is that gas efficiently dissipates energy allowing it to settle toward the circular speed of the galactic potential, whereas the stellar ensemble orbits more slowly because stars are collisionless and retain any non-circular motions accrued over their dynamical history. In disk galaxies with line-of-sight velocity dispersions that are well-measured with MaNGA's moderate spectral resolution, we demonstrate the correlation between asymmetric drift and stellar velocity dispersion, as expected by the dynamical relation between the two via the stellar phase-space distribution function. This correlation is consistent with measurements obtained at higher spectral resolution by the DiskMass Survey, and it allows us to leverage asymmetric drift to provide stellar velocity dispersion estimates that probe well below the instrumental dispersion. These velocity dispersion measurements can then be used to estimate the dynamical mass surface density of the baryon-dominated disk (Bershady et al. 2010, 2011). Thus, by combining our circular-speed data --- which yield a well-defined Tully-Fisher relation that is consistent with literature studies --- and our measurements of asymmetric drift, we discuss the implications for the dark-matter mass fractions of our galaxy sample. Statistically, our results are consistent with previous claims (e.g., Martinsson et al. 2013) that dark matter is a significant, even dominant, mass component within the effective radius of disk galaxies.
A new population curve for prehistoric Australia
Williams, Alan N.
2013-01-01
This paper presents a new reconstruction of prehistoric population of Australia for the last 50 ka, using the most comprehensive radiocarbon database currently available for the continent. The application of new techniques to manipulate radiocarbon data (including correction for taphonomic bias), gives greater reliability to the reconstructed population curve. This shows low populations through the Late Pleistocene, before a slow stepwise increase in population beginning during the Holocene transition (approx. 12 ka) and continuing in pulses (approx. 8.3–6.6, 4.4–3.7 and 1.6–0.4 ka) through the Holocene. These data give no support for an early saturation of the continent, although the estimated population following initial landfall was probably greater than previously allowed (comparable with the Early Holocene). The greatest increase in population occurred in the Late Holocene, but in contrast to existing intensification models, changes in demography and diversification of economic activities began much earlier. Some demographic changes appear to be in response to major climatic events, most notably during the last glacial maximum, where the curve suggests that population fell by about 60 per cent between 21 and 18 ka. An application of statistical demographic methods to Australian ethnographic and genetic data suggests that a founding group of 1000–2000 at 50 ka would result in a population high of approximately 1.2 million at approximately 0.5 ka. Data suggests an 8 per cent decline to approximately 770 000–1.1 million at the time of European contact, giving a figure consistent with ethnographic estimates and with historical observations of the impact of smallpox, and other diseases introduced by Macassans and Europeans during and after AD 1788. PMID:23615287
Curved Radio Spectra of Weak Cluster Shocks
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Ryu, Dongsu
2015-08-01
In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}∼ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}∼ 3. These shocks produce curved radio spectra that steepen gradually over (0.1–10){ν }{br} with a break frequency {ν }{br}∼ 1 GHz if the duration of electron acceleration is ∼60–80 Myr. However, the abrupt increase in the spectral index above ∼1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.
Classification of isomonodromy problems on elliptic curves
NASA Astrophysics Data System (ADS)
Levin, A. M.; Olshanetsky, M. A.; Zotov, A. V.
2014-02-01
This paper describes isomonodromy problems in terms of flat G-bundles over punctured elliptic curves \\Sigma_\\tau and connections with regular singularities at marked points. The bundles are classified by their characteristic classes, which are elements of the second cohomology group H^2(\\Sigma_\\tau,{\\mathscr Z}(G)), where {\\mathscr Z}(G) is the centre of G. For any complex simple Lie group G and any characteristic class the moduli space of flat connections is defined, and for them the monodromy-preserving deformation equations are given in Hamiltonian form together with the corresponding Lax representation. In particular, they include the Painlevé VI equation, its multicomponent generalizations, and the elliptic Schlesinger equations. The general construction is described for punctured complex curves of arbitrary genus. The Drinfeld-Simpson (double coset) description of the moduli space of Higgs bundles is generalized to the case of the space of flat connections. This local description makes it possible to establish the Symplectic Hecke Correspondence for a wide class of monodromy-preserving problems classified by the characteristic classes of the underlying bundles. In particular, the Painlevé VI equation can be described in terms of \\operatorname{SL}(2,{ C})-bundles. Since {\\mathscr Z}(\\operatorname{SL}(2,{ C}))={ Z}_2, the Painlevé VI equation has two representations related by the Hecke transformation: 1) as the well-known elliptic form of the Painlevé VI equation (for trivial bundles); 2) as the non-autonomous Zhukovsky-Volterra gyrostat (for non-trivial bundles). Bibliography: 123 titles.
ERIC Educational Resources Information Center
Bandhu, Desh, Ed.
The Indian Environmental Society, in association with the International Programme on Environmental Management Education, organized two seminars on World Environment Day and Environmental Impact Assessment during June 1980. A large number of papers on various aspects of environmental management were presented during the seminars. The papers…
New Horizons approach photometry of Pluto and Charon: light curves and Solar phase curves
NASA Astrophysics Data System (ADS)
Zangari, A. M.; Buie, M. W.; Buratti, B. J.; Verbiscer, A.; Howett, C.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Stern, S. A.
2015-12-01
While the most captivating images of Pluto and Charon were shot by NASA's New Horizons probe on July 14, 2015, the spacecraft also imaged Pluto with its LOng Range Reconnaissance Imager ("LORRI") during its Annual Checkouts and Approach Phases, with campaigns in July 2013, July 2014, January 2015, March 2015, April 2015, May 2015 and June 2015. All but the first campaign provided full coverage of Pluto's 6.4 day rotation. Even though many of these images were taken when surface features on Pluto and Charon were unresolved, these data provide a unique opportunity to study Pluto over a timescale of several months. Earth-based data from an entire apparition must be combined to create a single light curve, as Pluto is never otherwise continuously available for observing due to daylight, weather and scheduling. From the spacecraft, Pluto's sub-observer latitude remained constant to within 0.05 degrees of 43.15 degrees, comparable to a week's worth of change as seen from Earth near opposition. During the July 2013 to June 2015 period, Pluto's solar phase curve increased from 11 degrees to 15 degrees, a small range, but large compared to Earth's 2 degree limit. The slope of the solar phase curve hints at properties such as surface roughness. Using PSF photometry that takes into account the ever-increasing sizes of Pluto and Charon as seen from New Horizons, as well as surface features discovered at closest approach, we present rotational light curves and solar phase curves of Pluto and Charon. We will connect these observations to previous measurements of the system from Earth.
NASA Technical Reports Server (NTRS)
Demoss, J. F. (Compiler)
1971-01-01
Calibration curves for the Apollo 16 command service module pulse code modulation downlink and onboard display are presented. Subjects discussed are: (1) measurement calibration curve format, (2) measurement identification, (3) multi-mode calibration data summary, (4) pulse code modulation bilevel events listing, and (5) calibration curves for instrumentation downlink and meter link.
Light shaping along 3D curves and particle manipulation
NASA Astrophysics Data System (ADS)
Rodrigo, José A.; Alieva, Tatiana
2015-03-01
We present a non-iterative holographic technique for efficient and versatile laser beam shaping along arbitrary 3D curves. Light beams with intensity shaped for several 3D curves: Tilted ring, Viviani's curve, Archimedean spiral, and trefoil-knotted curve have been experimentally generated and applied for optical trapping of micrometer-sized dielectric particles. The high intensity gradients and independent phase control prescribed along the curve make this kind of laser trap attractive for multiple particle manipulation and allow for forward and backward motion to the light source. Indeed, different configurations of tractor beam traps are experimentally demonstrated. This technique can also be applied for laser micro-machining.
Derivation of rating curve by the Tsallis entropy
NASA Astrophysics Data System (ADS)
Singh, Vijay P.; Cui, Huijuan; Byrd, Aaron R.
2014-05-01
The stage-discharge relation, often called rating curve, is employed to determine discharge in natural and engineered channels. There are several methods for deriving a rating curve most of which are empirical. It is well recognized that rating curves are subjected to significant uncertainty, yet most of these methods do not have any provision to account for or do not quantify the uncertainty. This study employs the Tsallis entropy for deriving the rating curve, based on two simple constraints: (1) total probability and (2) mean discharge. Parameters of the derived curve are determined with the use of these two constraints. The rating curve is also determined by reparameterization with the use of an entropy parameter. The Tsallis entropy permits a probabilistic characterization of the rating curve and hence the probability density function of discharge underlying the curve. It also permits a quantitative assessment of the uncertainty of discharge obtained from the rating curve. The derived rating curve is found to be in agreement with field data and is also applied to ungaged watersheds. The rating curve is also extended beyond the range of discharge values used in its construction and its validity is then evaluated.
Guidelines for application of learning/cost improvement curves
NASA Technical Reports Server (NTRS)
Delionback, L. M.
1975-01-01
The differences between the terms learning curve and improvement curve are noted, as well as the differences between the Wright system and the Crawford system. Learning curve computational techniques were reviewed along with a method to arrive at a composite learning curve for a system given detail curves either by the functional techniques classification or simply categorized by subsystem. Techniques are discussed for determination of the theoretical first unit (TFU) cost using several of the currently accepted methods. Sometimes TFU cost is referred to as simply number one cost. A tabular presentation of the various learning curve slope values is given. A discussion of the various trends in the application of learning/improvement curves and an outlook for the future are presented.
Simplified curve fits for the thermodynamic properties of equilibrium air
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Tannehill, J. C.; Weilmuenster, K. J.
1987-01-01
New, improved curve fits for the thermodynamic properties of equilibrium air have been developed. The curve fits are for pressure, speed of sound, temperature, entropy, enthalpy, density, and internal energy. These curve fits can be readily incorporated into new or existing computational fluid dynamics codes if real gas effects are desired. The curve fits are constructed from Grabau-type transition functions to model the thermodynamic surfaces in a piecewise manner. The accuracies and continuity of these curve fits are substantially improved over those of previous curve fits. These improvements are due to the incorporation of a small number of additional terms in the approximating polynomials and careful choices of the transition functions. The ranges of validity of the new curve fits are temperatures up to 25 000 K and densities from 10 to the -7 to 10 to the 3d power amagats.
GIS Method for Developing Wind Supply Curves
Kline, D.; Heimiller, D.; Cowlin, S.
2008-06-01
This report describes work conducted by the National Renewable Energy Laboratory (NREL) as part of the Wind Technology Partnership (WTP) sponsored by the U.S. Environmental Protection Agency (EPA). This project has developed methods that the National Development and Reform Commission (NDRC) intends to use in the planning and development of China's 30 GW of planned capacity. Because of China's influence within the community of developing countries, the methods and the approaches here may help foster wind development in other countries.
Asphaltenes yield curve measurements on a microfluidic platform.
Sieben, Vincent J; Tharanivasan, Asok Kumar; Ratulowski, John; Mostowfi, Farshid
2015-10-21
We describe a microfluidic apparatus and method for performing asphaltene yield measurements on crude oil samples. Optical spectroscopy measurements are combined with a microfluidic fluid handling platform to create an automated microfluidic apparatus to measure the asphaltene yield. The microfluidic measurements show good agreement with conventional wet chemistry measurements as well as available models. The initial absorbance of the oil is measured, and asphaltenes are removed from the oil by the gradual addition of n-alkane, which leads to flocculation and subsequent filtration. The absorbance of the de-asphalted oil (maltenes) is then measured and the initial asphaltene content is determined by the change in absorbance. The solubility of asphaltene is evaluated by varying the titrant-to-oil ratio (e.g., n-heptane-oil), which induces no, partial, or full precipitation of asphaltenes depending on the chosen ratio. The absorbance of the filtrate is measured and normalized to the maximum content to determine the fractional precipitation at each ratio. Traditionally, a yield curve comprised of 20 such ratios would require weeks to months to generate, while consuming over 6 L of solvent and more than 100 g of crude oil sample. Using the microfluidic approach described here, the same measurement can be performed in 1 day, with 0.5 L of solvent and 10 g of crude oil sample. The substantial reduction in time and consumables will enable more frequent asphaltene yield measurements and reduce its environmental impact significantly. PMID:26333290
Learning curve for peroral endoscopic myotomy
El Zein, Mohamad; Kumbhari, Vivek; Ngamruengphong, Saowanee; Carson, Kathryn A.; Stein, Ellen; Tieu, Alan; Chaveze, Yamile; Ismail, Amr; Dhalla, Sameer; Clarke, John; Kalloo, Anthony; Canto, Marcia Irene; Khashab, Mouen A.
2016-01-01
Background and study aims: Although peroral endoscopic myotomy (POEM) is being performed more frequently, the learning curve for gastroenterologists performing the procedure has not been well studied. The aims of this study were to define the learning curve for POEM and determine which preoperative and intraoperative factors predict the time that will be taken to complete the procedure and its different steps. Patients and methods: Consecutive patients who underwent POEM performed by a single expert gastroenterologist for the treatment of achalasia or spastic esophageal disorders were included. The POEM procedure was divided into four steps: mucosal entry, submucosal tunneling, myotomy, and closure. Nonlinear regression was used to determine the POEM learning plateau and calculate the learning rate. Results: A total of 60 consecutive patients underwent POEM in an endoscopy suite. The median length of procedure (LOP) was 88 minutes (range 36 – 210), and the mean (± standard deviation [SD]) LOP per centimeter of myotomy was 9 ± 5 minutes. The total operative time decreased significantly as experience increased (P < 0.001), with a “learning plateau” at 102 minutes and a “learning rate” of 13 cases. The mucosal entry, tunneling, and closure times decreased significantly with experience (P < 0.001). The myotomy time showed no significant decrease with experience (P = 0.35). When the mean (± SD) total procedure times for the learning phase and the corresponding comparator groups were compared, a statistically significant difference was observed between procedures 11 – 15 and procedures 16 – 20 (15.5 ± 2.4 min/cm and 10.1 ± 2.7 min/cm, P = 0.01) but not thereafter. A higher case number was significantly associated with a decreased LOP (P < 0.001). Conclusion: In this single-center retrospective study, the minimum threshold number of cases required for an expert interventional endoscopist performing POEM to reach a
Diffusion in narrow channels on curved manifolds
NASA Astrophysics Data System (ADS)
Chacón-Acosta, Guillermo; Pineda, Inti; Dagdug, Leonardo
2013-12-01
In this work, we derive a general effective diffusion coefficient to describe the two-dimensional (2D) diffusion in a narrow and smoothly asymmetric channel of varying width, embedded on a curved surface, in the simple diffusion of non-interacting, point-like particles under no external field. To this end, we extend the generalization of the Kalinay-Percus' projection method [J. Chem. Phys. 122, 204701 (2005); Kalinay-Percus', Phys. Rev. E 74, 041203 (2006)] for the asymmetric channels introduced in [L. Dagdug and I. Pineda, J. Chem. Phys. 137, 024107 (2012)], to project the anisotropic two-dimensional diffusion equation on a curved manifold, into an effective one-dimensional generalized Fick-Jacobs equation that is modified according to the curvature of the surface. For such purpose we construct the whole expansion, writing the marginal concentration as a perturbation series. The lowest order in the perturbation parameter, which corresponds to the Fick-Jacobs equation, contains an additional term that accounts for the curvature of the surface. We explicitly obtain the first-order correction for the invariant effective concentration, which is defined as the correct marginal concentration in one variable, and we obtain the first approximation to the effective diffusion coefficient analogous to Bradley's coefficient [Phys. Rev. E 80, 061142 (2009)] as a function of the metric elements of the surface. In a straightforward manner, we study the perturbation series up to the nth order, and derive the full effective diffusion coefficient for two-dimensional diffusion in a narrow asymmetric channel, with modifications according to the metric terms. This expression is given as D(ξ )=D_0/w^' (ξ )}√{g_1/g_2} lbrace arctan [√{g_2/g_1}(y^' }_0(ξ )+w^' }(ξ )/2)]-arctan [√{g_2/g_1}(y^' }_0(ξ )-w^' }(ξ )/2)] rbrace, which is the main result of our work. Finally, we present two examples of symmetric surfaces, namely, the sphere and the cylinder, and we study certain
Growth curve analyses in selected duck lines.
