Science.gov

Sample records for environmental photothermal effects

  1. Nonlinear effects in photothermal-optical-beam-deflection imaging

    NASA Astrophysics Data System (ADS)

    Wetsel, G. C., Jr.; Spicer, J. B.

    1986-09-01

    Nonlinear phenomena have been observed during photothermal-optical-beam-deflection imaging experiments on samples of both high-purity aluminum and aluminum alloys. Evidence for nonlinear optical and thermal effects have been measured. Theoretical models have been developed as aids in understanding the different contrast mechanisms observed in linear and nonlinear photothermal images.

  2. Photothermal effects of immunologically modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Griswold, Ryan T.; Henderson, Brock; Goddard, Jessica; Tan, Yongqiang; Hode, Tomas; Liu, Hong; Nordquist, Robert E.; Chen, Wei R.

    2013-02-01

    Carbon nanotubes have a great potential in the biomedical applications. To use carbon nanotubes in the treatment of cancer, we synthesized an immunologically modified single-walled carbon nanotube (SWNT) using a novel immunomodifier, glycated chitosan (GC), as an effective surfactant for SWNT. This new composition SWNT-GC was stable due to the strong non-covalent binding between SWNT and GC. The structure of SWNT-GC is presented in this report. The photothermal effect of SWNT-GC was investigated under irradiation of a near-infrared laser. SWNT-GC retained the optical properties of SWNT and the immunological properties of GC. Specifically, the SWNT-GC could selectively absorb a 980-nm light and induce desirable thermal effects in tissue culture and in animals. It could also induce tumor cell destruction, controlled by the laser settings and the doses of SWNT and GC. Laser+SWNT-GC treatment could also induce strong expression of heat shock proteins on the surface of tumor cells. This immunologically modified carbon nanotube could be used for selective photothermal interactions in noninvasive tumor treatment.

  3. Light controllable surface coating for effective photothermal killing of bacteria.

    PubMed

    Kim, Sung Han; Kang, Eun Bi; Jeong, Chan Jin; Sharker, Shazid Md; In, Insik; Park, Sung Young

    2015-07-22

    Although the electronic properties of conducting films have been widely explored in optoelectronic fields, the optical absorption abilities of surface-coated films for photothermal conversion have been relatively less explored in the production of antibacterial coatings. Here, we present catechol-conjugated poly(vinylpyrrolidone) sulfobetaine (PVPS) and polyaniline (PANI) tightly linked by ionic interaction (PVPS:PANI) as a novel photothermal antibacterial agent for surface coating, which can absorb broadband near-infrared (NIR) light. Taking advantage of the NIR light absorption, this coating film can release eminent photothermal heat for the rapid killing of surface bacteria. The NIR light triggers a sharp rise in photothermal heat, providing the rapid and effective killing of 99.9% of the Gram-positive and -negative bacteria tested within 3 min of NIR light exposure when used at the concentration of 1 mg/mL. Although considerable progress has been made in the design of antibacterial coatings, the user control of NIR-irradiated rapid photothermal destruction of surface bacteria holds increasing attention beyond the traditional boundaries of typical antibacterial surfaces.

  4. Photothermal effects in ultra-precisely stabilized tunable microcavities

    NASA Astrophysics Data System (ADS)

    Brachmann, Johannes F. S.; Kaupp, Hanno; Hänsch, Theodor W.; Hunger, David

    2016-09-01

    We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of $500\\,$kHz and a noise level of $1.1 \\times 10^{-13}\\,$m rms.

  5. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer.

    PubMed

    Fu, Guanglei; Sanjay, Sharma T; Dou, Maowei; Li, XiuJun

    2016-03-14

    A new biomolecular quantitation method, nanoparticle-mediated photothermal bioassay, using a common thermometer as the signal reader was developed. Using an immunoassay as a proof of concept, iron oxide nanoparticles (NPs) captured in the sandwich-type assay system were transformed into a near-infrared (NIR) laser-driven photothermal agent, Prussian blue (PB) NPs, which acted as a photothermal probe to convert the assay signal into heat through the photothermal effect, thus allowing sensitive biomolecular quantitation using a thermometer. This is the first report of biomolecular quantitation using a thermometer and also serves as the first attempt to introduce the nanoparticle-mediated photothermal effect for bioassays.

  6. Plasmonics Resonance Enhanced Active Photothermal Effects of Aluminum and Iron Nanoparticles.

    PubMed

    Chong, Xinyuan; Abboud, Jacques; Zhang, Zhili

    2015-03-01

    Localized Surface Plasmonics Resonance (LSPR) enhanced active photothermal effects of both aluminum nanoparticles (Al NPs) and iron nanoparticles (Fe NPs) are experimentally observed. Photothermally activated motion and ignition by low-energy xenon flash are quantitatively measured. For nanoparticles of comparable sizes, photothermally activated motion height of Fe NPs is about 60% lower than that of Al NPs, while photothermal Minimum Ignition Energy (MIE) of Fe NPs is about 50% lower than that of Al NPs. Joule heating by LSPR enhanced photothermal effects among nanoparticles and subsequently triggered oxidation reactions are found responsible for the motion and ignition of the nanoparticles.

  7. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer

    PubMed Central

    Fu, Guanglei; Sanjay, Sharma T.; Dou, Maowei; Li, XiuJun

    2016-01-01

    We have developed a new biomolecular quantitation method, nanoparticle-mediated photothermal bioassay, using a common thermometer as the signal reader. Using immunoassay as a proof of concept, iron oxide nanoparticles (NPs) captured in the sandwich-type assay system are transformed into a near-infrared (NIR) laser-driven photothermal agent, Prussian blue (PB) NPs, which act as a photothermal probe to convert the assay signal into heat through the photothermal effect, thus allowing sensitive biomolecular quantitation using a thermometer. This is the first report of biomolecular quantitation using a thermometer, which also serves as the first attempt to introduce the nanoparticle-mediated photothermal effect for bioassays. PMID:26838516

  8. Polypyrrole Composite Nanoparticles with Morphology-Dependent Photothermal Effect and Immunological Responses.

    PubMed

    Tian, Ye; Zhang, Jianping; Tang, Shiwei; Zhou, Lei; Yang, Wuli

    2016-02-10

    Polypyrrole composite nanoparticles with controlled shape are synthesized, which exhibit a morphology-dependent photothermal effect: the raspberry-like composite nanoparticles have a much better photothermal effect than the spherical ones, and the immune responses to the nanocomposites are also dependent on their morphology. The outstanding performance of the nanocomposites promises their potential application in photothermal therapy and immunotherapy of cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer

    NASA Astrophysics Data System (ADS)

    Fu, Guanglei; Sanjay, Sharma T.; Dou, Maowei; Li, Xiujun

    2016-03-01

    A new biomolecular quantitation method, nanoparticle-mediated photothermal bioassay, using a common thermometer as the signal reader was developed. Using an immunoassay as a proof of concept, iron oxide nanoparticles (NPs) captured in the sandwich-type assay system were transformed into a near-infrared (NIR) laser-driven photothermal agent, Prussian blue (PB) NPs, which acted as a photothermal probe to convert the assay signal into heat through the photothermal effect, thus allowing sensitive biomolecular quantitation using a thermometer. This is the first report of biomolecular quantitation using a thermometer and also serves as the first attempt to introduce the nanoparticle-mediated photothermal effect for bioassays.A new biomolecular quantitation method, nanoparticle-mediated photothermal bioassay, using a common thermometer as the signal reader was developed. Using an immunoassay as a proof of concept, iron oxide nanoparticles (NPs) captured in the sandwich-type assay system were transformed into a near-infrared (NIR) laser-driven photothermal agent, Prussian blue (PB) NPs, which acted as a photothermal probe to convert the assay signal into heat through the photothermal effect, thus allowing sensitive biomolecular quantitation using a thermometer. This is the first report of biomolecular quantitation using a thermometer and also serves as the first attempt to introduce the nanoparticle-mediated photothermal effect for bioassays. Electronic supplementary information (ESI) available: Additional information on FTIR characterization (Fig. S1), photothermal immunoassay of PSA in human serum samples (Table S1), and the Experimental section, including preparation of antibody-conjugated iron oxide NPs, sandwich-type immunoassay, characterization, and photothermal detection protocol. See DOI: 10.1039/c5nr09051b

  10. Photoacoustic and Photothermal Effects in Particulate Suspensions

    SciTech Connect

    Diebold, Gerald, J.

    2009-04-30

    A summary of the research areas investigated by the author during the grant period is given. Experiments and theory have been carried out on the photoacoustic effect arising from a number of physical and chemical processes. A number of studies of the photoacoustic effect as it occurs in transient grating experiments have been completed. The research done with the Ludwig-Soret effect on the generation of shock waves is reported. Other research, such as that carried out on interferometric and beam deflection microphones, the use of microphones in vacuum as momentum flux detectors, and chemical generation of sonoluminescence is listed. A list of published research including selected publications, a complete list of journal articles, books, review articles, and reviews are given.

  11. Photo-thermal effects in gold nanorods/DNA complexes

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Caracciolo, Giulio; Annesi, Ferdinanda; Placido, Tiziana; Pozzi, Daniela; Comparelli, Roberto; Pane, Alfredo; Curri, Maria Lucia; Agostiano, Angela; Bartolino, Roberto

    2015-12-01

    An ingenious combination of plasmonic nanomaterials and one of the most relevant biological systems, deoxyribonucleic acid (DNA) is achieved by bioconjugating gold nanorods (GNRs) with DNA via electrostatic interaction between positively charged GNRs and negatively charged short DNA. The obtained system is investigated as a function of DNA concentration by means of gel electrophoresis, zeta-potential, DNA melting and morphological analysis. It turns out that the obtained bioconjugated systems present both effective electric charge and aggregate size that are particularly amenable for gene therapy and nanomedicine applications. Finally, the effect of the localized (photo-thermal heating) and delocalized temperature variation on the DNA melting by performing both light induced bio-transparent optical heating experiments and a thermographic analysis is investigated, demonstrating that the developed system can be exploited for monitoring nanoscale temperature variation under optical illumination with very high sensitivity.

  12. Miniaturized machine moving in a pipe using photothermal effect

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Usui, Tomohiko; Yamamoto, Masayuki; Hayashi, Daisuke

    2002-10-01

    Optically driven small machines have such features as easily miniaturized in fabricaiont and as controlled by optical energy which is supplied in wireless. We reported an optically controled machine which moves like a caterpillar on the basis of photo-thermal effect. It constis of two parts; a body and feet. The feet can stick to the floor due to magnetic force and therefore it has such ability as ascending a slope, and ultimately it succeeded in climbing the vertical wall and moved underneath the ceiliing. A lot of applications are expected to this kind of machine. However, if the prupose is restircted to the movement inside the pipe, the structure can be more simplified. This time we propose a miniaturized machine which moves like a mole or an earthworm. It mainly consists of a shape-memory alloy and a spring, and nylon wires are attacehd at the head and tail. When the machine moves in the pipe, these wires cause difference in friction force bewteen the forward movement and the backward movement. Stretching and contracting are brought by photon-thermal effect of the body part constising of the alloy and spring. This machine is placed in a vinyl tube and controled by a light beam outside from a halogen lamp. In room tempertuare the alloy is kept stretched by the spring, but when the beam is projected ontothe body from outside, it contracts to the original size becasue photo-thermal effect brings much larger force than the stretching force due to the spring. Then the wires at the head prevent moving back and the wires at the tail easily slip. This fact brings forward movement of the machine. At this moment 25 seconds are necessary for one cycle of movement and the moving speed is 2.6 mm/cycle.

  13. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    PubMed Central

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  14. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions.

    PubMed

    Mao, Tingting; Li, Jinyu; Wen, Zixiang; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Jiang, Bingjun; Hou, Wensheng; Li, Wenbin; Song, Qijian; Wang, Dechun; Han, Tianfu

    2017-05-26

    Soybean (Glycine max (L.) Merr.) is a short day plant. Its flowering and maturity time are controlled by genetic and environmental factors, as well the interaction between the two factors. Previous studies have shown that both genetic and environmental factors, mainly photoperiod and temperature, control flowering time of soybean. Additionally, these studies have reported gene × gene and gene × environment interactions on flowering time. However, the effects of quantitative trait loci (QTL) in response to photoperiod and temperature have not been well evaluated. The objectives of the current study were to identify the effects of loci associated with flowering time under different photo-thermal conditions and to understand the effects of interaction between loci and environment on soybean flowering. Different photoperiod and temperature combinations were obtained by adjusting sowing dates (spring sowing and summer sowing) or day-length (12 h, 16 h). Association mapping was performed on 91 soybean cultivars from different maturity groups (MG000-VIII) using 172 SSR markers and 5107 SNPs from the Illumina SoySNP6K iSelectBeadChip. The effects of the interaction between QTL and environments on flowering time were also analysed using the QTXNetwork. Large-effect loci were detected on Gm 11, Gm 16 and Gm 20 as in previous reports. Most loci associated with flowering time are sensitive to photo-thermal conditions. Number of loci associated with flowering time was more under the long day (LD) than under the short day (SD) condition. The variation of flowering time among the soybean cultivars mostly resulted from the epistasis × environment and additive × environment interactions. Among the three candidate loci, i.e. Gm04_4497001 (near GmCOL3a), Gm16_30766209 (near GmFT2a and GmFT2b) and Gm19_47514601 (E3 or GmPhyA3), the Gm04_4497001 may be the key locus interacting with other loci for controlling soybean flowering time. The effects of loci associated

  15. Two-step synthesis of Ag@GQD hybrid with enhanced photothermal effect and catalytic performance

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Yuan, Yali; He, Qian; Song, Rui

    2016-12-01

    A novel Ag@GQD (graphene quantum dot) hybrid fabricated by a facile two-step strategy is presented: the GQDs are prepared by citrate acid and AgNO3 is reduced. Catalytic studies showed that the Ag@GQD hybrid exhibited excellent photothermal effect and catalytic performance for 4-nitrophenol (4-NP) reduction, suggesting that the GQDs enhanced the catalytic activity via a synergistic effect and the Ag NPs boosted the catalytic efficiency through SPR-mediated photothermal local heating.

  16. Integration of Photothermal Effect and Heat Insulation to Efficiently Reduce Reaction Temperature of CO2 Hydrogenation.

    PubMed

    Zhang, Wenbo; Wang, Liangbing; Wang, Kaiwen; Khan, Munir Ullah; Wang, Menglin; Li, Hongliang; Zeng, Jie

    2017-02-01

    The photothermal effect is applied in CO2 hydrogenation to reduce the reaction temperature under illumination by encapsulating Pt nanocubes and Au nanocages into a zeolitic imidazolate framework (ZIF-8). Under illumination, the heat generated by the photothermal effect of Au nanocages is mainly insulated in the ZIF-8 to form a localized high-temperature region, thereby improving the catalytic activity of Pt nanocubes.

  17. Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect.

    PubMed

    Zheng, Rui; Wang, Sheng; Tian, Ye; Jiang, Xinguo; Fu, Deliang; Shen, Shun; Yang, Wuli

    2015-07-29

    Recently, photothermal therapy (PTT) that utilizes photothermal conversion (PTC) agents to ablate cancer under near-infrared (NIR) irradiation has attracted a growing amount of attention because of its excellent therapeutic efficacy and improved target selectivity. Therefore, exploring novel PTC agents with an outstanding photothermal effect is a current research focus. Herein, we reported a polydopamine-coated magnetic composite particle with an enhanced PTC effect, which was synthesized simply through coating polydopamine (PDA) on the surface of magnetic Fe3O4 particles. Compared with magnetic Fe3O4 particles and PDA nanospheres, the core-shell nanomaterials exhibited an increased NIR absorption, and thus, an enhanced photothermal effect was obtained. We demonstrated the in vitro and in vivo effects of the photothermal therapy using our composite particles and their ability as a contrast agent in the T2-weighted magnetic resonance imaging. These results indicated that the multifunctional composite particles with enhanced photothermal effect are superior to magnetic Fe3O4 particles and PDA nanospheres alone.

  18. Near-infrared mediated tumor destruction by photothermal effect of PANI-Np in vivo

    NASA Astrophysics Data System (ADS)

    Ibarra, L. E.; Yslas, E. I.; Molina, M. A.; Rivarola, C. R.; Romanini, S.; Barbero, C. A.; Rivarola, V. A.; Bertuzzi, M. L.

    2013-06-01

    Photothermal therapy is a therapy in which photon energy is converted into heat to kill cancer. The purpose of this study is to evaluate the in vivo efficacy of photothermal therapy, toxicity and hepatic and renal function of polyaniline nanoparticles (PANI-Np) in a tumor-bearing mice model. The in vivo efficacy of nanoparticles, following NIR light exposure, was assessed by examining tumor growth over time compared to the untreated control. Signs of drug toxicity and the histopathology and morphology of tumor and tissues, after intratumoral injection treatment, were examined or monitored. Excellent photothermal therapy efficacy is achieved upon intratumoral injection of PANI-Np followed by near-infrared light exposure. These results suggest that PANI-Np could be considered as an effective photothermal agent and pave the way to future cancer therapeutics.

  19. Environmental impacts on the gonadotropic system in female Atlantic salmon (Salmo salar) during vitellogenesis: Photothermal effects on pituitary gonadotropins, ovarian gonadotropin receptor expression, plasma sex steroids and oocyte growth.

    PubMed

    Taranger, Geir Lasse; Muncaster, Simon; Norberg, Birgitta; Thorsen, Anders; Andersson, Eva

    2015-09-15

    The gonadotropic system and ovarian growth and development were studied during vitellogenesis in female Atlantic salmon subjected to either simulated natural photoperiod and ambient water temperature (NL-amb), or an accelerating photoperiod (short day of LD8:16 from May 10) combined with either warmed (ca 2°C above ambient; 8L-warm) or cooled water (ca 2°C below ambient; 8L-cold) from May to September. Monthly samples were collected from 10 females/group for determination of transcript levels of pituitary gonadotropin subunits (fshb and lhb) and ovarian gonadotropin receptors (fshr and lhr), plasma sex steroids (testosterone: T and estradiol-17β: E2), gonadosomatic index (GSI) and oocyte size. Short day in combination with either warmed or cooled water induced an earlier increase in pituitary fshb and lhb levels compared with NL-amb controls, and advanced ovarian growth and the seasonal profiles of T, E2. By contrast only minor effects were seen of the photothermal treatments on ovarian fshr and lhr. The 8L-cold had earlier increase in fshb, lhb and E2, but similar oocyte and gonadal growth as 8L-warm, suggesting that the 8L-cold group tried to compensate for the lower water temperature during the period of rapid gonadal growth by increasing fshb and E2 production. Both the 8L-warm and 8L-cold groups showed incomplete ovulation in a proportion of the females, possibly due to the photoperiod advancement resulting in earlier readiness of spawning occurring at a higher ambient temperature, or due to some reproductive dysfunction caused by photothermal interference with normal neuroendocrine regulation of oocyte development and maturation.

  20. Annealing Polymer Nanocomposite Fibers and Films Via Photothermal Heating: Effects On Overall Crystallinity and Morphology

    NASA Astrophysics Data System (ADS)

    Viswanath, Vidya

    Metal nanoparticles embedded within polymeric systems can act as localized heat sources, facilitating in situ polymer processing. When irradiated with light resonant with the nanoparticle's surface plasmon resonance (SPR), a non-equilibrium electron distribution is generated which rapidly transfers energy into the surrounding medium, resulting in a temperature increase in the immediate region around the particle. This work compares the utility of such photothermal heating versus traditional heating in two different polymeric media i.e. gold nanospheres/poly (ethylene oxide) (AuNP:PEO) nanocomposite films and electrospun nanofibers. Subsequently, a brief study on the usage of gold nanorods (AuNR) to anneal polymeric nanofibers and films has also been presented. Effect of annealing by conventional and photothermal methods has been studied for AuNP:PEO films crystallized from solution and the melt, which have been annealed at average sample temperatures above the glass transition and below the melting point. For all temperatures, photothermally annealed samples reached maximum crystallinity and maximum spherulite size at shorter annealing times. Percentage crystallinity change under conventional annealing was analyzed using time-temperature superposition (TTS). Comparison of the TTS data with results from photothermal experiments enabled determination of an "effective dynamic temperature" achieved under photothermal heating which is significantly higher than the average sample temperature. Thus, the heterogeneous temperature distribution created when annealing with the plasmon-mediated photothermal effect represents a unique tool to achieve processing outcomes that are not accessible via traditional annealing. In addition, the effect of annealing AuNP:PEO electrospun nanofibrous composites via conventional and photothermal annealing has also been studied. From the studies, it was observed that not only is the maximum crystallinity achieved more quickly when the

  1. Novel pyrometer using photothermal effect and fiber optics

    NASA Astrophysics Data System (ADS)

    Lothon, Alain; Denayrolles, Yves; Kleitz, Alain

    1990-03-01

    A novel pyrometric technique is being developed in Electricite de France (EDF) for measuring the surface temperature of the moving blades of partial load steam turbines. This technique uses the photothermal effect to slightly (temporarily) modify the superficial temperature of the object. Theoretical considerations show that the measurement is proportionnal to successive derivatives of Planck's function. The point is that the measurement is thus made. insensitive to background radiation partially reflected to the detection system by the object itself. Moreover, the short duration of the operation (several microseconds) allows quick moving targets to be measured. We here use the method for monitoring the temperature of the moving blades of partial load steam turbines in EDF nuclear power plants. A rod-shaped probe using fiber optics is being built to take measurements in real conditions. Some laboratory preliminary results show effectiveness and good accuracy of the method. Further studies will permit the extension of this new method to many industrial problems where non-contact temperature measurements in adverse radiative conditions are required.

  2. Responsive metal/polymer nanocomposites via photothermal effect

    NASA Astrophysics Data System (ADS)

    Seyhan, Merve; Rende, Deniz; Huang, Liping; Malta, Seyda; Ozisik, Rahmi; Baysal, Nihat

    2013-03-01

    Metal nanoparticles can efficiently generate heat when exposed to electromagnetic radiation. The amount of heat generated and the temperature increase depends on the number of nanoparticles and their shape. In the current work, gold nanoparticles (AuNPs) were used as heat sources within polyethylene oxide (600,000 g/mol) via the photothermal effect. AuNPs were synthesized through Frens method, and were characterized using TEM. A laser source with a wavelength of 532 nm was used to heat AuNPs. Raman spectroscopy data showed that irradiation of AuNPs led to increasing temperature profiles in the vicinity of AuNPs, which is a result of the surface plasmon resonance. This property of AuNPs would enable the control of viscoelastic response of the polymer by altering crystallinity and temperature of the polymer matrix, thereby, providing responsive materials. This work is partially supported by NSF CMMI-1200270 and DUE-1003574. MS was supported by TUBITAK 2214 grant. NB was supported by TUBITAK 2219 grant.

  3. Polycatechol nanosheet: a superior nanocarrier for highly effective chemo-photothermal synergistic therapy in vivo

    NASA Astrophysics Data System (ADS)

    Bai, J.; Jia, X. D.; Ma, Z. F.; Jiang, X. E.; Sun, X. P.

    2016-02-01

    The integration of phototherapy and chemotherapy in a single system holds great promise to improve the therapeutic efficacy of tumor treatment, but it remains a key challenge. In this study, we describe our recent finding that polycatechol nanosheet (PCCNS) can be facilely prepared on a large scale via chemical polymerization at 4 °C, as an effective nanocarrier for loading high-density CuS nanocrystals as a photothermal agent. The resulting CuS/PCCNS nanocomposites exhibit good biocompatibility, strong stability, and a high photothermal conversion efficiency of ~45.7%. The subsequent loading of anticancer drug doxorubicin (Dox) creates a superior theranostic agent with pH- and heat-responsive drug release, leading to almost complete destruction of mouse cervical tumor under NIR laser irradiation. This development offers an attractive theranostic agent for in vivo chemo-photothermal synergistic therapy toward biomedical applications.The integration of phototherapy and chemotherapy in a single system holds great promise to improve the therapeutic efficacy of tumor treatment, but it remains a key challenge. In this study, we describe our recent finding that polycatechol nanosheet (PCCNS) can be facilely prepared on a large scale via chemical polymerization at 4 °C, as an effective nanocarrier for loading high-density CuS nanocrystals as a photothermal agent. The resulting CuS/PCCNS nanocomposites exhibit good biocompatibility, strong stability, and a high photothermal conversion efficiency of ~45.7%. The subsequent loading of anticancer drug doxorubicin (Dox) creates a superior theranostic agent with pH- and heat-responsive drug release, leading to almost complete destruction of mouse cervical tumor under NIR laser irradiation. This development offers an attractive theranostic agent for in vivo chemo-photothermal synergistic therapy toward biomedical applications. Electronic supplementary information (ESI) available: The calculation of the photothermal conversion

  4. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide.

    PubMed

    Lim, Dong-Kwon; Barhoumi, Aoune; Wylie, Ryan G; Reznor, Gally; Langer, Robert S; Kohane, Daniel S

    2013-09-11

    We report plasmonic gold nanoshells and nanorods coated with reduced graphene oxide that produce an enhanced photothermal effect when stimulated by near-infrared (NIR) light. Electrostatic interactions between nanosized graphene oxide and gold nanoparticles followed by in situ chemical reduction generated reduced graphene oxide-coated nanoparticles; the coating was demonstrated using Raman and HR-TEM. Reduced graphene oxide-coated gold nanoparticles showed enhanced photothermal effect compared to noncoated or nonreduced graphene oxide-coated gold nanoparticles. Reduced graphene oxide-coated gold nanoparticles killed cells more rapidly than did noncoated or nonreduced graphene oxide-coated gold nanoparticles.

  5. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects.

    PubMed

    Wang, Shunhao; Riedinger, Andreas; Li, Hongbo; Fu, Changhui; Liu, Huiyu; Li, Linlin; Liu, Tianlong; Tan, Longfei; Barthel, Markus J; Pugliese, Giammarino; De Donato, Francesco; Scotto D'Abbusco, Marco; Meng, Xianwei; Manna, Liberato; Meng, Huan; Pellegrino, Teresa

    2015-02-24

    Recently, plasmonic copper sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention as materials for photothermal therapy (PTT). Previous reports have correlated photoinduced cell death to the photothermal heat mechanism of these NCs, and no evidence of their photodynamic properties has been reported yet. Herein we have prepared physiologically stable near-infrared (NIR) plasmonic copper sulfide NCs and analyzed their photothermal and photodynamic properties, including therapeutic potential in cultured melanoma cells and a murine melanoma model. Interestingly, we observe that, besides a high PTT efficacy, these copper sulfide NCs additionally possess intrinsic NIR induced photodynamic activity, whereupon they generate high levels of reactive oxygen species. Furthermore, in vitro and in vivo acute toxic responses of copper sulfide NCs were also elicited. This study highlights a mechanism of NIR light induced cancer therapy, which could pave the way toward more effective nanotherapeutics.

  6. Carbon nanodots-based nanocomposites with enhanced photocatalytic performance and photothermal effects

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tang, Y. L.; Hu, G.; Gao, B. L.; Gan, Z. X.; Chu, P. K.

    2017-07-01

    Carbon nanomaterials with variable bandgaps exhibit wide spectral absorption, and photoluminescent nanodots have attracted much interest. In this work, carbon nanodots (CNDs) are grafted onto the surface of TiO2 nanotubes to enhance the photocatalytic properties. The CNDs increase light absorption, trap and shuttle photo-generated electrons, and enhance the pollutant adsorptivity. In addition, the synergistic photothermal effect of the CNDs-based nanocomposite facilitates photocatalysis. The CNDs-based nanocomposites with improved photothermal performance and efficient photocatalytic characteristics have large potential in environment and energy applications.

  7. Application of photothermal effect to manufacture ultrasonic actuators (abstract)

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-yi; Cheng, Li-ping; Shui, Xiu-ji; Yu, Jiong; Dong, Shu-xiang

    2003-01-01

    Photothermal (PT) effect has been applied to manufacture disks [A. C. Tam, a lecture at the Institute of Acoustics, Nanjing University, People's Republic of China (1996)] and magnetic head sliders for disk drives [A. C. Tam, C. C. Poon, and L. Crawforth, Analyt. Sci. 17, s 419 (2001)]. Now we apply the PT effect to manufacture ultrasonic motors (actuators). Recently, the ultrasonic actuators with different ultrasonic modes, such as Rayleigh (surface acoustic) mode, Lamb (plate) mode, etc., have been developed. We have designed and fabricated two rotary motors driven by surface acoustic wave (SAW) with different frequencies, but lower than 30 MHz [L. P. Cheng, G. M. Zhang, S. Y. Zhang, J. Yu, and X. J. Shui, Ultrasonics 39, 591 (2002)]. On the SAW motors (actuators), two Rayleigh wave beams were generated and propagating along the surface of a 128° YK-LiNbO3 substrate in opposite directions with each other as a stator, and a plastic disk with balls distributed along the circle of the disk was as a rotor. For miniaturizing the rotary SAW motors, and increasing the rotation velocity, the SAW frequency must be increased. Then we improve the manufacturing technology of the mechanical structure by PT effect instead of the conventional mechanical processes of the stator and rotor of the motor. A new type of rotary SAW motor (actuator) has been fabricated, in which both SAW beams with opposite propagating directions are excited by two pairs of interdigital transducers with the frequency between 30-50 MHz. In the surface of the stator (128° YX-LiNbO3 substrate), a hole with the depth about 500 μm is impinged by a focused pulsed Nd:YAG laser beam (PT effect) between two SAW propagating ways on the 128° YX-LiNbO3 substrate for fixing the axis of the motor, with the frequency between 30-50 MHz. In the bottom of the rotor (plastic disk), a lot of crown (flange) blocks with the high of 20-30 μm and the diameter of also 20-30 μm can be made by the focused pulsed Nd

  8. Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Ruirui; Su, Shishuai; Hu, Kelei; Shao, Leihou; Deng, Xiongwei; Sheng, Wang; Wu, Yan

    2015-11-01

    In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has potential for thermal ablation of malignant tissues. In addition, on account of the PDA modification, both Dox and Btz release processes were pH-dependent and NIR-dependent. Both in vitro and in vivo studies illustrated that the Dox-M@PDA-Btz nanoparticles coupled with laser irradiation could enhance the cytotoxicity, and thus combinational therapy efficacy was achieved when integrating Dox, Btz, and PDA into a single nanoplatform. Altogether, our current study indicated that the micelle@polydopamine core-shell nanoparticles could be applied for NIR/pH-responsive sustained-release and synergized chemo-photothermal therapy for breast cancer.In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has

  9. Mid-infrared spectroscopy beyond the diffraction limit via direct measurement of the photothermal effect.

    PubMed

    Katzenmeyer, A M; Holland, G; Chae, J; Band, A; Kjoller, K; Centrone, A

    2015-11-14

    An atomic force microscope equipped with temperature sensitive probes was used to measure locally the photothermal effect induced by IR light absorption. This novel instrument opens a pathway to correlated topographical, chemical composition, and thermal mapping with nanoscale resolution. Proof of principle demonstration is provided on polymers and plasmonic samples.

  10. Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation

    NASA Astrophysics Data System (ADS)

    Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.

  11. Comparing the photothermal effects of gold nanorods and single-walled carbon nanotubes in cancer models

    NASA Astrophysics Data System (ADS)

    West, Connor L.; Hasanjee, Aamr M.; Young, Blake; Wolf, Roman; Silk, Kegan; Ingalls, Rianna; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Laser Immunotherapy (LIT) is an innovative cancer treatment modality that is specifically targeted towards treating late-stage, metastatic cancer. This treatment modality utilizes laser irradiation in combination with active immune system stimulation to induce a systemic anti-tumor immune response against metastatic cancer. Nanoparticles have recently been utilized to support and increase the photothermal effect of the laser irradiation by absorbing the light energy produced from the laser and converting that energy into thermal energy. In the past, single-walled carbon nanotubes (SWNTs) have been the main choice in nanotechnology, however, recent studies have shown that gold nanorods (AuNRs) are a prospective alternative that may produce photothermal effects similar to SWNTs. Due to the precedence of gold biomaterials currently having approval for use in various treatments for humans, AuNRs are regarded to be a safer option than SWNTs. The goal of this study is to precisely compare any differences in photothermal effects between AuNRs and SWNTs. Both types of nanoparticles were irradiated with the same wavelength of near-infrared light to ascertain the photothermal effects in gel phantom tumor models, aqueous solutions, and metastatic cancer cell cultures. We discerned from the results that the AuNRs could be equally or more effective than SWNTs in absorbing the light energy from the laser and converting it into thermal energy. In both solution and gel studies, AuNRs were shown to be more efficient than SWNTs in creating thermal energy, while in cell studies, no definitive differences between AuNRs and SWNTs were observed. The cytotoxicity of both nanoparticles needs further assessment in future studies. Given these results, AuNRs are comparable to SWNTs, even superior in certain aspects. This advances the opportunity to use AuNRs as replacements for SWNTs in LIT treatments. The results from this study will contribute to any subsequent studies in the development

  12. Novel Biomarker Assays Based on Photothermal Effects and Nanophotonics

    NASA Astrophysics Data System (ADS)

    Zhao, Yunfei

    The early diagnosis of some chronic and severe diseases such as cancer, tuberculosis, etc. has been a long-sought goal of the medicine community. Traditional diagnostic tools such as X-ray and fecal blood tests cannot detect the disease before the focus or tumor have grown to an appreciable size or before the number of pathogens or tumor cells has reached a considerable amount in body fluids. These drawbacks could significantly delay the diagnosis. To detect and diagnose such diseases at an early stage, people have sought to detect the biomarkers related to certain physical conditions so that the anomalies caused by the diseases can be detected before a significant tumor has developed or the onset of symptoms. Driven by the needs to detect and quantify biomarkers, immunoassays have been developed. Two representative formats of immunoassays are enzyme-linked immunosorbent assay and lateral flow assay. They have been widely used for medical and research purposes, yet they still have drawbacks such as costly instruments and lack of sensitivity. To improve their performance, I have developed photoacoustic-based detection schemes that can be easily integrated with commercial immunoassay formats and can increase the sensitivity as well as lower the costs. For both assay formats, limit of detection has been lowered by two orders of magnitude with low-cost and portable instruments. As a follow up of the photoacoustic detection schemes, a technique based on photothermal lens is also developed. In this work, one-dimensional photonic crystal substrates have also been exploited to enhance the photoacoustic and photothermal signals. Due to the guided-mode resonance, the photonic crystal substrate can enhance the photoacoustic or photothermal signals by 10 to 40 times, making it a promising tool for biomarker detection.

  13. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.

    PubMed

    Neelgund, Gururaj M; Oki, Aderemi R

    2016-12-15

    Herein we present a successful strategy for enhancement of photothermal efficiency of hydroxyapatite (HAP) by its conjugation with carbon nanotubes (CNTs) and graphene nanosheets (GR). Owing to excellent biocompatibility with human body and its non-toxicity, implementation of HAP based nanomaterials in photothermal therapy (PTT) provides non-replaceable benefits over PTE agents. Therefore, in this report, it has been experimentally exploited that the photothermal effect (PTE) of HAP has significantly improved by its assembly with CNTs and GR. It is found that the type of carbon nanomaterial used to conjugate with HAP has influence on its PTE in such a way that the photothermal efficiency of GR-HAP was higher than CNTs-COOH-HAP under exposure to 980nm near-infrared (NIR) laser. The temperature attained by aqueous dispersions of both CNTs-COOH-HAP and GR-HAP after illuminating to NIR radiations for 7min was found to be above 50°C, which is beyond the temperature tolerance of cancer cells. So that the rise in temperature shown by both CNTs-COOH-HAP and GR-HAP is enough to induce the death of tumoral or cancerous cells. Overall, this approach in modality of HAP with CNTs and GR provide a great potential for development of future nontoxic PTE agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Fat tissue staining and photodynamic/photothermal effects

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Altshuler, Gregory B.; Yanina, Irina Yu.; Kochubey, Vyacheslav I.; Simonenko, Georgy V.

    2010-02-01

    Cellulite is considered as a disease of the subcutaneous fat layer that appears mostly in women and consists of changes in fat cell accumulation together with disturbed lymphatic drainage, affecting the external appearance of the skin. The photodynamic and selective photothermal treatments may provide reduction the volume of regional or sitespecific accumulations of subcutaneous adipose tissue on the cellular level. We hypothesize that light irradiation of stained fat tissue at selected temperature leads to fat cell lypolytic activity (the enhancement of lipolysis of cell triglycerides due to expression of lipase activity and cell release of free fat acids (FFAs) due to temporal cell membrane porosity), and cell killing due to apoptosis caused by the induced fat cell stress and/or limited cell necrosis.

  15. Photothermal effects of plasmonic metal nanoparticles in a fluid

    NASA Astrophysics Data System (ADS)

    Norton, Stephen J.; Vo-Dinh, Tuan

    2016-02-01

    There is a strong interest in the use of plasmonic metal nanoparticles in medical applications involving photothermal therapy. In this study, the problem of calculating the temperature elevation of a fluid arising from the absorption of light by a suspension of plasmonic nanoparticles is examined. The dependence of this temperature increase on the absorption cross section of nanoparticles of different shapes, in particular, nanospheres, nanospheroids, and nanostars, is studied. The nanoparticles behave as point sources of heat production and the time-dependent heat transfer equation is solved assuming that the nanoparticles are confined to a limited region. From this solution, the steady-state temperature of the fluid medium can be calculated and the time constant to achieve this temperature determined.

  16. Heterodyne technique in photoinduced force microscopy with photothermal effect

    NASA Astrophysics Data System (ADS)

    Yamanishi, J.; Naitoh, Y.; Li, Y. J.; Sugawara, Y.

    2017-03-01

    The heterodyne technique is used to detect short-range forces. Using the heterodyne technique, we demonstrate photoinduced force microscopy (PiFM) imaging and z-spectroscopy without the artifact of photothermal vibration. The rejection ratio was at least 99.975% under a high-scattering condition. In addition, the heterodyne technique employs the optimal amplitude at the first resonance frequency of the cantilever to detect the photoinduced force sensitively. According to our calculation, the optimal ratio of the amplitude to the distance between the dipole of the tip and that of the sample is 0.4448. The heterodyne technique can be employed to perform PiFM without the artifact by using the optimal amplitude.

  17. Integrated digital holography for measuring the photothermal effect induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Zhu, Linwei; Sun, Meiyu; Chen, Jiannong; Yu, Junjie; Zhou, Changhe

    2014-11-01

    Thermal lens (TL) and thermal mirror (TM) effects have been widely used for measuring the thermo-optical properties in materials. However, most previous research is not a direct two-dimensional measurement of the phase difference induced by photothermal effects, and the TL and TM effects cannot be measured simultaneously. We present an integrated digital holography (IDH) for measuring photothermal effects induced by femtosecond laser pulses with the laser excitation fluence below the ablation threshold. The photothermal effects of a metal sample induced by femtosecond laser pulses are studied. Our theoretical analysis reveals that when the energy of the femtosecond laser is below the ablation threshold, the theory of heat conduction and thermoelasticity can be used to explain the TL and TM effects caused by the laser-induced nonuniform temperature distribution. The experimental results show that both the nanoscale surface deformation of the TM effect and the refraction index change of the TL effect can be measured simultaneously by using the IDH. This IDH setup could be suitable for measuring the optical and thermal properties of materials.

  18. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  19. Effects of large vessel on temperature distribution based on photothermal coupling interaction model

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Zhang, Xiyang; Li, Zuoran; Li, Hui

    2016-10-01

    This paper is based on the finite element analysis method for studying effects of large blood vessel on temperature based on photothermal coupling interaction model, and it couples the physical field of optical transmission with the physical field of heat transfer in biological tissue by using COMSOL Multiphysics 4.4 software. The results demonstrate the cooling effect of large blood vessel, which can be potential application for the treatment of liver tumors.

  20. Mid-infrared spectroscopy beyond the diffraction limit via direct measurement of the photothermal effect

    NASA Astrophysics Data System (ADS)

    Katzenmeyer, A. M.; Holland, G.; Chae, J.; Band, A.; Kjoller, K.; Centrone, A.

    2015-10-01

    An atomic force microscope equipped with temperature sensitive probes was used to measure locally the photothermal effect induced by IR light absorption. This novel instrument opens a pathway to correlated topographical, chemical composition, and thermal mapping with nanoscale resolution. Proof of principle demonstration is provided on polymers and plasmonic samples.An atomic force microscope equipped with temperature sensitive probes was used to measure locally the photothermal effect induced by IR light absorption. This novel instrument opens a pathway to correlated topographical, chemical composition, and thermal mapping with nanoscale resolution. Proof of principle demonstration is provided on polymers and plasmonic samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04854k

  1. Porous Iron oxide nanorods and their photothermal applications

    NASA Astrophysics Data System (ADS)

    Larsen, George; Huang, Weijie; Zhao, Yiping; Hunyadi Murph, Simona E.

    2016-09-01

    Iron oxide is a unique semiconductor material, either as a single nanoparticle, or as a component of multifunctional nanoparticles. Its desirable properties, abundance, non-toxicity, and excellent magnetic properties make it a valuable for many applications. Porous iron oxide nanorods are able to transduce light into heat through the photothermal effect. Photothermal heating arises from the energy dissipated during light absorption leading to rapid temperature rise in close proximity to the surface of the nanoparticle. The heating effect can be efficiently harnessed to drive/promote different physical phenomena. In this report, we describe the synthesis and properties of porous Fe3O4 for photothermal applications. We then demonstrate their use as photothermally enhanced and recyclable materials for environmental remediation through sorption processes.

  2. Graphene-based photothermal agent for rapid and effective killing of bacteria.

    PubMed

    Wu, Meng-Chin; Deokar, Archana R; Liao, Jhan-Hong; Shih, Po-Yuan; Ling, Yong-Chien

    2013-02-26

    Conventional antibiotic therapies are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Development of novel antibacterial material to effectively inhibit or kill bacteria is crucial. A graphene-based photothermal agent, magnetic reduced graphene oxide functionalized with glutaraldehyde (MRGOGA), was synthesized for efficient capture and effective killing of both gram-positive Staphylococcus aureus ( S. aureus ) and gram-negative Escherichia coli ( E. coli ) bacteria upon near-infrared (NIR) laser irradiation. In the present work, we took advantage of the excellent photothermal properties of reduced graphene oxide upon NIR laser irradiation and glutaraldehyde as an efficient capturing agent toward both bacteria. Its magnetic characteristic allows bacteria to be readily trapped in a small volume by the external magnet. The synergetic effects increase the heating extent by MRGOGA upon NIR laser irradiation and the killing of the captured bacteria. The survival rate and membrane integrity assay demonstrate that 80 ppm MRGOGA solution provided rapid and effective killing of up to 99% of both gram-positive and gram-negative bacteria in 10 min upon NIR laser irradiation under batch operation mode. Graphene demonstrated better photothermal antibacterial efficiency than carbon nanotubes. Furthermore, a microfluidic chip system under continuous operation mode demonstrates the reusability of MRGOGA and offers a biocompatible platform for online phothothermal sterilization.

  3. Cancer cell death processes in combining photothermal and photodynamic effects through surface plasmon resonance of gold nanoring (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    He, Yulu; Yu, Jian-He; Hsiao, Jen-Hung; Tu, Yi-Chou; Low, Meng Chun; Hua, Wei-Hsiang; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung; Zhang, Zhenxi

    2017-02-01

    In combining the photothermal and photodynamic effects for killing cancer cells through the localized surface plasmon resonance (LSP) of photosensitizer-linked Au nanorings (NRIs), which are up-taken by the cells, the cells can be killed via different processes, including necrosis and apoptosis. In particular, the dominating effect, either photothermal or photodynamic effect, for cancer cell killing leading to either necrosis or apoptosis process is an important issue to be understood for improving the therapy efficiency. In this paper, we demonstrate the study results in differentiating the necrosis and apoptosis processes of cell death under different laser illumination conditions. With the LSP resonance wavelength of the Au NRIs around 1064 nm, the illumination of a 1064-nm cw laser can mainly produce the photothermal effect. The illumination of a 1064-nm fs laser can lead to LSP resonance-assisted two-photon absorption of the photosensitizer (AlPcS) for generating singlet oxygen and hence the photodynamic effect, besides the photothermal effect. Also, the illumination of a 660-nm cw laser can result in single-photon absorption of the photosensitizer for generating singlet oxygen and the photodynamic effect. By comparing the necrosis and apoptosis distributions in dead cells between the cases of different laser illumination conditions, we can differentiate the cancer cell killing processes between the photothermal effect, photodynamic effect, and the mixed effect.

  4. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy

    PubMed Central

    Chen, Qian; Xu, Ligeng; Liang, Chao; Wang, Chao; Peng, Rui; Liu, Zhuang

    2016-01-01

    A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours. PMID:27767031

  5. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Xu, Ligeng; Liang, Chao; Wang, Chao; Peng, Rui; Liu, Zhuang

    2016-10-01

    A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours.

  6. Cytotoxicity and genotoxicity induced by photothermal effects of colloidal gold nanorods.

    PubMed

    Choi, Young Joo; Kim, Yang Jee; Lee, Joong Won; Lee, Younghyun; Lee, Sunyeong; Lim, Yong-Beom; Chung, Hai Won

    2013-06-01

    Gold nanorods (Au NRs) that absorb near-infrared (NIR) light have great potential in the field of nanomedicine. Photothermal therapy (PTT), a very attractive cancer therapy in nanomedicine, combines nanomaterials and light. The aim of this study was to elucidate the molecular mechanism involved in Au NR-mediated cytotoxic, genotoxic, and other biological responses, in the presence or absence of NIR irradiation. Specifically, cell death mode, generation of reactive oxygen species, DNA damage, apoptotic gene expression, and cell morphological changes induced by Au NRs under NIR irradiation were evaluated in cancer cells. In human lung adenocarcinoma epithelial cells (A549 cells), mild necrosis via DNA damage was induced by NIR responsive Au NRs. Unlike in the cancer cells, cell viability of normal human lymphocyte was not affected by the combined treatment of Au NRs and NIR irradiation. This study delineates differential cytotoxic and genotoxic susceptibility of cancer and normal cells during photothermal treatment of Au NRs. In conclusion, our results suggest that the photothermal cyto-/genotoxic activity of Au NRs is an effective method for cancer therapy in human lung cancer cells.

  7. Investigation of the influence of the photodynamic effect on micro-organisms using the laser photothermal cytometry method

    SciTech Connect

    Lapotko, D O; Kuchinskii, G S; Zharov, V P; Romanovskaya, T R

    1999-12-31

    An investigation of the influence of the photodynamic effect on S.aureus and E.coli bacteria in the presence of blood cells was made by the laser photothermal cytometry method. Elements of the theory of the photothermal method are considered for the case of pulsed lasers used in microscopy. Chlorin in doses of 0.02 mg litre{sup -1} was used as a photosensitiser. The results of the investigation made it possible to propose the possibility of an immunomodulation effect caused by introducing photoactivated chlorin into the cell - microbe system. It was found that the photothermal parameters of the cells interacting with microbes in the presence of photoactivated chlorin differed from the parameters of intact cells much less than in the absence of chlorin. However, a more pronounced bactericidal effect was observed in the samples treated with chlorin. (lasers in medicine)

  8. Consideration of dynamic photothermal effect for evaluation of scanning light sources in optical devices using pulsed source criteria.

    PubMed

    Kim, Do-Hyun

    2014-04-01

    Quantitative evaluation of the potential radiation hazards of scanning light sources in medical optical devices is critical. Currently, point scanning light sources of continuous radiation are treated as pulsed sources, where the dwell time at each point is equal to the pulse duration. This study compares the photothermal effects from scanning light and pulsed sources using numerical calculation for scanning without restricting aperture and with various spot sizes. The calculation results show that the thermal damage threshold of scanning source not restricted by measurement aperture does not significantly differ from that of pulsed source. Temporal temperature response and size-dependent photothermal effect also confirm the similarity between scanning and pulsed sources.

  9. A Quantitative Study on the Photothermal Effect of Immuno Gold Nanocages Targeted to Breast Cancer Cells

    PubMed Central

    Au, Leslie; Zheng, Desheng; Zhou, Fei; Li, Zhi-Yuan; Li, Xingde; Xia, Younan

    2009-01-01

    Gold nanocages with an average edge length of 65 ± 7 nm and a strong absorption peak at 800 nm were conjugated with monoclonal antibodies (anti-HER2) to target breast cancer cells (SK-BR-3) through the epidermal growth factor receptor (in this case, HER2), which is overexpressed on the surfaces of the cells. Both the number of immuno Au nanocages immobilized per cell and the photothermal therapeutic effect were quantified using flow cytometry. The targeted cells were irradiated with a pulsed near-infrared laser, and by varying the power density, the duration of laser exposure, and the time of response after irradiation, we were able to optimize the treatment conditions to achieve effective destruction of the cancer cells. We found that cells targeted with the immuno Au nanocages responded immediately to laser irradiation and that the cellular damage was irreversible at power densities greater than 1.6 W/cm2. The percentage of dead cells increased with increasing exposure time up to 5 min and then became steady. By quantifying the photothermal effect of immuno Au nanocages, critical information with regards to both the optimal dosage of nanocages and parameters of the laser irradiation has been garnered and will be applied to future in vivo studies. PMID:19206368

  10. Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability

    PubMed Central

    Ihalainen, Petri; Collini, Maddalena; Cabrini, Elisa; Dacarro, Giacomo; Pallavicini, Piersandro; Chirico, Giuseppe

    2016-01-01

    Summary Inkjet printing of spherical gold nanoparticles is widely applied in the fabrication of analytical and diagnostics tools. These methods could be extended to non-spherical gold nanoparticles that can efficiently release heat locally when irradiated in the near infrared (NIR) wavelength region, due to localized surface plasmon resonance (LSPR). However, this promising application requires the ability to maintain high efficiency and tunability of the NIR LSPR of the printed nanoparticles. In this study stable inks containing PEGylated gold nanostars (GNS) were fabricated and successfully inkjet-printed onto differently coated paper substrates with different porosity and permeability. A pronounced photothermal effect was observed under NIR excitation of LSPR of the printed GNS patterns even at low laser intensities. It was found that beside the direct role of the laser intensity, this effect depends appreciably on the printing parameters, such as drop density (δ, drops/mm2) and number of printed layers, and, critically, on the permeability of the coated paper substrates. These results will promote the development of GNS-based printed platforms for local photothermal therapy. PMID:27826523

  11. Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis.

    PubMed

    Andrén, Daniel; Shao, Lei; Odebo Länk, Nils; Aćimović, Srdjan S; Johansson, Peter; Käll, Mikael

    2017-09-20

    Plasmonic gold nanorods are prime candidates for a variety of biomedical, spectroscopy, data storage, and sensing applications. It was recently shown that gold nanorods optically trapped by a focused circularly polarized laser beam can function as extremely efficient nanoscopic rotary motors. The system holds promise for applications ranging from nanofluidic flow control and nanorobotics to biomolecular actuation and analysis. However, to fully exploit this potential, one needs to be able to control and understand heating effects associated with laser trapping. We investigated photothermal heating of individual rotating gold nanorods by simultaneously probing their localized surface plasmon resonance spectrum and rotational Brownian dynamics over extended periods of time. The data reveal an extremely slow nanoparticle reshaping process, involving migration of the order of a few hundred atoms per minute, for moderate laser powers and a trapping wavelength close to plasmon resonance. The plasmon spectroscopy and Brownian analysis allows for separate temperature estimates based on the refractive index and the viscosity of the water surrounding a trapped nanorod. We show that both measurements yield similar effective temperatures, which correspond to the actual temperature at a distance of the order 10-15 nm from the particle surface. Our results shed light on photothermal processes on the nanoscale and will be useful in evaluating the applicability and performance of nanorod motors and optically heated nanoparticles for a variety of applications.

  12. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer.

    PubMed

    Cheng, Liang; Yang, Kai; Chen, Qian; Liu, Zhuang

    2012-06-26

    In recent years, a wide range of near-infrared (NIR) light absorbing nanomaterials, mostly inorganic ones, have been developed for photothermal therapy (PTT) of cancer. In this work, we develop a novel organic PTT agent based on poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), a conductive polymer mixture with strong NIR absorbance, for in vivo photothermal treatment of cancer. After being layer-by-layer coated with charged polymers and then conjugated with branched polyethylene glycol (PEG), the obtained PEDOT:PSS-PEG nanoparticles are highly stable in the physiological environment and exhibit a stealth-like behavior after intravenous injection with a long blood circulation half-life. As a result, an extremely high in vivo tumor uptake of PEDOT:PSS-PEG attributed to the tumor-enhanced permeability and retention effect is observed. We further use PEDOT:PSS-PEG as a PTT agent for in vivo cancer treatment and realize excellent therapeutic efficacy in a mouse tumor model under NIR light irradiation at a low laser power density. Comprehensive blood tests and careful histological examination reveal no apparent toxicity of PEDOT:PSS-PEG to mice at our treated dose within 40 days. To our best knowledge, this work is the first to use systemically administrated conductive polymer nanoparticles for highly effective in vivo PTT treatment in animals and encourages further explorations of those organic nanomaterials for cancer theranostic applications.

  13. Plasmonic giant quantum dots: Hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry

    DOE PAGES

    Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; ...

    2015-02-09

    Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shellmore » retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Furthermore, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating.« less

  14. Plasmonic giant quantum dots: Hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry

    SciTech Connect

    Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; Roslyak, Oleksiy; Arefin, Ayesha; Hanson, Christina J.; Casson, Joanna L.; Desireddy, Anil; Ghosh, Yagnaseni; Piryatinski, Andrei; Iyer, Rashi; Htoon, Han; Malko, Anton V.; Hollingsworth, Jennifer A.

    2015-02-09

    Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shell retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Furthermore, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating.

  15. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet.

    PubMed

    Vimala, Karuppaiya; Shanthi, Krishnamurthy; Sundarraj, Shenbagamoorthy; Kannan, Soundarapandian

    2017-02-15

    Modern therapies for malignant breast cancer in clinics are not efficacious and often result in deprived patient compliance owing to squat therapeutic effectiveness and strong systemic side effects. In order to overcome this, we combined chemo-photothermal targeted therapy of breast cancer within one novel multifunctional drug delivery system. Folic Acid-functionalized polyethylene glycol coated Zinc Oxide nanosheet (FA-PEG-ZnO NS), was successfully synthesized, characterized and introduced to the drug delivery field for the first time. A doxorubicin (DOX)-loaded FA-PEG-ZnO NS based system (DOX-FA-PEG-ZnO NS) showed stimulative effect of heat, pH responsive and sustained drug release properties. Cytotoxicity experiments confirmed that combined therapy mediated the maximum rate of death in breast cancer cells compared to that of single chemotherapy or photothermal therapy. In vivo toxicity evaluation showed that the DOX-FA-PEG-ZnO NS contains minimum systemic toxicity in the mice model system. The findings of the present study provided an ideal drug delivery system for breast cancer therapy due to the advanced chemo-photothermal synergistic targeted therapy and good drug release properties of DOX-FA-PEG-ZnO NS, which could effectively avoid frequent and invasive dosing and improve patient compliance. Thus, functionalized-ZnO NS could be used as a novel nanomaterial for selective chemo-photothermal therapy.

  16. Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite.

    PubMed

    Yu, Jiantao; Lin, Yu-Hsin; Yang, Lingyan; Huang, Chih-Ching; Chen, Liliang; Wang, Wen-Cheng; Chen, Guan-Wen; Yan, Junyan; Sawettanun, Saranta; Lin, Chia-Hua

    2017-01-01

    Despite tremendous efforts toward developing novel near-infrared (NIR)-absorbing nanomaterials, improvement in therapeutic efficiency remains a formidable challenge in photothermal cancer therapy. This study aims to synthesize a specific peptide conjugated polydopamine-modified reduced graphene oxide (pDA/rGO) nanocomposite that promotes the bystander effect to facilitate cancer treatment using NIR-activated photothermal therapy. To prepare a nanoplatform capable of promoting the bystander effect in cancer cells, we immobilized antiarrhythmic peptide 10 (AAP10) on the surface of dopamine-modified rGO (AAP10-pDA/rGO). Our AAP10-pDA/rGO could promote the bystander effect by increasing the expression of connexin 43 protein in MCF-7 breast-cancer cells. Because of its tremendous ability to absorb NIR absorption, AAP10-pDA/rGO offers a high photothermal effect under NIR irradiation. This leads to a massive death of MCF-7 cells via the bystander effect. Using tumor-bearing mice as the model, it is found that NIR radiation effectively ablates breast tumor in the presence of AAP10-pDA/rGO and inhibits tumor growth by ≈100%. Therefore, this research integrates the bystander and photothermal effects into a single nanoplatform in order to facilitate an efficient photothermal therapy. Furthermore, our AAP10-pDA/rGO, which exhibits both hyperthermia and the bystander effect, can prevent breast-cancer recurrence and, therefore, has great potential for future clinical and research applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photothermal imaging

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Antonishina, Elena

    1995-02-01

    An automated image analysis system with two imaging regimes is described. Photothermal (PT) effect is used for imaging of a temperature field or absorption structure of the sample (the cell) with high sensitivity and spatial resolution. In a cell study PT-technique enables imaging of live non-stained cells, and the monitoring of the cell shape/structure. The system includes a dual laser illumination unit coupled to a conventional optical microscope. A sample chamber provides automated or manual loading of up to 3 samples and cell positioning. For image detection a 256 X 256 10-bit CCD-camera is used. The lasers, scanning stage, and camera are controlled by PC. The system provides optical (transmitted light) image, probe laser optical image, and PT-image acquisition. Operation rate is 1 - 1.5 sec per cell for a cycle: cell positioning -- 3 images acquisition -- image parameters calculation. A special database provides image/parameters storage, presentation, and cell diagnostic according to quantitative image parameters. The described system has been tested during live and stained blood cell studies. PT-images of the cells have been used for cell differentiation. In experiments with the red blood cells (RBC) that originate from normal and anaemia blood parameters for disease differentiation have been found. For white blood cells in PT-images the details of cell structure have found that absent in their optical images.

  18. Recyclable Photo-Thermal Nano-Aggregates of Magnetic Nanoparticle Conjugated Gold Nanorods for Effective Pathogenic Bacteria Lysis.

    PubMed

    Ramasamy, Mohankandhasamy; Kim, Sanghyo; Lee, Su Seong; Yi, Dong Kee

    2016-01-01

    We describe the nucleophilic hybridization technique for fabricating magnetic nanoparticle (MNP) around gold nanorod (AuNR) for desired photo-thermal lysis on pathogenic bacteria. From the electromagnetic energy conversion into heat to the surrounding medium, a significant and quicker temperature rise was noted after light absorption on nanohybrids, at a controlled laser light output and optimum nanoparticle concentration. We observed a similar photo-thermal pattern for more than three times for the same material up on repeated magnetic separation. Regardless of the cell wall nature, superior pathogenic cell lysis has been observed for the bacteria suspensions of individual and mixed samples of Salmonella typhi (S.typhi) and Bacillus subtilis (B.subtilis) by the photo-heated nanoparticles. The synthesis of short gold nanorod, conjugation with magnetic nanoparticle and its subsequent laser exposure provides a rapid and reiterated photo-thermal effect with enhanced magnetic separation for efficient bactericidal application in water samples. Resultant novel properties of the nano-aggregates makes them a candidate to be used for a rapid, effective, and re-iterated photo-thermal agent against a wide variety of pathogens to attain microbe free water.

  19. Thiadiazole molecules and poly(ethylene glycol)-block-polylactide self-assembled nanoparticles as effective photothermal agents.

