Science.gov

Sample records for environmental regulation science

  1. Harnessing science for environmental regulation

    SciTech Connect

    Graham, J.D.

    1991-01-01

    An introductory chapter by Graham frames the issues to be discussed; then the following three chapters describe the formation and character of three organizations. These chapters are written by authors who have each had an active management role in the organization they are writing about: Terry F. Yosie, now at the American Petroleum Institute, who staffed the SAB (Science Advisory Board) while he was at EPA; Robert A. Neal, who headed CIIT (Chemical Industry Institute of Toxicology) before leaving for a position at Vanderbilt University; and Thomas P. Grumbly, former executive director of HEI (Health Effects Institute) now president of Clean Sites, Inc. While these chapters are well written and make a vital contribution to the overall development of the book's themes, the most valuable and enjoyable parts of the book are the succeeding five chapters, which present case studies dealing with EPA's regulatory efforts on unleaded gasoline, perchloroethylene, formaldehyde, nitrates in drinking water, and carbon monoxide. Each of these case studies, nominally historical accounts of how one or more of these (three) organizations participated in the regulatory controversy, offer insight into the broader issues of dealing with, and incorporating into regulations scientific information that has high uncertainty. One of the richest aspects of the five case studies is the extensive use of referenced interviews with identified participants from all aspects of the regulatory process. This material illuminates the motivation, emotions, and goals of the different players, helping the reader to understand their positions and other issues, such as why industry pursues, and EPA and the environmental movement appear to resist, good science; what underlies EPA's preferences for one regulatory option over another; and why scientists are histant to give yes-or-no answers in accord with the real time needs of the regulatory agency.

  2. Environmental Science

    ERIC Educational Resources Information Center

    Eads, Ewin A.

    1973-01-01

    Discusses implementation of an interdisciplinary bachelor of science degree program in Lamar University, Beaumont, with emphases upon the training of pollution and environmental quality control. Indicates that graduates' job opportunities are created by the enactment of recent laws for cleaner air and water. (CC)

  3. Keeping science in environmental regulations: the role of the animal scientist.

    PubMed

    Powers, W J

    2003-04-01

    Environmental issues continue to be one of the biggest challenges faced by livestock producers. Whereas issues of the past have focused on manure nutrient impacts on water quality with some regulatory activity addressing odors, emerging issues are more diverse. To address emerging air quality issues, such as ammonia emissions, antibiotic transfer, human health impacts of emissions from animal agriculture, and estrogens in the environment, scientists with expertise in physiology, genetics, animal management, and nutrition will need to be enlisted. The objectives of this review are to highlight some of the prominent environmental regulatory activity that has occurred nationally in the past few years, to outline some of the emerging environmental issues, and to move members of the animal science profession toward thinking about what they can contribute toward addressing these issues. Animal scientists are uniquely qualified to engage in environmental research, education, and policymaking because of our comprehensive understanding of the complexity of whole-farm management and the interactions between animal management and manure management. Animal science departments have the opportunity to train students to be leaders in addressing environmental issues related to animal production, provided departments incorporate environmental education into curricula. Animal scientists can contribute greatly to the many areas of research that address emerging and current environmental issues, helping to ensure that policy is science-based and mitigation strategies are feasible.

  4. Keeping science in environmental regulations: the role of the animal scientist.

    PubMed

    Powers, W J

    2003-04-01

    Environmental issues continue to be one of the biggest challenges faced by livestock producers. Whereas issues of the past have focused on manure nutrient impacts on water quality with some regulatory activity addressing odors, emerging issues are more diverse. To address emerging air quality issues, such as ammonia emissions, antibiotic transfer, human health impacts of emissions from animal agriculture, and estrogens in the environment, scientists with expertise in physiology, genetics, animal management, and nutrition will need to be enlisted. The objectives of this review are to highlight some of the prominent environmental regulatory activity that has occurred nationally in the past few years, to outline some of the emerging environmental issues, and to move members of the animal science profession toward thinking about what they can contribute toward addressing these issues. Animal scientists are uniquely qualified to engage in environmental research, education, and policymaking because of our comprehensive understanding of the complexity of whole-farm management and the interactions between animal management and manure management. Animal science departments have the opportunity to train students to be leaders in addressing environmental issues related to animal production, provided departments incorporate environmental education into curricula. Animal scientists can contribute greatly to the many areas of research that address emerging and current environmental issues, helping to ensure that policy is science-based and mitigation strategies are feasible. PMID:12741529

  5. Environmental Science Laboratory Manual.

    ERIC Educational Resources Information Center

    Strobbe, Maurice A.

    The objective of this manual is to provide a set of basic analytical procedures commonly used to determine environmental quality. Procedures are designed to be used in an introductory course in environmental science and are explicit enough to allow them to be performed by both the non-science or beginning science student. Stressing ecology and…

  6. Environmental Science Bibliography.

    ERIC Educational Resources Information Center

    Qutub, Musa Y.

    A comprehensive listing of environmental science information and resources for use by high school and college teachers and students is offered in this bibliography. Books, journal articles, pamphlets, research and technical reports, films, and organizations are classified by topic: astronomy, conservation, earth science, environmental education,…

  7. Harmonising conflicts between science, regulation, perception and environmental impact: the case of soil conditioners from bioenergy.

    PubMed

    Riding, Matthew J; Herbert, Ben M J; Ricketts, Lois; Dodd, Ian; Ostle, Nick; Semple, Kirk T

    2015-02-01

    As the global population is expected to reach 9 billion by 2050, humanity needs to balance an ever increasing demand for food, energy and natural resources, with sustainable management of ecosystems and the vital services that they provide. The intensification of agriculture, including the use of fertilisers from finite sources, has resulted in extensive soil degradation, which has increased food production costs and CO2 emissions, threatening food security. The Bioenergy sector has significant potential to contribute to the formation of a circular economy. This paper presents the scientific, regulatory and socioeconomic barriers to the use of the nutrient waste streams from biomass thermal conversion (ash) and anaerobic digestion (digestate) as sustainable soil amendments for use in place of traditional fertilisers. It is argued that whilst the ability of combined ash and digestate to remedy many threats to ecosystems and provide a market to incentivise the renewable bio-energy schemes is promising, a step-change is required to alter perceptions of 'waste', from an expensive problem, to a product with environmental and economic value. This can only be achieved by well-informed interactions between scientists, regulators and end users, to improve the spread and speed of innovation with this sector.

  8. Harmonising conflicts between science, regulation, perception and environmental impact: the case of soil conditioners from bioenergy.

    PubMed

    Riding, Matthew J; Herbert, Ben M J; Ricketts, Lois; Dodd, Ian; Ostle, Nick; Semple, Kirk T

    2015-02-01

    As the global population is expected to reach 9 billion by 2050, humanity needs to balance an ever increasing demand for food, energy and natural resources, with sustainable management of ecosystems and the vital services that they provide. The intensification of agriculture, including the use of fertilisers from finite sources, has resulted in extensive soil degradation, which has increased food production costs and CO2 emissions, threatening food security. The Bioenergy sector has significant potential to contribute to the formation of a circular economy. This paper presents the scientific, regulatory and socioeconomic barriers to the use of the nutrient waste streams from biomass thermal conversion (ash) and anaerobic digestion (digestate) as sustainable soil amendments for use in place of traditional fertilisers. It is argued that whilst the ability of combined ash and digestate to remedy many threats to ecosystems and provide a market to incentivise the renewable bio-energy schemes is promising, a step-change is required to alter perceptions of 'waste', from an expensive problem, to a product with environmental and economic value. This can only be achieved by well-informed interactions between scientists, regulators and end users, to improve the spread and speed of innovation with this sector. PMID:25461414

  9. Life sciences and environmental sciences

    SciTech Connect

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  10. Life sciences and environmental sciences

    SciTech Connect

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  11. Environmental Health Science

    ERIC Educational Resources Information Center

    Sherman, Alan; Smith, Robert

    1975-01-01

    Describes an environmental health science technology curriculum designed to provide technicians in the areas of air, water and wastewater analyses, treatment plant operators, public health enforcement officers, and pollution inspectors. (GS)

  12. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  13. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  14. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  15. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  16. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information...

  17. Social Science Collaboration with Environmental Health

    PubMed Central

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R.

    2015-01-01

    Background Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. Objective We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). Methods We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Results Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science–environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. Conclusions A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Citation Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social

  18. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  19. Environmental Science Projects. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Carter, Constance, Comp.

    Sources to assist junior and senior high school students and teachers in planning, preparing, and executing science fair projects in the environmental sciences are cited in this bibliography that includes a few books with experiments suitable for elementary grade students. Information and/or citations are provided under the following headings: (1)…

  20. Environmental Science Projects. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Carter, Constance, Comp.

    This bibliography cites sources to assist middle, junior, and senior high school students and teachers in planning, preparing, and executing science fair projects in the environmental sciences. In addition, a few books with experiments suitable for elementary grade students are included. The listing includes: (1) 5 introductory texts; (2) 31…

  1. Environmental regulations on chlorofluorocarbons

    SciTech Connect

    Hoffman, J.S.; Wells, J.B. )

    1989-05-01

    In August 1988, the US Environmental Protection Agency issued final regulations that implement the Montreal Protocol on Substances that Deplete the Ozone Layer. The regulations require a 50% reduction in consumption of fully halogenated chlorofluorocarbons (CFCs) within 10 years and a freeze on consumption of halons within 4 years. The Montreal Protocol provisions were designed in September 1987 based on the results of a 2-year international series of scientific, technical, and economic workshops. As would be expected, scientific investigations continued during this period. While these investigations suggested that significant global depletion had already occurred, these preliminary findings were not taken into account during negotiations or rulemaking. In March 1988, however, the international Ozone Trends Panel confirmed the findings. Depletion greater than that projected under the Montreal Protocol has already occurred. An early reassessment of the Protocol provisions appears to be inevitable. Restrictions on CFCs will affect the refrigeration and air-conditioning industries. Emerging alternatives to CFCs include newly developed refrigerants, innovative designs, and engineering controls. Key issues in evaluating these alternatives include energy efficiency, capital costs, service to consumers, and compatibility with existing designs.

  2. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  3. Life Science, Environmental Education Guide.

    ERIC Educational Resources Information Center

    Project I-C-E, Green Bay, WI.

    This life science guide is one of a series of guides, K-12, that were developed by teachers to help introduce environmental education into the total curriculum. The materials contained in the guide are supplementary, and designed to aid the science teacher in providing the kinds of experiences needed by students to gain an understanding of the…

  4. Food and Environmental Science.

    ERIC Educational Resources Information Center

    Falvey, Lindsay

    1997-01-01

    Argues that intensive agriculture restricted to suitable lands will be required in the future due to global population growth, declining food prices, and extreme poverty. Discusses the challenge of balancing environmental care with food production. (DDR)

  5. Emotions in teaching environmental science

    NASA Astrophysics Data System (ADS)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  6. BEYOND REGULATION TO PROTECTION. THE APPLICATION OF NATIONAL RECONNAISSANCE SYSTEMS IN THE SCIENCE MISSION OF THE ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    The use of National Technical Means (NTM) data and advanced geospatial technologies has an important role in supporting the mission of the Environmental Protection Agency (EPA). EPA's responsibilities have grown beyond pollution compliance monitoring and enforcement to include t...

  7. Career Paths in Environmental Sciences

    EPA Science Inventory

    Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...

  8. Environmental Management Science Program Workshop

    SciTech Connect

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  9. Environmental health discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in environmental health. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; animal and human subjects; and research and development. This document summarizes the history and current status of the program elements, outlines available knowledge, establishes goals and objectives, identifies scientific priorities, and defines critical questions in the three disciplines: (1) Barophysiology, (2) Toxicology, and (3) Microbiology. This document contains a general plan that will be used by both NASA Headquarters Program Officers and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area. The document is divided into sections addressing these three disciplines.

  10. 1998 Environmental Management Science Program Annual Report

    SciTech Connect

    1999-03-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders.