Maruyama, K; Vinyard, B; Akbar, M K; Shafer, D J; Turk, C M
2001-12-01
1. Growth patterns of male ducks from 4 lines (lines A, B, C and D) selected for market weight were analysed and compared to growth patterns of ducks in the respective line 7 generations earlier. Growth curves were analysed using procedures derived from the Weibull sigmoidal function and the linear-linear relative growth rate model and simple allometry. 2. The ducks were fed ad libitum under 24-h lighting throughout the experiment. At weekly intervals from the time of hatch through 70 d of age, 16 ducks from each line were killed to determine body, carcase, breast-muscle, leg and thigh-muscle, and abdominal fat weights. 3. Line A was the heaviest line, followed by line B, line C and line D. However, body weight, carcase weight and breast-muscle weight at 49 d of age were not significantly different between lines A and B. After 7 generations of selection, the breast-muscle yield was increased to >19% and the abdominal fat percent was reduced to <1.4% in all lines. 4. The Weibull growth curve analysis of body weight showed an increase in the asymptotes during selection, while the age of the inflection point remained constant in all lines (21.3 to 26.0 d). For breast-muscle growth, ducks reached the inflection point 12.8 to 14.3 d later than for body weight. Between line A and line B, asymptotes for body weight, asymptotes for breast-muscle weight and allometric growth coefficients of breast muscle and leg and thigh muscles from 14 to 49 d were not significantly different. 5. The relative growth rate model discriminated body and breast-muscle growth patterns of line A and line B. The initial decline in the relative body growth rate was less and the time to reach the transition was longer in line A than line B. On the other hand, the initial decline in the relative breast-muscle growth rate was greater in line A than line B. PMID:11811908
McGreevy, John Austen; /Stanford U., Phys. Dept.
2005-07-06
This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry, both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe
Constructing a Neoproterozoic Seawater Strontium Isotope Curve
NASA Astrophysics Data System (ADS)
Zhou, Y.; Shields-Zhou, G. A.; Manning, C. J.; Thirlwall, M.; Thurow, J. W.; Zhu, M.; Ling, H.
2014-12-01
The strontium isotopic composition of seawater has varied throughout Earth history in response to the balance between Sr isotopic exchange with ocean crust and input of riverine Sr derived from continental weathering. Because of this, seawater 87Sr/86Sr highs are interpreted to reflect erosion events, related to mountain building, while 87Sr/86Sr lows are considered to result from low weathering rates or increased seafloor spreading. Seawater 87Sr/86Sr also responds to changes in the isotopic composition of material undergoing weathering. The largest ever increase in seawater 87Sr/86Sr took place sometime from approximately 900 Ma to 500 Ma, and was associated with a permanent step shift in baseline 87Sr/86Sr composition. The unprecedented size of this increase, its timing and causation remains unconstrained. This study attempts firstly to reconstruct global seawater 87Sr/86Sr trends through this increase, using well-preserved carbonate rock samples from the North China craton, calibrated against additional 87Sr/86Sr and δ13C data from Neoproterozoic samples collected from other sections around the world. Sample preparation techniques for bulk carbonate Sr isotope stratigraphy are being honed during the course of this study. Other stable isotope systems (δ13C and δ18O) and trace elements, including REE have been investigated on the same samples to identify pristine samples for Sr isotope analysis and help in interpretation. The newly obtained data from this study (mainly Huaibei group of Huaibei area), using the excellently preserved early marine calcite cements and some bulk rock samples, confirm that the carbonate strata across the Jiao-Liao-Xu-Huai stratigraphic realm of the North China Craton exhibit the moderately positive δ13C values and low 87Sr/86Sr values that are characteristic of the early Neoproterozoic (Tonian).The results help to recreate the global curve by linking negative excursions in the Shijia (Xuzhou) (Xiao et al., 2014, Precambr. Res., 246
A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers
This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology costs and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NO...
Dallaston, Michael C.
2016-01-01
Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior. PMID:26997898
Recession curve analysis for groundwater levels: case study in Latvia
NASA Astrophysics Data System (ADS)
Gailuma, A.; VÄ«tola, I.; Abramenko, K.; Lauva, D.; Vircavs, V.; Veinbergs, A.; Dimanta, Z.
2012-04-01
Recession curve analysis is powerful and effective analysis technique in many research areas related with hydrogeology where observations have to be made, such as water filtration and absorption of moisture, irrigation and drainage, planning of hydroelectric power production and chemical leaching (elution of chemical substances) as well as in other areas. The analysis of the surface runoff hydrograph`s recession curves, which is performed to conceive the after-effects of interaction of precipitation and surface runoff, has approved in practice. The same method for analysis of hydrograph`s recession curves can be applied for the observations of the groundwater levels. There are manually prepared hydrograph for analysis of recession curves for observation wells (MG2, BG2 and AG1) in agricultural monitoring sites in Latvia. Within this study from the available monitoring data of groundwater levels were extracted data of declining periods, splitted by month. The drop-down curves were manually (by changing the date) moved together, until to find the best match, thereby obtaining monthly drop-down curves, representing each month separately. Monthly curves were combined and manually joined, for obtaining characterizing drop-down curves of the year for each well. Within the process of decreased recession curve analysis, from the initial curve was cut out upward areas, leaving only the drops of the curve, consequently, the curve is transformed more closely to the groundwater flow, trying to take out the impact of rain or drought periods from the curve. Respectively, the drop-down curve is part of the data, collected with hydrograph, where data with the discharge dominates, without considering impact of precipitation. Using the recession curve analysis theory, ready tool "A Visual Basic Spreadsheet Macro for Recession Curve Analysis" was used for selection of data and logarithmic functions matching (K. Posavec et.al., GROUND WATER 44, no. 5: 764-767, 2006), as well as
NONPARAMETRIC BAYESIAN ESTIMATION OF PERIODIC LIGHT CURVES
Wang Yuyang; Khardon, Roni; Protopapas, Pavlos
2012-09-01
Many astronomical phenomena exhibit patterns that have periodic behavior. An important step when analyzing data from such processes is the problem of identifying the period: estimating the period of a periodic function based on noisy observations made at irregularly spaced time points. This problem is still a difficult challenge despite extensive study in different disciplines. This paper makes several contributions toward solving this problem. First, we present a nonparametric Bayesian model for period finding, based on Gaussian Processes (GPs), that does not make assumptions on the shape of the periodic function. As our experiments demonstrate, the new model leads to significantly better results in period estimation especially when the light curve does not exhibit sinusoidal shape. Second, we develop a new algorithm for parameter optimization for GP which is useful when the likelihood function is very sensitive to the parameters with numerous local minima, as in the case of period estimation. The algorithm combines gradient optimization with grid search and incorporates several mechanisms to overcome the high computational complexity of GP. Third, we develop a novel approach for using domain knowledge, in the form of a probabilistic generative model, and incorporate it into the period estimation algorithm. Experimental results validate our approach showing significant improvement over existing methods.
Interactive dependency curves for resilience management.
Petit, Frédéric; Wallace, Kelly; Phillip, Julia
Physical dependencies are a fundamental consideration when assessing the resilience of an organisation and, ultimately, the resilience of a region. Every organisation needs specific resources for supporting its operations. A disruption in the supply of these resources can severely impact business continuity. It is important to characterise dependencies thoroughly when seeking to reduce the extent an organisation is directly affected by the missions, functions and operations of other organisations. The general protocol when addressing each critical resource is to determine the use for the resource, whether there are redundant services providing the resource, and what protections, backup equipment and arrangements are in place to maintain service. Finally, the criticality of the resource is determined by estimating the time it will take for the facility to experience a severe impact once primary service is lost and what percentage of facility operations can be maintained without backup service in place, as well as identifying whether any external regulations/policies are in place that require shutdown of the facility because of service disruption owing to lack of a critical resource. All of this information can be presented in the form of interactive dependency curves that help anticipate and manage the effect(s) of a disruption on critical resources supply.
Interactive dependency curves for resilience management.
Petit, Frédéric; Wallace, Kelly; Phillip, Julia
Physical dependencies are a fundamental consideration when assessing the resilience of an organisation and, ultimately, the resilience of a region. Every organisation needs specific resources for supporting its operations. A disruption in the supply of these resources can severely impact business continuity. It is important to characterise dependencies thoroughly when seeking to reduce the extent an organisation is directly affected by the missions, functions and operations of other organisations. The general protocol when addressing each critical resource is to determine the use for the resource, whether there are redundant services providing the resource, and what protections, backup equipment and arrangements are in place to maintain service. Finally, the criticality of the resource is determined by estimating the time it will take for the facility to experience a severe impact once primary service is lost and what percentage of facility operations can be maintained without backup service in place, as well as identifying whether any external regulations/policies are in place that require shutdown of the facility because of service disruption owing to lack of a critical resource. All of this information can be presented in the form of interactive dependency curves that help anticipate and manage the effect(s) of a disruption on critical resources supply. PMID:25416376
Reduced Calibration Curve for Proton Computed Tomography
Yevseyeva, Olga; Assis, Joaquim de; Diaz, Katherin
2010-05-21
The pCT deals with relatively thick targets like the human head or trunk. Thus, the fidelity of pCT as a tool for proton therapy planning depends on the accuracy of physical formulas used for proton interaction with thick absorbers. Although the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is about 1%, the analytical calculations and the Monte Carlo simulations with codes like TRIM/SRIM, MCNPX and GEANT4 do not agreed with each other. A tentative to validate the codes against experimental data for thick absorbers bring some difficulties: only a few data is available and the existing data sets have been acquired at different initial proton energies, and for different absorber materials. In this work we compare the results of our Monte Carlo simulations with existing experimental data in terms of reduced calibration curve, i.e. the range - energy dependence normalized on the range scale by the full projected CSDA range for given initial proton energy in a given material, taken from the NIST PSTAR database, and on the final proton energy scale - by the given initial energy of protons. This approach is almost energy and material independent. The results of our analysis are important for pCT development because the contradictions observed at arbitrary low initial proton energies could be easily scaled now to typical pCT energies.
The J-Curve Phenomenon in Hypertension
Kang, Yuan-Yuan; Wang, Ji-Guang
2016-01-01
Almost immediately after antihypertensive therapy was proven effective in preventing cardiovascular events, the J-curve issue emerged as a hot topic. The Hypertension Optimal Treatment (HOT) trial attempted to address this question (diastolic blood pressure <80, <85, and <90 mm Hg) but ended up with a post hoc analysis indicating a nadir of 138.5 mm Hg systolic and 82.6 mm Hg diastolic blood pressure. Nevertheless, this observational finding was supported by the results of observational studies in the general population and by post hoc analyses of antihypertensive treatment trials. The currently ongoing Systolic Hypertension Optimal Treatment (SHOT) trial investigates whether the relationship between systolic blood pressure and stroke recurrence is linear or J-shaped by treating systolic blood pressure to <125, <135, and <145 mm Hg in patients with a history of recent stroke. This trial may provide additional but probably inconclusive evidence, because optimal blood pressure might differ between individuals and across outcomes. Nevertheless, a universal beneficial, instead of optimal, level of blood pressure for antihypertensive treatment may exist approximating 130/80 mm Hg and should be investigated by comparing 130/80 mm Hg with 140/90 mm Hg as a target blood pressure in hypertensive patients with the simultaneous use of modern blood pressure measuring techniques, such as home and ambulatory blood pressure monitoring. PMID:27493904
Folding of non-Euclidean curved shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan
2015-03-01
Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.
Leptogenesis from loop effects in curved spacetime
NASA Astrophysics Data System (ADS)
McDonald, Jamie I.; Shore, Graham M.
2016-04-01
We describe a new mechanism — radiatively-induced gravitational leptogenesis — for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrate by explicit computation of the relevant two-loop Feynman diagrams how the size of the radiative corrections relevant for leptogenesis becomes enhanced by increasing the mass hierarchy of the sterile neutrinos, and show how the induced lepton asymmetry may be sufficiently large to play an important rôle in determining the baryon-to-photon ratio of the Universe.
Stiefel-Whitney classes of curve covers
NASA Astrophysics Data System (ADS)
Selander, Björn
2016-10-01
Let D be a Dedekind scheme with the characteristic of all residue fields not equal to 2. To every tame cover Cto D with only odd ramification we associate a second Stiefel-Whitney class in the second cohomology with mod 2 coefficients of a certain tame orbicurve [D] associated to D. This class is then related to the pull-back of the second Stiefel-Whitney class of the push-forward of the line bundle of half of the ramification divisor. This shows (indirectly) that our Stiefel-Whitney class is the pull-back of a sum of cohomology classes considered by Esnault, Kahn and Viehweg in `Coverings with odd ramification and Stiefel-Whitney classes'. Perhaps more importantly, in the case of a proper and smooth curve over an algebraically closed field, our Stiefel-Whitney class is shown to be the pull-back of an invariant considered by Serre in `Revêtements à ramification impaire et thêta-caractéristiques', and in this case our arguments give a new proof of the main result of that article.
Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model
NASA Astrophysics Data System (ADS)
Hosseini, S. A. H.; Rahmani, O.
2016-03-01
A free vibration analysis of shallow and deep curved functionally graded (FG) nanobeam is presented. Differential equations and boundary conditions are obtained using Hamilton's principle, and then, nonlocal theory is employed to derive differential equations in small scale. Properties of the material are FG in radial direction. In order to investigate the effects of deep curved beam, extensional stiffness, bending-extension coupling stiffness, and bending stiffness are calculated in the deep case, analytically. By employing Navier method, an analytical solution is presented. Results are compared and validated with available studies, and a good agreement is seen. The influences of effective parameters such as geometrical deep term, nonlocal parameter, opening angle, aspect ratio, mode number, and gradient index are discussed in detail. It is found that the frequency of deep curved nanobeam is higher than that of shallow one, and the aspect ratio significantly affects this difference to decrease. Also, it is concluded that the opening angle, nonlocal parameter, and power gradient index can notably influence the amount of frequency.
Do the Kepler AGN light curves need reprocessing?
NASA Astrophysics Data System (ADS)
Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.; Williams, Joshua; Carini, Michael T.
2015-10-01
We gauge the impact of spacecraft-induced effects on the inferred variability properties of the light curve of the Seyfert 1 AGN Zw 229-15 observed by Kepler. We compare the light curve of Zw 229-15 obtained from the Kepler MAST data base with a reprocessed light curve constructed from raw pixel data. We use the first-order structure function, SF(δt), to fit both light curves to the damped power-law PSD (power spectral density) of Kasliwal et al. On short time-scales, we find a steeper log PSD slope (γ = 2.90 to within 10 per cent) for the reprocessed light curve as compared to the light curve found on MAST (γ = 2.65 to within 10 per cent) - both inconsistent with a damped random walk (DRW) which requires γ = 2. The log PSD slope inferred for the reprocessed light curve is consistent with previous results that study the same reprocessed light curve. The turnover time-scale is almost identical for both light curves (27.1 and 27.5 d for the reprocessed and MAST data base light curves). Based on the obvious visual difference between the two versions of the light curve and on the PSD model fits, we conclude that there remain significant levels of spacecraft-induced effects in the standard pipeline reduction of the Kepler data. Reprocessing the light curves will change the model inferenced from the data but is unlikely to change the overall scientific conclusions reached by Kasliwal et al. - not all AGN light curves are consistent with the DRW.
... system to a normally harmless substance called an allergen. A variety of environmental allergens, such as pollen and animal dander, can trigger ... allergies. Understanding Environmental Allergies Cause Symptoms Diagnosis Treatments Immunotherapy Last Updated April 22, 2015 CONNECT WITH NIAID ...
Not Available
1992-12-31
This brochure is intended to provide guidance on environmental regulations to National Fertilizer and Environmental Research Center (NFERC) employees. Topics covered include: handling of hazardous materials, disposal of hazardous wastes, spill prevention and remediation, pcb contamination, pesticide use, asbestos remediation, solid waste disposal, and environmental laws. Safety aspects are emphasized.
Not Available
1992-01-01
This brochure is intended to provide guidance on environmental regulations to National Fertilizer and Environmental Research Center (NFERC) employees. Topics covered include: handling of hazardous materials, disposal of hazardous wastes, spill prevention and remediation, pcb contamination, pesticide use, asbestos remediation, solid waste disposal, and environmental laws. Safety aspects are emphasized.