    PubMed

    Sun, Tingting; Qi, Ji; Zheng, Min; Xie, Zhigang; Wang, Zhiyuan; Jing, Xiabin

    2015-12-01

    A new photothermal nano-agent was obtained by the coprecipitation of 2,5-Bis(2,5-bis(2-thienyl)-N-dodecyl pyrrole) thieno[3,4-b][1,2,5] thiadiazole (TPT-TT) and a biodegradable amphiphilic block copolymer, methoxypoly(ethylene glycol)2K-block-poly(D,L-lactide)2K (mPEG2K-PDLLA2K). TPT-TT, a donor-acceptor-donor (D-A-D) type small molecule, with bis(2-thienyl)-N-alkylpyrrole (TPT) as the donor and thieno[3,4-b]thiadiazole (TT) as the acceptor was a strong near infrared (NIR) absorber, which could convert the absorbed light energy into heat. The formation of TPT-TT nanoparticles (TPT-NPs), which possessed high stability in water, was confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). TPT-NPs showed high photothermal conversion efficiency (32%) and excellent photostability and heating reproducibility. The photostability of TPT-TT NPs was much better than that of indocyanine green (ICG), a federal drug administration (FDA) approved NIR dye. Besides, TPT-TT NPs exhibited significant photothermal therapeutic effect toward human cervical carcinoma (HeLa) and human liver hepatocellular carcinoma (HepG2) cells, while no appreciable dark cytotoxicity was observed. These results highlight the potential of TPT-TT NPs as an effective photothermal agent for cancer therapy.

  20. Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Farsi, Alessandro; Siciliani de Cumis, Mario; Marino, Francesco; Marin, Francesco

    2012-02-01

    Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10Hz÷100kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended to cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where characterizations of dielectric film coatings are still poor.

  1. Preparation of gold tetrananocages and their photothermal effect

    NASA Astrophysics Data System (ADS)

    Yin, Nai-Qiang; Liu, Ling; Lei, Jie-Mei; Jiang, Tong-Tong; Zhu, Li-Xin; Xu, Xiao-Liang

    2013-09-01

    A gold tetrahedral nanocage, i.e., a tetrananocage, that converts near-infrared (NIR) light into heat was fabricated by using a simple method. Silver tetrahedra with good homogeneity and dispersity were synthesized by a hydrothermal route. Gold tetrananocages were obtained using a galvanic replacement reaction between Ag tetrahedra and HAuCl4 solution. The surface plasmon resonance (SPR) of gold tetrananocages was tuned from 412 nm to 850 nm through controlling the volume of HAuCl4 solution added. This Au tetrananocage can effectively convert NIR light into heat when the SPR couples with the exciting light. When cancer cells are cultured with the gold tetrananocages for several hours and irradiated, the gold tetrananocages destroy the cancer cells effectively and demonstrate themselves to be a good candidate for combating cancer.

  2. Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol).

    PubMed

    Almada, M; Leal-Martínez, B H; Hassan, N; Kogan, M J; Burboa, M G; Topete, A; Valdez, M A; Juárez, J

    2017-08-01

    Gold nanorods (GNR) use has been proposed in medical applications because of their intrinsic photothermal properties. However, the presence of CTAB molecules adsorbed onto the surface of GNRs results in a highly cytotoxic GNR system. In this work we replace the CTAB molecules with a thiolated chitosan. Once chitosan coated GNRs (Chi-SH-GNR) were attained, a film of alginate (Alg-Chi-SH-GNR) or polyvinyl alcohol (PVA-Chi-SH-GNR) was deposited onto the surface of Chi-GNR by a layer-by-layer process. The photothermal conversion efficiency for the GNR systems was determined irradiating the GNRs suspended in aqua media with a CW 808nm diode laser (CNI, China). The cytotoxicity effect and the photothermal cellular damage of GNR systems were evaluated on a breast cancer cell line. Results show that polymer coats did not affect the transduction photothermal efficiency. Values around 50% were obtained for the different coated gold nanorods. The cytotoxicity of coated gold nanorods diminished significantly compared with those GNR stabilized with CTAB. The laser irradiation of cells treated with gold nanorods showed a decrease in their viability compared with the cells treated but no irradiated. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Photothermal effect for arteriosclerotic region using infrared free electron lasers

    NASA Astrophysics Data System (ADS)

    Awazu, Kunio; Fukami, Yuko

    1999-09-01

    Cholesteryl oleate can be selectively removed with an infrared free-electron laser (IFEL). To determine the mechanisms that are involved in the effects induced by IFEL, we compared the effect of FEL exposure and the effect of heating on a sample film and bulk sample of cholesteryl oleate. Heating is regarded as one of the mechanisms by which FEL ablates cholesteryl oleate that has accumulated on the arteriosclerotic region of arterial walls. FEL was applied at a wavelength of 5.75 micrometers and at several average powers (2 - 15 mW). FEL exposure induced melting and a decrease in the number of ester bonds. Using the value of absorbed IFEL- macropulse energy for each power density, the temperature was assumed to be 50 - 300 degree(s)C. In the heating experiment, the sample was heated from room temperature to 500 degree(s)C. Melting and carbonization were observed at 50 degree(s)C and 300 degree(s)C, respectively. We found that FEL exposure and heating each induced melting. FEL exposure induced chemical changes and ablation of cholesteryl oleate, although heating did not. Heating the cholesteryl oleate above 305 degree(s)C induced carbonization, although FEL exposure to the same temperature did not.

  4. Nematic liquid crystals used to control photo-thermal effects in gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pezzi, Luigia; De Sio, Luciano; Palermo, Giovanna; Veltri, Alessandro; Placido, Tiziana; Curri, Maria Lucia; Tabiryan, Nelson; Umeton, Cesare

    2016-03-01

    We report on photo-thermal effects observed in gold nanoparticles (GNPs) dispersed in Nematic Liquid Crystals (NLCs). Under a suitable optical radiation, GNPs exhibit a strong light absorption/scattering; the effect depends on the refractive index of the medium surrounding the nanoparticles, which can be electrically or optically tuned. In this way, the system represents an ideal nano-source of heat, remotely controllable by light to adjust the temperature at the nanoscale. Photo-induced temperature variations in GNPs dispersed in NLCs have been investigated by implementing a theoretical model based on the thermal heating equation applied to an anisotropic medium; theoretical predictions have been compared with results of experiments carried out in a NLC medium hosting GNPs. Both theory and experiments represent a step forward to understand the physics of heat production at the nanoscale, with applications that range from photonics to nanomedicine.

  5. Responsive metal/polymer nanocomposites via photothermal effect

    NASA Astrophysics Data System (ADS)

    Seyhan, Merve; Rende, Deniz; Huang, Liping; Malta, Seyda; Ozisik, Rahmi; Baysal, Nihat

    2013-03-01

    The design of fire-safe materials by using flame retardants within polymers requires a fundamental understanding of the physics and dynamics of the heat transport process with in the multiphase systems. We have developed a Lattice-Boltzmann model to simulate the 3-D heat transfer in a two-component system comprised of a polymer matrix and flame retardant nanocomposite fillers. By varying the volume fraction of the fillers, we compared the heat propagation phenomena before and after the percolation of the nano-fillers in the system. We also vary the size, shape, thermal conductivity and heat capacity of the nanofiller to study their effects on the heat dissipation and the time to ignition.

  6. Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals.

    PubMed

    Pezzi, Luigia; De Sio, Luciano; Veltri, Alessandro; Placido, Tiziana; Palermo, Giovanna; Comparelli, Roberto; Curri, Maria Lucia; Agostiano, Angela; Tabiryan, Nelson; Umeton, Cesare

    2015-08-21

    The last few years have seen a growing interest in the ability of metallic nanoparticles (MNPs) to control temperature at the nanoscale. Under a suitable optical radiation, MNPs feature an enhanced light absorption/scattering, thus turning into an ideal nano-source of heat, remotely controllable by means of light. In this framework, we report our recent efforts on modeling and characterizing the photo-thermal effects observed in gold nanoparticles (GNPs) dispersed in thermotropic Liquid Crystals (LCs). Photo-induced temperature variations in GNPs dispersed in Nematic LCs (NLCs) have been studied by implementing an ad hoc theoretical model based on the thermal heating equation applied to an anisotropic medium. Theoretical predictions have been verified by performing photo-heating experiments on a sample containing a small percentage of GNPs dispersed in NLCs. Both theory and experiments represent an important achievement in understanding the physics of heat transfer at the nanoscale, with applications ranging from photonics to nanomedicine.

  7. Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond laser

    PubMed Central

    Gong, Hanmo; Yang, Yuanqing; Chen, Xingxing; Zhao, Ding; Chen, Xi; Chen, Yiting; Yan, Min; Li, Qiang; Qiu, Min

    2014-01-01

    A non-complicated, controllable method of metallic nanoparticle fabrication at low operating light power is proposed. The method is based on laser-induced forward transfer, using a metamaterial absorber as the donor to significantly enhance the photothermal effect and reduce the operating light fluence to 35 mJ/cm2, which is much lower than that in previous works. A large number of metallic nanoparticles can be transferred by one shot of focused nanosecond laser pulses. Transferred nanoparticles exhibit good size uniformity and the sizes are controllable. The optical properties of transferred particles are characterized by dark-field spectroscopy and the experimental results agree with the simulation results. PMID:25156404

  8. All-optical control of microfiber resonator by graphene's photothermal effect

    SciTech Connect

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Zhang, Fanlu; Xi, Teli; Zhao, Jianlin; Xu, Yiping; Ren, Liyong

    2016-04-25

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%–90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  9. An effective approach to reduce inflammation and stenosis in carotid artery: polypyrrole nanoparticle-based photothermal therapy

    NASA Astrophysics Data System (ADS)

    Peng, Zhiyou; Qin, Jinbao; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yang, Xinrui; Yuan, Fukang; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-04-01

    Photothermal therapy (PTT), as a promising treatment for tumours, has rarely been reported for application in artery restenosis, which is a common complication of endovascular management due to enduring chronic inflammation and abnormal cell proliferation. In our study, biodegradable polypyrrole nanoparticles (PPy-NPs) were synthesized and characterized, including their size distribution, UV-vis-NIR absorbance, molar extinction coefficients, and photothermal properties. We then verified that PPy-NP incubation followed by 915 nm near-infrared (NIR) laser irradiation could effectively ablate inflammatory macrophages in vitro, leading to significant cell apoptosis and cell death. Further, it was found that a combination of local PPy-NP injection with 915 nm NIR laser irradiation could significantly alleviate arterial inflammation by eliminating infiltrating macrophages and further ameliorating artery stenosis in an ApoE-/- mouse model, without showing any obvious toxic side effects. Thus, we propose that PTT based on PPy-NPs as photothermal agents and a 915 nm NIR laser as a power source can serve as a new effective treatment for reducing inflammation and stenosis formation in inflamed arteries after endovascular management.Photothermal therapy (PTT), as a promising treatment for tumours, has rarely been reported for application in artery restenosis, which is a common complication of endovascular management due to enduring chronic inflammation and abnormal cell proliferation. In our study, biodegradable polypyrrole nanoparticles (PPy-NPs) were synthesized and characterized, including their size distribution, UV-vis-NIR absorbance, molar extinction coefficients, and photothermal properties. We then verified that PPy-NP incubation followed by 915 nm near-infrared (NIR) laser irradiation could effectively ablate inflammatory macrophages in vitro, leading to significant cell apoptosis and cell death. Further, it was found that a combination of local PPy-NP injection with

  10. Highly efficient photothermal effect by atomic-thickness confinement in two-dimensional ZrNCl nanosheets.

    PubMed

    Feng, Feng; Guo, Hongyan; Li, Dianqi; Wu, Changzheng; Wu, Junchi; Zhang, Wenshuai; Fan, Shaojuan; Yang, Yuchen; Wu, Xiaojun; Yang, Jinlong; Ye, Bangjiao; Xie, Yi

    2015-02-24

    We report a giant photothermal effect arising from quantum confinement in two-dimensional nanomaterials. ZrNCl ultrathin nanosheets with less than four monolayers of graphene-like nanomaterial successfully generated synergetic effects of larger relaxation energy of photon-generated electrons and intensified vibration of surface bonds, offering predominantly an enhancement of the electron-phonon interaction to a maximized extent. As a result, they could generate heat flow reaching an ultrahigh value of 5.25 W/g under UV illumination with conversion efficiency up to 72%. We anticipate that enhanced electron-phonon coupling in a quantum confinement system will be a powerful tool for optimizing photothermal conversion of inorganic semiconductors.

  11. Finite element analysis modeling of pulse-laser excited photothermal deflection (mirage effect) from aerosols.

    PubMed

    Dada, Oluwatosin O; Bialkowski, Stephen E

    2008-12-01

    A finite element analysis method for numerical modeling of the photothermal deflection spectroscopy of aerosols is presented. The models simulate pulse-laser excited photothermal deflection from aerosols collected on a plane surface substrate in air medium. The influence of the aerosol and substrate properties on the transient photothermal deflection signal is examined. We have previously obtained experimental results for photothermal deflection spectrometry of aerosols deposited onto a plate from an impactor system (O. O. Dada and S. E. Bialkowski, Appl. Spectrosc. 62, 1336 (2008)). This paper supports the validity of the experimental results presented in that paper and helps in answering some of the questions raised. The modeling results presented here demonstrate that the (peak) normalized transient temperature change profile and (peak) normalized transient photothermal deflection profile are a good approximation and invariant with number of particles, inter-particle distance, and particulate shape, which suggests that the photothermal deflection signal amplitude may be calibrated linearly with total mass of aerosols and the method could be applied to analysis of complex aerosols.

  12. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo.

    PubMed

    Wang, Yang; Xiao, Yun; Tang, Ruikang

    2014-09-08

    The monodispersed spindle-like polypyrrole hollow nanocapsules (PPy HNCs) as the multifunctional platforms for combining chemotherapy with photothermal therapy for cancer cells are reported. Whereas the hollow cavity of nanocapsules can be used to load the anticancer drug (i.e., doxorubicin) for chemotherapy, the PPy shells can convert NIR light into heat for photothermal therapy. The release of the drug from the spindle-like PPy HNCs is pH-sensitive and near-infrared (NIR) light-enhanced. More importantly, the spindle-like PPy HNCs can penetrate cells more rapidly and efficiently in comparison with the spherical PPy HNCs. Both in vitro and in vivo experiments demonstrated that the combination of DOX-loaded spindle-like PPy HNCs and NIR light provide a highly effective and feasible chemo-photothermal therapy cancer method with a synergistic effect. Owing to their high photothermal conversion efficiency, large hollow cavity, and good biocompatibility, the spindle-like PPy HNCs could be used as a promising new cancer drug-nanocarrier and photothermal agent for localized tumorous chemo-photothermal therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions.

    PubMed

    Zedan, Abdallah F; Moussa, Sherif; Terner, James; Atkinson, Garrett; El-Shall, M Samy

    2013-01-22

    In this work we demonstrate the coupling of the photothermal effects of gold nanostructures of controlled size and shape with graphene oxide nanosheets dispersed in water. The enhanced photothermal effects can be tuned by controlling the shape and size of the gold nanostructures, which result in a remarkable increase in the heating efficiency of the laser-induced size reduction of gold nanostructures. The Raman spectra of the Au-graphene nanosheets provide direct evidence for the presence of more structural defects in the graphene lattice induced by laser irradiation of graphene oxide nanosheets in the presence of Au nanostructures. The large surface areas of the laser-reduced graphene oxide nanosheets with multiple defect sites and vacancies provide efficient nucleation sites for the ultrasmall gold nanoparticles with diameters of 2-4 nm to be anchored to the graphene surface. This defect filling mechanism decreases the mobility of the ultrasmall gold nanoparticles and, thus, stabilizes the particles against the Ostwald ripening process, which leads to a broad size distribution of the laser-size-reduced gold nanoparticles. The Au nanostructures/graphene oxide solutions and the ultrasmall gold-graphene nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal, thermochemical, and thermomechanical applications.

  14. Porous Pt Nanoparticles with High Near-Infrared Photothermal Conversion Efficiencies for Photothermal Therapy.

    PubMed

    Zhu, Xiao-Ming; Wan, Hong-Ye; Jia, Henglei; Liu, Liang; Wang, Jianfang

    2016-12-01

    Plasmonic nanostructures are of potential in acting as a type of optical agents for cancer photothermal therapy. To effectively function as photothermal therapy agents, plasmonic nanostructures are strongly desired to have good biocompatibility and high photothermal conversion efficiencies. In this study, poly(diallyldimethylammonium chloride)-coated porous Pt nanoparticles are synthesized for photothermal therapy. The Pt nanoparticles possess broadband near-infrared light absorption in the range from 650 to 1200 nm, therefore allowing for selecting different laser wavelengths for photothermal therapy. The as-prepared Pt nanoparticles exhibit remarkable photothermal conversion efficiencies under 809 and 980 nm laser irradiation. In vitro studies indicate that the Pt nanoparticles display good biocompatibility and high cellular uptake efficiencies through an endocytosis pathway. Photothermal heating using 808 nm laser irradiation (>7.0 W cm(-2) , 3 min) leads to notable cytotoxic effect, and more than 70% of cells are photothermally ablated after 3 min irradiation at 8.4 W cm(-2) . Furthermore, simultaneous application of photothermal therapy synergistically enhances the cytotoxicity of an anti-cancer drug doxorubicin. Therefore, the porous Pt nanoparticles have great potential as an attractive photothermal agent for cancer therapy.

  15. Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Wen; Liu, Shu-Wei; Liou, Yu-Ren; Wu, Yu-Hsun; Yang, Ya-Chuen; Wang, Churng-Ren Chris; Li, Pai-Chi

    2016-04-01

    Sonoporation refers to the use of ultrasound and acoustic cavitation to temporarily enhance the permeability of cellular membranes so as to enhance the delivery efficiency of therapeutic agents into cells. Microbubble-based ultrasound contrast agents are often used to facilitate these cavitation effects. This study used nanodroplets to significantly enhance the effectiveness of sonoporation relative to using conventional microbubbles. Significant enhancements were demonstrated both in vitro and in vivo by using gold nanorods encapsulated in nanodroplets for implementing plasmonic photothermal therapy. Combined excitation by ultrasound and laser radiation is used to trigger the gold nanodroplets to induce a liquid-to-gas phase change, which induces cavitation effects that are three-to-fivefold stronger than when using conventional microbubbles. Enhanced cavitation also leads to significant enhancement of the sonoporation effects. Our in vivo results show that nanodroplet-vaporization-assisted sonoporation can increase the treatment temperature by more than 10 °C above that achieved by microbubble-based sonoporation.

  16. Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment

    PubMed Central

    Liu, Wei-Wen; Liu, Shu-Wei; Liou, Yu-Ren; Wu, Yu-Hsun; Yang, Ya-Chuen; Wang, Churng-Ren Chris; Li, Pai-Chi

    2016-01-01

    Sonoporation refers to the use of ultrasound and acoustic cavitation to temporarily enhance the permeability of cellular membranes so as to enhance the delivery efficiency of therapeutic agents into cells. Microbubble-based ultrasound contrast agents are often used to facilitate these cavitation effects. This study used nanodroplets to significantly enhance the effectiveness of sonoporation relative to using conventional microbubbles. Significant enhancements were demonstrated both in vitro and in vivo by using gold nanorods encapsulated in nanodroplets for implementing plasmonic photothermal therapy. Combined excitation by ultrasound and laser radiation is used to trigger the gold nanodroplets to induce a liquid-to-gas phase change, which induces cavitation effects that are three-to-fivefold stronger than when using conventional microbubbles. Enhanced cavitation also leads to significant enhancement of the sonoporation effects. Our in vivo results show that nanodroplet-vaporization-assisted sonoporation can increase the treatment temperature by more than 10 °C above that achieved by microbubble-based sonoporation. PMID:27094209

  17. EMERGING TECHNOLOGY BULLETIN: DEVELOPMENT OF A PHOTOTHERMAL DETOXIFICATION UNIT - ENVIRONMENTAL SCIENCE AND ENGINEERING GROUP - UNIVERSITY OF DAYTON RESEARCH INSTITUTE

    EPA Science Inventory

    The University of Dayton Research Institute has developed a novel photochemical process embodied in a device called a Photothermal Detoxification Unit (PDU) which offers an efficient means of destroying hazardous organic wastes. The PDU, which overcomes the problems of slow react...

  18. EMERGING TECHNOLOGY BULLETIN: DEVELOPMENT OF A PHOTOTHERMAL DETOXIFICATION UNIT - ENVIRONMENTAL SCIENCE AND ENGINEERING GROUP - UNIVERSITY OF DAYTON RESEARCH INSTITUTE

    EPA Science Inventory

    The University of Dayton Research Institute has developed a novel photochemical process embodied in a device called a Photothermal Detoxification Unit (PDU) which offers an efficient means of destroying hazardous organic wastes. The PDU, which overcomes the problems of slow react...

  19. Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect.

    PubMed

    Lin, Donghai; Qin, Tianqi; Wang, Yunqing; Sun, Xiuyan; Chen, Lingxin

    2014-01-22

    As novel optical nanoprobes, surface-enhanced Raman scattering (SERS) tags have drawn growing interests in the application of biomedical imaging and phototherapies. Herein, we demonstrated a novel in situ synthesis strategy for GO wrapped gold nanocluster SERS tags by using a tris(2,2'-bipyridyl)ruthenium(II) chloride (Rubpy)/GO nanohybrid as a complex Raman reporter, inspired by the role of GO as an artificial receptor for various dyes. The introduction of GO in the synthesis procedure provided systematic solutions for controlling several key parameters of SERS tags, including reproducibility, sensitivity, and colloidal and signal stability. An additional interesting thermal-sensitive SERS property (SERS intensity decreased upon increasing the temperature) was also achieved due to the heat-induced release/redistribution of reporter molecules adsorbed on GO. Combining the synergic effect of these features, we further fabricated multifunctional, aldehyde group conjugated Au@Rubpy/GO SERS tags for optical labeling and photothermal ablation of bacteria. Sensitive Raman imaging of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria could be realized, and satisfactory photothermal killing efficacy for both bacteria was achieved. Our results also demonstrated the correlation among the SERS intensity decrease ratio, bacteria survival rate, and the terminal temperature of the tag-bacteria suspension, showing the possibility to use SERS assay to measure antibacterial response during the photothermal process using this tag.

  20. Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection.

    PubMed

    Tseng, Shao-Chin; Yu, Chen-Chieh; Wan, Dehui; Chen, Hsuen-Li; Wang, Lon Alex; Wu, Ming-Chung; Su, Wei-Fang; Han, Hsieh-Cheng; Chen, Li-Chyong

    2012-06-05

    Convenient, rapid, and accurate detection of chemical and biomolecules would be a great benefit to medical, pharmaceutical, and environmental sciences. Many chemical and biosensors based on metal nanoparticles (NPs) have been developed. However, as a result of the inconvenience and complexity of most of the current preparation techniques, surface plasmon-based test papers are not as common as, for example, litmus paper, which finds daily use. In this paper, we propose a convenient and practical technique, based on the photothermal effect, to fabricate the plasmonic test paper. This technique is superior to other reported methods for its rapid fabrication time (a few seconds), large-area throughput, selectivity in the positioning of the NPs, and the capability of preparing NP arrays in high density on various paper substrates. In addition to their low cost, portability, flexibility, and biodegradability, plasmonic test paper can be burned after detecting contagious biomolecules, making them safe and eco-friendly.

  1. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    PubMed

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect.

  2. Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Paeng, Dongwoo; Yeo, Junyeob; Lee, Daeho; Moon, Seung-Jae; Grigoropoulos, Costas P.

    2015-09-01

    This work is concerned with the laser wavelength effect on the electrical properties and surface morphology of laser-sintered nanoparticle thin films. Silver nanoparticle thin films spin-coated on soda lime glass substrates were irradiated with lasers of three different wavelengths (near ultraviolet 405 nm, green 514.5 nm, near infrared 817 nm) at varied laser intensities and scanning speeds. Scanning electron microscopy images and ex situ resistivity measurements show that the photo-thermal sintering alters significantly the film surface morphology and electrical properties, depending on the processing parameters (laser wavelength, laser intensities and scanning speed). While the optical response of the material is determined largely by the processing laser wavelength, the laser beam intensity and scanning speed regulate the induced temperature field. Examination of the optical properties of as-deposited silver nanoparticle thin film in conjunction with scanning electron microscopy images taken from the laser-sintered lines helps elucidate how the processing laser wavelength modulates the optical response of silver nanoparticle thin film and therefore affects the thermal response.

  3. Short Laser Pulse-Induced Irreversible Photothermal Effects in Red Blood Cells

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Oginsky, Alexander O.; Olson, John S.; Lapotko, Dmitri O.

    2013-01-01

    Background and Objectives Photothermal (PT) responses of individual red blood cells (RBC) to short laser pulses may depend upon PT interactions at microscale. Study Design/Materials and Methods A sequence of identical short laser pulses (0.5 and 10 nanoseconds, 532 nm) was applied to individual RBCs, and their PT properties were analyzed at microscale in real time after each single pulse. Results PT interactions in RBC were found to be localized to sub-micrometer zones associated with Hb that may be responsible for overheating and evaporation at higher optical energies. At sub-ablative energies, a single short laser pulse induced irreversible changes in the optical properties of RBC that stimulated the transition from a heating-cooling response to ablative evaporation in individual erythrocytes during their exposure to subsequent, but identical pulses. Conclusion The PT response of RBCs to short laser pulses of specific energy includes localized irreversible modifications of cell structure, resulting in three different effects: thermal non-ablative response, ablative evaporation, and residual thermal response. PMID:21290393

  4. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane; Stolz, Christopher J.; Wu, Zhouling; Huber, Robert; Weinzapfel, Carolyn

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  5. Solvent Effects on the Photothermal Regeneration of CO2 in Monoethanolamine Nanofluids

    DOE PAGES

    Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron

    2015-11-02

    We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO2 without heating the bulk solvent. The mechanism by which CO2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regeneration of CO2 captured bymore » monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less

  6. Solvent Effects on the Photothermal Regeneration of CO2 in Monoethanolamine Nanofluids.

    PubMed

    Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron

    2015-11-25

    A potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO2 without heating the bulk solvent. The mechanism by which CO2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regeneration of CO2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO2 regeneration system in a continuously flowing setup. Using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.

  7. Solvent Effects on the Photothermal Regeneration of CO2 in Monoethanolamine Nanofluids

    SciTech Connect

    Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron

    2015-11-02

    We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO2 without heating the bulk solvent. The mechanism by which CO2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regeneration of CO2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.

  8. Development of a sensitive detection system based on the photothermal effect for biomolecular interaction studies

    NASA Astrophysics Data System (ADS)

    Adelhelm, Karin; Haupt, K.; Saluz, H. P.; Walther, Heinz-Guenter

    1996-01-01

    THe use of a photothermal detection system for the study of interacting biomolecules is described. Two different setups are presented to demonstrate the performance of the system by measurements of DNA/intercalator-samples immobilized on membrane supports used in molecular biological techniques.

  9. LASERS IN MEDICINE: Investigation of the influence of the photodynamic effect on micro-organisms using the laser photothermal cytometry method

    NASA Astrophysics Data System (ADS)

    Lapotko, D. O.; Zharov, V. P.; Romanovskaya, T. R.; Kuchinskii, G. S.

    1999-12-01

    An investigation of the influence of the photodynamic effect on S.aureus and E.coli bacteria in the presence of blood cells was made by the laser photothermal cytometry method. Elements of the theory of the photothermal method are considered for the case of pulsed lasers used in microscopy. Chlorin in doses of 0.02 mg litre-1 was used as a photosensitiser. The results of the investigation made it possible to propose the possibility of an immunomodulation effect caused by introducing photoactivated chlorin into the cell — microbe system. It was found that the photothermal parameters of the cells interacting with microbes in the presence of photoactivated chlorin differed from the parameters of intact cells much less than in the absence of chlorin. However, a more pronounced bactericidal effect was observed in the samples treated with chlorin.

  10. Effective Photothermal Chemotherapy Using Doxorubicin-Loaded Gold Nanospheres That Target EphB4 Receptors in Tumors

    PubMed Central

    You, Jian; Zhang, Rui; Xiong, Chiyi; Zhong, Meng; Melancon, Maritess; Gupta, Sanjay; Nick, Alpa M.; Sood, Anil K.; Li, Chun

    2012-01-01

    Photothermal ablation (PTA) is an emerging technique that uses near-infrared laser light-generated heat to destroy tumor cells. However, complete tumor eradication by PTA therapy alone is difficult because heterogeneous heat distribution can lead to sub-lethal thermal dose in some areas of the tumor. Successful PTA therapy requires selective delivery of photothermal conducting nanoparticles to mediate effective PTA of tumor cells, and the ability to combine PTA with other therapy modalities. Here, we synthesized multifunctional doxorubicin (DOX)-loaded hollow gold nanospheres (DOX@HAuNS) that target EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on the cell membrane of multiple tumors and angiogenic blood vessels. Increased uptake of targeted nanoparticles T-DOX@HAuNS was observed in three EphB4-positive tumors both in vitro and in vivo. In vivo release of DOX from DOX@HAuNS, triggered by near-infrared laser, was confirmed by dual radiotracer technique. Treatment with T-DOX@HAuNS followed by near-infrared laser irradiation resulted in significantly decreased tumor growth when compared to treatments with non-targeted DOX@HAuNS plus laser or HAuNS plus laser. The tumors in six of the eight mice treated with T-DOX@HAuNS plus laser regressed completely with only residual scar tissue by 22 days following injection, and none of the treatment groups experienced a loss in body weight. Together, our findings demonstrate that concerted chemo-photothermal therapy with a single nanodevice capable of mediating simultaneous PTA and local drug release may have promise as a new anticancer therapy. PMID:22865457

  11. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    NASA Astrophysics Data System (ADS)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  12. Photoluminescence and photothermal effect of Fe{sub 3}O{sub 4} nanoparticles for medical imaging and therapy

    SciTech Connect

    Sadat, M. E.; Kaveh Baghbador, Masoud; Wagner, H. P.; Mast, David B. E-mail: donglu.shi@uc.edu; Dunn, Andrew W.; Ewing, Rodney C.; Zhang, Jiaming; Xu, Hong; Pauletti, Giovanni M.; Shi, Donglu E-mail: donglu.shi@uc.edu

    2014-09-01

    Photoluminescence (PL) of Fe{sub 3}O{sub 4} nanoparticle was observed from the visible to near-infrared (NIR) range by laser irradiation at 407 nm. PL spectra of ∼10 nm diameter Fe{sub 3}O{sub 4} nanoparticles organized in different spatial configuration, showed characteristic emissions with a major peak near 560 nm, and two weak peaks near 690 nm and 840 nm. Different band gap energies were determined for these Fe{sub 3}O{sub 4} nanoparticle samples corresponding to, respectively, the electron band structures of the octahedral site (2.2 eV) and the tetrahedral site (0.9 eV). Photothermal effect of Fe{sub 3}O{sub 4} nanoparticles was found to be associated with the photoluminescence emissions in the NIR range. Also discussed is the mechanism responsible for the photothermal effect of Fe{sub 3}O{sub 4} nanoparticles in medical therapy.

  13. Highly effective photothermal chemotherapy with pH-responsive polymer-coated drug-loaded melanin-like nanoparticles

    PubMed Central

    Zhang, Chengwei; Zhao, Xiaozhi; Guo, Suhan; Lin, Tingsheng; Guo, Hongqian

    2017-01-01

    Dopamine is a neurotransmitter commonly used in clinical treatment. Polydopamine (PDA) has excellent histocompatibility and biosafety and can efficiently convert near-infrared reflection (NIR) to thermal energy. In this study, PDA was used as a promising carrier, and pH-responsive polymer-coated drug-loaded PDA nanoparticles (NPs; doxorubicin@ poly(allylamine)-citraconic anhydride [Dox@PAH-cit]/PDA NPs) were developed. As expected, the Dox@PAH-cit/PDA NPs exhibited excellent photothermal efficiency. In addition, at a low pH condition, the loaded Dox was released from the NPs due to the amide hydrolysis of PAH-cit. Upon NIR exposure (808 nm), the temperature of the NP solution rapidly increases to kill tumor cells. Compared with unbound chemotherapy drugs, the NPs have a stronger cell uptake ability. In vivo, the PDA NPs were able to efficiently accumulate at the tumor location. After intravenous administration and NIR exposure, tumor growth was significantly inhibited. In summary, the present investigation demonstrated that the Dox@PAH-cit/PDA NPs presented highly effective photothermal chemotherapy for prostate cancer. PMID:28331308

  14. Highly effective photothermal chemotherapy with pH-responsive polymer-coated drug-loaded melanin-like nanoparticles.

    PubMed

    Zhang, Chengwei; Zhao, Xiaozhi; Guo, Suhan; Lin, Tingsheng; Guo, Hongqian

    2017-01-01

    Dopamine is a neurotransmitter commonly used in clinical treatment. Polydopamine (PDA) has excellent histocompatibility and biosafety and can efficiently convert near-infrared reflection (NIR) to thermal energy. In this study, PDA was used as a promising carrier, and pH-responsive polymer-coated drug-loaded PDA nanoparticles (NPs; doxorubicin@ poly(allylamine)-citraconic anhydride [Dox@PAH-cit]/PDA NPs) were developed. As expected, the Dox@PAH-cit/PDA NPs exhibited excellent photothermal efficiency. In addition, at a low pH condition, the loaded Dox was released from the NPs due to the amide hydrolysis of PAH-cit. Upon NIR exposure (808 nm), the temperature of the NP solution rapidly increases to kill tumor cells. Compared with unbound chemotherapy drugs, the NPs have a stronger cell uptake ability. In vivo, the PDA NPs were able to efficiently accumulate at the tumor location. After intravenous administration and NIR exposure, tumor growth was significantly inhibited. In summary, the present investigation demonstrated that the Dox@PAH-cit/PDA NPs presented highly effective photothermal chemotherapy for prostate cancer.

  15. Synergistic nanomedicine by combined gene and photothermal therapy.

    PubMed

    Kim, Jinhwan; Kim, Jihoon; Jeong, Cherlhyun; Kim, Won Jong

    2016-03-01

    To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.

  16. Highly Efficient Photothermal Semiconductor Nanocomposites for Photothermal Imaging of Latent Fingerprints.

    PubMed

    Cui, Jiabin; Xu, Suying; Guo, Chang; Jiang, Rui; James, Tony D; Wang, Leyu

    2015-11-17

    Optical imaging of latent fingerprints (LFPs) has been widely used in forensic science and for antiterrorist applications, but it suffers from interference from autofluorescence and the substrates background color. Cu7S4 nanoparticles (NPs), with excellent photothermal properties, were synthesized using a new strategy and then fabricated into amphiphilic nanocomposites (NCs) via polymerization of allyl mercaptan coated on Cu7S4 NPs to offer good affinities toward LFPs. Here, we develop a facile and versatile photothermal LFP imaging method based on the high photothermal conversion efficiency (52.92%, 808 nm) of Cu7S4 NCs, indicating its effectiveness for imaging LFPs left on different substrates (with various background colors), which will be extremely useful for crime scene investigations. Furthermore, by fabricating Cu7S4-CdSe@ZnS NCs, a fluorescent-photothermal dual-mode imaging strategy was used to detect trinitrotoluene (TNT) in LFPs while still maintaining a complete photothermal image of LFP.

  17. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors.

    PubMed

    Chen, Qian; Liu, Xiaodong; Zeng, Jianfeng; Cheng, Zhenping; Liu, Zhuang

    2016-08-01

    Real-time in vivo pH imaging in the tumor, as well as designing therapies responsive to the acidic tumor microenvironment to achieve optimized therapeutic outcomes have been of great interests in the field of nanomedicine. Herein, a pH-responsive near-infrared (NIR) croconine (Croc) dye is able to induce the self-assembly of human serum albumin (HSA) to form HSA-Croc nanoparticles useful not only for real-time ratiometric photoacoustic pH imaging of the tumor, but also for pH responsive photothermal therapy with unexpected great performance against tumors with relatively large sizes. Such HSA-Croc nanoparticles upon intravenous injection exhibit efficient tumor homing. As the decrease of pH, the absorption of Croc at 810 nm would increase while that at 680 nm would decrease, allowing real-time pH sensing in the tumor by double-wavelength ratiometric photoacoustic imaging, which reveals the largely decreased pH inside the cores of large tumors. Moreover, utilizing HSA-Croc as a pH-responsive photothermal agent, effective photothermal ablation of large tumors is realized, likely owing to the more evenly distributed intratumoral heating compared to that achieved by conventional pH-insensitive photothermal agents, which are effective mostly for tumors with small sizes.

  18. Liposomal Indocyanine Green for Enhanced Photothermal Therapy.

    PubMed

    Yoon, Hwan-Jun; Lee, Hye-Seong; Lim, Ji-Young; Park, Ji-Ho

    2017-02-22

    In this study, we engineered liposomal indocyanine green (ICG) to maximize its photothermal effects while maintaining the fluorescence intensity. Various liposomal formulations of ICG were prepared by varying the lipid composition and the molar ratio between total lipid and ICG, and their photothermal characteristics were evaluated under near-infrared irradiation. We showed that the ICG dispersity in the liposomal membrane and its physical interaction with phospholipids were the main factors determining the photothermal conversion efficiency. In phototherapeutic studies, the optimized formulation of liposomal ICG showed greater anticancer effects in a mouse tumor model compared with other liposomal formulations and the free form of ICG. Furthermore, we utilized liposomal ICG to visualize the metastatic lymph node around the primary tumor under fluorescence imaging guidance and ablate the lymph node with the enhanced photothermal effect, indicating the potential for selective treatment of metastatic lymph node.

  19. Photothermal measurements of superconductors

    SciTech Connect

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M.

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  20. Photothermal spectroscopy of aerosols

    SciTech Connect

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 ..mu..m were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO/sub 2/ laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m/sup 2//g at 1087 cm/sup -1/. The absorption coefficient sensitivity of this scheme was less than or equal to 10/sup -8/ cm/sup -1/. The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations.

  1. Development of infrared photothermal deflection spectroscopy (mirage effect) for analysis of condensed-phase aerosols collected in a micro-orifice uniform deposit impactor.

    PubMed

    Dada, Oluwatosin O; Bialkowski, Stephen E

    2008-12-01

    The potential of mid-infrared photothermal deflection spectrometry for aerosol analysis is demonstrated. Ammonium nitrate aerosols are deposited on a flat substrate using a micro-orifice uniform deposit impactor (MOUDI). Photothermal spectroscopy with optical beam deflection (mirage effect) is used to detect deposited aerosols. Photothermal deflection from aerosols is measured by using pulsed infrared laser light to heat up aerosols collected on the substrate. The deflection signal is obtained by measuring the position of a spot from a beam of light as it passes near the heated surface. The results indicate non-rotating impaction as the preferred MOUDI impaction method. Energy-dependent photothermal measurement shows a linear relationship between signal and laser intensity, and no loss of signal with time is observed. The detection limit from the signal-mass curve is 7.31 ng. For 30 minutes collection time and 30 L/min flow rate of the impactor, the limit of detection in terms of aerosol mass concentration is 0.65 microg m(-3).

  2. Bulk Surfaces Coated with Triangular Silver Nanoplates: Antibacterial Action Based on Silver Release and Photo-Thermal Effect

    PubMed Central

    D’Agostino, Agnese; Taglietti, Angelo; Desando, Roberto; Bini, Marcella; Patrini, Maddalena; Dacarro, Giacomo; Cucca, Lucia; Pallavicini, Piersandro; Grisoli, Pietro

    2017-01-01

    A layer of silver nanoplates, specifically synthesized with the desired localized surface plasmon resonance (LSPR) features, was grafted on amino-functionalized bulk glass surfaces to impart a double antibacterial action: (i) the well-known, long-term antibacterial effect based on the release of Ag+; (ii) an “on demand” action which can be switched on by the use of photo-thermal properties of silver nano-objects. Irradiation of these samples with a laser having a wavelength falling into the so called “therapeutic window” of the near infrared region allows the reinforcement, in the timescale of minutes, of the classical antibacterial effect of silver nanoparticles. We demonstrate how using the two actions allows for almost complete elimination of the population of two bacterial strains of representative Gram-positive and Gram-negative bacteria. PMID:28336841

  3. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells.

    PubMed

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical-thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm(2) and 80 mW/cm(2) by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period.

  4. Thermohydrogel Containing Melanin for Photothermal Cancer Therapy.

    PubMed

    Kim, Miri; Kim, Hyun Soo; Kim, Min Ah; Ryu, Hyanghwa; Jeong, Hwan-Jeong; Lee, Chang-Moon

    2016-12-01

    Melanin is an effective absorber of light and can extend to near infrared (NIR) regions. In this study, a natural melanin is presented as a photothermal therapeutic agent (PTA) because it provides a good photothermal conversion efficiency, shows biodegradability, and does not induce long-term toxicity during retention in vivo. Poloxamer solution containing melanin (Pol-Mel) does not show any precipitation and shows sol-gel transition at body temperature. After irradiation from 808 nm NIR laser at 1.5 W cm(-2) for 3 min, the photothermal conversion efficiency of Pol-Mel is enough to kill cancer cells in vitro and in vivo. The tumor growth of mice bearing CT26 tumors treated with Pol-Mel injection and laser irradiation is suppressed completely without recurrence postirradiation. All these results indicate that Pol-Mel can become an attractive PTA for photothermal cancer therapy.

  5. Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity.

    PubMed

    You, Jian; Shao, Ruping; Wei, Xin; Gupta, Sanjay; Li, Chun

    2010-05-07

    Despite advances in controlled drug delivery, reliable methods for activatable, high-resolution control of drug release are needed. The hypothesis that the photothermal effect mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNSs) could modulate the release of anticancer agents is tested with biodegradable and biocompatible microspheres (1-15 microm) containing the antitumor drug paclitaxel (PTX) and HAuNSs (approximately 35 nm in diameter), which display surface plasmon absorbance in the NIR region. HAuNS-containing microspheres exhibit a NIR-induced thermal effect similar to that of plain HAuNSs. Rapid, repetitive PTX release from the PTX/HAuNS-containing microspheres is observed upon irradiation with NIR light (808 nm), whereas PTX release is insignificant when the NIR light is switched off. The release of PTX from the microspheres is readily controlled by the output power of the NIR laser, duration of irradiation, treatment frequency, and concentration of HAuNSs embedded inside the microspheres. In vitro, cancer cells incubated with PTX/HAuNS-loaded microspheres and irradiated with NIR light display significantly greater cytotoxic effects than cells incubated with the microspheres alone or cells irradiated with NIR light alone, owing to NIR-light-triggered drug release. Treatment of human U87 gliomas and MDA-MB-231 mammary tumor xenografts in nude mice with intratumoral injections of PTX/HAuNS-loaded microspheres followed by NIR irradiation results in significant tumor-growth delay compared to tumors treated with HAuNS-loaded microspheres (no PTX) and NIR irradiation or with PTX/HAuNS-loaded microspheres alone. The data support the feasibility of a therapeutic approach in which NIR light is used for simultaneous modulation of drug release and induction of photothermal cell killing.

  6. Modelling and characterization of photothermal effects assisted with gold nanorods in ex vivo samples and in a murine model

    NASA Astrophysics Data System (ADS)

    Lamela Rivera, Horacio; Rodríguez Jara, Félix; Cunningham, Vincent

    2011-03-01

    We discuss in this article the implementation of a laser-tissue interaction and bioheat-transfer 2-D finite-element model for Photothermal Therapy assisted with Gold Nanorods. We have selected Gold Nanorods as absorbing nanostructures in order to improve the efficiency of using compact diode lasers because of their high opto-thermal conversion efficiency at 808 and 850 nm. The goal is to model the distribution of the optical energy among the tissue including the skin absorption effects and the tissue thermal response, with and without the presence of Gold Nanorods. The heat generation due to the optical energy absorption and the thermal propagation will be computationally modeled and optimized. The model has been evaluated and compared with experimental ex-vivo data in fresh chicken muscle samples and in-vivo BALB/c mice animal model.

  7. Effects of heating temperature and duration by gold nanorod mediated plasmonic photothermal therapy on copolymer accumulation in tumor tissue.

    PubMed

    Frazier, Nick; Robinson, Ryan; Ray, Abhijit; Ghandehari, Hamidreza

    2015-05-04

    Previously, water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers have been used with gold nanorod (GNR) mediated plasmonic photothermal therapy (PPTT) to induce hyperthermia (43 °C for 10 min) and have been shown to improve delivery of hydrophobic drugs to treat cancer. However, it was unknown how altering the heating parameters (temperature and duration) of PPTT would affect HPMA copolymer accumulation and retention. This study aimed to investigate how changes in heating parameters, or thermal dose, would change polymer accumulation profiles with PPTT. It was observed that temperatures of either 40, 43, 46, or 49 °C at durations of 10 or 30 min had significant effects on HPMA copolymer accumulation. Mild temperatures led to transient enhancement in accumulation, but more severe temperatures led to tissue and vascular damage, creating slowed dynamics of inflow and outflow of the polymers from the tumor tissue.

  8. Adaptive control of modal properties of optical beams using photothermal effects.

    PubMed

    Arain, Muzammil A; Korth, William Z; Williams, Luke F; Martin, Rodica M; Mueller, Guido; Tanner, D B; Reitze, David H

    2010-02-01

    We present an experimental demonstration of adaptive control of modal properties of optical beams. The control is achieved via heat-induced photothermal actuation of transmissive optical elements. We apply the heat using four electrical heaters in thermal contact with the element. The system is capable of controlling both symmetrical and astigmatic aberrations providing a powerful means for in situ correction and control of thermal aberrations in high power laser systems. We demonstrate a tunable lens with a focusing power varying from minus infinity to -10 m along two axes using SF57 optical glass. Applications of the proposed system include laser material processing, thermal compensation of high laser power radiation, and optical beam steering.

  9. Laser-induced (endo)vascular photothermal effects studied by combined brightfield and fluorescence microscopy in hamster dorsal skin fold venules

    NASA Astrophysics Data System (ADS)

    Bezemer, R.; Heger, M.; van den Wijngaard, J. P. H.; Mordon, S. R.; van Gemert, M. J. C.; Beek, J. F.

    2007-07-01

    The putative features of the (endo)vascular photothermal response, characterized by laser-induced thermal denaturation of blood and vessel wall constituents, have been elucidated individually, but not simultaneously in dynamic, isolated in vivo systems. A hamster dorsal skin fold model in combination with brightfield/fluorescence intravital microscopy was used to examine the effect of laser pulse duration and blood flow velocity on the size of the thermal coagulum, its attachment behavior, and laser-mediated vasomotion. The size of the coagulum and the extent of vasoconstriction and latent vasodilation were proportional to the laser pulse duration, but pulse duration had no effect on coagulum attachment/dislodgement. Blood flow velocity exhibited no significant effect on the studied parameters. The (endo)vascular photothermal response is governed predominantly by laser energy deposition and to a marginal extent by blood flow velocity.

  10. The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo

    NASA Astrophysics Data System (ADS)

    Jang, Cheol; Lee, Jong Hyun; Sahu, Abhishek; Tae, Giyoong

    2015-11-01

    Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a co-operative effect of individual ligands. In this study, a dual ligand targeting nanographene oxide (nGO) was developed by non-covalent interaction with folate and cRGD functionalized pluronic, which allowed precise control of ligand number on the nGO surface and ensured stability under physiological conditions. The tumor targeting abilities of single and dual ligand decorated nGOs were evaluated in vitro by using KB cells, over-expressing folate and integrin αvβ3 receptors. In vitro cellular uptake analysis by flow cytometry and confocal laser scanning microscopy showed enhanced uptake of dual ligand modified nGO compared to any of the single ligand modified nGOs. The cellular uptake of dual targeted cRGD-FA-nGO was increased by 1.9 and 2.4 folds compared to single targeted cRGD-nGO or FA-nGO, respectively. The in vivo biodistribution experiment in a mouse xenograft model also confirmed the synergistic targeting effect of cRGD and folate dual functionalized nGO. A significantly higher tumor accumulation of cRGD-FA-nGO was observed compared to cRGD-nGO or FA-nGO. The higher tumor accumulation of dual targeted nGO resulted in complete ablation of tumor tissue through an enhanced photothermal effect by NIR laser irradiation. Therefore, co-functionalization of a nanoparticle by cRGD and folate is a potentially useful way to enhance the tumor targeting efficacy.Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a

  11. Cancer cell death pathways caused by photothermal and photodynamic effects through gold nanoring induced surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    He, Yulu; Hsiao, Jen-Hung; Yu, Jian-He; Tseng, Po-Hao; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, C. C.; Zhang, Zhenxi

    2017-07-01

    The different death pathways of cancer cells under the conditions of the photothermal (PT), effect, photodynamic (PD) effect, and their combination are evaluated. By incubating cells with Au nanoring (NRI) either linked with the photosensitizer, AlPcS, or not, the illumination of a visible continuous laser for exciting the photosensitizer or an infrared femtosecond laser for exciting the localized surface plasmon resonance of Au NRI, leads to various PT and PD conditions for study. Three different staining dyes are used for identifying the cell areas of different damage conditions at different temporal points of observation. The cell death pathways and apoptotic evolution speeds under different cell treatment conditions are evaluated based on the calibration of the threshold laser fluences for causing early-apoptosis (EA) and necrosis (NE) or late-apoptosis (LA). It is found that with the PT effect only, strong cell NE is generated and the transition from EA into LA is faster than that caused by the PD effect when the EA stage is reached within 0.5 h after laser illumination. By combining the PT and PD effects, in the first few hours, the transition speed becomes lower, compared to the case of the PT effect only, when both Au NRIs internalized into cells and adsorbed on cell membrane exist. When the Au NRIs on cell membrane is removed, in the first few hours, the transition speed becomes higher, compared to the case of the PD effect only.

  12. Dental Photothermal Radiometry: Theoretical Analysis.

    NASA Astrophysics Data System (ADS)

    Matvienko, Anna; Jeon, Raymond; Mandelis, Andreas; Abrams, Stephen

    2007-03-01

    Dental enamel demineralization in its early stages is very difficult to detect with conventional x-rays or visual examination. High-resolution techniques, such as scanning electron microscopy, usually require destruction of the tooth. Photothermal Radiomety (PTR) was recently applied as a safe, non-destructive, and highly sensitive tool for the detection of early dental demineralization, artificially created on the enamel surface. The experiments showed very high sensitivity of the measured signal to incipient changes in the surface structure, emphasizing the clinical capabilities of the method. In order to analyze the biothermophotonic phenomena in a tooth sample during the photothermal excitation, a theoretical model featuring coupled diffuse-photon-density-wave and thermal-wave fields was developed. Numerical simulations identified the effects on the PTR signal of changes in optical and thermal properties of enamel and dentin as a result of demineralization. The model predictions and experimental results will be compared and discussed.

  13. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells

    PubMed Central

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  14. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres

    PubMed Central

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency. PMID:26941842

  15. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres.

    PubMed

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency.

  16. Sequential Drug Release and Enhanced Photothermal and Photoacoustic Effect of Hybrid Reduced Graphene Oxide-Loaded Ultrasmall Gold Nanorod Vesicles for Cancer Therapy

    PubMed Central

    Song, Jibin; Yang, Xiangyu; Jacobson, Orit; Lin, Lisen; Huang, Peng; Niu, Gang; Ma, Qingjie; Chen, Xiaoyuan

    2017-01-01

    We report a hybrid reduced graphene oxide (rGO)-loaded ultrasmall plasmonic gold nanorod vesicle (rGO-AuNRVe) (~65 nm in size) with remarkably amplified photoacoustic (PA) performance and photothermal effects. The hybrid vesicle also exhibits a high loading capacity of doxorubicin (DOX), as both the cavity of the vesicle and the large surface area of the encapsulated rGO can be used for loading DOX, making it an excellent drug carrier. The loaded DOX is released sequentially: near-infrared photothermal heating induces DOX release from the vesicular cavity, and an intracellular acidic environment induces DOX release from the rGO surface. Positron emission tomography imaging showed high passive U87MG tumor accumulation of 64Cu-labeled rGO-AuNRVes (~9.7% ID/g at 24 h postinjection) and strong PA signal in the tumor region. Single intravenous injection of rGO-AuNRVe-DOX followed by low-power-density 808 nm laser irradiation (0.25 W/cm2) revealed effective inhibition of tumor growth due to the combination of chemo- and photothermal therapies. The rGO-AuNRVe-DOX capable of sequential DOX release by laser light and acid environment may have the potential for clinical translation to treat cancer patients with tumors accessible by light. PMID:26308265

  17. Multibuilding Block Janus Synthesized by Seed-Mediated Self-Assembly for Enhanced Photothermal Effects and Colored Brownian Motion in an Optical Trap.

    PubMed

    Sansanaphongpricha, Kanokwan; DeSantis, Michael C; Chen, Hongwei; Cheng, Wei; Sun, Kai; Wen, Bo; Sun, Duxin

    2017-02-01

    The asymmetrical features and unique properties of multibuilding block Janus nanostructures (JNSs) provide superior functions for biomedical applications. However, their production process is very challenging. This problem has hampered the progress of JNS research and the exploration of their applications. In this study, an asymmetrical multibuilding block gold/iron oxide JNS has been generated to enhance photothermal effects and display colored Brownian motion in an optical trap. JNS is formed by seed-mediated self-assembly of nanoparticle-loaded thermocleavable micelles, where the hydrophobic backbones of the polymer are disrupted at high temperatures, resulting in secondary self-assembly and structural rearrangement. The JNS significantly enhances photothermal effects compared to their homogeneous counterpart after near-infrared (NIR) light irradiation. The asymmetrical distribution of gold and iron oxide within JNS also generates uneven thermophoretic force to display active colored Brownian rotational motion in a single-beam gradient optical trap. These properties indicate that the asymmetrical JNS could be employed as a strong photothermal therapy mediator and a fuel-free nanoscale Janus motor under NIR light.

  18. Nanoparticles for photothermal therapies.

    PubMed

    Jaque, D; Martínez Maestro, L; del Rosal, B; Haro-Gonzalez, P; Benayas, A; Plaza, J L; Martín Rodríguez, E; García Solé, J

    2014-08-21

    The current status of the use of nanoparticles for photothermal treatments is reviewed in detail. The different families of heating nanoparticles are described paying special attention to the physical mechanisms at the root of the light-to-heat conversion processes. The heating efficiencies and spectral working ranges are listed and compared. The most important results obtained in both in vivo and in vitro nanoparticle assisted photothermal treatments are summarized. The advantages and disadvantages of the different heating nanoparticles are discussed.

  19. Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs.

    PubMed

    Jones, Stacy; Sinha, Sudarson Sekhar; Pramanik, Avijit; Ray, Paresh Chandra

    2016-11-03

    Drug resistant superbug infection is one of the foremost threats to human health. Plasmonic nanoparticles can be used for ultrasensitive bio-imaging and photothermal killing by amplification of electromagnetic fields at nanoscale "hot spots". One of the main challenges to plasmonic imaging and photothermal killing is design of a plasmonic substrate with a large number of "hot spots". Driven by this need, this article reports design of a three-dimensional (3D) plasmonic "hot spot"-based substrate using gold nanoparticle attached hybrid graphene oxide (GO), free from the traditional 2D limitations. Experimental results show that the 3D substrate has capability for highly sensitive label-free sensing and generates high photothermal heat. Reported data using p-aminothiophenol conjugated 3D substrate show that the surface enhanced Raman spectroscopy (SERS) enhancement factor for the 3D "hot spot"-based substrate is more than two orders of magnitude greater than that for the two-dimensional (2D) substrate and five orders of magnitude greater than that for the zero-dimensional (0D) p-aminothiophenol conjugated gold nanoparticle. 3D-Finite-Difference Time-Domain (3D-FDTD) simulation calculations indicate that the SERS enhancement factor can be greater than 10(4) because of the bent assembly structure in the 3D substrate. Results demonstrate that the 3D-substrate-based SERS can be used for fingerprint identification of several multi-drug resistant superbugs with detection limits of 5 colony forming units per mL. Experimental data show that 785 nm near infrared (NIR) light generates around two times more photothermal heat for the 3D substrate with respect to the 2D substrate, and allows rapid and effective killing of 100% of the multi-drug resistant superbugs within 5 minutes.

  20. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max) is a short day plant. Its flowering and maturity time are controlled by genetic and environmental factors, as well as their interaction. Previous studies have shown that both genetic and environmental factors, mainly photoperiod and temperature control flowering time of soybean...

  1. A Hollow-Structured CuS@Cu2 S@Au Nanohybrid: Synergistically Enhanced Photothermal Efficiency and Photoswitchable Targeting Effect for Cancer Theranostics.

    PubMed

    Deng, Xiaoran; Li, Kai; Cai, Xuechao; Liu, Bin; Wei, Yi; Deng, Kerong; Xie, Zhongxi; Wu, Zhijian; Ma, Ping'an; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun

    2017-09-01

    It is of great importance in drug delivery to fabricate multifunctional nanocarriers with intelligent targeting properties, for cancer diagnosis and therapy. Herein, hollow-structured CuS@Cu2 S@Au nanoshell/satellite nanoparticles are designed and synthesized for enhanced photothermal therapy and photoswitchable targeting theranostics. The remarkably improved photothermal conversion efficiency of CuS@Cu2 S@Au under 808 nm near-infrared (NIR) laser irradiation can be explained by the reduced bandgap and more circuit paths for electron transitions for CuS and Cu2 S modified with Au nanoparticles, as calculated by the Vienna ab initio simulation package, based on density functional theory. By modification of thermal-isomerization RGD targeting molecules and thermally sensitive copolymer on the surface of nanoparticles, the transition of the shielded/unshielded mode of RGD (Arg-Gly-Asp) targeting molecules and shrinking of the thermally sensitive polymer by NIR photoactivation can realize a photoswitchable targeting effect. After loading an anticancer drug doxorubicin in the cavity of CuS@Cu2 S@Au, the antitumor therapy efficacy is greatly enhanced by combining chemo- and photothermal therapy. The reported nanohybrid can also act as a photoacoustic imaging agent and an NIR thermal imaging agent for real-time imaging, which provides a versatile platform for multifunctional theranostics and stimuli-responsive targeted cancer therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics

    PubMed Central

    Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao

    2016-01-01

    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments. PMID:27217837

  3. Effective Targeted Photothermal Ablation of Multidrug Resistant Bacteria and Their Biofilms with NIR-Absorbing Gold Nanocrosses.

    PubMed

    Teng, Choon Peng; Zhou, Tielin; Ye, Enyi; Liu, Shuhua; Koh, Leng Duei; Low, Michelle; Loh, Xian Jun; Win, Khin Yin; Zhang, Lianhui; Han, Ming-Yong

    2016-08-01

    With the rapid evolution of antibiotic resistance in bacteria, antibiotic-resistant bacteria (in particular, multidrug-resistant bacteria) and their biofilms have been becoming more and more difficult to be effectively treated with conventional antibiotics. As such, there is a great demand to develop a nonantibiotic approach in efficiently eliminating such bacteria. Here, multibranched gold nanocrosses with strong near-infrared absorption falling in the biological window, which heat up quickly under near-infrared-light irradiation are presented. The gold nanocrosses are conjugated to secondary and primary antibodies for targeting PcrV, a type III secretion protein, which is uniquely expressed on the bacteria superbug, Pseudomonas aeruginosa. The conjugated gold nanocrosses are capable of completely destroying P. aeruginosa and its biofilms upon near-infrared-light irradiation for 5 min with an 800 nm laser at a low power density of ≈3.0 W cm(-2) . No bacterial activity is detected after 48 h postirradiation, which indicates that the heat generated from the irradiated plasmonic gold nanocrosses attached to bacteria is effective in eliminating and preventing the re-growth of the bacteria. Overall, the conjugated gold nanocrosses allow targeted and effective photothermal ablation of multidrug-resistant bacteria and their biofilms in the localized region with reduced nonspecific damage to normal tissue.