  11. The Impact of Regulating Social Science Research with Biomedical Regulations

    ERIC Educational Resources Information Center

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  12. Environmental justice regulations draw fire

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Advocates of “environmental justice” say that proposed U.S. Environmental Protection Agency (EPA) regulations are necessary to ensure that an unfair share of industrial facilities and waste plants are not sited in poor and minority communities, as they claim has occurred in the past.However, a number of state and local government agencies, business groups, and Democratic and Republican politicians argue that EPA guidelines—written to put some teeth into the Title VI clause of the Civil Rights Act that prohibits discrimination in all federally funded programs and activities—are unworkable and need to be overhauled.

  13. Environmental justice regulations draw fire

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Advocates of "environmental justice" say that proposed U.S. Environmental Protection Agency (EPA) regulations are necessary to ensure that an unfair share of industrial facilities and waste plants are not sited in poor and minority communities, as they claim has occurred in the past.However, a number of state and local government agencies, business groups, and Democratic and Republican politicians argue that EPA guidelines—written to put some teeth into the Title VI clause of the Civil Rights Act that prohibits discrimination in all federally funded programs and activities—are unworkable and need to be overhauled.

  14. Objectivity and ethics in environmental health science.

    PubMed

    Wing, Steve

    2003-11-01

    During the past several decades, philosophers of science and scientists themselves have become increasingly aware of the complex ways in which scientific knowledge is shaped by its social context. This awareness has called into question traditional notions of objectivity. Working scientists need an understanding of their own practice that avoids the naïve myth that science can become objective by avoiding social influences as well as the reductionist view that its content is determined simply by economic interests. A nuanced perspective on this process can improve research ethics and increase the capacity of science to contribute to equitable public policy, especially in areas such as environmental and occupational health, which have direct implications for profits, regulation, legal responsibility, and social justice. I discuss research into health effects of the 1979 accident at Three Mile Island near Harrisburg, Pennsylvania, USA, as an example of how scientific explanations are shaped by social concepts, norms, and preconceptions. I describe how a scientific practice that developed under the influence of medical and nuclear physics interacted with observations made by exposed community members to affect research questions, the interpretation of evidence, inferences about biological mechanisms in disease causation, and the use of evidence in litigation. By considering the history and philosophy of their disciplines, practicing researchers can increase the rigor, objectivity, and social responsibility of environmental health science. PMID:14594636

  15. Objectivity and ethics in environmental health science.

    PubMed Central

    Wing, Steve

    2003-01-01

    During the past several decades, philosophers of science and scientists themselves have become increasingly aware of the complex ways in which scientific knowledge is shaped by its social context. This awareness has called into question traditional notions of objectivity. Working scientists need an understanding of their own practice that avoids the naïve myth that science can become objective by avoiding social influences as well as the reductionist view that its content is determined simply by economic interests. A nuanced perspective on this process can improve research ethics and increase the capacity of science to contribute to equitable public policy, especially in areas such as environmental and occupational health, which have direct implications for profits, regulation, legal responsibility, and social justice. I discuss research into health effects of the 1979 accident at Three Mile Island near Harrisburg, Pennsylvania, USA, as an example of how scientific explanations are shaped by social concepts, norms, and preconceptions. I describe how a scientific practice that developed under the influence of medical and nuclear physics interacted with observations made by exposed community members to affect research questions, the interpretation of evidence, inferences about biological mechanisms in disease causation, and the use of evidence in litigation. By considering the history and philosophy of their disciplines, practicing researchers can increase the rigor, objectivity, and social responsibility of environmental health science. PMID:14594636

  16. Water Pollution, Environmental Science Curriculum Guide Supplement.

    ERIC Educational Resources Information Center

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  17. An Environmental Approach to Eighth Grade Science.

    ERIC Educational Resources Information Center

    Sargo, Herbert J.

    This report outlines a method of teaching eighth-grade science with an environmental perspective. Areas of study normally found in junior high science curriculum are integrated with environmental concepts. This particular approach to 8th grade science is intended to be process oriented, field oriented, problem oriented, and relevant to the local…

  18. Science: An Unreliable Friend to Environmental Education?

    ERIC Educational Resources Information Center

    Ashley, Martin

    2000-01-01

    Focuses on the uneasy relationship between science and environmental education. Argues that science probably offers the strongest justification for the adoption of pro-environmental behaviors and policies, but that the relationship between environmentalism is strained by conflicts over fundamental values that are apparent in the interpretation of…

  19. Activity and Action: Bridging Environmental Sciences and Environmental Education

    ERIC Educational Resources Information Center

    Tal, Tali; Abramovitch, Anat

    2013-01-01

    The main goal of this study was to examine the Environmental Workshop unit taught to Environmental Sciences majors in the high schools in Israel and learn if, and in what ways, this unit could become a model for environmental education throughout the high school curriculum. We studied the special characteristics of the Environmental Workshop (EW)…

  20. Environmental Education: New Era for Science Education.

    ERIC Educational Resources Information Center

    Taskin, Ozgur

    This paper presents the history of environmental education with regard to major issues, theories, and goals; environmental education in science education curriculum; and inquiry-based approaches. An example for environmental education curriculum content and an example inquiry laboratory for environmental education are included. (KHR)

  1. Environmental Science: High-School Science Fair Experiments.

    ERIC Educational Resources Information Center

    Dashefsky, H. Steven

    This book contains 23 suggestions for experiments involving environmental science that can be used to create a science fair project. Aimed at grades 10-12, a wide range of environmental topics is covered. These topics include soil ecosystems, aquatic ecosystems, applied ecology, global warming and the greenhouse effect, deforestation and…

  2. Environmental statistics and optimal regulation

    NASA Astrophysics Data System (ADS)

    Sivak, David; Thomson, Matt

    2015-03-01

    The precision with which an organism can detect its environment, and the timescale for and statistics of environmental change, will affect the suitability of different strategies for regulating protein levels in response to environmental inputs. We propose a general framework--here applied to the enzymatic regulation of metabolism in response to changing nutrient concentrations--to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, and the costs associated with enzyme production. We find: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.

  3. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    ERIC Educational Resources Information Center

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  4. Patterns and Perspectives in Environmental Science.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    This report, a supplement to the third annual report of the National Science Board, "Environmental Science, Challenge for the Seventies," contains much of the information and interpretation that formed the basis for the conclusions and recommendations of the annual report. It assembles the views and judgments of leading environmental scientists on…

  5. Teaching "Digital Earth" technologies in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.

    2014-04-01

    As part of a review process for a module entitled "Digital Earth" which is currently taught as part of a BSc in Environmental Sciences program, research into the current provision of Geographical Information Science and Technology (GIS&T) related modules on UKbased Environmental Science degrees is made. The result of this search is used with DiBiase et al. (2006) "Body of Knowledge of GIS&T" to develop a foundation level module for Environmental Sciences. Reference is also made to the current provision geospatial analysis techniques in secondary and tertiary education in the UK, US and China, and the optimal use of IT and multimedia in geo-education.

  6. Environmental Statistics and Optimal Regulation

    PubMed Central

    2014-01-01

    Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein expression levels all will affect the suitability of different strategies–such as constitutive expression or graded response–for regulating protein levels in response to environmental inputs. We propose a general framework–here specifically applied to the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient–to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones. PMID:25254493

  7. Environmental science: A new opportunity for soil science

    SciTech Connect

    Pepper, I.L.

    2000-01-01

    During the golden era of soil science--from the 1950s to the 1980s--the main focus of this discipline was on the role of soil in production agriculture. More recently, renewed interest in the area of environmental science has offered new opportunities to soil scientists. Thus, many soil scientists are now working in areas such as bioremediation, waste recycling, and/or contaminant transport. Environmental science has, therefore, not only changed the traditional research role of soil scientists at land grant institutions but has also influenced student enrollment, the traditional soil science curriculum, and faculty recruitment. These changes require a new breed of soil scientist, one with a background not only in soil science but also in other areas of environmental science as well.

  8. Technician Training in Environmental Health Science

    ERIC Educational Resources Information Center

    Smith, Robert G.; Sherman, Alan

    1976-01-01

    The Environmental Health Science Technology Program was initiated by Middlesex County College in 1971 to provide the trained personnel needed by industry and government. Major areas needing environmental health technicians, the environmental health technology curriculum, and the on-the-job-training internship program are discussed. (BT)

  9. Penal Institutions, Environmental Health Regulations and Inspections

    ERIC Educational Resources Information Center

    Sampson, W. W.

    1974-01-01

    The need for better regulations concerning environmental health standards for jails is emphasized. Areas that should be covered by regulations are specified. The form and frequency of inspections, and qualifications of the inspecting personnel, are discussed. (DT)

  10. 75 FR 65365 - National Institute of Environmental Health Sciences;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee; Research Career... applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T....

  11. Importance of investigating epigenetic alterations for industry and regulators: An appraisal of current efforts by the Health and Environmental Sciences Institute.

    PubMed

    Miousse, Isabelle R; Currie, Richard; Datta, Kaushik; Ellinger-Ziegelbauer, Heidrun; French, John E; Harrill, Alison H; Koturbash, Igor; Lawton, Michael; Mann, Derek; Meehan, Richard R; Moggs, Jonathan G; O'Lone, Raegan; Rasoulpour, Reza J; Pera, Renee A Reijo; Thompson, Karol

    2015-09-01

    Recent technological advances have led to rapid progress in the characterization of epigenetic modifications that control gene expression in a generally heritable way, and are likely involved in defining cellular phenotypes, developmental stages and disease status from one generation to the next. On November 18, 2013, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) held a symposium entitled "Advances in Assessing Adverse Epigenetic Effects of Drugs and Chemicals" in Washington, D.C. The goal of the symposium was to identify gaps in knowledge and highlight promising areas of progress that represent opportunities to utilize epigenomic profiling for risk assessment of drugs and chemicals. Epigenomic profiling has the potential to provide mechanistic information in toxicological safety assessments; this is especially relevant for the evaluation of carcinogenic or teratogenic potential and also for drugs that directly target epigenetic modifiers, like DNA methyltransferases or histone modifying enzymes. Furthermore, it can serve as an endpoint or marker for hazard characterization in chemical safety assessment. The assessment of epigenetic effects may also be approached with new model systems that could directly assess transgenerational effects or potentially sensitive stem cell populations. These would enhance the range of safety assessment tools for evaluating xenobiotics that perturb the epigenome. Here we provide a brief synopsis of the symposium, update findings since that time and then highlight potential directions for future collaborative efforts to incorporate epigenetic profiling into risk assessment.

  12. Environmental Management Science Program Workshop. Proceedings

    SciTech Connect

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  13. Environmental Science for the Inner City

    ERIC Educational Resources Information Center

    Kaminski, Darrell L.

    1969-01-01

    Presents the objectives, activities, materials, and procedure of a six-week summer course in environmental science for inner-city students at the Horace Mann Junior High School, Omaha, Nebraska. Included in this program are studies of the wildlife, conservation, and natural science of the Eastern Nebraska region. (LC)

  14. Accelerate synthesis in ecology and environmental sciences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthesis of diverse knowledge is a central part of all sciences, but especially those such as ecology and environmental sciences which draw information from many disciplines. Research and education in ecology are intrinsically synthetic, and synthesis is increasingly needed to find solutions for en...

  15. Environmental Science, Challenge for the Seventies.

    ERIC Educational Resources Information Center

    Carter, H. E.