ERIC Educational Resources Information Center
Bandhu, Desh, Ed.; Aulakh, G. S., Ed.
In India, environmental education (EE) is introduced at various levels. Goals of this country's EE programs include: improving the quality of environment to create awareness among the people on environmental problems and conservation; developing skills to solve environmental problems; creating the necessary atmosphere for citizen participation in…
Polymer Crystallization at Curved Liquid-Liquid Interface
NASA Astrophysics Data System (ADS)
Li, Christopher; Wang, Wenda; Qi, Hao; Huang, Ziyin
2013-03-01
Curved space is incommensurate with typical ordered structures with three-dimensional (3D) translational symmetry. However, upon assembly, soft matter, including colloids, amphiphiles, and block copolymers (BCPs), often forms structures depicting curved surface/interface. Examples include liposomes, colloidosomes, spherical micelles, worm-like micelles, and vesicles (also known as polymersomes). For crystalline BCPs, crystallization oftentimes overwrites curved geometries since the latter is incommensurate with crystalline order. On the other hand, twisted and curved crystals are often observed in crystalline polymers. Various mechanisms have been proposed for these non-flat crystalline morphologies. In this presentation, we will demonstrate that curved liquid/liquid (L/L) interface can guide polymer single crystal growth. The crystal morphology is strongly dependent on the nucleation mechanism. A myriad of controlled curved single crystals can be readily obtained.
Water retention curve for hydrate-bearing sediments
NASA Astrophysics Data System (ADS)
Dai, Sheng; Santamarina, J. Carlos
2013-11-01
water retention curve plays a central role in numerical algorithms that model hydrate dissociation in sediments. The determination of the water retention curve for hydrate-bearing sediments faces experimental difficulties, and most studies assume constant water retention curves regardless of hydrate saturation. This study employs network model simulation to investigate the water retention curve for hydrate-bearing sediments. Results show that (1) hydrate in pores shifts the curve to higher capillary pressures and the air entry pressure increases as a power function of hydrate saturation; (2) the air entry pressure is lower in sediments with patchy rather than distributed hydrate, with higher pore size variation and pore connectivity or with lower specimen slenderness along the flow direction; and (3) smaller specimens render higher variance in computed water retention curves, especially at high water saturation Sw > 0.7. Results are relevant to other sediment pore processes such as bioclogging and mineral precipitation.
Standing sausage modes in curved coronal slabs
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Nakariakov, V. M.
2016-09-01
Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.
Solar winds along curved magnetic field lines
NASA Astrophysics Data System (ADS)
Li, B.; Xia, L. D.; Chen, Y.
2011-05-01
Context. Both remote-sensing measurements using the interplanetary scintillation (IPS) technique and in-situ measurements by the Ulysses spacecraft show a bimodal structure for the solar wind at solar minimum conditions. At present it still remains to address why the fast wind is fast and the slow wind is slow. While a robust empirical correlation exists between the coronal expansion rate fc of the flow tubes and the speeds v measured in situ, a more detailed data analysis suggests that v depends on more than just fc. Aims. We examine whether the non-radial shape of field lines, which naturally accompanies any non-radial expansion, could be an additional geometrical factor. Methods. We solved the transport equations incorporating the heating from turbulent Alfvén waves for an electron-proton solar wind along curved field lines given by an analytical magnetic field model, which is representative of a solar minimum corona. Results. The field line shape is found to influence the solar wind parameters substantially, reducing the asymptotic speed by up to ~130 km s-1 or by ~28% in relative terms, compared with the case where the field line curvature is neglected. This effect was interpreted in the general framework of energy addition in the solar wind: compared to the straight case, the field line curvature enhances the effective energy deposition to the subsonic flow, which results in a higher proton flux and a lower terminal proton speed. Conclusions. Our computations suggest that the field line curvature could be a geometrical factor which, in addition to the tube expansion, substantially influences the solar wind speed. Furthermore, although the field line curvature is unlikely to affect the polar fast solar wind at solar minima, it does help make the wind at low latitudes slow, which in turn helps better reproduce the Ulysses measurements.
Approaches to interventional fluoroscopic dose curves.
Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F
2016-01-01
Modern fluoroscopes used for image-based guidance in interventional procedures are complex X-ray machines, with advanced image acquisition and processing systems capable of automatically controlling numerous parameters based on defined protocol settings. This study evaluated and compared approaches to technique factor modulation and air kerma rates in response to simulated patient thickness variations for four state-of-the-art and one previous-generation interventional fluoroscopes. A polymethyl methacrylate (PMMA) phantom was used as a tissue surrogate for the purposes of determining fluoroscopic reference plane air kerma rates, kVp, mA, and variable copper filter thickness over a wide range of simulated tissue thicknesses. Data were acquired for each fluoroscopic and acquisition dose curve within each vendor's default abdomen or body imaging protocol. The data obtained indicated vendor- and model-specific variations in the approach to technique factor modulation and reference plane air kerma rates across a range of tissue thicknesses. However, in the imaging protocol evaluated, all of the state-of-the-art systems had relatively low air kerma rates in the fluoroscopic low-dose imaging mode as compared to the previous-generation unit. Each of the newest-generation systems also employ Cu filtration within the selected protocol in the acquisition mode of imaging; this is a substantial benefit, reducing the skin entrance dose to the patient in the highest dose-rate mode of fluoroscope operation. Some vendors have also enhanced the radiation output capabilities of their fluoroscopes which, under specific conditions, may be beneficial; however, these increased output capabilities also have the potential to lead to unnecessarily high dose rates. Understanding how fluoroscopic technique factors are modulated provides insight into the vendor-specific image acquisition approach and may provide opportunities to optimize the imaging protocols for clinical practice. PMID
Symmetric Galerkin boundary formulations employing curved elements
NASA Technical Reports Server (NTRS)
Kane, J. H.; Balakrishna, C.
1993-01-01
Accounts of the symmetric Galerkin approach to boundary element analysis (BEA) have recently been published. This paper attempts to add to the understanding of this method by addressing a series of fundamental issues associated with its potential computational efficiency. A new symmetric Galerkin theoretical formulation for both the (harmonic) heat conduction and the (biharmonic) elasticity problem that employs regularized singular and hypersingular boundary integral equations (BIEs) is presented. The novel use of regularized BIEs in the Galerkin context is shown to allow straightforward incorporation of curved, isoparametric elements. A symmetric reusable intrinsic sample point (RISP) numerical integration algorithm is shown to produce a Galerkin (i.e., double) integration strategy that is competitive with its counterpart (i.e., singular) integration procedure in the collocation BEA approach when the time saved in the symmetric equation solution phase is also taken into account. This new formulation is shown to be capable of employing hypersingular BIEs while obviating the requirement of C 1 continuity, a fact that allows the employment of the popular continuous element technology. The behavior of the symmetric Galerkin BEA method with regard to both direct and iterative equation solution operations is also addressed. A series of example problems are presented to quantify the performance of this symmetric approach, relative to the more conventional unsymmetric BEA, in terms of both accuracy and efficiency. It is concluded that appropriate implementations of the symmetric Galerkin approach to BEA indeed have the potential to be competitive with, if not superior to, collocation-based BEA, for large-scale problems.
Asteroid taxonomic signatures from photometric phase curves
NASA Astrophysics Data System (ADS)
Oszkiewicz, Dagmara Anna; Bowell, Edward; Wasserman, L. H.; Muinonen, Karri; Penttilä, Antti; Pieniluoma, Tuomo; Trilling, David E.; Thomas, Cristina A.
2012-05-01
We explore the correlation between an asteroid's taxonomy and photometric phase curve using the H, G12 photometric phase function, with the shape of the phase function described by the single parameter G12. We explore the usability of G12 in taxonomic classification for individual objects, asteroid families, and dynamical groups. We conclude that the mean values of G12 for the considered taxonomic complexes are statistically different, and also discuss the overall shape of the G12 distribution for each taxonomic complex. Based on the values of G12 for about half a million asteroids, we compute the probabilities of C, S, and X complex membership for each asteroid. For an individual asteroid, these probabilities are rather evenly distributed over all of the complexes, thus preventing meaningful classification. We then present and discuss the G12 distributions for asteroid families, and predict the taxonomic complex preponderance for asteroid families given the distribution of G12 in each family. For certain asteroid families, the probabilistic prediction of taxonomic complex preponderance can clearly be made. In particular, the C complex preponderant families are the easiest to detect, the Dora and Themis families being prime examples of such families. We continue by presenting the G12-based distribution of taxonomic complexes throughout the main asteroid belt in the proper element phase space. The Nysa-Polana family shows two distinct regions in the proper element space with different G12 values dominating in each region. We conclude that the G12-based probabilistic distribution of taxonomic complexes through the main belt agrees with the general view of C complex asteroid proportion increasing towards the outer belt. We conclude that the G12 photometric parameter cannot be used in determining taxonomic complex for individual asteroids, but it can be utilized in the statistical treatment of asteroid families and different regions of the main asteroid belt.
Probabilistic properties of the Curve Number
NASA Astrophysics Data System (ADS)
Rutkowska, Agnieszka; Banasik, Kazimierz; Kohnova, Silvia; Karabova, Beata
2013-04-01
The determination of the Curve Number (CN) is fundamental for the hydrological rainfall-runoff SCS-CN method which assesses the runoff volume in small catchments. The CN depends on geomorphologic and physiographic properties of the catchment and traditionally it is assumed to be constant for each catchment. Many practitioners and researchers observe, however, that the parameter is characterized by a variability. This sometimes causes inconsistency in the river discharge prediction using the SCS-CN model. Hence probabilistic and statistical methods are advisable to investigate the CN as a random variable and to complement and improve the deterministic model. The results that will be presented contain determination of the probabilistic properties of the CNs for various Slovakian and Polish catchments using statistical methods. The detailed study concerns the description of empirical distributions (characteristics, QQ-plots and coefficients of goodness of fit, histograms), testing of the statistical hypotheses about some theoretical distributions (Kolmogorov-Smirnow, Anderson-Darling, Cramer-von Mises, χ2, Shapiro-Wilk), construction of confidence intervals and comparisons among catchments. The relationship between confidence intervals and the ARC soil classification will also be performed. The comparison between the border values of the confidence intervals and the ARC I and ARC III conditions is crucial for further modeling. The study of the response of the catchment to the stormy rainfall depth when the variability of the CN arises is also of special interest. ACKNOWLEDGMENTS The investigation described in the contribution has been initiated by first Author research visit to Technical University of Bratislava in 2012 within a STSM of the COST Action ES0901. Data used here have been provided by research project no. N N305 396238 founded by PL-Ministry of Science and Higher Education. The support provided by the organizations is gratefully acknowledged.
Study of galactic rotation curves in wormhole spacetime
NASA Astrophysics Data System (ADS)
Rahaman, Farook; Sen, Banashree; Chakraborty, Koushik; Shit, G. C.
2016-03-01
The spacetime of the galactic halo region is described by a wormhole like line element. We assume violation of Null Energy Condition (NEC) in the galactic halo. The Einstein Field equations are solved for two different conditions of pressure and density to obtain physical parameters like tangential velocity of test particles and parameters related to the wormhole geometry. The theoretical rotation curve of the test particles is plotted and compared the same with an observed rotation curve. We obtain a satisfactory fit between the observed curve and the curve obtained from the present theory for the radial distances in the range 9 Kpc to 100 Kpc.
Ankle moment generation and maximum-effort curved sprinting performance.
Luo, Geng; Stefanyshyn, Darren
2012-11-15
Turning at high speed along acute curves is crucial for athletic performance. One determinant of curved sprinting speed is the ground reaction force that can be created by the supporting limb; the moment generated at the ankle joint may influence such force generation. Body lean associated with curved sprints positions the ankle joints in extreme in-/eversion, and may hinder the ankle moment generation. To examine the influence of ankle moment generation on curved sprinting performance, 17 male subjects performed maximum-effort curved sprints in footwear with and without a wedge. The wedged footwear was constructed with the intention to align the ankle joints closer to their neutral frontal-plane configuration during counter-clockwise curved sprints so greater joint moments might be generated. We found, with the wedged footwear, the average eversion angle of the inside leg ankle was reduced, and the plantarflexion moment generation increased significantly. Meanwhile, the knee extension moment remained unchanged. With the wedged footwear, stance-average centripetal ground reaction force increased significantly while no difference in the vertical ground reaction force was detected. The subjects created a greater centripetal ground reaction impulse in the wedged footwear despite a shortened stance phase when compared to the control. Stance-average curved sprinting speed improved by 4.3% with the wedged footwear. The changes in ankle moment and curved sprinting speed observed in the current study supports the notion that the moment generation at the ankle joint may be a performance constraint for curved sprinting. PMID:23022207
Boston, H.L.
1990-10-12
The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.
A miniature microcontroller curve tracing circuit for space flight testing transistors.
Prokop, N; Greer, L; Krasowski, M; Flatico, J; Spina, D
2015-02-01
This paper describes a novel miniature microcontroller based curve tracing circuit, which was designed to monitor the environmental effects on Silicon Carbide Junction Field Effect Transistor (SiC JFET) device performance, while exposed to the low earth orbit environment onboard the International Space Station (ISS) as a resident experiment on the 7th Materials on the International Space Station Experiment (MISSE7). Specifically, the microcontroller circuit was designed to operate autonomously and was flown on the external structure of the ISS for over a year. This curve tracing circuit is capable of measuring current vs. voltage (I-V) characteristics of transistors and diodes. The circuit is current limited for low current devices and is specifically designed to test high temperature, high drain-to-source resistance SiC JFETs. The results of each I-V data set are transmitted serially to an external telemetered communication interface. This paper discusses the circuit architecture, its design, and presents example results.
Chopra, O. K.; Smith, J. L.
1998-02-12
The ASME Boiler and Pressure Vessel Code design fatigue curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue lives of austenitic stainless steels (SSs) in light water reactor (LWR) environments. Unlike those of carbon and low-alloy steels, environmental effects on fatigue lives of SSs are more pronounced in low-dissolved-oxygen (low-DO) water than in high-DO water, This paper summarizes available fatigue strain vs. life data on the effects of various material and loading variables such as steel type, DO level, strain range, and strain rate on the fatigue lives of wrought and cast austenitic SSs. Statistical models for estimating the fatigue lives of these steels in LWR environments have been updated with a larger data base. The significance of the effect of environment on the current Code design curve has been evaluated.
The impact of energy, transport, and trade on air pollution in China
Poon, J.P.H.; Casas, I.; He, C.F.
2006-09-15
A team of U.S.- and China-based geographers examines the relationship between China's economic development and its environment by modeling the effects of energy, transport, and trade on local air pollution emissions (sulfur dioxide and soot particulates) using the Environmental Kuznets model. Specifically, the latter model is investigated using spatial econometrics that take into account potential regional spillover effects from high-polluting neighbors. The analysis finds an inverted-U relationship for sulfur dioxide but a U-shaped curve for soot particulates. This suggests that soot particulates such as black carbon may pose a more serious environmental problem in China than sulfur dioxide.
Chopra, O. K.; Shack, W. J.; Energy Technology
2003-10-03
The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue {var_epsilon}-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented.
Thermal stability of curved ray tomography for corrosion monitoring
Willey, C. L.; Simonetti, F.; Nagy, P. B.; Instanes, G.
2014-02-18
Guided wave tomography is being developed as an effective tool for continuous monitoring of corrosion and erosion depth in pipelines. A pair of transmit- and receive-ring arrays of ultrasonic transducers encircles the pipe and delimits the section to be monitored. In curved ray tomography (CRT), the depth profile is estimated from the time delay matrix, Δτ, whose ij-th entry is the phase traveltime difference between the current and baseline signals measured between transducers i and j of the transmit and receive-ring arrays, respectively. Under perfectly stable experimental conditions, the non-zero entries of Δτ are only due to the occurrence of damage and provide a reliable input to CRT. However, during field operation, Δτ can develop non-zero entries due to a number of environmental changes ranging from temperature variations to degradation of transducer-pipe coupling and transducer intrinsic performance. Here, we demonstrate that these sources of instability can be eliminated by exploiting the spatial diversity of array measurements in conjunction with EMAT transducer technology which is intrinsically stable owing to its non-contact nature. The study is based on a full-scale experiment performed on a schedule 40, 8’ diameter, 3 m length steel pipe, monitored with two EMAT ring arrays. It is shown that for an irregularly shaped defect the proposed method yields maximum depth estimations that are as accurate as single point ultrasonic thickness gaging measurements and over a wide temperature range up to 175°C. The results indicate that advanced inversion schemes in combination with EMAT transduction offer great potential for continuously monitoring the progression of corrosion or erosion damage in the oil and gas industry.