  4. Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics.

    PubMed

    Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao

    2016-01-01

    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments.

  5. 980-nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Liu, Jia; Liang, Shanshan; Sun, Changsen

    2014-10-01

    Photothermal effect (PE) plays a major role in the near-infrared laser interaction with biological tissue. But, quite few interactions can be quantitatively depicted. Here, a two-step model is proposed to describe a 980-nm infrared laser interaction with neuron cell in vitro. First, the laser-induced temperature rises in the cell surrounding area were measured by using an open pipette method and also calculated by solving the heat conduction equation. Second, we recorded the modifications on sodium (Na) channel current in neuron cells directly by using a patch clamp to synchronize the 980-nm laser irradiation and obtained how the electrophysiological function of neuron cells respond to the temperature rise. Then, the activation time constants, τm, were extracted by fitting the sodium currents with the Hodgkin-Huxley model. The infrared laser modulation effect on sodium currents kinetics was examined by taking a ratio between the time constants with and without the laser irradiations. The analysis revealed that the averaged ratio at a specific laser exposure could be well related to the temperature properties of the Na channel protein. These results proved that the modulation of sodium current kinetics of a neuron cell in vitro by 980-nm laser with different-irradiation levels was linearly mediated corresponding to the laser-induced PE.

  6. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles.

    PubMed

    Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J; Jara, Paul

    2016-12-01

    Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix). Graphical Abstract Atomic Force Microscopy observation of the disintegration of a cyclodextrin inclusion compound by gold nanoparticles photothermal effect.

  7. Photosensitizer-Loaded Gold Vesicles with Strong Plasmonic Coupling Effect for Imaging-Guided Photothermal/Photodynamic Therapy

    PubMed Central

    Lin, Jing; Wang, Shouju; Huang, Peng; Wang, Zhe; Chen, Shouhui; Niu, Gang; Li, Wanwan; He, Jie; Cui, Daxiang; Lu, Guangming; Chen, Xiaoyuan; Nie, Zhihong

    2013-01-01

    A multifunctional theranostic platform based on photosensitizer-loaded plasmonic vesicular assemblies of gold nanoparticles (GNPs) is developed for effective cancer imaging and treatment. The gold vesicles (GVs) composed of a monolayer of assembled GNPs show strong absorbance in the near-infrared (NIR) range of 650–800 nm, as a result of the plasmonic coupling effect between neighboring GNPs in the vesicular membranes. The strong NIR absorption and the capability of encapsulating photosensitizer Ce6 in gold vesicles (GVs) enable tri-modality NIR fluorescence/thermal/photoacoustic imaging-guided synergistic photothermal/photodynamic therapy (PTT/PDT) with improved efficacy. The Ce6-loaded GVs (GV-Ce6) have the following characteristics: i) high Ce6 loading efficiency (up to ~18.4 wt%; ii) enhanced cellular uptake efficiency of Ce6; iii) simultaneous tri-modality NIR fluorescence/thermal/photoacoustic imaging; iv) synergistic PTT/PDT treatment with improved efficacy using single wavelength continuous wave laser irradiation. PMID:23721576

  8. Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments

    SciTech Connect

    Terentyuk, G S; Ivanov, A V; Polyanskaya, N I; Maksimova, I L; Skaptsov, A A; Chumakov, D S; Khlebtsov, B N; Khlebtsov, Nikolai G

    2012-05-31

    Photothermal effects are studied under laser irradiation of aqueous suspensions of gold nanorods (in vitro experiments) and mice-inoculated Erlich carcinoma after intravenous injection of gold nanorods with the size 40 Multiplication-Sign 10 nm and plasmon resonance at the wavelength 810 nm (in vivo experiment). In 24 hours after the injection the polyethylene-glycol-coated nanoparticles accumulated in the tumour with the concentration three - four times greater than in healthy muscle tissue. At concentrations, attained as a result of passive accumulation of nanoparticles in the tumour (4 {mu}g per 1 g of tumour), the efficiency of the tumour heating was higher than that in aqueous solutions having the same concentration of nanoparticles. Various mechanisms of this effect are discussed including the difference in thermal physical parameters of water and biotissue, the aggregation of nanoparticles in tissues, the influence of multiple scattering in biotissue, and the nonuniform accumulation of particles in the tumour. Using the Monte Carlo method for simulating multiple scattering of light, it is shown that there are such proportions between the biotissue scattering coefficient and the absorption coefficient of nanoparticles, at which the fraction of absorbed photons in the tissue is higher than that in a transparent medium containing the same nanoparticles. The conclusion is made that the regime of hyperthermia is less efficient for antineoplastic therapy than the thermal damage due to fast short-time heating of the tissues up to the destruction temperature.

  9. Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments

    NASA Astrophysics Data System (ADS)

    Terentyuk, G. S.; Ivanov, A. V.; Polyanskaya, N. I.; Maksimova, I. L.; Skaptsov, A. A.; Chumakov, D. S.; Khlebtsov, B. N.; Khlebtsov, Nikolai G.

    2012-05-01

    Photothermal effects are studied under laser irradiation of aqueous suspensions of gold nanorods (in vitro experiments) and mice-inoculated Erlich carcinoma after intravenous injection of gold nanorods with the size 40 × 10 nm and plasmon resonance at the wavelength 810 nm (in vivo experiment). In 24 hours after the injection the polyethylene-glycol-coated nanoparticles accumulated in the tumour with the concentration three — four times greater than in healthy muscle tissue. At concentrations, attained as a result of passive accumulation of nanoparticles in the tumour (4 μg per 1 g of tumour), the efficiency of the tumour heating was higher than that in aqueous solutions having the same concentration of nanoparticles. Various mechanisms of this effect are discussed including the difference in thermal physical parameters of water and biotissue, the aggregation of nanoparticles in tissues, the influence of multiple scattering in biotissue, and the nonuniform accumulation of particles in the tumour. Using the Monte Carlo method for simulating multiple scattering of light, it is shown that there are such proportions between the biotissue scattering coefficient and the absorption coefficient of nanoparticles, at which the fraction of absorbed photons in the tissue is higher than that in a transparent medium containing the same nanoparticles. The conclusion is made that the regime of hyperthermia is less efficient for antineoplastic therapy than the thermal damage due to fast short-time heating of the tissues up to the destruction temperature.

  10. Photothermal energy conversion by plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cole, Joseph Raymond

    Photothermal energy conversion is important when designing optically active devices based on plasmonic nanoparticles. Many early applications of these nanoparticles, like photothermal tumor ablation, drug delivery, and microfluidic devices, depend on the conversion of light to heat. In this dissertation, we compare three nanoparticle species' theoretical absorption efficiency from electromagnetic calculations with their photothermal transduction efficiency from measurements of temperature in an illuminated system. Several mechanisms that may account for differences between the two efficiencies are suggested. With a view specifically toward clinical applications, our analysis assumes a random orientation of nanorods, as would occur naturally in the tumor vasculature. For the samples studied here, photothermal transduction efficiencies differed only by a factor of two or three, regardless of particle type and concentration. Both experiment and theory show that particle size plays a dominant role in determining transduction efficiency, with smaller particles more efficient for heating and larger particles for combined heating and imaging. Additionally, we evaluate the potential of mixtures of plasmonic nanoparticles for CO 2 scrubbing substrates that could be used in space applications. These measurements indicate possible dynamic nanoscale effects that need to be accounted for when modeling photothermal transduction.

  11. [Study on the Photo-thermal Effect of Gold Nanorods Irradiated with Near Infrared Region Laser in Different Conditions].

    PubMed

    Zhang, Shiwen; He, Xiaoguang; Dong, Shouan; Li, Xiaojiang; Yang, Fulong; Wang, Yuanling

    2015-08-01

    This article explores the possible influencing factor and regular pattern of temperature rise induced by photo-thermal effect of gold nanorods when irradiated with near infrared region (NIR) laser. We used transmission electron microscope and UV-Vis-NIR spectrometer to characterize gold nanorods, then used 808 nm NIR laser with different power to irradiate the gold nanorods in different conditions and measured the temperature of the above solution. The higher the concentration of gold nanorods, the faster the temperature rose and the bigger its amplitude was. When the concentration of gold nanorods was fixed, the relation between power of laser and amplitude of temperature rise was linear. Temperature rise was also related to the shape of container. It could be concluded that amplitude of temperature rise of gold nanorods reaction system was related with concentration of the particles, irradiated power and shape of the container, so that we could control the temperature easily by regulating the irradiated power size of NIR laser in the experiments.

  12. A paper-based detection method of cancer cells using the photo-thermal effect of nanocomposite.

    PubMed

    Zhou, Jianhua; Zheng, Yanping; Liu, Jingjing; Bing, Xin; Hua, Jingjun; Zhang, Hongyan

    2016-01-05

    A novel paper-based dot immune-graphene-gold filtration assay (DIGGFA) for the detection of breast cancer cells was developed based on the photo-thermal effect of graphene oxide (GO)-Au nanocomposite. Anti-EpCAM antibody which specific to the MCF-7 cell surface antigen, was immobilized on the nitrocellulose paper. The GO-Au-anti-EpCAM composite would interact with the MCF-7 cells captured on the nitrocellulose paper. After the test zone was irradiated by a laser, GO-Au nanocomposite could generate heat, temperature contrast was recorded and positive correlated with the cell number. Standard curve was prepared according to the temperature contrast and the cell number. Under optimal conditions, this method could detect a minimum of 600 MCF-7 cells with a near infrared laser and an infrared temperature gun within 15 min. This simple and rapid method could be applied to the clinical diagnosis in hospitals. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer.

    PubMed

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-28

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT.

  14. Molecular Dynamics Study on the Photothermal Actuation of a Glassy Photoresponsive Polymer Reinforced with Gold Nanoparticles with Size Effect.

    PubMed

    Choi, Joonmyung; Chung, Hayoung; Yun, Jung-Hoon; Cho, Maenghyo

    2016-09-14

    We investigated the optical and thermal actuation behavior of densely cross-linked photoresponsive polymer (PRP) and polymer nanocomposites containing gold nanoparticles (PRP/Au) using all-atom molecular dynamics (MD) simulations. The modeled molecular structures contain a large number of photoreactive mesogens with linear orientation. Flexible side chains are interconnected through covalent bonds under periodic boundary conditions. A switchable dihedral potential was applied on a diazene moiety to describe the photochemical trans-to-cis isomerization. To quantify the photoinduced molecular reorientation and its effect on the macroscopic actuation of the neat PRP and PRP/Au materials, we characterized the photostrain and other material properties including elastic stiffness and thermal stability according to the photoisomerization ratio of the reactive groups. We particularly examined the effect of nanoparticle size on the photothermal actuation by varying the diameter of the nanofiller (10-20 Å) under the same volume fraction of 1.62%. The results indicated that the insertion of the gold nanoparticles enlarges the photostrain of the material while enhancing its mechanical stiffness and thermal stability. When the diameter of the nanoparticle reaches a size similar to or smaller than the length of the mesogen, the interfacial energy between the nanofiller and the surrounding polymer matrix does not significantly affect the alignment of the mesogens, but rather the adsorption energy at the interface generates a stable interphase layer. Hence, these improvements were more effective as the size of the gold nanoparticle decreased. The present findings suggest a wider analysis of the nanofiller-reinforced PRP composites and could be a guide for the mechanical design of the PRP actuator system.

  15. Artificial evolution of graphene oxide chemzyme with enantioselectivity and near-infrared photothermal effect for cascade biocatalysis reactions.

    PubMed

    Xu, Can; Zhao, Chuanqi; Li, Meng; Wu, Li; Ren, Jinsong; Qu, Xiaogang

    2014-05-14

    It is highly desirable and challenging when the chemzyme can be not only simply duplicating and imitating the properties of natural enzymes, but also introducing additional new features for practical applications. Herein, we report a zinc-finger-protein like α-helical chiral metallo-supramolecular complex ([Fe2L3](4+)) functionalized graphene oxide (GO-COOH) as a peroxidase mimic. This artificial enzyme integrates the characteristics of both chiral metallo-supramolecular complex and GO-COOH, and shows excellent catalytic activity. More intriguingly, the novel chemzyme turn out to have enantioselectivity and near-infrared photothermal effect. To the best of our knowledge, this is the first example that the chemzyme has such new features. Based on these properties, we have demonstrated three examples for the applications of our designed enzyme: 1) Intracellular H2O2 detection in PC12 cells against Alzheimer's disease; 2) Discrimination between the chiral drug, Levodopa (L-dopa), the gold standard for treating Parkinson's disease and its enantiomer, D-dopa. This is important because L-dopa is the most effective drug at present used to combat Parkinson's disease while D-dopa is inactive and can even cause side effects, thus for drug efficacy it must be free of D-dopa in the formulation; 3) Remote control of enzyme cascade biocatalysis reactions using high transparent, bio-friendly near-infrared (NIR) light. NIR allows remote activation with relatively high spatial and temporal precision. Our work will provide new insights into design and construction of novel chemzyme with more advanced features beyond intrinsic enzyme property. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Predicting photothermal field performance

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Ross, R. G., Jr.

    1984-01-01

    Photothermal field performance in flat plate solar collectors was predicted. An analytical model which incorporates the measured dependency between transmittance loss and UV and temperature exposure levels was developed. The model uses SOLMET weather data extrapolated to 30 years for various sites and module mounting configurations. It is concluded that the temperature is the key to photothermally induced transmittance loss. The sensitivity of transmittance loss to UV level is nonlinear with minimum in curve near one sun. The ethylene vinyl acetate (EVA) results are consistent with 30 year life allocation.

  17. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy

    PubMed Central

    Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong

    2015-01-01

    Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy. PMID:26632249

  18. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy.

    PubMed

    Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong

    2015-12-03

    Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy.

  19. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong

    2015-12-01

    Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy.

  20. Photothermal methods in medicine

    NASA Astrophysics Data System (ADS)

    Murphy, John C.

    2000-10-01

    Photothermal imaging and spectroscopy are being applied to a variety of medical problems for diagnosis and therapy. This paper reviews some aspects of this field including the opportunities presented by non-optical sources and by use of detection methods targeted to the application.

  1. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Jin, Jun-O.; Oh, Junghwan

    2017-03-01

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  2. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy.

    PubMed

    Boca, Sanda C; Potara, Monica; Gabudean, Ana-Maria; Juhem, Aurelie; Baldeck, Patrice L; Astilean, Simion

    2011-12-08

    One of the relevant directions that nanotechnology is taking nowadays is connected with nanomedicine and specifically related to the use of light and nanoparticles in early diagnosis and effective therapeutics of cancer. Noble-metal nanoparticles can act under laser irradiation as effective photothermal transducers for triggering localized hyperthermia of tumors. In this work we report the performance of newly synthesized chitosan-coated silver nanotriangles (Chit-AgNTs) with strong resonances in near-infrared (NIR) to operate as photothermal agents against a line of human non-small lung cancer cells (NCI-H460). The hyperthermia experiments were conducted by excitation of nanoparticles-loaded cells at 800 nm wavelength from a Ti:Sapphire laser. We found that the rate of cell mortality in the presence of Chit-AgNTs is higher than in the presence of thiolated poly(ethylene) glycol capped gold nanorods (PEG-AuNRs) - a common hyperthermia agent used as reference-, while no destructive effects were noticed on the control sample (cells without nanoparticles) under identical irradiation conditions. Additionally, we conducted cytotoxicity assays and found Chit-AgNTs to be efficiently uptaken by the cells while exhibiting good biocompatibility for healthy human embryonic cells (HEK), which is essential for any in vivo applications. Our results reveal a novel class of biocompatible plasmonic nanoparticles with high potential to be implemented as effective phototherapeutic agents in the battle against cancer.

  3. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells.

    PubMed

    Oh, Yunok; Jin, Jun-O; Oh, Junghwan

    2017-03-24

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  4. Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma.

    PubMed

    Cano-Mejia, Juliana; Burga, Rachel A; Sweeney, Elizabeth E; Fisher, John P; Bollard, Catherine M; Sandler, Anthony D; Cruz, Conrad Russell Y; Fernandes, Rohan

    2017-02-01

    We describe "photothermal immunotherapy," which combines Prussian blue nanoparticle (PBNP)-based photothermal therapy (PTT) with anti-CTLA-4 checkpoint inhibition for treating neuroblastoma, a common, hard-to-treat pediatric cancer. PBNPs exhibit pH-dependent stability, which makes them suitable for intratumorally-administered PTT. PBNP-based PTT is able to lower tumor burden and prime an immune response, specifically an increased infiltration of lymphocytes and T cells to the tumor area, which is complemented by the antitumor effects of anti-CTLA-4 immunotherapy, providing a more durable treatment against neuroblastoma in an animal model. We observe 55.5% survival in photothermal immunotherapy-treated mice at 100days compared to 12.5%, 0%, 0%, and 0% survival in mice receiving: anti-CTLA-4 alone, PBNPs alone, PTT alone, and no treatment, respectively. Additionally, long-term surviving, photothermal immunotherapy-treated mice exhibit protection against neuroblastoma rechallenge, suggesting the development of immunity against these tumors. Our findings suggest the potential of photothermal immunotherapy in improving treatments for neuroblastoma.

  5. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer

    NASA Astrophysics Data System (ADS)

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-01

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT.The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT. Electronic supplementary

  6. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy.

    PubMed

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL(-1)). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy.

  7. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy

    PubMed Central

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    2016-01-01

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL−1). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy. PMID:27621625

  8. Photothermal deflection spectroscopy and detection

    SciTech Connect

    Jackson, W. B.; Amer, Nabil M.; Boccara, A. C.; Fournier, D.

    1981-04-15

    The theory for a sensitive spectroscopy based on the photothermal deflection of a laser beam is developed. We consider cw and pulsed cases of both transverse and collinear photothermal deflection spectroscopy for solids, liquids, gases, and thin films. The predictions of the theory are experimentally verified, its implications for imaging and microscopy are given, and the sources of noise are analyzed. The sensitivity and versatility of photothermal deflection spectroscopy are compared with thermal lensing and photoacoustic spectroscopy.

  9. The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites.

    PubMed

    Yi, Dong Hun; Yoo, Hye Jin; Mahapatra, Sibdas Singha; Kim, Yoong Ahm; Cho, Jae Whan

    2014-10-15

    We evaluated the synergistic effect of the hybrid-type nanocarbon, consisting of 1D thin-walled carbon nanotubes (TWNTs) and 2D reduced graphene oxide (RGO), on the shape memory performance of hyperbranched polyurethane composites. The shape recovery of the resulting composites was activated via a photothermal process using a near-infrared laser. The best laser-induced shape recovery performance was achieved for the composites with a 7/3 of TWNT/RGO ratio and a 1wt.% of nanocarbon content. Such result can be explained by good dispersion of TWNTs and RGO in the hyperbranched polymer as well as three-dimensionally enhanced interconnection between carbon nanotubes and graphenes. The optically active TWNTs with a high optical absorption section exhibited high ability of transferring laser-induced thermal energy to polymer matrix whereas RGO provided a high mechanical property to polymer matrix. The tensile modulus and electrical conductivity of the composites also showed a similar dependence on the TWNT/RGO composition ratio as the photothermal shape recovery. Our study demonstrated an effective conversion from light, thermal to mechanical work by irradiating shape memory polymer composite containing hybrid-type fillers using a near-infrared laser.

  10. Photothermal theragnosis synergistic therapy based on bimetal sulphide nanocrystals rather than nanocomposites.

    PubMed

    Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Qin, Jinbao; Zou, Rujia; Xu, Kaibing; Huang, Xiaojuan; Xiao, Zhiyin; Zhang, Wenjun; Lu, Xinwu; Hu, Junqing

    2015-02-25

    A new generation of photothermal theranostic agents is developed based on Cu3BiS3 nanocrystals. A computed tomography imaging response and photothermal effect, as well as near-infrared fluorescence emission, can be simultaneously achieved through Cu3BiS3 nanocrystals rather than frequently used nanocomposites. These results provide some insight into the synergistic effect from bimetal sulphide semiconductor compounds for photothermal theragnosis therapy.

  11. Gold nanorods as photothermal agents and autofluorescence enhancer to track cell death during plasmonic photothermal therapy

    NASA Astrophysics Data System (ADS)

    Kannadorai, Ravi Kumar; Chiew, Geraldine Giap Ying; Luo, Kathy Qian; Liu, Quan

    2015-07-01

    The transverse and longitudinal plasmon resonance in gold nanorods can be exploited to localize the photothermal therapy and influence the fluorescence to monitor the treatment outcome at the same time. While the longitudinal plasmon peak contributes to the photothermal effect, the transverse peak can enhance fluorescence. After cells take in PEGylated nanorods through endocytosis, autofluorescence from endogenous fluorophores such as nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in the mitochondria is enhanced two times, which is a good indicator of the respiratory status of the cell. When cells are illuminated continuously with near infrared laser, the temperature reaches the hyperthermic region within the first four minutes, which demonstrates the efficiency of gold nanorods in photothermal therapy. The cell viability test and autofluorescence intensity show good correlation indicating the progress of cell death over time.

  12. Photothermally activated motion and ignition using aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Abboud, Jacques E.; Chong, Xinyuan; Zhang, Mingjun; Zhang, Zhili; Jiang, Naibo; Roy, Sukesh; Gord, James R.

    2013-01-01

    The aluminum nanoparticles (Al NPs) are demonstrated to serve as active photothermal media, to enhance and control local photothermal energy deposition via the photothermal effect activated by localized surface plasmon resonance (LSPR) and amplified by Al NPs oxidation. The activation source is a 2-AA-battery-powered xenon flash lamp. The extent of the photothermally activated movement of Al NPs can be ˜6 mm. Ignition delay can be ˜0.1 ms. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements of motion-only and after-ignition products confirm significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The positive-feedback effects from the local heat generation amplified by Al oxidation produce a large increase in local temperature and pressure, which enhances movement and accelerates ignition.

  13. Cleaning procedure for improved photothermal background of toroidal optical microresonators

    NASA Astrophysics Data System (ADS)

    Horak, Erik H.; Knapper, Kassandra A.; Heylman, Kevin D.; Goldsmith, Randall H.

    2016-09-01

    High Q-factors and small mode volumes have made toroidal optical microresonators exquisite sensors to small shifts in the effective refractive index of the WGM modes. Eliminating contaminants and improving quality factors is key for many different sensing techniques, and is particularly important for photothermal imaging as contaminants add photothermal background obscuring objects of interest. Several different cleaning procedures including wet- and dry-chemical procedures are tested for their effect on Q-factors and photothermal background. RCA cleaning was shown to be successful in contrast to previously described acid cleaning procedures, most likely due to the different surface reactivity of the acid reagents used. UV-ozone cleaning was shown to be vastly superior to O2 plasma cleaning procedures, significantly reducing the photothermal background of the resonator.

  14. Nonlinear photothermal mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Totachawattana, Atcha; Erramilli, Shyamsunder; Sander, Michelle Y.

    2016-10-01

    Mid-infrared photothermal spectroscopy is a pump-probe technique for label-free and non-destructive sample characterization by targeting intrinsic vibrational modes. In this method, the mid-infrared pump beam excites a temperature-induced change in the refractive index of the sample. This laser-induced change in the refractive index is measured by a near-infrared probe laser using lock-in detection. At increased pump powers, emerging nonlinear phenomena not previously demonstrated in other mid-infrared techniques are observed. Nonlinear study of a 6 μm-thick 4-Octyl-4'-Cyanobiphenyl (8CB) liquid crystal sample is conducted by targeting the C=C stretching band at 1606 cm-1. At high pump powers, nonlinear signal enhancement and multiple pitchfork bifurcations of the spectral features are observed. An explanation of the nonlinear peak splitting is provided by the formation of bubbles in the sample at high pump powers. The discontinuous refractive index across the bubble interface results in a decrease in the forward scatter of the probe beam. This effect can be recorded as a bifurcation of the absorption peak in the photothermal spectrum. These nonlinear effects are not present in direct measurements of the mid-infrared beam. Evolution of the nonlinear photothermal spectrum of 8CB liquid crystal with increasing pump power shows enhancement of the absorption peak at 1606 cm-1. Multiple pitchfork bifurcations and spectral narrowing of the photothermal spectrum are demonstrated. This novel nonlinear regime presents potential for improved spectral resolution as well as a new regime for sample characterization in mid-infrared photothermal spectroscopy.

  15. Mussel-inspired gold hollow superparticles for photothermal therapy.

    PubMed

    Tian, Ye; Shen, Shun; Feng, Jiachun; Jiang, Xingguo; Yang, Wuli

    2015-05-01

    Gold hollow superparticles are prepared taking advantage of the dopamine chemistry. The plasmon coupling of the gold nanoparticles makes the superparticles an effective photothermal conversion agent in the photothermal therapy of cancer. Moreover, the mussel-inspired assembly approach could be extremely useful for the transfer of nanomaterial science to realistic technologies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photothermal heating of nanoribbons

    NASA Astrophysics Data System (ADS)

    Smith, Bennett E.; Zhou, Xuezhe; Davis, E. James; Pauzauskie, Peter J.

    2017-01-01

    Nanoscale optical materials are of great interest for building future optoelectronic devices for information processing and sensing applications. Although heat transfer ultimately limits the maximum power at which nanoscale devices may operate, gaining a quantitative experimental measurement of photothermal heating within single nanostructures remains a challenge. Here, we measure the nonlinear optical absorption coefficient of optically trapped cadmium-sulfide nanoribbons at the level of single nanostructures through observations of their Brownian dynamics during single-beam laser trapping experiments. A general solution to the heat transfer partial differential equation is derived for nanostructures having rectilinear morphology including nanocubes and nanoribbons. Numerical electromagnetic calculations using the discrete-dipole approximation enable the simulation of the photothermal heating source function and the extraction of nonlinear optical absorption coefficients from experimental observations of single nanoribbon dynamics.

  17. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  18. Photothermal lesions in soft tissue induced by optical fiber microheaters

    PubMed Central

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-01-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy. PMID:27446642

  19. Long Range Nanoparticle Surface Energy Transfer Ruler for Monitoring Photothermal Therapy Response

    PubMed Central

    Singh, Anant K.; Lu, Wentong; Senapati, Dulal; Khan, Sadia Afrin; Fan, Zhen; Senapati, Tapas; Demeritte, Teresa; Beqa, Lule; Ray, Paresh Chandra

    2012-01-01

    Gold nanotechnology driven recent approach opens up a new possibility for the destruction of cancer cells through photothermal therapy. Ultimately, photothermal therapy may enter into clinical therapy and as a result, there is an urgent need for techniques to monitor on time tumor response to therapy. Driven by the need, in this article we report nanoparticle surface energy transfer (NSET) approach to monitor photothermal therapy process by measuring the simple fluorescence intensity change. Florescence intensity change is due to the light-controlled photothermal release of ssDNA/RNA via dehybridization during therapy process. Our time dependent results show that just by monitoring fluorescence intensity change, one can monitor photothermal therapy response during therapy process. Possible mechanism and operating principle of our NSET assay have been discussed. Ultimately, this NSET assay could have enormous potential applications in rapid, on-site monitoring of photothermal therapy process, which is critical to providing effective treatment of cancer and MDRB infections. PMID:21744496

  20. Photothermal degradation studies of encapsulants

    NASA Technical Reports Server (NTRS)

    Liang, R. H.

    1984-01-01

    The reliability physics program at JPL is outlined. The overall objectives and approaches are given in the program. The objectives, approaches and conclusions are given for two specific parts of the programs. These two parts are mechanistic studies of photothermal degradation and performance characteristics of materials with respect to photothermal stresses.

  1. Space Environmental Effects Knowledgebase

    NASA Technical Reports Server (NTRS)

    Wood, B. E.

    2007-01-01

    This report describes the results of an NRA funded program entitled Space Environmental Effects Knowledgebase that received funding through a NASA NRA (NRA8-31) and was monitored by personnel in the NASA Space Environmental Effects (SEE) Program. The NASA Project number was 02029. The Satellite Contamination and Materials Outgassing Knowledgebase (SCMOK) was created as a part of the earlier NRA8-20. One of the previous tasks and part of the previously developed Knowledgebase was to accumulate data from facilities using QCMs to measure the outgassing data for satellite materials. The main object of this current program was to increase the number of material outgassing datasets from 250 up to approximately 500. As a part of this effort, a round-robin series of materials outgassing measurements program was also executed that allowed comparison of the results for the same materials tested in 10 different test facilities. Other programs tasks included obtaining datasets or information packages for 1) optical effects of contaminants on optical surfaces, thermal radiators, and sensor systems and 2) space environmental effects data and incorporating these data into the already existing NASA/SEE Knowledgebase.

  2. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Pawlak, M.

    2015-01-01

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 1014-1017 cm-3.

  3. Utilizing the photothermal effect for releasing molecules from the surfaces of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Samsam Bakhtiari, Amir Bahman

    Nanomaterials, with unique physical and chemical properties, have the potential to help in the development of drug delivery systems. Some of these properties can be attributed to the nanoscale dimension of these materials. By masking, targeting, and release of a therapeutic agent, these nanomaterials can provide a delivery system that would reduce side effects. Gold nanoparticles have been studied as a candidate for the drug delivery system. These materials can be decorated with molecules that have a thermally responsive reaction (i.e., Diels-Alder). In addition, gold nanoparticles when irradiated with a right wavelength of light produce heat. Consequently, the generated heat from nanoparticles causes a retro-Diels-Alder reaction, which release a segment of molecule (i.e., payload) from gold surfaces. This controlled release mechanism is a novel method to take advantage of the properties inherent in gold nanoparticles and have the potential to be used in drug delivery system.

  4. Photoacoustic imaging and temperature measurement for photothermal cancer therapy

    PubMed Central

    Shah, Jignesh; Park, Suhyun; Aglyamov, Salavat; Larson, Timothy; Ma, Li; Sokolov, Konstantin; Johnston, Keith; Milner, Thomas; Emelianov, Stanislav Y.

    2009-01-01

    Photothermal therapy is a noninvasive, targeted, laser-based technique for cancer treatment. During photothermal therapy, light energy is converted to heat by tumor-specific photoabsorbers. The corresponding temperature rise causes localized cancer destruction. For effective treatment, however, the presence of photoabsorbers in the tumor must be ascertained before therapy and thermal imaging must be performed during therapy. This study investigates the feasibility of guiding photothermal therapy by using photoacoustic imaging to detect photoabsorbers and to monitor temperature elevation. Photothermal therapy is carried out by utilizing a continuous wave laser and metal nanocomposites broadly absorbing in the near-infrared optical range. A linear array-based ultrasound imaging system is interfaced with a nanosecond pulsed laser to image tissue-mimicking phantoms and ex-vivo animal tissue before and during photothermal therapy. Before commencing therapy, photoacoustic imaging identifies the presence and spatial location of nanoparticles. Thermal maps are computed by monitoring temperature-induced changes in the photoacoustic signal during the therapeutic procedure and are compared with temperature estimates obtained from ultrasound imaging. The results of our study suggest that photoacoustic imaging, augmented by ultrasound imaging, is a viable candidate to guide photoabsorber-enhanced photothermal therapy. PMID:18601569

  5. Rapid fluorometric bacteria detection assay and photothermal effect by fluorescent polymer of coated surfaces and aqueous state.

    PubMed

    Islamy Mazrad, Zihnil Adha; In, Insik; Lee, Kang-Dae; Park, Sung Young

    2017-03-15

    A fluorescent dye and a photothermal agent were grafted onto a cationic polymer for rapid and simple bacteria detection in liquid and solid phase based fluorescence on/off. The integrated poly(vinylpyrrolidone) (PVP) backbone with catechol and bromoethane moieties possesses unique optical properties due to the presence of boron dipyrromethane (BODIPY) and near infared NIR-responsive IR825 (F-PVP). The cationic segments showed distinct fluorescence quenching patterns after interaction with gram-positive and gram-negative bacteria via polyion complex interactions. Fluorescence quenching depended on direct interaction of the bacterial cell membrane, as confirmed using SEM and confocal imaging. The detection limit was 1mg/mL for the liquid-phase assay and the minimal detectable concentration of bacteria using the solid-phase assay was 10(6)CFU/mL. After bacterial detection in contaminated area, our system can directly kill bacteria via the photothermal conversion ability of the IR825 substituent using NIR exposure by polymer solution and limited in coated PP. Finally, the proposed biosensor is capable as potential material for detection of bacteria in simple liquid and solid phase assay.

  6. Photothermal initiation of hybrid organic/inorganic metastable interstitial composites: synergistic effects on the dynamics of energy release.

    PubMed

    Mileham, Melissa L; Park, Chi-Dong; van de Burgt, Lambertus J; Kramer, Michael P; Stiegman, A E

    2008-12-11

    The organic high-energy material pentaerythritol tetranitrate (PETN) was incorporated at low concentrations into Al (100 nm)/Fe(2)O(3) metastable intersitital composites (MIC) to form a hybrid organic/inorganic high-energy material. Studies of the dynamics of energy release were carried out by initiating the reaction photothermally with a single 8 ns pulse of the 1064 nm fundamental of a Nd:YAG laser. The reaction dynamics were measured using time-resolved spectroscopy of the light emitted from the deflagrating material. Two parameters were measured: the time to initiation and the duration of the deflagration. The presence of small amounts of PETN (16 mg/g of MIC) results in a dramatic decrease in the initiation time. This is attributed to a contribution to the temperature of the reacting system from the combustion of the PETN that, at lower loadings, appears to follow an Arrhenius dependence. The presence of PETN was also found to reduce the energy density required for single-pulse photothermal initiation by an order of magnitude, suggesting that hybrid materials such as this may be engineered to optimize their use as an efficient photodetonation medium.

  7. Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy

    PubMed Central

    Sikdar, Debabrata; Rukhlenko, Ivan D.; Cheng, Wenlong; Premaratne, Malin

    2012-01-01

    Despite much research efforts being devoted to the design optimization of metallic nanoshells, no account is taken of the fact that the number of the nanoshells that can be delivered to a given cancerous site vary with their size. In this paper, we study the effect of the nanoshell number density on the absorption and scattering properties of a gold-nanoshell ensemble exposed to a broadband near-infrared radiation, and optimize the nanoshells’ dimensions for efficient cancer treatment by analyzing a wide range of human tissues. We first consider the general situation in which the number of the delivered nanoshells decreases with their mean radius R as ∝ R−β, and demonstrate that the optimal design of nanoshells required to treat cancer most efficiently depends critically on β. In the case of β = 2, the maximal energy absorbed (scattered) by the ensemble is achieved for the same dimensions that maximize the absorption (scattering) efficiency of a single nanoshell. We thoroughly study this special case by the example of gold nanoshells with silica core. To ensure that minimal thermal injury is caused to the healthy tissue surrounding a cancerous site, we estimate the optimal dimensions that minimize scattering by the nanoshells for a desired value of the absorption efficiency. The comparison of gold nanoshells with different cores shows that hollow nanoshells exhibiting relatively low absorption efficiency are less harmful to the healthy tissue and, hence, are preferred over the strongly absorbing nanoshells. For each of the cases analyzed, we provide approximate analytical expressions for the optimal nanoshell dimensions, which may be used as design guidelines by experimentalists, in order to optimize the synthesis of gold nanoshells for treating different types of human cancer at their various growth stages. PMID:23304644

  8. Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy.

    PubMed

    Sikdar, Debabrata; Rukhlenko, Ivan D; Cheng, Wenlong; Premaratne, Malin

    2013-01-01

    Despite much research efforts being devoted to the design optimization of metallic nanoshells, no account is taken of the fact that the number of the nanoshells that can be delivered to a given cancerous site vary with their size. In this paper, we study the effect of the nanoshell number density on the absorption and scattering properties of a gold-nanoshell ensemble exposed to a broadband near-infrared radiation, and optimize the nanoshells' dimensions for efficient cancer treatment by analyzing a wide range of human tissues. We first consider the general situation in which the number of the delivered nanoshells decreases with their mean radius R as ∝ R(-β), and demonstrate that the optimal design of nanoshells required to treat cancer most efficiently depends critically on β. In the case of β = 2, the maximal energy absorbed (scattered) by the ensemble is achieved for the same dimensions that maximize the absorption (scattering) efficiency of a single nanoshell. We thoroughly study this special case by the example of gold nanoshells with silica core. To ensure that minimal thermal injury is caused to the healthy tissue surrounding a cancerous site, we estimate the optimal dimensions that minimize scattering by the nanoshells for a desired value of the absorption efficiency. The comparison of gold nanoshells with different cores shows that hollow nanoshells exhibiting relatively low absorption efficiency are less harmful to the healthy tissue and, hence, are preferred over the strongly absorbing nanoshells. For each of the cases analyzed, we provide approximate analytical expressions for the optimal nanoshell dimensions, which may be used as design guidelines by experimentalists, in order to optimize the synthesis of gold nanoshells for treating different types of human cancer at their various growth stages.

  9. Environmental Effects of BPA

    PubMed Central

    Canesi, Laura

    2015-01-01

    Research on bisphenol A (BPA) as an environmental contaminant has now major regulatory implications toward the ecosystem health, and hence it is incumbent on scientists to do their research to the highest standards possible, in order that the most appropriate decisions are made to mitigate the impacts to aquatic wildlife. However, the contribution given so far appears rather fragmented. The present overview aims to collect available information on the effects of BPA on aquatic vertebrates and invertebrates to provide a general scenario and to suggest future developments toward more comprehensive approaches useful for aquatic species protection. PMID:26674307

  10. Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6MV X-ray on mouth epidermal carcinoma cells.

    PubMed

    Neshastehriz, Ali; Tabei, Mousa; Maleki, Shayan; Eynali, Samira; Shakeri-Zadeh, Ali

    2017-07-01

    The aim of this study was to develop an optimized method for preparation of folate conjugated gold nanoparticles (F-AuNPs) and to investigate its cytotoxic effects and cell apoptosis in combination with photothermal therapy (PTT) and radiotherapy (RT) for the treatment of mouth epidermal carcinoma cells KB. For this purpose, cells were treated with synthesized F-AuNPs at different concentrations for 6h and then irradiated them with laser beam (532nm, 0.5W/cm(2), 15min). After photothermal therapy, the cells were exposed to 6MV X-ray with a single dose of 2Gy. MTT assay were performed to evaluate the cell survival rate and apoptosis was determined by flow cytometry using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit. No significant cell damage or cell apoptosis from the individual treatment of laser light or F-AuNPs was observed, while viability of cells incubated with F-AuNPs and then exposed to the laser was significantly decreased. Additionally, our results demonstrated that F-AuNPs is good radiosensitizers even at a low concentration such as 20μM when megavoltage X-ray is used. Also, when KB cells were treated with F-AuNPs under both laser and X-ray irradiation, the cell viability substantially decreased more than F-AuNPs-enhanced PTT alone or F-AuNPs-enhanced RT alone. Flow cytometry assay clearly indicated that F-AuNPs-mediated photo-thermo-radio therapy significantly induced apoptosis. These results confirm that F-AuNPs is a promising and research-worthy nanoconjugate in the field of targeted photo-thermo-radiotherapy of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Enhanced photothermal cooling of nanowires

    NASA Astrophysics Data System (ADS)

    Guccione, G.; Hosseini, M.; Mirzaei, A.; Slatyer, H. J.; Buchler, B. C.; Lam, P. K.

    2017-09-01

    We investigate the optomechanical interaction between light and metallic nanowires through the action of bolometric forces. We show that the response time of the photothermal forces induced on the nanowire is fast and the strength of the interaction can overcome the radiation pressure force. Furthermore, we suggest the photothermal forces can be enhanced by surface plasmon excitation to cool the sub-megahertz vibrational modes of the nanowires close to its quantum limit.

  12. Analysis of dental materials by photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Conde-Contreras, M.; Tiessler, V.; Cucina, A.; Quintana, P.; Alvarado-Gil, Juan J.

    2005-02-01

    The analysis of teeth is an interesting field, given the importance of these pieces for the individual or for humanity in the case of remains recovered from an archeologically site; therefore, the development of non-destructive techniques is important to study these materials. Photothermal techniques are ones of the most interesting possibilities; they are based in the generation of a train of thermal waves inside of a material due to the illumination with modulated light. Among these techniques photothermal radiometry has an outstanding role, since it is a non-contact technique, based in the detection of infrared emission of the samples heated with the laser. The experimental configuration consists of an Ar laser beam that impinges on the surface of the teeth and the infrared radiation generated is measured using a HgCdTe IR detector. Results for the analysis of cracks on teeth and the low frequency profiles are presented. A strong influence of the signal due to the microstructure of teeth is observed. Furthermore, surface effects are analyzed changing the color of teeth when whitening products are applied. The process of whitening is monitored in real time by optical spectroscopy in the visible and by photothermal radiometry.

  13. Photothermal inactivation of bacteria on plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Santos, Greggy M.; Ibañez de Santi Ferrara, Felipe; Zhao, Fusheng; Rodrigues, Debora F.; Shih, Wei-Chuan

    2016-03-01

    Hospital-acquired bacterial infections are frequently associated with the pathogenic biofilms on surfaces of devices and instruments used in medical procedures. The utilization of thermal plasmonic agents is an innovative approach for sterilizing hospital equipment and for in vivo therapeutic treatment of bacterial infection. A photothermal inactivation technique via array of nanoporous gold disks (NPGDs) has been developed by irradiating near infrared (NIR) light onto deposited bacterial cells (Escherichia coli, Bacillus subtilis, Exiguobacterium AT1B) on the surface of metal nanostructure. The physical and photothermal properties of the NPGD substrate were investigated using topographical scanning electron microscopy (SEM) and thermographic infrared imaging. Bacterial viability studies on NPGD substrates irradiated with and without NIR light were evaluated using a fluorescence-based two-component stain assay. The results show that the heat generated from the NPGD substrate promotes high cell death counts (~100%) at short exposure durations (<25 s) even for thermally-resistant bacterial strains. The photothermal effects on NPGD substrate can lead to point-of-care applications.

  14. In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents.

    PubMed

    Makita, Shuichi; Yasuno, Yoshiaki

    2015-05-01

    In vivo photothermal optical coherence tomography (OCT) is demonstrated for cross-sectional imaging of endogenous absorption agents. In order to compromise the sensitivity, imaging speed, and sample motion immunity, a new photothermal detection scheme and phase processing method are developed. Phase-resolved swept-source OCT and fiber-pigtailed laser diode (providing excitation at 406 nm) are combined to construct a high-sensitivity photothermal OCT system. OCT probe and excitation beam coaxially illuminate and are focused on tissues. The photothermal excitation and detection procedure is designed to obtain high efficiency of photothermal effect measurement. The principle and method of depth-resolved cross-sectional imaging of absorption agents with photothermal OCT has been derived. The phase-resolved thermal expansion detection algorithm without motion artifact enables in vivo detection of photothermal effect. Phantom imaging with a blood phantom and in vivo human skin imaging are conducted. A phantom with guinea-pig blood as absorber has been scanned by the photothermal OCT system to prove the concept of cross-sectional absorption agent imaging. An in vivo human skin measurement is also performed with endogenous absorption agents.

  15. In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents

    PubMed Central

    Makita, Shuichi; Yasuno, Yoshiaki

    2015-01-01

    In vivo photothermal optical coherence tomography (OCT) is demonstrated for cross-sectional imaging of endogenous absorption agents. In order to compromise the sensitivity, imaging speed, and sample motion immunity, a new photothermal detection scheme and phase processing method are developed. Phase-resolved swept-source OCT and fiber-pigtailed laser diode (providing excitation at 406 nm) are combined to construct a high-sensitivity photothermal OCT system. OCT probe and excitation beam coaxially illuminate and are focused on tissues. The photothermal excitation and detection procedure is designed to obtain high efficiency of photothermal effect measurement. The principle and method of depth-resolved cross-sectional imaging of absorption agents with photothermal OCT has been derived. The phase-resolved thermal expansion detection algorithm without motion artifact enables in vivo detection of photothermal effect. Phantom imaging with a blood phantom and in vivo human skin imaging are conducted. A phantom with guinea-pig blood as absorber has been scanned by the photothermal OCT system to prove the concept of cross-sectional absorption agent imaging. An in vivo human skin measurement is also performed with endogenous absorption agents. PMID:26137374

  16. Cu7 S4 Nanosuperlattices with Greatly Enhanced Photothermal Efficiency.

    PubMed

    Cui, Jiabin; Jiang, Rui; Xu, Suying; Hu, Gaofei; Wang, Leyu

    2015-09-02

    According to the simulation, the self-assembly of Cu7 S4 nanocrystals would enhance the photothermal conversion efficiency (PCE) because of the localized surface plasmon resonance effects, which is highly desirable for photothermal therapy (PTT). A new strategy to synthesize Cu7 S4 nanosuperlattices with greatly enhanced PCE up to 65.7% under irradiation of 808 nm near infrared light is reported here. By tuning the surface properties of Cu7 S4 nanocrystals during the synthesis via thermolysis of a new single precursor, dispersed nanoparticles (NPs), rod-like alignments, and nanosuperlattices are obtained, respectively. To explore their PTT applications, these hydrophobic nanostructures are transferred into water by coating with home-made amphiphilic polymer while maintaining their original structures. Under identical conditions, the PCE are 48.62% and 56.32% for dispersed NPs and rod-like alignments, respectively. As expected, when the nanoparticles are self-assembled into nanosuperlattices, the PCE is greatly enhanced up to 65.7%. This strong PCE, along with their excellent photothermal stability and good biocompatibility, renders these nanosuperlattices good candidates as PTT agents. In vitro photothermal ablation performances have undoubtedly proved the excellent PCE of our Cu7 S4 nanosuperlattices. This research offers a versatile and effective solution to get PTT agents with high photothermal efficiency.

  17. Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator

    SciTech Connect

    Goda, Keisuke; Mikhailov, Eugeniy E.; Mavalvala, Nergis; McKenzie, Kirk; McClelland, David E.; Lam, Ping Koy

    2005-10-15

    We study the effect of photothermal fluctuations on squeezed states of light through the photo-refractive effect and thermal expansion in a degenerate optical parametric oscillator (OPO). We also discuss the effect of the photothermal noise in various cases and how to minimize its undesirable consequences. We find that the photothermal noise in the OPO introduces a significant amount of noise on phase squeezed beams, making them less than ideal for low-frequency applications such as gravitational wave (GW) interferometers, whereas amplitude squeezed beams are relatively immune to the photothermal noise and may represent the best choice for application in GW interferometers.

  18. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells.

    PubMed

    Xiao, Jia-Wen; Fan, Shi-Xuan; Wang, Feng; Sun, Ling-Dong; Zheng, Xiao-Yu; Yan, Chun-Hua

    2014-04-21

    Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 10(7) M(-1) cm(-1)), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water and illuminated with an 808 nm laser, the porous Pd NPs give a photothermal conversion efficiency as high as 93.4%, which is comparable to the efficiency of Au nanorods we synthesized (98.6%). As the porous Pd NPs show broadband NIR absorption (650-1200 nm), this allows us to choose multiple laser wavelengths for photothermal therapy. In vitro photothermal heating of HeLa cells in the presence of porous Pd NPs leads to 100% cell death under 808 nm laser irradiation (8 W cm(-2), 4 min). For photothermal heating using 730 nm laser, 70% of HeLa cells were killed after 4 min irradiation at a relative low power density of 6 W cm(-2). These results demonstrated that the porous Pd nanostructure is an attractive photothermal agent for cancer therapy.

  19. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer.

    PubMed

    Xia, Bing; Wang, Bin; Shi, Jisen; Zhang, Yu; Zhang, Qi; Chen, Zhenyu; Li, Jiachen

    2017-03-15

    To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future.

  20. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature.

    PubMed

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-02-04

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.

  1. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-02-01

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.

  2. Polydopamine Nanoparticles for Combined Chemo- and Photothermal Cancer Therapy.

    PubMed

    Zhu, Zhijun; Su, Ming

    2017-06-29

    Cancer therapy with two different modalities can enhance treatment efficacy and reduce side effects. This paper describes a new method for combined chemo- and photothermal therapy of cancer using poly dopamine nanoparticles (PDA-NPs), where PDA-NPs serve not only as a photothermal agent with strong near infrared absorbance and high energy conversion efficiency, but also as a carrier to deliver cisplatin via interaction between cisplatin and catechol groups on PDA-NPs. Polyethylene glycol (PEG) was introduced through Michael addition reaction to improve the stability of PDA-NPs in physiological condition. A remarkable synergistic therapeutic effect has been achieved compared with respective single treatments. This work suggests that the PDA-based nanoplatform can be a universal scaffold for combined chemo- and photothermal therapy of cancer.

  3. Polydopamine Nanoparticles for Combined Chemo- and Photothermal Cancer Therapy

    PubMed Central

    Zhu, Zhijun; Su, Ming

    2017-01-01

    Cancer therapy with two different modalities can enhance treatment efficacy and reduce side effects. This paper describes a new method for combined chemo- and photothermal therapy of cancer using poly dopamine nanoparticles (PDA-NPs), where PDA-NPs serve not only as a photothermal agent with strong near infrared absorbance and high energy conversion efficiency, but also as a carrier to deliver cisplatin via interaction between cisplatin and catechol groups on PDA-NPs. Polyethylene glycol (PEG) was introduced through Michael addition reaction to improve the stability of PDA-NPs in physiological condition. A remarkable synergistic therapeutic effect has been achieved compared with respective single treatments. This work suggests that the PDA-based nanoplatform can be a universal scaffold for combined chemo- and photothermal therapy of cancer. PMID:28661423

  4. Laser heating of metallic nanoparticles for photothermal ablation applications

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Shan, Guangshuai; Yu, Junsheng; Yang, Wei; Ren, Zhaodi; Wang, Xiaohui; Xie, Xi; Chen, Hui-jiuan; Chen, Xiaodong

    2017-02-01

    In order to search for a suitable frequency and material with higher photothermal efficacy for hyperthermia application in cancer treatment, a comparative study on laser heating of Au/Ag nanoparticles and Ag nanowires has been conducted. It is found that gold nanoparticles are more photothermal efficient in comparison with silver nanoparticles and silver nanowires at 450nm and 532 nm. Gold nanoparticles are more heated by 532 nm laser than 450 nm laser. In contrast, silver nanoparticles show slightly less temperature rise at 532 nm than 450 nm laser. For silver nanowires, no significant photothermal effect has been observed. Size-dependent effect study indicates that the absorption efficiency of single gold nanoparticles of larger diameter is higher than that of smaller diameter, in the diameter range of 0-50nm. A mathematical model for describing the heating profile in the heating sample has been built. The mathematical model can be utilized to predict the optimal treatment size of tumor.

  5. Gold over Branched Palladium Nanostructures for Photothermal Cancer Therapy.

    PubMed

    McGrath, Andrew J; Chien, Yi-Hsin; Cheong, Soshan; Herman, David A J; Watt, John; Henning, Anna M; Gloag, Lucy; Yeh, Chen-Sheng; Tilley, Richard D

    2015-12-22

    Bimetallic nanostructures show exciting potential as materials for effective photothermal hyperthermia therapy. We report the seed-mediated synthesis of palladium-gold (Pd-Au) nanostructures containing multiple gold nanocrystals on highly branched palladium seeds. The nanostructures were synthesized via the addition of a gold precursor to a palladium seed solution in the presence of oleylamine, which acts as both a reducing and a stabilizing agent. The interaction and the electronic coupling between gold nanocrystals and between palladium and gold broadened and red-shifted the localized surface plasmon resonance absorption maximum of the gold nanocrystals into the near-infrared region, to give enhanced suitability for photothermal hyperthermia therapy. Pd-Au heterostructures irradiated with an 808 nm laser light caused destruction of HeLa cancer cells in vitro, as well as complete destruction of tumor xenographs in mouse models in vivo for effective photothermal hyperthermia.

  6. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency.

    PubMed

    Li, Jing; Han, Jishu; Xu, Tianshu; Guo, Changrun; Bu, Xinyuan; Zhang, Hao; Wang, Liping; Sun, Hongchen; Yang, Bai

    2013-06-11

    Photothermal therapy using inorganic nanoparticles (NPs) is a promising technique for the selective treatment of tumor cells because of their capability to convert the absorbed radiation into heat energy. Although anisotropic gold (Au) NPs present an excellent photothermal effect, the poor structural stability during storage and/or upon laser irradiation still limits their practical application as efficient photothermal agents. With the aim of improving the stability, in this work we adopted biocompatible polypyrrole (PPy) as the shell material for coating urchinlike Au NPs. The experimental results indicate that a several nanometer PPy shell is enough to maintain the structural stability of NPs. In comparison to the bare NPs, PPy-coated NPs exhibit improved structural stability toward storage, heat, pH, and laser irradiation. In addition, the thin shell of PPy also enhances the photothermal transduction efficiency (η) of PPy-coated Au NPs, resulting from the absorption of PPy in the red and near-infrared (NIR) regions. For example, the PPy-coated Au NPs with an Au core diameter of 120 nm and a PPy shell of 6.0 nm exhibit an η of 24.0% at 808 nm, which is much higher than that of bare Au NPs (η = 11.0%). As a primary attempt at photothermal therapy, the PPy-coated Au NPs with a 6.0 nm PPy shell exhibit an 80% death rate of Hela cells under 808 nm NIR laser irradiation.

  7. The assesment of effectiveness of plasmonic resonance photothermal therapy in tumor-bearing rats after multiple intravenous administration of gold nanorods

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Maslyakova, Galina N.; Navolokin, Nikita A.; Terentyuk, Georgy S.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, V. V.

    2017-03-01

    To assess the effectiveness of plasmonic photothermal therapy (PPT) multiple intravenous strategy of gold nanorods (GNRs) administration was used before laser exposure. The model of alveolar liver cancer PC-1 was used in male outbred albino rats, which were intravenously administrated by single and multiple injections of GNRs and then were treated by PPT. The gold dosage was 400 μg (single injection group), 800 μg (double injection group), 1200 μg (triple injection group), and absorption maximum of gold nanorods suspension was at the wavelength of 808 nm. 24 hours after last injection the tumors were irradiated by the 808-nm diode laser during 15 min at power density 2.3 W/cm2. Temperature control of the tumor heating was provided by IR imager. 24 hours after the PPT the half of animals from each group was withdrawn from the experiments and the sampling tumor tissue for morphological study was performed. In survived animals the growth of tumors was evaluated during 21 days after the PPT. The antitumor effects of PPT after triple intravenous injection were comparable with those obtained at direct intratumoral administration of similar total dose of GNRs. The effectiveness of PPT depended on gold accumulation in tumor, probably, due to sufficient vascularization of tumor tissue.

  8. Single Continuous Near-Infrared Laser-Triggered Photodynamic and Photothermal Ablation of Antibiotic-Resistant Bacteria Using Effective Targeted Copper Sulfide Nanoclusters.

    PubMed

    Dai, Xiaomei; Zhao, Yu; Yu, Yunjian; Chen, Xuelei; Wei, Xiaosong; Zhang, Xinge; Li, Chaoxing

    2017-09-01

    The emergence of antibiotic-resistant bacterial strains has made conventional antibiotic therapies less efficient. The development of a novel nanoantibiotic approach for efficiently ablating such bacterial infections is becoming crucial. Herein, a collection of poly(5-(2-ethyl acrylate)-4-methylthiazole-g-butyl)/copper sulfide nanoclusters (PATA-C4@CuS) was synthesized for efficient capture and effective ablation of levofloxacin-resistant Gram-negative and Gram-positive bacteria upon tissue-penetrable near-infrared (NIR) laser irradiation. In this work, we took advantage of the excellent photothermal and photodynamic properties of copper sulfide nanoparticles (CuSNPs) upon NIR laser irradiation and thiazole derivative as a membrane-targeting cationic ligand toward bacteria. The conjugated nanoclusters could anchor the bacteria to trigger the bacterial aggregation quickly and efficiently kill them. These conjugated nanoclusters could significantly inhibit levofloxacin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens at 5.5 μg/mL under NIR laser irradiation (980 nm, 1.5 W cm(-2), 5 min), which suggested that the heat and reactive oxygen species (ROS) generated from the irradiated CuSNPs attached to bacteria were effective in eliminating and preventing the regrowth of the bacteria. Importantly, the conjugated nanoclusters could promote healing in bacteria-infected rat wounds without nonspecific damage to normal tissue. These findings highlight the promise of the highly versatile multifunctional nanoantibiotics in bacterial infection.

  9. Transverse photothermal beam deflection within a solid

    SciTech Connect

    Spear, J.D.; Russo, R.E. )

    1991-07-15

    The mirage effect within a transparent solid substrate was used for monitoring optical absorption of a thin film. Refractive index gradients, which accompany thermal gradients below the film-coated surface, cause a probe laser beam to be deflected. The spectrum of copper, deposited onto a piece of clear acrylic, was recorded by this method of photothermal deflection. The influence of thermally induced mechanical stresses can alter the effective value of the thermo-optic coefficient of the solid, {ital dn}/{ital dT}.

  10. PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and II window.

    PubMed

    Li, Luoyuan; Liu, Yuxin; Hao, Panlong; Wang, Zhangguo; Fu, Limin; Ma, Zhanfang; Zhou, Jing

    2015-02-01

    PEDOT nanoparticles with a suitable nanosize of 17.2 nm, broad adsorption from 700 to 1250 nm, and photothermal conversion efficiency (η) of 71.1%, were synthesized using an environmentally friendly hydrothermal method. Due to the electrostatic attraction between indocyanine green (ICG) and PEDOT, the stability of ICG in aqueous solution was effectively improved. The PEDOT nanoparticles modified with glutaraldehyde (GTA) targeted bacteria directly, and MTT experiments demonstrated the low toxicity of PEDOT:ICG@PEG-GTA in different bacteria and cells. Pathogenic bacteria were effectively killed by photodynamic therapy (PDT) and photothermal therapy (PTT) with PEDOT:ICG@PEG-GTA in the presence of near-infrared (NIR) irradiation (808 nm for PDT, and 1064 nm for PTT). The combination of the two different bacteriostatic methods was significantly more effective than PTT or PDT alone. The obtained PEDOT:ICG@PEG-GTA may be used as a novel synergistic agent in combination photodynamic and photothermal therapy to inactivate pathogenic bacteria in both the NIR I and II window.

  11. Effective Campus Environmental Assessment.

    ERIC Educational Resources Information Center

    Rappaport, Ann; Creighton, Sarah Hammond

    2003-01-01

    Examines environmental assessments as a decision-making tool, distinguishing broad-based, targeted, and goal-oriented efforts as the three types most commonly practiced on campuses. Discusses benefits and problems associated with these approaches and concludes that the goal-oriented approach is most likely to be successful. Describes Tufts…

  12. Effective Campus Environmental Assessment.

    ERIC Educational Resources Information Center

    Rappaport, Ann; Creighton, Sarah Hammond

    2003-01-01

    Examines environmental assessments as a decision-making tool, distinguishing broad-based, targeted, and goal-oriented efforts as the three types most commonly practiced on campuses. Discusses benefits and problems associated with these approaches and concludes that the goal-oriented approach is most likely to be successful. Describes Tufts…

  13. Nanoshells for photothermal cancer therapy.

    PubMed

    Morton, Jennifer G; Day, Emily S; Halas, Naomi J; West, Jennifer L

    2010-01-01

    Cancer is a leading cause of death in the United States and contributes to yearly rising health care costs. Current methods of treating cancer involve surgical removal of easily accessible tumors, radiation therapy, and chemotherapy. These methods do not always result in full treatment of the cancer and can in many cases damage healthy cells both surrounding the tissue area and systemically. Nanoshells are optically tunable core/shell nanoparticles that can be fabricated to strongly absorb in the near-infrared (NIR) region where light transmits deeply into tissue. When injected systemically, these particles have been shown to accumulate in the tumor due to the enhanced permeability and retention (EPR) effect and induce photothermal ablation of the tumor when irradiated with an NIR laser. Tumor specificity can be increased via functionalizing the nanoshell surface with tumor-targeting moieties. Nanoshells can also be made to strongly scatter light and therefore can be used in various imaging modalities such as dark-field microscopy and optical coherence tomography (OCT).