    The present status of environmental science--the study of all the systems of air, land, water, energy, and life that surround man--is examined historically and in terms of needed solutions to problems caused by the interactions of man with components of his environment. It is concluded that, at present, science can not provide the tools to fully…

  16. COOPEUS - connecting research infrastructures in environmental sciences

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, Ketil; Waldmann, Christoph; Huber, Robert

    2015-04-01

    The COOPEUS project was initiated in 2012 bringing together 10 research infrastructures (RIs) in environmental sciences from the EU and US in order to improve the discovery, access, and use of environmental information and data across scientific disciplines and across geographical borders. The COOPEUS mission is to facilitate readily accessible research infrastructure data to advance our understanding of Earth systems through an international community-driven effort, by: Bringing together both user communities and top-down directives to address evolving societal and scientific needs; Removing technical, scientific, cultural and geopolitical barriers for data use; and Coordinating the flow, integrity and preservation of information. A survey of data availability was conducted among the COOPEUS research infrastructures for the purpose of discovering impediments for open international and cross-disciplinary sharing of environmental data. The survey showed that the majority of data offered by the COOPEUS research infrastructures is available via the internet (>90%), but the accessibility to these data differ significantly among research infrastructures; only 45% offer open access on their data, whereas the remaining infrastructures offer restricted access e.g. do not release raw data or sensible data, demand user registration or require permission prior to release of data. These rules and regulations are often installed as a form of standard practice, whereas formal data policies are lacking in 40% of the infrastructures, primarily in the EU. In order to improve this situation COOPEUS has installed a common data-sharing policy, which is agreed upon by all the COOPEUS research infrastructures. To investigate the existing opportunities for improving interoperability among environmental research infrastructures, COOPEUS explored the opportunities with the GEOSS common infrastructure (GCI) by holding a hands-on workshop. Through exercises directly registering resources

  17. IMMUNOCHEMICAL APPLICATIONS IN ENVIRONMENTAL SCIENCE

    EPA Science Inventory

    Immunochemical methods are based on selective antibodies combining with a particular target analyte or analyte group. The specific binding between antibody and analyte can be used to detect environmental contaminants in a variety of sample matrixes. Immunoassay methods provide ...

  18. On Science, Ecology and Environmentalism

    ERIC Educational Resources Information Center

    Tulloch, Lynley

    2013-01-01

    Using ecological science as a backdrop for this discussion, the author applies Michel Foucault's historical genealogical strategy to an analysis of the processes through which sustainable development (SD) gained hegemonic acceptance in the West. She analyses some of the ideological mutations that have seen SD emerge from an environmentalist…

  19. Synchrotron Environmental Science-I Workshop Report.

    SciTech Connect

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  20. [Fernbank Science Center Environmental Activities].

    ERIC Educational Resources Information Center

    Shelton, Lewis

    This document is a compilation of environmental activities related directly to the environment in Georgia. A description of the physiographic characteristics of Georgia is presented upon which the activities that follow are based. These activities include soil, stream and forest investigations; meteorology activities; and plant and animal studies.…

  1. The Graduate Program in Environmental Science and Forestry at SUNY College of Environmental Science and Forestry.

    ERIC Educational Resources Information Center

    Smardon, Richard C.

    1987-01-01

    Describes the development of the graduate program at the State University of New York College of Environmental Science and Forestry at Syracuse. Provides a student profile and outlines a new masters curriculum in environmental science. Explains the terminal options involving research, internship, and academic coursework. (TW)

  2. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    ERIC Educational Resources Information Center

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  3. Environmental regulations handbook for enhanced oil recovery

    SciTech Connect

    Madden, M.P. ); Blatchford, R.P.; Spears, R.B. )

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  4. The DOE/NREL Environmental Science Program

    SciTech Connect

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  5. A Science Data Gateway for Environmental Management

    SciTech Connect

    Agarwal, Deborah, A; Faybishenko, Boris; Freedman, Vicky, L; Krishnan, Harinarayan; Kushner, Gary; Lansing, Carina; Porter, Ellen; Romosan, Alexandru; Shoshani, Arie; Wainwright, Haruko; Weidmer, Arthur; Wu, Kesheng

    2015-10-12

    Science data gateways are effective in providing complex science data collections to the world-wide user communities. In this paper we describe a gateway for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Built on top of established web service technologies, the ASCEM data gateway is specifically designed for environmental modeling applications. Its key distinguishing features include: (1) handling of complex spatiotemporal data, (2) offering a variety of selective data access mechanisms, (3) providing state of the art plotting and visualization of spatiotemporal data records, and (4) integrating seamlessly with a distributed workflow system using a RESTful interface. ASCEM project scientists have been using this data gateway since 2011.

  6. University Science Graduates' Environmental Perceptions Regarding Industry

    NASA Astrophysics Data System (ADS)

    Assaraf, Orit Ben-Zvi; Damri, Sigalit

    2009-10-01

    Throughout the last decade, the issue of sustainable development has become a major public debate topic. University science graduates have the potential of playing an important mediatory role in this debate. This is because their scientific vocation not only provides them with scientific knowledge about the core issues involved, but also puts them in the position of occupying key managerial and leadership positions in the industrial community. This study examines whether environmental knowledge plays a part in university science graduates' thinking about industry on an intuitive level and also in their mode of responding to concrete environmental problems. Our findings indicate that most of the graduates do not demonstrate an awareness of the relevance of environmental knowledge to questions connected to industry; furthermore, they do not apply their scientific knowledge-base in contexts related explicitly to environmental aspects of the industrial process.

  7. An Interactive Environmental Science Course for Education Science Majors

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Slattery, William

    2006-01-01

    An interactive environmental science course was designed to provide a set of learning experiences that connect chemistry, geology, biology, physics, and math with the future careers as teachers. The environment deals with many factors contributing with the quality of life, such as the air, the water and the protective shelter of the atmosphere.

  8. [Environmental damage assessment: international regulations and revelation to China].

    PubMed

    Zhang, Hong-zhen; Cao, Dong; Yu, Fang; Wang, Jin-nan; Qi, Ji; Jia, Qian; Zhang, Tian-zhu; Luo, Yong-ming

    2013-05-01

    As the whole society gradually realizes the scarcity of nature resources and environmental value, countries all over the world have evolved and improved the system of environmental damage assessment through the practices of pollution prevention and ecological environmental protection. On one hand, in the research prospective, the practices of environmental damage assessment brought new challenges to environmental law, environmental economics, environmental science, environmental engineering, etc. On the other hand, they constantly promoted and developed relevant laws and regulations, techniques, working mechanism, and guidelines on procedure in practice. On the hasis of comparison and analysis of international practices and experiences from US, EU, and Japan, etc., this article identified relevant concepts, content, and scope of environmental damage assessment, and presented its scientific positioning and development direction. At present, both theory and practice of environmental damage assessment in China are in their infancy period. Considering current environmental situation and socioeconomic development features of China, learning international practices and experiences and raising the orientation of environmental damage assessment have great meaning in exploring the suitable environmental damage assessment system. PMID:23914513

  9. Soil science: The environmental challenge

    SciTech Connect

    Menzel, R.G. )

    1991-01-01

    Soil scientists today are concerned with the effects of soil management on the total environment. Land use, type of tillage, irrigation practices, and application of pesticides and fertilizers can have far-reaching effects on soil and water quality and the content of greenhouse gases in the atmosphere. The need for research on these effects has not lessened the importance of continued research to maintain the capacity of soils for producing food and fiber. Soils must be protected against degradation by erosion, salinity, depletion of fertility, or accumulation of contaminants from various sources. Maintaining the quality of our soil, water, and air resources to meet the requirements of future generations constitutes the environmental challenge to soil scientists.

  10. Critical materialism: science, technology, and environmental sustainability.

    PubMed

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite. PMID:20795298

  11. Critical materialism: science, technology, and environmental sustainability.

    PubMed

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  12. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  13. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - THE ELECTROPLATING INDUSTRY

    EPA Science Inventory

    This 44-page Technology Transfer Environmental Regulations and Technology publication is an update of a 1980 EPA publication that has been revised to reflect changes in the EPA regulations, as well as in the pollution control technologies that affect the electroplating industry. ...

  14. Applied social science for environmental planning

    SciTech Connect

    Millsap, W.

    1983-01-01

    As regions and communities are increasingly affected by the projects, programs, and policies of disparate government and private groups, the skills of social scientists are being called on to aid in the environmental planning process. This volume presents accounts of the many ways in which the social sciences are contributing to environmental planning. The authors address the transition from theory to practice in environmental planning, local-level contributions to the planning process, socioeconomic development and planning needs, and socioenvironmental planning and mitigation procedures.

  15. Environmental Molecular Sciences Laboratory 2004 Annual Report

    SciTech Connect

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  16. High School Environmental Science Course Guide.

    ERIC Educational Resources Information Center

    Donovan, Edward P.; Korman, Barbara

    A course in environmental science was developed to increase course options for students of all abilities and interest levels. Major topic areas of the course include: introduction to ecological principles and ecosystems; extinction of species; human population dynamics; agricultural systems and pest control; air quality; water quality; solid…

  17. The Environmental Science and Health Effects Program

    SciTech Connect

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  18. Environmental Science Curriculum Guide, 1987. Bulletin 1792.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This guide for environmental science is intended to make students aware of the problems they will be facing in their environment, and of alternative measures to solve these problems. The course is designed to use scientific principles to study the processes of the environment; examine changes within the environment from a broad perspective;…

  19. Two Year Environmental Science Technology; Proposed Curriculum.

    ERIC Educational Resources Information Center

    North Dakota State School of Science, Wahpeton.

    Under a grant from the North Dakota State Board for Vocational and Technical Education, a project in vocational research in the field of Environmental Science Technology was conducted for the purpose of developing vocational education curricula. The resulting curricula is for a two year program. The proposal is divided into suggested courses to be…

  20. Environmental Sciences Reference Sources. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    McMartin, Mary I., Comp.

    This list of Environmental Sciences References Sources is intended to give undergraduate and graduate students a starting point when searching for information in the library. Entries are grouped according to type of reference material and then are listed in alphabetical order. The types of reference material included are guides to dictionaries,…

  1. Environmental Science, Grade 9. Experimental Curriculum Bulletin.

    ERIC Educational Resources Information Center

    Bernstein, Leonard, Ed.

    This is the teacher's guide for the required, interdisciplinary, ninth-year environmental science course for the New York City Schools. One hundred twenty lesson plans, divided into nine units, are presented. Areas of study include the living and non-living environment, ecosystems, population, urban ecology, energy and technology, pollution, and…

  2. Ecosystem Services in Environmental Science Literacy

    ERIC Educational Resources Information Center

    Ruppert, John Robert

    2015-01-01

    Human beings depend on a set of benefits that emerge from functioning ecosystems, termed Ecosystem Services (ES), and make decisions in everyday life that affect these ES. Recent advancements in science have led to an increasingly sophisticated understanding of ES and how they can be used to inform environmental decision-making. Following suit, US…

  3. A Social Approach to Environmental Science

    ERIC Educational Resources Information Center

    Burke, Kevin

    1973-01-01

    Describes an instructional unit designed to increase student awareness of environmental pollution and the difficulties involved in correcting the situation. Seventh grade science students collected local water samples, tested them, and reported significant pollution to state and federal authorities. Simulation game Dirty Water'' increased student…

  4. Regulating chemicals: law, science, and the unbearable burdens of regulation.

    PubMed

    Silbergeld, Ellen K; Mandrioli, Daniele; Cranor, Carl F

    2015-03-18

    The challenges of regulating industrial chemicals remain unresolved in the United States. The Toxic Substances Control Act (TSCA) of 1976 was the first legislation to extend coverage to the regulation of industrial chemicals, both existing and newly registered. However, decisions related to both law and science that were made in passing this law inevitably rendered it ineffectual. Attempts to fix these shortcomings have not been successful. In light of the European Union's passage of innovative principles and requirements for chemical regulation, it is no longer possible to deny the opportunity and need for reform in US law and practice. PMID:25785889

  5. Regulating chemicals: law, science, and the unbearable burdens of regulation.

    PubMed

    Silbergeld, Ellen K; Mandrioli, Daniele; Cranor, Carl F

    2015-03-18

    The challenges of regulating industrial chemicals remain unresolved in the United States. The Toxic Substances Control Act (TSCA) of 1976 was the first legislation to extend coverage to the regulation of industrial chemicals, both existing and newly registered. However, decisions related to both law and science that were made in passing this law inevitably rendered it ineffectual. Attempts to fix these shortcomings have not been successful. In light of the European Union's passage of innovative principles and requirements for chemical regulation, it is no longer possible to deny the opportunity and need for reform in US law and practice.

  6. Environmental Regulation of Yersinia Pathophysiology

    PubMed Central

    Chen, Shiyun; Thompson, Karl M.; Francis, Matthew S.

    2016-01-01

    Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia. PMID:26973818

  7. Politics of environmental regulation in Great Britain

    SciTech Connect

    O'Riordan, T.