Thermal stability of curved ray tomography for corrosion monitoring
NASA Astrophysics Data System (ADS)
Willey, C. L.; Simonetti, F.; Nagy, P. B.; Instanes, G.
2014-02-01
Guided wave tomography is being developed as an effective tool for continuous monitoring of corrosion and erosion depth in pipelines. A pair of transmit- and receive-ring arrays of ultrasonic transducers encircles the pipe and delimits the section to be monitored. In curved ray tomography (CRT), the depth profile is estimated from the time delay matrix, Δτ, whose ij-th entry is the phase traveltime difference between the current and baseline signals measured between transducers i and j of the transmit and receive-ring arrays, respectively. Under perfectly stable experimental conditions, the non-zero entries of Δτ are only due to the occurrence of damage and provide a reliable input to CRT. However, during field operation, Δτ can develop non-zero entries due to a number of environmental changes ranging from temperature variations to degradation of transducer-pipe coupling and transducer intrinsic performance. Here, we demonstrate that these sources of instability can be eliminated by exploiting the spatial diversity of array measurements in conjunction with EMAT transducer technology which is intrinsically stable owing to its non-contact nature. The study is based on a full-scale experiment performed on a schedule 40, 8' diameter, 3 m length steel pipe, monitored with two EMAT ring arrays. It is shown that for an irregularly shaped defect the proposed method yields maximum depth estimations that are as accurate as single point ultrasonic thickness gaging measurements and over a wide temperature range up to 175°C. The results indicate that advanced inversion schemes in combination with EMAT transduction offer great potential for continuously monitoring the progression of corrosion or erosion damage in the oil and gas industry.
Towards a Reference Curve for the Grades of Each Course
ERIC Educational Resources Information Center
Al-Saleh, Mohammad Fraiwan; Ali, Dareen; Dahshal, Laila
2010-01-01
A grade-reference curve (GRC) can be constructed for any course based on the grades of a course in the last several years. Among other things, the reference curve of a course can be used to test for any abnormality in the current semester's grades of a course. It can be a very important document about the course that serves students, teachers and…
Nonlinear Latent Curve Models for Multivariate Longitudinal Data
ERIC Educational Resources Information Center
Blozis, Shelley A.; Conger, Katherine J.; Harring, Jeffrey R.
2007-01-01
Latent curve models have become a useful approach to analyzing longitudinal data, due in part to their allowance of and emphasis on individual differences in features that describe change. Common applications of latent curve models in developmental studies rely on polynomial functions, such as linear or quadratic functions. Although useful for…
49 CFR 213.329 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Curves; elevation and speed limitations. 213.329... Higher § 213.329 Curves; elevation and speed limitations. (a) The maximum elevation of the outside rail... limits in § 213.331 apply in all cases. (b) The maximum allowable posted timetable operating speed...
49 CFR 213.329 - Curves; elevation and speed limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Curves; elevation and speed limitations. 213.329... Higher § 213.329 Curves; elevation and speed limitations. (a) The maximum elevation of the outside rail... limits in § 213.331 apply in all cases. (b) The maximum allowable posted timetable operating speed...
Light curve demography via Bayesian functional data analysis
NASA Astrophysics Data System (ADS)
Loredo, Thomas; Budavari, Tamas; Hendry, Martin A.; Kowal, Daniel; Ruppert, David
2015-08-01
Synoptic time-domain surveys provide astronomers, not simply more data, but a different kind of data: large ensembles of multivariate, irregularly and asynchronously sampled light curves. We describe a statistical framework for light curve demography—optimal accumulation and extraction of information, not only along individual light curves as conventional methods do, but also across large ensembles of related light curves. We build the framework using tools from functional data analysis (FDA), a rapidly growing area of statistics that addresses inference from datasets that sample ensembles of related functions. Our Bayesian FDA framework builds hierarchical models that describe light curve ensembles using multiple levels of randomness: upper levels describe the source population, and lower levels describe the observation process, including measurement errors and selection effects. Schematically, a particular object's light curve is modeled as the sum of a parameterized template component (modeling population-averaged behavior) and a peculiar component (modeling variability across the population), subsequently subjected to an observation model. A functional shrinkage adjustment to individual light curves emerges—an adaptive, functional generalization of the kind of adjustments made for Eddington or Malmquist bias in single-epoch photometric surveys. We are applying the framework to a variety of problems in synoptic time-domain survey astronomy, including optimal detection of weak sources in multi-epoch data, and improved estimation of Cepheid variable star luminosities from detailed demographic modeling of ensembles of Cepheid light curves.
Generation of spatial orders and space-filling curves.
Schrack, Gunther; Stocco, Leo
2015-06-01
Space-filling curves have been found useful for many applications in diverse fields. A space-filling curve is a path in a 2(r)×2(r) raster domain, which visits each location exactly once. In mathematical terms, space-filling curves linearize a 2D integer space, bijectively mapping the space to the integer line. An algorithm is presented, which generates a large number of space-filling curves/spatial orders. Functions are derived such that the code of each location can be calculated from its coordinates and, conversely, a location code can be decoded to yield the coordinates. The algorithm first generates generate 4×4 spatial orders; they subsequently may be scaled up to any desired domain of size 2(r)×2(r) . The underlying theory of the algorithm, the processes for scaling up, encoding, and decoding are described in detail. The curves are generated as a set of incongruent curves, followed, if required, by the sets of associated congruent curves. A number of space-filling curves are illustrated.
Validation of Cognitive Sensitivity for Item Response Curves.
ERIC Educational Resources Information Center
Tatsuoka, Kikumi K.
1987-01-01
This study examined whether the item response curves from a two-parameter model reflected characteristics of the mathematics items, each of which required unique cognitive tasks. A computer program performed error analysis of test performance. Cognitive subtasks appeared to influence the slopes and difficulties of item response curves. (GDC)
Model tracks sediment dynamics for highly curved meandering rivers
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-07-01
Understanding the dynamics of meandering rivers—the twisting, turning, and wandering of waterways over time—is of concern to water managers and civil engineers. How curved a river is affects how it moves, and Ottevanger et al. built on existing models to improve representations of meandering dynamics for highly curved rivers.
13. PULL CURVE RECONSTRUCTION: Photocopy of a September 1907 photograph ...
13. PULL CURVE RECONSTRUCTION: Photocopy of a September 1907 photograph showing the reconstruction of a pull curve at Sacramento and Larkin Streets following the earthquake and fire. The tracks belong to United Railroads of San Francisco. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA
Implementation Learning and Forgetting Curve to Scheduling in Garment Industry
NASA Astrophysics Data System (ADS)
Muhamad Badri, Huda; Deros, Baba Md; Syahri, M.; Saleh, Chairul; Fitria, Aninda
2016-02-01
The learning curve shows the relationship between time and the cumulative number of units produced which using the mathematical description on the performance of workers in performing repetitive works. The problems of this study is level differences in the labors performance before and after the break which affects the company's production scheduling. The study was conducted in the garment industry, which the aims is to predict the company production scheduling using the learning curve and forgetting curve. By implementing the learning curve and forgetting curve, this paper contributes in improving the labors performance that is in line with the increase in maximum output 3 hours productive before the break are 15 unit product with learning curve percentage in the company is 93.24%. Meanwhile, the forgetting curve improving maximum output 3 hours productive after the break are 11 unit product with the percentage of forgetting curve in the company is 92.96%. Then, the obtained 26 units product on the productive hours one working day is used as the basic for production scheduling.
Influence of pavement condition on horizontal curve safety.
Buddhavarapu, Prasad; Banerjee, Ambarish; Prozzi, Jorge A
2013-03-01
Crash statistics suggest that horizontal curves are the most vulnerable sites for crash occurrence. These crashes are often severe and many involve at least some level of injury due to the nature of the collisions. Ensuring the desired pavement surface condition is one potentially effective strategy to reduce the occurrence of severe accidents on horizontal curves. This study sought to develop crash injury severity models by integrating crash and pavement surface condition databases. It focuses on developing a causal relationship between pavement condition indices and severity level of crashes occurring on two-lane horizontal curves in Texas. In addition, it examines the suitability of the existing Skid Index for safety maintenance of two-lane curves. Significant correlation is evident between pavement condition and crash injury severity on two-lane undivided horizontal curves in Texas. Probability of a crash becoming fatal is appreciably sensitive to certain pavement indices. Data suggested that road facilities providing a smoother and more comfortable ride are vulnerable to severe crashes on horizontal curves. In addition, the study found that longitudinal skid measurement barely correlates with injury severity of crashes occurring on curved portions. The study recommends exploring the option of incorporating lateral friction measurement into Pavement Management System (PMS) databases specifically at curved road segments.
Influence of pavement condition on horizontal curve safety.
Buddhavarapu, Prasad; Banerjee, Ambarish; Prozzi, Jorge A
2013-03-01
Crash statistics suggest that horizontal curves are the most vulnerable sites for crash occurrence. These crashes are often severe and many involve at least some level of injury due to the nature of the collisions. Ensuring the desired pavement surface condition is one potentially effective strategy to reduce the occurrence of severe accidents on horizontal curves. This study sought to develop crash injury severity models by integrating crash and pavement surface condition databases. It focuses on developing a causal relationship between pavement condition indices and severity level of crashes occurring on two-lane horizontal curves in Texas. In addition, it examines the suitability of the existing Skid Index for safety maintenance of two-lane curves. Significant correlation is evident between pavement condition and crash injury severity on two-lane undivided horizontal curves in Texas. Probability of a crash becoming fatal is appreciably sensitive to certain pavement indices. Data suggested that road facilities providing a smoother and more comfortable ride are vulnerable to severe crashes on horizontal curves. In addition, the study found that longitudinal skid measurement barely correlates with injury severity of crashes occurring on curved portions. The study recommends exploring the option of incorporating lateral friction measurement into Pavement Management System (PMS) databases specifically at curved road segments. PMID:23298704
Ahead of the Curve. Future Shifts in Higher Education
ERIC Educational Resources Information Center
Jackson, Shirley Ann
2005-01-01
It used to be that physicians stayed "ahead of the curve" with new research in their secialties by reading medical journal articles. Yet medical literature databases today house more than 10 million abstracts and are adding 7,000 to 8,000 more each week. Staying ahead of the curve is thus impossible for any single individual to manage. Further,…
Sediment concentration rating curves for a monsoonal climate: upper Blue Nile
NASA Astrophysics Data System (ADS)
Moges, Mamaru A.; Zemale, Fasikaw A.; Alemu, Muluken L.; Ayele, Getaneh K.; Dagnew, Dessalegn C.; Tilahun, Seifu A.; Steenhuis, Tammo S.
2016-07-01
Information on sediment concentration in rivers is important for design of reservoirs and for environmental applications. Because of the scarcity of continuous sediment data, methods have been developed to predict sediment loads based on few discontinuous measurements. Traditionally, loads are being predicted using rating curves that relate sediment load to discharge. The relationship assumes inherently a unique relationship between concentration and discharge and therefore although performing satisfactorily in predicting loads, it may be less suitable for predicting concentration. This is especially true in the Blue Nile Basin of Ethiopia where concentrations decrease for a given discharge with the progression of the rainy monsoon phase. The objective of this paper is to improve the sediment concentration predictions throughout the monsoon period for the Ethiopian highlands with a modified rating type equation. To capture the observed sediment concentration pattern, we assume that the sediment concentration was at the transport limit early in the rainy season and then decreases linearly with effective rainfall towards source-limited concentration. The modified concentration rating curve was calibrated for the four main rivers in the Lake Tana basin where sediment concentrations affect fish production and tourism. Then the scalability of the rating type equation was checked in three 100 ha watersheds for which historic data were available. The results show that for predicting sediment concentrations, the (modified) concentration rating curve was more accurate than the (standard) load rating curve as expected. In addition loads were predicted more accurately for three of the four rivers. We expect that after more extensive testing over a wider geographical area, the proposed concentration rating curve will offer improved predictions of sediment concentrations in monsoonal climates.
P-curve: a key to the file-drawer.
Simonsohn, Uri; Nelson, Leif D; Simmons, Joseph P
2014-04-01
Because scientists tend to report only studies (publication bias) or analyses (p-hacking) that "work," readers must ask, "Are these effects true, or do they merely reflect selective reporting?" We introduce p-curve as a way to answer this question. P-curve is the distribution of statistically significant p values for a set of studies (ps < .05). Because only true effects are expected to generate right-skewed p-curves-containing more low (.01s) than high (.04s) significant p values--only right-skewed p--curves are diagnostic of evidential value. By telling us whether we can rule out selective reporting as the sole explanation for a set of findings, p-curve offers a solution to the age-old inferential problems caused by file-drawers of failed studies and analyses. PMID:23855496
New Data for the Mesoamerican Directional Secular Variation Curve
NASA Astrophysics Data System (ADS)
Soler-Arechalde, A. M.
2015-12-01
The Mesoamerican direction secular variation curve is an endless project, new data has been incorporated each year. The new data have radiocarbon dates associated. Wolfman in 1990 proposed the First Curve of Mesoamerica from 1 to 1200 DC. Since 2000 the UNAM´s Archaeomagnetism team has been working continuously by sampling 9 new sites and resampling new stages of Teotihuacan, Teopancazco and Tula. As a result of these investigations more than 70 new data has been annexed and the curve grows until 1600 DC. Data from El Tejar and DuBois has allowed to expand the curve until 1200 BC. An analysis of the incorporation of these new data is presented and the resultant curve is compared to the ARCH3K model.
Simplified curve fits for the transport properties of equilibrium air
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Tannehill, J. C.
1987-01-01
New, improved curve fits for the transport properties of equilibruim air have been developed. The curve fits are for viscosity and Prandtl number as functions of temperature and density, and viscosity and thermal conductivity as functions of internal energy and density. The curve fits were constructed using grabau-type transition functions to model the tranport properties of Peng and Pindroh. The resulting curve fits are sufficiently accurate and self-contained so that they can be readily incorporated into new or existing computational fluid dynamics codes. The range of validity of the new curve fits are temperatures up to 15,000 K densities from 10 to the -5 to 10 amagats (rho/rho sub o).
Curved mesh generation and mesh refinement using Lagrangian solid mechanics
Persson, P.-O.; Peraire, J.
2008-12-31
We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.
Area-Based Medial Axis of Planar Curves
Niethammer, Marc; Betelu, Santiago; Sapiro, Guillermo; Tannenbaum, Allen; Giblin, Peter J.
2013-01-01
A new definition of affine invariant medial axis of planar closed curves is introduced. A point belongs to the affine medial axis if and only if it is equidistant from at least two points of the curve, with the distance being a minimum and given by the areas between the curve and its corresponding chords. The medial axis is robust, eliminating the need for curve denoising. In a dynamical interpretation of this affine medial axis, the medial axis points are the affine shock positions of the affine erosion of the curve. We propose a simple method to compute the medial axis and give examples. We also demonstrate how to use this method to detect affine skew symmetry in real images. PMID:23710110
Estimating the R-curve from residual strength data
NASA Technical Reports Server (NTRS)
Orange, T. W.
1985-01-01
A method is presented for estimating the crack-extension resistance curve (R-curve) from residual-strength (maximum load against original crack length) data for precracked fracture specimens. The method allows additional information to be inferred from simple test results, and that information can be used to estimate the failure loads of more complicated structures of the same material and thickness. The fundamentals of the R-curve concept are reviewed first. Then the analytical basis for the estimation method is presented. The estimation method has been verified in two ways. Data from the literature (involving several materials and different types of specimens) are used to show that the estimated R-curve is in good agreement with the measured R-curve. A recent predictive blind round-robin program offers a more crucial test. When the actual failure loads are disclosed, the predictions are found to be in good agreement.