  14. Photothermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2017-07-01

    Vulnerable plaques are the major cause of cardiovascular disease, but they are difficult to detect with conventional intravascular imaging techniques. Techniques are needed to identify plaque vulnerability based on the presence of lipids in plaque. Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed, which varies with the medium temperature. In TSI, the strain that occurs during tissue temperature change can be used for lipid detection because it has a different tendency depending on the type of tissue. Here, we demonstrate photothermal strain imaging (pTSI) using an intravascular ultrasound catheter. pTSI is performed by slightly and selectively heating lipid using a relatively inexpensive continuous laser source. We applied a speckle-tracking algorithm to US B-mode images for strain calculations. As a result, the strain produced in porcine fat was different from the strain produced in water-bearing gelatin phantom, which made it possible to distinguish the two. This suggests that pTSI could potentially be a way of differentiating lipids in coronary artery.

  15. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells

    NASA Astrophysics Data System (ADS)

    Xiao, Jia-Wen; Fan, Shi-Xuan; Wang, Feng; Sun, Ling-Dong; Zheng, Xiao-Yu; Yan, Chun-Hua

    2014-03-01

    Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 107 M-1 cm-1), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water and illuminated with an 808 nm laser, the porous Pd NPs give a photothermal conversion efficiency as high as 93.4%, which is comparable to the efficiency of Au nanorods we synthesized (98.6%). As the porous Pd NPs show broadband NIR absorption (650-1200 nm), this allows us to choose multiple laser wavelengths for photothermal therapy. In vitro photothermal heating of HeLa cells in the presence of porous Pd NPs leads to 100% cell death under 808 nm laser irradiation (8 W cm-2, 4 min). For photothermal heating using 730 nm laser, 70% of HeLa cells were killed after 4 min irradiation at a relative low power density of 6 W cm-2. These results demonstrated that the porous Pd nanostructure is an attractive photothermal agent for cancer therapy.Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 107 M-1 cm-1), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water

  16. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    PubMed

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  17. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy.

    PubMed

    Deng, Yaoyao; Li, Erdong; Cheng, Xiaju; Zhu, Jing; Lu, Shuanglong; Ge, Cuicui; Gu, Hongwei; Pan, Yue

    2016-02-21

    The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy.

  18. Combined concurrent nanoshell loaded macrophage-mediated photothermal and photodynamic therapies

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Trinidad, Anthony; Christie, Catherine E.; Peng, Qian; Kwon, Young J.; Madsen, Steen

    2015-02-01

    Macrophages loaded with gold nanoshells (AuNS), that convert near infrared light to heat, can be used as transport vectors for photothermal hyperthermia of tumors. The purpose of this study was to investigate the effects of combined macrophage mediated photothermal therapy (PTT) and PDT on head and neck squamous cell carcinoma (HNSCC). The results provide proof of concept for the use of macrophages as a delivery vector of AuNS for photothermal enhancement of the effects of PDT on squamous cell carcinoma. A significant synergy was demonstrated with combined PDT and PTT compared to each modality applied separately.

  19. Biopolymer-Drug Conjugate Nanotheranostics for Multimodal Imaging-Guided Synergistic Cancer Photothermal-Chemotherapy.

    PubMed

    Du, Chang; Qian, Jiwen; Zhou, Linzhu; Su, Yue; Zhang, Rong; Dong, Chang-Ming

    2017-09-20

    Some of the biomedical polymer-drug conjugates are being translated into clinical trials; however, they intrinsically lack photothermal and multi-imaging capabilities, hindering them from imaging-guided precision cancer therapy and complete tumor regression. We introduce a new concept of all-in-one biopolymer-drug conjugate nanotheranostics and prepare a kind of intracellular pH-sensitive polydopamine-doxorubicin (DOX) conjugate nanoparticles (PDCNs) under mild conditions. Significantly, this strategy integrates polymeric prodrug-induced chemotherapy (CT), near-infrared (NIR) light-mediated photothermal therapy (PT), and triple modalities including DOX self-fluorescence, photothermal, and photoacoustic (PA) imaging into one conjugate nanoparticle. The PDCNs present excellent photothermal property, dual stimuli-triggered drug release behavior, and about 12.4-fold blood circulation time compared to free DOX. Small animal fluorescent imaging technique confirms that PDCNs have preferential tumor accumulation effect in vivo, giving a 12.8-fold DOX higher than the control at 12 h postinjection. Upon NIR laser irradiation (5 min, 808 nm, and 2 W·cm(-2)), the PDCN-mediated photothermal effect can quickly elevate the tumor over 50 °C, exhibiting good photothermal and PA imaging functions, of which the PA amplitude is 3.6-fold greater than the control. In vitro and in vivo assays persuasively verify that intravenous photothermal-CT of PDCNs produces synergistic antitumor activity compared to single PT or CT, achieving complete tumor ablation during the evaluation period.

  20. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles.

    PubMed

    Guo, Liangran; Yan, Daisy D; Yang, Dongfang; Li, Yajuan; Wang, Xiaodong; Zalewski, Olivia; Yan, Bingfang; Lu, Wei

    2014-06-24

    Near-infrared light-responsive inorganic nanoparticles have been shown to enhance the efficacy of cancer photothermal ablation therapy. However, current nanoparticle-mediated photothermal ablation is more effective in treating local cancer at the primary site than metastatic cancer. Here, we report the design of a near-infrared light-induced transformative nanoparticle platform that combines photothermal ablation with immunotherapy. The design is based on chitosan-coated hollow CuS nanoparticles that assemble the immunoadjuvants oligodeoxynucleotides containing the cytosine-guanine (CpG) motifs. Interestingly, these structures break down after laser excitation, reassemble, and transform into polymer complexes that improve tumor retention of the immunotherapy. In this "photothermal immunotherapy" approach, photothermal ablation-induced tumor cell death reduces tumor growth and releases tumor antigens into the surrounding milieu, while the immunoadjuvants potentiate host antitumor immunity. Our results indicated that combined photothermal immunotherapy is more effective than either immunotherapy or photothermal therapy alone against primary treated and distant untreated tumors in a mouse breast cancer model. These hollow CuS nanoparticles are biodegradable and can be eliminated from the body after laser excitation.

  1. Environmental Effects in Advanced Intermetallics

    SciTech Connect

    Liu, C.T.

    1998-11-24

    This paper provides a comprehensive review of environmental embrittlement in iron and nickel aluminizes. The embrittlement involves the interaction of these intermetallics with moisture in air and generation of atomic hydrogen, resulting in hydrogen-induced embrittlement at ambient temperatures. Environmental embrittlement promotes brittle grain-boundary fracture in Ni{sub 3}Al alloys but brittle cleavage fracture in Fe{sub 3}Al-FeAl alloys. The embrittlement strongly depends on strain rate, with tensile-ductility increase with increasing strain rate. It has been demonstrated that environmental embrittlement can be alleviated by alloying additions, surface modifications, and control of grain size and shape. Boron tends to segregate strongly to grain boundaries and is most effective in suppressing environmental embrittlement in Ni{sub 3}Al alloys. The mechanistic understanding of alloy effects and environmental embrittlement has led to the development of nickel and iron aluminide alloys with improved properties for structural use at elevated temperatures in hostile environments.

  2. Workshop summary: Space environmental effects

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.; Anspaugh, B. E.

    1991-01-01

    The workshop on Space Environmental Effects is summarized. The underlying concern of the group was related to the question of how well laboratory tests correlate with actual experience in space. The discussion ranged over topics pertaining to tests involving radiation, atomic oxygen, high voltage plasmas, contamination in low earth orbit, and new environmental effects that may have to be considered on arrays used for planetary surface power systems.

  3. Space environmental effects on materials

    NASA Technical Reports Server (NTRS)

    Schwinghmaer, R. J.

    1980-01-01

    The design of long life platforms and structures for space is discussed in terms of the space environmental effects on the materials used. Vacuum, ultraviolet radiation, and charged particle radiation are among the factors considered. Research oriented toward the acquisition of long term environmental effects data needed to support the design and development of large low Earth orbit and geosynchronous Earth orbit space platforms and systems is described.

  4. Controlled temperature photothermal tissue welding.

    PubMed

    C Ilesiz, I

    1999-07-01

    Photothermal tissue welding has been investigated as an alternative surgical tool to improve bonding of a variety of severed tissues. Yet, after almost two decades of research, inconsistencies in interpretation of experimental reports and, consequently, mechanism of this photothermal process as well as control of dosimetry remain an enigma. Widespread clinical use may greatly depend on full automation of light dosimetry to perform durable and reproducible welds with minimal thermal damage to surrounding and/or underlying tissues. Recognizing photothermal damage as a rate process, radiometrically measured tissue surface temperature has been studied as an indirect marker of tissue status during laser irradiation. Dosimetry control systems and surgical devices were developed to perform controlled temperature tissue welding using surface temperature feedback from the site of laser impact. Nevertheless, end points that mark the completion of a durable and stable weld have not been precisely identified, and subsequently, not incorporated into dosimetry control algorithms. This manuscript reviews thermal dosimetry control systems of the 1990s in an attempt to systematically indicate the difficulties encountered so far and to elaborate on major issues for photothermal tissue welding to become a clinical reality in the new millennium. © 1999 Society of Photo-Optical Instrumentation Engineers.

  5. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy

    SciTech Connect

    Papandrew, A B; Stolz, C J; Wu, Z L; Loomis, G E; Falabella, S

    2000-12-11

    Laser conditioning has been shown to improve the laser damage threshold of some optical coatings by greater than 2x. Debate continues within the damage community regarding laser-conditioning mechanisms, but it is clear that nodular ejection is one of the byproducts of the laser conditioning process. To better understand why laser conditioning is so effective, photothermal microscopy was used to measure absorption of coating defects before and after laser exposure. Although a modest absorption reduction was expected due to the lower electric field peaks within a pit and the absence of potentially absorbing nodular seeds, surprisingly, absorption reductions up to 150x were observed. Photothermal microscopy has also been successfully used to correlate laser-induced damage threshold and absorption of defects in hafnia/silica multilayer optical coatings. Defects with high absorption, as indicated by high photothermal signal, have low damage thresholds. Previously a linear correlation of damage threshold and defect photothermal signal was established with films designed and damage tested at 1{omega} (1053 nm) and Brewster's angle (56.4{sup o}), but characterized by photothermal microscopy at 514.5 nm and near-normal angle of incidence (10{sup o}). In this study coatings designed, characterized by photothermal microscopy, and damage tested at the same wavelength, incident angle, and polarization did not have a correlation between defect photothermal signal and absorption.

  6. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Papandrew, A. B.; Stolz, Christopher J.; Wu, Zhouling; Loomis, Gary E.; Falabella, Steven

    2001-04-01

    Laser conditioning has been shown to improve the laser damage threshold of some optical coatings by greater than 2x. Debate continues within the damage community regarding laser-conditioning mechanisms, but it is clear that nodular ejection is one of the byproducts of the laser conditioning process. To better understand why laser conditioning is so effective, photothermal microscopy was used to measure absorption of coating defects before and after laser exposure. Although a modest absorption reduction was expected due to the lower electric field peaks within a pit and the absence of potentially absorbing nodular seeds, surprisingly, absorption reductions up to 150x were observed. Photothermal microscopy has also been successfully used to correlate laser-induced damage threshold and absorption of defects in hafnia/silica multilayer optical coatings. Defects with high absorption, as indicated by high photothermal signal, have low damage thresholds. Previously a linear correlation of damage threshold and defect photothermal signal was established with films designed and damage tested at 1(omega) (1053 nm) and Brewster's angle (56.4 degree(s)), but characterized by photothermal microscopy at 514.5 nm and near-normal angle of incidence (10 degree(s)). In this study coatings designed, characterized by photothermal microscopy, and damage tested at the same wavelength, incident angle, and polarization did not have a correlation between defect photothermal signal and absorption.

  7. Environmental and Welfare Effects

    EPA Pesticide Factsheets

    View English or Spanish-language version of a fact sheet that highlights the key effects that support the EPA’s determination that current and future concentrations of greenhouse gases endanger public welfare.

  8. Ecological effects of environmental change.

    PubMed

    Luque, Gloria M; Hochberg, Michael E; Holyoak, Marcel; Hossaert, Martine; Gaill, Françoise; Courchamp, Franck

    2013-05-01

    This Special Issue of Ecology Letters presents contributions from an international meeting organised by Centre National de la Recherche Scientifique (CNRS) and Ecology Letters on the broad theme of ecological effects of global environmental change. The objectives of these articles are to synthesise, hypothesise and illustrate the ecological effects of environmental change drivers and their interactions, including habitat loss and fragmentation, pollution, invasive species and climate change. A range of disciplines is represented, including stoichiometry, cell biology, genetics, evolution and biodiversity conservation. The authors emphasise the need to account for several key ecological factors and different spatial and temporal scales in global change research. They also stress the importance of ecosystem complexity through approaches such as functional group and network analyses, and of mechanisms and predictive models with respect to environmental responses to global change across an ecological continuum: population, communities and ecosystems. Lastly, these articles provide important insights and recommendations for environmental conservation and management, as well as highlighting future research priorities.

  9. A Multifunctional Biomaterial with NIR Long Persistent Phosphorescence, Photothermal Response and Magnetism.

    PubMed

    Wu, Yiling; Li, Yang; Qin, Xixi; Qiu, Jianrong

    2016-09-20

    There are many reports on long persistent phosphors (LPPs) applied in bioimaging. However, there are few reports on LPPs applied in photothermal therapy (PTT), and an integrated system with multiple functions of diagnosis and therapy. In this work, we fabricate effective multifunctional phosphors Zn3 Ga2 SnO8 : Cr(3+) , Nd(3+) , Gd(3+) with NIR persistent phosphorescence, photothermal response and magnetism. Such featured materials can act as NIR optical biolabels and magnetic resonance imaging (MRI) contrast agents for tracking the early cancer cells, but also as photothermal therapeutic agent for killing the cancer cells. This new multifunctional biomaterial is expected to open a new possibility of setting up an advanced imaging-guided therapy system featuring a high resolution for bioimaging and low side effects for the photothermal ablation of tumors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Targeted lipid-polyaniline hybrid nanoparticles for photoacoustic imaging guided photothermal therapy of cancer

    NASA Astrophysics Data System (ADS)

    Wang, Jinping; Yan, Ran; Guo, Fang; Yu, Meng; Tan, Fengping; Li, Nan

    2016-07-01

    Designing a targeted and versatile photothermal agent for the integration of precise diagnosis and effective photothermal treatment of tumors is desirable but remains a great challenge. In this study, folic acid ligand conjugated lipid-coated polyaniline hybrid nanoparticles (FA-Lipid-PANI NPs) were successfully fabricated by a distinctive technology. The obtained hybrid FA-Lipid-PANI NPs with small size exhibited not only significant photoacoustic (PA) imaging signals, but also a remarkable photothermal effect for tumor treatment. With PA imaging and photothermal therapy (PTT), the tumor could be accurately positioned and thoroughly eradicated in vivo after intravenous injection of FA-Lipid-PANI NPs. These multifunctional nanoparticles could play an important role in simultaneously facilitating imaging and PTT to achieve better therapeutic efficacy.

  11. Distribution of multidirectional environmental effects

    SciTech Connect

    Bitner-Gregersen, E.M.

    1996-12-31

    An extension of the joint environmental model developed for Haltenbanken (off central Norway) is presented. The existing model is limited to the following environmental parameters: 1-hour mean wind speed, current speed, significant wave height (sea and swell), spectral peak period (sea and swell), the main wave direction (wind and current are assumed to be collinear with the main wave direction) and sea water level. The model has been based on experience gained from measurements and hindcast data from the Norwegian Continental Shelf. The extension of the joint environmental model includes the possibility of environmental effects approaching from different directions. It is based on hindcast data and developed for severe weather conditions. A procedure for inclusion a lower limit in the wave period distribution, as an alternative to application of a double peak spectrum, is also proposed. The model is meant to provide an input to reliability analysis of offshore structures.

  12. Cooperative Strategies for Enhancing Performance of Photothermal Therapy (PTT) Agent: Optimizing Its Photothermal Conversion and Cell Internalization Ability.

    PubMed

    Du, Baoji; Ma, Chongbo; Ding, Guanyu; Han, Xu; Li, Dan; Wang, Erkang; Wang, Jin

    2017-01-23

    Photothermal conversion ability (PCA) and cell internalization ability (CIA) are two key factors for determining the performance of photothermal agents. The previous studies mostly focus on improving the PCA by exploring new photothermal nanomaterials. Herein, the authors take the hybrids of graphene and gold nanostar (GGN) as an example to investigate the gradually enhanced phototherapy effect by changing the PCA and CIA of photothermal therapy (PTT) agent simultaneously. Based on the GGN, the GGN and the reduced GGN protected by bovine serum albumin (BSA) or BSA-FA (folic acid) are prepared, which are named as GGNB, rGGNB, and rGGNB-FA, respectively. The rGGNB showed an enhanced PCA compared to GGNB, leading to strong cell ablation. On the other hand, the 1,2-dioleoyl-3-trimethylammoniumpropan (DOTAP) can activate the endocytosis and promote the CIA of rGGNB, further help rGGNB to be more internalized into the cells. Finally, rGGNB-FA with the target ability can make itself further internalized into the cells with the aid of DOTAP, which can significantly destroy the cancer cells even at the low laser density of 0.3 W cm(-2) . Therefore, a new angle of view is brought out for researching the PTT agents of high performance.

  13. A Facile Strategy to Prepare Dendrimer-stabilized Gold Nanorods with Sub-10-nm Size for Efficient Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Wang, Xinyu; Wang, Hanling; Wang, Yitong; Yu, Xiangtong; Zhang, Sanjun; Zhang, Qiang; Cheng, Yiyun

    2016-03-01

    Gold (Au) nanoparticles are promising photothermal agents with the potential of clinical translation. However, the safety concerns of Au photothermal agents including the potential toxic compositions such as silver and copper elements in their structures and the relative large size-caused retention and accumulation in the body post-treatment are still questionable. In this article, we successfully synthesized dendrimer-stabilized Au nanorods (DSAuNRs) with pure Au composition and a sub-10-nm size in length, which represented much higher photothermal effect compared with dendrimer-encapsulated Au nanoparticles due to their significantly enhanced absorption in the near-infrared region. Furthermore, glycidol-modified DSAuNRs exhibited the excellent biocompatibility and further showed the high photothermal efficiency of killing cancer cells in vitro and retarding tumor growth in vivo. The investigation depicted an optimal photothermal agent with the desirable size and safe composition.

  14. A Facile Strategy to Prepare Dendrimer-stabilized Gold Nanorods with Sub-10-nm Size for Efficient Photothermal Cancer Therapy

    PubMed Central

    Wang, Xinyu; Wang, Hanling; Wang, Yitong; Yu, Xiangtong; Zhang, Sanjun; Zhang, Qiang; Cheng, Yiyun

    2016-01-01

    Gold (Au) nanoparticles are promising photothermal agents with the potential of clinical translation. However, the safety concerns of Au photothermal agents including the potential toxic compositions such as silver and copper elements in their structures and the relative large size-caused retention and accumulation in the body post-treatment are still questionable. In this article, we successfully synthesized dendrimer-stabilized Au nanorods (DSAuNRs) with pure Au composition and a sub-10-nm size in length, which represented much higher photothermal effect compared with dendrimer-encapsulated Au nanoparticles due to their significantly enhanced absorption in the near-infrared region. Furthermore, glycidol-modified DSAuNRs exhibited the excellent biocompatibility and further showed the high photothermal efficiency of killing cancer cells in vitro and retarding tumor growth in vivo. The investigation depicted an optimal photothermal agent with the desirable size and safe composition. PMID:26956895

  15. Photothermal Analysis of Thin Films.

    DTIC Science & Technology

    1984-08-10

    81-C-0418 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK International Business Machines Corp. AREA & wORK UNIT NUMBERS...different from Report) ____ __DTIC Is. SUPPLEMENTARY rES L 1a To be published in Chemical Physics 19. KEY WORDS (Continue on reverse side it neceesa...and identify by mock number) Photothermal Analysis, Depth Profiling Q 20. ABSTRACT (Continue an revere side It necessary and Identify by block number

  16. Analysis of the Thermo-Reflectivity Coefficient Influence Using Photothermal Pump-Probe Techniques.

    PubMed

    Zanuto, Vitor S; Capeloto, Otávio A; Sandrini, Marcelo; Malacarne, Luis C; Astrath, Nelson G C; Bialkowski, Stephen E

    2016-11-18

    Recent improvements in the modeling of photo-induced thermo-optical-mechanical effects have broadened the application of photothermal techniques to a large class of solids and fluids. During laser excitation, changes in optical reflectivity due to temperature variation may affect the photothermal signal. In this study, the influence of the reflectivity change due to heating is analyzed for two pump-probe photothermal techniques, thermal lens and thermal mirror. A linear equation for the temperature dependence of the reflectivity is derived, and the solution is tested using optical properties of semi-transparent and opaque materials. For semi-transparent materials, the influence of the reflectivity change in photothermal signals is less than 0.01%, while for opaque materials it is lower than 3%.

  17. Dendrimer-Templated Ultrasmall and Multifunctional Photothermal Agents for Efficient Tumor Ablation.

    PubMed

    Zhou, Zhengjie; Wang, Yitong; Yan, Yang; Zhang, Qiang; Cheng, Yiyun

    2016-04-26

    Ultrasmall and multifunctional nanoparticles are highly desirable for photothermal cancer therapy, but the synthesis of these nanoparticles remains a huge challenge. Here, we used a dendrimer as a template to synthesize ultrasmall photothermal agents and further modified them with multifunctional groups. Dendrimer-encapsulated nanoparticles (DENPs) including copper sulfide, platinum, and palladium nanoparticles possessed a sub-5 nm size and exhibited an excellent photothermal effect. DENPs were further modified with TAT or RGD peptides to facilitate their cellular uptake and targeting delivery to tumors. They were also decorated with fluorescent probes for real-time imaging and tracking of the particles' distribution. The in vivo study revealed RGD-modified DENPs efficiently reduced the tumor growth upon near-infrared irradiation. In all, our study provides a facile and flexible scaffold to prepare ultrasmall and multifunctional photothermal agents.

  18. Combined Photothermal and Surface-Enhanced Raman Spectroscopy Effect from Spiky Noble Metal Nanoparticles Wrapped within Graphene-Polymer Layers: Using Layer-by-layer Modified Reduced Graphene Oxide as Reactive Precursors.

    PubMed

    Li, Xiangming; Zhang, Yihe; Wu, Yaling; Duan, Yang; Luan, Xinglong; Zhang, Qian; An, Qi

    2015-09-02

    To fabricate functionally integrated hybrid nanoparticles holds high importance in biomedical applications and is still a challenging task. In this study, we report the first reduced graphene oxide (rGO)-nobel metal hybrid particles that present simultaneously the photothermal and surface-enhanced Raman spectroscopy (SERS) effect from the inorganic part and drug loading, dispersibility, and controllability features from LbL polyelectrolyte multilayers. The hybrid particles where spiky noble metal particles were wrapped within rGO-polyelectrolyte layers were prepared by a facile and controllable method. rGO template modified using polyethylenimine (PEI) and poly(acrylic acid) (PAA) via layer-by-layer technology served as the reactive precursors, and the morphologies of the particles could be facilely controlled via controlling the number of bilayers around the rGO template. The hybrid particle presented low cytotoxicity. After loading doxorubicin hydrochloride, the particles effectively induced cell death, and photothermal treatment further decreased cell viability. rGO-Ag hybrid particles could be prepared similarly. We expect the reported method provides an effective strategy to prepare rGO-noble metal hybrid nanoparticles that find potential biomedical applications.

  19. A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy.

    PubMed

    Liu, Yang; Ashton, Jeffrey R; Moding, Everett J; Yuan, Hsiangkuo; Register, Janna K; Fales, Andrew M; Choi, Jaeyeon; Whitley, Melodi J; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R; Kirsch, David G; Badea, Cristian T; Vo-Dinh, Tuan

    2015-01-01

    Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.

  20. A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy

    PubMed Central

    Liu, Yang; Ashton, Jeffrey R.; Moding, Everett J.; Yuan, Hsiangkuo; Register, Janna K.; Fales, Andrew M.; Choi, Jaeyeon; Whitley, Melodi J.; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Kirsch, David G.; Badea, Cristian T.; Vo-Dinh, Tuan

    2015-01-01

    Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy. PMID:26155311

  1. NEURODEVELOPMENTAL EFFECTS OF ENVIRONMENTAL EXPOSURES

    EPA Science Inventory

    Neurodevelopmental Effects of Environmental Exposures
    Sherry G. Selevan, Pauline Mendola, Deborah C. Rice (US EPA, Washington,
    DC)

    The nervous system starts development early in gestation and continues to develop through adolescence. Thus, critical windows of vuln...

  2. Place Effects on Environmental Views

    ERIC Educational Resources Information Center

    Hamilton, Lawrence C.; Colocousis, Chris R.; Duncan, Cynthia M.

    2010-01-01

    How people respond to questions involving the environment depends partly on individual characteristics. Characteristics such as age, gender, education, and ideology constitute the well-studied "social bases of environmental concern," which have been explained in terms of cohort effects or of cognitive and cultural factors related to social…

  3. NEURODEVELOPMENTAL EFFECTS OF ENVIRONMENTAL EXPOSURES

    EPA Science Inventory

    Neurodevelopmental Effects of Environmental Exposures
    Sherry G. Selevan, Pauline Mendola, Deborah C. Rice (US EPA, Washington,
    DC)

    The nervous system starts development early in gestation and continues to develop through adolescence. Thus, critical windows of vuln...

  4. Place Effects on Environmental Views

    ERIC Educational Resources Information Center

    Hamilton, Lawrence C.; Colocousis, Chris R.; Duncan, Cynthia M.

    2010-01-01

    How people respond to questions involving the environment depends partly on individual characteristics. Characteristics such as age, gender, education, and ideology constitute the well-studied "social bases of environmental concern," which have been explained in terms of cohort effects or of cognitive and cultural factors related to social…

  5. Vapor concentration measurement with photothermal deflectometry

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Xiao, Rong-Fu; Rosenberger, Franz

    1988-01-01

    Theoretical and experimental results for using the photothermal deflection technique to measure vapor species concentration, while minimizing the disturbance of the transport (material) parameters due to vapor heating, are developed and described. In contrast to common practice, the above constraints require using a pump-beam duty cycle of less than 50 percent. The theoretical description of the shortened heating time is based on a step-function formulation of the pumping cycle. The results are obtained as closed-form solutions of the energy equation for many chopping cycles until steady state is reached, by use of a Green's-function method. The Euler formulation of the Fermat principle is used to calculate the deflection angle. The equations are expanded to include the effects of vapor velocity on both the temperature and temperature gradient profiles. The effects of finite (unfocused) pump and probe beams and thermal (Soret) diffusion are also accounted for. Excellent agreement between theory and experiment is obtained.

  6. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy.

    PubMed

    Li, Xian; Yan, Yue; Lin, Yuanzhe; Jiao, Jian; Wang, Da; Di, Donghua; Zhang, Ying; Jiang, Tongying; Zhao, Qinfu; Wang, Siling

    2017-05-15

    In this study, hollow mesoporous carbon nanoparticles (HMCN) and mesoporous carbon nanoparticles (MCN) were used as near-infrared region (NIR) nanomaterials and drug nanocarriers were prepared using different methods. A comparison between HMCN and MCN was performed with regard to the NIR-induced photothermal effect and drug loading efficiency. The results of NIR-induced photothermal effect test demonstrated that HMCN-COOH had a better photothermal conversion efficacy than MCN-COOH. Given the prominent photothermal effect of HMCN-COOH in vitro, the chemotherapeutic drug DOX was chosen as a model drug to further evaluate the drug loading efficiencies and NIR-triggered drug release behaviors of the nanocarriers. The drug loading efficiency of DOX/HMCN-COOH was found to be up to 76.9%, which was higher than that of DOX/MCN-COOH. In addition, the use of an 808nm NIR laser markedly increased the release of DOX from both carbon carriers in pH 5.0 PBS and pH 7.4 PBS. Cellular photothermal tests involving A549 cells demonstrated that HMCN-COOH had a much higher photothermal efficacy than MCN-COOH. Cell viability experiments and flow cytometry were performed to evaluate the therapeutic effect of DOX/HMCN-COOH and the results obtained demonstrated that DOX/HMCN-COOH had a synergistic therapeutic effect in cancer treatment involving a combination of chemotherapy and photothermal therapy.

  7. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  8. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging.

    PubMed

    Turko, Nir A; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  9. Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma.

    PubMed

    Lin, Min; Wang, Dandan; Liu, Shuwei; Huang, Tingting; Sun, Bin; Cui, Yan; Zhang, Daqi; Sun, Hongchen; Zhang, Hao; Sun, Hui; Yang, Bai

    2015-09-23

    Electron transition materials on the basis of transition metal ions usually possess higher photothermal transduction efficiency but lower extinction ability, which have not been considered as efficient photothermal agents for therapeutic applications. In this work, we demonstrate a facile and feasible approach for enhancing 808 nm photothermal conversion effect of d orbits transition Cu(II) ions by forming Cu-carboxylate complexes. The coordination with carboxylate groups greatly enlarges the splitting energy gap of Cu(II) and the capability of electron transition, thus enhancing the extinction ability in near-infrared region. The cupreous complexes are further loaded in biocompatible and biodegradable polymer nanoparticles (NPs) of chitosan to temporarily lower the toxicity, which allows the photothermal therapy of human oral epithelial carcinoma (KB) cells in vitro and KB tumors in vivo. Animal experiments indicate the photothermal tumor inhibition rate of 100%. In addition, the gradual degradation of chitosan NPs leads to the release of cupreous complexes, thus exhibiting additional chemotherapeutic behavior in KB tumor treatment. Onefold chemotherapy experiments indicate the tumor inhibition rate of 93.1%. The combination of photothermal therapy and chemotherapy of cupreous complex-loaded chitosan NPs indicates the possibility of inhibiting tumor recurrence.

  10. Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy.

    PubMed

    Tang, Jinglong; Jiang, Xiumei; Wang, Liming; Zhang, Hui; Hu, Zhijian; Liu, Ying; Wu, Xiaochun; Chen, Chunying

    2014-04-07

    Due to aspect ratio dependent localized surface plasmon resonance (SPR), gold nanorods (Au NRs) can be tuned to have a strong absorption in the near infrared region (NIR) and convert light to heat energy, which shows promises in cancer photothermal therapy. In this study, we introduced another more efficient NIR photothermal agent, Au nanorods coated with a shell of Pt nanodots (Au@Pt nanostructures). After surface modification with Pt dots, the Au@Pt nanostructure became a more efficient photothermal therapy agent as verified both in vitro and in vivo. To clarify the mechanism, we assessed the interaction between the MDA-MB-231 cells with Au@Pt or Au NRs. Results showed that the slightly higher uptake and the reduced sensitivity of the longitudinal SPR band on the intracellular aggregate state may contribute to the better photothermal efficiency for Au@Pt NRs. The theoretical studies further confirmed that the Au@Pt nanostructure itself exhibited better photothermal efficiency compared to Au NRs. These advantages make the Au@Pt nanostructure a more attractive and effective agent for cancer photothermal therapy than general Au NRs.

  11. Combined photothermal lens and photothermal mirror characterization of polymers.

    PubMed

    Aréstegui, Odon S; Poma, Patricia Y N; Herculano, Leandro S; Lukasievicz, Gustavo V B; Guimarães, Francine B; Malacarne, Luis C; Baesso, Mauro L; Bialkowski, Stephen E; Astrath, Nelson G C

    2014-01-01

    We propose a combined thermal lens and thermal mirror method as concurrent photothermal techniques for the physical characterization of polymers. This combined method is used to investigate polymers as a function of temperature from room temperature up to 170 °C. The method permits a direct determination of thermal diffusivity and thermal conductivity. Additional measurements of specific heat, linear thermal expansion, and temperature-dependent optical path change are also performed. A complete set of thermal, optical, and mechanical properties of polycarbonate and poly (methyl methacrylate) samples are obtained. Methods presented here can be useful for in situ characterization of semitransparent materials, where fast and non-contacting measurements are required.

  12. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    PubMed

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  13. Simulation of morphologically structured photo-thermal neural stimulation

    NASA Astrophysics Data System (ADS)

    Weissler, Y.; Farah, N.; Shoham, S.

    2017-10-01

    Objective. Rational design of next-generation techniques for photo-thermal excitation requires the development of tools capable of modeling the effects of spatially- and temporally-dependent temperature distribution on cellular neuronal structures. Approach. We present a new computer simulation tool for predicting the effects of arbitrary spatiotemporally-structured photo-thermal stimulation on 3D, morphologically realistic neurons. The new simulation tool is based on interfacing two generic platforms, NEURON and MATLAB and is therefore suited for capturing different kinds of stimuli and neural models. Main results. Simulation results are validated using photo-absorber induced neuro-thermal stimulation (PAINTS) empirical results, and advanced features are explored. Significance. The new simulation tool could have an important role in understanding and investigating complex optical stimulation at the single-cell and network levels.

  14. HEALTH AND ENVIRONMENTAL EFFECTS DOCUMENT ...

    EPA Pesticide Factsheets

    Health and Environmental Effects Documents (HEEDS) are prepared for the Office of Solid Waste and Emergency Response (OSWER). This document series is intended to support listings under the Resource Conservation and Recovery Act (RCRA) as well as to provide health-related limits and goals for emergency and remedial actions under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency Program Office files are evaluated as they pertain to potential human health, aquatic life and environmental effects of hazardous waste constituents. Several quantitative estimates are presented provided sufficient data are available. For systemic toxicants, these include Reference Doses (RfDs) for chronic and subchronic exposures for both the inhalation and oral exposures. In the case of suspected carcinogens, RfDs may not be estimated. Instead, a carcinogenic potency factor, or q1*, is provided. These potency estimates are derived for both oral and inhalation exposures where possible. In addition, unit risk estimates for air and drinking water are presented based on inhalation and oral data, respectively. Reportable quantities (RQs) based on both chronic toxicity and carcinogenicity are derived. The RQ is used to determine the quantity of a hazardous substance for which notification is required in the event of a release as specified under CERCLA.

  15. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages

    NASA Astrophysics Data System (ADS)

    Qin, Jinbao; Peng, Zhiyou; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yuan, Fukang; Yang, Xinrui; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-08-01

    Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography

  16. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.

    PubMed

    Lal, Surbhi; Clare, Susan E; Halas, Naomi J

    2008-12-01

    Much of the current excitement surrounding nanoscience is directly connected to the promise of new nanoscale applications in cancer diagnostics and therapy. Because of their strongly resonant light-absorbing and light-scattering properties that depend on shape, noble metal nanoparticles provide a new and powerful tool for innovative light-based approaches. Nanoshellsspherical, dielectric core, gold shell nanoparticleshave been central to the development of photothermal cancer therapy and diagnostics for the past several years. By manipulating nanoparticle shape, researchers can tune the optical resonance of nanoshells to any wavelength of interest. At wavelengths just beyond the visible spectrum in the near-infrared, blood and tissue are maximally transmissive. When nanoshell resonances are tuned to this region of the spectrum, they become useful contrast agents in the diagnostic imaging of tumors. When illuminated, they can serve as nanoscale heat sources, photothermally inducing cell death and tumor remission. As nanoshell-based diagnostics and therapeutics move from laboratory studies to clinical trials, this Account examines the highly promising achievements of this approach in the context of the challenges of this complex disease. More broadly, these materials present a concrete example of a highly promising application of nanochemistry to a biomedical problem. We describe the properties of nanoshells that are relevant to their preparation and use in cancer diagnostics and therapy. Specific surface chemistries are necessary for passive uptake of nanoshells into tumors and for targeting specific cell types by bioconjugate strategies. We also describe the photothermal temperature increases that can be achieved in surrogate structures known as tissue phantoms and the accuracy of models of this effect using heat transport analysis. Nanoshell-based photothermal therapy in several animal models of human tumors have produced highly promising results, and we include

  17. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.

    PubMed

    Zhang, Cai; Fu, Yan-Yan; Zhang, Xuejun; Yu, Chunshui; Zhao, Yan; Sun, Shao-Kai

    2015-08-07

    Photothermal therapy as a physical therapeutic approach has greatly attracted research interest due to its negligible systemic effects. Among the various photothermal agents, CuS nanoparticles have been widely used due to their easy preparation, low cost, high stability and strong absorption in the NIR region. However, the ambiguous biotoxicity of CuS nanoparticles limited their bio-application. So it is highly desirable to develop biocompatible CuS photothermal agents with the potential of clinical translation. Herein, we report a novel method to synthesize biocompatible CuS nanoparticles for photothermal therapy using bovine serum albumin (BSA) as a template via mimicking biomaterialization processes. Owing to the inherent biocompatibility of BSA, the toxicity assays in vitro and in vivo showed that BSA-CuS nanoparticles possessed good biocompatibility. In vitro and in vivo photothermal therapies were performed and good results were obtained. The bulk of the HeLa cells treated with BSA-CuS nanoparticles under laser irradiation (808 nm) were killed, and the tumor tissues of mice were also successfully eliminated without causing any obvious systemic damage. In summary, a novel strategy for the synthesis of CuS nanoparticles was developed using BSA as the template, and the excellent biocompatibility and efficient photothermal therapy effects of BSA-CuS nanoparticles show great potential as an ideal photothermal agent for cancer treatment.

  18. Cooperative Nanoparticle System for Photothermal Tumor Treatment without Skin Damage.

    PubMed

    Piao, Ji-Gang; Liu, Dong; Hu, Kan; Wang, Limin; Gao, Feng; Xiong, Yujie; Yang, Lihua

    2016-02-03

    How to ablate tumors without using skin-harmful high laser irradiance remains an ongoing challenge for photothermal therapy. Here, we achieve this with a cooperative nanosystem consisting of gold nanocage (AuNC) "activator" and a cationic mammalian-membrane-disruptive peptide, cTL, as photothermal antenna and anticancer agent, respectively. Specifically, this nanosystem is prepared by grafting cTL onto AuNC via a Au-S bond, followed by attachment of thiolated polyethylene glycol (PEG) for stealth effects. Upon NIR irradiation at skin-permissible dosage, the resulting cTL/PEG-AuNC nanoparticle effectively ablates both irradiated and nonirradiated cancer cells, likely owing to cTL being responsively unleashed by intracellular thiols exposed to cTL/PEG-AuNC via membrane damage initiated by AuNC's photothermal effects and deteriorated by the as-released cTL. When administered systematically in a mouse model, cTL/PEG-AuNC populates tumors through their porous vessels and effectively destroys them without damaging skin.

  19. Multifunctional diagnostic, nanothermometer, and photothermal nano-devices

    NASA Astrophysics Data System (ADS)

    Green, Kory; Wirth, Janina; O'Connor, Megan; Lim, Shuang Fang

    2015-08-01

    Photothermal treatment is a valuable part of cancer therapies, in which the temperature of the heated region must rise to at least 40-45°C for protein destruction to occur[1, 2]. In practice, heating temperature distributions are typically non-uniform, resulting in incomplete kill of cancer cells. Gold nanorods (AuNRs) show strong absorption in the near infrared which leads to a strong plasmonic photothermal (PPT) effect. However, basic scientific understanding of AuNR local temperature and heat transfer to local surroundings has not been investigated in detail. In our study, the near infrared (NIR) excited Upconversion nanoparticle (UCNP)-AuNR nanostructure combines the powerful diagnostic and thermal sensing capacity of UCNPs, with the known therapeutic property of AuNRs. We show enhanced upconverted emission with AuNRs coupling, improving diagnostic capacity of the construct. We demonstrate mapping of the temperature profile within tumor tissue phantom medium, at high spatial and temporal sensitivity.

  20. Photothermal Heating via Gold Nanorods within Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Bochinski, Jason; Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph; Clarke, Laura

    2015-03-01

    Metal nanoparticles under continuous-wave (cw) optical excitation resonant with their localized surface plasmon exhibit a photothermal effect, efficiently converting the incident light into heat originating from the particle. Gold nanorods (GNRs) dispersed within a transparent material are utilized as such remotely-controlled, nano-sized heaters, with heating properties which can be manipulated and monitored by using control of the polarization direction of the excitation and probe light fields. Steady-state average temperatures within a polymer matrix embedded with GNRs undergoing cw photothermal heating are determined in the immediate vicinity of the GNR by observing the rate of driven physical rotation of the nanorods, and simultaneously across the entire sample by using an independent fluorescence method. Comparing these two observations as the concentration of dispersed GNRs is varied reveals the interplay between local and global heating in these polymer nanocomposite materials. Support from US National Science Foundation (CMMI-0800237, CMMI-106910).

  1. Comparison of the photothermal effects of 808nm gold nanorod and indocyanine green solutions using an 805nm diode laser

    NASA Astrophysics Data System (ADS)

    Hasanjee, Aamr M.; Zhou, Feifan; West, Connor; Silk, Kegan; Doughty, Austin; Bahavar, Cody F.; Chen, Wei R.

    2016-03-01

    Non-invasive laser immunotherapy (NLIT) is a treatment method for metastatic cancer which combines noninvasive laser irradiation with immunologically modified nanostructures to ablate a primary tumor and induce a systemic anti-tumor response. To further expand the development of NLIT, two different photosensitizing agents were compared: gold nanorods (GNR) with an optical absorption peak of 808 nm and indocyanine green (ICG) with an optical absorption peak of ~800 nm. Various concentrations of GNR and ICG solutions were irradiated at different power densities using an 805 nm diode laser, and the temperature of the solutions was monitored during irradiation using a thermal camera. For comparison, dye balls made up of a 1:1 volume ratio of gel solution to GNR or ICG solution were placed in phantom gels and were then irradiated using the 805 nm diode laser to imitate the effect of laser irradiation on in vivo tumors. Non-invasive laser irradiation of GNR solution for 2 minutes resulted in a maximum increase in temperature by 31.8 °C. Additionally, similar irradiation of GNR solution dye ball within phantom gel for 10 minutes resulted in a maximum temperature increase of 8.2 °C. Comparatively, non-invasive laser irradiation of ICG solution for 2 minutes resulted in a maximum increase in temperature by 28.0 °C. Similar irradiation of ICG solution dye ball within phantom gel for 10 minutes yielded a maximum temperature increase of only 3.4 °C. Qualitatively, these studies showed that GNR solutions are more effective photosensitizing agents than ICG solution.

  2. CW/pulsed NIR irradiation of gold nanorods: effect on transdermal protein delivery mediated by photothermal ablation.

    PubMed

    Tang, Hengmin; Kobayashi, Hiroaki; Niidome, Yasuro; Mori, Takeshi; Katayama, Yoshiki; Niidome, Takuro

    2013-10-28

    Transdermal delivery is a useful and attractive method for drug delivery, even though the stratum corneum is a major barrier of protein translocation into the skin. To achieve protein delivery through the stratum corneum, we first cast gold nanorods, acting as a heating device in response to near-infrared light irradiation, onto the skin surface. After applying an aqueous solution of ovalbumin to the skin, the skin was irradiated by near-infrared laser light. Irradiation of the skin using a continuous-wave laser increased the skin temperature resulting in an efficient translocation of ovalbumin into the skin. Furthermore, migration of inflammation cells and induction heat shock protein 70 (HSP70) were observed. Irradiation of the skin using a pulsed laser caused an enhanced permeability of the stratum corneum without an increase in skin temperature, migration of inflammation cells, or HSP70 induction. This effect is due to the pulsed-laser irradiation increasing the temperature of a limited part of the skin surface. Thus, the physiological response of skin is dependent on the type of laser light used. It is anticipated that this phenomenon will find wide application in such applications as, for example, general transdermal protein delivery and transdermal vaccination.

  3. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J.; Jara, Paul

    2016-04-01

    Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix).

  4. 15 CFR 971.406 - Environmental effects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Environmental effects. 971.406 Section....406 Environmental effects. Before issuing or transferring a commercial recovery permit, the... to result in a significant adverse environmental effect, taking into account the analyses...

  5. 15 CFR 971.406 - Environmental effects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Environmental effects. 971.406 Section....406 Environmental effects. Before issuing or transferring a commercial recovery permit, the... to result in a significant adverse environmental effect, taking into account the analyses...

  6. 15 CFR 971.406 - Environmental effects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental effects. 971.406 Section....406 Environmental effects. Before issuing or transferring a commercial recovery permit, the... to result in a significant adverse environmental effect, taking into account the analyses...

  7. 15 CFR 971.406 - Environmental effects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Environmental effects. 971.406 Section....406 Environmental effects. Before issuing or transferring a commercial recovery permit, the... to result in a significant adverse environmental effect, taking into account the analyses...

  8. Photothermal characterization of encapsulant materials for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Gupta, A.; Distefano, S.

    1982-01-01

    A photothermal test matrix and a low cost testing apparatus for encapsulant materials of photovoltaic modules were defined. Photothermal studies were conducted to screen and rank existing as well as future encapsulant candidate materials and/or material formulations in terms of their long term physiochemical stability under accelerated photothermal aging conditions. Photothermal characterization of six candidate pottant materials and six candidate outer cover materials were carried out. Principal products of photothermal degradation are identified. Certain critical properties are also monitored as a function of photothermal aging.

  9. Photothermal and immunological reactions against metastatic tumors using laser photosensitizer immunoadjuvant

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; El-Samad, Ahmad; Nordquist, Robert E.

    1999-06-01

    Photothermal tissue interaction is the most common phenomenon when laser energy is deposited in tissue. Because of the sensitivity of cancer cells to temperature increase, photothermal reaction can be an effective mechanism of direct cancer destruction using lasers. Tumor-specific immune response is crucial in achieving systemic and long-term cures for cancers, particularly for metastatic cancers. Can photothermal interaction induce sufficient immunological reaction when the local destruction of tumor cells occurs? To achieve selective photothermal destruction, indocyanine green as a photosensitizer was directly injected into rat mammary tumors, followed by irradiation of 805 nm laser light. Although extensive photothermal tumor killing was achieved and tumor growth was slowed down immediately following the treatment, photothermal reaction alone was shown not sufficient in controlling the treated primary tumors and their metastases. When an immunoadjuvant was used with the indocyanine green, however, the same laser treatment not only could eventually eradicate the treated primary tumors but also eradicate the untreated metastases at remote sites. The tumor eradication went through a growth-regression process over a period of six to nine weeks post-treatment, indicating an induced immune response. The Western Blot analysis using the serum from a laser-immunotherapy cured rat showed that the tumor-specific antibody induced by the treatment had a long- lasting effect. Our experimental data indicated that photothermal interaction alone was not sufficient to slow and eventually reverse tumor growth. However, it can reduce the tumor burden and at the same time release tumor antigens to be recognized by the host immune system. Therefore, in conjunction with specific immunological stimulation using in situ immunoadjuvants, the selective thermal injury to tumors plays an important and a direct role in this laser immunotherapy.

  10. Facile fabrication of a C60-polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy.

    PubMed

    Hu, Zhen; Zhao, Feng; Wang, Yafei; Huang, Yudong; Chen, Lei; Li, Nan; Li, Jun; Li, Zhenhui; Yi, Guoxing

    2014-09-25

    A C60-polydopamine-graphene nanohybrid is prepared by a facile approach via polydopamine chemistry. The hybrid displays synergistic photodynamic and photothermal cancer cell killing effects under single light irradiation.

  11. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  12. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  13. Copper selenide nanocrystals for photothermal therapy.

    PubMed

    Hessel, Colin M; Pattani, Varun P; Rasch, Michael; Panthani, Matthew G; Koo, Bonil; Tunnell, James W; Korgel, Brian A

    2011-06-08

    Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980 nm. When excited with 800 nm light, the Cu(2-x)Se nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu(2-x)Se nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 min of laser irradiation at 33 W/cm(2), demonstrating the viabilitiy of Cu(2-x)Se nanocrystals for photothermal therapy applications.

  14. Atomic oxygen damage characterization by photothermal scanning

    NASA Technical Reports Server (NTRS)

    Williams, A. W.; Wood, N. J.; Zakaria, A. B.

    1993-01-01

    In this paper we use a photothermal imaging technique to characterize the damage caused to an imperfectly coated gold-coated Kapton sample exposed to successively increased fluences of atomic oxygen in a laboratory atomic source.

  15. Photothermal image cytometry of human neutrophils

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry

    2001-07-01

    Photothermal imaging, when being applied to the study of living cells, provides morpho-functional information about the cell populations. In technical terms, the method is complementary to optical microscopy. The photothermal method was used for cell imaging and quantitative studies. Preliminary results of the studies on living human neutrophils are presented. Differences between normal and pathological neutrophil populations from blood of healthy donors and patients with saracoidosis and pleuritis are demonstrated.

  16. White Light Pump-Probe Photothermal Mirror Spectrophotometer

    NASA Astrophysics Data System (ADS)

    Hlaing, May; Marcano, Aristides

    2016-05-01

    We develop a new kind of spectrophotometer based on the photothermal mirror effect. The absorption of a focused tunable pump light by first atomic layers of the sample's surface generates a nanometric surface distortion or bump of thermal origin. A probe beam of light of fixed wavelength and with spot dimensions much larger than the pump beam's spot is used to test this thermal distortion. Changes in the wave-front of the reflected probe beam yields changes of the diffraction pattern of the reflected beam at the far field which can be used to produce a signal proportional to the amount of released heat. Tuning of the wavelength of the pump field generates a photothermal mirror spectrum. As tunable pump source we use the light from a Xenon arc-lamp filtered using a series of interference filter. This way we generate tunable pump light in the spectral region of 370-730 nm with a HWHM of 5 nm and power density of the order of tens of microwatts per nanometer. We obtain photothermal mirror spectra of metallic surfaces and other non-transparent samples. We show that these spectra are fundamentally different from the usual reflectance spectra which measure the percentage of the total of the total energy reflected by the surface.

  17. Magnetic nanohybrids loaded with bimetal core-shell-shell nanorods for bacteria capture, separation, and near-infrared photothermal treatment.

    PubMed

    Hu, Bo; Wang, Ning; Han, Lu; Chen, Ming-Li; Wang, Jian-Hua

    2015-04-20

    A novel antimicrobial nanohybrid based on near-infrared (NIR) photothermal conversion is designed for bacteria capture, separation, and sterilization (killing). Positively charged magnetic reduced graphene oxide with modification by polyethylenimine (rGO-Fe3 O4 -PEI) is prepared and then loaded with core-shell-shell Au-Ag-Au nanorods to construct the nanohybrid rGO-Fe3 O4 -Au-Ag-Au. NIR laser irradiation melts the outer Au shell and exposes the inner Ag shell, which facilitates controlled release of the silver shell. The nanohybrids combine physical photothermal sterilization as a result of the outer Au shell with the antibacterial effect of the inner Ag shell. In addition, the nanohybrid exhibits high heat conductivity because of the rGO and rapid magnetic-separation capability that is attributable to Fe3 O4 . The nanohybrid provides a significant improvement of bactericidal efficiency with respect to bare Au-Ag-Au nanorods and facilitates the isolation of bacteria from sample matrixes. A concentration of 25 μg mL(-1) of nanohybrid causes 100 % capture and separation of Escherichia coli O157:H7 (1×10(8) cfu mL(-1) ) from an aqueous medium in 10 min. In addition, it causes a 22 °C temperature rise for the surrounding solution under NIR irradiation (785 nm, 50 mW cm(-2) ) for 10 min. With magnetic separation, 30 μg mL(-1) of nanohybrid results in a 100 % killing rate for E. coli O157:H7 cells. The facile bacteria separation and photothermal sterilization is potentially feasible for environmental and/or clinical treatment.

  18. Overview of Photothermal Spectroscopy

    DTIC Science & Technology

    1987-06-01

    While IBR measurements discussed here are all "linear" with respect to the excitation intensity, nonlinear effects can sometimes be significant ( Wetsel ...desirable noncontact nature of the detection method. More detailed considerations have been given by Rose et al. (1986), Murphy and Wetsel (1986...Instrum. 57, 622. Mandelis, A., L. M. L. Borm, and J. Tiessinga, 1986, Rev. Sci. Instrum. 57, 630. McDonald, F. A., G. C. Wetsel , Jr., and G. E. Jamics

  19. Chlorin e6 conjugated copper sulfide nanoparticles for photodynamic combined photothermal therapy.

    PubMed

    Bharathiraja, Subramaniyan; Manivasagan, Panchanathan; Moorthy, Madhappan Santha; Bui, Nhat Quang; Lee, Kang Dae; Oh, Junghwan

    2017-09-01

    The photo-based therapeutic approaches have attracted tremendous attention in recent years especially in treatment and management of tumors. Photodynamic and photothermal are two major therapeutic modalities which are being applied in clinical therapy. The development of nanomaterials for photodynamic combined with photothermal therapy has gained significant attention for its treatment efficacy. In the present study, we designed chlorin e6 (Ce6) conjugated copper sulfide (CuS) nanoparticles (CuS-Ce6 NPs) through amine functionalization and the synthesized nanoparticles act as a dual-model agent for photodynamic therapy and photothermal therapy. CuS-Ce6 NPs showed enhanced photodynamic effect through generation of singlet oxygen upon 670nm laser illumination. The same nanoparticles exerted thermal response under an 808nm laser at 2W/cm(2). The fabricated nanoparticles did not show any cytotoxic effect toward breast cancer cells in the absence of light. In vitro cell viability assay showed a potent cytotoxicity in photothermal and photodynamic treatment. Rather than singular treatment, the photodynamic combined photothermal treatment showed an enhanced cytotoxic effect on treated cells. In addition, the CuS-Ce6 NPs exert a photoacoustic signal for non-invasive imaging of treated cells in tissue-mimicking phantom. In conclusion the CuS-Ce6 NPs act as multimodal agent for photo based imaging and therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Coating Carbon Nanosphere with Patchy Gold for Production of Highly Efficient Photothermal Agent.

    PubMed

    Wang, Xiaoxiao; Cao, Dongwei; Tang, Xuejiao; Yang, Jingjing; Jiang, Daoyong; Liu, Mei; He, Nongyue; Wang, Zhifei

    2016-08-03

    Gold- or carbon-based photothermal therapy (PTT) agents have shown encouraging therapeutic effects of PTT in the near-infrared region (NIR) in many preclinical animal experiments. It is expected that gold/carbon hybrid nanomaterial will possess combinational NIR light absorption and can achieve further improvement in photothermal conversion efficiency. In this work, we design and construct a novel PTT agent by coating a carbon nanosphere with patchy gold. To synthesize this composite particle with Janus structure, a new versatile approach based on a facile adsorption-reduction method was presented. Different from the conventional fabrication procedures, the formation of patchy gold in this approach is mainly a thermodynamics-driven spontaneous process. The results show that when compared with the conventional PTT agent gold nanorod the obtained nanocomposites not only have higher photothermal conversion efficiency but also perform more thermally stable. On the basis of these outstanding photothermal effects, the in vitro and in vivo photothermal performances in a MCF-7 cells (human breast adenocarcinoma cell line) and mice were investigated separately. Additionally, to further illustrate the advantage of this asymmetric structure, their potential was explored by selective surface functionalization, taking advantage of the affinity of both patchy gold and carbon domain to different functional molecules. These results suggest that this new hybrid nanomaterial can be used as an effective PTT agent for cancer treatment in the future.

  1. 15 CFR 971.406 - Environmental effects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Environmental effects. 971.406 Section... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Issuance/Transfer....406 Environmental effects. Before issuing or transferring a commercial recovery permit, the...

  2. 15 CFR 970.506 - Environmental effects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Environmental effects. 970.506 Section... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Issuance/Transfer/Terms... Environmental effects. Before issuing or transferring an exploration license, the Administrator must find that...

  3. Photothermal degradation studies

    NASA Technical Reports Server (NTRS)

    Liang, R. H.

    1985-01-01

    Key reaction intermediates of photooxidation identified and characterized by laser flash Electron Spin Resonance (ESR) spectroscopy were discussed. Effects of temperature and ultraviolet intensity were studied in order to develop meaningful accelerated testing procedures for encapsulant evaluation. In a program to study the failure of Tedlar/ethylene vinyl acetate (EVA)/stainless steel modules, failure modes similar to those observed outdoors in real-time conditions were simulated in accelerated testing. An experimental technique was developed to quantitatively assess the extent of degradation.

  4. Starburst Triggering and Environmental Effects

    NASA Astrophysics Data System (ADS)

    Combes, F.

    Introduction Stability of a two-fluid medium Mechanisms to trigger starbursts Dynamical mechanisms: non-axisymmetry and torques Angular momentum transfer for the stellar component Angular momentum transfer for the gas component feedback and self-regulation Fueling activity by bars The inner Lindblad resonance Nuclear disks and nuclear bars Bar destruction through mass concentration Gas-dominated central disk Environmental effects Numerical codes and gas modelling Star-formation processes Formation of large complexes Lessons from mergers Gas morphology in mergers Tidal tails and dark matter Ring galaxies Groups and clusters Rich clusters Galaxy evolution Evolution along the hubble sequence Fragility of disks Evolution at high redshift Gas and dark matter Hot gas in rich clusters Self-gravity and fractal structure of the ISM Conclusion

  5. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.

    PubMed

    Tian, Qiwei; Jiang, Feiran; Zou, Rujia; Liu, Qian; Chen, Zhigang; Zhu, Meifang; Yang, Shiping; Wang, Jinglong; Wang, Jianhua; Hu, Junqing

    2011-12-27

    Photothermal ablation (PTA) therapy has a great potential to revolutionize conventional therapeutic approaches for cancers, but it has been limited by difficulties in obtaining biocompatible photothermal agents that have low cost, small size (<100 nm), and high photothermal conversion efficiency. Herein, we have developed hydrophilic plate-like Cu(9)S(5) nanocrystals (NCs, a mean size of ∼70 nm × 13 nm) as a new photothermal agent, which are synthesized by combining a thermal decomposition and ligand exchange route. The aqueous dispersion of as-synthesized Cu(9)S(5) NCs exhibits an enhanced absorption (e.g., ∼1.2 × 10(9) M(-1) cm(-1) at 980 nm) with the increase of wavelength in near-infrared (NIR) region, which should be attributed to localized surface plasmon resonances (SPR) arising from p-type carriers. The exposure of the aqueous dispersion of Cu(9)S(5) NCs (40 ppm) to 980 nm laser with a power density of 0.51 W/cm(2) can elevate its temperature by 15.1 °C in 7 min; a 980 nm laser heat conversion efficiency reaches as high as 25.7%, which is higher than that of the as-synthesized Au nanorods (23.7% from 980 nm laser) and the recently reported Cu(2-x)Se NCs (22% from 808 nm laser). Importantly, under the irradiation of 980 nm laser with the conservative and safe power density over a short period (∼10 min), cancer cells in vivo can be efficiently killed by the photothermal effects of the Cu(9)S(5) NCs. The present finding demonstrates the promising application of the Cu(9)S(5) NCs as an ideal photothermal agent in the PTA of in vivo tumor tissues.