    1988-10-01

    The many facets of contemporary British environmental politics cannot be covered adequately in a brief article. So the author has chosen to look at how environmental policies are formed, how public opinion is changing, and what the main political parties are advocating. He also emphasizes the growing significance of the influence of the European Community (ECO) on British environmental regulation. Finally, the author examines the link between national economic strategy and technological development on the one hand, and the emergence of new environmental thinking on the other, in what is now popularly known as the enterprise culture.

  8. USGS Environmental health science strategy: providing environmental health science for a changing world: public review release

    USGS Publications Warehouse

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2012-01-01

    America has an abundance of natural resources. We have bountiful clean water, fertile soil, and unrivaled national parks, wildlife refuges, and public lands. These resources enrich our lives and preserve our health and wellbeing. These resources have been maintained because of our history of respect for their value and an enduring commitment to their vigilant protection. Awareness of the social, economic, and personal value of the health of our environment is increasing. The emergence of environmentally driven diseases caused by environmental exposure to contaminants and pathogens is a growing concern worldwide. New health threats and patterns of established threats are affected by both natural and anthropogenic changes to the environment. Human activities are key drivers of emerging (new and re-emerging) health threats. Societal demands for land and natural resources, a better quality of life, improved economic prosperity, and the environmental impacts associated with these demands will continue to increase. Natural earth processes, climate trends, and related climatic events will add to the environmental impact of human activities. These environmental drivers will influence exposure to disease agents, including viral, bacterial, prion, and fungal pathogens, parasites, natural earth materials, toxins and other biogenic compounds, and synthetic chemicals and substances. The U.S. Geological Survey (USGS) defines environmental health science broadly as the interdisciplinary study of relations among the quality of the physical environment, the health of the living environment, and human health. The interactions among these three spheres are driven by human activities, ecological processes, and natural earth processes; the interactions affect exposure to contaminants and pathogens and the severity of environmentally driven diseases in animals and people. This definition provides USGS with a framework for synthesizing natural science information from across the Bureau

  9. Handbook of environmental laws and regulations

    SciTech Connect

    Lee, C.C.

    1992-01-01

    At last - an index to the regulations. That may not be the way Dr. Lee planned it, but that may be the most valuable purpose served by this new publication from HMCRI. And what a valuable thing it is. The book is a tireless compilation of virtually all of the terms in the regulations of Title 40 (environment) of the Code of Federal Regulations (CFR), from Part 1 through Part 1517. In addition, some definitions are extracted from other CFR Titles (such as 10 and 29) that contain environment-related material. The terms appear in alphabetical order, and complete descriptive definitions are provided for each. Each entry also contains the exact CFR reference number; thus a complete source for the term is available. By using the CFR citations during a search for information, the reader is hand-held through the formidabile multi-volume Title 40. More important, by using the definitional citations the reader is indirectly led to the regulatory requirements for virtually any subject. The book is therefore a guidebook through the regulations: a true index. The major subjects covered in Dr. Lee's book include: (1) statutory definitions from all major environmental laws, including the Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, RCRA, and CERCLA; (2) regulatory definitions from the entire Title 40 CFR, Parts 1 through 1517; (3) radiation-related environmental definitions from 10 CFR; (4) health-related environmental definitions from 29 CFR; (5) common environmental engineering definitions from EPA publications; (6) chemicals regulated by various environmental laws and regulations; (7) environmental acronyms; and (8) references to sources for the information presented.

  10. Environmental Regulations as Drivers of Materials Obsolescence

    NASA Technical Reports Server (NTRS)

    Scroggins, Sharon

    2010-01-01

    This slide presentation reviews the operations of the Principal Center for Regulatory Risk Analysis and Communication (RRAC-PC) and the impact of environmental regulations in making some materials obsolete. The center is NASA's resource for identifying and managing risks associated with changing environmental regulations. To this end the center acts as an regulatory early warning system, to review track and analyze emerging regulations, collaborate with the technical community on regulatory risk analysis and interpretation and to represent NASA's interests to the regulatory agencies. Regulations frequently result in making some materials unavailable forcing a change to another material. Processes may also be changed due to environmental regulations. For example some items that were sprayed with a chemical may now have to be painted or dipped with the chemical. Sometimes a regulation changes the use of a certain product, which does not affect the usage on Earth, but has significant implications in space. An example of this is the use of lead-free solders of basically tin, which don't appear to have any problem on Earth, but in space applications tin whiskers have resulted in several confirmed satellite failures.

  11. Growth of Environmental Science at the NSLS

    SciTech Connect

    Northrup,P.; Lanzirotti, A.; Celestian, A.

    2007-01-01

    In the 25 years since the National Synchrotron Light Source (NSLS) began operations, synchrotron 'user facilities' have had a growing impact on research in molecular environmental science (MES). For example, synchrotron-based analytical techniques have allowed researchers to determine the molecular-level speciation of environmentally relevant elements and evaluate their spatial distribution and phase association at very low concentration levels (low parts per million) with micrometer or nanometer resolution [1]. For the environmental scientist, one of the primary advantages of these synchrotron-based techniques is that samples need not be disturbed or destroyed for study; characterization can often be done in-situ in dilute and heterogeneous natural samples with no need for species separation, pre-concentration, or pre-treatment [2]. Liquids, hydrated solids, and biological samples can also often be directly analyzed, which is of fundamental importance in environmental science for understanding the molecular-scale processes that occur at mineral-water interfaces and in understanding how abiotic and biotic processes are involved in the distribution, mobility and ultimate fate of molecular species in the environment.

  12. Earth and environmental sciences annual report 1998

    SciTech Connect

    Younker, L

    1999-05-18

    Lawrence Livermore National Laboratory (LLNL) provides broad-based, integrated scientific and engineering capabilities to address some of the nation's top national security and environmental priorities. National security priorities are to ensure the safety and reliability of the U.S. nuclear weapons stockpile and to counter the spread of weapons of mass destruction; environmental priorities are to keep our environment healthy for the long term and to assess the consequences of environmental change. The Earth and Environmental Sciences (E&ES) Directorate at LLNL pursues applied and basic research across many disciplines to advance the technologies needed to address these national concerns. Our current work focuses on: Storage and ultimate disposition of U.S. spent reactor fuel and other nuclear materials; Assessment of the current global climate and simulation of future changes caused by humans or nature; Development of broadly applicable technologies for environmental remediation and risk reduction; Tools to support U.S. goals for verifying the international Comprehensive Nuclear-Test-Ban Treaty; subcritical tests for stockpile stewardship; Real-time assessments of the health and environmental consequences of atmospheric releases of radioactive or other hazardous materials; and Basic science research that investigates fundamental physical and chemical properties of interest to these applied research programs. For each of these areas we present an overview in this report, followed by an article featuring one project in that area. Then we delineate E&ES's resources, including workforce, facilities, and funding. Finally, we list the publications by and the awards and patents received by E&ES personnel during 1998.

  13. USGS Environmental health science strategy: providing environmental health science for a changing world: public review release

    USGS Publications Warehouse

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2012-01-01

    America has an abundance of natural resources. We have bountiful clean water, fertile soil, and unrivaled national parks, wildlife refuges, and public lands. These resources enrich our lives and preserve our health and wellbeing. These resources have been maintained because of our history of respect for their value and an enduring commitment to their vigilant protection. Awareness of the social, economic, and personal value of the health of our environment is increasing. The emergence of environmentally driven diseases caused by environmental exposure to contaminants and pathogens is a growing concern worldwide. New health threats and patterns of established threats are affected by both natural and anthropogenic changes to the environment. Human activities are key drivers of emerging (new and re-emerging) health threats. Societal demands for land and natural resources, a better quality of life, improved economic prosperity, and the environmental impacts associated with these demands will continue to increase. Natural earth processes, climate trends, and related climatic events will add to the environmental impact of human activities. These environmental drivers will influence exposure to disease agents, including viral, bacterial, prion, and fungal pathogens, parasites, natural earth materials, toxins and other biogenic compounds, and synthetic chemicals and substances. The U.S. Geological Survey (USGS) defines environmental health science broadly as the interdisciplinary study of relations among the quality of the physical environment, the health of the living environment, and human health. The interactions among these three spheres are driven by human activities, ecological processes, and natural earth processes; the interactions affect exposure to contaminants and pathogens and the severity of environmentally driven diseases in animals and people. This definition provides USGS with a framework for synthesizing natural science information from across the Bureau

  14. Environmental mediation: A method for protecting environmental sciences and scientists

    SciTech Connect

    Vigerstad, T.J.; Berdt Romilly, G. de; MacKeigan, P.

    1995-12-31

    The primary role for scientific analysis of environmental and human risks has been to support decisions that have arisen out of a regulatory decision-making model called ``Command and Control`` or ``Decide and Defend``. A project or a policy is proposed and permission for its implementation is sought. Permission-gaining sometimes requires a number of technical documents: Environmental Impact Statements, Public Health Risk Evaluations, policy analysis documents. Usually, little of this analysis is used to make any real decisions. This is a fact that has lead to enormous frustration and an atmosphere of distrust of government, industry and consulting scientists. There have been a number of responses by governmental and industrial managers, some scientists, and even the legal system, to mitigate the frustration and distrust. One response has been to develop methods of packaging information using language which is considered more ``understandable`` to the public: Ecosystem Health, Social Risk Assessment, Economic Risk Management, Enviro-hazard Communication, Risk Focus Analysis, etc. A second is to develop more sophisticated persuasion techniques-a potential misuse of Risk Communication. A third is proposing to change the practice of science itself: e.g., ``post-normal science`` and ``popular epidemiology``. A fourth has been to challenge the definition of ``expert`` in legal proceedings. All of these approaches do not appear to address the underlying issue: lack of trust and credibility. To address this issue requires an understanding of the nature of environmental disputes and the development of an atmosphere of trust and credibility. The authors propose Environmental Mediation as a response to the dilemma faced by professional environmental scientists, engineers, and managers that protects the professionals and their disciplines.

  15. Kids Can Make a Difference! Environmental Science Activities.

    ERIC Educational Resources Information Center

    Dashefsky, H. Steven

    This book of more than 160 environmental science activities is designed to help students understand environmental issues, ask questions, and find solutions to the problems. Introductory sections address: (1) the nature of major global problems and a history of environmental concern; (2) basic environmental science terminology and scientific study…

  16. Consolidated environmental regulation in West Virginia

    SciTech Connect

    Flannery, D.M.; Beckett, K.G.; McThomas, M.P.

    1995-05-01

    In 1994, West Virginia enacted the single largest piece of legislation in its history. The 1,400-page bill that made up this legislation was the crowning achievement of more than a decade of efforts to consolidate and streamline West Virginia`s environmental regulatory programs. The result has been the empowerment of the West Virginia Division of Environmental Protection (DEP) as the centerpiece of environmental regulation in West Virginia. This Article explores the principal initiatives leading to the passage of the legislation empowering the DEP. In addition, it analyzes the substantive provisions of the DEP`s legislative authority and the relationship of that authority to other agencies. Finally, this Article identifies additional areas for the refinement of West Virginia`s environmental regulatory programs.

  17. Teaching the Ethical Aspects of Environmental Science

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.

    2014-12-01

    Environmental and societal issues are often inherently linked, especially in coastal and estuarine environments, and science and social values must often be balanced in ecosystem management and decision-making. A new seminar course has been developed for the Marine Estuarine and Environmental Science (MEES) graduate program, an inter-institutional program within the University System of Maryland, to examine these issues. This 1-credit course, offered for the first time in Spring 2015, takes a complex systems perspective on major environmental and societal challenges to examine these linked issues in a variety of contexts. After a brief introduction to the emerging field of "geoethics," students develop a list of issues to examine throughout the seminar. Example topics could include fracking, offshore wind technology, dam removal, and iron fertilization, among others. A case-study approach is taken, with each class meeting focusing on one issue. For each case study, students are asked to 1) identify relevant scientific principles and major knowledge gaps, 2) predict potential outcomes, 3) identify stakeholders and likely viewpoints, and 4) construct communication plans to disseminate findings to these stakeholders. At the end of the semester, students give a brief presentation of the ethical aspects of their own research topics.