Super-quantum curves from super-eigenvalue models
NASA Astrophysics Data System (ADS)
Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr
2016-10-01
In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.
How To Reduce the Laparoscopic Colorectal Learning Curve
Sánchez Gonzalez, Javier; Blanco Antona, Francisco; Martín Esteban, Maria Luz; Colao García, Laura; Cuevas Gonzalez, Jorge; Mayo Iscar, Agustin; Blanco Alvarez, Jose Ignacio; Martín del Olmo, Juan Carlos
2014-01-01
Background: The laparoscopic approach for colorectal pathologies is becoming more widely used, and surgeons have had to learn how to perform this new technique. The purpose of this work is to study the indicators of the learning curve for laparoscopic colectomy in a community hospital and to find when the group begins to improve. Methodology: From January 1 2005 to December 31 2012, 313 consecutive laparoscopic colorectal surgeries were performed (105 rectal and 208 colonic) by at least 60% of the same surgical team (6 members) in each operation. We evaluate the learning curve by moving averages and cumulative sums (CUSUM) for different variables related to the surgery outcomes. Results: Moving average curves for postoperative stay, fasting, and second step analgesia show a stabilizing trend toward improvement as we get more experience. However, intensive care unit stay, number of lymph nodes achieved, and operating time did not show a clear decreasing tendency. CUSUM curves of conversion, specimens <12 lymph nodes, and complications all show a clear turning point marked on all the charts around the procedure 60, accumulating a positive trend toward improvement. The CUSUM curve of the “learning variable” shows this improvement point at procedure 70. Conclusions: The laparoscopic colectomy learning curve accelerates with a collective team involvement in each procedure. The CUSUM and moving average curves are useful for initial and ongoing monitoring of new surgical procedures. The markers of the learning curve evidenced in our study are the conversion rate, postoperative surgical morbidity, and the number of patients with a lymph node count <12. What is new in this paper? The significance of this study is the evaluation of the learning curve, in laparoscopic colorectal surgery, of a surgical team in a community hospital, using moving average and CUSUM curves. This study demonstrated that the number of patients needed to achieve skilful practice decreased when
This brochure is part of a series of information packages prepared by the United States Environmental Protection Agency (EPA). Aimed at the international community, the packages focus on key environmental and public health issues being investigated by EPA. The products highligh...
Narayan, M C; Tennant, J
1997-11-01
The significance, standard elements, components, and documentation of an environmental assessment in home care are discussed. This assessment is delineated within Maslow's Hierarchy of Needs and from a functional perspective. An Environmental Assessment Form that can be used as a documentation tool is included.
Black, D.G.
1995-06-01
This section of the 1994 Hanford Site Environmental Report summarizes the onsite and offsite releases of radioactive and regulated materials. The specific agencies notified of the releases depended on the type, amount, and location of the individual occurrences. The more significant of these off-normal environmental occurrences are summarized in this section.
ERIC Educational Resources Information Center
Rowell, Elizabeth H.; Goodkind, Thomas B.
1989-01-01
Analyzes editorial cartoons from 1972-87 to determine extent and type of attention to environmental issues. Explores cartoons' direct and indirect messages regarding outdoors. Describes cartoons about energy, environment, pollution, space. Discusses artists' use of animals, vegetation, and outdoor activities. Identifies environmental issues as…
Knowledge fusion: Comparison of fuzzy curve smoothers to statistically motivated curve smoothers
Burr, T.; Strittmatter, R.B.
1996-03-01
This report describes work during FY 95 that was sponsored by the Department of Energy, Office of Nonproliferation and National Security (NN) Knowledge Fusion (KF) Project. The project team selected satellite sensor data to use as the one main example to which its analysis algorithms would be applied. The specific sensor-fusion problem has many generic features, which make it a worthwhile problem to attempt to solve in a general way. The generic problem is to recognize events of interest from multiple time series that define a possibly noisy background. By implementing a suite of time series modeling and forecasting methods and using well-chosen alarm criteria, we reduce the number of false alarms. We then further reduce the number of false alarms by analyzing all suspicious sections of data, as judged by the alarm criteria, with pattern recognition methods. This report gives a detailed comparison of two of the forecasting methods (fuzzy forecaster and statistically motivated curve smoothers as forecasters). The two methods are compared on five simulated and five real data sets. One of the five real data sets is satellite sensor data. The conclusion is the statistically motivated curve smoother is superior on simulated data of the type we studied. The statistically motivated method is also superior on most real data. In defense of the fuzzy-logic motivated methods, we point out that fuzzy-logic methods were never intended to compete with statistical methods on numeric data. Fuzzy logic was developed to handle real-world situations where either real data was not available or was supplemented with either ``expert opinion`` or some sort of linguistic information.
Corporate environmentalism and environmental innovation.
Chang, Ching-Hsing; Sam, Abdoul G
2015-04-15
Several papers have explored the effect of tighter environmental standards on environmental innovation. While mandatory regulation remains the central tenet of US environmental policy, the regulatory landscape has changed since the early 1990s with the increased recourse by federal and state agencies to corporate environmentalism--voluntary pollution prevention (P2) by firms--to achieve environmental improvements. We therefore estimate the effects of voluntary P2 activities on the patenting of environmental technologies by a sample of manufacturing firms. With our panel data of 352 firms over the 1991-2000 period, we adopt an instrumental variable Poisson framework to account for the count nature of patents and the endogeneity of the P2 adoption decision. Our results indicate that the adoption of voluntary P2 activities in the manufacturing sector has led to a statistically and economically significant increase in the number of environmental patents, suggesting that corporate environmentalism can act as a catalyst for investments in cleaner technologies. Our findings are internationally relevant given the increasing ubiquity of corporate environmentalism in both developed and developing economies.
Corporate environmentalism and environmental innovation.
Chang, Ching-Hsing; Sam, Abdoul G
2015-04-15
Several papers have explored the effect of tighter environmental standards on environmental innovation. While mandatory regulation remains the central tenet of US environmental policy, the regulatory landscape has changed since the early 1990s with the increased recourse by federal and state agencies to corporate environmentalism--voluntary pollution prevention (P2) by firms--to achieve environmental improvements. We therefore estimate the effects of voluntary P2 activities on the patenting of environmental technologies by a sample of manufacturing firms. With our panel data of 352 firms over the 1991-2000 period, we adopt an instrumental variable Poisson framework to account for the count nature of patents and the endogeneity of the P2 adoption decision. Our results indicate that the adoption of voluntary P2 activities in the manufacturing sector has led to a statistically and economically significant increase in the number of environmental patents, suggesting that corporate environmentalism can act as a catalyst for investments in cleaner technologies. Our findings are internationally relevant given the increasing ubiquity of corporate environmentalism in both developed and developing economies. PMID:25687809
Lynch, D R; Hutchinson, C E
1992-02-01
The need for a new profession devoted to environmental matters is asserted. The qualities of such a profession are sketched, and it is argued that new initiatives in environmental education are needed in the form of graduate, professional programs with primary emphasis on practice. An example 2-year program is presented. A fundamental requirement is scientific competence; undergraduate preparation in the sciences or engineering is mandatory. The graduate curriculum itself is built on three primary cores: environmental science and engineering, business and management, and public policy. Additionally, an environmental round table is proposed as a focal point for academic, industrial, governmental, and public discussion on environmental matters. The round table would provide oversight for the professional educational program and an affiliated research institute.
Lynch, D R; Hutchinson, C E
1992-01-01
The need for a new profession devoted to environmental matters is asserted. The qualities of such a profession are sketched, and it is argued that new initiatives in environmental education are needed in the form of graduate, professional programs with primary emphasis on practice. An example 2-year program is presented. A fundamental requirement is scientific competence; undergraduate preparation in the sciences or engineering is mandatory. The graduate curriculum itself is built on three primary cores: environmental science and engineering, business and management, and public policy. Additionally, an environmental round table is proposed as a focal point for academic, industrial, governmental, and public discussion on environmental matters. The round table would provide oversight for the professional educational program and an affiliated research institute. PMID:11607268
Linear algebra algorithms for divisors on an algebraic curve
NASA Astrophysics Data System (ADS)
Khuri-Makdisi, Kamal
We use an embedding of the symmetric $d$th power of any algebraic curve $C$ of genus $g$ into a Grassmannian space to give algorithms for working with divisors on $C$, using only linear algebra in vector spaces of dimension $O(g)$, and matrices of size $O(g^2)\\times O(g)$. When the base field $k$ is finite, or if $C$ has a rational point over $k$, these give algorithms for working on the Jacobian of $C$ that require $O(g^4)$ field operations, arising from the Gaussian elimination. Our point of view is strongly geometric, and our representation of points on the Jacobian is fairly simple to work with; in particular, none of our algorithms involves arithmetic with polynomials. We note that our algorithms have the same asymptotic complexity for general curves as the more algebraic algorithms in Hess' 1999 Ph.D. thesis, which works with function fields as extensions of $k[x]$. However, for special classes of curves, Hess' algorithms are asymptotically more efficient than ours, generalizing other known efficient algorithms for special classes of curves, such as hyperelliptic curves (Cantor), superelliptic curves (Galbraith, Paulus, and Smart), and $C_{ab}$ curves (Harasawa and Suzuki); in all those cases, one can attain a complexity of $O(g^2)$.
Simplified curve fits for the thermodynamic properties of equilibrium air
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Tannehill, J. C.; Weilmuenster, K. J.
1986-01-01
New improved curve fits for the thermodynamic properties of equilibrium air were developed. The curve fits are for p = p(e,rho), a = a(e,rho), T = T(e,rho), s = s(e,rho), T = T(p,rho), h = h(p,rho), rho = rho(p,s), e = e(p,s) and a = a(p,s). These curve fits can be readily incorporated into new or existing Computational Fluid Dynamics (CFD) codes if real-gas effects are desired. The curve fits were constructed using Grabau-type transition functions to model the thermodynamic surfaces in a piecewise manner. The accuracies and continuity of these curve fits are substantially improved over those of previous curve fits appearing in NASA CR-2470. These improvements were due to the incorporation of a small number of additional terms in the approximating polynomials and careful choices of the transition functions. The ranges of validity of the new curve fits are temperatures up to 25,000 K and densities from 10 to the minus 7th to 100 amagats (rho/rho sub 0).
Progress Report on Alloy 617 Isochronous Stress-Strain Curves
Jill K. Wright; Richard N. Wright; Nancy J. Lybeck
2014-03-01
Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.
Propagation of rating curve uncertainty in design flood estimation
NASA Astrophysics Data System (ADS)
Steinbakk, Gunnhildur H.; Thorarinsdottir, Thordis; Reitan, Trond; Schlichting, Lena; Hølleland, Sondre; Engeland, Kolbjørn
2016-04-01
Statistical flood frequency analysis is commonly performed based on a set of annual maximum discharge values which are derived from stage measurements via a stage-discharge rating curve model. However, design flood estimation techniques often ignore the uncertainty in the underlying rating curve model. Using data from seven gauging stations in Norway, we investigate both the marginal and the joint effects of curve and sample uncertainty on design flood estimation. In addition, we consider the importance of assessing the added value of large streamflow measurements at the high end of the rating curve and in the annual maximum data series. The sample uncertainty is generally the main contributor to uncertainty in design flood estimates. However, accounting for curve uncertainty may strongly influence the results if an extrapolation of the rating curve is necessary. An additional high direct streamflow measurement will reduce the extrapolation degree and the rating curve uncertainty, and most likely reduce estimation biases in the return levels. A high annual maximum flood observation might, if combined with a large extrapolation degree, introduce estimation biases for return levels since the estimation is based on combining two highly skewed distributions.
Cepheid light curve demography via Bayesian functional data analysis
NASA Astrophysics Data System (ADS)
Loredo, Thomas J.; Hendry, Martin; Kowal, Daniel; Ruppert, David
2016-01-01
Synoptic time-domain surveys provide astronomers, not simply more data, but a different kind of data: large ensembles of multivariate, irregularly and asynchronously sampled light curves. We describe a statistical framework for light curve demography—optimal accumulation and extraction of information, not only along individual light curves as conventional methods do, but also across large ensembles of related light curves. We build the framework using tools from functional data analysis (FDA), a rapidly growing area of statistics that addresses inference from datasets that sample ensembles of related functions. Our Bayesian FDA framework builds hierarchical models that describe light curve ensembles using multiple levels of randomness: upper levels describe the source population, and lower levels describe the observation process, including measurement errors and selection effects. Roughly speaking, a particular object's light curve is modeled as the sum of a parameterized template component (modeling population-averaged behavior) and a peculiar component (modeling variability across the population), subsequently subjected to an observation model. A functional shrinkage adjustment to individual light curves emerges—an adaptive, functional generalization of the kind of adjustments made for Eddington or Malmquist bias in single-epoch photometric surveys. We describe ongoing work applying the framework to improved estimation of Cepheid variable star luminosities via FDA-based refinement and generalization of the Cepheid period-luminosity relation.
What Do Reported Learning Curves Mean for Orthopaedic Surgeons?
Gofton, Wade T; Solomon, Michael; Gofton, Tyson; Pagé, Alex; Kim, Paul R; Netting, Caleb; Bhandari, Mohit; Beaulé, Paul E
2016-01-01
Practicing orthopaedic surgeons must assess the effects of the learning curve on patient safety and surgical outcomes if a new implant, technique, or approach is being considered; however, it remains unclear how learning curves reported in the literature should be interpreted and to what extent their results can be generalized. Learning curve reports from other surgical specialties and from orthopaedic surgery can be analyzed to identify the strengths and weaknesses of learning curve reporting. Single-surgeon series and registry data can be analyzed to understand learning challenges and to develop a personalized learning plan. Learning curve reports from single-surgeon series have several limitations that result from the limited dataset reported and inconsistencies in the way data are reported. Conversely, learning curve reports from registry data are likely to have greater generalizability, but are largely beneficial retrospectively, after data from a sufficient number of surgeons are assessed. There is a pressing need for surgeons to develop improved and consistent standards for learning curve reporting. Although registry data may provide better prospective measures in the future, the implementation of such registries faces several challenges. Despite substantial limitations, single-surgeon series remain the most effective way for practicing surgeons to assess their learning challenge and develop an appropriate learning plan.
Implementation of Elliptic Curve Cryptography in Binary Field
NASA Astrophysics Data System (ADS)
Susantio, D. R.; Muchtadi-Alamsyah, I.
2016-04-01
Currently, there is a steadily increasing demand of information security, caused by a surge in information flow. There are many ways to create a secure information channel, one of which is to use cryptography. In this paper, we discuss the implementation of elliptic curves over the binary field for cryptography. We use the simplified version of the ECIES (Elliptic Curve Integrated Encryption Scheme). The ECIES encrypts a plaintext by masking the original message using specified points on the curve. The encryption process is done by separating the plaintext into blocks. Each block is then separately encrypted using the encryption scheme.
Low frequency oscillatory flow in a rotating curved pipe.
Chen, Hua-Jun; Zhang, Ben-Zhao; Su, Xiao-Yan
2003-01-01
The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of biparameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient. PMID:12861615
Bolometric and UV light curves of core-collapse supernovae
Pritchard, T. A.; Roming, P. W. A.; Brown, Peter J.; Bayless, Amanda J.; Frey, Lucille H.
2014-06-01
The Swift UV-Optical Telescope (UVOT) has been observing core-collapse supernovae (CCSNe) of all subtypes in the UV and optical since 2005. Here we present 50 CCSNe observed with the Swift UVOT, analyzing their UV properties and behavior. Where we have multiple UV detections in all three UV filters (λ {sub c} = 1928-2600 Å), we generate early time bolometric light curves, analyze the properties of these light curves and the UV contribution to them, and derive empirical corrections for the UV-flux contribution to optical-IR based bolometric light curves.
Folding DNA into twisted and curved nanoscale shapes.