  6. Photothermal conversion of CO₂ into CH₄ with H₂ over Group VIII nanocatalysts: an alternative approach for solar fuel production.

    PubMed

    Meng, Xianguang; Wang, Tao; Liu, Lequan; Ouyang, Shuxin; Li, Peng; Hu, Huilin; Kako, Tetsuya; Iwai, Hideo; Tanaka, Akihiro; Ye, Jinhua

    2014-10-20

    The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar-light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h(-1) g(-1)) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h(-1) g(-1)) were thus achieved. It is proposed that the overall water-based CO2 conversion process can be achieved by combining light-driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo-induced green-chemistry processes.

  7. Near-infrared croconaine rotaxanes and doped nanoparticles for enhanced aqueous photothermal heating.

    PubMed

    Spence, Graeme T; Lo, Shun Shang; Ke, Chenfeng; Destecroix, Harry; Davis, Anthony P; Hartland, Gregory V; Smith, Bradley D

    2014-09-22

    The photothermal effect is the generation of heat by molecules or particles upon high-energy laser irradiation, and near-infrared absorbers such as gold nanoparticles and organic dyes have a range of potential photothermal applications. The favourable photothermal properties of thiophene-functionalised croconaine dyes were recently discovered. The synthesis and properties of novel croconaine rotaxane and pseudorotaxane architectures capable of efficient photothermal performance in both organic and aqueous environments are reported. The versatility of this dye-encapsulation strategy was demonstrated by the preparation of two organic croconaine rotaxanes using different synthetic methods: the formation of an aqueous pseudorotaxane association complex, and the synthesis of water-soluble, croconaine-doped silicated micelle nanoparticles. All of these near-infrared-absorbing systems exhibit excellent photothermal behaviour, with pseudorotaxane and rotaxane formation vital for effective aqueous heat generation. Dye encapsulation provides steric protection to enhance the stability of a water-sensitive croconaine dye, while rotaxane-doped nanoparticles avoid detrimental band broadening caused by chromophore coupling.

  8. Mesoporous Silica Coated Polydopamine Functionalized Reduced Graphene Oxide for Synergistic Targeted Chemo-Photothermal Therapy.

    PubMed

    Shao, Leihou; Zhang, Ruirui; Lu, Jianqing; Zhao, Caiyan; Deng, Xiongwei; Wu, Yan

    2017-01-18

    The integration of different therapies into a single nanoplatform has shown great promise for synergistic tumor treatment. Herein, mesoporous silica (MS) coated polydopamine functionalized reduced graphene oxide (pRGO) further modified with hyaluronic acid (HA) (pRGO@MS-HA) has been utilized as a versatile nanoplatform for synergistic targeted chemo-photothermal therapy against cancer. A facile and green chemical method is adopted for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) by using mussel inspired dopamine (DA) to enhance biocompatibility and the photothermal effect. Then, it was coated with mesoporous silica (MS) (pRGO@MS) to enhance doxorubicin (DOX) loading and be further modified with the targeting moieties hyaluronic acid (HA). The pH-dependent and near-infrared (NIR) laser irradiation-triggered DOX release from pRGO@MS(DOX)-HA is observed, which could enhance the chemo-photothermal therapy effect. In vitro experimental results confirm that pRGO@MS(DOX)-HA exhibits good dispersibility, excellent photothermal property, remarkable tumor cell killing efficiency, and specificity to target tumor cells. In vivo antitumor experiments further demonstrated that pRGO@MS(DOX)-HA could exhibit an excellent synergistic antitumor efficacy, which is much more distinct than any monotherapy. This work presents a novel nanoplatform which could load chemotherapy drugs with high efficiency and be used as light-mediated photothermal cancer therapy agent.

  9. A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy.

    PubMed

    Ren, Wenzhi; Yan, Yong; Zeng, Leyong; Shi, Zhenzhi; Gong, An; Schaaf, Peter; Wang, Dong; Zhao, Jinshun; Zou, Baobo; Yu, Hongsheng; Chen, Ge; Brown, Eric Michael Bratsolias; Wu, Aiguo

    2015-07-15

    White TiO2 nanoparticles (NPs) have been widely used for cancer photodynamic therapy based on their ultraviolet light-triggered properties. To date, biomedical applications using white TiO2 NPs have been limited, since ultraviolet light is a well-known mutagen and shallow penetration. This work is the first report about hydrogenated black TiO2 (H-TiO2 ) NPs with near infrared absorption explored as photothermal agent for cancer photothermal therapy to circumvent the obstacle of ultraviolet light excitation. Here, it is shown that photothermal effect of H-TiO2 NPs can be attributed to their dramatically enhanced nonradiative recombination. After polyethylene glycol (PEG) coating, H-TiO2 -PEG NPs exhibit high photothermal conversion efficiency of 40.8%, and stable size distribution in serum solution. The toxicity and cancer therapy effect of H-TiO2 -PEG NPs are relative systemically evaluated in vitro and in vivo. The findings herein demonstrate that infrared-irradiated H-TiO2 -PEG NPs exhibit low toxicity, high efficiency as a photothermal agent for cancer therapy, and are promising for further biomedical applications.

  10. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo.

    PubMed

    Peng, Shuwen; He, Yuanyuan; Er, Murat; Sheng, Yuanzhi; Gu, Yueqing; Chen, Haiyan

    2017-02-28

    Near-infrared (NIR) photothermal therapy (PTT) is a new approach to ablate cancer without affecting normal tissues. A pivotal concern of PPT is to develop photo-responsive agents with high biocompatibility as well as effective photothermal conversion efficiency. Copper sulfide (CuS) nanoparticles prepared are characterized by their low synthesis cost, wide NIR absorption range, good biocompatibility and favorable NIR photothermal conversion efficiency. CuS nanoparticles were then coated with mesoporous silicon dioxide (SiO2) by the Stober method, and further loaded with anticancer drug doxorubicin (DOX). The nanocomposites obtained were named CuS@MSN-DOX. The infrared thermal imaging of CuS@MSN-DOX demonstrated its favorable photothermal efficacy. The potential of CuS@MSN-DOX utilized as a multifunctional platform for combined PPT and chemotherapy was exploited both at the cell level and in a mice model. The result demonstrated that CuS@MSN-DOX was endowed with the synergistic effect of chemo-photothermal therapy, which confirmed that it is a promising candidate for combined therapy of cancer.

  11. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres.

    PubMed

    Meng, Ying; Wang, Shanshan; Li, Chengyi; Qian, Min; Yan, Xueying; Yao, Shuangchao; Peng, Xiyue; Wang, Yi; Huang, Rongqin

    2016-09-01

    Combining controllable photothermal therapy and efficacious gene therapy in a single platform holds great promise in cancer therapy due to the enhanced combined therapeutic effects. Herein, polyethyleneimine-grafted oxidized mesoporous carbon nanospheres (OP) were developed for combined photothermal combined gene therapy in vitro and in vivo. The synthesized OP was characterized to have three dimensional spherical structure with uniformed diameter, ordered mesopores with graphitic domains, high water dispersion with zeta potential of +22 mV, and good biocompatibility. Consequently, OP was exploited as the photothermal convertor with strong NIR absorption and the gene vector via electrostatic interaction, which therefore cannot only deliver the therapeutic gene (pING4) to tumors for gene therapy, but also can eliminate the tumors by photothermal ablation. Moreover, the improved gene therapy accompanied by the NIR photothermally enhanced gene release was also well achieved based on OP. The excellent combined therapeutic effects demonstrated in vitro and in vivo suggested the OP's potential for cancer therapy.

  12. Tumor Microenvironment Modulation by Cyclopamine Improved Photothermal Therapy of Biomimetic Gold Nanorods for Pancreatic Ductal Adenocarcinomas.

    PubMed

    Jiang, Ting; Zhang, Bo; Shen, Shun; Tuo, Yanyan; Luo, Zimiao; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-09-20

    Due to the rich stroma content and poor blood perfusion, pancreatic ductal adenocarcinoma (PDA) is a tough cancer that can hardly be effectively treated by chemotherapeutic drugs. Tumor microenvironment modulation or advanced design of nanomedicine to achieve better therapeutic benefits for PDA treatment was widely advocated by many reviews. In the present study, a new photothermal therapy strategy of PDA was developed by combination of tumor microenvironment modulation and advanced design of biomimetic gold nanorods. On one hand, biomimetic gold nanorods were developed by coating gold nanorods (GNRs) with erythrocyte membrane (MGNRs). It was shown that MGNRs exhibited significantly higher colloidal stability in vitro, stronger photothermal therapeutic efficacy in vitro, and longer circulation in vivo than GNRs. On the other hand, tumor microenvironment modulation by cyclopamine treatment successfully disrupted the extracellular matrix of PDA and improved tumor blood perfusion. Moreover, cyclopamine treatment significantly increased the accumulation of MGNRs in tumors by 1.8-fold and therefore produced higher photothermal efficiency in vivo than the control group. Finally, cyclopamine treatment combined with photothermal MGNRs achieved the most significant shrinkage of Capan-2 tumor xenografts among all the treatment groups. Therefore, with the integrated advantages of tumor microenvironment regulation and long-circulation biomimetic MGNRs, effective photothermal therapy of PDA was achieved. In general, this new strategy of combining tumor microenvironment modulation and advanced design of biomimetic nanoparticles might have great potential in PDA therapy.

  13. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars

  14. Photothermal Investigation of Micro-Uniformity Problems Caused by Different Scan Systems

    SciTech Connect

    Geiler, Hans; Brand, Klaus; Selle, Hans-Joachim

    2008-11-03

    To study beam scanning and beam profiling effects low energy implants of Boron (25 keV) and high energy implants of Helium (5.4 MeV) were carried out by use of different scanning systems including mechanical, electrostatic and hybrid scanning. The sensitivity of photothermal measurement by use of the excess carrier wave in the depth up to 50 {mu}m is proved for buried damage detection and compared with the effect in shallow damage profiles. The micro-mapping capability of the photothermal techniques allows the detection of dose variations in a sub-mm-scale without Moire effects from mapping steps. Conclusion for advanced dose monitoring by multi-frequency photothermal methods will be derived.

  15. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles.

    PubMed

    Guo, Yang; Zhang, Zhuoli; Kim, Dong-Hyun; Li, Weiguo; Nicolai, Jodi; Procissi, Daniel; Huan, Yi; Han, Guohong; Omary, Reed A; Larson, Andrew C

    2013-01-01

    Photothermal ablation is a minimally invasive approach, which typically involves delivery of photothermal sensitizers to targeted tissues. The purpose of our study was to demonstrate that gold nanoparticles are phagocytosed by pancreatic cancer cells, thus permitting magnetic resonance imaging (MRI) of sensitizer delivery and photothermal ablation. Iron-oxide core/gold-shell nanoparticles (GoldMag®, 30 nm diameter; Xi'an GoldMag Biotechnology Co, Xi'an, People's Republic of China) were used. In a 96-well plate, 3 × 10⁴ PANC-1 (human pancreatic cancer cell line) cells were placed. GoldMag (0, 25, or 50 μg/mL) was added to each well and 24 hours allowed for cellular uptake. Samples were then divided into two groups: one treated with photothermal ablation (7.9 W/cm²) for 5 minutes, the other not treated. Photothermal ablation was performed using laser system (BWF5; B&W Tek, Inc, Newark, DE, USA). Intraprocedural temperature changes were measured using a fiber optic temperature probe (FTP-LN2; Photon Control Inc, Burnaby, BC, Canada). After 24 hours, the remaining number of viable cells was counted using trypan blue staining; cell proliferation percentage was calculated based on the total number of viable cells after treatment compared with control. MRI of GoldMag uptake was performed using a 7.0T ClinScan system (Bruker BioSpin, Ettlingen, Germany). Temperature curves demonstrated that with increased GoldMag uptake, laser irradiation produced higher temperature elevations in the corresponding samples; temperature elevations of 12.89°C, 35.16°C, and 79.51°C were achieved for 0, 25, and 50 μg/mL GoldMag. Without photothermal ablation, the cell proliferation percentage changed from 100% to 71.3% and 47.0% for cells treated with 25 and 50 μg/mL GoldMag. Photothermal ablation of PANC-1 cells demonstrated an effective treatment response, specifically a reduction to only 61%, 21.9%, and 2.3% cell proliferation for cells treated with 0, 25, and 50 μg/mL Gold

  16. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles

    PubMed Central

    Guo, Yang; Zhang, Zhuoli; Kim, Dong-Hyun; Li, Weiguo; Nicolai, Jodi; Procissi, Daniel; Huan, Yi; Han, Guohong; Omary, Reed A; Larson, Andrew C

    2013-01-01

    Purpose Photothermal ablation is a minimally invasive approach, which typically involves delivery of photothermal sensitizers to targeted tissues. The purpose of our study was to demonstrate that gold nanoparticles are phagocytosed by pancreatic cancer cells, thus permitting magnetic resonance imaging (MRI) of sensitizer delivery and photothermal ablation. Patients and methods Iron-oxide core/gold-shell nanoparticles (GoldMag®, 30 nm diameter; Xi’an GoldMag Biotechnology Co, Xi’an, People’s Republic of China) were used. In a 96-well plate, 3 × 104 PANC-1 (human pancreatic cancer cell line) cells were placed. GoldMag (0, 25, or 50 μg/mL) was added to each well and 24 hours allowed for cellular uptake. Samples were then divided into two groups: one treated with photothermal ablation (7.9 W/cm2) for 5 minutes, the other not treated. Photothermal ablation was performed using laser system (BWF5; B&W Tek, Inc, Newark, DE, USA). Intraprocedural temperature changes were measured using a fiber optic temperature probe (FTP-LN2; Photon Control Inc, Burnaby, BC, Canada). After 24 hours, the remaining number of viable cells was counted using trypan blue staining; cell proliferation percentage was calculated based on the total number of viable cells after treatment compared with control. MRI of GoldMag uptake was performed using a 7.0T ClinScan system (Bruker BioSpin, Ettlingen, Germany). Results Temperature curves demonstrated that with increased GoldMag uptake, laser irradiation produced higher temperature elevations in the corresponding samples; temperature elevations of 12.89°C, 35.16°C, and 79.51°C were achieved for 0, 25, and 50 μg/mL GoldMag. Without photothermal ablation, the cell proliferation percentage changed from 100% to 71.3% and 47.0% for cells treated with 25 and 50 μg/mL GoldMag. Photothermal ablation of PANC-1 cells demonstrated an effective treatment response, specifically a reduction to only 61%, 21.9%, and 2.3% cell proliferation for cells

  17. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages.

    PubMed

    Qin, Jinbao; Peng, Zhiyou; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yuan, Fukang; Yang, Xinrui; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-09-07

    Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.

  18. Mesoscopic modeling of cancer photothermal therapy using single-walled carbon nanotubes and near infrared radiation: insights through an off-lattice Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Gong, Feng; Hongyan, Zhang; Papavassiliou, Dimitrios V.; Bui, Khoa; Lim, Christina; Duong, Hai M.

    2014-05-01

    Single-walled carbon nanotubes (SWNTs) are promising heating agents in cancer photothermal therapy when under near infrared radiation, yet few efforts have been focused on the quantitative understanding of the photothermal energy conversion in biological systems. In this article, a mesoscopic study that takes into account SWNT morphologies (diameter and aspect ratio) and dispersions (orientation and concentration), as well as thermal boundary resistance, is performed by means of an off-lattice Monte Carlo simulation. Results indicate that SWNTs with orientation perpendicular to the laser, smaller diameter and better dispersion have higher heating efficiency in cancer photothermal therapy. Thermal boundary resistances greatly inhibit thermal energy transfer away from SWNTs, thereby affecting their heating efficiency. Through appropriate interfacial modification around SWNTs, compared to the surrounding healthy tissue, a higher temperature of the cancer cell can be achieved, resulting in more effective cancer photothermal therapy. These findings promise to bridge the gap between macroscopic and microscopic computational studies of cancer photothermal therapy.

  19. Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy.

    PubMed

    Bhana, Saheel; O'Connor, Ryan; Johnson, Jermaine; Ziebarth, Jesse D; Henderson, Luke; Huang, Xiaohua

    2016-05-01

    Despite the advancement of photodynamic therapy and photothermal therapy, the ability to form compact nanocomplex for combined photodynamic and photothermal cancer therapy under a single near infrared irradiation remains limited. In this work, we prepared an integrated sub-100 nm nanosystem for simultaneous near infrared photodynamic and photothermal cancer therapy. The nanosystem was formed by adsorption of silicon 2,3-naphthalocyanine dihydroxide onto gold nanorod followed by covalent stabilization with alkylthiol linked polyethylene glycol. The effects of alkylthiol chain length on drug loading, release and cell killing efficacy were examined using 6-mercaptohexanoic acid, 11-mercaptoundecanoic acid and 16-mercaptohexadecanoic acid. We found that the loading efficiency of silicon 2,3-naphthalocyanine dihydroxide increased and the release rate decreased with the increase of the alkylthiol chain length. We demonstrated that the combined near infrared photodynamic and photothermal therapy using the silicon 2,3-naphthalocyanine dihydroxide-loaded gold nanorods exhibit superior efficacy in cancer cell destruction as compared to photodynamic therapy and photothermal therapy alone. The nanocomplex stabilized with 16-mercaptohexadecanoic acid linked polyethylene glycol provided highest cell killing efficiency as compared to those stabilized with the other two stabilizers under low drug dose. This new nanosystem has potential to completely eradicate tumors via noninvasive phototherapy, preventing tumor reoccurrence and metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature

    PubMed Central

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-01-01

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42–45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy. PMID:26842674

  1. A Porphyrin-Based Conjugated Polymer for Highly Efficient In Vitro and In Vivo Photothermal Therapy.

    PubMed

    Guo, Bing; Feng, Guangxue; Manghnani, Purnima Naresh; Cai, Xiaolei; Liu, Jie; Wu, Wenbo; Xu, Shidang; Cheng, Xiamin; Teh, Cathleen; Liu, Bin

    2016-12-01

    Conjugated polymers have been increasingly studied for photothermal therapy (PTT) because of their merits including large absorption coefficient, facile tuning of exciton energy dissipation through nonradiative decay, and good therapeutic efficacy. The high photothermal conversion efficiency (PCE) is the key to realize efficient PTT. Herein, a donor-acceptor (D-A) structured porphyrin-containing conjugated polymer (PorCP) is reported for efficient PTT in vitro and in vivo. The D-A structure introduces intramolecular charge transfer along the backbone, resulting in redshifted Q band, broadened absorption, and increased extinction coefficient as compared to the state-of-art porphyrin-based photothermal reagent. Through nanoencapsulation, the dense packing of a large number of PorCP molecules in a single nanoparticle (NP) leads to favorable nonradiative decay, good photostability, and high extinction coefficient of 4.23 × 10(4) m(-1) cm(-1) at 800 nm based on porphyrin molar concentration and the highest PCE of 63.8% among conjugated polymer NPs. With the aid of coloaded fluorescent conjugated polymer, the cellular uptake and distribution of the PorCP in vitro can be clearly visualized, which also shows effective photothermal tumor ablation in vitro and in vivo. This research indicates a new design route of conjugated polymer-based photothermal therapeutic materials for potential personalized theranostic nanomedicine.

  2. Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal-chemotherapy.

    PubMed

    Zhang, Nan; Xu, Xuefan; Zhang, Xue; Qu, Ding; Xue, Lingjing; Mo, Ran; Zhang, Can

    2016-01-30

    Development of combination photothermal-chemotherapy platform is of great interest for enhancing antitumor efficacy and inhibiting tumor recurrence, which supports selective and dose-controlled delivery of heat and anticancer drugs to tumor. Here, an injectable nanocomposite hydrogel incorporating PEGylated gold nanorods (GNRs) and paclitaxel-loaded chitosan polymeric micelles (PTX-M) is developed in pursuit of improved local tumor control. After intratumoral injection, both GNRs and PTX-M can be simultaneously delivered and immobilized in the tumor tissue by the thermo-sensitive hydrogel matrix. Exposure to the laser irradiation induces the GNR-mediated photothermal damage confined to the tumor with sparing the surrounding normal tissue. Synergistically, the co-delivered PTX-M shows prolonged tumor retention with the sustained release of anticancer drug to efficiently kill the residual tumor cells that evade the photothermal ablation due to the heterogeneous heating in the tumor region. This combination photothermal-chemotherapy presents superior effects on suppressing the tumor recurrence and prolonging the survival in the Heps-bearing mice, compared to the photothermal therapy alone.

  3. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    NASA Astrophysics Data System (ADS)

    Pattani, Varun P.; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W.

    2015-01-01

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of `clean' cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm2 laser fluence rate led to maximum cell destruction with the `cleaner' method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue.

  4. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles

    PubMed Central

    2013-01-01

    Cs0.33WO3 nanoparticles have been prepared successfully by a stirred bead milling process. By grinding micro-sized coarse powder with grinding beads of 50 μm in diameter, the mean hydrodynamic diameter of Cs0.33WO3 powder could be reduced to about 50 nm in 3 h, and a stable aqueous dispersion could be obtained at pH 8 via electrostatic repulsion mechanism. After grinding, the resulting Cs0.33WO3 nanoparticles retained the hexagonal structure and had no significant contaminants from grinding beads. Furthermore, they exhibited a strong characteristic absorption and an excellent photothermal conversion property in the near-infrared (NIR) region, owing to the free electrons or polarons. Also, the NIR absorption and photothermal conversion property became more significant with decreasing particle size or increasing particle concentration. When the concentration of Cs0.33WO3 nanoparticles was 0.08 wt.%, the solution temperature had a significant increase of above 30°C in 10 min under NIR irradiation (808 nm, 2.47 W/cm2). In addition, they had a photothermal conversion efficiency of about 73% and possessed excellent photothermal stability. Such an effective NIR absorption and photothermal conversion nanomaterial not only was useful in the NIR shielding, but also might find great potential in biomedical application. PMID:23379652

  5. Efficient photothermal catalytic hydrogen production over nonplasmonic Pt metal supported on TiO2

    NASA Astrophysics Data System (ADS)

    Song, Rui; Luo, Bing; Jing, Dengwei

    2016-10-01

    Most of the traditional photocatalytic hydrogen productions were conducted under room temperature. In this work, we selected nonplasmonic Pt metal anchored on TiO2 nanoparticles with photothermal activity to explore more efficient hydrogen production technology over the whole solar spectrum. Photothermal experiments were carried out in a carefully designed top irradiated photocatalytic reactor that can withstand high temperature and relatively higher pressure. Four typical organic materials, i.e., methyl alcohol (MeOH), trielthanolamne (TEOA), formic acid (HCOOH) and glucose, were investigated. Formic acid, a typical hydrogen carrier, was found to show the best activity. In addition, the effects of different basic parameters such as sacrificial agent concentration and the temperature on the activity of hydrogen generation were systematically investigated for understanding the qualitative and quantitative effects of the photothermal catalytic reaction process. The hydrogen yields at 90 °C of the photothermal catalytic reaction with Pt/TiO2 are around 8.1 and 4.2 times higher than those of reactions carried out under photo or thermal conditions alone. We can see that the photothermal hydrogen yield is not the simple sum of the photo and thermal effects. This result indicated that the Pt/TiO2 nanoparticles can efficiently couple photo and thermal energy to more effectively drive hydrogen production. As a result, the excellent ability makes it superior to other conventional semiconductor photocatalysts and thermal catalysts. Future works could concentrate on exploring photothermal catalysis as well as the potential synergism between photo and thermal effects to find more efficient hydrogen production technology using the whole solar spectrum.

  6. Effects of environmental pollutants on gut microbiota.

    PubMed

    Jin, Yuanxiang; Wu, Sisheng; Zeng, Zhaoyang; Fu, Zhengwei

    2017-03-01

    Environmental pollutants have become an increasingly common health hazard in the last several decades. Recently, a number of studies have demonstrated the profound relationship between gut microbiota and our health. Gut microbiota are very sensitive to drugs, diet, and even environmental pollutants. In this review, we discuss the possible effects of environmental pollutants including antibiotics, heavy metals, persistent organic pollutants, pesticides, nanomaterials, and food additives on gut microbiota and their subsequent effects on health. We emphasize that gut microbiota are also essential for the toxicity evaluation of environmental pollution. In the future, more studies should focus on the relationship between environmental pollution, gut microbiota, and human health.

  7. 15 CFR 970.506 - Environmental effects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental effects. 970.506 Section... Environmental effects. Before issuing or transferring an exploration license, the Administrator must find that... adverse effect on the quality of the environment, taking into account the analyses and information in...

  8. 15 CFR 970.506 - Environmental effects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Environmental effects. 970.506 Section... Environmental effects. Before issuing or transferring an exploration license, the Administrator must find that... adverse effect on the quality of the environment, taking into account the analyses and information in...

  9. 15 CFR 970.506 - Environmental effects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Environmental effects. 970.506 Section... Environmental effects. Before issuing or transferring an exploration license, the Administrator must find that... adverse effect on the quality of the environment, taking into account the analyses and information in...

  10. Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells.

    PubMed

    Miao, Zhao-Hua; Wang, Hui; Yang, Huanjie; Li, Zheng-Lin; Zhen, Liang; Xu, Cheng-Yan

    2015-08-12

    Theranostic agents for magnetic resonance imaging (MRI) guided photothermal therapy have attracted intensive interest in cancer diagnosis and treatment. However, the development of biocompatible theranostic agents with high photothermal conversion efficiency and good MRI contrast effect remains a challenge. Herein, PEGylated Mn2+-chelated polydopamine (PMPDA) nanoparticles were successfully developed as novel theranostic agents for simultaneous MRI signal enhancement and photothermal ablation of cancer cells, based on intrinsic manganese-chelating properties and strong near-infrared absorption of polydopamine nanomaterials. The obtained PMPDA nanoparticles showed significant MRI signal enhancement for both in vitro and in vivo imaging. Highly effective photothermal ablation of HeLa cells exposed to PMPDA nanoparticles was then achieved upon laser irradiation for 10 min. Furthermore, the excellent biocompatibility of PMPDA nanoparticles, because of the use of Mn2+ ions as diagnostic agents and biocompatible polydopamine as photothermal agents, was confirmed by a standard MTT assay. Therefore, the developed PMPDA nanoparticles could be used as a promising theranostic agent for MRI-guided photothermal therapy of cancer cells.

  11. Optimized frequency dependent photothermal beam deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Korte, D.; Cabrera, H.; Toro, J.; Grima, P.; Leal, C.; Villabona, A.; Franko, M.

    2016-12-01

    In the letter the optimization of the experimental setup for photothermal beam deflection spectroscopy is performed by analyzing the influence of its geometrical parameters (detector and sample position, probe beam radius and its waist position etc) on the detected signal. Furthermore, the effects of the fluid’s thermo-optical properties, for optimized geometrical configuration, on the measurement sensitivity and uncertainty determination of sample thermal properties is also studied. The examined sample is a recently developed CuFeInTe3 material. It is seen from the obtained results, that it is a complex problem to choose the proper geometrical configuration as well as sensing fluid to enhance the sensitivity of the method. A signal enhancement is observed at low modulation frequencies by placing the sample in acetonitrile (ACN), while at high modulation frequencies the sensitivity is higher for measurements made in air. For both, detection in air and acetonitrile the determination of CuFeInTe3 thermal properties is performed. The determined values of thermal diffusivity and thermal conductivity are (0.048  ±  0.002)  ×  10-4 m2 s-1 and 4.6  ±  0.2 W m-1 K-1 and (0.056  ±  0.005)  ×  10-4 m2 s-1 and 4.8  ±  0.4 W m-1 K-1 for ACN and air, respectively. It is seen, that the determined values agree well within the range of their measurement uncertainties for both cases, although the measurement uncertainty is two times lower for the measurements in ACN providing more accurate results. The analysis is performed by the use of recently developed theoretical description based on the complex geometrical optics. It is also shown, how the presented work fits into the current status of photothermal beam deflection spectroscopy.

  12. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  13. Novel doxorubicin loaded PEGylated cuprous telluride nanocrystals for combined photothermal-chemo cancer treatment.

    PubMed

    Wang, Xianwen; Ma, Yan; Chen, Huajian; Wu, Xiaoyi; Qian, Haisheng; Yang, Xianzhu; Zha, Zhengbao

    2017-02-06

    Recently, combined photothermal-chemo therapy has attracted great attention due to its enhanced anti-tumor efficiency via synergistic effects. Herein, PEGylated cuprous telluride nanocrystals (PEGylated Cu2Te NCs) were developed as novel drug nanocarriers for combined photothermal-chemo treatment of cancer cells. PEGylated Cu2Te NCs were fabricated through a simple two-step process, comprised of hot injection and thin-film hydration. The as-prepared PEGylated Cu2Te NCs (average diameter of 5.21±1.05nm) showed a noticeable photothermal conversion efficiency of 33.1% and good capacity to load hydrophobic anti-cancer drug. Due to the protonated amine group at low pH, the doxorubicin (DOX)-loaded PEGylated Cu2Te NCs (PEGylated Cu2Te-DOX NCs) exhibited an acidic pH promoted drug release profile. Moreover, a three-parameter model, which considers the effects of drug-carrier interactions on the initial burst release and the sustained release of drug from micro- and nano-sized carriers, was used to gain insight into how pH and laser irradiation affect drug release from PEGylated Cu2Te-DOX NCs. Based on the results from in vitro cell study, PEGylated Cu2Te-DOX NCs revealed remarkably photothermal-chemo synergistic effect to HeLa cells, attributed to both the PEGylated Cu2Te NCs mediated photothermal ablation and enhanced cellular uptake of the drug. Thus, our results encourage the usage of Cu2Te-DOX drug nanocarriers for enhanced treatment of cancer cells by combined photothermal-chemo therapy.

  14. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy.

    PubMed

    Zhou, Zhiguo; Sun, Yanan; Shen, Jinchao; Wei, Jie; Yu, Chao; Kong, Bin; Liu, Wei; Yang, Hong; Yang, Shiping; Wang, Wei

    2014-08-01

    The development of photothermal agents (PTAs) with good stability, low toxicity, highly targeting ability and photothermal conversion efficiency is an essential pre-requisite to near-infrared photothermal therapy (PTT) in vivo. Herein, we report the readily available PEGylated Fe@Fe3O4 NPs, which possess triple functional properties in one entity - targeting, PTT, and imaging. Compared to Au nanorods, they exhibit comparable photothermal conversion efficiency (∼20%), and much higher photothermal stability. They also show a high magnetization value and transverse relaxivity (∼156 mm(-1) s(-1)), which should be applied for magnetic targeting MRI. With the Nd-Fe-B magnet (0.5 T) beside the tumour for 12 h on the xenograft HeLa tumour model, PEGylated Fe@Fe3O4 NPs exhibit an obvious accumulation. In tumour, the intensity of MRI signal is ∼ three folds and the increased temperature is ∼ two times than those without magnetic targeting, indicating the good magnetic targeting ability. Notably, the intrinsic high photothermal conversion efficiency and selective magnetic targeting effect of the NPs in tumour play synergistically in highly efficient ablation of cancer cells in vitro and in vivo.

  15. Photothermal self-oscillation and laser cooling of graphene optomechanical systems.

    PubMed

    Barton, Robert A; Storch, Isaac R; Adiga, Vivekananda P; Sakakibara, Reyu; Cipriany, Benjamin R; Ilic, B; Wang, Si Ping; Ong, Peijie; McEuen, Paul L; Parpia, Jeevak M; Craighead, Harold G

    2012-09-12

    By virtue of their low mass and stiffness, atomically thin mechanical resonators are attractive candidates for use in optomechanics. Here, we demonstrate photothermal back-action in a graphene mechanical resonator comprising one end of a Fabry-Perot cavity. As a demonstration of the utility of this effect, we show that a continuous wave laser can be used to cool a graphene vibrational mode or to power a graphene-based tunable frequency oscillator. Owing to graphene's high thermal conductivity and optical absorption, photothermal optomechanics is efficient in graphene and could ultimately enable laser cooling to the quantum ground state or applications such as photonic signal processing.

  16. Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy.

    PubMed

    Coughlin, Andrew J; Ananta, Jeyarama S; Deng, Nanfu; Larina, Irina V; Decuzzi, Paolo; West, Jennifer L

    2014-02-12

    Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, gadolinium-conjugated gold nanoshells are engineered and it is demonstrated that they enhance contrast for magnetic resonance imaging, X-ray, optical coherence tomography, reflectance confocal microscopy, and two-photon luminescence. Additionally, these particles effectively convert near-infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium-nanoshells for image-guided photothermal ablation.

  17. Photothermal characterization of MoS2 emission coupled to a microdisk cavity

    NASA Astrophysics Data System (ADS)

    Reed, Jason C.; Malek, Stephanie C.; Yi, Fei; Naylor, Carl H.; Charlie Johnson, A. T.; Cubukcu, Ertugrul

    2016-11-01

    Integration of emerging two-dimensional direct bandgap semiconductors onto optical microcavities is important for nanophotonic light sources. In most cases, to achieve high quality factors, such microcavity designs require thermally isolated structures leading to pronounced photothermal effects. Here, we report experimental results on spectroscopic and time-domain characterization of photothermal response from MoS2 monolayers coupled to microdisk resonators. We find that judicious utilization of pulsed laser excitation can circumvent irreversible photoabsorption induced material damage. Our results agree well with finite element method based thermal simulations.

  18. Gadolinium-Conjugated Gold Nanoshells for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    PubMed Central

    Coughlin, Andrew J.; Ananta, Jeyarama S.; Deng, Nanfu; Larina, Irina V.; Decuzzi, Paolo

    2014-01-01

    Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, we have engineered gadolinium-conjugated gold nanoshells and demonstrated that they enhance contrast for magnetic resonance imaging, X-Ray, optical coherence tomography, reflectance confocal microscopy, and two-photon luminescence. Additionally, these particles effectively convert near-infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium-nanoshells for image-guided photothermal ablation. PMID:24115690

  19. Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery.

    PubMed

    Haine, Aung Thu; Niidome, Takuro

    2017-01-01

    Gold nanorods are promising metals in several biomedical applications such as bioimaging, thermal therapy, and drug delivery. Gold nanorods have strong absorption bands in near-infrared (NIR) light region and show photothermal effects. Since NIR light can penetrate deeply into tissues, their unique optical, chemical, and biological properties have attracted considerable clinical interest. Gold nanorods are expected to act not only as on-demand thermal converters for photothermal therapy but also as mediators of a controlled drug-release system responding to light irradiation. In this review, we discuss current progress using gold nanorods as bioimaging platform, phototherapeutic agents, and drug delivery vehicles.

  20. Effects of bankruptcy on environmental liabilities

    SciTech Connect

    Allison, J.R.; Rizzardi, J.A.

    1993-12-31

    A party confronted with environmental liabilities, may seek the protection of the bankruptcy laws. A bankruptcy proceeding will have procedural as well as substantive effects on the resolution of environmental liability claims. Ultimately, however, the bankruptcy laws will provide limited protection against the full range of potential environmental liabilities. This article addresses, from the perspective of the environmental practitioner, four principal issues that arise in a bankruptcy case: proceedings affected by the automatic stay; the ability to abandon contaminated property; the priority of response costs; and environmental claims that are dischargeable in bankruptcy. 63 refs.

  1. Optical fiber photoacoustic-photothermal probe.

    PubMed

    Beard, P C; Pérennès, F; Draguioti, E; Mills, T N

    1998-08-01

    We describe the operation of an all-optical probe that provides an alternative means of implementing photoacoustic and photothermal investigative techniques, particularly those used in biomedical applications. The probe is based on a transparent, acoustically and thermally sensitive Fabry-Perot polymer film sensor mounted at the end of an optical fiber. We demonstrate the ability of the system to make photoacoustic and photothermal measurements simultaneously and evaluate its photothermal response, using a nonscattering liquid target of known and adjustable absorption coefficient. The acoustic and thermal noise floors were 2 kPa and 6 x 10(-3) degrees C , respectively, obtained over a 25-MHz measurement bandwidth and 30 signal averages.

  2. Transient photothermal spectra of plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Sassaroli, Elisabetta; Jones, Alicia; Lapotko, Dmitri O

    2012-03-13

    The photothermal efficacy of near-infrared gold nanoparticles (NP), nanoshells, and nanorods was studied under pulsed high-energy optical excitation in plasmonic nanobubble (PNB) mode as a function of the wavelength and duration of the excitation laser pulse. PNBs, transient vapor nanobubbles, were generated around individual and clustered overheated NPs in water and living cells. Transient PNBs showed two photothermal features not previously observed for NPs: the narrowing of the spectral peaks to 1 nm and the strong dependence of the photothermal efficacy upon the duration of the laser pulse. Narrow red-shifted (relative to those of NPs) near-infrared spectral peaks were observed for 70 ps excitation laser pulses, while longer sub- and nanosecond pulses completely suppressed near-infrared peaks and blue shifted the PNB generation to the visual range. Thus, PNBs can provide superior spectral selectivity over gold NPs under specific optical excitation conditions.

  3. Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties.

    PubMed

    Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer

    2016-01-08

    A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT).

  4. Waveguiding Actuators Based on Photothermally Responsive Hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Hauser, Adam; Bende, Nakul; Kuzyk, Mark; Hayward, Ryan

    A simple means to achieve rapid and highly reversible photo-responsiveness in a hydrogel is to combine a thermally-responsive gel such as poly(N-isopropyl acrylamide) (PNIPAM), with the photothermal effect of gold nanoparticles. Relying on such composite gels, we fabricate micro-scale bilayer photoactuators by photolithographic patterning, and demonstrate their controlled bending/unbending behavior in response to visible light. In addition to actuation by flood exposure, 532 nm laser light can be waveguided through a plastic optical fiber to direct it into the photoactuator, providing the possibility for remotely controllable actuators that do not require line-of-sight access. The actuators show large magnitude responses within time-scales of ~1 s, consistent with the small dimensions of the actuators, but also exhibit smaller-scale responses over much longer times, suggesting the possibility of slow internal relaxations within the network. Based on our study on this bilayer system, we further explore fabrication methods for cylindrical actuators that are able to bend in arbitrary directions.

  5. Jensen's Inequality Predicts Effects of Environmental Variation

    Treesearch

    Jonathan J. Ruel; Matthew P. Ayres

    1999-01-01

    Many biologists now recognize that environmental variance can exert important effects on patterns and processes in nature that are independent of average conditions. Jenson's inequality is a mathematical proof that is seldom mentioned in the ecological literature but which provides a powerful tool for predicting some direct effects of environmental variance in...

  6. Tubelike Gold Sphere-Attapulgite Nanocomposites with a High Photothermal Conversion Ability in the Near-Infrared Region for Enhanced Cancer Photothermal Therapy.

    PubMed

    Wu, Ping; Deng, Dan; Gao, Jingwen; Cai, Chenxin

    2016-04-27

    Near-infrared (NIR)-induced photothermal therapy (PTT) is now considered to be a promising and highly efficient method for tumor therapy. Photothermal agents play a crucial role in PTT, and they are required to possess the ability to harvest NIR light and transform the photon energy into heat energy. This work reports a facile method to synthesize a new PTT agent, which is based on the electrostatic binding of the Au nanospheres (Au NSs, ∼15 nm) to the surface of a nanometer-sized mineral, attapulgite, to form tubelike Au-attapulgite nanocomposites. These nanocomposites consist of numerous Au NSs, which are linked to each other along the attapulgite surface. The nanocomposites exhibit similar localized surface plasmon resonance absorption characteristics to those of Au nanorods with a longitudinal absorption mode that shifts to the NIR region (∼670 nm). Moreover, the nanocomposites have a high Cabs/Csca ratio (cross section of absorption to scattering) and photothermal conversion efficiency of 25.6%. Their photothermal therapy effect is studied using A549 cells and A549 cell-bearing nude mice as examples. The results indicate that the nanocomposites can be effectively taken up by the cells, and the nanocomposites show good biocompatibility. The A549 cells almost died after they were incubated with the nanocomposites (at 100 μg mL(-1)) for 12 h and irradiated by an 808 nm laser with a power density of 0.5 W cm(-2) for 15 min. The tumors of nude mice can also be effectively ablated without regrowth during the period of observation (at least 10 d) after photothermal therapy.

  7. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  8. Health Effects of Environmental Pollution.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This booklet notes that for a long time the American people were willing to pay any price for progress. Now may refuse to accept an environment that menaces their health and lowers their enjoyment of life. They are embracing a new environmental consciousness, a broader vision of reality, a more profound sense of their place in nature. Among the…

  9. Photothermal Superheating of Water with Ion-Implanted Silicon Nanowires

    SciTech Connect

    Roder, Paden B.; Manandhar, Sandeep; Smith, Bennett E.; Zhou, Xuezhe; Shutthanandan, V.; Pauzauskie, Peter J.

    2015-07-21

    Nanoparticle-mediated photothermal (PT) cancer therapy has been a major focus in nanomedicine due to its potential as an effective, non-invasive, and targeted alternative to traditional cancer therapy based on small-molecule pharmaceuticals[1,2]. Gold nanocrystals have been a primary focus of PT research[3], which can be attributed to their size tunability[4], well understood conjugation chemistry[5], and efficient absorption of NIR radiation in the tissue transparency window (800 nm – 1 μm) due to their size-dependent localized surface plasmon resonances[6].

  10. Photothermal deflection in multilayer coatings: modeling and experiment.

    PubMed

    Gallais, Laurent; Commandré, Mireille

    2005-09-01

    A model of the photothermal deflection signal in multilayer coatings is presented that takes into account optical interference effects and heat flow within the stack. Measurements are then taken of high-reflectivity HfO2/SiO2 ultraviolet mirrors made by plasma ion assisted deposition and compared to calculations. Good agreement is found between the experimental results and the model. Using this model for the calibration and the setup described, one can measure absorption in multilayer coatings accurately down to 10(-7) of the incident power.

  11. Thermal diffusivity measurements in porous ceramics by photothermal methods

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Salazar, A.; Ocariz, A.; Pottier, L.; Gomez, E.; Villar, L. M.; Macho, E.

    We present a study of the use of photothermal methods to measure the thermal diffusivity of porous ceramic materials as an alternative to other conventional methods. Specifically, we discuss the use of three modulated techniques - thermoreflectance, IR radiometry, and the mirage effect - as complementary tools. Measurements of `local' and `global' thermal diffusivity are presented for a set of SiC samples of various porosities. In particular, the thermal diffusivity of three samples of SiC of different porosities is measured (by the mirage technique) as a function of temperature in the range from ambient to 1000 K.

  12. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe

    NASA Astrophysics Data System (ADS)

    Liu, Jianhua; Han, Jianguo; Kang, Zhichen; Golamaully, Reza; Xu, Nannan; Li, Hongpeng; Han, Xueli

    2014-05-01

    Photothermal therapy, as a physical therapeutic technique to kill cancer, has generated a great deal of interest. Photothermal agents hence play a critical role in this modern therapy. We report the use of transition metal oxides as photothermal agents based on PEGylated WO3-x nanoparticles. The well-prepared nanoparticles presented effective results during photothermal therapy both in vitro and in vivo by using near-IR laser irradiation (980 nm, 0.5 W cm-2). The tumor cells were effectively damaged using low power density during a short irradiation time without destroying healthy tissues. In vitro results of photothermal therapy with PEGylated WO3-x nanoparticles proved to be effective on 4T1 murine breast cancer cells via a confocal microscopy method and MTT assay. In vivo results were further confirmed by hematoxylin and eosin (H & E) histological staining. Additionally, PEGylated WO3-x nanoparticles were shown to be effective as a CT imaging contrast agent on a tumor-bearing mouse model. Our results suggest that this generation of PEGylated WO3-x nanoparticles can potentially be used in oncological CT imaging and photothermal therapy.Photothermal therapy, as a physical therapeutic technique to kill cancer, has generated a great deal of interest. Photothermal agents hence play a critical role in this modern therapy. We report the use of transition metal oxides as photothermal agents based on PEGylated WO3-x nanoparticles. The well-prepared nanoparticles presented effective results during photothermal therapy both in vitro and in vivo by using near-IR laser irradiation (980 nm, 0.5 W cm-2). The tumor cells were effectively damaged using low power density during a short irradiation time without destroying healthy tissues. In vitro results of photothermal therapy with PEGylated WO3-x nanoparticles proved to be effective on 4T1 murine breast cancer cells via a confocal microscopy method and MTT assay. In vivo results were further confirmed by hematoxylin and eosin

  13. Neurobehavioral effects of environmental tobacco smoke

    SciTech Connect

    Benignus, V.A.

    1987-05-01

    In order to try to predict effects of environmental tobacco smoke, neurobehavioral effects of mainstream smoke were reviewed and, in conjunction with what is known about body uptake of components of environmental tobacco smoke, conjectures were made about the probable effect of environmental tobacco smoke. Effects of mainstream smoke differ in smokers and nonsmokers. Mainstream smoke has a beneficial effect on vigilance in habitual smokers. The effect in nonsmokers is less clear and may be disruptive. In both smokers and nonsmokers mainstream smoke produces increased tremor and reduced fine motor skills. The neurobehaviorally active substances in mainstream smoke appear to be nicotine and carbon monoxide. It appears that COHb is the more important consequence of environmental tobacco smoke for neurobehavioral effects, since nicotine levels in nonsmokers only reach a small fraction of those in smokers.

  14. Photothermal gold nanoparticle mediated stimulation of cardiomyocyte beating (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Gentemann, Lara; Coffee, Michelle; Zweigerdt, Robert; Heinemann, Dag; Heisterkamp, Alexander

    2017-03-01

    Photothermal manipulation of cells via heating of gold nanoparticles has proven to be an efficient tool for molecular delivery into cells via cell perforation with short laser pulses. We investigated a potential extension of this technique for cell stimulation of cardiomyocytes using a 532 nm and 850 ps laser system and a surface concentration of 0.5 μg/cm2 of 200 nm gold nanoparticles. The gold nanoparticles were unspecifically attached to the cardiomyocytes after an incubation period of three hours. The laser irradiation leads to a temperature rise directly at the particles of several hundred degrees K which evokes bubble formation and membrane perforation. We examined the effect of laser based photothermal manipulation at different laser powers, with different calcium concentrations, and for a cardiomyocyte-like cell line (HL1 cells), neonatal rat cardiomyocytes and human embryonic stem cell (hESC)-derived cardiomyocytes. Fast calcium oscillations in HL1 cells were observed in the presence and absence of extracellular calcium and most pronounced in the area next to the laser spot after irradiation. Within the laser spot, in particular high laser powers led to a single rise in calcium over a time period of several seconds. These results were confirmed in stem cell-derived cardiomyocytes. In the presence of normal and high calcium concentrations, the spontaneous contraction frequency increased after laser irradiation in neonatal rat cardiomyocytes. Consequently, gold nanoparticle mediated photothermal cell manipulation via pulsed lasers may serve as a potential pacemaker-technique in regenerative approaches, next to optogenetics.

  15. Gold Nanoconstructs for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Coughlin, Andrew James

    Cancer accounts for nearly 1 out of every 4 deaths in the United States, and because conventional treatments are limited by morbidity and off-target toxicities, improvements in cancer management are needed. This thesis further develops nanoparticle-assisted photothermal therapy (NAPT) as a viable treatment option for cancer patients. NAPT enables localized ablation of disease because heat generation only occurs where tissue permissive near-infrared (NIR) light and absorbing nanoparticles are combined, leaving surrounding normal tissue unharmed. Two principle approaches were investigated to improve the specificity of this technique: multimodal imaging and molecular targeting. Multimodal imaging affords the ability to guide NIR laser application for site-specific NAPT and more holistic characterization of disease by combining the advantages of several diagnostic technologies. Towards the goal of image-guided NAPT, gadolinium-conjugated gold-silica nanoshells were engineered and demonstrated to enhance imaging contrast across a range of diagnostic modes, including T1-weighted magnetic resonance imaging, X-Ray, optical coherence tomography, reflective confocal microscopy, and two-photon luminescence in vitro as well as within an animal tumor model. Additionally, the nanoparticle conjugates were shown to effectively convert NIR light to heat for applications in photothermal therapy. Therefore, the broad utility of gadolinium-nanoshells for anatomic localization of tissue lesions, molecular characterization of malignancy, and mediators of ablation was established. Molecular targeting strategies may also improve NAPT by promoting nanoparticle uptake and retention within tumors and enhancing specificity when malignant and normal tissue interdigitate. Here, ephrinA1 protein ligands were conjugated to nanoshell surfaces for particle homing to overexpressed EphA2 receptors on prostate cancer cells. In vitro, successful targeting and subsequent photothermal ablation of

  16. Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy.

    PubMed

    Yang, Weitao; Guo, Weisheng; Le, Wenjun; Lv, Guoxian; Zhang, Fuhe; Shi, Lei; Wang, Xiuli; Wang, Jun; Wang, Sheng; Chang, Jin; Zhang, Bingbo

    2016-11-22

    Photothermal therapy (PTT) is attracting increasing interest and becoming more widely used for skin cancer therapy in the clinic, as a result of its noninvasiveness and low systemic adverse effects. However, there is an urgent need to develop biocompatible PTT agents, which enable accurate imaging, monitoring, and diagnosis. Herein, a biocompatible Gd-integrated CuS nanotheranostic agent (Gd:CuS@BSA) was synthesized via a facile and environmentally friendly biomimetic strategy, using bovine serum albumin (BSA) as a biotemplate at physiological temperature. The as-prepared Gd:CuS@BSA nanoparticles (NPs) with ultrasmall sizes (ca. 9 nm) exhibited high photothermal conversion efficiency and good photostability under near-infrared (NIR) laser irradiation. With doped Gd species and strong tunable NIR absorbance, Gd:CuS@BSA NPs demonstrate prominent tumor-contrasted imaging performance both on the photoacoustic and magnetic resonance imaging modalities. The subsequent Gd:CuS@BSA-mediated PTT result shows high therapy efficacy as a result of their potent NIR absorption and high photothermal conversion efficiency. The immune response triggered by Gd:CuS@BSA-mediated PTT is preliminarily explored. In addition, toxicity studies in vitro and in vivo verify that Gd:CuS@BSA NPs qualify as biocompatible agents. A biodistribution study demonstrated that the NPs can undergo hepatic clearance from the body. This study highlights the practicality and versatility of albumin-mediated biomimetic mineralization of a nanotheranostic agent and also suggests that bioinspired Gd:CuS@BSA NPs possess promising imaging guidance and effective tumor ablation properties, with high spatial resolution and deep tissue penetration.

  17. Extracellular biosynthesis of copper sulfide nanoparticles by Shewanella oneidensis MR-1 as a photothermal agent.

    PubMed

    Zhou, Nan-Qing; Tian, Li-Jiao; Wang, Yu-Cai; Li, Dao-Bo; Li, Pan-Pan; Zhang, Xing; Yu, Han-Qing

    2016-12-01

    Photothermal therapy (PTT) is a minimally invasive and effective cancer treatment method and has a great potential for innovating the conventional chemotherapy approaches. Copper sulfide (CuS) exhibits photostability, low cost, and high absorption in near infrared region, and is recognized as an ideal candidate for PTT. However, CuS, as a photothermal agent, is usually synthesized with traditional chemical approaches, which require high temperature, additional stabilization and hydrophilic modification. Herein, we report, for the first time, the preparation of CuS nanoparticles as a photothermal agent by a dissimilatory metal reducing bacterium Shewanella. oneidensis MR-1. The prepared nanoparticles are homogenously shaped, hydrophilic, small-sized (∼5nm) and highly stable. Furthermore, the biosynthesized CuS nanoparticles display a high photothermal conversion efficiency of 27.2% because of their strong absorption at 1100nm. The CuS nanoparticles could be effectively used as a PTT agent under the irradiation of 1064nm. This work provides a simple, eco-friendly and cost-effective approach for fabricating PTT agents.

  18. Fabrication of Inkjet-Printed Gold Nanostar Patterns with Photothermal Properties on Paper Substrate.

    PubMed

    Borzenkov, Mykola; Määttänen, Anni; Ihalainen, Petri; Collini, Maddalena; Cabrini, Elisa; Dacarro, Giacomo; Pallavicini, Piersandro; Chirico, Giuseppe

    2016-04-20

    Inkjet printing technology has brought significant advances in patterning various functional materials that can meet important challenges in personalized medical treatments. Indeed, patterning of photothermal active anisotropic gold nanoparticles is particularly promising for the development of low-cost tools for localized photothermal therapy. In the present work, stable inks containing PEGylated gold nanostars (GNSs) were prepared and inkjet printed on a pigment-coated paper substrate. A significant photothermal effect (ΔT ≅ 20 °C) of the printed patterns was observed under near infrared (NIR) excitation of the localized surface plasmon resonance (LSPR) of the GNS with low laser intensity (I ≅ 0.2 W/cm(2)). Besides the pronounced photothermal effect, we also demonstrated, as an additional valuable effect, the release of a model fluorescent thiol-terminated Bodipy dye (BDP-SH) from the printed gold surface, both under bulk heating and NIR irradiation. These preliminary results suggest the way of the development of a new class of low-cost, disposable, and smart devices for localized thermal treatments combined with temperature-triggered drug release.

  19. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance.

    PubMed

    Fu, Guanglei; Liu, Wei; Li, Yanyan; Jin, Yushen; Jiang, Lingdong; Liang, Xiaolong; Feng, Shanshan; Dai, Zhifei

    2014-09-17

    This paper reported a core-shell nanotheranostic agent by growing Prussian blue (PB) nanoshells of 3-6 nm around superparamagnetic Fe3O4 nanocores for targeted photothermal therapy of cancer under magnetic resonance imaging (MRI) guidance. Both in vitro and in vivo experiments proved that the Fe3O4@PB core-shell nanoparticles showed significant contrast enhancement for T2-weighted MRI with the relaxivity value of 58.9 mM(-1)·s(-1). Simultaneously, the composite nanoparticles exhibited a high photothermal effect under irradiation of a near-infrared laser due to the strong absorption of PB nanoshells, which led to more than 80% death of HeLa cells with only 0.016 mg·mL(-1) of the nanoparticles with the aid of the magnetic targeting effect. Using tumor-bearing nude mice as the model, the near-infrared laser light ablated the tumor effectively in the presence of the Fe3O4@PB nanoparticles and the tumor growth inhibition was evaluated to be 87.2%. Capabilities of MRI, magnetic targeting, and photothermal therapy were thus integrated into a single agent to allow efficient MRI-guided targeted photothermal therapy. Most importantly, both PB and Fe3O4 nanoparticles were already clinically approved drugs, so the Fe3O4@PB nanoparticles as a theranostic nanomedicine would be particularly promising for clinical applications in the human body due to the reliable biosafety.

  20. Effects of environmental stressors on vigilance performance

    SciTech Connect

    Duchon, J.C.; Hudock, S.D.

    1989-01-01

    The authors report on research for reducing accidents and improving the person-machine interface found in surface and underground mining operations. Miners are exposed to a variety of environmental stressors, e.g., extreme heat, noise, vibration, and adverse illumination, throughout the workday. Exposure to these environmental stressors has been noted to affect performance of vigilance tasks. Since impaired performance of vigilance tasks can lead to industrial accidents, further investigation of the effects of environmental stressors on human performance is warranted. A description of the environmental conditions present in the mining workplace is presented. A review of experiments dealing with the effects of environmental stressors on vigilance task performance is given. The applicability of past research to actual mining operations is considered.

  1. Effect of the Photoquenching of EL2 in GaAs Substrate on the Piezoelectric Photothermal and Surface Photovoltage Spectra of a GaAs Single Quantum Well Confined by GaAs/AlAs Short-Period Superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Fukuyama, Atsuhiko; Akashi, Yoshito; Ikari, Tetsuo

    2008-01-01

    Two nondestructive techniques, surface photovoltage (SPV) and piezoelectric photothermal (PPT) spectroscopies, were adopted to investigate a GaAs single quantum well (SQW) confined by GaAs/AlAs short-period superlattices (SPSs) fabricated on a semi-insulating (SI) GaAs substrate, whose absorption spectra cannot be obtained easily using conventional techniques. Excitonic absorptions associated with subband transitions in a GaAs SQW and SPSs were clearly observed. We also examined how a SI-GaAs substrate affects the PPT and SPV spectra, particularly the effect of the photoquenching of the deep donor level EL2. It was found that the photoquenching of EL2 causes a significant change in the total built-in potential at the interface between the epitaxial layers and the substrate, and affected the signal intensities observed in the PPT and SPV spectra. The present experimental results have shown that a large amount of carrier leakage occurs from a GaAs SQW and SPSs to the sample surface, even in the presence of Al0.3Ga0.7As buffer layers.

  2. Enhanced Radiosensitization of Gold Nanospikes via Hyperthermia in Combined Cancer Radiation and Photothermal Therapy.

    PubMed

    Ma, Ningning; Jiang, Yao-Wen; Zhang, Xiaodong; Wu, Hao; Myers, John N; Liu, Peidang; Jin, Haizhen; Gu, Ning; He, Nongyue; Wu, Fu-Gen; Chen, Zhan

    2016-10-14

    Metallic nanostructures as excellent candidates for nanosensitizers have shown enormous potentials in cancer radiotherapy and photothermal therapy. Clinically, a relatively low and safe radiation dose is highly desired to avoid damage to normal tissues. Therefore, the synergistic effect of the low-dosed X-ray radiation and other therapeutic approaches (or so-called "combined therapeutic strategy") is needed. Herein, we have synthesized hollow and spike-like gold nanostructures by a facile galvanic replacement reaction. Such gold nanospikes (GNSs) with low cytotoxicity exhibited high photothermal conversion efficiency (η = 50.3%) and had excellent photostability under cyclic near-infrared (NIR) laser irradiations. We have demonstrated that these GNSs can be successfully used for in vitro and in vivo X-ray radiation therapy and NIR photothermal therapy. For the in vitro study, colony formation assay clearly demonstrated that GNS-mediated photothermal therapy and X-ray radiotherapy reduced the cell survival fraction to 89% and 51%, respectively. In contrast, the cell survival fraction of the combined radio- and photothermal treatment decreased to 33%. The synergistic cancer treatment performance was attributable to the effect of hyperthermia, which efficiently enhanced the radiosensitizing effect of hypoxic cancer cells that were resistant to ionizing radiation. The sensitization enhancement ratio (SER) of GNSs alone was calculated to be about 1.38, which increased to 1.63 when the GNS treatment was combined with the NIR irradiation, confirming that GNSs are effective radiation sensitizers to enhance X-ray radiation effect through hyperpyrexia. In vivo tumor growth study indicated that the tumor growth inhibition (TGI) in the synergistically treated group reached 92.2%, which was much higher than that of the group treated with the GNS-enhanced X-ray radiation (TGI = 29.8%) or the group treated with the GNS-mediated photothermal therapy (TGI = 70.5%). This research

  3. Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer

    NASA Astrophysics Data System (ADS)

    Kang, Xinmei; Guo, Ximing; An, Weiwei; Niu, Xingjian; Li, Suhan; Liu, Zhaoliang; Yang, Yue; Wang, Na; Jiang, Qicheng; Yan, Caichuan; Wang, Hui; Zhang, Qingyuan

    2017-02-01

    Gold nanorods are effective photothermal agents in diagnosis and treatment of cancer due to their specific near-infrared laser absorption. However, tumor photothermal therapy by nanorods alone is lack of targeting. Here, we described a novel nanocomplex made up of gold nanorods, porphyrin, and trastuzumab, called TGNs and investigated the TGN-mediated photothermal therapy as a potential alternative treatment of targeting HER2-positive breast cancers. By conjugating trastuzumab and porphyrin to the surface of gold nanorods, we have increased the targeting specificity and amplified the detecting effectiveness at the same time. TGN-mediated photothermal ablation by near-infrared laser led to a selective destruction of HER2-positive cancer cells and significantly inhibited tumor growth in mouse models bearing HER2 over-expressed breast cancer xenograft with less toxicity. Moreover, TGNs provided better therapeutic efficacy in comparison with the conventional molecule targeted therapy. Our current data suggest a highly promising future of TGNs for its therapeutic application in trastuzumab-resistant breast cancers.