  18. Environmental Regulation Impacts on Eastern Interconnection Performance

    SciTech Connect

    Markham, Penn N; Liu, Yilu; Young II, Marcus Aaron

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  19. BEST: Bilingual environmental science training: Kindergarten level

    SciTech Connect

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of six lessons covering the senses of touch and sight, the sense of smell, how to distinguish living and non-living things, cell structures, the skeletal system, and the significance of food groups. 8 figs.

  20. A Computer Learning Center for Environmental Sciences

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  1. Environmental Sciences Division Groundwater Program Office. Annual report, 1993

    SciTech Connect

    Not Available

    1993-09-30

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO`s staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater).

  2. Relevance of enantiomeric separations in environmental science.

    PubMed

    Armstrong, D W; Reid, G L; Hilton, M L; Chang, C D

    1993-01-01

    A significant number of all organic chemicals that are released into the environment are racemic mixtures. Most environmental regulations and scientific environmental studies treat racemic mixtures as though they were single, pure compounds. This can lead to incorrect toxicological, distribution, degradation and other data. A series of new enantioselective chromatographic techniques have been developed that allow the facile separation and quantitation of chiral compounds of environmental importance. Nineteen racemic compounds that have been or currently are being released to the environment are resolved. These include: rodenticides--Warfarin, Coumachlor and Coumafuryl; insecticides--Crufomate, Bulan, Fonofos, Mitotane; insect repellent--Ethohexadiol; herbicides and fungicides--Ancymidol, Silvex, Napropamide, phenyl mercuric lactate, 2-[3-chlorophenoxy]propionamide, and 2-chloropropionic acid; and halocarbons-1,2-dichloropropane, 2-bromo-1-chloropropane, 1,2-dibromo-3-chloropropane, 2,3-dichlorobutane and alpha-1,2,3,4,5,6-hexachlorocyclohexane. Several examples are given to illustrate the importance of enantioselective measurements of these and other compounds. Choosing the proper chromatographic technique and chiral stationary phase based on analyte structure is also discussed. PMID:15091913

  3. Entrenching environmental obligation in marine regulation.

    PubMed

    Wakefield, Jill

    2015-01-15

    The institutional frameworks addressing issues in connection with the marine commons agreed by States are set out in the 1982 UN Convention on the Law of the Sea, which is the basis of the European Union's common fisheries policy. Despite a substantial body of environmental legislation, provisions concerning the protection of ecosystems and bioversity have not been incorporated into any international measure or EU to control fishing, leading to ecosystem degradation. Regulation should impose the responsibility for rectifying damage to fish stocks and ecosystems as a result of fishing activity on the fishing industry.

  4. 76 FR 63615 - Environmental Science Center Microbiology Laboratory; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... AGENCY Environmental Science Center Microbiology Laboratory; Notice of Public Meeting AGENCY... discussions which will be held at the EPA Environmental Science Center Microbiology Laboratory. DATES: The... at the Environmental Protection Agency's Environmental Science Center, 701 Mapes Road, Ft....

  5. 75 FR 45133 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental Health...

  6. Evaluation of Students' Energy Conception in Environmental Science

    ERIC Educational Resources Information Center

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  7. Difficulties the Science Schoolteacher Faces To Implement Environmental Education.

    ERIC Educational Resources Information Center

    Benetti, Bernadete; Marcelo de Carvalho, Luiz

    Considering the science teacher's role in the implementation of environmental issues in school, a survey was carried out (Benetti, 1998) to identify science school teachers' perspectives regarding environmental education-related activities in fundamental schools (11 to 14 year-olds). The interviewees' statements were divided into four categories…

  8. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    ERIC Educational Resources Information Center

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  9. ETHICS AND JUSTICE IN ENVIRONMENTAL SCIENCE AND ENGINEERING

    EPA Science Inventory

    Science and engineering are built on trust. C.P. Snow's famous quote, "the only ethical principle which has made science possible is that the truth shall be told all the time" underscores the importance of honesty in science. Environmental scientists must do work that is useful...

  10. Environmental Problems and the Social Sciences: What Should We Teach?

    ERIC Educational Resources Information Center

    Cylke, F. Kurt, Jr.

    1995-01-01

    Environmental issues that can be explored in social science courses include problems with potential to cause serious or irreversible change to an ecosystem or biosphere. Areas for discussion include: environmental attitudes, values, and behaviors; the environmental movement; risk perceptions; and the political economy of the environment and…

  11. OLES : Online Laboratory for Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Anquetin, Sandrine; Beaufil, Xavier; Chaffard, Véronique; Juen, Patrick

    2015-04-01

    One of the major scientific challenges in the 21st century is to improve our understanding on the evolution of the water cycle associated with the climate variability. Main issues concern the prediction of i) the water resource and the access to drinkable water and ii) the extreme events, both droughts and floods. Observation strategies covering a wide range of space and time scales must therefore be set up, while continuing advanced research on the involved mechanisms and developing integrated modeling approaches. Within this general context, the present work relies on three natural observatories, located in West Africa, Worldwide Glaciers, and in Mediterranean region, managed at LTHE (Laboratoire d'étude des Transferts en Hydrologie et Environnement; Grenoble, France) and gathered at OSUG (Observatoire des Sciences de l'Univers; Grenoble, France). Their scientific objectives aim at improving the understanding of the water cycle functioning, providing water and mass balances for multi-scale basin sizes, and evaluating the hydrological impacts of the evolving climate. Water cycle variables (precipitation; soil moisture; snow cover; discharge; air and river temperatures; suspended material; etc …) are observed and recorded in 3 different databases built under specific technical constraints linked to the respective partnerships of the natural observatories. Each of the observatories has its own database, and modeling tools were developed separately leading to important efforts often duplicated. Therefore, there was a need to build an integrated cyber-infrastructure to provide access to data, and to shared tools and models that enable the understanding of the water cycle. This is the project called OLES, for Online Laboratory for Environmental Sciences. Focused on the understanding of the water cycle under contrasted climates, OLES facilitates the work of the scientific community and then, help interactions between the research community and water agencies or

  12. 78 FR 26793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... review and evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences,...

  13. 75 FR 7487 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Inst. of Environmental Health Sciences, Office of Program Operations, Scientific Review Branch,...

  14. 76 FR 26311 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to...

  15. 78 FR 59042 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES, including... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research...

  16. 76 FR 62077 - Submission for OBM Review; Comment Request; New Proposed Collection, Environmental Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Collection, Environmental Science Formative Research Methodology Studies for the National Children's Study... Collection: Title: Environmental Science Formative Research Methodology Studies for the National Children's... environmental science professional organizations and practitioners, and schools and child care...

  17. 78 FR 7794 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Sciences; 93.113, Biological Response to Environmental Health Hazards; 93.114, Applied...

  18. 77 FR 61771 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: November 15... Institute of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander...

  19. 77 FR 61613 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, Nat. Institute Environmental Health Sciences, P....

  20. 78 FR 18359 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis....nih.gov . Name of Committee: National Institute of Environmental Health Sciences Special...

  1. 77 FR 40076 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences,...

  2. 76 FR 23603 - New Proposed Collection; Comment Request; Environmental Science Formative Research Methodology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    .... Proposed Collection Title: Environmental Science Formative Research Methodology Studies for the National... Environmental Health Sciences of the National Institutes of Health and the Centers for Disease Control and... environmental science professional organizations and practitioners, and schools and child care...

  3. 78 FR 42968 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... review and evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences, Building...

  4. 77 FR 33472 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Administrator, Nat. Institute of Environmental Health Sciences, Office of Program Operations, Scientific...

  5. 77 FR 22793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences,...

  6. 77 FR 26300 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences, including.... Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander...

  7. 78 FR 18997 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences, including..., Neuropharmacology and Human Metabolism Groups. Place: Nat. Inst. of Environmental Health Sciences, Building...

  8. 77 FR 12602 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... and evaluate grant applications. Place: Nat. Inst. of Environmental Health Sciences, Building...

  9. 77 FR 16844 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... . Name of Committee: National Institute of Environmental Health Sciences Special Emphasis Panel;...

  10. 78 FR 26643 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES, including... Biomarker-Based Epidemiology Group. Place: Nat. Inst. of Environmental Health Sciences, Building...

  11. 75 FR 10293 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences, Special Emphasis... Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  12. 78 FR 32672 - National Institute of Environmental Health Sciences (NIEHS); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences (NIEHS... that the National Institute of Environmental Health Sciences (NIEHS) Division of Extramural Research... Division. Organizing Institute: National Institute of Environmental Health Sciences. Dates and Times:...

  13. Environmental regulations alter resource planning methodology

    SciTech Connect

    Castro, R.D.

    1997-05-01

    The advent of regulations governing the volume of air pollutants emitted may force radical alterations in traditional economics-based resource planning. A review of the effect on regional resource planning of adopted emission rules for the Los Angeles basin may benefit utility resource planners. The 1990 amendments to the Clean Air Act (Amendments) concerning utility generation has prompted a reassessment of resource planning methodology. The current methodology does not account for the restrictive NOx emission limits imposed by the Amendments. A new procedure needs to be developed that considers environmental impacts in the selection of the most economical resource plan. Historically, economic aspects of dispatch and generation has dominated the focus of resource planners; for most of the larger utilities, resource planning usually entailed performing analyses with convolution-based production costing software. This method is used because it resolves the prohibitively large run times associated with the exhaustively comprehensive enumeration method of matching loads with resources. An alternative method of analysis, Monte Carlo, requires a larger number of iterations to achieve the precision of convolution. Additionally, the Monte Carlo method`s of convergence, as compared to the convolution method, is much more sensitive to the number of operating units, the number of operating states, the range of input data, and the convergence criteria.

  14. Environmental controls: Market incentives v. direct regulation

    SciTech Connect

    Kosobud, R.F.; Atallah, D.S.

    1996-12-31

    Cap-and-trade environmental markets, where the commodities are tradable pollution rights, are being introduced in several closely watched applications as a potentially more cost-effective way of cleaning up the environment than direct or command-and-control (CAC) regulation. In this study, we examine the evidence on control cost savings provided by price and transactions data from the first few years of activity in two markets designed to reduce atmospheric pollution. Some observers of both markets have argued that prices for tradable permits lower than expected, and transactions fewer than expected, are evidence that the markets are not achieving the hoped for savings. It was found, on the contrary, that observed prices point toward more flexible and improved pollution control choices and that the number of transactions has been steadily increasing as market incentives are incorporated into enterprise decisions. These new markets during their first few years are generating, according to our estimates, control cost savings in the neighborhood of one to two billion dollars annually. However, there is evidence that the markets have not yet reached their full potential. In the course of this study, several obstacles to market performance were found that are worthy of attention by policy makers. 13 refs., 4 figs., 1 tab.

  15. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    ERIC Educational Resources Information Center

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  16. Environmental Molecular Sciences Laboratory Annual Report: Fiscal Year 2006

    SciTech Connect

    Foster, Nancy S.; Showalter, Mary Ann

    2007-03-23

    This report describes the activities and research performed at the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility at Pacific Northwest National Laboratory, during Fiscal Year 2006.

  17. Environmental and pollution science. 2nd. ed.

    SciTech Connect

    Ian Pepper; Charles Gerba; Mark Brusseau,

    2006-07-01

    This book integrates a large number of subjects in environmental studies and provides a realistic and objective evaluation of pollution as a price we pay for a modern economy. It focuses on the scientific assessment of environmental quality by developing a framework of principles that can be applied to any environmental problem. It addresses tactical issues for managers and government workers such as remediation, environmental monitoring, risk assessment, and management. It can be used by professionals as well as undergraduate students. 186 ills. 79 tabs.