Dietz, Hendrik; Douglas, Shawn M; Shih, William M
2009-08-01
We demonstrate the ability to engineer complex shapes that twist and curve at the nanoscale from DNA. Through programmable self-assembly, strands of DNA are directed to form a custom-shaped bundle of tightly cross-linked double helices, arrayed in parallel to their helical axes. Targeted insertions and deletions of base pairs cause the DNA bundles to develop twist of either handedness or to curve. The degree of curvature could be quantitatively controlled, and a radius of curvature as tight as 6 nanometers was achieved. We also combined multiple curved elements to build several different types of intricate nanostructures, such as a wireframe beach ball or square-toothed gears.
The extended polar writhe: a tool for open curves mechanics
NASA Astrophysics Data System (ADS)
Prior, Christopher B.; Neukirch, Sébastien
2016-05-01
A measure of the writhing of a curve is introduced and is used to extend the Călugăreanu decomposition for closed curves, as well as the polar decomposition for curves bound between planes. The new writhe measure is also shown to be able to assess changes in linking due to belt-trick and knotting type deformations, and further its utility is illustrated on examples taken from elastic rod parameter-continuation studies. Finally C++ and mathematica codes are made available and shown to be faster than existing algorithms for the numerical computation of the writhe.
Folding DNA into Twisted and Curved Nanoscale Shapes
Dietz, Hendrik; Douglas, Shawn M.; Shih, William M.
2009-01-01
We demonstrate the ability to engineer complex shapes that twist and curve at the nanoscale from DNA. Through programmable self-assembly, strands of DNA are directed to form a custom-shaped bundle of tightly crosslinked double helices, arrayed in parallel to their helical axes. Targeted insertions and deletions of base pairs cause the DNA bundles to develop twist of either handedness or to curve. The degree of curvature could be quantitatively controlled, and a radius of curvature as tight as 6 nanometers was achieved. We also combined multiple curved elements to build several different types of intricate nanostructures, such as a wireframe beach ball or square-toothed gears. PMID:19661424
Exhaustive search system and method using space-filling curves
Spires, Shannon V.
2003-10-21
A search system and method for one agent or for multiple agents using a space-filling curve provides a way to control one or more agents to cover an area of any space of any dimensionality using an exhaustive search pattern. An example of the space-filling curve is a Hilbert curve. The search area can be a physical geography, a cyberspace search area, or an area searchable by computing resources. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace.
Curve fitting for RHB Islamic Bank annual net profit
NASA Astrophysics Data System (ADS)
Nadarajan, Dineswary; Noor, Noor Fadiya Mohd
2015-05-01
The RHB Islamic Bank net profit data are obtained from 2004 to 2012. Curve fitting is done by assuming the data are exact or experimental due to smoothing process. Higher order Lagrange polynomial and cubic spline with curve fitting procedure are constructed using Maple software. Normality test is performed to check the data adequacy. Regression analysis with curve estimation is conducted in SPSS environment. All the eleven models are found to be acceptable at 10% significant level of ANOVA. Residual error and absolute relative true error are calculated and compared. The optimal model based on the minimum average error is proposed.
New Developments in Eclipsing Binary Light Curve Modeling
NASA Astrophysics Data System (ADS)
Milone, E. F.; Stagg, C. R.
1994-03-01
The light curve modeling of binary stars has continued to evolve since its founding by Henry Norris Russell (see Russell and Merrill 1952 and citations therein) nearly a century ago, accelerated in the 1950s by Kopal's introduction of Roche geometry into models and by the development of synthetic light curve computer code in the 1970's. Improved physics and the use of more kinds of observational input are providing another round of important advances that promise to enlarge our knowledge of both binary stars and ensembles containing them. Here we discuss the newer horizons of light curve modeling and the steps being taken toward them.
Real-Time Exponential Curve Fits Using Discrete Calculus
NASA Technical Reports Server (NTRS)
Rowe, Geoffrey
2010-01-01
An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.
Fourie-Mukai partners of singular genus one curves
NASA Astrophysics Data System (ADS)
López Martín, Ana Cristina
2014-09-01
The objective of the paper is to prove that, as it happens for smooth elliptic curves, any Fourie-Mukai partner of a projective reduced Gorenstein curve of genus one and trivial dualizing sheaf, is isomorphic to itself. either to a Kodaira curve (always with locally planar singularities), that is, a smooth elliptic curve; a rational curve with one node (following Kodaira's notation, that is a curve of type I1); a rational curve with one cusp (a curve of type I2); a cycle of N rational smooth curves (a curve of type IN) with N≥2; two rational smooth curves forming a tacnode curve (a curve of type II); or three concurrent rational smooth curves in the plane (a curve of type IV); or to a curve consisting of N≥4 rational smooth curves meeting at a point x where the tangents to the branches are linearly dependent, but any (N-1) of them are independent. Note that, by results of Kodaira and Miranda, the curves in (1) are exactly all the possible reduced fibers appearing in a smooth elliptic surface or in a smooth elliptic threefold. This explains why they are called Kodaira curves.The theorem was just known for smooth elliptic curves. In this case, it was proved by Hille and Van den Bergh in [2]. For the integral singular curves in the above list, that is, for X a rational curve with one node or a cusp, Burban and Kreußler study in [3] the derived category Dcb(X) and its group Aut(Dcb(X) of autoequivalences, but they do not tackle the question of Fourie-Mukai partners. Thus our contribution is to pass from the classical case of a smooth elliptic curve to the singular case generalizing the result to all singular curves of Catanese's list.In 1998, Bridgeland computes all Fourie-Mukai partners of a smooth elliptic surface. He proves in [4] that the partners of relatively minimal smooth elliptic surfaces are certain relative compactified Jacobians. Some recent works [5,6] are concerned about higher dimensional elliptic fibrations. But, for the moment there is not a
Quaternion wave equations in curved space-time
NASA Technical Reports Server (NTRS)
Edmonds, J. D., Jr.
1974-01-01
The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.
Method and models for R-curve instability calculations
NASA Technical Reports Server (NTRS)
Orange, Thomas W.
1988-01-01
This paper presents a simple method for performing elastic R-curve instability calculations. For a single material-structure combination, the calculations can be done on some pocket calculators. On microcomputers and larger, it permits the development of a comprehensive program having libraries of driving force equations for different configurations and R-curve model equations for different materials. The paper also presents several model equations for fitting to experimental R-curve data, both linear elastic and elastoplastic. The models are fit to data from the literature to demonstrate their viability.
QUEST1 VARIABILITY SURVEY. III. LIGHT CURVE CATALOG UPDATE
Rengstorf, A. W.; Thompson, D. L.; Mufson, S. L.; Honeycutt, R. K.; Adams, B.; Baltay, C.; Gebhard, M.; Andrews, P.; Coppi, P.; Emmet, W.; Vivas, A. K.; Abad, C.; Bongiovanni, A.; Briceno, C.; Bruzual, G.; Prugna, F. Della; Hernandez, J.; Bailyn, C.; Ferrin, I.; Fuenmayor, F.
2009-03-15
This paper reports an update to the QUEST1 (QUasar Equatorial Survey Team, Phase 1) Variability Survey (QVS) light curve catalog, which links QVS instrumental magnitude light curves to Sloan Digital Sky Survey (SDSS) objects and photometry. In the time since the original QVS catalog release, the overlap between publicly available SDSS data and QVS data has increased by 8% in sky coverage and 16,728 in number of matched objects. The astrometric matching and the treatment of SDSS masks have been refined for the updated catalog. We report on these improvements and present multiple bandpass light curves, global variability information, and matched SDSS photometry for 214,941 QUEST1 objects.
Using Kepler Light Curves for Astronomy Education and Public Outreach
NASA Astrophysics Data System (ADS)
Cash, Jennifer; Rivers, S.; Eleby, J.; Gould, A.; Komatsu, T.
2014-01-01
We will present our efforts related to Education and Public Outreach activities using Kepler Light Curves. We are currently developing interactive web based activities to introduce the public to the general topic of Stellar Variability and Intrinsic Variable Stars in particular using the high quality light curves of over a dozen Kepler targets. Along with the public website, we are exploring areas to develop teacher guides to use Kepler Light Curves in the middle and high school classrooms. These efforts are supported through a NASA EPSCoR grant "South Carolina Joint Venture Program" via a subaward to SC State University.
Interpretation of OAO-2 ultraviolet light curves of beta Doradus
NASA Technical Reports Server (NTRS)
Hutchinson, J. L.; Lillie, C. F.; Hill, S. J.
1975-01-01
Middle-ultraviolet light curves of beta Doradus, obtained by OAO-2, are presented along with other evidence indicating that the small additional bumps observed on the rising branches of these curves have their origin in shock-wave phenomena in the upper atmosphere of this classical Cepheid. A simple piston-driven spherical hydrodynamic model of the atmosphere is developed to explain the bumps, and the calculations are compared with observations. The model is found to be consistent with the shapes of the light curves as well as with measurements of the H-alpha radial velocities.
Quantum Field Theory in Curved Spacetime
NASA Astrophysics Data System (ADS)
Reynolds, Sally C.; Gallagher, Andrew
2012-03-01
; 19. Assimilation and modern human origins in the African peripheries Fred H. Smith, Vance T. Hutchinson and Ivor Janković; 20. Patterns of Middle Pleistocene hominin evolution in Africa and the emergence of modern humans Emma Mbua and Günter Bräuer; 21. Integration of the genetic, anatomical, and archaeological data for the African origin of modern humans: problems and prospects Osbjorn M. Pearson; Part IV. In Search of Context: Hominin Environments, Behaviour and Lithic Cultures: 22. Animal palaeocommunity variability and habitat preference of robust australopiths in South Africa Darryl J. de Ruiter, Matt Sponheimer and Julia Lee-Thorp; 23. Impacts of environmental change and community ecology on the composition and diversity of the southern African monkey fauna from the Plio-Pleistocene to the present Sarah Elton; 24. African genesis revisited: reflections on Raymond Dart and the 'Predatory Transition from Ape(-Man) to Man' Travis R. Pickering; 25. Shared intention in early artefacts: an exploration of deep structure and implications for communication and language John A. J. Gowlett; 26. Sibudu Cave: recent archaeological work on the Middle Stone Age Lyn Wadley; 27. The oldest burials and their significance Avraham Ronen; Index.
NASA Astrophysics Data System (ADS)
Knuth, Eldon L.; Miller, David R.; Even, Uzi
2014-12-01
Data extracted from time-of-flight (TOF) measurements made on steady-state He free jets at Göttingen already in 1986 and for pulsed Ne free jets investigated recently at Tel Aviv have been added to an earlier plot of terminal condensed-phase mass fraction x2∞ as a function of the dimensionless scaling parameter Γ. Γ characterizes the source (fluid species, temperature, pressure and throat diameter); values of x2∞ are extracted from TOF measurements using conservation of energy in the free-jet expansion. For nozzles consisting of an orifice in a thin plate; the extracted data yield 22 data points which are correlated satisfactorily by a single curve. The Ne free jets were expanded from a conical nozzle with a 20° half angle; the three extracted data points stand together but apart from the aforementioned curve, indicating that the presence of the conical wall influences significantly the expansion and hence the condensation. The 22 data points for the expansions via an orifice consist of 15 measurements with expansions from the gas-phase side of the binodal curve which crossed the binodal curve downstream from the sonic point and 7 measurements with expansions of the gas-phase product of the flashing which occurred after an expansion from the liquid-phase side of the binodal curve crossed the binodal curve upstream from the sonic point. The association of these 22 points with a single curve supports the alternating-phase model for flows with flashing upstream from the sonic point proposed earlier. In order to assess the role of the spinodal curve in such expansions, the spinodal curves for He and Ne were computed using general multi-parameter Helmholtz-free-energy equation-of-state formulations. Then, for the several sets of source-chamber conditions used in the free-jet measurements, thermodynamic states at key locations in the free-jet expansions (binodal curve, sonic point and spinodal curve) were evaluated, with the expansion presumed to be metastable
Knuth, Eldon L.; Miller, David R.; Even, Uzi
2014-12-09
Data extracted from time-of-flight (TOF) measurements made on steady-state He free jets at Göttingen already in 1986 and for pulsed Ne free jets investigated recently at Tel Aviv have been added to an earlier plot of terminal condensed-phase mass fraction x{sub 2∞} as a function of the dimensionless scaling parameter Γ. Γ characterizes the source (fluid species, temperature, pressure and throat diameter); values of x{sub 2∞} are extracted from TOF measurements using conservation of energy in the free-jet expansion. For nozzles consisting of an orifice in a thin plate; the extracted data yield 22 data points which are correlated satisfactorily by a single curve. The Ne free jets were expanded from a conical nozzle with a 20° half angle; the three extracted data points stand together but apart from the aforementioned curve, indicating that the presence of the conical wall influences significantly the expansion and hence the condensation. The 22 data points for the expansions via an orifice consist of 15 measurements with expansions from the gas-phase side of the binodal curve which crossed the binodal curve downstream from the sonic point and 7 measurements with expansions of the gas-phase product of the flashing which occurred after an expansion from the liquid-phase side of the binodal curve crossed the binodal curve upstream from the sonic point. The association of these 22 points with a single curve supports the alternating-phase model for flows with flashing upstream from the sonic point proposed earlier. In order to assess the role of the spinodal curve in such expansions, the spinodal curves for He and Ne were computed using general multi-parameter Helmholtz-free-energy equation-of-state formulations. Then, for the several sets of source-chamber conditions used in the free-jet measurements, thermodynamic states at key locations in the free-jet expansions (binodal curve, sonic point and spinodal curve) were evaluated, with the expansion presumed to be
Forster, C.F.
1987-01-01
Offers an up-to-date overview of the major activities in the field and appraises the principles involved in applying biotechnological techniques to environmental problems. coverage includes pollution of agricultural land, techniques of treating effluents, environmental problems caused by solid waste disposal in landfill sites, and the potential for biogas generation at such sites. It also examines the potential uses and dangers of future technologies in environmental management, such as manipulating aromatic-degrading microorganisms, use of recalcitrant xenobiotics, biological pest control, and controlling biological nitrogen fixation.
A post-glacial relative sea-level curve from Fiordland, New Zealand
NASA Astrophysics Data System (ADS)
Dlabola, E. K.; Wilson, G. S.; Gorman, A. R.; Riesselman, C. R.; Moy, C. M.
2015-08-01
The modern fjords of southwest New Zealand were previously stranded lakes isolated from the Tasman Sea by bedrock and moraine sills following the retreat of glaciers at the Last Glacial Maximum. The isolated lake basins were subsequently inundated with sea water when sea-level rise overtopped the sills. A record of the lacustrine-to-marine environmental transition is preserved in the fjord basin sediments and is identified in two New Zealand fjords with high-resolution seismic data and paleoenvironmental analysis of sediment cores. Seismic data are used to constrain the maximum sill depth and microfossil assemblages are used to track the lacustrine-to-marine transition. Chronology is based on fourteen radiocarbon ages. A relative sea-level curve for Fiordland, New Zealand is constructed based on sill depths and age constraints on the marine incursion. The sea-level curve allows insights into estimated uplift rates for Fiordland during the Holocene. From a lowstand of at least 107 mbsl 14,750 yr ago, these data reveal a stepwise transgression. Meltwater Pulse 1b is identified between 12,400 and 11,400 yr ago, with a second acceleration in sea-level rise observed 9700 yr ago. This record contributes a new sea-level curve for a mid-latitude (45°S) Southern Hemisphere location as well as new evidence for Meltwater Pulse 1b.
A Note on Comparing the Elasticities of Demand Curves.
ERIC Educational Resources Information Center
Nieswiadomy, Michael
1986-01-01
Demonstrates a simple and useful way to compare the elasticity of demand at each price (or quantity) for different demand curves. The technique is particularly useful for the intermediate microeconomic course. (Author)
Closed time like curves enable perfect state distinguishability
Harrington, James William; Wilde, Mark M; Brun, Todd A
2008-01-01
The causal self-consistency condition for closed timelike curves can give rise to nonlinear interactions on chronology-respecting qubits. We demonstrate that particular unitary interactions between closed timelike curve qubits and chronology-respecting qubits allow perfect distinguishability of nonorthogonal states, and provide a constructive proof for an arbitrary number of nonorthogonal states. This has a number of highly significant consequences. For example, an adversary with access to closed timelike curves can break the B92, BB84, and SARG04 quantum key distribution protocols, or any prepare-and-measure quantum key distribution scheme. Our result also implies that a party with access to closed timelike curves can violate the Holevo bound by accessing more than log(N) bits of information from an N-dimensional quantum state. In principle, he can transmit an arbitrarily large amount of classical information with a quantum system of fixed size. We discuss the implications of this for quantum cloning.