  4. Semimetal Nanomaterials of Antimony as Highly Efficient Agent for Photoacoustic Imaging and Photothermal Therapy

    PubMed Central

    Li, Wanwan; Rong, Pengfei; Yang, Kai; Huang, Peng; Sun, Kang; Chen, Xiaoyuan

    2017-01-01

    In this study we report semimetal naonmaterials of antimony (Sb) as highly efficient agent for photoacoustic imaging (PAI) and photothermal therapy (PTT). The Sb nanorod bundles have been synthesized through a facile route by mixing 1-octadecane (ODE) and oleyl amine (OAm) as the solvent. The aqueous dispersion of PEGylated Sb NPs, due to its broad and strong photoabsorption ranging from ultraviolet (UV) to near-infrared (NIR) wavelengths, is applicable as a photothermal agent driven by 808 nm laser with photothermal conversion efficiency up to 41%, noticeably higher than most of the PTT agents reported before. Our in vitro experiments also showed that cancer cell ablation effect of PEGylated Sb NPs was dependent on laser power. By intratumoral administration of PEGylated Sb NPs, 100% tumor ablation can be realized by using NIR laser irradiation with a lower power of 1 W/cm2 for 5 min (or 0.5 W/cm2 for 10 min) and no obvious toxic side effect is identified after photothermal treatment. Moreover, intense PA signal was also observed after intratumoral injection of PEGylated Sb NPs and NIR laser irradiation due to their strong NIR photoabsorption, suggesting PEGylated Sb NPs as a potential NIR PA agent. Based on the findings of this work, futher development of using other smimetal nanocrystals as highly efficient NIR agents can be achieved for vivo tumor imaging and PTT. PMID:25662491

  5. Combined Cancer Photothermal-Chemotherapy Based on Doxorubicin/Gold Nanorod-Loaded Polymersomes

    PubMed Central

    Liao, JinFeng; Li, WenTing; Peng, JinRong; Yang, Qian; Li, He; Wei, YuQuan; Zhang, XiaoNing; Qian, ZhiYong

    2015-01-01

    Gold nanorods (GNRs) are well known in photothermal therapy based on near-infrared (NIR) laser absorption of the longitudinal plasmon band. Herein, we developed an effective stimulus system -- GNRs and doxorubicin co-loaded polymersomes (P-GNRs-DOX) -- to facilitate co-therapy of photothermal and chemotherapy. DOX can be triggered to release once the polymersomes are corrupted under local hyperthermic condition of GNRs induced by NIR laser irradiation. Also, the cytotoxicity of GNRs caused by the residual cetyltrimethylacmmonium bromide (CTAB) was reduced by shielding the polymersomes. The GNRs-loaded polymersomes (P-GNRs) can be efficiently taken up by the tumor cells. The distribution of the nanomaterial was imaged by IR-820 and quantitatively analyzed by ICP-AES. We studied the ablation of tumor cells in vitro and in vivo, and found that co-therapy offers significantly improved therapeutic efficacy (tumors were eliminated without regrowth.) compared with chemotherapy or photothermal therapy alone. By TUNEL immunofluorescent staining of tumors after NIR laser irradiation, we found that the co-therapy showed more apoptotic tumor cells than the other groups. Furthermore, the toxicity study by pathologic examination of the heart tissues demonstrated a lower systematic toxicity of P-GNRs-DOX than free DOX. Thus, the chemo-photothermal treatment based on polymersomes loaded with DOX and GNRs is a useful strategy for maximizing the therapeutic efficacy and minimizing the dosage-related side effects in the treatment of solid tumors. PMID:25699095

  6. Multifunctional CuS nanocrystals for inhibiting both osteosarcoma proliferation and bacterial infection by photothermal therapy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Li, Lihua; Lu, Yao; Liu, Cong; Lei, Yangqing; Zhang, Chengcheng; Yin, Qingshui; Zhang, Yu

    2017-09-01

    Photothermal therapy (PTT) has attracted great attention in cancer therapy because of high efficiency and low side effect. The semiconductors have been proved to be ideal photothermal agents in the past years. Herein, we synthesized a novel hexahedron structure of polyvinyl pyrrolidone (PVP) coating CuS nanocrystals (NCs) by a facile hydrothermal method. The synthesized CuS NCs (150 nm for average length of edge and 125 nm for length of width) have good biocompatibility due to their PVP coating and strong absorption in the near infrared region. Moreover, the CuS NCs exhibit high photothermal conversion efficiency as well as good antibacterial effect. Notably, the proliferation of osteosarcoma cancer cells can be efficiently inhibited both in vitro and in vivo by the fatal heat with very low concentration of CuS NCs under the near infrared ray at a power density of 0.5 W/cm2. Therefore, the CuS-PVP NCs have great potential to work as an ideal photothermal and antibacterial agent in clinical applications.

  7. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration.

    PubMed

    Lee, Jong Min; Seo, Hye In; Bae, Jun Hyuk; Chung, Bong Geun

    2017-02-07

    We developed the photo-crosslinkable hydrogel microfluidic co-culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi-permeable physical barrier. We demonstrated the effect of gold nanorod on photothermal therapy of cancer cells in the microfluidic co-culture device. Interestingly, we observed that metastatic U87MG human glioblastoma largely migrated toward vascular endothelial growth factor (VEGF)-treated GelMA hydrogel-embedding microchannels. The main advantage of this hydrogel microfluidic co-culture device is to simultaneously analyze the physiological migration behaviors of two cancer cells with different physiochemical motilities and study gold nanorod-mediated photothermal therapy effect. Therefore, this hydrogel microfluidic co-culture device could be a potentially powerful tool for photothermal therapy and cancer cell migration applications. This article is protected by copyright. All rights reserved.

  8. Oral Nanostructured Lipid Carriers Loaded with Near-Infrared Dye for Image-Guided Photothermal Therapy.

    PubMed

    Chen, Gang; Wang, Kaikai; Zhou, Yiwen; Ding, Ling; Ullah, Aftab; Hu, Qi; Sun, Minjie; Oupický, David

    2016-09-28

    Photothermal therapy exerts its anticancer effect by converting laser radiation energy into hyperthermia using a suitable photosensitizer. This study reports development of nanostructured lipid carriers (NLCs) suitable for noninvasive oral delivery of a near-infrared photosensitizer dye IR780. The carrier encapsulating the dye (IR780@NLCs) was stable in simulated gastric and intestinal conditions and showed greatly enhanced oral absorption of IR780 when compared with the free dye. As a result of increased oral bioavailability, enhanced accumulation of the dye in subcutaneous mouse colon tumors (CT-26 cells) was observed following oral gavage of IR780@NLCs. Photothermal antitumor activity of orally administered IR780@NLCs was evaluated following local laser irradiation of the CT-26 tumors. We observed significant effect of the photothermal IR780@NLCs treatment on the rate of the tumor growth and no toxicity associated with the oral administration of IR780@NLCs. Overall, orally administered IR780@NLCs represents a safe and noninvasive method to achieve systemic tumor delivery of a photosensitizing dye for applications in photothermal anticancer therapies.

  9. Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer

    PubMed Central

    Kang, Xinmei; Guo, Ximing; An, Weiwei; Niu, Xingjian; Li, Suhan; Liu, Zhaoliang; Yang, Yue; Wang, Na; Jiang, Qicheng; Yan, Caichuan; Wang, Hui; Zhang, Qingyuan

    2017-01-01

    Gold nanorods are effective photothermal agents in diagnosis and treatment of cancer due to their specific near-infrared laser absorption. However, tumor photothermal therapy by nanorods alone is lack of targeting. Here, we described a novel nanocomplex made up of gold nanorods, porphyrin, and trastuzumab, called TGNs and investigated the TGN-mediated photothermal therapy as a potential alternative treatment of targeting HER2-positive breast cancers. By conjugating trastuzumab and porphyrin to the surface of gold nanorods, we have increased the targeting specificity and amplified the detecting effectiveness at the same time. TGN-mediated photothermal ablation by near-infrared laser led to a selective destruction of HER2-positive cancer cells and significantly inhibited tumor growth in mouse models bearing HER2 over-expressed breast cancer xenograft with less toxicity. Moreover, TGNs provided better therapeutic efficacy in comparison with the conventional molecule targeted therapy. Our current data suggest a highly promising future of TGNs for its therapeutic application in trastuzumab-resistant breast cancers. PMID:28155894

  10. A sweet polydopamine nanoplatform for synergistic combination of targeted chemo-photothermal therapy.

    PubMed

    Gao, Yanqin; Wu, Xingjie; Zhou, Linzhu; Su, Yue; Dong, Chang-Ming

    2015-05-01

    Inspired by sweet or sugar-coated bullets that are used for medications in clinics and the structure and function of biological melanin, a novel kind of sweet polydopamine nanoparticles and their anticancer drug doxorubicin loaded counterparts are prepared, which integrate an active targeting function, photothermal therapy, and chemotherapy into one polymeric nanocarrier. The oxidative polymerization of lactosylated dopamine and/or with dopamine are performed under mild conditions and the resulting sweet nanoparticles are thoroughly characterized. When exposed to an 808 nm continuous-wave diode laser, the magnitude of temperature elevation not only increases with the concentration of nanoparticles, but can also be tuned by the laser power density. The nanoparticles possess strong near infrared light absorption, high photothermal conversion efficiency, and good photostability. The nanoparticles present tunable binding with RCA120 lectin and a targeting effect to HepG2 cells, confirmed by dynamic light scattering, turbidity analysis, MTT assay, and flow cytometry. Importantly, the sweet nanoparticles give the lowest IC50 value of 11.67 μg mL(-1) for chemo-photothermal therapy compared with 43.19 μg mL(-1) for single chemotherapy and 67.38 μg mL(-1) for photothermal therapy alone, demonstrating a good synergistic effect for the combination therapy.

  11. All Wrapped Up: Environmental Effects on Myelination.

    PubMed

    Forbes, Thomas A; Gallo, Vittorio

    2017-09-01

    To date, studies have demonstrated the dynamic influence of exogenous environmental stimuli on multiple regions of the brain. This environmental influence positively and negatively impacts programs governing myelination, and acts on myelinating oligodendrocyte (OL) cells across the human lifespan. Developmentally, environmental manipulation of OL progenitor cells (OPCs) has profound effects on the establishment of functional cognitive, sensory, and motor programs. Furthermore, central nervous system (CNS) myelin remains an adaptive entity in adulthood, sensitive to environmentally induced structural changes. Here, we discuss the role of environmental stimuli on mechanisms governing programs of CNS myelination under normal and pathological conditions. Importantly, we highlight how these extrinsic cues can influence the intrinsic power of myelin plasticity to promote functional recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells.

    PubMed

    Li, Bo; Wang, Qian; Zou, Rujia; Liu, Xijian; Xu, Kaibing; Li, Wenyao; Hu, Junqing

    2014-03-21

    Copper sulphides, as a novel kind of photothermal agent for photothermal therapy (PTT) of cancer cells, have attracted increasing attention in recent years due to good photostability, synthetic simplicity, low toxicity and low cost. However, the unsatisfactory photothermal conversion efficiency of copper sulphides limits their bioapplication as PTT agents. Herein, Cu7.2S4 NCs with a mean size of ∼20 nm as a novel photothermal agent have been prepared by a simple thermal decomposition route. Moreover, these NCs exhibit strong near-infrared (NIR) absorption, good photostability and significant photothermal conversion efficiency up to 56.7% due to strong NIR absorption, good dispersity and suitable size. Importantly, these NCs can be very compatibly used as a 980 nm laser-driven PTT agent for the efficient PTT of cancer cells in vitro and in vivo.

  13. Environmental effects on spacecraft materials

    NASA Technical Reports Server (NTRS)

    Haffner, J. W.

    1989-01-01

    The effects on the natural space environments on materials are presented, which may be used for SDI applications. The current state-of-the-art knowledge of those effects was studied, and a literature search, a questionnaire mailing, and some visits to NASA and Air Force research facilities were performed. Phase 2 will be a study of what materials may be used for SDI applications and to what natural space environments they may be vulnerable. Deficiencies in knowledge of the effects of the natural space environments on these materials are to be identified and recommendations are to be made to eliminate these knowledge deficiencies.

  14. Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy.

    PubMed

    Zhang, Xinyuan; Nan, Xu; Shi, Wei; Sun, Yanan; Su, Huiling; He, Yuan; Liu, Xin; Zhang, Zhong; Ge, Dongtao

    2017-07-21

    For releasing both drug and heat to selected sites, a combination of chemotherapy and photothermal therapy in one system is a more effective way to destroy cancer cells than monotherapy. Graphene oxide (GO) with high drug-loading efficiency and near-infrared (NIR) absorbance has great potential in drug delivery and photothermal therapy, but it is difficult to load drugs with high solubility. Herein, we develop a versatile drug delivery nanoplatform based on GO for integrated chemotherapy and photothermal therapy by a facile method of simultaneous reduction and surface functionalization of GO with poly(dopamine) (PDA). Due to the excellent adhesion of PDA, both low and high solubility drugs can be encapsulated in the PDA-functionalized GO nanocomposite (rGO-PDA). The fabricated nanocomposite exhibits good biocompatibility, excellent photothermal performance, high drug loading capacity, an outstanding sustained release property, and efficient endocytosis. Moreover, NIR laser irradiation facilitates the release of loaded drugs from rGO-PDA. These features make the rGO-PDA nanocomposite achieve excellent in vivo synergistic antitumor therapeutic efficacy.

  15. Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells

    PubMed Central

    2015-01-01

    Au nanoparticles with plasmon resonances in the near-infrared (NIR) region of the spectrum efficiently convert light into heat, a property useful for the photothermal ablation of cancerous tumors subsequent to nanoparticle uptake at the tumor site. A critical aspect of this process is nanoparticle size, which influences both tumor uptake and photothermal efficiency. Here, we report a direct comparative study of ∼90 nm diameter Au nanomatryoshkas (Au/SiO2/Au) and ∼150 nm diameter Au nanoshells for photothermal therapeutic efficacy in highly aggressive triple negative breast cancer (TNBC) tumors in mice. Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency, while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous injection of Au nanomatryoshkas followed by a single NIR laser dose of 2 W/cm2 for 5 min, 83% of the TNBC tumor-bearing mice appeared healthy and tumor free >60 days later, while only 33% of mice treated with nanoshells survived the same period. The smaller size and larger absorption cross section of Au nanomatryoshkas combine to make this nanoparticle more effective than Au nanoshells for photothermal cancer therapy. PMID:24889266

  16. Highly Stable and Biocompatible Mushroom β-Glucan Modified Gold Nanorods for Cancer Photothermal Therapy.

    PubMed

    Li, Xiaojie; Zhou, Jiajing; Liu, Chaoran; Xiong, Qirong; Duan, Hongwei; Cheung, Peter

    2017-10-10

    Naturally-occurring β-glucans have been widely regarded as a natural source for functional foods and pharmaceuticals due to their immunomodulatory property and antitumor activity. However, physicochemically stable and the biocompatible β-glucans are rarely explored as a carrier for nanomaterials to overcome the problems of aggregation and nanotoxicity. Here, we have developed a highly stable and biocompatible mushroom β-glucan coated gold nanorods (AuNR-Glu) for cancer photothermal therapy by integrating Pleurotus tuber-regium (PTR) sclerotial β-glucan (Glu) and plasmonic gold nanorods (AuNRs) photothermal-active in the second near-infrared (NIR-II) window. AuNR-Glu showed high colloidal stability in various biological media, even in simulated gastric fluid. Moreover, AuNR-Glu had low cytotoxicity and high photothermal stability which are excellent characteristics as photothermal agent for cancer therapy. In vitro experiments showed that AuNR-Glu nanohybrid was effective against MCF-7 (only 4.5 ± 0.9% viability) at a low dose of 20 μg/mL under NIR-II at a safe laser power density (0.75 W/cm2). Natural mushroom β-glucans are potential functional polymer to fabricate nanohybrid for biomedical applications.

  17. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells.

    PubMed

    Ayala-Orozco, Ciceron; Urban, Cordula; Knight, Mark W; Urban, Alexander Skyrme; Neumann, Oara; Bishnoi, Sandra W; Mukherjee, Shaunak; Goodman, Amanda M; Charron, Heather; Mitchell, Tamika; Shea, Martin; Roy, Ronita; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi J; Joshi, Amit

    2014-06-24

    Au nanoparticles with plasmon resonances in the near-infrared (NIR) region of the spectrum efficiently convert light into heat, a property useful for the photothermal ablation of cancerous tumors subsequent to nanoparticle uptake at the tumor site. A critical aspect of this process is nanoparticle size, which influences both tumor uptake and photothermal efficiency. Here, we report a direct comparative study of ∼90 nm diameter Au nanomatryoshkas (Au/SiO2/Au) and ∼150 nm diameter Au nanoshells for photothermal therapeutic efficacy in highly aggressive triple negative breast cancer (TNBC) tumors in mice. Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency, while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous injection of Au nanomatryoshkas followed by a single NIR laser dose of 2 W/cm(2) for 5 min, 83% of the TNBC tumor-bearing mice appeared healthy and tumor free >60 days later, while only 33% of mice treated with nanoshells survived the same period. The smaller size and larger absorption cross section of Au nanomatryoshkas combine to make this nanoparticle more effective than Au nanoshells for photothermal cancer therapy.

  18. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics

    PubMed Central

    Shao, Jingwei; Griffin, Robert J.; Galanzha, Ekaterina I.; Kim, Jin-Woo; Koonce, Nathan; Webber, Jessica; Mustafa, Thikra; Biris, Alexandru S.; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2013-01-01

    Nanotechnology has been extensively explored for drug delivery. Here, we introduce the concept of a nanodrug based on synergy of photothermally-activated physical and biological effects in nanoparticle-drug conjugates. To prove this concept, we utilized tumor necrosis factor-alpha coated gold nanospheres (Au-TNF) heated by laser pulses. To enhance photothermal efficiency in near-infrared window of tissue transparency we explored slightly ellipsoidal nanoparticles, its clustering, and laser-induced nonlinear dynamic phenomena leading to amplification and spectral sharpening of photothermal and photoacoustic resonances red-shifted relatively to linear plasmonic resonances. Using a murine carcinoma model, we demonstrated higher therapy efficacy of Au-TNF conjugates compared to laser and Au-TNF alone or laser with TNF-free gold nanospheres. The photothermal activation of low toxicity Au-TNF conjugates, which are in phase II trials in humans, with a laser approved for medical applications opens new avenues in the development of clinically relevant nanodrugs with synergistic antitumor theranostic action. PMID:23443065

  19. Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyuan; Nan, Xu; Shi, Wei; Sun, Yanan; Su, Huiling; He, Yuan; Liu, Xin; Zhang, Zhong; Ge, Dongtao

    2017-07-01

    For releasing both drug and heat to selected sites, a combination of chemotherapy and photothermal therapy in one system is a more effective way to destroy cancer cells than monotherapy. Graphene oxide (GO) with high drug-loading efficiency and near-infrared (NIR) absorbance has great potential in drug delivery and photothermal therapy, but it is difficult to load drugs with high solubility. Herein, we develop a versatile drug delivery nanoplatform based on GO for integrated chemotherapy and photothermal therapy by a facile method of simultaneous reduction and surface functionalization of GO with poly(dopamine) (PDA). Due to the excellent adhesion of PDA, both low and high solubility drugs can be encapsulated in the PDA-functionalized GO nanocomposite (rGO-PDA). The fabricated nanocomposite exhibits good biocompatibility, excellent photothermal performance, high drug loading capacity, an outstanding sustained release property, and efficient endocytosis. Moreover, NIR laser irradiation facilitates the release of loaded drugs from rGO-PDA. These features make the rGO-PDA nanocomposite achieve excellent in vivo synergistic antitumor therapeutic efficacy.

  20. Doxorubicin and Indocyanine Green Loaded Hybrid Bicelles for Fluorescence Imaging Guided Synergetic Chemo/Photothermal Therapy.

    PubMed

    Lin, Li; Liang, Xiaolong; Xu, Yunxue; Yang, Yongbo; Li, Xiaoda; Dai, Zhifei

    2017-08-24

    Hybrid bicelles have been demonstrated to have great potential for hydrophobic drug delivery. Herein, we report a near-infrared light-driven, temperature-sensitive hybrid bicelles co-encapsulating hydrophobic doxorubicin (DOX) and indocyanine green (ICG) (DOX/ICG@HBs). Encapsulation of ICG into the lipid bilayer membrane of DOX/ICG@HBs results in higher photostability than free ICG. DOX/ICG@HBs exhibited temperature-regulated drug release behavior and significant photothermal cytotoxicity. After tail vein injection, such discotic nanoparticles of DOX/ICG@HBs were found to accumulate selectively at the tumor site and act as an efficient probe to enhance fluorescence imaging greatly. The in vivo experiments showed that the DOX/ICG@HBs-mediated chemo- and photothermal combination therapy was more cytotoxic to tumor cells than the photothermal treatment or the chemotherapy alone due to the synergistic effect, reducing the occurrence of tumor metastasis. Therefore, DOX/ICG@HBs can act as a powerful nanotheranostic agent for chemo/photothermal therapy of cancer under the guidance of near-infrared fluorescence imaging.

  1. Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs

    NASA Astrophysics Data System (ADS)

    Iodice, Carmen; Cervadoro, Antonio; Palange, AnnaLisa; Key, Jaehong; Aryal, Santosh; Ramirez, Maricela R.; Mattu, Clara; Ciardelli, Gianluca; O'Neill, Brian E.; Decuzzi, Paolo

    2016-01-01

    Gold nanoparticles (AuNPs) have been proposed as agents for enhancing photothermal therapy in cancer and cardiovascular diseases. Different geometrical configurations have been used, ranging from spheres to rods and more complex star shapes, to modulate optical and ablating properties. In this work, multiple, ultra-small 6 nm AuNPs are encapsulated into larger spherical polymeric nanoconstructs (SPNs), made out of a poly(lactic acid-co-glycol acid) (PLGA) core stabilized by a superficial lipid-PEG monolayer. The optical and photothermal properties of the resulting nanoconstructs (Au-SPNs) are modulated by varying the initial loading input of AuNPs, ranging between 25 and 150 μgAu. Au-SPNs exhibit a hydrodynamic diameter varying from ~100 to 180 nm, growing with the gold content, and manifest up to 2-fold increase in thermal energy production per unit mass of gold for an initial input of 100 μgAu. Au-SPNs are stable under physiological conditions up to 7 days and have direct cytotoxic effect on tumor cells. The superior photothermal performance of Au-SPNs is assessed in vitro on monolayers of breast cancer cells (SUM-159) and tumor spheroids of glioblastoma multiforme cells (U87-MG). The encapsulation of small AuNPs into larger spherical nanoconstructs enhances photothermal ablation and could favor tumor accumulation.

  2. Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy

    PubMed Central

    Kim, Hanna; Kim, Hyejin; Seok, Kwang Hyuk; Jung, Min Jung; Ahn, Yeh-chan; Kang, Hyun Wook

    2017-01-01

    The photothermal effect of a marine-oriented xanthophyll carotenoid, astaxanthin (AXT), was characterized based on its potential absorption of visible laser light and conversion of optical light energy into heat for thermal treatment. As an antioxidant and anticancer agent, AXT extracted from marine material can be utilized for photothermal therapy due to its strong light absorption. The current study investigated the feasibility of the marine-based material AXT to increase the therapeutic efficacy of chemo-photothermal therapy (PTT) by assessing photothermal sessions in both cells and tumor tissues. A quasi-cw Q-switched 80 W 532 nm laser system was utilized to induce thermal necrosis in in vitro and in vivo models. An in vitro cytotoxicity study of AXT was implemented using squamous cell carcinoma (VX2) and macrophage (246.7) cell lines. In vivo PTT experiments were performed on 17 rabbits bearing VX2 tumors on their eyes that were treated with or without intratumoral injection of AXT at a dose of 100 μl (300 μg/ml) followed by laser irradiation at a low irradiance of 0.11 W/cm2. Fluorescence microscopy images revealed cellular death via apoptosis and necrosis owing to the dual chemo-photothermal effects induced by AXT. In vivo experimental results demonstrated that the AXT-assisted irradiation entailed a temperature increase by 30.4°C after tumor treatment for 4 min. The relative variations in tumor volume confirmed that the tumors treated with both AXT and laser irradiation completely disappeared 14 days after treatment, but the tumors treated under other conditions gradually grew. Due to selective light absorption, AXT-assisted laser treatment could be an effective thermal therapy for various drug-resistant cancers. PMID:28369126

  3. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy.

    PubMed

    Bai, Jing; Liu, Yuwei; Jiang, Xiue

    2014-07-01

    The synergistic therapy, the combination of photothermal therapy and chemotherapy, has become a potential treatment in the battles with cancer. Here, we developed a synergistic therapy tool that based on CuS nanoparticles-decorated graphene oxide functionalized with polyethylene glycol (PEG-GO/CuS) for cervical cancer treatment. The as-synthesized PEG-GO/CuS nanocomposites with excellent biocompatibility was revealed to have high storage capacity for anticancer drug of doxorubicin (Dox) and high photothermal conversion efficiency, and were effectively employed for the ablation of tumor. In addition, the therapeutic efficacy of Dox-loaded PEG-GO/CuS (PEG-GO/CuS/Dox) nanocomposites was evaluated in vitro and in vivo for cervical cancer therapy. In vitro cell cytotoxicity tests of PEG-GO/CuS/Dox demonstrate about 1.3 and 2.7-fold toxicity than PEG-GO/CuS and free Dox under 5 min irradiation with NIR laser at 1.0 W/cm(2), owing to both PEG-GO/CuS-mediated photothermal ablation and cytotoxicity of light-triggered Dox release. In mouse models, mouse cervical tumor growth was found to be significantly inhibited by the chemo-photothermal effect of PEG-GO/CuS/Dox nanocomposites, resulting in effective tumor reduction. Overall, compared with chemotherapy or photothermal therapy alone, the combined treatment demonstrates better therapeutic efficacy of cancer in vitro and in vivo. These findings highlight the promise of the highly versatile multifunctional nanoparticles in biomedical application.

  4. Biodegradable and Multifunctional Polymer Micro-Tubes for Targeting Photothermal Therapy

    PubMed Central

    Wang, Xin; Yu, Guoping; Han, Xiyu; Zhang, Hua; Ren, Jing; Wu, Xia; Qu, Yanfeng

    2014-01-01

    We describe an innovative form of polymer micro-tubes with diverse functions including biodegradation, magnetic manipulation, and photothermal effect that employs and activates photothermal therapy to target cancer cells. The micro-tube comprised soybean protein isolate, poly-l-glutamic acid, magnetite nanoparticles, plus gold nanoparticles. Through electrostatic force, these components, with opposite charges, formed pairs of layers in the pores of the template, various bilayers of soybean protein isolate and poly-l-glutamic acid served as the biodegradable building wall to each micro-tube. The layers of magnetite nanoparticle functionalized micro-tubes enabled the micro-tube manipulate to target the cancer cells by using an external magnetic field. The photo-thermal effect of the layer of gold nanoparticles on the outer surface of the micro-tubes, when under irradiation and when brought about by the near infrared radiation, elevated each sample’s temperature. In addition, and when under the exposure of the near infrared radiation, the elevated temperature of the suspension of the micro-tubes, likewise with a concentration of 0.2 mg/mL, and similarly with a power of 2 W and as well maintained for 10 min, elevated the temperature of the suspension beyond 42 °C. Such temperatures induced apoptosis of target cancer cells through the effect of photothermal therapy. The findings assert that structured micro-tubes have a promising application as a photothermal agent. From this assertion, the implications are that this multifunctional agent will significantly improve the methodology for cancer diagnosis and therapy. PMID:24992593

  5. Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, Qian; Zou, Rujia; Liu, Xijian; Xu, Kaibing; Li, Wenyao; Hu, Junqing

    2014-02-01

    Copper sulphides, as a novel kind of photothermal agent for photothermal therapy (PTT) of cancer cells, have attracted increasing attention in recent years due to good photostability, synthetic simplicity, low toxicity and low cost. However, the unsatisfactory photothermal conversion efficiency of copper sulphides limits their bioapplication as PTT agents. Herein, Cu7.2S4 NCs with a mean size of ~20 nm as a novel photothermal agent have been prepared by a simple thermal decomposition route. Moreover, these NCs exhibit strong near-infrared (NIR) absorption, good photostability and significant photothermal conversion efficiency up to 56.7% due to strong NIR absorption, good dispersity and suitable size. Importantly, these NCs can be very compatibly used as a 980 nm laser-driven PTT agent for the efficient PTT of cancer cells in vitro and in vivo.Copper sulphides, as a novel kind of photothermal agent for photothermal therapy (PTT) of cancer cells, have attracted increasing attention in recent years due to good photostability, synthetic simplicity, low toxicity and low cost. However, the unsatisfactory photothermal conversion efficiency of copper sulphides limits their bioapplication as PTT agents. Herein, Cu7.2S4 NCs with a mean size of ~20 nm as a novel photothermal agent have been prepared by a simple thermal decomposition route. Moreover, these NCs exhibit strong near-infrared (NIR) absorption, good photostability and significant photothermal conversion efficiency up to 56.7% due to strong NIR absorption, good dispersity and suitable size. Importantly, these NCs can be very compatibly used as a 980 nm laser-driven PTT agent for the efficient PTT of cancer cells in vitro and in vivo. Electronic supplementary information (ESI) available: Figures. See DOI: 10.1039/c3nr06242b

  6. Nonlinear photothermal Mid-Infrared Microspectroscopy with Superresolution

    NASA Astrophysics Data System (ADS)

    Erramilli, Shyamsunder; Mertiri, Alket; Liu, Hui; Totachawattana, Atcha; Hong, Mi; Sander, Michelle

    2015-03-01

    We describe a nonlinear method for breaking the diffraction limit in mid-infrared microscopy using nonlinear photothermal microspectroscopy. A Quantum Cascade Laser (QCL) tuned to an infrared active vibrational molecular normal mode is used as the pump laser. A low-phase noise Erbium-doped fiber (EDFL) laser is used as the probe. When the incident intensity of the mid-infrared pump laser is increased past a critical threshold, a nanobubble is nucleated, strongly modulating the scatter of the probe beam, in agreement with prior work. Remarkably, we have also found that the photothermal spectral signature of the mid-infrared absorption bifurcates and is strongly narrowed, consistent with an effective ``mean-field'' theory of the observed pitchfork bifurcation. This ultrasharp narrowing can be exploited to obtain mid-infrared images with a resolution that breaks the diffraction limit, without the need of mechanical scanning near-field probes. The method provides a powerful new tool for hyperspectral label-free mid-infrared imaging and characterization of biological tissues and materials science and engineering. We thank our collaborators H. Altug, L. D. Ziegler, J. Mertz, for their advice and generous loan of equipment.

  7. Space environmental effects on materials

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Sykes, G. F.; Bowles, D. E.

    1982-01-01

    Research efforts at NASA-Langley to characterize the durability of composite materials which are candidates for use as components on various space hardware systems are reviewed. The material applications include large space structures, antennas, cables, thermal control coatings, solar reflectors, and satellite power systems. Simulation facilities have been built to study radiation effects on polymer matrix composites, and the dimensional stability of the matrix composites and tension stabilized cables. Numerical models are being developed for radiation effects on the mechanical, physical, and optical properties. Additionally, chemical and microstructural analyses are performed to identify damage mechanisms and the limits of effectiveness of accelerating life tests. It is noted that no residual strength reduction has been detected in polymer films after dosages of 5 billion rads of electron radiation.

  8. Laser-Triggered Small Interfering RNA Releasing Gold Nanoshells against Heat Shock Protein for Sensitized Photothermal Therapy.

    PubMed

    Wang, Zhaohui; Li, Siwen; Zhang, Min; Ma, Yi; Liu, Yuxi; Gao, Weidong; Zhang, Jiaqi; Gu, Yueqing

    2017-02-01

    The resistance of cancer cells to photothermal therapy is closely related to the overexpression of heat shock proteins (HSPs), which are abnormally upregulated when cells are under lethal stresses. Common strategies that use small molecule inhibitors against HSPs to enhance hyperthermia effect lack spatial and temporal control of drug release, leading to unavoidable systemic toxicity. Herein, a versatile photothermal platform is developed which is composed of a hollow gold nanoshell core densely packed with small interfering RNAs against heat shock protein 70 (Hsp70). Upon near infrared light irradiation, the small interfering RNAs can detach from gold surface specifically and escape from endosomes for Hsp70 silencing. Meanwhile, the temperature increases for hyperthermia therapy due to the high photothermal efficiency of the nanoshells. Efficient downregulation of Hsp70 after light activation is achieved in vitro and in vivo. Ultimately, the light-controlled dual functional nanosystem, with the effects of Hsp70 silencing and temperature elevation, results in sensitized photothermal therapy in nude mice model under mild temperature. This strategy smartly combines the localized photothermal therapy with controlled Hsp70 silencing, and has great potential for clinical translation with a simple and easily controlled structure.

  9. Laser‐Triggered Small Interfering RNA Releasing Gold Nanoshells against Heat Shock Protein for Sensitized Photothermal Therapy

    PubMed Central

    Wang, Zhaohui; Li, Siwen; Zhang, Min; Ma, Yi; Liu, Yuxi; Gao, Weidong; Zhang, Jiaqi

    2016-01-01

    The resistance of cancer cells to photothermal therapy is closely related to the overexpression of heat shock proteins (HSPs), which are abnormally upregulated when cells are under lethal stresses. Common strategies that use small molecule inhibitors against HSPs to enhance hyperthermia effect lack spatial and temporal control of drug release, leading to unavoidable systemic toxicity. Herein, a versatile photothermal platform is developed which is composed of a hollow gold nanoshell core densely packed with small interfering RNAs against heat shock protein 70 (Hsp70). Upon near infrared light irradiation, the small interfering RNAs can detach from gold surface specifically and escape from endosomes for Hsp70 silencing. Meanwhile, the temperature increases for hyperthermia therapy due to the high photothermal efficiency of the nanoshells. Efficient downregulation of Hsp70 after light activation is achieved in vitro and in vivo. Ultimately, the light‐controlled dual functional nanosystem, with the effects of Hsp70 silencing and temperature elevation, results in sensitized photothermal therapy in nude mice model under mild temperature. This strategy smartly combines the localized photothermal therapy with controlled Hsp70 silencing, and has great potential for clinical translation with a simple and easily controlled structure. PMID:28251053

  10. Teaching Environmental Consumer Education Effectively.

    ERIC Educational Resources Information Center

    Cude, Brenda J.

    1993-01-01

    Effective strategies include (1) helping consumers see how lifestyles and consumer behavior are related; (2) limiting amount of new terminology used; (3) dispelling myths and misperceptions; (4) doing product life-cycle analysis; and (5) emphasizing long-term goals for behavior change. (JOW)

  11. Effects of Inevitable Environmental Pollutants.

    ERIC Educational Resources Information Center

    Howes, Carollee; Krakow, Joanne

    This paper examines the effects of unavoidable pollutants on fetal development in humans. Inevitable pollutants such as radiation, pesticides, gases and lead found in the air, water, and food of our industrialized society are discussed as well as psychological correlates of industrialization and urbanization such as stress, increased noise levels…

  12. Effects of Inevitable Environmental Pollutants.

    ERIC Educational Resources Information Center

    Howes, Carollee; Krakow, Joanne

    This paper examines the effects of unavoidable pollutants on fetal development in humans. Inevitable pollutants such as radiation, pesticides, gases and lead found in the air, water, and food of our industrialized society are discussed as well as psychological correlates of industrialization and urbanization such as stress, increased noise levels…

  13. Improved Treatment of Photothermal Cancer by Coating TiO2 on Porous Silicon.

    PubMed

    Na, Kil Ju; Park, Gye-Choon

    2016-02-01

    In present society, the technology in various field has been sharply developed and advanced. In medical technology, especially, photothermal therapy and photodynamic therapy have had limelight for curing cancers and diseases. The study investigates the photothermal therapy that reduces side effects of existing cancer treatment, is applied to only cancer cells, and dose not harm any other normal cells. The photothermal properties of porous silicon for therapy are analyzed in order to destroy cancer cells that are more weak at heat than normal ones. For improving performance of porous silicon, it also analyzes the properties when irradiating the near infrared by heterologously junction TiO2 and TiO2NW, photocatalysts that are very stable and harmless to the environment and the human body, to porous silicon. Each sample of Si, PSi, TiO2/Psi, and TiO2NW/PSi was irradiated with 808 nm near-IR of 300, 500, and 700 mW/cm2 light intensity, where the maximum heating temperature was 43.8, 61.6, 67.9, and 61.9 degrees C at 300 mW/cm2; 54.1, 64.3, 78.8, and 68.9 degrees C at 500 mW/cm2; and 97.3, 102.8, 102.5, and 95 0C at 700 mW/cm2. The time required to reach the maximum temperature was less than 10 min for every case. The results indicate that TiO2/PSi thin film irradiated with a single near-infrared wavelength of 808 nm, which is known to have the best human permeability, offers the potential of being the most successful photothermal cancer therapy agent. It maximizes the photo-thermal characteristics within the shortest time, and minimizes the adverse effects on the human body.

  14. The environmental effects of nuclear war

    SciTech Connect

    MacCracken, M.C.

    1988-09-01

    Substantial environmental disruption will significantly add to the disastrous consequences caused by the direct thermal, blast, and radiological effects brought on by a major nuclear war. Local fallout could cover several percent of the Northern Hemisphere with potentially lethal doses. Smoke from post-nuclear fires could darken the skies and induce temperature decreases of tens of degrees in continental interiors. Stratospheric ozone could be significantly reduced due to nitric oxide injections and smoke-induced circulation changes. The environmental effects spread the consequences of a nuclear war to the world population, adding to the potentially large disruptive effects a further reason to avoid such a catastrophe. 27 refs., 4 figs.

  15. The environmental effects of nuclear war

    NASA Astrophysics Data System (ADS)

    MacCracken, Michael C.

    1988-12-01

    Substantial environmental disruption will significantly add to the disastrous consequences caused by the direct thermal, blast, and radiological effects brought on by a major nuclear war. Local fallout could cover several per cent of the Northern Hemisphere with potentially lethal doses. Smoke from post-nuclear fires could darken the skies and induce temperature decreases of tens of degrees in continental interiors. Stratospheric ozone could be significantly reduced due to nitric oxide injections and smoke-induced circulation changes. The environmental effects spread the consequences of a nuclear war to the world population, adding to the potentially large disruptive effects a further reason to avoid such a catastrophe.

  16. Environmental effects of space systems

    SciTech Connect

    Rote, D. M.

    1980-01-01

    The potential effects of large space systems, primarily the Satellite Power System (SPS), on the upper atmosphere, are reviewed. From 56 to 500 km, the major contaminant sources are SPS microwave transmissions and rocket effluents. Although no significant effects have yet been found for microwave transmissions, deposition of rocket effluents causes compositional changes, most of which appear to be associated with the release of large amounts of water. The formation of ionospheric holes is an example of a modification resulting from the injection of propellant exhaust in the F-region. From 500 to 36,000 km, rocket effluents and ion engine contaminants (primarily Ar/sup +/) could alter magnetospheric and plasmaspheric structure and dynamics. One of the major impacts of these alterations could be perturbation of Van Allen radiation belt stability, leading to changed radiation hazards to materials and personnel.

  17. Space environmental effects on materials

    NASA Technical Reports Server (NTRS)

    Tenny, D. R.; Sykes, G. F.; Bowles, D. E.

    1983-01-01

    Research efforts at NASA-Langley to characterize the durability of composite materials which are candidates or use as components on various space hardware systems are reviewed. The material applications include large space structures, antennas, cables, thermal control coatings, solar reflectors, and satellite power systems. Simulation facilities have been built to study radiation effects on polymer matrix composites, and the dimensional stability of the matrix composites and tension stabilized.

  18. Environmental/lifestyle effects on spermatogenesis.

    PubMed

    Sharpe, Richard M

    2010-05-27

    The high incidence of low sperm counts in young (European) men and evidence for declining sperm counts in recent decades mean that the environmental/lifestyle impact on spermatogenesis is an important health issue. This review assesses potential causes involving adverse effects on testis development in perinatal life (primarily effects on Sertoli cell number), which are probably irreversible, or effects on the process of spermatogenesis in adulthood, which are probably mainly reversible. Several lifestyle-related (obesity, smoking) and environmental (exposure to traffic exhaust fumes, dioxins, combustion products) factors appear to negatively affect both the perinatal and adult testes, emphasizing the importance of environmental/lifestyle impacts throughout the life course. Apart from this, public concern about adverse effects of environmental chemicals (ECs) (pesticides, food additives, persistent pollutants such as DDT, polychlorinated biphenyls) on spermatogenesis in adult men are, in general, not supported by the available data for humans. Where adverse effects of ECs have been shown, they are usually in an occupational setting rather than applying to the general population. In contrast, a modern Western lifestyle (sedentary work/lifestyle, obesity) is potentially damaging to sperm production. Spermatogenesis in normal men is poorly organized and inefficient so that men are poorly placed to cope with environmental/lifestyle insults.

  19. Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy.

    PubMed

    Kannadorai, Ravi Kumar; Chiew, Geraldine Giap Ying; Luo, Kathy Qian; Liu, Quan

    2015-02-01

    Gold nanorods have the potential to localize the treatment procedure by hyperthermia and influence the fluorescence. The longitudinal plasmon peak contributes to the photothermal effect by converting light to heat. When these nanorods are PEGylated, it not only makes it biocompatible but also acts as a spacer layer during fluorescence enhancement. When the PEGylated nanorods are internalized inside the cells through endocytosis, the transverse plasmonic peak combined with the enhanced absorption and scattering properties of the nanorods can enhance the autofluorescence emission intensity from the cell. The autofluorescence from the mitochondria inside cells which reflects the respiratory status of the cell was enhanced two times by the presence of nanorods within the cell. At four minutes, the nanorods incubated cells reached the hyperthermic temperature when illuminated continuously with near infrared laser. The cell viability test and autofluorescence intensity curve showed a similar trend indicating the progress of cell death over time. This is the first report to the best of our knowledge to suggest the potential of exploiting the dual capabilities of gold nanorods as photothermal agents and autofluorescence enhancer to track cell death.

  20. The Environmental Science and Health Effects Program

    SciTech Connect

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  1. Environmental Effects and Oligonucleotide Structure

    DTIC Science & Technology

    1990-04-01

    atmosphere has been examined and provides insight into structur- ation effects at the onset of the breakdown in Debye Huckel theory . F] .TiBuT:CQ,’A .I .,~T’ O...below 10 mM) and failures (above 10 mM) of the Debye - Huckel theory of interionic interactions for simple electrolyte solutions. An interesting finding...condensation theory and the current inferences from 23 Na NMR experiments. Simple electrolyte solutions. We subsequently carried out grand canonical Monte Carlo

  2. Resolution and definition in photothermal imaging

    NASA Astrophysics Data System (ADS)

    Wetsel, Grover C., Jr.; McDonald, F. Alan

    1984-12-01

    The influences of pump and probe beam sizes, as well as chopping frequency, on resolution and definition in photothermal laser-beam-deflection imaging of subsurface structure are investigated experimentally and theoretically. It is shown that the resolution of nearby subsurface structures is improved by decreasing pump and probe beam sizes to dimensions less than, but not necessarily much less than, the characteristic dimension of the subsurface structures. It is also shown that the photothermal image width (full width at half maximum) may be different from the structure size, and that the width may vary with frequency, for certain structure geometry. A theoretical model of thermal-wave scattering gives results consistent with the present experimental data and with previous, apparently contradictory, results in the appropriate geometric limits.

  3. Trace Explosive Detection using Photothermal Deflection Spectroscopy

    SciTech Connect

    Krause, Adam R; Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George; Finot, Eric

    2008-01-01

    Satisfying the conditions of high sensitivity and high selectivity using portable sensors that are also reversible is a challenge. Miniature sensors such as microcantilevers offer high sensitivity but suffer from poor selectivity due to the lack of sufficiently selective receptors. Although many of the mass deployable spectroscopic techniques provide high selectivity, they do not have high sensitivity. Here, we show that this challenge can be overcome by combining photothermal spectroscopy on a bimaterial microcantilever with the mass induced change in the cantilever's resonance frequency. Detection using adsorption-induced resonant frequency shift together with photothermal deflection spectroscopy shows extremely high selectivity with a subnanogram limit of detection for vapor phase adsorbed explosives, such as pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and trinitrotoluene (TNT).

  4. Photothermal measurements using a localized excitation source

    NASA Astrophysics Data System (ADS)

    Aamodt, L. C.; Murphy, J. C.

    1981-08-01

    Optical-beam deflection (OBD) photothermal imaging uses spatially localized excitation to observe spatial variations in the sample surface temperature. This paper analyzes OBD signals produced by localized excitation in terms of three-dimensional thermal diffusion in the sample and in the fluid region in contact with the sample. The dependence of the signals on the local optical absorption coefficient, on gas/sample thermal properties, on modulation frequency, and on the probe/excitation beam radii are discussed with special attention being given to determining the spatial resolution possible for OBD imaging. A criterion for photothermal ''saturation'' appropriate to localized optical absorption is developed. Finally, a new variant of the OBD technique is introduced, which is especially adapted to studying optical and thermal boundaries in the plane of the sample. Some comparisons between theory and experiment are provided which illustrate transverse thermal diffusion.

  5. Mesoporous Magnetic Gold “Nanoclusters” as Theranostic Carrier for Chemo-Photothermal Co-therapy of Breast Cancer

    PubMed Central

    Peng, JinRong; Qi, TingTing; Liao, JinFeng; Chu, BingYang; Yang, Qian; Qu, Ying; Li, WenTing; Li, He; Luo, Feng; Qian, ZhiYong

    2014-01-01

    Photothermal therapy (PTT) is proved to be an efficient manner for superficial tumor therapy in preclinical studying. The tumor suppression of chemotherapy can be enhanced by combining with PTT. In this study, we reported a mesoporous magnetic gold “nanoclusters” (MMGNCs) structure as theranostic carrier for chemo-photothermal co-therapy. MMGNCs were successfully prepared and they exhibited efficient photo-thermal effect for PTT. The mesoporous structure provided MMGNCs with high drug loading capacity. By in vitro cytotoxicity testing, we revealed that the combination of PTT and chemotherapy could cause more damage than chemotherapy or PTT did alone. By topically targeting mediated by the extra-magnetic field (MF), MMGNCs can be targeted to the tumor site efficiently. In vivo chemo-photothermal co-therapy of 4T1 breast cancer, under the combinational treatments of chemo-photothermal co-therapy and extra-MF targeting, the tumor growth has been efficiently inhibited, and the pulmonary and mediastinal metastasis have also been prevented. The survival of the cancer bearing mice was prolonged. The bio-imaging applications of this system and the mechanism of the metastasis prevention are ongoing. PMID:24883118

  6. Mesoporous magnetic gold "nanoclusters" as theranostic carrier for chemo-photothermal co-therapy of breast cancer.

    PubMed

    Peng, JinRong; Qi, TingTing; Liao, JinFeng; Chu, BingYang; Yang, Qian; Qu, Ying; Li, WenTing; Li, He; Luo, Feng; Qian, ZhiYong

    2014-01-01

    Photothermal therapy (PTT) is proved to be an efficient manner for superficial tumor therapy in preclinical studying. The tumor suppression of chemotherapy can be enhanced by combining with PTT. In this study, we reported a mesoporous magnetic gold "nanoclusters" (MMGNCs) structure as theranostic carrier for chemo-photothermal co-therapy. MMGNCs were successfully prepared and they exhibited efficient photo-thermal effect for PTT. The mesoporous structure provided MMGNCs with high drug loading capacity. By in vitro cytotoxicity testing, we revealed that the combination of PTT and chemotherapy could cause more damage than chemotherapy or PTT did alone. By topically targeting mediated by the extra-magnetic field (MF), MMGNCs can be targeted to the tumor site efficiently. In vivo chemo-photothermal co-therapy of 4T1 breast cancer, under the combinational treatments of chemo-photothermal co-therapy and extra-MF targeting, the tumor growth has been efficiently inhibited, and the pulmonary and mediastinal metastasis have also been prevented. The survival of the cancer bearing mice was prolonged. The bio-imaging applications of this system and the mechanism of the metastasis prevention are ongoing.

  7. Polydopamine-Encapsulated Fe3O4 with an Adsorbed HSP70 Inhibitor for Improved Photothermal Inactivation of Bacteria.

    PubMed

    Liu, Dongdong; Ma, Liyi; Liu, Lidong; Wang, Lu; Liu, Yuxin; Jia, Qi; Guo, Quanwei; Zhang, Ge; Zhou, Jing

    2016-09-21

    Photothermal treatment, a new approach for inactivation of bacteria and pathogens that does not depend on traditional therapeutic approaches, has recently received much attention. In this study, a new type of nanoplatform (PDA@Fe3O4 + PES) was fabricated by using polydopamine (PDA, a photothermal conversion agent) to encapsulate Fe3O4 (a magnetic nanoparticle) and support 2-phenylethynesulfonamide (PES, an inhibitor of heat shock protein 70 (HSP70)). Upon near-infrared light irradiation, the increased temperature weakens π-π and hydrogen bonding interactions, and PES is released from the PDA@Fe3O4 + PES. The released PES inhibits the function of HSP70, reducing bacterial tolerance to photothermal therapy and improving the therapeutic effect against infectious bacterial pathogens. After treatment, PDA@Fe3O4 + PES can be recovered using the magnetic property of the Fe3O4 cores. Consequently, PDA@Fe3O4 + PES possesses the potential to be a recyclable photothermal agent for enhanced photothermal bacterial inactivation without causing secondary pollution.

  8. Optimization of Surface Coating on Small Pd Nanosheets for in Vivo near-Infrared Photothermal Therapy of Tumor.

    PubMed

    Shi, Saige; Huang, Yizhuan; Chen, Xiaolan; Weng, Jian; Zheng, Nanfeng

    2015-07-08

    Palladium nanosheets with strong near-infrared absorption have been recently demonstrated as promising photothermal agents for photothermal therapy (PTT) of cancers. However, systematic assessments of their potential risks and impacts to biological systems have not been fully explored yet. In this work, we carefully investigate how surface coatings affect the in vivo behaviors of small Pd nanosheets (Pd NSs). Several biocompatible molecules such as carboxymethyl chitosan (CMC), PEG-NH2, PEG-SH, and dihydrolipoic acid-zwitterion (DHLA-ZW) were used to coat Pd NSs. The blood circulation half-lives, biodistribution, potential toxicity, clearance, and photothermal effect of different surface-coated Pd NSs in mice after intravenous injection were compared. PEG-SH-coated Pd NSs (Pd-HS-PEG) were found to have ultralong blood circulation half-life and show high uptake in the tumor. We then carry out the in vivo photothermal therapeutic studies on the Pd-HS-PEG conjugate and revealed its outstanding efficacy in in vivo photothermal therapy of cancers. Our results highlight the importance of surface coatings to the in vivo behaviors of nanomaterials and can provide guidelines to the future design of Pd NSs bioconjugates for other in vivo applications.

  9. Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer

    NASA Astrophysics Data System (ADS)

    Choi, Jihye; Park, Yeonji; Choi, Eun Bi; Kim, Hyun-Ouk; Kim, Dong Joo; Hong, Yoochan; Ryu, Sung-Ho; Lee, Jung Hwan; Suh, Jin-Suck; Yang, Jaemoon; Huh, Yong-Min; Haam, Seungjoo

    2014-05-01

    Biomarker-specific photothermal nanoparticles that can efficiently sense markers that are overexpressed in distinguished adenocarcinomas have attracted much interest in an aspect of efficacy increase of cancer treatment. We demonstrated a promising prospect of a smart photothermal therapy agent employing anti-epidermal growth factor receptor aptamer (AptEGFR)-conjugated polyethylene glycol (PEG) layted gold nanorods (AptEGFR-PGNRs). The cetyltrimethylammonium bromide bilayer on GNRs was replaced with heterobifunctional PEG (COOH-PEG-SH) not only to serve as a biocompatible stabilizer and but also to conjugate Apt. Subsequently, to direct photothermal therapy agent toward epithelial cancer cells, the carboxylated PEGylated GNRs (PGNRs) were further functionalized with Apt using carbodiimide chemistry. Then, to assess the potential as biomarker-specific photothermal therapy agent of synthesized Apt-PGNRs, the optical properties, biocompatibility, colloidal stability, binding affinity, and epicellial cancer cell killing efficacy in vitro/in vivo under near-infrared laser irradiation were investigated. As a result, Apt-PGNRs exhibit excellent tumor targeting ability and feasibility of effective photothermal ablation cancer therapy.

  10. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  11. Surface Profiling Using the Photothermal Displacement Method

    NASA Astrophysics Data System (ADS)

    Umeda, Norihiro; Itoh, Ken-ichi

    1990-07-01

    This paper describes a surface profile measurement by the photothermal displacement method. This technique is based on the thermal expansion of a sample absorbing a pumping beam and on the change in the deflection of a reflected probe beam due to the slope of displacement. A vertical resolution of about 0.1 μm is experimentally obtained. The surface profile measurement of a Mn-Zn ferrite magnetic head is demonstrated.

  12. Environmental effects on iron aluminide

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.; Bennett, M.J.

    1994-09-01

    Air oxidation tests of iron-aluminum alloys containing 16 and 28 at. % Al, were conducted at 1300C to determine the effect of alloy composition and section thickness on time to breakdown of oxidation resistance. Oxidation rates of 16% Al were significantly higher than for 28% Al (Fe{sub 3}Al). The times over which the oxide scales remained protective correlated with extent of aluminum depletion of the alloy matrix and were therefore a direct function of the initial aluminum content of the alloy, the section thickness, and oxidation rate. The oxidation rate of the Fe{sub 3}Al alloys was significantly reduced by addition of 0.1% Zr, which improved the adherence of the scale during thermal cycling to room temperature. However, the oxidation rates of the Fe{sub 3}Al alloys were higher at 1300C than those reported for oxide-dispersion-strengthened (ODS) Fe-18%Cr-10%Al alloys containing Y{sub 2}O{sub 3}. Times to the onset of breakaway oxidation were similar for zirconium-containing Fe{sub 3}Al and the ODS alloys, the lower oxidation rate of the latter offsetting the higher initial aluminum of the former. Studies of the effects of chlorine (HCl) on the oxidation/sulfidation resistance of Fe{sub 3}Al- based alloys were conducted using test facilities at the National Physical Laboratory (NPL) in the United Kingdom. Alloys were exposed to a test gas composed of CO{sub 2}, H{sub 2}, H{sub 2}O, and H{sub 2}S Plus 1000--5000 ppm HCl at 450 and 550C for 1000 h. Weight gains were relatively low and were generally less than companion specimens of Fe-Cr-Al alloys.

  13. Differential interference contrast-photothermal microscopy in nanospace: impacts of systematic parameters.

    PubMed

    Liu, M

    2017-08-16

    Differential interference contrast-photothermal microscopy (DIC-PTM), as a promising tool for trace analysis of nonfluorescent compounds, suffered low sensitivity in nanospace especially for aqueous samples, due to the poor thermophysical property of water and the unoptimised configuration. To improve its performance, a five-layer DIC-PTM model is built and influences of different parameters on the photothermal signal are investigated. The initial phase shift φ0 between two branches of the probe beam is found to be a key factor determining the detection sensitivity and response linearity: at a large φ0 (≤π/2) both a high sensitivity and a good linearity can be achieved, while a high signal-to-noise ratio occurs at a small φ0 . The steady-state photothermal phase shift φdc has little impact on the linearity, which, however, is greatly influenced by the range of periodic photothermal phase shift φac . By introducing two coatings into a nanospace to confine the photothermal effect within and around the sample, the sensitivity can be enhanced from a few times to over 100 times. On an optimised DIC-PTM configuration and chip structure, detection limit down to 10(-3) cm(-1) (or 40 molecules in a detection volume of 0.2 fL) was achieved in a 300-nm-thick nanospace. This work paves a way for optimising the DIC-PTM and chip structure for sensitive detection of analytes in nanospaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Photothermal Multi-Pixel Imaging Microscope

    SciTech Connect

    Stolz, C J; Chinn, D J; Huber, R D; Weinzapfel, C L; Wu, Z

    2003-12-01

    Photothermal microscopy is a useful nondestructive tool for the identification of fluence-limiting defects in optical coatings. Traditional photothermal microscopes are single-pixel detection devices. Samples are scanned under the microscope to generate a defect map. For high-resolution images, scan times can be quite long (1 mm{sup 2} per hour). Single-pixel detection has been used traditionally because of the ease in separating the laser-induced topographical change due to defect absorption from the defect surface topography. This is accomplished by using standard chopper and lock-in amplifier techniques to remove the DC signal. Multi-pixel photothermal microscopy is now possible by utilizing an optical lock-in technique. This eliminates the lock-in amplifier and enables the use of a CCD camera with an optical lock in for each pixel. With this technique, the data acquisition speed can be increased by orders of magnitude depending on laser power, beam size, and pixel density.

  15. Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer

    NASA Astrophysics Data System (ADS)

    Park, Dongjin; Ahn, Kyung-Ohk; Jeong, Kyung-Chae; Choi, Yongdoo

    2016-05-01

    Here, we fabricated polypyrrole nanoparticles (PPys) (termed HA10-PPy, HA20-PPy, and HA40-PPy) doped with different average molecular weight hyaluronic acids (HAs) (10, 20, and 40 kDa, respectively), and evaluated the effect of molecular weight of doped HA on photothermal induction, fluorescence quenching, and drug loading efficiencies. Doxorubicin-loaded HA-doped PPys (DOX@HA-PPys) could be used for imaging and therapy of triple-negative breast cancer (TNBC). Fluorescence turn-on, stimuli-responsive drug release, and photo-induced heating of DOX@HA-PPys enabled not only activatable fluorescence imaging but also subsequent chemo/photothermal dual therapy for TNBC. In particular, we illustrated the potential usefulness of the photothermal effect of the nanoparticles for overcoming chemoresistance in TNBC.

  16. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy.

    PubMed

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer.

  17. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy

    PubMed Central

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer. PMID:26284144

  18. Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy.

    PubMed

    Yang, Hung-Wei; Liu, Hao-Li; Li, Meng-Lin; Hsi, I-Wen; Fan, Chih-Tai; Huang, Chiung-Yin; Lu, Yu-Jen; Hua, Mu-Yi; Chou, Hsin-Yi; Liaw, Jiunn-Woei; Ma, Chen-Chi M; Wei, Kuo-Chen

    2013-07-01

    Nanomedicine can provide a multi-functional platform for image-guided diagnosis and treatment of cancer. Although gold nanorods (GNRs) have been developed for photoacoustic (PA) imaging and near infra-red (NIR) photothermal applications, their efficiency has remained limited by low thermal stability. Here we present the synthesis, characterization, and functional evaluation of non-cytotoxic magnetic polymer-modified gold nanorods (MPGNRs), designed to act as dual magnetic resonance imaging (MRI) and PA imaging contrast agents. In addition, their high magnetization allowed MPGNRs to be actively localized and concentrated by targeting with an external magnet. Finally, MPGNRs significantly enhanced the NIR-laser-induced photothermal effect due to their increased thermal stability. MPGNRs thus provide a promising new theranostic platform for cancer diagnosis and treatment by combining dual MR/PA imaging with highly effective targeted photothermal therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Rapamycin/DiR loaded lipid-polyaniline nanoparticles for dual-modal imaging guided enhanced photothermal and antiangiogenic combination therapy.