  18. Essays on environmental regulations in electricity markets

    NASA Astrophysics Data System (ADS)

    Sun, Yanming

    Reducing the Greenhouse Gas pollution and promoting energy efficiency among consumers' energy use have been major public policy issues recently. Currently, both the United States and the European Union have set up explicit percentage requirements that require energy generators or consumers to undertake a certain percentage of their energy production or consumption from renewable sources. To achieve their renewable targets, the Tradable Green Certificates (TGC) system has been introduced in their electricity markets. Moreover, in order to promote energy conservation and achieve energy efficiency targets, price policies and price changes derived from environmental regulations have played a more important role in reducing electricity consumption. My research studies problems associated with these policy implementations. In Chapter 1, I analyze a competitive electricity market with two countries operated under a common TGC system. By using geometric illustrations, I compare the two countries' welfare when the renewable quota is chosen optimally under the common certificate market with three different situations. The policy recommendation is that when the value of damage parameter is sufficiently small, full integration with a TGC market is welfare superior to full integration of an all fossil-fuel based market with an optimal emissions standard. In Chapter 2, by analyzing a stylized theoretical model and numerical examples, I investigate the performance of the optimal renewables policy under full separation and full integration scenarios for two countries' electricity markets operated under TGC systems. In my third chapter, I look at residential electricity consumption responsiveness to increases of electricity price in the U.S. and the different effect of a price increase on electricity use for states of different income levels. My analysis reveals that raising the energy price in the short run will not give consumers much incentive to adjust their appliances and make

  19. Environmental health science at the U.S. Geological Survey

    USGS Publications Warehouse

    Buxton, Herbert T.; Bright, Patricia R.

    2013-01-01

    USGS environmental health science focuses on the environment-health interface. Research characterizes the processes that affect the interaction among the physical environment, the living environment, and people, as well as the factors that affect ecological and human exposure to disease agents and the resulting toxicologic or infectious disease. The mission of USGS in environmental health science is to contribute scientific information to environmental, natural resource, agricultural, and public-health managers, who use that information to support sound decisionmaking. Coordination with partners and stakeholders will enable USGS to focus on the highest priority environmental health issues, to make relevant, timely, and useable contributions, and to become a “partner of first choice” for environmental health science.

  20. Hands-On Environmental Science Activities. Teacher's Edition. First Edition.

    ERIC Educational Resources Information Center

    Kutscher, Eugene

    The ability of students to go beyond facts and to think critically, while at the same time enjoying and valuing the learning process, is fundamental to science and environmentalism. This book provides enrichment activities for the science curriculum that provide concrete connections with important world events. Each activity is self-contained and…

  1. Role of Internship in Higher Education in Environmental Sciences

    ERIC Educational Resources Information Center

    Scholz, Roland W.; Steiner, Regula; Hansmann, Ralf

    2004-01-01

    The benefits of a compulsory internship in environmental science education were investigated with respect to the three institutional goals of university education: (1) training for research; (2) professional education; and (3) general natural science education. A survey examined which student qualifications are improved by an internship…

  2. Choosing and Using Images in Environmental Science Education

    ERIC Educational Resources Information Center

    Muthersbaugh, Debbie Smick

    2012-01-01

    Although using images for teaching has been a common practice in science classrooms (Gordon & Pea, 1995) understanding the purpose or how to choose images has not typically been intentional. For this dissertation three separate studies relating to choosing and using images are prepared with environmental science in mind. Each of the studies…

  3. Using Real World Experience to Teach Science and Environmental Writing.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    The use of interpretive reporting techniques and programs offering real world training to writers may provide solutions to the problems encountered in writing about science for the mass media. Both science and environmental writers have suggested that the problems they face would be decreased by the use of more interpretive and investigative…

  4. Scope: The Environmental Voice of World Science

    ERIC Educational Resources Information Center

    Munn, R. E.; Cain, Melinda

    1977-01-01

    SCOPE is an international group that studies the effects of human activities on the environment and serves as a source of advice on environmental problems. Presently, SCOPE is involved with seven major projects that include biogeochemical cycles, ecotoxicology, and environmental monitoring. The structure and components of SCOPE are also discussed.…

  5. Science and Judgment in Environmental Standard Setting.

    ERIC Educational Resources Information Center

    Jasanoff, Sheila

    1998-01-01

    Several major types of environmental standards (design, performance, exposure, safety, and behavioral) are discussed, and their points of contact with educational standards are reviewed. Some areas of judgment are common to both standard-setting processes, and experiences in the environmental area can be extended to the educational arena. (SLD)

  6. Environmental Science Education Programs: Opportunities for Geographers

    ERIC Educational Resources Information Center

    Earl, Richard A.; Montalvo, Edris J.; Ross, Amanda R.; Hefty, Eunice

    2009-01-01

    Environmental agencies in most states have an environmental education Web page that can point geography teachers to a variety of opportunities and resources to enhance their teaching. Most states provide linkages to local and national programs such as Project WET and Project WILD, and access to lesson plans and other teaching materials. A number…

  7. Environmental sciences division: Environmental regulatory update table July 1988

    SciTech Connect

    Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1988-08-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  8. Students As Environmental Consultants Simulating Life Science Problems

    ERIC Educational Resources Information Center

    Roberts, Megan; Zydney, Janet Mannheimer

    2004-01-01

    This article describes a project in which eighth graders at East Side Middle School in New York City used an interactive multimedia program called "Pollution Solution" in a science unit on environmental pollution. Students assumed the role of environmental consultants working at fictional corporations which were being investigated for violation…

  9. Human/Nature Discourse in Environmental Science Education Resources

    ERIC Educational Resources Information Center

    Chambers, Joan M.

    2008-01-01

    It is argued that the view of nature and the relationship between human beings and nature that each of us holds impacts our decisions, actions, and notions of environmental responsibility and consciousness. In this study, I investigate the discursive patterns of selected environmental science classroom resources produced by three disparate…

  10. Multiculturalism in Environmental Science: A Snapshot of Singapore

    ERIC Educational Resources Information Center

    Wee, Bryan; Harbor, Jonathan M.; Shepardson, Daniel P.

    2006-01-01

    Students' perceptions of the environment can differ based on sociocultural factors and experiences. Understanding how students develop environmental perceptions is an important step toward developing an inclusive environmental science curriculum. This article presents preliminary data from a study conducted in Singapore in which students'…

  11. Environmental science: managing the environment. [Glossary

    SciTech Connect

    Purdom, P.W.; Anderson, S.H.

    1983-01-01

    This book examines living systems and their interactions with the environment. The physical systems of the earth are discussed: geophysical, atmospheric, and hydrological. The environment and how it applies to human health is presented. Special hazards include air, water and noise pollution, and the effects of pesticides and radioisotopes. There is a study of how the symbiotic relationship of life and the environment can be reestablished. The use of models as tools for predicting the impact of environmental change is examined also. Human communities and environmental management are studied. The purpose of this book is to create an understanding of: (1) all facets of the environment that affect ecosystems and human life; (2) the impacts of human activities on various aspects of environmental quality; and (3) the environmental, economic, and cultural factors that shape urban development.

  12. The Influence of an Introductory Environmental Science Class on Environmental Perceptions

    ERIC Educational Resources Information Center

    Gerstenberger, Shawn L.; Kelly, William E.; Cross, Chad L.

    2004-01-01

    An environmental concern scale (ECS) was administered to a group of college students before and after completion of an introductory environmental science class. A significant increase in the level of concern was seen in questions related to overall environmental awareness and personal responsibility. Specifically, concern was raised on questions…

  13. The Interaction of Michigan Environmental Education Curriculum, Science Teachers' Pedagogical Content Knowledge, and Environmental Action Competence

    ERIC Educational Resources Information Center

    Alvarado, Angelita P.

    2010-01-01

    One of the main goals of Environmental Education (EE) is to develop people's environmental stewardship, which includes people's capacity to take environmental action--their action competence (AC). The purposes of my study were to characterize the interactions found in an EE curriculum, science teachers' pedagogical content knowledge (PCK), and…

  14. The Relationship between Environmental Moral Reasoning and Environmental Attitudes of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Tuncay, Busra; Yilmaz-Tuzun, Ozgul; Tuncer-Teksoz, Gaye

    2011-01-01

    The aim of the present study was to investigate the relationship between environmental moral reasoning patterns and environmental attitudes of 120 pre-service science teachers. Content analysis was carried out on participants' written statements regarding their concerns about the presented environmental problems and the statements were labeled as…

  15. Publications in biomedical and environmental sciences programs, 1980

    SciTech Connect

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  16. Review of Chinese Environmental Risk Assessment Regulations and Case Studies

    PubMed Central

    Meng, Xiaojie; Zhang, Yan; Zhao, Yuchao; Lou, In Chio; Gao, Jixi

    2012-01-01

    Environmental risk assessment is an essential step in the development of solutions for pollution problems and new environmental regulations. An assessment system for environmental risks has been developed in China in recent decades. However, many of the Chinese technical guidelines, standards, and regulations were directly adapted from those of developed countries, and were not based on the Chinese environmental and socioeconomic context. Although existing environmental regulations for pollutants are usually obtained by extrapolations from high-dose toxicological data to low-dose scenarios using linear-non-threshold (LNT) models, toxicologists have argued that J-shaped or inverse J-shaped curves may dominate the dose–response relationships for environmental pollutants at low doses because low exposures stimulate biological protective mechanisms that are ineffective at higher doses. The costs of regulations based on LNT and J-shaped models could therefore be dramatically different. Since economic factors strongly affect the decision-making process, particularly for developing countries, it is time to strengthen basic research to provide more scientific support for Chinese environmental regulations. In this paper, we summarize current Chinese environmental policies and standards and the application of environmental risk assessment in China, and recommend a more scientific approach to the development of Chinese regulations. PMID:22740787

  17. Environmental Research Puts Science into Action

    ERIC Educational Resources Information Center

    Zaikowski, Lori; Lichtman, Paul

    2007-01-01

    The new paradigm for student research should be articulations and collaborations with local governmental, academic, and civic entities. This will enable students to make lasting contributions to bettering their communities through scientific research, and to better understand the practical relevance of science. This article presents two such…

  18. Modern Lesson Plans in Environmental Science.

    ERIC Educational Resources Information Center

    Kotsonis, Helen Hoch; Baker, Bill

    This sourcebook, developed for teachers of ecology, biology, general science and hygiene, contains 27 lesson plans that have been organized into 5 units. The units are: The Dynamics of Pollution, Conservation and the Environment, Biological Controls and their Relationship to the Environment, Urban Ecology, and Environment and Health. The lesson…

  19. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    SciTech Connect

    Not Available

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  20. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  1. Acquired Skills Profiles for Environmental Science Students.

    ERIC Educational Resources Information Center

    Harrison, S. J.; Grieve, T.

    1996-01-01

    Describes a project that developed software for the production of skills profiles for individual students as an appendix to the curriculum vitae submitted with employment applications. The software is specifically designed for students in modular degree programs in environmental education. (DDR)

  2. Environmental Science Education at Sinte Gleska University

    NASA Astrophysics Data System (ADS)

    Burns, D.

    2004-12-01

    At Sinte Gleska University, basically we face two problems 1. The lack of natural resources/environmental education instructors and students. 2. High turnover in the drinking water (and waste water / environmental monitoring) jobs. As soon as people are trained, they typically leave for better paying jobs elsewhere. To overcome these In addition to regular teaching we conduct several workshops year around on environmental issues ranging from tree plantation, preserving water resources, sustainable agriculture and natural therapy (ayurvedic treatment- the Lakota way of treating illness) etc. We offer workshops about the negative impacts brought about by the development and use of hydropower, fossil fuel and nuclear energy (but include topics like reclamation of land after mining). Not only does the harvest and consumption of these energy forms devastate the land and its plants, animals, water and air, but the mental, spiritual, and physical health and culture of Native peoples suffer as well. In contrast, wind power offers an environmentally friendly source of energy that also can provide a source of income to reservations.