The Aggregate Supply Curve: Keynes and Downwardly Sticky Money Wages.
ERIC Educational Resources Information Center
Wells, Paul
1985-01-01
Keynes's explanation of both the rationale underlying downwardly sticky money wages and the consequences this phenomenon has for macroeconomic theory are reviewed. An aggregate supply curve appropriate to today's economy is then interpreted. (Author/RM)
Formation of curved micrometer-sized single crystals.
Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz
2014-05-27
Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high.
11. DOUBLE CURVED RACK. UPPER PORTION ROTATES; LOWER PORTION REMAINS ...
11. DOUBLE CURVED RACK. UPPER PORTION ROTATES; LOWER PORTION REMAINS STATIONARY. DISCARDED ROLLER NEAR CENTER OF FRAME. - Chicago, Milwaukee & St. Paul Railway, Bridge No. Z-6, Spanning North Branch of Chicago River, South of Cortland Street, Chicago, Cook County, IL
A Program For Optics of Curved Crystal Neutron Spectrometers.
1990-04-26
Version 00 TRAX computes the resolution matrix and characteristic line widths and intensities for three-axis slow-neutron spectrometers with flat or curved, mosaic or perfect crystals, with or without Soller collimators or limiting diaphragms.
FACADE OF THE CLUB MODERNE, SHOWING THE ORIGINAL CURVED CORNER ...
FACADE OF THE CLUB MODERNE, SHOWING THE ORIGINAL CURVED CORNER PROFILE AND TRI-COLOR CARRERE GLASS FACADE. - Anaconda Historic District, Club Moderne, 801 East Park Avenue, Anaconda, Deer Lodge County, MT
Experiments with conjugate gradient algorithms for homotopy curve tracking
NASA Technical Reports Server (NTRS)
Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.
1991-01-01
There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.
Equivalent Dose Determination Using Components of IRSL Decay Curves
Tanir, G.; Boeluekdemir, M. H.
2007-04-23
To determine the equivalent dose (ED) using conventional methods any part (or all) of the optically stimulated luminescence (OSL) decay curve can be chosen as representative luminescence signal. Recently several studies investigated the shape of OSL decay curves and showed that the luminescence emission can be decomposed into fast, medium and slow components. From this point, in this work, the ED values determined using multiple aliquots process (MAAD)for geological sample were recalculated taking into account for these components from their IRSL decay curves and the results were compared. The IRSL decay curves were decomposed using a simple fitting procedure. The ED was obtained using IRSL components and compared with those obtained by standard methods.
Convex hulls of a curve in control theory
Kurbatskii, Aleksei N
2012-03-31
A classification is obtained for typical singularities of the local transitivity sets of control systems on three-dimensional manifolds with nonconvex indicatrices that are closed smooth spatial curves. Bibliography: 8 titles.
GRAND DITCH VIEW, FROM FARVIEW CURVE OVERLOOK, VIEWING WEST. DITCH ...
GRAND DITCH VIEW, FROM FARVIEW CURVE OVERLOOK, VIEWING WEST. DITCH IS INDICATED BY HORIZONTAL LINE NEAR TOP OF CLOUD COVERED PEAKS - Grand Ditch, Baker Creek to LaPoudre Pass Creek, Grand Lake, Grand County, CO
Development of an Equivalent Wind Plant Power-Curve: Preprint
Wan, Y. H.; Ela, E.; Orwig, K.
2010-06-01
Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.
Kummer surfaces associated with Seiberg-Witten curves
NASA Astrophysics Data System (ADS)
Malmendier, Andreas
2012-01-01
By carrying out a rational transformation on the base curve C of the Seiberg-Witten curve for N=2 supersymmetric pure SU(2)-gauge theory, we obtain a family of Jacobian elliptic K3 surfaces of Picard rank 17. The isogeny relating the Seiberg-Witten curve for pure SU(2)-gauge theory to the one for SU(2)-gauge theory with Nf=2 massless hypermultiplets extends to define a Nikulin involution on each K3 surface in the family. We show that the desingularization of the quotient of the K3 surface by the involution is isomorphic to a Kummer surface of the Jacobian variety of a curve of genus two. We then derive a relation between the Yukawa coupling associated with the elliptic K3 surface and the Yukawa coupling of pure SU(2)-gauge theory.
9. STONE SLAB CULVERT UNDER CARRIAGE ROAD AT HORSESHOE CURVE ...
9. STONE SLAB CULVERT UNDER CARRIAGE ROAD AT HORSESHOE CURVE NEAR GIANT SLIDE TRAIL MARKER ON AROUND-THE-MOUNTAIN LOOP. - Rockefeller Carriage Roads, Mount Desert Island, Bar Harbor, Hancock County, ME
On curve veering and flutter of rotating blades
NASA Technical Reports Server (NTRS)
Afolabi, Dare; Mehmed, Oral
1993-01-01
The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.
Using Peano Curves to Construct Laplacians on Fractals
NASA Astrophysics Data System (ADS)
Molitor, Denali; Ott, Nadia; Strichartz, Robert
2015-12-01
We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.
View depicting arrangement of bents, curved alignment, from point of ...
View depicting arrangement of bents, curved alignment, from point of crossing of former Southern Pacific right of way; collision wall at right; view to southwest; 90mm lens - Carroll Overhead Bridge, Altamont Pass Road, Livermore, Alameda County, CA
14. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED ...
14. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED STRIPS, FORMING SUN RAY PATTERN. LATTICE RAILING AT LOWER RIGHT. - River Road Bridge, Spanning Spring Creek in Spring Creek Township, Hallton, Elk County, PA
6. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED ...
6. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED STRIPS, FORMING SUN RAY PATTERN. LATTICE RAILING AT LOWER RIGHT. - River Road Bridge, Spanning Spring Creek in Spring Creek Township, Hallton, Elk County, PA
The excitation of normal modes by a curved line source
NASA Astrophysics Data System (ADS)
Mochizuki, E.
1987-12-01
The polynomial moments, up to total degree two, of the stress glut are calculated for a curved line source. The significance of the moments, whose total degree is one, is emphasized and the implication for inversion is discussed.
View of the highway, at the Frozen Lake switchback curve, ...
View of the highway, at the Frozen Lake switchback curve, looking northwest. The proposed realignment would be just to the southeast (right) of the existing alignment - Beartooth Highway, Red Lodge, Montana to Cooke City, Montana, Cody, Park County, WY
A Condition for Flatness of Curves in R(n).
ERIC Educational Resources Information Center
Kupitz, Yaakov S.; Perles, Micha A.
1990-01-01
Presented are two exercises on the differential geometry of curves. A generalization dealing with smoothness conditions is given that relates the two exercises. Included are the definitions, theorems, propositions, and proofs. (KR)
Global Expression for Representing Diatomic Potential-Energy Curves
NASA Technical Reports Server (NTRS)
Ferrante, John; Schlosser, Herbert; Smith, John R.
1991-01-01
A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.
Sensitivity curves for searches for gravitational-wave backgrounds
NASA Astrophysics Data System (ADS)
Thrane, Eric; Romano, Joseph D.
2013-12-01
We propose a graphical representation of detector sensitivity curves for stochastic gravitational-wave backgrounds that takes into account the increase in sensitivity that comes from integrating over frequency in addition to integrating over time. This method is valid for backgrounds that have a power-law spectrum in the analysis band. We call these graphs “power-law integrated curves.” For simplicity, we consider cross-correlation searches for unpolarized and isotropic stochastic backgrounds using two or more detectors. We apply our method to construct power-law integrated sensitivity curves for second-generation ground-based detectors such as Advanced LIGO, space-based detectors such as LISA and the Big Bang Observer, and timing residuals from a pulsar timing array. The code used to produce these plots is available at https://dcc.ligo.org/LIGO-P1300115/public for researchers interested in constructing similar sensitivity curves.
Characterization of PEM fuel cell degradation by polarization change curves
NASA Astrophysics Data System (ADS)
Bezmalinovic, Dario; Simic, Boris; Barbir, Frano
2015-10-01
Polarization change curves, defined as a difference between the polarization curve at the beginning of life and the actual polarization curve after the cell has been operational for some time, were used to analyze degradation of a PEM fuel cell exposed to voltage cycling as an accelerated stress test for electrocatalyst degradation. Degradation, i.e., loss of voltage was due to increase of activation losses and increase of resistance in the catalyst layer, both most likely due to the loss of catalyst electrochemically active area. The results of the polarization change curves analysis correspond to the findings of the periodic individual tests performed during the accelerated stress test, such as electrochemical impedance spectroscopy, cyclic voltammetry and linear sweep voltammetry. Therefore, this method has potential to be used as a relatively quick and simple, yet effective, degradation diagnostic tool.
7. SHARP CURVES IN RHODES DITCH NEAR NORTHEAST PART OF ...
7. SHARP CURVES IN RHODES DITCH NEAR NORTHEAST PART OF PROJECT. VIEW TO SOUTHEAST. - Natomas Ditch System, Rhodes Ditch, West of Bidwell Street, north of U.S. Highway 50, Folsom, Sacramento County, CA
Using AFM Force Curves to Explore Properties of Elastomers
ERIC Educational Resources Information Center
Ferguson, Megan A.; Kozlowski, Joseph J.
2013-01-01
polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…
60. SUPPORT CARRIAGE ASSEMBLY AT ISLIP CANYON SHOWING CURVED RAILS ...
60. SUPPORT CARRIAGE ASSEMBLY AT ISLIP CANYON SHOWING CURVED RAILS AND FLOATING BARGE IN BACKGROUND, February 16, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
WM roadbed curving through a cut at milepost 158, above ...
WM roadbed curving through a cut at milepost 158, above MD 51 in Spring Gap, Maryland, looking east. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD
West portion of S curve along Long Farm Road, milepost ...
West portion of S curve along Long Farm Road, milepost 150 vicinity, view northwest towards Old Town, Maryland. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD
Curve of Western Maryland Rail Trail west of Hancock, milepost ...
Curve of Western Maryland Rail Trail west of Hancock, milepost 117 vicinity, looking west. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD
Trends in scale and shape of survival curves
NASA Astrophysics Data System (ADS)
Weon, Byung Mook; Je, Jung Ho
2012-07-01
The ageing of the population is an issue in wealthy countries worldwide because of increasing costs for health care and welfare. Survival curves taken from demographic life tables may help shed light on the hypotheses that humans are living longer and that human populations are growing older. We describe a methodology that enables us to obtain separate measurements of scale and shape variances in survival curves. Specifically, `living longer' is associated with the scale variance of survival curves, whereas `growing older' is associated with the shape variance. We show how the scale and shape of survival curves have changed over time during recent decades, based on period and cohort female life tables for selected wealthy countries. Our methodology will be useful for performing better tracking of ageing statistics and it is possible that this methodology can help identify the causes of current trends in human ageing.
View to southwest along bridge alignment, showing reverse curve; photographer ...
View to southwest along bridge alignment, showing reverse curve; photographer unknown; 1933 photo from collection of Office-of Structures Maintenance, California Department of Transportation, Sacramento - Carroll Overhead Bridge, Altamont Pass Road, Livermore, Alameda County, CA
Constant-Magnitude Acceleration on a Curved Path.
ERIC Educational Resources Information Center
Herrick, David L.
1996-01-01
Presents the theory behind a two-dimensional curved path along which the magnitude of the acceleration vector remains constant for an object moving frictionlessly under the influence of gravity. (JRH)
The local Gromov-Witten theory of curves
NASA Astrophysics Data System (ADS)
Bryan, Jim; Pandharipande, Rahul
2008-01-01
The local Gromov-Witten theory of curves is solved by localization and degeneration methods. Localization is used for the exact evaluation of basic integrals in the local Gromov-Witten theory of {P}^1 . A TQFT formalism is defined via degeneration to capture higher genus curves. Together, the results provide a complete and effective solution. The local Gromov-Witten theory of curves is equivalent to the local Donaldson-Thomas theory of curves, the quantum cohomology of the Hilbert scheme points of {C}^2 , and the orbifold quantum cohomology of the symmetric product of {C}^2 . The results of the paper provide the local Gromov-Witten calculations required for the proofs of these equivalences.
Rotation curves of ultralight BEC dark matter halos with rotation
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; Lora-Clavijo, F. D.
2015-03-01
We study the rotation curves of ultralight BEC dark matter halos. These halos are long lived solutions of initially rotating BEC fluctuations. In order to study the implications of the rotation characterizing these long-lived configurations we consider the particular case of a boson mass and no self-interaction. We find that these halos successfully fit samples of rotation curves of LSB galaxies.
Vortex states and magnetization curve of square mesoscopic superconductors.
Melnikov, A. S.; Nefedov, I. M.; Ryzhov, D. A.; Shereshevskii, I. A.; Vinokur, V. M.; Vysheslavtsev, P. P.; Materials Science Division; Russian Academy of Sciences
2002-03-22
The structure of the vortex states in a square mesoscopic superconductor is analyzed in detail using the numerical simulation within the time-dependent Ginzburg-Landau (TDGL) theory. Various vortex states (vortices, vortex molecules, multiquanta vortices) are observed and the magnetization curve is obtained. Different changes in vortex structures are identified with the peculiarities on the magnetization curve. Stability of a state consisting of vortices and antivortices is discussed.
CATALOG OF 93 NOVA LIGHT CURVES: CLASSIFICATION AND PROPERTIES
Strope, Richard J.; Schaefer, Bradley E.; Henden, Arne A.
2010-07-15
We present a catalog of 93 very-well-observed nova light curves. The light curves were constructed from 229,796 individual measured magnitudes, with the median coverage extending to 8.0 mag below peak and 26% of the light curves following the eruption all the way to quiescence. Our time-binned light curves are presented in figures and as complete tabulations. We also calculate and tabulate many properties about the light curves, including peak magnitudes and dates, times to decline by 2, 3, 6, and 9 mag from maximum, the time until the brightness returns to quiescence, the quiescent magnitude, power-law indices of the decline rates throughout the eruption, the break times in this decline, plus many more properties specific to each nova class. We present a classification system for nova light curves based on the shape and the time to decline by 3 mag from the peak (t{sub 3}). The designations are 'S' for smooth light curves (38% of the novae), 'P' for plateaus (21%), 'D' for dust dips (18%), 'C' for cusp-shaped secondary maxima (1%), 'O' for quasi-sinusoidal oscillations superposed on an otherwise smooth decline (4%), 'F' for flat-topped light curves (2%), and 'J' for jitters or flares superposed on the decline (16%). Our classification consists of this single letter followed by the t{sub 3} value in parentheses; so, for example, V1500 Cyg is S(4), GK Per is O(13), DQ Her is D(100), and U Sco is P(3).
Beam-beam deflection and signature curves for elliptic beams
Ziemann, V.
1990-10-22
In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.
Using genetic markers to estimate the pollen dispersal curve.