    PubMed

    Wang, Jinping; Guo, Fang; Yu, Meng; Liu, Li; Tan, Fengping; Yan, Ran; Li, Nan

    2016-09-10

    Imaging-guided photothermal therapy (PTT) has promising application for treating tumors. Nevertheless, so far imaging-guided photothermal drug-delivery systems have been developed with limited success for tumor chemo-photothermal therapy. In this study, as the proof-of-concept, a stimuli-responsive tumor-targeting rapamycin/DiR loaded lipid-polyaniline nanoparticle (RDLPNP) for dual-modal imaging-guided enhanced PTT efficacy is reported for the first time. In this system, polyaniline (PANI) with π-π electronic conjugated system and effective photothermal efficiency is chosen as the appropriate model receptor of fluorescence resonance energy transfer (FRET), and loaded cyanine probe (e.g., 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide, DiR) acts as the donor of near-infrared fluorescence (NIRF). In addition, rapamycin (RAPA), which is used as the antiangiogenesis chemotherapeutic drug, can cutdown the tumor vessels and delay tumor growth obviously. After intravenous treatment of RDLPNPs into Hela tumor bearing mice, fluorescent (from DiR) and enhanced photoacoustic (from DLPNPs) signals were found in tumor site over time, which reached to peak at the 6h time point. After irradiating with an NIR laser, a good anti-tumor effect was observed owing to the enhanced photothermal and antiangiogenic effect of RDLPNPs. These results show that the multifunctional nanoparticle can be used as a promising imaging-guided photothermal drug delivery nanoplatform for cancer therapy.

  20. Environmental Perchlorate Exposure: Potential Adverse Thyroid Effects

    PubMed Central

    Leung, Angela M.; Pearce, Elizabeth N.; Braverman, Lewis E.

    2014-01-01

    Purpose of review This review will present a general overview of the sources, human studies, and proposed regulatory action regarding environmental perchlorate exposure. Recent findings Some recent studies have reported significant associations between urinary perchlorate concentrations, thyroid dysfunction, and decreased infant IQ in groups who would be particularly susceptible to perchlorate effects. An update regarding the recent proposed regulatory actions and potential costs surrounding amelioration of perchlorate contamination is provided. Summary The potential adverse thyroidal effects of environmental perchlorate exposure remain controversial, and further research is needed to further define its relationship to human health among pregnant and lactating women and their infants. PMID:25106002

  1. Environmental perchlorate exposure: potential adverse thyroid effects.

    PubMed

    Leung, Angela M; Pearce, Elizabeth N; Braverman, Lewis E

    2014-10-01

    This review will present a general overview of the sources, human studies, and proposed regulatory action regarding environmental perchlorate exposure. Some recent studies have reported significant associations between urinary perchlorate concentrations, thyroid dysfunction, and decreased infant intelligence quotient in groups who would be particularly susceptible to perchlorate effects. An update regarding the recently proposed regulatory actions and potential costs surrounding amelioration of perchlorate contamination is provided. The potential adverse thyroidal effects of environmental perchlorate exposure remain controversial, and further research is needed to further define its relationship to human health among pregnant and lactating women and their infants.

  2. Trifolium-like Platinum Nanoparticle-Mediated Photothermal Therapy Inhibits Tumor Growth and Osteolysis in a Bone Metastasis Model.

    PubMed

    Wang, Changping; Cai, Xiaopan; Zhang, Jishen; Wang, Xinyu; Wang, Yu; Ge, Huyifeng; Yan, Wangjun; Huang, Quan; Xiao, Jianru; Zhang, Qiang; Cheng, Yiyun

    2015-05-06

    Bone metastasis is a frequent and fatal complication of cancer that lacks effective clinical treatment. Photothermal therapy represents a new strategy for the destruction of multiple cancers. In this study, trifolium-like platinum nanoparticles (TPNs) with small size and excellent photothermal conversion property are prepared via a facile and green method. TPNs show minimal cytotoxicity on normal cell lines and kill cancer cells upon exposure to a near-infrared light. These nanoparticles effectively inhibit tumor growth and prevent osteolysis in a bone metastasis model. This study offers a promising strategy in the treatment of bone metastasis.

  3. Efficacy of combined photothermal therapy and chemotherapeutic drugs

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Shih, En-Chung; Hirschberg, Henry

    2015-03-01

    Hyperthermia has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of a number of commonly used chemotherapeutic drugs (bleomycin, doxorubicin and cisplatin) with photothermal therapy (PTT)-induced hyperthermia in an in vitro system consisting of human head and neck squamous carcinoma cells and murine lymphocytic monocytes which were used as delivery vehicles for gold-silica nanoshells (AuNS). PTT was accomplished via near infra-red (NIR) irradiation of AuNS. The results showed that PTT combined with cisplatin resulted in only a mild degree of synergism while additive effects were observed for concurrent treatments of PTT and doxorubicin and PTT and bleomycin.

  4. Six distributional effects of environmental policy.

    PubMed

    Fullerton, Don

    2011-06-01

    While prior literature has identified various effects of environmental policy, this note uses the example of a proposed carbon permit system to illustrate and discuss six different types of distributional effects: (1) higher prices of carbon-intensive products, (2) changes in relative returns to factors like labor, capital, and resources, (3) allocation of scarcity rents from a restricted number of permits, (4) distribution of the benefits from improvements in environmental quality, (5) temporary effects during the transition, and (6) capitalization of all those effects into prices of land, corporate stock, or house values. The note also discusses whether all six effects could be regressive, that is, whether carbon policy could place disproportionate burden on the poor.

  5. Laser speckle imaging based on photothermally driven convection

    PubMed Central

    Regan, Caitlin; Choi, Bernard

    2016-01-01

    Abstract. Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications. PMID:26927221

  6. Laser speckle imaging based on photothermally driven convection.

    PubMed

    Regan, Caitlin; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.

  7. Laser speckle imaging based on photothermally driven convection

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.

  8. 15 CFR 970.506 - Environmental effects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Environmental effects. 970.506 Section 970.506 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF...

  9. Regulation of tillering in sorghum: environmental effects

    PubMed Central

    Kim, Hae Koo; van Oosterom, Erik; Dingkuhn, Michael; Luquet, Delphine; Hammer, Graeme

    2010-01-01

    Background and Aims Tillering has a significant effect on canopy development and, hence, on resource capture, crop growth and grain yield in sorghum. However, the physiological basis of tillering and its regulation by environmental effects are not fully understood. The objective of this study was to understand and quantify the environmental effects on tillering in sorghum using a carbohydrate supply–demand framework. Methods A series of five experiments with a wide range of radiation and temperature conditions was conducted and details of the tillering responses of a single representative hybrid were monitored. The concept of internal plant competition for carbohydrate was developed for analysis of these responses. Key Results Tiller appearance was highly synchronized with main shoot leaf appearance, with a consistent hierarchy for tillering across environments. The main environmental effect was on the frequency of tiller appearance, in particular of the lower-rank tillers. This explained some of the observed environmental differences in the onset of tillering. A generalized index of internal plant competition, which took account of plant assimilate supply and demand (S/Dindex) during the critical period for tillering, explained most of the variation in maximum tiller number observed across the five experiments. Conclusions This result was consistent with the hypothesis that internal plant competition for assimilates regulates tillering in sorghum. Hence, the framework outlined has a predictive value that could provide the basis for dynamic simulation of tillering in crop growth models. PMID:20421230

  10. A numerical simulation of photothermal response in laser medicine

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan; Xiao, Songshan

    2004-03-01

    In this paper, we reported a numerical solution of laser induced thermal effect in the bio-tissue. The model of photothermal effect and classical Pennes bio-heat transfer equation were introduced. Finite element method (FEM), which was realized by Matlab software, was used to calculate the temperature distribution. He-Ne laser (633 nm) was used to simulate the physical therapy in in vivo skin tissue. Under the cylinder coordinates, the three-dimension (3-D) geometry of tissue was reduced to two-dimension (2-D) computation. The results contained the radial, axial and temperature 3-D color plot. Combining the time animation display was possible. By changing the laser and tissue parameters we can get different results. This will be the initial and indispensable work of the non-destructive evaluation of the laser induced injury.

  11. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The gas turbine engine was used as an example to predict high temperature environmental attack on metals. Environmental attack in a gas turbine engine derives from high temperature, combustion products of the air and fuel burned, and impurities. Of all the modes of attack associated with impurity effects, hot corrosion was the most complicated mechanistically. Solutions to the hot corrosion problem were sought semi-empirically in: (1) improved alloys or ceramics; (2) protective surface coating; (3) use of additives to the engine environment; and (4) air/fuel cleanup to eliminate harmful impurities.

  12. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer.

    PubMed

    Inada, Natsumi; Asakawa, Hitoshi; Kobayashi, Taiki; Fukuma, Takeshi

    2016-01-01

    Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for improving the photothermal excitation efficiency by coating cantilever backside surface near its fixed end with colloidal graphite as a photothermal conversion (PTC) layer. The excitation efficiency for a standard cantilever of PPP-NCHAuD with a spring constant of ≈40 N/m and a relatively stiff cantilever of AC55 with a spring constant of ≈140 N/m were improved by 6.1 times and 2.5 times, respectively, by coating with a PTC layer. We experimentally demonstrate high stability of the PTC layer in liquid by AFM imaging of a mica surface with atomic resolution in phosphate buffer saline solution for more than 2 h without any indication of possible contamination from the coating. The proposed method, using a PTC layer made of colloidal graphite, greatly enhances photothermal excitation efficiency even for a relatively stiff cantilever in liquid.

  13. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer

    PubMed Central

    Inada, Natsumi; Kobayashi, Taiki; Fukuma, Takeshi

    2016-01-01

    Summary Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for improving the photothermal excitation efficiency by coating cantilever backside surface near its fixed end with colloidal graphite as a photothermal conversion (PTC) layer. The excitation efficiency for a standard cantilever of PPP-NCHAuD with a spring constant of ≈40 N/m and a relatively stiff cantilever of AC55 with a spring constant of ≈140 N/m were improved by 6.1 times and 2.5 times, respectively, by coating with a PTC layer. We experimentally demonstrate high stability of the PTC layer in liquid by AFM imaging of a mica surface with atomic resolution in phosphate buffer saline solution for more than 2 h without any indication of possible contamination from the coating. The proposed method, using a PTC layer made of colloidal graphite, greatly enhances photothermal excitation efficiency even for a relatively stiff cantilever in liquid. PMID:27335733

  14. Effects of environmental change on wildlife health

    PubMed Central

    Acevedo-Whitehouse, Karina; Duffus, Amanda L. J.

    2009-01-01

    Environmental change has negatively affected most biological systems on our planet and is becoming of increasing concern for the well-being and survival of many species. At an organism level, effects encompass not only endocrine disruptions, sex-ratio changes and decreased reproductive parameters, but also include teratogenic and genotoxic effects, immunosuppression and other immune-system impairments that can lead directly to disease or increase the risk of acquiring disease. Living organisms will strive to maintain health by recognizing and resolving abnormal situations, such as the presence of invading microorganisms or harmful peptides, abnormal cell replication and deleterious mutations. However, fast-paced environmental changes may pose additional pressure on immunocompetence and health maintenance, which may seriously impact population viability and persistence. Here, we outline the importance of a functional immune system for survival and examine the effects that exposure to a rapidly changing environment might exert on immunocompetence. We then address the various levels at which anthropogenic environmental change might affect wildlife health and identify potential deficits in reproductive parameters that might arise owing to new immune challenges in the context of a rapidly changing environment. Throughout the paper, a series of examples and case studies are used to illustrate the impact of environmental change on wildlife health. PMID:19833653

  15. Cardiovascular effects of environmental noise exposure

    PubMed Central

    Münzel, Thomas; Gori, Tommaso; Babisch, Wolfgang; Basner, Mathias

    2014-01-01

    The role of noise as an environmental pollutant and its impact on health are being increasingly recognized. Beyond its effects on the auditory system, noise causes annoyance and disturbs sleep, and it impairs cognitive performance. Furthermore, evidence from epidemiologic studies demonstrates that environmental noise is associated with an increased incidence of arterial hypertension, myocardial infarction, and stroke. Both observational and experimental studies indicate that in particular night-time noise can cause disruptions of sleep structure, vegetative arousals (e.g. increases of blood pressure and heart rate) and increases in stress hormone levels and oxidative stress, which in turn may result in endothelial dysfunction and arterial hypertension. This review focuses on the cardiovascular consequences of environmental noise exposure and stresses the importance of noise mitigation strategies for public health. PMID:24616334

  16. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The current status of knowledge and ability to predict high-temperature environmental attack of metals is reviewed with particular reference to the gas turbine engine. Environmental attack is caused by high temperatures, combustion products, and impurities. A schematic representation of life-limiting factors of turbine components shows that environmental attack can lead to very early failures. Attention is given to high-temperature oxidation with prevailing modes of oxidation attack, and to hot corrosion and other impurity effects. Erosion attack results from the direct mechanical removal of component material by impact of hard substances like ash, sand, or dirt. Solutions to hot-corrosion problems can be found semiempirically by using improved alloys or ceramics, protective surface coatings, additives to the engine environment, and air/fuel cleanup to eliminate detrimental impurities.

  17. Metabolic effects of sucralose on environmental bacteria.

    PubMed

    Omran, Arthur; Ahearn, Gregory; Bowers, Doria; Swenson, Janice; Coughlin, Charles

    2013-01-01

    Sucralose was developed as a low cost artificial sweetener that is nonmetabolizable in humans. Sucralose can withstand changes in pH and temperature and is not degraded by the wastewater treatment process. Since the molecule can withstand heat, acidification, and microbial degradation, it is accumulating in the environment and has been found in wastewater, estuaries, rivers, and the Gulf Stream. Environmental isolates were cultured in the presence of sucralose looking for potential sucralose metabolism or growth acceleration responses. Sucralose was found to be nonnutritive and demonstrated bacteriostatic effects on all six isolates. This growth inhibition was directly proportional to the concentration of sucralose exposure, and the amount of the growth inhibition appeared to be species-specific. The bacteriostatic effect may be due to a decrease in sucrose uptake by bacteria exposed to sucralose. We have determined that sucralose inhibits invertase and sucrose permease. These enzymes cannot catalyze hydrolysis or be effective in transmembrane transport of the sugar substitute. Current environmental concentrations should not have much of an effect on environmental bacteria since the bacteriostatic effect seems to be consecration based; however, as sucralose accumulates in the environment, we must consider it a contaminant, especially for microenvironments.

  18. Metabolic Effects of Sucralose on Environmental Bacteria

    PubMed Central

    2013-01-01

    Sucralose was developed as a low cost artificial sweetener that is nonmetabolizable in humans. Sucralose can withstand changes in pH and temperature and is not degraded by the wastewater treatment process. Since the molecule can withstand heat, acidification, and microbial degradation, it is accumulating in the environment and has been found in wastewater, estuaries, rivers, and the Gulf Stream. Environmental isolates were cultured in the presence of sucralose looking for potential sucralose metabolism or growth acceleration responses. Sucralose was found to be nonnutritive and demonstrated bacteriostatic effects on all six isolates. This growth inhibition was directly proportional to the concentration of sucralose exposure, and the amount of the growth inhibition appeared to be species-specific. The bacteriostatic effect may be due to a decrease in sucrose uptake by bacteria exposed to sucralose. We have determined that sucralose inhibits invertase and sucrose permease. These enzymes cannot catalyze hydrolysis or be effective in transmembrane transport of the sugar substitute. Current environmental concentrations should not have much of an effect on environmental bacteria since the bacteriostatic effect seems to be consecration based; however, as sucralose accumulates in the environment, we must consider it a contaminant, especially for microenvironments. PMID:24368913

  19. New technologies - How to assess environmental effects

    NASA Technical Reports Server (NTRS)

    Sullivan, P. J.; Lavin, M. L.

    1981-01-01

    A method is provided for assessing the environmental effects of a room-and-pillar mining system (RP) and a new hydraulic borehole mining system (HBM). Before environmental assessment can begin, each technology is defined in terms of its engineering characteristics at both the conceptual and preliminary design stages. The mining sites are also described in order to identify the significant advantages and constraints for each system. This can be a basic physical and biological survey of the region at the conceptual stage, but a more specific representation of site characteristics is required at the preliminary stage. Assessment of potential environmental effects of each system at the conceptual design is critical to its hardware development and application. A checklist can be used to compare and identify the negative impacts of each method, outlining the resource affected, the type of impact involved, and the exact activity causing that impact. At the preliminary design stage, these impacts should be evaluated as a result of either utilization or alteration. Underground coal mining systems have three major utilization impacts - the total area disturbed, the total water resources withdrawn from other uses, and the overall energy efficiency of the process - and one major alteration impact - the degradation of water quality by sedimentation and acid contamination. A comparison of the RP and HBM systems shows the HBM to be an environmentally less desirable system for the Central Appalachia region.

  20. New technologies - How to assess environmental effects

    NASA Technical Reports Server (NTRS)

    Sullivan, P. J.; Lavin, M. L.

    1981-01-01

    A method is provided for assessing the environmental effects of a room-and-pillar mining system (RP) and a new hydraulic borehole mining system (HBM). Before environmental assessment can begin, each technology is defined in terms of its engineering characteristics at both the conceptual and preliminary design stages. The mining sites are also described in order to identify the significant advantages and constraints for each system. This can be a basic physical and biological survey of the region at the conceptual stage, but a more specific representation of site characteristics is required at the preliminary stage. Assessment of potential environmental effects of each system at the conceptual design is critical to its hardware development and application. A checklist can be used to compare and identify the negative impacts of each method, outlining the resource affected, the type of impact involved, and the exact activity causing that impact. At the preliminary design stage, these impacts should be evaluated as a result of either utilization or alteration. Underground coal mining systems have three major utilization impacts - the total area disturbed, the total water resources withdrawn from other uses, and the overall energy efficiency of the process - and one major alteration impact - the degradation of water quality by sedimentation and acid contamination. A comparison of the RP and HBM systems shows the HBM to be an environmentally less desirable system for the Central Appalachia region.

  1. Photothermal Characterization of Thermochromic Materials for Tunable Thermal Devices

    NASA Astrophysics Data System (ADS)

    Li Voti, R.; Leahu, G. L.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.

    2015-06-01

    A detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide film deposited on a silicon wafer is presented. The phase transition is studied in the mid-infrared (MIR) region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The temperature behavior of the emissivity during the SMT puts into evidence the phenomenon of the anomalous absorption in which has been explained by applying the Maxwell-Garnett effective medium approximation theory, together with a strong hysteresis phenomenon, both useful to design tunable thermal devices. Photothermal radiometry has been applied in order to study the changes in the modulated emissivity induced by a laser. Experimental results show how the use of these techniques represent a good tool for a quantitative measurement of the optothermal properties of vanadium dioxide-based structures.

  2. Photothermal denaturation of egg white by pulsed holmium laser

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Delacretaz, Guy P.; Rastegar, Sohi

    1996-05-01

    Heat denaturation of egg white is usually followed by polymerization or gelatin of the denatured components, primarily albumin, and is associated with manifestation of a distinct increase in scattering or whitening of the egg white. In this study the effect pulsed laser coagulation of egg white was studied using a CTH:YAG laser delivered through a 600 micrometers diameter fiber into a cuvette filled with raw egg white. The dynamics of laser induced photothermal denaturation of egg white was observed by monitoring the increase of light scattering by time resolved video imaging. Two distinct laser induced processes were observed. At higher radiant exposure (> 30 - 40 J/cm2) the egg whites was rapidly heated above the water vapor transition temperature and a cavitation bubble was formed. Below threshold for bubble formation a bullet-like zone of whitened egg-white is formed at the top of the fiber.

  3. Photothermal Radiometry and Diffuse Reflectance Analysis of Thermally Treated Bones

    NASA Astrophysics Data System (ADS)

    Trujillo, S.; Martínez-Torres, P.; Quintana, P.; Alvarado-Gil, Juan Jose

    2010-05-01

    Different fields such as archaeology, biomedicine, forensic science, and pathology involve the analysis of burned bones. In this work, the effects of successive thermal treatments on pig long bones, measured by photothermal radiometry and diffuse reflectance are reported. Measurements were complemented by X-ray diffraction and infrared spectroscopy. Samples were thermally treated for 1 h within the range of 25 °C to 350 °C. The thermal diffusivity and reflectance increase in the low-temperature range, reaching a maximum around 125 °C and decaying at higher temperatures. These results are the consequence of complex modifications occurring in the inorganic and organic bone structure. For lower temperatures dehydration, dehydroxilation, and carbonate loss processes are dominant, followed by collagen denaturing and decompositions, which have an influence on the bone microstructure.

  4. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy.

    PubMed

    Chen, Qian; Wang, Chao; Zhan, Zhixiong; He, Weiwei; Cheng, Zhenping; Li, Youyong; Liu, Zhuang

    2014-09-01

    Development of theranostic agent for imaging-guided photothermal therapy has been of great interest in the field of nanomedicine. However, if fluorescent imaging and photothermal ablation are conducted with the same wavelength of light, the requirements of the agent's quantum yield (QY) for imaging and therapy are controversial. In this work, our synthesized near-infrared dye, IR825, is bound with human serum albumin (HSA), forming a HSA-IR825 complex with greatly enhanced fluorescence under 600 nm excitation by as much as 100 folds compared to that of free IR825, together with a rather high absorbance but low fluorescence QY at 808 nm. Since high QY that is required for fluorescence imaging would result in reduced photothermal conversion efficiency, the unique optical behavior of HSA-IR825 enables imaging and photothermal therapy at separated wavelengths both with optimized performances. We thus use HSA-IR825 for imaging-guided photothermal therapy in an animal tumor model. As revealed by in vivo fluorescence imaging, HSA-IR825 upon intravenous injection shows high tumor uptake likely owing to the enhanced permeability and retention effect, together with low levels of retentions in other organs. While HSA is an abundant protein in human serum, IR825 is able to be excreted by renal excretion as evidenced by high-performance liquid chromatography (HPLC). In vivo tumor treatment experiment is finally carried out with HSA-IR825, achieving 100% of tumor ablation in mice using a rather low dose of IR825. Our work presents a safe, simple, yet imageable photothermal nanoprobe, promising for future clinical translation in cancer treatment.

  5. Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects.

    PubMed

    Yanagi, Tsukasa; Kajiya, Hiroshi; Kawaguchi, Minoru; Kido, Hirofumi; Fukushima, Tadao

    2015-03-01

    The bone regenerative healing process is often prolonged, with a high risk of infection particularly in elderly and diseased patients. A reduction in healing process time usually requires mechanical stress devices, chemical cues, or laser/thermal therapies. Although these approaches have been used extensively for the reduction of bone healing time, the exact mechanisms involved in thermal stress-induced bone regeneration remain unclear. In this study, we investigated the effect of optimal hyperthermia on rat calvarial defects in vivo and on osteogenesis in vitro. Photothermal stress stimulation was carried out using a new photothermal device, composed of an alginate gel including in carbon nanotubes and their irradiator with near-infrared light. Photothermal stress (15 min at 42℃, every day), trigged by near-infrared-induced carbon nanotube, promoted bone deposition in critical-sized calvarial defects compared with nonthermal stress controls. We recently reported that our novel DNA/protamine complex scaffold induces bone regeneration in calvarial defects. In this study, photothermal stress upregulated bone deposition in DNA/protamine-engrafted calvarial defects. Furthermore, photothermal stress significantly induced expression of osteogenic related genes in a time-dependent manner, including alkaline phosphatase, osterix, and osteocalcin. This was observed in DNA/protamine cells, which were expanded from regenerated tissue engrafted into the DNA/protamine scaffold, as well as in human MG63 preosteoblasts. In summary, this novel carbon nanotube-based photothermal stress approach upregulated expression of osteogenic-related genes in preosteoblasts, resulting in promotion of mineral deposition for enhanced bone repair.

  6. Fabrication of multifunctional SiO2@GN-serum composites for chemo-photothermal synergistic therapy.

    PubMed

    Liu, Yuwei; Bai, Jing; Jia, Xiaodan; Jiang, Xiue; Guo, Zhuo

    2015-01-14

    Recently, the chemo-photothermal synergistic therapy has become a potential method for cancer treatment. Herein, we developed a multifunctional nanomaterial for chemo-photothermal therapeutics based on silica and graphene core/shell structure (SiO2@GN) because of the ability of GN to convert light energy into heat. Serum protein was further modified onto the surface of GN (SiO2@GN-Serum) to improve the solubility and stability of GN-based nanoparticles in physiological conditions. The as-synthesized SiO2@GN-Serum nanoparticles (NPs) have been revealed to have high photothermal conversion efficiency and stability, as well as high storage and release capacity for anticancer drug doxorubicin (SiO2@GN-Serum-Dox). The therapeutic efficacy of SiO2@GN-Serum-Dox has been evaluated in vitro and in vivo for cervical cancer therapy. In vitro cytotoxicity tests demonstrate that SiO2@GN-Serum NPs have excellent biocompatibility. However, SiO2@GN-Serum-Dox NPs show higher cytotoxicity than SiO2@GN-Serum and free Dox under irradiation with NIR laser at 1.0 W/cm(2) for 5 min owing to both SiO2@GN-Serum-mediated photothermal ablation and cytotoxicity of light-triggered Dox release. In mouse models, the tumor growth is significantly inhibited by chem-photothermal effect of SiO2@GN-Serum-Dox. Overall, compared with single chemotherapy or photothermal therapy, the combined treatment demonstrates better therapeutic efficacy. Our results suggest a promising GN-based core/shell nanostructure for biomedical applications.

  7. Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy.

    PubMed

    Bai, Ling-Yu; Yang, Xiao-Quan; An, Jie; Zhang, Lin; Zhao, Kai; Qin, Meng-Yao; Fang, Bi-Yun; Li, Cheng; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di; Ma, Zhi-Ya

    2015-08-07

    Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.

  8. Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Bai, Ling-Yu; Yang, Xiao-Quan; An, Jie; Zhang, Lin; Zhao, Kai; Qin, Meng-Yao; Fang, Bi-Yun; Li, Cheng; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di; Ma, Zhi-Ya

    2015-08-01

    Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.

  9. Plasmonic Photothermal Heating of Intraperitoneal Tumors through the Use of an Implanted Near-Infrared Source

    PubMed Central

    2013-01-01

    Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of plasmonic photothermal therapy have focused on isolated subcutaneous tumors. For more complex models of disease such as advanced ovarian cancer, one of the primary barriers to gold nanorod-based strategies is the adequate delivery of NIR light to tumors located at varying depths within the body. To address this limitation, a series of implanted NIR illumination sources are described for the specific heating of gold nanorod-containing tissues. Through computational modeling and ex vivo studies, a candidate device is identified and validated in a model of orthotopic ovarian cancer. As the therapeutic, imaging, and diagnostic applications of plasmonic nanomaterials progress, effective methods for NIR light delivery to challenging anatomical regions will complement ongoing efforts to advance plasmonic photothermal therapy toward clinical use. PMID:23961973

  10. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells.

    PubMed

    Lasne, David; Blab, Gerhard A; Berciaud, Stéphane; Heine, Martin; Groc, Laurent; Choquet, Daniel; Cognet, Laurent; Lounis, Brahim

    2006-12-15

    Tracking individual nano-objects in live cells during arbitrary long times is a ubiquitous need in modern biology. We present here a method for tracking individual 5-nm gold nanoparticles on live cells. It relies on the photothermal effect and the detection of the Laser Induced Scattering around a NanoAbsorber (LISNA). The key point for recording trajectories at video rate is the use of a triangulation procedure. The effectiveness of the method is tested against single fluorescent molecule tracking in live COS7 cells on subsecond timescales. We further demonstrate recordings for several minutes of AMPA receptors trajectories on the plasma membrane of live neurons. Single Nanoparticle Photothermal Tracking has the unique potential to record arbitrary long trajectory of membrane proteins using nonfluorescent nanometer-sized labels.

  11. Single Nanoparticle Photothermal Tracking (SNaPT) of 5-nm Gold Beads in Live Cells

    PubMed Central

    Lasne, David; Blab, Gerhard A.; Berciaud, Stéphane; Heine, Martin; Groc, Laurent; Choquet, Daniel; Cognet, Laurent; Lounis, Brahim

    2006-01-01

    Tracking individual nano-objects in live cells during arbitrary long times is a ubiquitous need in modern biology. We present here a method for tracking individual 5-nm gold nanoparticles on live cells. It relies on the photothermal effect and the detection of the Laser Induced Scattering around a NanoAbsorber (LISNA). The key point for recording trajectories at video rate is the use of a triangulation procedure. The effectiveness of the method is tested against single fluorescent molecule tracking in live COS7 cells on subsecond timescales. We further demonstrate recordings for several minutes of AMPA receptors trajectories on the plasma membrane of live neurons. Single Nanoparticle Photothermal Tracking has the unique potential to record arbitrary long trajectory of membrane proteins using nonfluorescent nanometer-sized labels. PMID:16997874

  12. SPS environmental effects on the upper atmosphere

    SciTech Connect

    Duncan, L.M.

    1980-01-01

    The ionospheric effects and associated environmental impacts which may be produced during the construction and operation of a solar power satellite system are reviewed. Propellant emissions from heavy lift-launch vehicles are predicted to cause widespread ionospheric depletions in electron and ion densities. Collisional damping of the microwave power beam in the lower ionosphere can significantly enhance the local free electron temperatures. Thermal self-focusing of the power beam in the ionosphere may excite variations in the beam power-flux density and create large-scale field-aligned electron density irregularities. These large-scale irregularities may also trigger the formation of small-scale plasma striations. Ionospheric modifications can lead to the development of potentially serious telecommunications and climate impacts. A comprehensive research program is being conducted to understand the physical interactions driving these ionospheric effects and to determine the scope and magnitude of the associated environmental impacts.

  13. Photothermal nanoblade for patterned cell membrane cutting

    PubMed Central

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu

    2010-01-01

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656

  14. Trace Chemical Vapor Detection by Photothermal Interferometry

    DTIC Science & Technology

    2002-01-01

    external cavity diode laser ( ECDL ) SDL- TC10-1393 operating in the 910-950 nm region for type II phase matching in AgGaS2 were overlapped using a...dichroic beamcombiner. The beams were focused using two cylindrical lenses and an aspheric lens for the ECDL and DRB lasers respectively. The 20-cm long...optical chopper. ECDL DBR L M HgCdTe BC CL L RS GP OC NC 6 RESULTS AND DISSCUSSION PHOTOTHERMAL Initial trials were conducted

  15. Effects of similarity on environmental context cueing.

    PubMed

    Smith, Steven M; Handy, Justin D; Angello, Genna; Manzano, Isabel

    2014-01-01

    Three experiments examined the prediction that context cues which are similar to study contexts can facilitate episodic recall, even if those cues are never seen before the recall test. Environmental context cueing effects have typically produced such small effect sizes that influences of moderating factors, such as the similarity between encoding and retrieval contexts, would be difficult to observe experimentally. Videos of environmental contexts, however, can be used to produce powerful context-dependent memory effects, particularly when only one memory target is associated with each video context, intentional item-context encoding is encouraged, and free recall tests are used. Experiment 1 showed that a not previously viewed video of the study context provided an effective recall cue, although it was not as effective as the originally viewed video context. Experiments 2 and 3 showed that videos of environments that were conceptually similar to encoding contexts (e.g., both were videos of ball field games) also cued recall, but not as well if the encoding contexts were given specific labels (e.g., "home run") incompatible with test contexts (e.g., a soccer scene). A fourth experiment that used incidental item-context encoding showed that video context reinstatement has a robust effect on paired associate memory, indicating that the video context reinstatement effect does not depend on interactive item-context encoding or free recall testing.

  16. Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and 19F Magnetic Resonance Imaging.

    PubMed

    Higashino, Tomohiro; Nakatsuji, Hirotaka; Fukuda, Ryosuke; Okamoto, Haruki; Imai, Hirohiko; Matsuda, Tetsuya; Tochio, Hidehito; Shirakawa, Masahiro; Tkachenko, Nikolai; Hashida, Mitsuru; Murakami, Tatsuya; Imahori, Hiroshi

    2017-02-15

    meso-Aryl substituted expanded porphyrins have two potential key features suitable for theranostic agents, excellent absorption in near infrared (NIR) region and possible introduction of multiple fluorine atoms at structurally nearly equivalent positions. Herein, hexaphyrin (hexa) was synthesized using 2,6-bis(trifluoromethyl)-4-formyl benzoate and pyrrole and evaluated as a novel theranostic expanded porphyrin possessing the above key features. Under NIR light illumination hexa showed intense photothermal and weak photodynamic effects, which were most likely due to its low-lying excited states close to a singlet oxygen. This sustained photothermal effect caused the ablation of cancer cells more effectively than the photodynamic effect of indocyanine green, a clinically used dye. In addition, hexa@cpHDL revealed potential for use in visualization of tumors by 19F magnetic resonance imaging (MRI) due to the presence of the multiple fluorine atoms. These results shed light on a latent utility of expanded porphyrins as theranostic agents in both photothermal therapy and 19F MRI.

  17. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles.

    PubMed

    Yang, Kai; Hu, Lilei; Ma, Xingxing; Ye, Shuoqi; Cheng, Liang; Shi, Xiaoze; Li, Changhui; Li, Yonggang; Liu, Zhuang

    2012-04-10

    In this work, a nanoscale reduced graphene oxide-iron oxide nanoparticle (RGO-IONP) complex is noncovalently functionalized with polyethylene glycol (PEG), obtaining a RGO-IONP-PEG nanocomposite with excellent physiological stability, strong NIR optical absorbance, and superparamagnetic properties. Using this theranostic nanoprobe, in-vivo triple modal fluorescence, photoacoustic, and magnetic resonance imaging are carried out, uncovering high passive tumor targeting, which is further used for effective photothermal ablation of tumors in mice.

  18. Environmental degradation of polyacrylamides. II. Effects of environmental (outdoor) exposure.

    PubMed

    Smith, E A; Prues, S L; Oehme, F W

    1997-06-01

    The environmental fate of a polyacrylamide thickening agent (PATA), formulated without and with a glyphosate-surfactant herbicide (GH), was examined under various environmental situations: formulation in surface water and ground water, volatility, and soil mobility. Environmental Fate of PATA in Surface Water and Ground Water: PATA was formulated at four concentrations in distilled-deionized water, three surface water samples, and two ground water samples, without and with a GH. Solutions were placed in glass bottles, covered with plastic wrap, and exposed to environmental (outdoor) conditions for 6 weeks. Acrylamide and ammonium concentration, pH, and bacterial and fungal populations were measured weekly. All solutions in this portion of the study had a homogeneous milky appearance but the conclusions of the study were nearly transparent. The results of this study suggest that polyacrylamide can degrade to acrylamide under environmental conditions. Statistically, there was no linear correlation between the various parameters measured. Volatility: PATA was formulated without and with GH. Each solution plus an acrylamide standard (positive control) was placed in a glass beaker and exposed to environmental (outdoor) conditions for 6 days. Acrylamide concentration, ammonium concentration, pH, and solution volume were measured daily. Acrylamide and ammonium concentrations increased during the study in all formulations, except when solutions evaporated to dryness. pH did not change greatly over the course of the study for these samples. Those solutions containing PATA had a homogeneous milky appearance but by the conclusions of the study were nearly transparent. This suggests a physical structural change in the polymer. Soil Mobility: PATA formulated with GH was also applied to soil columns and soil boxes containing sand, Eudora sandy loam, Eudora sandy clay, and Kohola silt loam. Acrylamide could be detected by Day 2 in all soil columns. Acrylamide could not be

  19. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  20. Hypersonic transports - Economics and environmental effects.

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Waters, M. H.

    1972-01-01

    An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and flyover noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.

  1. Hypersonic transports - Economics and environmental effects.

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Waters, M. H.

    1973-01-01

    An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and flyover noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.

  2. Hypersonic transports: Economics and environmental effects

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Waters, M. H.

    1972-01-01

    An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and fly-over noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.

  3. Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation.

    PubMed

    Han, Hwa Seung; Choi, Ki Young; Lee, Hansang; Lee, Minchang; An, Jae Yoon; Shin, Sol; Kwon, Seunglee; Lee, Doo Sung; Park, Jae Hyung

    2016-12-27

    Optically active nanomaterials have shown great promise as a nanomedicine platform for photothermal or photodynamic cancer therapies. Herein, we report a gold-nanoclustered hyaluronan nanoassembly (GNc-HyNA) for photothermally boosted photodynamic tumor ablation. Unlike other supramolecular gold constructs based on gold nanoparticle building blocks, this system utilizes the nanoassembly of amphiphilic hyaluronan conjugates as a drug carrier for a hydrophobic photodynamic therapy agent verteporfin, a polymeric reducing agent, and an organic nanoscaffold upon which gold can grow. Gold nanoclusters were selectively installed on the outer shell of the hyaluronan nanoassembly, forming a gold shell. Given the dual protection effect by the hyaluronan self-assembly as well as by the inorganic gold shell, verteporfin-encapsulated GNc-HyNA (Vp-GNc-HyNA) exhibited outstanding stability in the bloodstream. Interestingly, the fluorescence and photodynamic properties of Vp-GNc-HyNA were considerably quenched due to the gold nanoclusters covering the surface of the nanoassemblies; however, photothermal activation by 808 nm laser irradiation induced a significant increase in temperature, which empowered the PDT effect of Vp-GNc-HyNA. Furthermore, fluorescence and photodynamic effects were recovered far more rapidly in cancer cells due to certain intracellular enzymes, particularly hyaluronidases and glutathione. Vp-GNc-HyNA exerted a great potential to treat tumors both in vitro and in vivo. Tumors were completely ablated with a 100% survival rate and complete skin regeneration over the 50 days following Vp-GNc-HyNA treatment in an orthotopic breast tumor model. Our results suggest that photothermally boosted photodynamic therapy using Vp-GNc-HyNA can offer a potent therapeutic means to eradicate tumors.

  4. Biomimetic tissue platform for photothermal cancer therapy using gold nanorods (GNRs)

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Bae, Ji Yong; Jeong, Chan Bae; Kim, Gunhee; Lee, Kye-Sung; Chang, Ki-Soo

    2016-09-01

    Photothermal therapy (PT) provides a strong potential in treatment of tumors, selective cell death, through the ability of gold nanoparticles to target destructive heat preferentially to tumor regions. And yet, clinical application of the thermal therapies has not accomplished due to insufficient processes of the heating methods and temperature measuring techniques leading to low reproducibility of such treatment. In this study, we created a 3 dimensional tissue platform to characterize the heating method and to control the generated heat in the tissue used for a superficial cancer model using gold nanorods (GNRs) and near-infrared (NIR, 808 nm) laser. The 3D tissue platform involved a 2 mm wide hemisphere to confine the GNRs covered with20 μm thick polymer film designed to mimic localized nanoparticles in tumor. Moreover, this platform provides an easy way to measure heat distribution and temperature created in tumor cross section. To investigate the photothermal effect of GNRs on heat generation, the amount of GNRs and laser power density were controlled. The GNRs were shown to be the large absorption cross sections generating localized photothermal effects and hyperthermic effects on destructive consequences in the cell dynamics causing a partial tumor regression.

  5. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy.

    PubMed

    Yang, Rui-Meng; Fu, Chao-Ping; Fang, Jin-Zhi; Xu, Xiang-Dong; Wei, Xin-Hua; Tang, Wen-Jie; Jiang, Xin-Qing; Zhang, Li-Ming

    2017-01-01

    Theranostic nanoparticles with both imaging and therapeutic abilities are highly promising in successful diagnosis and treatment of the most devastating cancers. In this study, the dual-modal imaging and photothermal effect of hyaluronan (HA)-modified superparamagnetic iron oxide nanoparticles (HA-SPIONs), which was developed in a previous study, were investigated for CD44 HA receptor-overexpressing breast cancer in both in vitro and in vivo experiments. Heat is found to be rapidly generated by near-infrared laser range irradiation of HA-SPIONs. When incubated with CD44 HA receptor-overexpressing MDA-MB-231 cells in vitro, HA-SPIONs exhibited significant specific cellular uptake and specific accumulation confirmed by Prussian blue staining. The in vitro and in vivo results of magnetic resonance imaging and photothermal ablation demonstrated that HA-SPIONs exhibited significant negative contrast enhancement on T2-weighted magnetic resonance imaging and photothermal effect targeted CD44 HA receptor-overexpressing breast cancer. All these results indicated that HA-SPIONs have great potential for effective diagnosis and treatment of cancer.

  6. Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery.

    PubMed

    Yang, Yan; Shi, Haili; Wang, Yapei; Shi, Benzhao; Guo, Linlin; Wu, Dongmei; Yang, Shiping; Wu, Huixia

    2016-01-01

    Superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been deposited on graphene oxide (GO) by the thermal decomposition of manganese (II) acetylacetonate and iron (III) acetylacetonate precursors in triethylene glycol. The resulting GO/MnFe2O4 nanohybrids show very low cytotoxicity, negligible hemolytic activity, and imperceptible in vivo toxicity. In vitro and in vivo magnetic resonance imaging experiments demonstrate that GO/MnFe2O4 nanohybrids could be used as an effective T2 contrast agent. The strong optical absorbance in the near-infrared (NIR) region and good photothermal stability of GO/MnFe2O4 nanohybrids result in the highly efficient photothermal ablation of cancer cells. GO/MnFe2O4 nanohybrids can be further loaded with doxorubicin (DOX) by π-π conjugate effect for chemotherapy. DOX release from GO/MnFe2O4 is significantly influenced by pH and can be triggered by NIR laser. The enhanced cancer cell killing by GO/MnFe2O4/DOX composites has been achieved when irradiated with near-infrared light, suggesting that the nanohybrids could deliver both DOX chemotherapy and photothermal therapy with a synergistic effect.

  7. Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres.

    PubMed

    Chen, Rui; Wang, Xin; Yao, Xikuan; Zheng, Xianchuang; Wang, Jing; Jiang, Xiqun

    2013-11-01

    Gold nanorods (AuNR)- and indocyanine green (ICG)-encapsulated chitosan hybrid nanospheres (CS-AuNR-ICG NSs) were successfully prepared and used for photothermal and photodynamic combined therapy with a single irradiation. These nanospheres were characterized by transmission electron microscopy, dynamic light scattering and UV-Vis absorption spectra. The in vivo anticancer effects of the hybrid nanospheres were examined by photodynamic therapy (PDT), photothermal therapy (PTT), and PTT/PDT combined therapy. It was found that the hybrid nanospheres had spherical size of 180 nm and a broad adsorption from 650 nm to 900 nm. The spherical chitosan matrix could effectively load ICG and protect it from the rapid hydrolysis. In vivo near-infrared fluorescence imaging and biodistribution demonstrated that ICG and AuNR could be selectively delivered to the tumor site with high accumulation. With the irradiation by 808 nm laser, chitosan hybrid nanospheres were capable to simultaneously produce sufficient hyperthermia and reactive oxygen species to kill cancer cells at irradiation sites, resulting in the complete tumor disappearance in the most of tumor-bearing mice. Compared with photothermal therapy or photodynamic therapy alone, the combined therapy had a significantly synergistic effect and improved the therapeutic efficacy.

  8. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy

    PubMed Central

    Yang, Rui-Meng; Fu, Chao-Ping; Fang, Jin-Zhi; Xu, Xiang-Dong; Wei, Xin-Hua; Tang, Wen-Jie; Jiang, Xin-Qing; Zhang, Li-Ming

    2017-01-01

    Theranostic nanoparticles with both imaging and therapeutic abilities are highly promising in successful diagnosis and treatment of the most devastating cancers. In this study, the dual-modal imaging and photothermal effect of hyaluronan (HA)-modified superparamagnetic iron oxide nanoparticles (HA-SPIONs), which was developed in a previous study, were investigated for CD44 HA receptor-overexpressing breast cancer in both in vitro and in vivo experiments. Heat is found to be rapidly generated by near-infrared laser range irradiation of HA-SPIONs. When incubated with CD44 HA receptor-overexpressing MDA-MB-231 cells in vitro, HA-SPIONs exhibited significant specific cellular uptake and specific accumulation confirmed by Prussian blue staining. The in vitro and in vivo results of magnetic resonance imaging and photothermal ablation demonstrated that HA-SPIONs exhibited significant negative contrast enhancement on T2-weighted magnetic resonance imaging and photothermal effect targeted CD44 HA receptor-overexpressing breast cancer. All these results indicated that HA-SPIONs have great potential for effective diagnosis and treatment of cancer. PMID:28096667

  9. Microfluidic Synthesis and Biological Evaluation of Photothermal Biodegradable Copper Sulfide Nanoparticles.

    PubMed

    Ortiz de Solorzano, Isabel; Prieto, Martín; Mendoza, Gracia; Alejo, Teresa; Irusta, Silvia; Sebastian, Victor; Arruebo, Manuel

    2016-08-24

    The continuous synthesis of biodegradable photothermal copper sulfide nanoparticles has been carried out with the aid of a microfluidic platform. A comparative physicochemical characterization of the resulting products from the microreactor and from a conventional batch reactor has been performed. The microreactor is able to operate in a continuous manner and with a 4-fold reduction in the synthesis times compared to that of the conventional batch reactor producing nanoparticles with the same physicochemical requirements. Biodegradation subproducts obtained under simulated physiological conditions have been identified, and a complete cytotoxicological analysis on different cell lines was performed. The photothermal effect of those nanomaterials has been demonstrated in vitro as well as their ability to generate reactive oxygen species.

  10. Temperature feedback-controlled photothermal treatment with diffusing applicator: theoretical and experimental evaluations

    PubMed Central

    Nguyen, Trung Hau; Park, Suhyun; Hlaing, Kyu Kyu; Kang, Hyun Wook

    2016-01-01

    To minimize thermal injury, the current study evaluated the real-time temperature monitoring with a proportional-integrative-derivative (PID) controller during 980-nm photothermal treatment with a radially-diffusing applicator. Both simulations and experiments demonstrated comparable thermal behaviors in temperature distribution and the degree of irreversible tissue denaturation. The PID-controlled application constantly maintained the pre-determined temperature of 353 K (steady-state error = < 1 K). Due to constant energy delivery, coagulation volumes linearly increased up to 1.04 ± 0.02 cm3 with irradiation time. Integration of temperature feedback with diffuser-assisted photothermal treatments can provide a feasible therapeutic modality to treat pancreatic tumors in an effective manner. PMID:27231632

  11. The morphological changes in transplanted tumors in rats at plasmonic photothermal therapy

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Maslyakova, Galina N.; Navolokin, Nikita A.; Dikht, Nataliya I.; Terentyuk, Georgy S.; Bashkatov, Alexey N.; Genina, Elina A.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Tuchin, Valery V.

    2016-04-01

    The aim of work was to study the morphological changes in transplanted liver tumors of rats after plasmonic photothermal therapy (PPTT). The gold nanorods functionalized with thiolated polyethylene glycol were injected intravenously to rats with transplanted liver cancer PC-1. A day after injection the tumors were irradiated by the infrared 808-nm diode laser. The withdrawal of the animals from the experiment and sampling of tumor tissue for morphological study were performed 24 hours after the laser exposure. The standard histological and immunohistochemical staining with antibodies to proliferation marker Ki-67 and apoptosis marker BAX were used for morphological study of transplanted tumors. The plasmonic photothermal therapy had pronounced damaging effect in rats with transplanted liver tumors expressed in degenerative and necrotic changes in the tumor cells. The decrease of proliferation marker Ki-67 and increase of expression of apoptosis marker BAX were observed in tumor cells after PPTT.

  12. Microfluidic Synthesis and Biological Evaluation of Photothermal Biodegradable Copper Sulfide Nanoparticles

    PubMed Central

    2016-01-01

    The continuous synthesis of biodegradable photothermal copper sulfide nanoparticles has been carried out with the aid of a microfluidic platform. A comparative physicochemical characterization of the resulting products from the microreactor and from a conventional batch reactor has been performed. The microreactor is able to operate in a continuous manner and with a 4-fold reduction in the synthesis times compared to that of the conventional batch reactor producing nanoparticles with the same physicochemical requirements. Biodegradation subproducts obtained under simulated physiological conditions have been identified, and a complete cytotoxicological analysis on different cell lines was performed. The photothermal effect of those nanomaterials has been demonstrated in vitro as well as their ability to generate reactive oxygen species. PMID:27486785

  13. Controlling Spatial Heat and Light Distribution by Using Photothermal Enhancing Auto-Regulated Liposomes (PEARLs).

    PubMed

    Ng, Kenneth K; Weersink, Robert A; Lim, Liang; Wilson, Brian C; Zheng, Gang

    2016-08-16

    Photothermal therapy (PTT) is enhanced by the use of nanoparticles with a large optical absorption at the treatment wavelength. However, this comes at the cost of higher light attenuation that results in reduced depth of heating as well as larger thermal gradients, leading to potential over- and under-treatment in the target tissue. These limitations can be overcome by using photothermal enhancing auto-regulating liposomes (PEARLs), based on thermochromic J-aggregate forming dye-lipid conjugates that reversibly alter their absorption above a predefined lipid phase-transition temperature. Under irradiation by near-infrared light, deeper layers of the target tissue revert to the intrinsic optical absorption, halting the temperature rise and enabling greater light penetration and heat generation at depth. This effect is demonstrated in both nanoparticle solutions and in gel phantoms containing the nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties.

    PubMed

    Chen, Shuai; Tang, Fu; Tang, Liangzhen; Li, Lidong

    2017-06-21

    Copper (Cu) nanoparticles possess unusual electrical, thermal, and optical properties. However, applications of these materials are often limited by their tendency to oxidize. We prepared Cu nanoparticles by a simple polyol method, with a good control over the particle size. The reaction required no inert atmosphere or surfactant agents. The as-prepared Cu nanoparticles showed good resistance to oxidation in solution. These Cu nanoparticles were then incorporated into a biocompatible polysaccharide hydrogel, which further stabilized the nanoparticles. The hybrid hydrogel exhibited a rapid self-healing ability. Because of the excellent photothermal conversion properties of the embedded Cu nanoparticles, the hybrid hydrogel showed rapid temperature elevation under laser irradiation. The hybrid hydrogel showed limited cytotoxicity; however, under laser irradiation the hydrogel displayed antibacterial properties owing to the heating effects. This study demonstrates that our hybrid hydrogel may have applications in biomedical fields and photothermal therapy.

  15. Lipid Nanotube Tailored Fabrication of Uniquely Shaped Polydopamine Nanofibers as Photothermal Converters.

    PubMed

    Ding, Wuxiao; Chechetka, Svetlana A; Masuda, Mitsutoshi; Shimizu, Toshimi; Aoyagi, Masaru; Minamikawa, Hiroyuki; Miyako, Eijiro

    2016-03-18

    Helically coiled and linear polydopamine (PDA) nanofibers were selectively fabricated with two different types of lipid nanotubes (LNTs) that acted as templates. The obtained coiled PDA-LNT hybrid showed morphological advantages such as higher light absorbance and photothermal conversion effect compared to a linear counterpart. Laser irradiation of the coiled PDA-LNT hybrid induced a morphological change and subsequent release of the encapsulated guest molecule. In cellular experiments, the coiled PDA-LNT efficiently eliminated HeLa cells because of its strong affinity with the tumor cells. This work illustrates the first approach to construct characteristic morphologies of PDA nanofibers using LNTs as simple templates, and the coiled PDA-LNT hybrid exhibits attractive photothermal features derived from its unique coiled shape. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics

    PubMed Central

    Zou, Lili; Wang, Hong; He, Bin; Zeng, Lijuan; Tan, Tao; Cao, Haiqiang; He, Xinyu; Zhang, Zhiwen; Guo, Shengrong; Li, Yaping

    2016-01-01

    Cancer metastasis accounts for the high mortality of many types of cancer. Owing to the unique advantages of high specificity and minimal invasiveness, photothermal therapy (PTT) has been evidenced with great potential in treating cancer metastasis. In this review, we outline the current approaches of PTT with respect to its application in treating metastatic cancer. PTT can be used alone, guided with multimodal imaging, or combined with the current available therapies for effective treatment of cancer metastasis. Numerous types of photothermal nanotherapeutics (PTN) have been developed with encouraging therapeutic efficacy on metastatic cancer in many preclinical animal experiments. We summarize the design and performance of various PTN in PTT alone and their combinational therapy. We also point out the lacking area and the most promising approaches in this challenging field. In conclusion, PTT or their combinational therapy can provide an essential promising therapeutic modality against cancer metastasis. PMID:27162548

  17. In Planta Response of Arabidopsis to Photothermal Impact Mediated by Gold Nanoparticles.

    PubMed

    Koo, Yeonjong; Lukianova-Hleb, Ekaterina Y; Pan, Joann; Thompson, Sean M; Lapotko, Dmitri O; Braam, Janet

    2016-02-03

    Biological responses to photothermal effects of gold nanoparticles (GNPs) have been demonstrated and employed for various applications in diverse systems except for one important class - plants. Here, the uptake of GNPs through Arabidopsis thaliana roots and translocation to leaves are reported. Successful plasmonic nanobubble generation and acoustic signal detection in planta is demonstrated. Furthermore, Arabidopsis leaves harboring GNPs and exposed to continuous laser or noncoherent light show elevated temperatures across the leaf surface and induced expression of heat-shock regulated genes. Overall, these results demonstrate that Arabidopsis can readily take up GNPs through the roots and translocate the particles to leaf tissues. Once within leaves, GNPs can act as photothermal agents for on-demand remote activation of localized biological processes in plants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents

    PubMed Central

    Kim, Jin-Woo; Galanzha, Ekaterina I.; Shashkov, Evgeny V.; Moon, Hyung-Mo; Zharov, Vladimir P.

    2012-01-01

    Carbon nanotubes have shown promise as contrast agents for photoacoustic and photothermal imaging of tumours and infections because they offer high resolution and allow deep tissue imaging. However, in vivo applications have been limited by the relatively low absorption displayed by nanotubes at near-infrared wavelengths and concerns over toxicity. Here, we show that gold-plated carbon nanotubes—termed golden carbon nanotubes—can be used as photoacoustic and photothermal contrast agents with enhanced near-infrared contrast (~102-fold) for targeting lymphatic vessels in mice using extremely low laser fluence levels of a few mJ cm−2. Antibody-conjugated golden carbon nanotubes were used to map the lymphatic endothelial receptor, and preliminary in vitro viability tests show golden carbon nanotubes have minimal toxicity. This new nanomaterial could be an effective alternative to existing nanoparticles and fluorescent labels for non-invasive targeted imaging of molecular structures in vivo. PMID:19809462

  19. Photothermal technique in cell microscopy studies

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey

    1995-01-01

    Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.

  20. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer.

    PubMed

    Chen, Lei; Zhong, Xiaoyan; Yi, Xuan; Huang, Min; Ning, Ping; Liu, Teng; Ge, Cuicui; Chai, Zhifang; Liu, Zhuang; Yang, Kai

    2015-10-01

    Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment.

  1. Photothermal Ablation of in Situ Renal Tumor by PEG-IR780-C13 Micelles and Near-Infrared Irradiation.

    PubMed

    Qiu, Xuefeng; Xu, Linfeng; Zhang, Yanting; Yuan, Ahu; Wang, Kaikai; Zhao, Xiaozhi; Wu, Jinhui; Guo, Hongqian; Hu, Yiqiao

    2016-03-07

    PEG-IR780-C13 micelles have been demonstrated to be a novel photothermal agent with tumor-targeting property. This study was designed to explore the feasibility of applying PEG-IR780-C13 micelles and near-infrared (NIR) irradiation for thermal ablation of renal tumor by using an in situ tumor model. In addition, the potential thermal injury to normal renal tissue was evaluated. PEG-IR780-C13 micelles were intended to accumulate in renal tumor after systemic delivery. In vitro results revealed that PEG-IR780-C13 micelles were uptaken by RENCA cells mainly through caveola-mediated endocytosis and mainly distributed in late endosomes and lysosomes. Upon NIR irradiation, PEG-IR780-C13 micelles generated heat effectively both in vitro and in vivo, exhibiting a promising photothermal therapeutic property. The photothermal effect of PEG-IR780-C13 micelles could effectively destroy RENCA cells in vitro and adequately inhibit growth of in situ renal tumor in vivo. Meanwhile, PEG-IR780-C13 micelles mediated photothermal therapy (PTT) resulting in only limited injury to normal renal tissue surrounding tumor sites. Our data indicated that PEG-IR780-C13 micelles mediating PTT could generate tumor-specific heat for destruction of renal tumor in a minimally invasive way, providing a novel strategy for thermal ablation of renal tumor.

  2. A photothermal model of selective photothermolysis with dynamically changing vaporization temperature.

    PubMed

    Zhang, Ji Zhuang; Zhang, Xue Xue; Audette, Michel

    2011-09-01

    The theory of selective photothermolysis (SP) is used in many fields of laser surgery and medicine. As several parameters and a number of complicated photothermal interactions are involved in SP, numerical simulations have been providing an important and effective way in SP studies. However, with different photothermal models of SP, simulated results differ considerably. In addition, insufficient attention has been paid to tissue pressure variation during SP in these models, so that vessel rupture and other clinical phenomena cannot be explained. A novel photothermal model of SP was proposed using a Monte Carlo method to simulate the laser transport in the tissue, a heat transfer equation with dynamically changing vaporization temperature to calculate the temperature distribution, and the Arrhenius equation to predict the thermal damage. A factor of trapped vaporized tissue water k was introduced to describe the effects on tissue pressure, temperature, and other related parameters. It was shown that the simulation results are affected significantly by k. Temperature and thermal damage volume are almost identical, respectively, to those obtained with models with vaporization at 100°C and models without vaporization when k = 0 and 1, while thermal damage volume is close to that obtained with models of vaporization at 110°C and 130°C, respectively, when k = 0.022 and k = 0.18. To some extent, the current models without vaporization and models with vaporization at constant temperature can be regarded as special cases at specific situations of this new photothermal model of SP. In addition, more descriptive simulation results, such as temperature, thermal damage, and pressure, are accessible with this model, although the accuracy depends on the value of k, the estimation of which is planned as future work.

  3. Folate-receptor-targeted NIR-sensitive polydopamine nanoparticles for chemo-photothermal cancer therapy.

    PubMed

    Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Nguyen, Van Du; Park, Jong-Oh; Park, Sukho

    2017-10-20

    We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.

  4. Photothermal analysis of polymeric dye laser materials excited at different pump rates

    NASA Astrophysics Data System (ADS)

    Duchowic, Ricardo; Scaffardi, Lucía B.; Costela, Angel; García-Moreno, Inmaculada; Sastre, Roberto; Acun~A, Alberto Ulises

    2003-02-01

    The photothermal properties and heat diffusion of polymeric lasers, made up from solutions of Rhodamine 6G in solid matrices of poly(2-hydroxyethyl methacrylate) with different amounts of the cross-linking monomer ethylene glycol dimethacrylate and copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate have been studied through photothermal deflection spectroscopy. The heat load that is due to the pumping process was quantified as a function of the pump excitation repetition frequency (0.25-10 Hz), determining the time-dependent temperature changes at different locations within the laser matrix. A theoretical model, which reproduces these changes with high accuracy, was developed on the basis of the heat-diffusion equation of optically dense fluids. The observed thermal effects became important for impairing the laser stability at pump repetition frequencies higher than 1 Hz. In addition, the irreversible optical changes produced in the laser matrices at high pump fluence values (>1 J/cm2) were also analyzed. These effects originate, most likely, from a two-step photothermal mechanism.