  3. A Behavioral Science Approach to Environmental Analysis

    ERIC Educational Resources Information Center

    Ostrander, Edward; And Others

    1972-01-01

    Gives six questions that environmental analysts -- students and faculty members -- seek answers to in ongoing studies of environments in nursing homes, open plan junior high schools, college classrooms, apartment houses, and nursery school rooms. The data or evidence accrued will hopefully have great impact as evidenced in more humane…

  4. Use of physical sciences in support of environmental management.

    PubMed

    Ji, Zhen-Gang

    2004-08-01

    Offshore drilling for oil and gas has been conducted since the early 1900s. Oil and gas under the seabed continue to be an important part of the energy resources of the United States. The need to balance the value of these resources against the potential for environmental damage is an important concern. This article explains why and how the Minerals Management Service (MMS) of the US Department of the Interior uses research in physical sciences to help fulfill its environmental goals, and it provides background information on the role of physical sciences in decision-making for Outer Continental Shelf (OCS) oil, gas, and other minerals development. Established in the 1970s, the MMS' Environmental Studies Program is a highly focused marine research program designed to provide the environmental information necessary for OCS energy and nonenergy minerals planning and development activities. The physical sciences research supported by MMS includes physical oceanography, oil-spill risk analyses, atmospheric sciences, and sand and gravel studies. Instead of giving a comprehensive review on physical sciences research in MMS, this article presents sample MMS studies and illustrates how these studies are utilized to support decision-making in environmental management.

  5. Use of physical sciences in support of environmental management.

    PubMed

    Ji, Zhen-Gang

    2004-08-01

    Offshore drilling for oil and gas has been conducted since the early 1900s. Oil and gas under the seabed continue to be an important part of the energy resources of the United States. The need to balance the value of these resources against the potential for environmental damage is an important concern. This article explains why and how the Minerals Management Service (MMS) of the US Department of the Interior uses research in physical sciences to help fulfill its environmental goals, and it provides background information on the role of physical sciences in decision-making for Outer Continental Shelf (OCS) oil, gas, and other minerals development. Established in the 1970s, the MMS' Environmental Studies Program is a highly focused marine research program designed to provide the environmental information necessary for OCS energy and nonenergy minerals planning and development activities. The physical sciences research supported by MMS includes physical oceanography, oil-spill risk analyses, atmospheric sciences, and sand and gravel studies. Instead of giving a comprehensive review on physical sciences research in MMS, this article presents sample MMS studies and illustrates how these studies are utilized to support decision-making in environmental management. PMID:15559941

  6. Science during crisis: the application of social science during major environmental crises

    USGS Publications Warehouse

    Machlis, Gary; Ludwig, Kris; Manfredo, Michael J.; Vaske, Jerry J.; Rechkemmer, Andreas; Duke, Esther

    2014-01-01

    Historical and contemporary experience suggests that science plays an increasingly critical role in governmental and institutional responses to major environmental crises. Recent examples include major western wildfires (2009), the Deepwater Horizon oil spill (2010), the Fukushima nuclear accident (2011), and Hurricane Sandy (2012). The application of science during such crises has several distinctive characteristics, as well as essential requirements if it is to be useful to decision makers. these include scope conditions that include coupled natural/human systems, clear statement of uncertainties and limitations, description of cascading consequences, accurate sense of place, estimates of magnitude of impacts, identification of beneficiaries and those adversely affected, clarity and conciseness, compelling visualization and presentation, capacity to speak "truth to power", and direct access to decision makers. In this chapter, we explore the role and significance of science – including all relevant disciplines and focusing attention on the social sciences – in responding to major environmental crises. We explore several important questions: How is science during crisis distinctive? What social science is most useful during crises? What distinctive characteristics are necessary for social science to make meaningful contributions to emergency response and recovery? How might the social sciences be integrated into the strategic science needed to respond to future crises? The authors, both members of the Department of the Interior's innovative Strategic Sciences Group, describe broad principles of engagement as well as specific examples drawn from history, contemporary efforts (such as during the Deepwater Horizon oil spill), and predictions of environmental crises still to be confronted.

  7. SYNCHROTRON TECHNIQUES IN ENVIRONMENTAL AND FORSENIC SCIENCES

    EPA Science Inventory

    The application of synchrotron based research for understanding the fate of contaminants in water, soil, and atmosphere is proving to be beneficial for scientists and regulators. Drawing the connection of a contaminated site to knowledge of metal speciation provides direct eviden...

  8. Lead isotopes in environmental sciences: a review.

    PubMed

    Komárek, Michael; Ettler, Vojtech; Chrastný, Vladislav; Mihaljevic, Martin

    2008-05-01

    Lead (Pb) isotopic analyses proved to be a very efficient tool for tracing the sources of local and global Pb pollution. This review presents an overview of literature published on the use of Pb isotopic analyses of different environmental matrices (atmospheric aerosols, lichens, tree rings, peat deposits, lake, stream, marine sediments, soils, etc.). In order to gain more insight, the isotopic compositions of major sources of Pb in the environment as determined by several authors are described in detail. These include, above all, the former use of leaded gasoline, coal combustion, industrial activities (e.g., metallurgy) and waste incineration. Furthermore, this review summarises analytical techniques (especially ICP-MS) used for the determination of Pb isotopes in environmental samples.

  9. Role of internship in higher education in environmental sciences

    NASA Astrophysics Data System (ADS)

    Scholz, Roland W.

    2004-01-01

    The benefits of a compulsory internship in environmental science education were investigated with respect to the three institutional goals of university education: (a) training for research, (b) professional education, and (c) general natural science education. A survey examined which student qualifications are improved by an internship complementary to traditional university education. The survey assessed 14 qualifications of students participating in a compulsory 15-week internship in the 5-year diploma program at the Swiss Federal Institute of Technology (ETH Zürich). Pre- and postinternship questionnaires of 478 students and 293 supervisors are included. Results indicated that internships enhance general abilities and key qualifications, such as communication skills, report writing, organization of work, information acquisition, and the ability to operate independently. This suggests that internships are of high value to professional education. However, internships also seem to promote salient qualifications of complex environmental problem solving which are relevant for the development of research capabilities in environmental sciences.

  10. Making the Connection between Environmental Science and Decision Making

    NASA Astrophysics Data System (ADS)

    Woodhouse, C. A.; Crimmins, M.; Ferguson, D. B.; Garfin, G. M.; Scott, C. A.

    2011-12-01

    As society is confronted with population growth, limited resources, and the impacts of climate variability and change, it is vital that institutions of higher education promote the development of professionals who can work with decision-makers to incorporate scientific information into environmental planning and management. Skills for the communication of science are essential, but equally important is the ability to understand decision-making contexts and engage with resource managers and policy makers. It is increasingly being recognized that people who understand the linkages between science and decision making are crucial if science is to better support planning and policy. A new graduate-level seminar, "Making the Connection between Environmental Science and Decision Making," is a core course for a new post-baccalaureate certificate program, Connecting Environmental Science and Decision Making at the University of Arizona. The goal of the course is to provide students with a basic understanding of the dynamics between scientists and decision makers that result in scientific information being incorporated into environmental planning, policy, and management decisions. Through readings from the environmental and social sciences, policy, and planning literature, the course explores concepts including scientific information supply and demand, boundary organizations, co-production of knowledge, platforms for engagement, and knowledge networks. Visiting speakers help students understand some of the challenges of incorporating scientific information into planning and decision making within institutional and political contexts. The course also includes practical aspects of two-way communication via written, oral, and graphical presentations as well as through the interview process to facilitate the transfer of scientific information to decision makers as well as to broader audiences. We aspire to help students develop techniques that improve communication and

  11. Educator Preparedness to Teach Environmental Science in Secondary Schools

    ERIC Educational Resources Information Center

    Guillory, Linus Joseph, Jr.

    2012-01-01

    This study assesses the environmental proficiency of Texas life science educators certified from 2003 to 2011 by analyzing their TExES 138 8-12 exam results in domains V and VI. The sample consisted of all the individuals that took and passed the TExES 138 life science 8-12 exam. During this period, approximately 41% of the individuals who took…

  12. Partnership for Environmental Technology Education: Tribal Colleges Initiative in Science and Environmental Education

    SciTech Connect

    1999-01-01

    The Tribal Colleges Initiatives in Science and Environmental Education (TCI) was developed in collaboration with the Partnership for Environmental Technology Education (PETE). This program is focused on long-term, systematic change through assisting tribally-controlled colleges in improving science and technology infrastructure, faculty and curricula. The goals are to: develop new or enhance existing science and technology education programs within tribally-controlled colleges and affiliates with a focus on environmental education and technology; establish and maintain clearly defined and secure educational pathways for Native American students; produce more Native American environmental and advanced degree graduates who can contribute to meeting the environmental/natural resource management and economic development goals of Indian Nations; and enhance the general level of Native American scientific literacy through improved public access to information.

  13. 76 FR 27653 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Review Branch, Division of Extramural Research and Training, Nat. Institute Environmental Health...

  14. 78 FR 59944 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Branch, Division of Extramural Research and Training, National Institute of Environmental Health...

  15. 77 FR 60448 - National Institute of Environmental Health Sciences Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences Notice... and projects conducted by the National Institute of Environmental Health Sciences, including...:50 a.m. Agenda: Scientific Presentations Place: National Institute of Environmental Health...

  16. 78 FR 64221 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. ] Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...: To review and evaluate grant applications. Place: National Institute of Environmental Health...

  17. 76 FR 5184 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Agenda: To review and evaluate grant applications. Place: Nat. Inst. of Environmental Health...

  18. 76 FR 4133 - National Environmental Policy Act; Mars Science Laboratory (MSL) Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... SPACE ADMINISTRATION National Environmental Policy Act; Mars Science Laboratory (MSL) Mission AGENCY... consideration of possible changes in the potential environmental impacts of the Mars Science Laboratory (MSL...) for MSL Final Environmental Impact Statement (EIS). SUMMARY: Pursuant to the National...

  19. 76 FR 52672 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Agenda: To review and evaluate contract proposals. Place: Nat. Inst. of Environmental Health...

  20. Social Cognitive Predictors of Interest in Environmental Science: Recommendations for Environmental Educators

    ERIC Educational Resources Information Center

    Quimby, Julie L.; Seyala, Nazar D.; Wolfson, Jane L.

    2007-01-01

    The authors examined the influence of social cognitive variables on students' interest in environmental science careers and investigated differences between White and ethnic minority students on several career-related variables. The sample consisted of 161 undergraduate science majors (124 White students, 37 ethnic minority students). Results of…

  1. Environmental justice, regulation, and the local community

    SciTech Connect

    Capek, S.M. )

    1992-01-01

    This article examines the sociological significance of the concept of environmental justice' for grassroots groups responding to toxic contamination in their local communities. Taking into account nationwide mobilization patterns in such communities, the author documents a precedent-setting episode in the city of Jacksonville, Arkansas, where citizen protests and support from national environmental groups led the Environmental Protection Agency to withdraw three Technical Assistance Grants inappropriately awarded to a group with links to a polluting industry, and subsequently to rewrite the rules for participation in such grants. As the first such challenge nationally, the Jacksonville scenario is an important test case' and permits a theoretical and practical evaluation of the relationship between social groups, technology, and the governmental regulatory process. More particularly, it gives insight into the Technical Assistance Grants program, which was set up to enable citizens living close to contaminated sites to interpret and evaluate technical information relating to such sites, but which has been undercut by a weak EPA and cooperative efforts by industries. The article concludes with an exploration of the concept of community in relation to the new construction of environmental justice engaged in by grassroots groups fighting contamination locally and nationally.

  2. Environmental regulations: applicability to advanced photovoltaic concepts

    SciTech Connect

    Schaller, D.A.

    1981-01-01

    Federal environmental, health, and safety programs related to the manufacturing of Cu/sub 2/S/CdS solar cells are discussed. Air quality, occupational health, water quality, solid and hazardous wastes, and occupational safety related to the fabrication of Cu/sub 2/S/CdS solar cells are discussed. (WHK)

  3. A hypertext environmental regulations manager for the petroleum industry

    SciTech Connect

    Pecore, J.S.; Hazlett, W.G.; Blaylock, R.