Austerlitz, Frederic; Dick, Christopher W; Dutech, Cyril; Klein, Etienne K; Oddou-Muratorio, Sylvie; Smouse, Peter E; Sork, Victoria L
2004-04-01
Pollen dispersal is a critical process that shapes genetic diversity in natural populations of plants. Estimating the pollen dispersal curve can provide insight into the evolutionary dynamics of populations and is essential background for making predictions about changes induced by perturbations. Specifically, we would like to know whether the dispersal curve is exponential, thin-tailed (decreasing faster than exponential), or fat-tailed (decreasing slower than the exponential). In the latter case, rare events of long-distance dispersal will be much more likely. Here we generalize the previously developed TWOGENER method, assuming that the pollen dispersal curve belongs to particular one- or two-parameter families of dispersal curves and estimating simultaneously the parameters of the dispersal curve and the effective density of reproducing individuals in the population. We tested this method on simulated data, using an exponential power distribution, under thin-tailed, exponential and fat-tailed conditions. We find that even if our estimates show some bias and large mean squared error (MSE), we are able to estimate correctly the general trend of the curve - thin-tailed or fat-tailed - and the effective density. Moreover, the mean distance of dispersal can be correctly estimated with low bias and MSE, even if another family of dispersal curve is used for the estimation. Finally, we consider three case studies based on forest tree species. We find that dispersal is fat-tailed in all cases, and that the effective density estimated by our model is below the measured density in two of the cases. This latter result may reflect the difficulty of estimating two parameters, or it may be a biological consequence of variance in reproductive success of males in the population. Both the simulated and empirical findings demonstrate the strong potential of TWOGENER for evaluating the shape of the dispersal curve and the effective density of the population (d(e)). PMID:15012767
Remarks of Elliptic Curves Derived from Ant Colony Routing
NASA Astrophysics Data System (ADS)
Jung, Sangsu; Kim, Daeyeoul; Singh, Dhananjay
2011-09-01
We deal with an ant colony based routing model for wireless multi-hop networks. Our model adopts an elliptic curve equation, which is beneficial to design pheromone dynamics for load balancing and packet delivery robustness. Due to the attribute of an elliptic curve equation, our model prevents the over-utilization of a specific node, distinctively from conventional ant colony based schemes. Numerical simulations exhibit the characteristics of our model with respect to various parameters.
SU(2)-monopoles, curves with symmetries and Ramanujan's heritage
Braden, Harry W; Enol'skii, Viktor Z
2010-08-12
We develop the Ercolani-Sinha construction of SU(2) monopoles for a five-parameter family of centred charge 3 monopoles. In particular we show how to solve the transcendental constraints arising on the spectral curve. For a class of symmetric curves the transcendental constraints become a number-theoretic problem and a recently proven identity of Ramanujan provides a solution. Bibliography: 36 titles.
Cristy, G.A.; Jernigan, H.C.
1981-02-01
The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)
Environmental aquatic photobiology is most commonly known for its links to global climate change. Ozone depletion is, however, not the only factor that alters the effects of ultraviolet radiation on biological systems. Alterations in water clarity, by acidification, reduced disso...
The thermal, chemical, and biological quality of water in rivers, lakes, reservoirs, and near coastal areas is inseparable from a consideration of hydraulic engineering principles: therefore, the term environmental hydraulics. In this chapter we discuss the basic principles of w...
Environmental stress cracking of polymers
NASA Technical Reports Server (NTRS)
Mahan, K. I.
1980-01-01
A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.
NASA Technical Reports Server (NTRS)
1975-01-01
The potential use of space systems to help determine the current state of air, water, and land environments was examined; the effects of man's activities on these parameters were also examined. Data are limited to pollutants introduced into the major environmental media, environmental changes manifested by such pollutants, and the effectiveness of abatement and control methods. Data also cover land quality as related to land use and public health.
Zhao, Ben; Ata-UI-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun
2016-01-01
Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0–375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China. PMID:27732634
Evaluation of viewing experiences induced by curved 3D display
NASA Astrophysics Data System (ADS)
Mun, Sungchul; Park, Min-Chul; Yano, Sumio
2015-05-01
As advanced display technology has been developed, much attention has been given to flexible panels. On top of that, with the momentum of the 3D era, stereoscopic 3D technique has been combined with the curved displays. However, despite the increased needs for 3D function in the curved displays, comparisons between curved and flat panel displays with 3D views have rarely been tested. Most of the previous studies have investigated their basic ergonomic aspects such as viewing posture and distance with only 2D views. It has generally been known that curved displays are more effective in enhancing involvement in specific content stories because field of views and distance from the eyes of viewers to both edges of the screen are more natural in curved displays than in flat panel ones. For flat panel displays, ocular torsions may occur when viewers try to move their eyes from the center to the edges of the screen to continuously capture rapidly moving 3D objects. This is due in part to differences in viewing distances from the center of the screen to eyes of viewers and from the edges of the screen to the eyes. Thus, this study compared S3D viewing experiences induced by a curved display with those of a flat panel display by evaluating significant subjective and objective measures.
p-Curve and p-Hacking in Observational Research.
Bruns, Stephan B; Ioannidis, John P A
2016-01-01
The p-curve, the distribution of statistically significant p-values of published studies, has been used to make inferences on the proportion of true effects and on the presence of p-hacking in the published literature. We analyze the p-curve for observational research in the presence of p-hacking. We show by means of simulations that even with minimal omitted-variable bias (e.g., unaccounted confounding) p-curves based on true effects and p-curves based on null-effects with p-hacking cannot be reliably distinguished. We also demonstrate this problem using as practical example the evaluation of the effect of malaria prevalence on economic growth between 1960 and 1996. These findings call recent studies into question that use the p-curve to infer that most published research findings are based on true effects in the medical literature and in a wide range of disciplines. p-values in observational research may need to be empirically calibrated to be interpretable with respect to the commonly used significance threshold of 0.05. Violations of randomization in experimental studies may also result in situations where the use of p-curves is similarly unreliable. PMID:26886098
p-Curve and p-Hacking in Observational Research
Bruns, Stephan B.; Ioannidis, John P. A.
2016-01-01
The p-curve, the distribution of statistically significant p-values of published studies, has been used to make inferences on the proportion of true effects and on the presence of p-hacking in the published literature. We analyze the p-curve for observational research in the presence of p-hacking. We show by means of simulations that even with minimal omitted-variable bias (e.g., unaccounted confounding) p-curves based on true effects and p-curves based on null-effects with p-hacking cannot be reliably distinguished. We also demonstrate this problem using as practical example the evaluation of the effect of malaria prevalence on economic growth between 1960 and 1996. These findings call recent studies into question that use the p-curve to infer that most published research findings are based on true effects in the medical literature and in a wide range of disciplines. p-values in observational research may need to be empirically calibrated to be interpretable with respect to the commonly used significance threshold of 0.05. Violations of randomization in experimental studies may also result in situations where the use of p-curves is similarly unreliable. PMID:26886098
Delamination failure in a unidirectional curved composite laminate
NASA Technical Reports Server (NTRS)
Martin, Roderick H.
1992-01-01
Delamination failure in a unidirectional curved composite laminate was investigated. The curved laminate failed unstably by delaminations developing around the curved region of the laminate at different depths through the thickness until virtually all bending stiffness was lost. Delamination was assumed to initiate at the location of the highest radial stress in the curved region. A closed form curved beam elasticity solution and a 2D finite element analysis (FEA) were conducted to determine this location. The variation in the strain energy release rate, G, with delamination growth was then determined using the FEA. A strength-based failure criteria adequately predicted the interlaminar tension failure which caused initial delamination onset. Using the G analysis the delamination was predicted to extend into the arm and leg of the laminate, predominantly in mode I. As the initial delamination grew around the curved region, the maximum radial stress in the newly formed inner sublaminate increased to a level sufficient to cause a new delamination to initiate in the sublaminate with no increase in applied load. This failure progression was observed experimentally.
Delamination failure in a unidirectional curved composite laminate
NASA Technical Reports Server (NTRS)
Martin, Roderick H.
1990-01-01
Delamination failure in a unidirectional curved composite laminate was investigated. The curved laminate failed unstably by delaminations developing around the curved region of the laminate at different depths through the thickness until virtually all bending stiffness was lost. Delamination was assumed to initiate at the location of the highest radial stress in the curved region. A closed form curved beam elasticity solution and a 2-D finite element analysis (FEA) were conducted to determine this location. The variation in the strain energy release rate, G, with delamination growth was then determined using the FEA. A strength-based failure criteria adequately predicted the interlaminar tension failure which caused initial delamination onset. Using the G analysis the delamination was predicted to extend into the arm and leg of the laminate, predominantly in mode I. As the initial delamination grew arould the curved region, the maximum radial stress in the newly formed inner sublaminate increased to a level sufficient to cause a new delamination to initiate in the sublaminate with no increase in applied load. This failure progression was observed experimentally.
p-Curve and p-Hacking in Observational Research.
Bruns, Stephan B; Ioannidis, John P A
2016-01-01
The p-curve, the distribution of statistically significant p-values of published studies, has been used to make inferences on the proportion of true effects and on the presence of p-hacking in the published literature. We analyze the p-curve for observational research in the presence of p-hacking. We show by means of simulations that even with minimal omitted-variable bias (e.g., unaccounted confounding) p-curves based on true effects and p-curves based on null-effects with p-hacking cannot be reliably distinguished. We also demonstrate this problem using as practical example the evaluation of the effect of malaria prevalence on economic growth between 1960 and 1996. These findings call recent studies into question that use the p-curve to infer that most published research findings are based on true effects in the medical literature and in a wide range of disciplines. p-values in observational research may need to be empirically calibrated to be interpretable with respect to the commonly used significance threshold of 0.05. Violations of randomization in experimental studies may also result in situations where the use of p-curves is similarly unreliable.
Modification of selected South Carolina bridge-scour envelope curves
Benedict, Stephen T.; Caldwell, Andral W.
2012-01-01
Historic scour was investigated at 231 bridges in the Piedmont and Coastal Plain physiographic provinces of South Carolina by the U.S. Geological Survey in cooperation with the South Carolina Department of Transportation. These investigations led to the development of field-derived envelope curves that provided supplementary tools to assess the potential for scour at bridges in South Carolina for selected scour components that included clear-water abutment, contraction, and pier scour, and live-bed pier and contraction scour. The envelope curves consist of a single curve with one explanatory variable encompassing all of the measured field data for the respective scour components. In the current investigation, the clear-water abutment-scour and live-bed contraction-scour envelope curves were modified to include a family of curves that utilized two explanatory variables, providing a means to further refine the assessment of scour potential for those specific scour components. The modified envelope curves and guidance for their application are presented in this report.
Nested taxa-area curves for eastern United States floras
Bennett, J.P.
1997-01-01
The slopes of log-log species-area curves have been studied extensively and found to be influenced by the range of areas under study. Two such studies of eastern United States floras have yielded species-area curve slopes which differ by more than 100%: 0.251 and 0.113. The first slope may be too steep because the flora of the world was included, and both may be too steep because noncontiguous areas were used. These two hypotheses were tested using a set of nested floras centered in Ohio and continuing up to the flora of the world. The results suggest that this set of eastern United States floras produces a log-log species-area curve with a slope of approximately 0.20 with the flora of the world excluded, and regardless of whether or not the floras are from nested areas. Genera- and family-area curves are less steep than species-area curves and show similar patterns. Taxa ratio curves also increase with area, with the species/family ratio showing the steepest slope.
EVEREST: Pixel Level Decorrelation of K2 Light Curves
NASA Astrophysics Data System (ADS)
Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake
2016-10-01
We present EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation to remove systematics introduced by the spacecraft’s pointing error and a Gaussian process to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0–7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than {K}p≈ 13, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.
DECIPHERING THERMAL PHASE CURVES OF DRY, TIDALLY LOCKED TERRESTRIAL PLANETS
Koll, Daniel D. B.; Abbot, Dorian S.
2015-03-20
Next-generation space telescopes will allow us to characterize terrestrial exoplanets. To do so effectively it will be crucial to make use of all available data. We investigate which atmospheric properties can, and cannot, be inferred from the broadband thermal phase curve of a dry and tidally locked terrestrial planet. First, we use dimensional analysis to show that phase curves are controlled by six nondimensional parameters. Second, we use an idealized general circulation model to explore the relative sensitivity of phase curves to these parameters. We find that the feature of phase curves most sensitive to atmospheric parameters is the peak-to-trough amplitude. Moreover, except for hot and rapidly rotating planets, the phase amplitude is primarily sensitive to only two nondimensional parameters: (1) the ratio of dynamical to radiative timescales and (2) the longwave optical depth at the surface. As an application of this technique, we show how phase curve measurements can be combined with transit or emission spectroscopy to yield a new constraint for the surface pressure and atmospheric mass of terrestrial planets. We estimate that a single broadband phase curve, measured over half an orbit with the James Webb Space Telescope, could meaningfully constrain the atmospheric mass of a nearby super-Earth. Such constraints will be important for studying the atmospheric evolution of terrestrial exoplanets as well as characterizing the surface conditions on potentially habitable planets.
Horowitz, Y S; Moscovitch, M
2013-01-01
The technical and dosimetric aspects of computerised glow curve analysis are described in detail including a review of the current 'state-of-the-achieved' in applications to environmental and personal dosimetry, clinical dosimetry, quality control, characterisation of new materials, continuing characterisation of 'old' materials, heavy charged particle dosimetry, mixed field n-gamma dosimetry, X-ray dosimetry and other aspects of thermoluminescence dosimetry. Fearless emphasis is placed on 'pitfalls' as well as successes.
Influence of precompensation curves on multidimensional color modeling
NASA Astrophysics Data System (ADS)
Tuijn, Chris
1996-03-01
One of the major challenges in the prepress environment consists of controlling the electronic color reproduction process such that a perfect match of any original can be realized. Whether this goal can be reached depends on many factors such as the dynamic range of the input device (scanner, camera), the color gamut of the output device (dye sublimation printer, ink- jet printer, offset), the color management software etc. It is obvious that the reliability or, rather, the reproducibility of a particular device is of extreme importance in order to have a permanently correct color characterization. A technique which is often used to ensure this reliability is to carry out a local 1D calibration. Through this 1D calibration the particular device is brought into a reliable and generic state. Applying 1D calibration curves is not only useful to create reliable devices but can also be used to model devices more accurately, at least, if these calibration curves are carefully selected. In this article, we will discuss the overall suitability of applying 1D precompensation curves before applying colorimetric characterization. More specifically, we address problems related to the reliability of devices and the quality of the color characterization. The use of precompensation curves for calibration purposes is merely restricted to output devices. For input devices, precompensation curves are mainly used for quality purposes. Indeed, the careful selection of so-called input luts (lookup tables) is very important to have good-quality scans. In addition, we discuss how the so-called gamma curves relate to these precompensation curves for both scanners and monitors. This article is organized as follows. In the first section, we discuss the benefits of 1D precompensation curves for modeling output devices. We will cover both topics related to the calibration and the mathematical modeling of output devices. In the second section, we address several issues related to the
Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction
NASA Astrophysics Data System (ADS)
Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.
2012-12-01
The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies over 1 billion gallons of water per day to more than 9 million customers. DEP's "West of Hudson" reservoirs located in the Catskill Mountains are unfiltered per a renewable filtration avoidance determination granted by the EPA. While water quality is usually pristine, high volume storm events occasionally cause the reservoirs to become highly turbid. A logical strategy for turbidity control is to temporarily remove the turbid reservoirs from service. While effective in limiting delivery of turbid water and reducing the need for in-reservoir alum flocculation, this strategy runs the risk of negatively impacting water supply reliability. Thus, it is advantageous for DEP to understand how long a particular turbidity event will affect their system. In order to understand the duration, intensity and total load of a turbidity event, predictions of future in-stream turbidity values are important. Traditionally, turbidity predictions have been carried out by applying streamflow observations/forecasts to a flow-turbidity rating curve. However, predictions from rating curves are often inaccurate due to inter- and intra-event variability in flow-turbidity relationships. Predictions can be improved by applying an autoregressive moving average (ARMA) time series model in combination with a traditional rating curve. Since 2003, DEP and the Upstate Freshwater Institute have compiled a relatively consistent set of 15-minute turbidity observations at various locations on Esopus Creek above Ashokan Reservoir. Using daily averages of this data and streamflow observations at nearby USGS gauges, flow-turbidity rating curves were developed via linear regression. Time series analysis revealed that the linear regression residuals may be represented using an ARMA(1,2) process. Based on this information, flow-turbidity regressions with
NASA Astrophysics Data System (ADS)
Bekhet,
2013-06-01
The present study examines an Environmental Kuznets Curve (EKC) hypothesis by analyzing annual data of air pollutants concentartion and per capita GDP as economic indicator over the (1996-2010) period in Malaysia. Nemerow Index Approach (I) used to generate a measures of air pollution. The results show that ambient air quality indicators supports the EKC hypothesis which stated that pollution levels increase as a country develops, but begin to decrease as rising incomes pass beyond a turning poin. Also, the I result is justifying that most pollutants are showing value less than 1.