  5. Human Induced Pluripotent Stem Cells for Tumor Targeted Delivery of Gold Nanorods and Enhanced Photothermal Therapy.

    PubMed

    Liu, Yanlei; Yang, Meng; Zhang, Jingpu; Zhi, Xiao; Li, Chao; Zhang, Chunlei; Pan, Fei; Wang, Kan; Yang, Yuming; Martinez de la Fuentea, Jesus; Cui, Daxiang

    2016-02-23

    How to improve effective accumulation and intratumoral distribution of plasmonic gold nanoparticles has become a great challenge for photothermal therapy of tumors. Herein, we reported a nanoplatform with photothermal therapeutic effects by fabricating Au nanorods@SiO2@CXCR4 nanoparticles and loading the prepared nanoparticles into the human induced pluripotent stem cells(AuNRs-iPS). In virtue of the prominent optical properties of Au nanorods@SiO2@CXCR4 and remarkable tumor target migration ability of iPS cells, the Au nanorods delivery mediated by iPS cells via the nanoplatform AuNRs-iPS was found to have a prolonged retention time and spatially even distribution in MGC803 tumor-bearing nude mice observed by photoacoustic tomography and two-photon luminescence. On the basis of these improvements, the nanoplatform displayed a robust migration capacity to target the tumor site and to improve photothermal therapeutic efficacy on inhibiting the growth of tumors in xenograft mice under a low laser power density. The combination of gold nanorods with human iPS cells as a theranostic platform paves an alternative road for cancer theranostics and holds great promise for clinical translation in the near future.

  6. Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy.

    PubMed

    Zhang, Mengxin; Cao, Yuhua; Wang, Lina; Ma, Yufei; Tu, Xiaolong; Zhang, Zhijun

    2015-03-04

    Photothermal therapy (PTT) is a noninvasive and convenient way to ablate tumor tissues. Integrating PTT with imaging technique could precisely identify the location and the size of tumor regions, thereby significantly improving the therapeutic efficacy. Magnetic resonance imaging (MRI) is widely used in clinical diagnosis due to its superb spatial resolution and real-time monitoring feature. In our work, we developed a theranostic nanoplatform based on manganese doped iron oxide (MnIO) nanoparticles modified with denatured bovine serum albumin (MnIO-dBSA). The in vitro experiment revealed that the MnIO nanoparticles exhibited T1-weighted MRI capability (r1 = 8.24 mM(-1) s(-1), r2/r1 = 2.18) and good photothermal effect under near-infrared laser irradiation (808 nm). Using 4T1 tumor-bearing mice as an animal model, we further demonstrated that the MnIO-dBSA composites could significantly increase T1 MRI signal intensity at the tumor site (about two times) and effectively ablate tumor tissues with photoirradiation. Taken together, this work demonstrates the great potential of the MnIO nanoparticles as an ideal theranostic platform for efficient tumor MR imaging and photothermal therapy.

  7. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.

    PubMed

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-08-14

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.

  8. Folate-receptor-targeted NIR-sensitive polydopamine nanoparticles for chemo-photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Du Nguyen, Van; Park, Jong-Oh; Park, Sukho

    2017-10-01

    We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.

  9. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy.

    PubMed

    Zhang, Hao; Wu, Huixia; Wang, Jun; Yang, Yan; Wu, Dongmei; Zhang, Yingjian; Zhang, Yang; Zhou, Zhiguo; Yang, Shiping

    2015-02-01

    By using a solvothermal method in the presence of polyethylene glycol (PEG), BaGdF5 nanoparticles are firmly attached on the surface of graphene oxide (GO) nanosheets to form the GO/BaGdF5/PEG nanocomposites. The resulting GO/BaGdF5/PEG shows low cytotoxicity, positive magnetic resonance (MR) contrast effect and better X-ray attenuation property than Iohexol, which enables effective dual-modality MR and X-ray computed tomography (CT) imaging of the tumor model in vivo. The enhanced near-infrared absorbance, good photothermal stability and efficient tumor passive targeting of GO/BaGdF5/PEG result in the highly efficient photothermal ablation of tumor in vivo after intravenous injection of GO/BaGdF5/PEG and the following 808-nm laser irradiation (0.5 W/cm(2)). The histological and biochemical analysis data reveal no perceptible toxicity of GO/BaGdF5/PEG in mice after treatment. These results indicate potential application of GO/BaGdF5/PEG in dual-modality MR/CT imaging and photothermal therapy of cancers.

  10. Deoxycholate Bile Acid Directed Synthesis of Branched Au Nanostructures for Near Infrared Photothermal Ablation

    PubMed Central

    Kim, Dong-Hyun; Larson, Andrew C.

    2015-01-01

    We report an approach for simple, reproducible and high-yield synthesis of branched GNPs directed by deoxycholate bile acid supramolecular aggregates in Au solution. A growth process involving stepwise trapping of the GNP seeds and Au ions in the deoxycholate bile acid solution yields multiple-branched GNPs. Upon NIR laser irradiation strong NIR absorption for branched GNPs induced photothermal-heating to destroy tumor cells. Subsequently, these branched GNPs were bio-functionalized with cRGD cell penetrating-targeting peptides for photothermal cancer treatment applications. Branched GNPs conjugated with cRGD peptides enhanced internalization of the branched GNPs in BxPC3 human pancreatic adenocarcinoma cells and effectively ablated BxPC3 cells when irradiated with a NIR laser (808 nm). Their potential use as photothermal transducing agents was demonstrated in in vivo settings using a pancreatic cancer xenograft model. The tumors were effectively ablated with cRGD-branched GNPs injection and laser exposure without any observation of tumor recurrence. This firstly reported method for deoxycholate bile acid directed synthesis of branched GNPs opens new possibilities for the production of strong NIR absorbing nanostructures for selective nanophotothermolisys of cancer cells and the further design of novel materials with customized spectral and structural properties for broader applications. PMID:25934288

  11. Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy.

    PubMed

    Kang, Seokyung; Bhang, Suk Ho; Hwang, Sekyu; Yoon, Jeong-Kee; Song, Jaejung; Jang, Hyeon-Ki; Kim, Sungjee; Kim, Byung-Soo

    2015-10-27

    Gold nanoparticles (AuNPs) have been extensively studied for photothermal cancer therapy because AuNPs can generate heat upon near-infrared irradiation. However, improving their tumor-targeting efficiency and optimizing the nanoparticle size for maximizing the photothermal effect remain challenging. We demonstrate that mesenchymal stem cells (MSCs) can aggregate pH-sensitive gold nanoparticles (PSAuNPs) in mildly acidic endosomes, target tumors, and be used for photothermal therapy. These aggregated structures had a higher cellular retention in comparison to pH-insensitive, control AuNPs (cAuNPs), which is important for the cell-based delivery process. PSAuNP-laden MSCs (MSC-PSAuNPs) injected intravenously to tumor-bearing mice show a 37-fold higher tumor-targeting efficiency (5.6% of the injected dose) and 8.3 °C higher heat generation compared to injections of cAuNPs after irradiation, which results in a significantly enhanced anticancer effect.

  12. An experimental study on photothermal damage to tissue: the role of irradiance and wavelength

    NASA Astrophysics Data System (ADS)

    Yildiz, F.; Gulsoy, M.; Cilesiz, I.

    2016-09-01

    Laser exposure time and irradiance are crucial parameters governing the process of thermal damage. The goal of our in vitro study was to study and determine optimal parameters for the onset of coagulation and carbonization at three different wavelengths (980, 1070 and 1940 nm). We also compared photothermal effects at these three wavelengths by varying laser exposure time and irradiance. Fresh bovine liver specimens were used for experimentation. The onset of thermal damage at different irradiances and for different exposure time was studied macroscopically and histologically. Photothermal damage or lesion volume generally decreased with irradiance and increasing exposure time. We observed an exponential and linear relationship between irradiance and exposure time for specific thermal endpoints. These specific endpoints were the onset of (i) coagulation, and (ii) carbonization. The time interval or difference between these specific endpoints termed as Δt (t carbonization  -  t coagulation) (s) was also determined. This relation between irradiance and exposure time will make possible the pre-estimation of thermal tissue lesion volume before operation, and photothermal therapy may thus be performed with minimum side effects on liver tissue.

  13. Deoxycholate bile acid directed synthesis of branched Au nanostructures for near infrared photothermal ablation.

    PubMed

    Kim, Dong-Hyun; Larson, Andrew C

    2015-07-01

    We report an approach for simple, reproducible and high-yield synthesis of branched GNPs directed by deoxycholate bile acid supramolecular aggregates in Au solution. A growth process involving stepwise trapping of the GNP seeds and Au ions in the deoxycholate bile acid solution yields multiple-branched GNPs. Upon NIR laser irradiation strong NIR absorption for branched GNPs induced photothermal-heating to destroy tumor cells. Subsequently, these branched GNPs were biofunctionalized with cRGD cell penetrating-targeting peptides for photothermal cancer treatment applications. Branched GNPs conjugated with cRGD peptides enhanced internalization of the branched GNPs in BxPC3 human pancreatic adenocarcinoma cells and effectively ablated BxPC3 cells when irradiated with a NIR laser (808 nm). Their potential use as photothermal transducing agents was demonstrated in in vivo settings using a pancreatic cancer xenograft model. The tumors were effectively ablated with cRGD-branched GNPs injection and laser exposure without any observation of tumor recurrence. This firstly reported method for deoxycholate bile acid directed synthesis of branched GNPs opens new possibilities for the production of strong NIR absorbing nanostructures for selective nano-photothermolysis of cancer cells and the further design of novel materials with customized spectral and structural properties for broader applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Advances in biodegradable nanomaterials for photothermal therapy of cancer.

    PubMed

    He, Chao-Feng; Wang, Shun-Hao; Yu, Ying-Jie; Shen, He-Yun; Zhao, Yan; Gao, Hui-Ling; Wang, Hai; Li, Lin-Lin; Liu, Hui-Yu

    2016-09-01

    Photothermal cancer therapy is an alternative to chemotherapy, radiotherapy, and surgery. With the development of nanophotothermal agents, this therapy holds immense potential in clinical translation. However, the toxicity issues derived from the fact that nanomaterials are trapped and retained in the reticuloendothelial systems limit their biomedical application. Developing biodegradable photothermal agents is the most practical route to address these concerns. In addition to the physicochemical properties of nanomaterials, various internal and external stimuli play key roles on nanomaterials uptake, transport, and clearance. In this review, we summarized novel nanoplatforms for photothermal therapy; these nanoplatforms can elicit stimuli-triggered degradation. We focused on the recent innovative designs endowed with biodegradable photothermal agents under different stimuli, including enzyme, pH, and near-infrared (NIR) laser.

  15. Advances in biodegradable nanomaterials for photothermal therapy of cancer

    PubMed Central

    He, Chao-Feng; Wang, Shun-Hao; Yu, Ying-Jie; Shen, He-Yun; Zhao, Yan; Gao, Hui-Ling; Wang, Hai; Li, Lin-Lin; Liu, Hui-Yu

    2016-01-01

    Photothermal cancer therapy is an alternative to chemotherapy, radiotherapy, and surgery. With the development of nanophotothermal agents, this therapy holds immense potential in clinical translation. However, the toxicity issues derived from the fact that nanomaterials are trapped and retained in the reticuloendothelial systems limit their biomedical application. Developing biodegradable photothermal agents is the most practical route to address these concerns. In addition to the physicochemical properties of nanomaterials, various internal and external stimuli play key roles on nanomaterials uptake, transport, and clearance. In this review, we summarized novel nanoplatforms for photothermal therapy; these nanoplatforms can elicit stimuli-triggered degradation. We focused on the recent innovative designs endowed with biodegradable photothermal agents under different stimuli, including enzyme, pH, and near-infrared (NIR) laser. PMID:27807498

  16. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Marches, Radu; Mikoryak, Carole; Wang, Ru-Hung; Pantano, Paul; Draper, Rockford K.; Vitetta, Ellen S.

    2011-03-01

    Single-walled carbon nanotubes (CNTs) convert absorbed near infrared (NIR) light into heat. The use of CNTs in the NIR-mediated photothermal ablation of tumor cells is attractive because the penetration of NIR light through normal tissues is optimal and the side effects are minimal. Targeted thermal ablation with minimal collateral damage can be achieved by using CNTs attached to tumor-specific monoclonal antibodies (MAbs). However, the role that the cellular internalization of CNTs plays in the subsequent sensitivity of the target cells to NIR-mediated photothermal ablation remains undefined. To address this issue, we used CNTs covalently coupled to an anti-Her2 or a control MAb and tested their ability to bind, internalize, and photothermally ablate Her2 + but not Her2 - breast cancer cell lines. Using flow cytometry, immunofluorescence, and confocal Raman microscopy, we observed the gradual time-dependent receptor-mediated endocytosis of anti-Her2-CNTs whereas a control MAb-CNT conjugate did not bind to the cells. Most importantly, the Her2 + cells that internalized the MAb-CNTs were more sensitive to NIR-mediated photothermal damage than cells that could bind to, but not internalize the MAb-CNTs. These results suggest that both the targeting and internalization of MAb-CNTs might result in the most effective thermal ablation of tumor cells following their exposure to NIR light.

  17. Gold nanoshell-decorated silicone surfaces for the near-infrared (NIR) photothermal destruction of the pathogenic bacterium E. faecalis.

    PubMed

    Khantamat, Orawan; Li, Chien-Hung; Yu, Fei; Jamison, Andrew C; Shih, Wei-Chuan; Cai, Chengzhi; Lee, T Randall

    2015-02-25

    Catheter-related infections (CRIs) are associated with the formation of pathogenic biofilms on the surfaces of silicone catheters, which are ubiquitous in medicine. These biofilms provide protection against antimicrobial agents and facilitate the development of bacterial resistance to antibiotics. The application of photothermal agents on catheter surfaces is an innovative approach to overcoming biofilm-generated CRIs. Gold nanoshells (AuNSs) represent a promising photothermal tool, because they can be used to generate heat upon exposure to near-infrared (NIR) radiation, are biologically inert at physiological temperatures, and can be engineered for the photothermal ablation of cells and tissue. In this study, AuNSs functionalized with carboxylate-terminated organosulfur ligands were attached to model catheter surfaces and tested for their effectiveness at killing adhered Enterococcus faecalis (E. faecalis) bacteria. The morphology of the AuNSs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while the elemental composition was characterized by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Furthermore, optical and photothermal properties were acquired by ultraviolet-visible (UV-vis) spectroscopy and thermographic imaging with an infrared camera, respectively. Bacterial survival studies on AuNS-modified surfaces irradiated with and without NIR light were evaluated using a colony-formation assay. These studies demonstrated that AuNS-modified surfaces, when illuminated with NIR light, can effectively kill E. faecalis on silicone surfaces.

  18. Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy.

    PubMed

    Lyu, Yan; Fang, Yuan; Miao, Qingqing; Zhen, Xu; Ding, Dan; Pu, Kanyi

    2016-04-26

    Optical theranostic nanoagents that seamlessly and synergistically integrate light-generated signals with photothermal or photodynamic therapy can provide opportunities for cost-effective precision medicine, while the potential for clinical translation requires them to have good biocompatibility and high imaging/therapy performance. We herein report an intraparticle molecular orbital engineering approach to simultaneously enhance photoacoustic brightness and photothermal therapy efficacy of semiconducting polymer nanoparticles (SPNs) for in vivo imaging and treatment of cancer. The theranostic SPNs have a binary optical component nanostructure, wherein a near-infrared absorbing semiconducting polymer and an ultrasmall carbon dot (fullerene) interact with each other to induce photoinduced electron transfer upon light irradiation. Such an intraparticle optoelectronic interaction augments heat generation and consequently enhances the photoacoustic signal and maximum photothermal temperature of SPNs by 2.6- and 1.3-fold, respectively. With the use of the amplified SPN as the theranostic nanoagent, it permits enhanced photoacoustic imaging and photothermal ablation of tumor in living mice. Our study thus not only introduces a category of purely organic optical theranostics but also highlights a molecular guideline to amplify the effectiveness of light-intensive imaging and therapeutic nanosystems.

  19. Multifunctional WS2 @Poly(ethylene imine) Nanoplatforms for Imaging Guided Gene-Photothermal Synergistic Therapy of Cancer.

    PubMed

    Zhang, Chunfang; Yong, Yuan; Song, Li; Dong, Xinghua; Zhang, Xiao; Liu, Xiangfeng; Gu, Zhanjun; Zhao, Yuliang; Hu, Zhongbo

    2016-11-01

    The combination of photothermal therapy (PTT) with gene therapy (GT) to improve PTT efficiency and thus eliminate cancer cells under mild hyperthermia is highly needed. Herein, multifunctional WS2 @poly(ethylene imine) (WS2 @PEI) nanoplatform has been designed and constructed for gene-photothermal synergistic therapy of tumors at mild condition. After a surface modification of WS2 with a positively charged PEI, the as-prepared WS2 @PEI nanoplatform can not only act as an efficient survivin-siRNA carrier for GT but also exhibit remarkable near-infrared (NIR) photothermal effects for PTT. On the one hand, the photothermal effects induced by WS2 @PEI upon NIR irradiation can enhance the cellular uptake owing to the increase of the cell membrane permeability, which leads to the remarkable enhancement of silencing efficiency of survivin. On the other hand, the silencing of survivin can increase the apoptosis as well as reduce the heat resistance of cancer cells by downregulating the heat shock protein 70 expressions, which greatly enhance the sensitivity of cancer cells to PTT. As a result, compared to PTT or GT treatment alone, WS2 @PEI mediated synergistic GT/PTT therapy remarkably enhances in vitro cancer cell damage and in vivo tumor elimination.

  20. Activatable Multifunctional Persistent Luminescence Nanoparticle/Copper Sulfide Nanoprobe for in Vivo Luminescence Imaging-Guided Photothermal Therapy.

    PubMed

    Chen, Li-Jian; Sun, Shao-Kai; Wang, Yong; Yang, Cheng-Xiong; Wu, Shu-Qi; Yan, Xiu-Ping

    2016-12-07

    Multifunctional nanoprobes that provide diagnosis and treatment features have attracted great interest in precision medicine. Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) are optimal materials due to no in situ excitation needed, deep tissue penetration, and high signal-to-noise ratio, while activatable optical probes can further enhance signal-to-noise ratio for the signal turn-on nature. Here, we show the design of an activatable multifunctional PLNP/copper sulfide (CuS)-based nanoprobe for luminescence imaging-guided photothermal therapy in vivo. Matrix metalloproteinases (MMPs)-specific peptide substrate (H2N-GPLGVRGC-SH) was used to connect PLNP and CuS to build a MMP activatable system. The nanoprobe not only possesses ultralow-background for in vivo luminescence imaging due to the absence of autofluorescence and optical activatable nature but also offers effective photothermal therapy from CuS nanoparticles. Further bioconjugation of c(RGDyK) enables the nanoprobe for cancer-targeted luminescence imaging-guided photothermal therapy. The good biocompatibility and the multiple functions of highly sensitive tumor-targeting luminescence imaging and effective photothermal therapy make the nanoprobe promising for theranostic application.

  1. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment.

    PubMed

    Chen, Yi; Li, Haohuan; Deng, Yueyang; Sun, Haifeng; Ke, Xue; Ci, Tianyuan

    2017-03-15

    The combination of chemotherapy and photothermal therapy is a promising strategy for cancer treatment. In the present study, indocyanine green (ICG), a widely used near-infrared (NIR) dye in photothermal therapy, and chemotherapeutic drug-doxorubicin (DOX) were loaded within the nanoparticles of novel designed arylboronic ester and cholesterol modified hyaluronic acid (PPE-Chol1-HA), denoted as PCH-DI. We take advantage of reactive oxygen species (ROS) production capability of ICG and ROS-sensitivity of arylboronic ester to realize controllable drug release. It was confirmed that PCH-DI exhibited remarkable photothermal effect and light-triggered faster release of DOX with NIR laser irradiation. DOX in PCH-DI/Laser group exhibited the most efficient nucleus binding toward HCT-116 colon cells in vitro. Furthermore, enhanced cytotoxicity and promoted tumor growth suppression effect of PCH-DI on HCT-116 tumor xenograft nude mice and AOM-induced murine orthotopic colorectal cancer model was achieved under NIR laser irradiation. Thus, the co-delivery system based on PCH appears to be a promising platform for the combined chemo-photothermal therapy in tumor treatment.

  2. Gold nanorod embedded large-pore mesoporous organosilica nanospheres for gene and photothermal cooperative therapy of triple negative breast cancer.

    PubMed

    Ni, Qianqian; Teng, Zhaogang; Dang, Meng; Tian, Ying; Zhang, Yunlei; Huang, Peng; Su, Xiaodan; Lu, Nan; Yang, Zhenlu; Tian, Wei; Wang, Shouju; Liu, Wenfei; Tang, Yuxia; Lu, Guangming; Zhang, Longjiang

    2017-01-26

    To date, clinicians still lack an effective strategy to treat triple negative breast cancer (TNBC). In this work, we design for the first time a gold nanorod embedded large-pore mesoporous organosilica (GNR@LPMO) nanoplatform for gene and photothermal cooperative therapy of TNBC. The synthesized GNR@LPMOs possess a uniform size (175 nm), high surface area (631 m(2) g(-1)), large pore size, excellent photothermal efficiency, and good biocompatibility. Thanks to the large-pore mesoporous organosilica layer, the GNR@LPMO nanoplatforms display much higher loading capacity of siRNA compared with traditional liposome and bare gold nanorods. Thus, functional siRNA can be efficiently delivered into TNBC cells by GNR@LPMOs, causing much higher cell apoptosis through knocking down the PLK1 proteins. By combining the effective gene delivery and photothermal abilities, the GNR@LPMO nanoplatforms are further used for gene and photothermal cooperative therapy of TNBC, which induce a 15 fold higher mice tumor inhibition rate than sole therapy modality, indicating the potential clinical use of this novel nanoplatform in treating TNBC.

  3. Prussian Blue Modified PLA Microcapsules Containing R6G for Ultrasonic/Fluorescent Bimodal Imaging Guided Photothermal Tumor Therapy.

    PubMed

    Feng, Shanshan; Wang, Jinrui; Ma, Fang; Liang, Xiaolong; Li, Xiaoda; Xing, Sen; Yue, Xiuli

    2016-03-01

    A theranostic agent has been successfully constructed for fluorescence/ultrasound dual-modal imaging guided photothermal therapy by loading the fluorescent dye R6G into polylactide microcapsules (PLA MCs) followed by deposition of Prussian blue nanoparticles (PB NPs) into the surface of PLA MCs. It was proved that the obtained microcapsules of R6G@PLA/PB MCs could serve as an efficient probe to simultaneously enhance fluorescence imaging and ultrasound imaging greatly in vivo. R6G@PLA/PB MCs exhibited significant photothermal cytotoxicity. Cancer cells could be killed efficiently through photothermal effects of R6G@PLA/PB MCs due to the strong absorption of PB NPs in the near infrared region under laser irradiation. In a word, R6G@PLA/PB MCs integrate multiple capabilities for effective tumor imaging and therapy. Such a single agent provides us a possibility to interpret accurately the obtained images, identify the size and location of the tumor, as well as guide and monitor the photothermal therapy.

  4. Space environmental effects on coated optics

    NASA Technical Reports Server (NTRS)

    Donovan, T. M.; Bennett, J. M.; Gyetvay, S. R.

    1991-01-01

    Several multilayer coated mirror designs developed for potential space applications were tested on the Long Duration Exposure Facility (LDEF) along with single layer witness coatings deposited on fused silica and a coated CaF2 window. Performance requirements included high mirror reflectivity, low absorption, low scatter, environmental durability, and radiation hardness. The designs were selected in screening tests using combined electron, proton, and simulated solar UV radiation. The purpose of the space test was to validate the above test results and determine the effects of atomic oxygen and contamination on mirror performance.

  5. Energy from biomass: the environmental effects

    SciTech Connect

    Plotkin, S.E.

    1980-11-01

    Biomass as an energy source has environmental and economic appeal for its advocates, who overlook the devastation in other parts of the world from large-scale biomass energy uses. Now producing 2% of the energy consumed in the US, biomass could contribute most of the 20% goal set for solar and renewable sources with support from the government. Biomass is used for direct burning or to make biogas and alcohol fuels, although a major controversy is developing over the wisdom of converting croplands to fuel-producing land. A comparison of the probable economic and environmental effects of ethanol and methanol production shows the latter to be less damaging. The loss of forest lands from increased harvesting will introduce problems of soil depletion, while pressures to log more timber will deplete high-quality stands and change the character of those forests that are poorly managed. Poaching and other illegal practices will also have adverse effects. The use of biomass will require large-scale land conversion and fuel substitution that could reduce the atmospheric buildup of carbon dioxide. Policies should require periodic reviews of biomass management until there is a better understanding of all these effects. 30 references. (DCK)

  6. Effects of tungsten on environmental systems.

    PubMed

    Strigul, Nikolay; Koutsospyros, Agamemnon; Arienti, Per; Christodoulatos, Christos; Dermatas, Dimitris; Braida, Washington

    2005-10-01

    Tungsten is a metal with many industrial and military applications, including manufacturing of commercial and military ammunition. Despite its widespread use, the potential environmental effects of tungsten are essentially unknown. This study addresses environmental effects of particulate and soluble forms of tungsten, and to a minor extent certain tungsten alloy components, present in some munitions formulations. Dissolution of tungsten powder significantly acidifies soils. Tungsten powder mixed with soils at rates higher than 1% on a mass basis, trigger changes in soil microbial communities resulting in the death of a substantial portion of the bacterial component and an increase of the fungal biomass. It also induces the death of red worms and plants. These effects appear to be related with the soil acidification occurring during tungsten dissolution. Dissolved tungsten species significantly decrease microbial yields by as much as 38% for a tungsten media concentration of 89 mg l(-1). Soluble tungsten concentrations as low as 10(-5) mg l(-1), cause a decrease in biomass production by 8% which is possibly related to production of stress proteins. Plants and worms take up tungsten ions from soil in significant amounts while an enrichment of tungsten in the plant rhizosphere is observed. These results provide an indication that tungsten compounds may be introduced into the food chain and suggest the possibility of development of phytoremediation-based technologies for the cleanup of tungsten contaminated sites.

  7. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy.

    PubMed

    Silva, Catarina Oliveira; Petersen, Steffen B; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm) showed a plasmon absorption band located within the near-infrared range (650-900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.

  8. Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy.

    PubMed

    Cheng, Youxing; Zhang, Shupeng; Kang, Ning; Huang, Jianpan; Lv, Xiaolin; Wen, Kai; Ye, Shefang; Chen, Zhiwei; Zhou, Xi; Ren, Lei

    2017-06-07

    This study reports a multifunctional nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI)-guided photothermal therapy (PTT) due to its surface coating with a polydopamine (PDA) shell. Importantly, by means of introducing the surface coating of PDA, large quantities of water can be trapped around the NPs allowing more efficient water exchange, leading to greatly improved MR contrast signals compared with those from NPs without the PDA coating. Further, a distinct photothermal effect can be obtained arising from the strong absorption of PDA in the near-infrared (NIR) region. By synthesizing multifunctional MnCO3@PDA NPs, for example, we found that the longitudinal relaxivity (r1) of MnCO3 NPs can improve from 5.7 to 8.3 mM(-1) s(-1). Subsequently, in vitro MRI and PTT results verified that MnCO3@PDA could serve as an excellent MRI/PTT theranostic agent. Furthermore, the MnCO3@PDA NPs were applied as an MRI/PTT theranostic agent for in vivo MRI-guided photothermal ablation of tumors by intratumoral injection in 4T1 tumor-bearing mice. The MR imaging result shows a significantly bright MR image in the tumor site. The MnCO3@PDA-mediated PTT result shows high therapeutic efficiency as a result of high photothermal conversion efficiency. The present strategy of amplified MRI-guided PTT based on PDA coating of NPs will be widely applicable to other multifunctional NPs.

  9. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    PubMed Central

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  10. A dual function theranostic agent for near-infrared photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Huang, Shuo; Wang, Mingfeng; Pramanik, Manojit

    2016-03-01

    Theranostic, defined as combining diagnostic and therapeutic agents, has attracted more attention in biomedical application. It is essential to monitor diseased tissue before treatment. Photothermal therapy (PTT) is a promising treatment of cancer tissue due to minimal invasion, unharmful to normal tissue and high efficiency. Photoacoustic tomography (PAT) is a hybrid nonionizing biomedical imaging modality that combines rich optical contrast and high ultrasonic resolution in a single imaging modality. The near infra-red (NIR) wavelengths, usually used in PAT, can provide deep penetration at the expense of reduced contrast, as the blood absorption drops in the NIR range. Exogenous contrast agents with strong absorption in the NIR wavelength range can enhance the photoacoustic imaging contrast as well as imaging depth. Most theranostic agents incorporating PAT and PTT are inorganic nanomaterials that suffer from poor biocompatibility and biodegradability. Herein, we present an benzo[1,2-c;4,5-c'] bis[1,2,5] thiadiazole (BBT), based theranostic agent which not only acts as photoacoustic contrast agent but also a photothermal therapy agent. Experiments were performed on animal blood and organic nanoparticles embedded in a chicken breast tissue using PAT imaging system at ~803 nm wavelengths. Almost ten time contrast enhancement was observed from the nanoparticle in suspension. More than 6.5 time PA signal enhancement was observed in tissue at 3 cm depth. HeLa cell lines was used to test photothermal effect showing 90% cells were killed after 10 min laser irradiation. Our results indicate that the BBT - based naoparticles are promising theranostic agents for PAT imaging and cancer treatment by photothermal therapy.

  11. Mesoporous Bamboo Charcoal Nanoparticles as a New Near-Infrared Responsive Drug Carrier for Imaging-Guided Chemotherapy/Photothermal Synergistic Therapy of Tumor.

    PubMed

    Dong, Xinghua; Yin, Wenyan; Yu, Jie; Dou, Ruixia; Bao, Tao; Zhang, Xiao; Yan, Liang; Yong, Yuan; Su, Chunjian; Wang, Qing; Gu, Zhanjun; Zhao, Yuliang

    2016-07-01

    Near-infrared-(NIR)-light-triggered photothermal nanocarriers have attracted much attention for the construction of more smart and effective therapeutic platforms in nanomedicine. Here, a multifunctional drug carrier based on a low cost, natural, and biocompatible material, bamboo charcoal nanoparticles (BCNPs), which are prepared by the pyrolysis of bamboo followed by physical grinding and ultrasonication is reported. The as-prepared BCNPs with porous structure possess not only large surface areas for drug loading but also an efficient photothermal effect, making them become both a suitable drug carrier and photothermal agent for cancer therapy. After loading doxorubicin (DOX) into the BCNPs, the resulting DOX-BCNPs enhance drug potency and more importantly can overcome the drug resistance of DOX in a MCF-7 cancer cell model by significantly increasing cellular uptake while remarkably decreasing drug efflux. The in vivo synergistic effect of combining chemotherapy and photothermal therapy in this drug delivery system is also demonstrated. In addition, the BCNPs enhance optoacoustic imaging contrast due to their high NIR absorbance. Collectively, it is demonstrated that the BCNP drug delivery system constitutes a promising and effective nanocarrier for simultaneous bioimaging and chemo-photothermal synergistic therapy of cancer.

  12. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells

    NASA Astrophysics Data System (ADS)

    Yuwen, Lihui; Zhou, Jiajia; Zhang, Yuqian; Zhang, Qi; Shan, Jingyang; Luo, Zhimin; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui

    2016-01-01

    Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation.Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation. Electronic supplementary information (ESI) available: Characterization, size distribution and EDS spectrum of MoSe2 NDs, calculation of

  13. Subsurface-structure determination using photothermal laser-beam deflection

    NASA Astrophysics Data System (ADS)

    Wetsel, Grover C., Jr.; McDonald, F. Alan

    1982-11-01

    Photothermal imaging using laser-beam deflection is shown to be a successful means of detecting subsurface structure in solids. Experimental data for known and unknown subsurface structures are reported. The existing theory agrees well with data on broad subsurface structures, but small subsurface structures produce signal variations which are better represented by a subsurface thermal contact resistance. The first photothermal-image characterization of a microscopic, unknown subsurface defect is presented.

  14. Gold nanoparticle-mediated photothermal therapy: current status and future perspective.

    PubMed

    Hwang, Sekyu; Nam, Jutaek; Jung, Sungwook; Song, Jaejung; Doh, Hyunmi; Kim, Sungjee

    2014-09-01

    Gold nanoparticles (AuNPs) are attractive photothermal agents for cancer therapy because they show efficient local heating upon excitation of surface plasmon oscillations. The strong absorption, efficient heat conversion, high photostability, inherent low toxicity and well-defined surface chemistry of AuNPs contribute to the growing interest in their photothermal therapy (PTT) applications. The facile tunability of gold nanostructures enables engineering of AuNPs for superior near-infrared photothermal efficacy and target selectivity, which guarantee efficient and deep tissue-penetrating PTT with mitigated concerns regarding side effects by nonspecific distributions. This article discusses the current research findings with representative near-infrared-active AuNPs, which include nanoshell, nanorod, nanocage, nanostar, nanopopcorn and nanoparticle assembly systems. AuNPs successfully demonstrate potential for use in PTT, but several hurdles to clinical applications remain, including long-term toxicity and a need for sophisticated control over biodistribution and clearance. Future research directions are discussed, especially regarding the clinical translation of AuNP photosensitizers.

  15. Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide

    NASA Astrophysics Data System (ADS)

    Heidari, Zahra; Salouti, Mojtaba; Sariri, Reyhaneh

    2015-05-01

    Photothermal therapy, a minimally invasive treatment method for killing cancers cells, has generated a great deal of interest. In an effort to improve treatment efficacy and reduce side effects, better targeting of photoabsorbers to tumors has become a new concept in the battle against cancer. In this study, a bombesin (BBN) analog that can bind to all gastrin-releasing peptide (GRP) receptor subtypes was bound covalently with gold nanorods (GNRs) using Nanothinks acid as a link. The BBN analog was also coated with poly(ethylene glycol) to increase its stability and biocompatibility. The interactions were confirmed by ultraviolet-visible and Fourier transform infrared spectroscopy. A methylthiazol tetrazolium assay showed no cytotoxicity of the PEGylated GNR-BBN conjugate. The cell binding and internalization studies showed high specificity and uptake of the GNR-BBN-PEG conjugate toward breast cancer cells of the T47D cell line. The in vitro study revealed destruction of the T47D cells exposed to the new photothermal agent combined with continuous-wave near-infrared laser irradiation. The biodistribution study showed significant accumulation of the conjugate in the tumor tissue of mice with breast cancer. The in vivo photothermal therapy showed the complete disappearance of xenographted breast tumors in the mouse model.

  16. Ultracompact on-chip photothermal power monitor based on silicon hybrid plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Ma, Ke; Shi, Yaocheng; Wosinski, Lech; Dai, Daoxin

    2017-08-01

    We propose and demonstrate an ultracompact on-chip photothermal power monitor based on a silicon hybrid plasmonic waveguide (HPWG), which consists of a metal strip, a silicon core, and a silicon oxide (SiO2) insulator layer between them. When light injected to an HPWG is absorbed by the metal strip, the temperature increases and the resistance of the metal strip changes accordingly due to the photothermal and thermal resistance effects of the metal. Therefore, the optical power variation can be monitored by measuring the resistance of the metal strip on the HPWG. To obtain the electrical signal for the resistance measurement conveniently, a Wheatstone bridge circuit is monolithically integrated with the HPWG on the same chip. As the HPWG has nanoscale light confinement, the present power monitor is as short as 3 μm, which is the smallest photothermal power monitor reported until now. The compactness helps to improve the thermal efficiency and the response speed. For the present power monitor fabricated with simple fabrication processes, the measured responsivity is as high as about 17.7 mV/mW at a bias voltage of 2 V and the power dynamic range is as large as 35 dB.

  17. Laser-assisted photothermal heating of a plasmonic nanoparticle-suspended droplet in a microchannel.

    PubMed

    Walsh, Timothy; Lee, Jungchul; Park, Keunhan

    2015-03-07

    The present article reports the numerical and experimental investigations on the laser-assisted photothermal heating of a nanoliter-sized droplet in a microchannel when plasmonic particles are suspended in the droplet. Plasmonic nanoparticles exhibit strong light absorption and scattering upon the excitation of localized surface plasmons (LSPs), resulting in intense and rapid photothermal heating in a microchannel. Computational models are implemented to theoretically verify the photothermal behavior of gold nanoshell (GNS) and gold nanorod (GNR) particles suspended in a liquid microdroplet. Experiments were conducted to demonstrate rapid heating of a sub-100 nL droplet up to 100 °C with high controllability and repeatability. The heating and cooling time to the steady state is on the order of 1 second, while cooling requires less time than heating. The effects of core parameters, such as nanoparticle structure, volumetric concentration, microchannel depth, and laser power density on heating are studied. The obtained results can be integrated into existing microfluidic technologies that demand accurate and rapid heating of microdroplets in a microchannel.

  18. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications

    NASA Astrophysics Data System (ADS)

    Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo

    2015-08-01

    Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.

  19. Photothermal cancer therapy using graphitic carbon–coated magnetic particles prepared by one-pot synthesis

    PubMed Central

    Lee, Hyo-Jeong; Sanetuntikul, Jakkid; Choi, Eun-Sook; Lee, Bo Ram; Kim, Jung-Hee; Kim, Eunjoo; Shanmugam, Sangaraju

    2015-01-01

    We describe here a simple synthetic strategy for the fabrication of carbon-coated Fe3O4 (Fe3O4@C) particles using a single-component precursor, iron (III) diethylenetriaminepentaacetic acid complex. Physicochemical analyses revealed that the core of the synthesized particles consists of ferromagnetic Fe3O4 material ranging several hundred nanometers, embedded in nitrogen-doped graphitic carbon with a thickness of ~120 nm. Because of their photothermal activity (absorption of near-infrared [NIR] light), the Fe3O4@C particles have been investigated for photothermal therapeutic applications. An example of one such application would be the use of Fe3O4@C particles in human adenocarcinoma A549 cells by means of NIR-triggered cell death. In this system, the Fe3O4@C can rapidly generate heat, causing >98% cell death within 10 minutes under 808 nm NIR laser irradiation (2.3 W cm−2). These Fe3O4@C particles provided a superior photothermal therapeutic effect by intratumoral delivery and NIR irradiation of tumor xenografts. These results demonstrate that one-pot synthesis of carbon-coated magnetic particles could provide promising materials for future clinical applications and encourage further investigation of this simple method. PMID:25565819

  20. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites

    PubMed Central

    Chala, Tolesa Fita; Wu, Chang-Mou; Chou, Min-Hui; Gebeyehu, Molla Bahiru; Cheng, Kuo-Bing

    2017-01-01

    In this work, novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications. PMID:28737689

  1. Dual functional AuNRs@MnMEIOs nanoclusters for magnetic resonance imaging and photothermal therapy.

    PubMed

    Chuang, Yao-Chen; Lin, Chia-Jung; Lo, Shih-Feng; Wang, Jei-Lin; Tzou, Shey-Cherng; Yuan, Shyng-Shiou; Wang, Yun-Ming

    2014-05-01

    A novel dual functional theranosis platform is developed based on manganese magnetism-engineered iron oxide (MnMEIO) and gold nanorods (AuNRs) to combine magnetic resonance (MR) imaging and photothermal therapy in one nanocluster. The platform showed improved T2-weighted MR imaging and exhibited a near-infrared (NIR) induced temperature elevation due to the unique characteristics of AuNRs@MnMEIOs nanoclusters. The obtained dual functional spherical-shaped nanoclusters showed low cytotoxicity, and high cellular uptake efficiency. The AuNRs@MnMEIOs nanoclusters also demonstrated a 1.9 and 2.2 folds r2 relaxivity value higher than those of monodispersed MnMEIO and Resovist. In addition, in vivo MR imaging study found that the contrast enhancements were - 70.4 ± 4.3% versus - 7.5 ± 3.0% in Her-2/neu overexpression tumors as compared to the control tumors. More importantly, NIR laser irradiation to the tumor site resulted in outstanding photothermal therapeutic efficacy and without damage to the surrounding tissue. In additional, the prepared dual functional AuNRs@MnMEIOs display high stability and furthermore disperse even in the presence of external magnet, showing that AuNRs@MnMEIOs nanoclusters can be manipulated by an external magnetic field. Therefore, such nanoclusters combined MR imaging and photothermal therapeutic functionality can be developed as a promising nanosystem for effective cancer diagnosis and therapy.

  2. A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging

    PubMed Central

    Khafaji, Mona; Vossoughi, Manouchehr; Hormozi-Nezhad, M. Reza; Dinarvand, Rassoul; Börrnert, Felix; Irajizad, Azam

    2016-01-01

    As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatibility and more than six month stability. Alongside earlier nanostructures, the heat generation rate of GIHN is compareable with surfactnat-capped gold nanorods (GNRs). Two reasons are behind this enhancement: Firstly the distance between GNRs and SPIONs is adjusted in a way that the surface plasmon resonance of the new nanostructure is similar to bare GNRs and secondly the fraction of GNRs is raised in the hybrid nanostructure. GIHN is then applied as a photothermal agent using laser irradiation with power as low as 0.5 W.cm−2 and only 32% of human breast adenocarcinoma cells could survive. The GIHN also acts as a dose-dependent transvers relaxation time (T2) MRI contrast agent. The results show that the GINH can be considered as a good candidate for multimodal photothermal therapy and MRI. PMID:27297588

  3. Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo.

    PubMed

    Wu, Ming; Wang, Qingtang; Zhang, Da; Liao, Naishun; Wu, Lingjie; Huang, Aimin; Liu, Xiaolong

    2016-05-01

    Multifunctional nanomaterials with the magnetic resonance imaging (MRI) guided tumor photothermal ablation ability have been extensively applied in biomedical research as one of the most exciting and challenging strategies for cancer treatment. Nevertheless, most of these nanomaterials still suffer from low accumulation in tumor tissues and insufficient photothermal ablation of tumors so far. Here, we report a novel approach to overcome these limitations using a core-shell magnetite nanocluster@poly(dopamine)-PEG@ICG nanobead compositing of magnetite nanocluster core with coating of poly(dopamine), then further conjugating with polyethylene glycol (PEG) and adsorbing indocyanine green (ICG) on the surface. The adsorbed ICG in the nanobead displays a higher photostability and photothermal conversion ability than free ICG, as well as additional photothermal effect rather than magnetite nanocluster and poly(dopamine), which endow the nanobead with enhanced photothermal killing efficiency against cancer cells under near-infrared (NIR) laser irritation. Furthermore, it is proved that these nanobeads have excellent biocompatibility, T2-weighted MR imaging and magnetic field targeting ability. By applying an external magnetic field (MF) focused on the targeted tumor, a magnetic targeting mediated enhanced accumulation is observed at tumor site as proved by a darker T2-weighted MR image. Utilizing the magnetic targeting strategy, enhanced photothermal tumor ablation was achieved under laser irradiation in vivo, which is reflected by the degree of tumor tissue damage and tumor growth delay. Therefore, this nanobead integrates the abilities of magnetic field-targeting, MR imaging and photothermal cancer therapy, and might be a promising theranostic platform for tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release

    NASA Astrophysics Data System (ADS)

    Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin

    2015-02-01

    The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin αvβ3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 μg mL-1, while the IC50 for chemotherapy and photothermal therapy alone is 147.8 μg mL-1 and 36.2 μg mL-1, respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.

  5. Bridging environmental mixtures and toxic effects

    PubMed Central

    Allan, Sarah E.; Smith, Brian W.; Tanguay, Robert L.; Anderson, Kim A.

    2012-01-01

    BRIDGES is a bioanalytical tool that combines passive sampling with the embryonic zebrafish developmental toxicity bioassay to provide a quantitative measure of the toxicity of bioavailable complex mixtures. Passive sampling devices (PSDs), which sequester and concentrate bioavailable organic contaminants from the environment, were deployed in the Willamette and Columbia Rivers within and outside of the Portland Harbor Superfund site in Portland, Oregon. Six sampling events were conducted in the summer and fall of 2009 and 2010. PSD extracts were analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and screened for 1201 chemicals of concern using deconvolution reporting software. The developmental toxicity of the extracts was analyzed using the embryonic zebrafish bioassay. BRIDGES provided site-specific, temporally resolved information about environmental contaminant mixtures and their toxicity. Multivariate modeling approaches were applied to paired chemical and toxic effects data sets to help unravel chemistry-toxicity associations. Modeling demonstrated a significant correlation between PAH concentrations and the toxicity of the samples and identified a subset of PAH analytes that were the most highly correlated with observed toxicity. Although this research highlights the complexity of discerning specific bioactive compounds in complex mixtures, it demonstrates methods for associating toxic effects with chemical characteristics of environmental samples. PMID:23001962

  6. Health and Environmental Effects Profile for benzidine

    SciTech Connect

    Not Available

    1986-06-01

    The Health and Environmental Effects Profile for benzidine was prepared to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Enviromental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human health, aquatic life, and environmental effects of hazardous-waste constituents. Quantitative estimates are presented provided sufficient data are available. Benzidine has been evaluated as a carcinogen. The human carcinogen potency factor (q1*) for benzidine is 234.13 (mg/kg/day) for oral exposure. The Reportable Quantity (RQ) value of 1, 10, 100, 1000 or 5000 pounds is used to determine the quantity of a hazardous substance for which notification is required in the event of a release as specified by CERCLA based on chronic toxicity. The RQ value for benzidine 100.

  7. Evaluation of vascular effects after photodynamic and photothermal therapies using benzoporphyrin derivative monoacid ring A on a rodent dorsal skinfold model

    NASA Astrophysics Data System (ADS)

    Smith, Tia K.; Choi, Bernard; Ramirez-San-Juan, Julio C.; Nelson, John S.; Kelly, Kristen M.

    2005-04-01

    Background and Objectives: Pulsed dye laser (PDL) irradiation is the standard clinical treatment for vascular lesions. However, PDL treatment of port wine stain birthmarks (PWS) is variable and unpredictable. Photodynamic therapy (PDT) using benzoporphyrin derivative monoacid ring A (BPD) and yellow light may induce substantial vascular effects and potentially offer a more effective treatment. In this study, we utilize a rodent dorsal skinfold model to evaluate the vascular effects of BPD-PDT at 576 nm as compared to PDL. Study Design/Materials and Methods: A dorsal skinfold window was created on the backs of female Sprague-Dawley rats, allowing epidermal and subdermal irradiation and subdermal imaging. One mg/kg BPD was administered intravenously via a jugular venous catheter. Study groups were: control (no BPD, no light), PDL (585 nm, τp 1.5 ms, 10 J/cm2), and PDT (BPD + continuous wave irradiation (CW) at 576nm, τp 16 min, 96 J/cm2). Vessels were imaged and assessed for damage using laser speckle imaging (LSI) before, immediately after, and 18 hours post-intervention. Results: Epidermal irradiation was accomplished without blistering, scabbing or ulceration. PDL and PDT resulted in similar reductions in vascular perfusion 18 hours post-intervention (34.6% and 33.4%, respectively). Conclusions: BPD-PDT can achieve safe and selective vascular effects and may offer an alternative therapeutic option for treatment of hypervascular skin lesions including PWS birthmarks.

  8. Core-Shell Magnetic Gold Nanoparticles for Magnetic Field-Enhanced Radio-Photothermal Therapy in Cervical Cancer.

    PubMed

    Hu, Rui; Zheng, Minxue; Wu, Jinchang; Li, Cheng; Shen, Danqing; Yang, Dian; Li, Li; Ge, Mingfeng; Chang, Zhimin; Dong, Wenfei

    2017-05-11

    The combination of radiotherapy (RT) and photothermal therapy (PTT) has been considered an attractive strategy in cervical cancer treatment. However, it remains a challenge to simultaneously enhance the radio-sensitivity of tumor tissue, develop tumor tissue-focused radiation therapies and combine dual therapeutic modalities. In this study, core-shell type magnetic gold (Fe₃O₄@Au) nanoparticles are exploited to achieve the synergistic efficacy of radio-photothermal therapy in cervical cancer. Fe₃O₄@Au nanoparticles (NPs) with uniform morphology exhibited superior surface plasmon resonance properties, excellent superparamagnetic properties, good biocompatibility and high photothermal conversion efficiency. For the in vitro tests, a low concentration of Fe₃O₄@Au NPs after a short period of near-infrared irradiation lead to the time-dependent death of cervical cancer cells. Further, the combination of RT and PTT induced synergistic anti-cancer effects in vitro. More importantly, an external magnetic field could significantly enhance the synergistic efficacy of Fe₃O₄@Au NPs by improving their internalization. Hence, the reported Fe₃O₄@Au NPs have the potential to be good nanoagents with excellent magnetic targeting ability for cervical cancer radio-photothermal treatment.

  9. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5

    DOE PAGES

    Jia, Jia; O'Brien, Paul G.; He, Le; ...

    2016-07-05

    The reverse water gas shift (RWGS) reaction driven by Nb2O5 nanorod-supported Pd nanocrystals without external heating using visible and near infrared (NIR) light is demonstrated. By measuring the dependence of the RWGS reaction rates on the intensity and spectral power distribution of filtered light incident onto the nanostructured Pd@Nb2O5 catalyst, it is determined that the RWGS reaction is activated photothermally. That is the RWGS reaction is initiated by heat generated from thermalization of charge carriers in the Pd nanocrystals that are excited by interband and intraband absorption of visible and NIR light. Taking advantage of this photothermal effect, a visiblemore » and NIR responsive Pd@Nb2O5 hybrid catalyst that efficiently hydrogenates CO2 to CO at an impressive rate as high as 1.8 mmol gcat–1 h–1 is developed. The mechanism of this photothermal reaction involves H2 dissociation on Pd nanocrystals and subsequent spillover of H to the Nb2O5 nanorods whereupon adsorbed CO2 is hydrogenated to CO. Here, this work represents a significant enhancement in our understanding of the underlying mechanism of photothermally driven CO2 reduction and will help guide the way toward the development of highly efficient catalysts that exploit the full solar spectrum to convert gas-phase CO2 to valuable chemicals and fuels.« less

  10. A Polyoxometalate Cluster Paradigm with Self-Adaptive Electronic Structure for Acidity/Reducibility-Specific Photothermal Conversion.

    PubMed

    Zhang, Chen; Bu, Wenbo; Ni, Dalong; Zuo, Changjing; Cheng, Chao; Li, Qing; Zhang, Linlin; Wang, Zheng; Shi, Jianlin

    2016-07-06

    Photothermal conversion is one of the most important keys in the fields of solar collection, photo-hyperthermia, etc., and its performance is highly dependent on the photothermal conversion materials used. Especially in cancer photo-hyperthermia, the presently available small-molecule- or nanomaterial-based agents still suffer from numerous drawbacks, such as nonspecific accumulation and inevitable side effects on normal tissues. Here we identify a Mo-based polyoxometalate cluster that can change its dimension from small (1 nm) to big (tens of nanometer), favoring its intratumoral accumulation, and enhance photothermal conversion in response to the intratumoral acidity and reducibility, demonstrating a previously unrealized tumor-specific photo-hyperthermia. Distinct from the well-researched nano-based agents, a unique electronic structure of this cluster has been identified as the origin of the observed acidity-induced self-assembly and reduction-promoted NIR absorbance. In addition to providing a promising clinical agent, this finding is expected to establish a new physicochemical paradigm for photothermal materials design based on clusters.

  11. Photo-activated elimination of Aggregatibacter actinomycetemcomitans in planktonic culture: Comparison of photodynamic therapy versus photothermal therapy method.

    PubMed

    Fekrazad, Reza; Khoei, Farzaneh; Bahador, Abbas; Hakimiha, Neda

    2017-09-01

    Periodontal pathogens are the main factors responsible for periodontal diseases and considering the limitations of conventional mechanical debridement, new treatment approaches are under investigation. This study was designed to evaluate and compare the antibacterial effects of two different systems of photodynamic and photothermal therapy on Aggregatibacter actinomycetemcomitans as the main pathogen involved in aggressive Periodontitis. Cultures of Aggregatibacter actinomycetemcomitans were exposed to 662nm laser in presence of Radachlorin(®) photosensitizer (photodynamic group) or 810nm laser in presence of EmunDo(®) photosensitizer (photothermal group), then bacterial suspension of each well in the study groups were diluted and subcultured on the surface of Muller-Hinton agar plates. subsequently the number of colony forming units per milliliter of the wells were determined and checked by analysis of variance and Tukey test (p<0.05). Aggregatibacter actinomycetemcomitans suspensions showed significant reduction in both groups of photodynamic and photothermal therapy with no priority. Based on the results of this study, photodynamic and photothermal therapy can be proposed as a new promising approaches for bacterial elimination in periodontal diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer.

    PubMed

    Sun, Caixia; Wen, Ling; Zeng, Jianfeng; Wang, Yong; Sun, Qiao; Deng, Lijuan; Zhao, Chongjun; Li, Zhen

    2016-06-01

    Black phosphorus (BP) nanostructures such as nanosheets and nanoparticles have attracted considerable attention in recent years due to their unique properties and great potential in various physical, chemical, and biological fields. In this article, water-soluble and biocompatible PEGylated BP nanoparticles with a high yield were prepared by one-pot solventless high energy mechanical milling technique. The resultant BP nanoparticles can efficiently convert near infrared (NIR) light into heat, and exhibit excellent photostability, which makes them suitable as a novel nanotheranostic agent for photoacoustic (PA) imaging and photothermal therapy of cancer. The in-vitro results demonstrate the excellent biocompatibility of PEGylated BP nanoparticles, which can be used for photothermal ablation of cancer cells under irradiation with NIR light. The in-vivo PA images demonstrate that these BP nanoparticles can be efficiently accumulated in tumors through the enhanced permeability retention effect. The resultant BP nanoparticles can be further utilized for photothermal ablation of tumors by irradiation with NIR light. The tumor-bearing mice were completely recovered after photothermal treatment with BP nanoparticles, in comparison with mice from control groups. Our research highlights the great potential of PEGylated BP nanoparticles in detection and treatment of cancer.

  13. Visible and Near‐Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2 over Nanostructured Pd@Nb2O5

    PubMed Central

    Jia, Jia; O'Brien, Paul G.; He, Le; Qiao, Qiao; Fei, Teng; Reyes, Laura M.; Burrow, Timothy E.; Dong, Yuchan; Liao, Kristine; Varela, Maria; Pennycook, Stephen J.; Hmadeh, Mohamad; Helmy, Amr S.; Kherani, Nazir P.; Perovic, Doug D.

    2016-01-01

    The reverse water gas shift (RWGS) reaction driven by Nb2O5 nanorod‐supported Pd nanocrystals without external heating using visible and near infrared (NIR) light is demonstrated. By measuring the dependence of the RWGS reaction rates on the intensity and spectral power distribution of filtered light incident onto the nanostructured Pd@Nb2O5 catalyst, it is determined that the RWGS reaction is activated photothermally. That is the RWGS reaction is initiated by heat generated from thermalization of charge carriers in the Pd nanocrystals that are excited by interband and intraband absorption of visible and NIR light. Taking advantage of this photothermal effect, a visible and NIR responsive Pd@Nb2O5 hybrid catalyst that efficiently hydrogenates CO2 to CO at an impressive rate as high as 1.8 mmol gcat−1 h−1 is developed. The mechanism of this photothermal reaction involves H2 dissociation on Pd nanocrystals and subsequent spillover of H to the Nb2O5 nanorods whereupon adsorbed CO2 is hydrogenated to CO. This work represents a significant enhancement in our understanding of the underlying mechanism of photothermally driven CO2 reduction and will help guide the way toward the development of highly efficient catalysts that exploit the full solar spectrum to convert gas‐phase CO2 to valuable chemicals and fuels. PMID:27840802

  14. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells.

    PubMed

    Fan, Zhen; Shelton, Melanie; Singh, Anant Kumar; Senapati, Dulal; Khan, Sadia Afrin; Ray, Paresh Chandra

    2012-02-28

    Cancer is the greatest challenge in human healthcare today. Cancer causes 7.6 million deaths and economic losses of around 1 trillion dollars every year. Early diagnosis and effective treatment of cancer are crucial for saving lives. Driven by these needs, we report the development of a multifunctional plasmonic shell-magnetic core nanotechnology-driven approach for the targeted diagnosis, isolation, and photothermal destruction of cancer cells. Experimental data show that aptamer-conjugated plasmonic/magnetic nanoparticles can be used for targeted imaging and magnetic separation of a particular kind of cell from a mixture of different cancer cells. A targeted photothermal experiment using 670 nm light at 2.5 W/cm(2) for 10 min resulted selective irreparable cellular damage to most of the cancer cells. We also showed that the aptamer-conjugated magnetic/plasmonic nanoparticle-based photothermal destruction of cancer cells is highly selective. We discuss the possible mechanism and operating principle for the targeted imaging, separation, and photothermal destruction using magnetic/plasmonic nanotechnology.

  15. Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2 over Nanostructured Pd@Nb2O5.

    PubMed

    Jia, Jia; O'Brien, Paul G; He, Le; Qiao, Qiao; Fei, Teng; Reyes, Laura M; Burrow, Timothy E; Dong, Yuchan; Liao, Kristine; Varela, Maria; Pennycook, Stephen J; Hmadeh, Mohamad; Helmy, Amr S; Kherani, Nazir P; Perovic, Doug D; Ozin, Geoffrey A

    2016-10-01

    The reverse water gas shift (RWGS) reaction driven by Nb2O5 nanorod-supported Pd nanocrystals without external heating using visible and near infrared (NIR) light is demonstrated. By measuring the dependence of the RWGS reaction rates on the intensity and spectral power distribution of filtered light incident onto the nanostructured Pd@Nb2O5 catalyst, it is determined that the RWGS reaction is activated photothermally. That is the RWGS reaction is initiated by heat generated from thermalization of charge carriers in the Pd nanocrystals that are excited by interband and intraband absorption of visible and NIR light. Taking advantage of this photothermal effect, a visible and NIR responsive Pd@Nb2O5 hybrid catalyst that efficiently hydrogenates CO2 to CO at an impressive rate as high as 1.8 mmol gcat(-1) h(-1) is developed. The mechanism of this photothermal reaction involves H2 dissociation on Pd nanocrystals and subsequent spillover of H to the Nb2O5 nanorods whereupon adsorbed CO2 is hydrogenated to CO. This work represents a significant enhancement in our understanding of the underlying mechanism of photothermally driven CO2 reduction and will help guide the way toward the development of highly efficient catalysts that exploit the full solar spectrum to convert gas-phase CO2 to valuable chemicals and fuels.

  16. Mechanistic studies of photothermal aging

    NASA Technical Reports Server (NTRS)

    Liang, R. H.

    1986-01-01

    Cracks were observed forming in Tedlar back cover films on PV modules mounted outdoors in the natural environment. The cracks appear to approximate reasonable straight lines and, in general, are parallel to each other. It is implied that the directionality of these cracks may be in some way related to film orientation. Preliminary results from the Jet Propulsion Laboratory (JPL) studies investigating the causes of these cracks indicate that Tedlar does not become brittle on aging. It was speculated that perhaps compounding ingredients employed in EVA may migrate into the Tedlar film, thus causing a potential for chemical effects.

  17. Environmental effects on lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  18. Environmental effects on lunar astronomical observatories

    NASA Astrophysics Data System (ADS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-09-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  19. Environmental effects and large space systems

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  20. Quantification of biologically effective environmental UV irradiance

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance: (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb; (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve; and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.