    1996-11-01

    A hypertext environmental regulations manager for the state of New Mexico has been created for the petroleum engineer. With the growing need for an understanding of environmental regulations, the hypertext system is designed to store environmental information and regulations and present them in an interactive and intuitive manner. This research will demonstrate the advantages of an on-line system to provide the unfamiliar engineer a logical methodology to comprehend the environmental aspect of the petroleum industry. Environmental operating guidelines are easily accessed by using a point and click method. The environmental guidelines recommended by the Oil Conservation Division (OLD), the regulatory agency for the petroleum industry in New Mexico, are presented as the primary focus of this work. These guidelines are categorized by five subject areas most useful to the petroleum engineer: drilling, production, pipeline and abandonment operations, and leaks, spill and release response. The manager also supplies the permitting requirements and procedures for environmentally sensitive operations such as drilling, injection and enhanced recovery and abandonment operations referenced to the OCD general operating rules and regulations for oil and gas exploration and production. The permitting procedures section also presents the necessary forms to be filed for such operations. Written in HTML (HyperText Markup Language), the manager s read using a browser such as Netscape. With the hypertext format, the program also furnishes Internet links to environmental information and resources like the EPA and the United States Congressional federal regulations in addition to commercial environmental World Wide Web sites. This system can be expanded to include not only environmental but all operating regulations for any state or country and is an effective method for future electronic filing of regulatory forms.

  4. Exploring environmental identity and behavioral change in an Environmental Science course

    NASA Astrophysics Data System (ADS)

    Blatt, Erica N.

    2013-06-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures, impact the environmental identity and behavior of students. In this investigation, the identity theory of emotion of Stryker (2004) from the field of sociology is utilized in the interpretation of students' reactions to classroom experiences as they proceed through the Environmental Science course. The participants in this study are an Environmental Science teacher and the 10-12th grade students in her Environmental Science elective course. The researcher collected data for a period of six months, attending class on a daily basis. Data was collected through participant observation, videotaping, interviews, and cogenerative dialogues. The results of this study inform science educators by illuminating important elements, such as students' emotional responses to activities in class, conflicting elements of students' identities, and students' openness and willingness to critically reflect upon new information, which contribute to whether a student is likely to change their views towards the environment and pro-environmental behaviors.

  5. Developmental Science and Preventive Interventions for Children at Environmental Risk

    PubMed Central

    Guralnick, Michael J.

    2015-01-01

    The current status of preventive intervention programs for young children at environmental risk designed to reduce the school readiness gap is examined in the context of developmental science. A review of program effectiveness suggests that future progress may depend upon committing to a specific developmental approach consistent with the knowledge base of developmental science and establishing a generally agreed upon and unambiguous framework, set of goals, and associated mechanisms. The Developmental Systems Approach is suggested as one model that is consistent with developmental and existing intervention science, supporting an emphasis on program continuity, relationships, and comprehensiveness. A long-term plan for community-based systems development is presented. PMID:26213447

  6. GENESIS: GPS Environmental and Earth Science Information System

    NASA Technical Reports Server (NTRS)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  7. Recruiting and Supporting Diverse Geoscience and Environmental Science Students

    NASA Astrophysics Data System (ADS)

    Doser, Diane I.; Manduca, Cathy; Rhodes, Dallas

    2014-08-01

    Producing a workforce that will be successful in meeting global environmental and resource challenges requires that we attract diverse students into the geosciences, support them fully in our programs, and assist them as they move into the profession. However, geoscience has the lowest ethnic and racial diversity of any of the science, technology, engineering, and mathematics (STEM) disciplines (National Science Foundation (NSF), "Women, Minorities, and Persons with Disabilities in Science and Engineering," http://www.nsf.gov/statistics/wmpd/2013/start.cfm) and is often viewed as a difficult choice for students with physical disabilities.

  8. Job Specific Behavioral & Environmental Privacy Regulation.

    ERIC Educational Resources Information Center

    Werner, Carol; Haggard, Lois

    The findings from a study of 42 administrators in a large metropolitan school district supported the hypothesis that the use of privacy regulation mechanisms is deliberate and dynamic. The researchers considered the age and sex of the administrators, the length of time they'd held their current jobs, their tendencies toward Type A or Type B…

  9. Impacts of recent environmental regulations on pipeline systems

    SciTech Connect

    Irion, K.S.

    1995-12-31

    In recent years pipeline facilities have been subjected to an increasing variety of interpretations by state and regional agencies concerning agency jurisdiction over the regulation of environmental activities at breakout tanks, pump stations, and terminals. The focus of agency interpretation is not on the pipelines themselves, but on loading and unloading activities and on auxiliary tankage. Loading and unloading activities can be to truck, railcar or barge. Tanks are used in a variety of pipeline operations. Tanks are used to collect from gathering lines and transport to a refinery. Tanks can be used to gather and offload to a truck, railcar or vessel. Other tanks are receipt for unloading by ship or barge, which is then transferred by pipeline to a refining or distribution facility. Pipelines, like other industries, were regulated solely by a single agency prior to the establishment of the Environmental Protection Agency (EPA). Until recently, pipelines and their connecting tankage were regulated as transportation facilities under the Department of Transportation (DOT). Although the prevention of pollution of surface water by oil and petroleum products is one of the earliest environmental regulations, dating back to 1970, most of the pipeline facilities remained exempt from most environmental regulation by EPA until very recently. Within the last decade, and accelerating within the last five years, pipeline facilities have been increasingly affected by several burgeoning environmental regulations. A summary of the effects and consequences, as well as suggestions for avoiding unnecessary regulation, are presented.

  10. ENVIRONMENTAL SYSTEMS MANAGEMENT: TOWARDS A NEW SCIENCE OF SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    EPA Science Inventory

    Environmental Systems Management (ESM) is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects of environm...

  11. Exploring Environmental Identity and Behavioral Change in an Environmental Science Course

    ERIC Educational Resources Information Center

    Blatt, Erica N.

    2013-01-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…

  12. PARTNERING WITH DOE TO APPLY ADVANCED BIOLOGICAL, ENVIRONMENTAL, AND COMPUTATIONAL SCIENCE TO ENVIRONMENTAL ISSUES

    EPA Science Inventory

    On February 18, 2004, the U.S. Environmental Protection Agency and Department of Energy signed a Memorandum of Understanding to expand the research collaboration of both agencies to advance biological, environmental, and computational sciences for protecting human health and the ...

  13. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  14. Between training and popularization: Regulating science textbooks in secondary education.

    PubMed

    Shapiro, Adam R

    2012-03-01

    Recruitment into the scientific community is one oft-stated goal of science education--in the post-Sputnik United States, for example--but this obscures the fact that science textbooks are often read by people who will never be scientists. It cannot be presupposed that science textbooks for younger audiences, students in primary and secondary schools, function in this way. For this reason, precollegiate-level science textbooks are sometimes discussed as a subset of literature popularizing science. The high school science classroom and the textbook are forums for exposing the public to science. The role of governments and educational institutions in regulating the consumption of these texts not only determines which books are used; it influences how they are written, read, and deemed authoritative. Therefore such science textbooks should not be seen as (at best) the disjunction of texts-for-training and books-for-popularization. A changing sense of what "textbooks" are compels a different understanding of their use in the history of science. PMID:22655341

  15. From Bioavailability Science to Regulation of Organic Chemicals.

    PubMed

    Ortega-Calvo, Jose-J; Harmsen, Joop; Parsons, John R; Semple, Kirk T; Aitken, Michael D; Ajao, Charmaine; Eadsforth, Charles; Galay-Burgos, Malyka; Naidu, Ravi; Oliver, Robin; Peijnenburg, Willie J G M; Römbke, Jörg; Streck, Georg; Versonnen, Bram

    2015-09-01

    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment.

  16. From Bioavailability Science to Regulation of Organic Chemicals.

    PubMed

    Ortega-Calvo, Jose-J; Harmsen, Joop; Parsons, John R; Semple, Kirk T; Aitken, Michael D; Ajao, Charmaine; Eadsforth, Charles; Galay-Burgos, Malyka; Naidu, Ravi; Oliver, Robin; Peijnenburg, Willie J G M; Römbke, Jörg; Streck, Georg; Versonnen, Bram

    2015-09-01

    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment. PMID:26230485

  17. 1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company

    SciTech Connect

    Not Available

    1993-07-01

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  18. Trailwoods Environmental Science Magnet Elementary School. Formative Evaulation.

    ERIC Educational Resources Information Center

    Seever, Margaret

    This report presents a formative evaluation of the first year's program of Trailwoods Environmental Science School, a magnet elementary school in the Kansas City School District in Missouri. The school serves students in grades kindergarten through grade 5 and began operation in the fall of 1990. The report focuses on the implementation of the…

  19. Environmental Science. An Experimental Programme for Primary Teachers.

    ERIC Educational Resources Information Center

    Linke, R. D.

    An experimental course covering some of the fundamental principles and terminology associated with environmental science and the application of these principles to various contemporary problems is summarized in this report. The course involved a series of lectures together with a program of specific seminar and discussion topics presented by the…

  20. An Experimenting College of Environmental and Applied Sciences

    ERIC Educational Resources Information Center

    Andrews, Ted F.; Fenner, Peter

    1975-01-01

    The programs of the College of Environmental and Applied Sciences at Governors State University have competency-based curricula emphasizing individualized and self-paced learning within an interdisciplinary framework. This article describes the instructional programs, student contract procedure, cooperative education venture, intercollege…

  1. Brownfield Action: An Integrated Environmental Science Simulation Experience for Undergraduates.

    ERIC Educational Resources Information Center

    Kelsey, Ryan

    This paper presents the results of three years of development and evaluation of a CD-ROM/Web hybrid simulation known as Brownfield Action for an introductory environmental science course at an independent college for women in the northeastern United States. Brownfield Action is a simulation that provides a learning environment for developing the…

  2. A Bibliography for Interior Design from the Environmental Sciences.

    ERIC Educational Resources Information Center

    Kleeman, Walter, Jr., Ed.

    The National Society of Interior Designers Interiors Environment Research Council feels that a wide range of research findings in the environmental sciences has great interest and value for the professional interior designer. One hundred and sixty-nine listings represent a broad range of topics relating to the design professions--economics,…

  3. A Survey of Environmental Science Organizations in the USA.

    ERIC Educational Resources Information Center

    Wang, J. Y., Ed.; Balter, Raymond R., Ed.

    This survey includes some 350 United States organizations in the fields of ecology, conservation, and environmental sciences. It is intended to provide the public with valuable information, and to offer scientists, administrators, and citizens, communication channels which will bring to light some instances of overlap and duplication, and…

  4. Teaching Environmental Science via Cooperative Production of a Hypermedia.

    ERIC Educational Resources Information Center

    Briano, Renata; Midoro, Vittorio

    1998-01-01

    Describes an innovative approach to environmental science education by making reference to two experimental projects related to flooding in an Italian basin. Concludes that cooperative production of the learning environment can be a way of reevaluating the work performed by teachers. Cooperative creation of a product can represent a good learning…

  5. Stationary Engineering, Environmental Control, Refrigeration. Science Manual I.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; And Others

    The student materials present lessons about occupations related to environmental control, stationary engineering, and refrigeration. Included are 18 units organized by objective, information, reference, procedure, and assignment. Each lesson involves concrete trade experience where science is applied. Unit titles are: safety and housekeeping,…

  6. Stationary Engineering, Environmental Control, Refrigeration. Science I--Teachers Guide.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; And Others

    The document presents lessons for teaching about occupations related to environmental control, stationary engineering, and refrigeration. Intended for use with the assignments in the related science manual for students, each unit provides the teacher with objectives, a list of aids needed, procedures, a summary, and testing questions. There are 18…

  7. 101 Environmental Education Activities. Booklet 4--Science Activities.

    ERIC Educational Resources Information Center

    Whitney, Helen, Comp.

    Fourth in the series "101 Environmental Education Activities" by the Upper Mississippi River ECO-Center, the booklet contains 39 environment-based science activities directed to students in primary, intermediate, and junior high classes. Organization of the activities usually includes grade level, objectives, procedures, and materials, evaluation…

  8. Content Representations in a Secondary Environmental Science Class.

    ERIC Educational Resources Information Center

    Tomanek, Debra

    The purpose of this study was to determine what representations of content existed in a secondary environmental science class and what happended to those representations during curriculum occasions. Initial data construction involved attention to what was actually going on during class sessions. Following this, a reanalysis of the data corpus with…

  9. Environmentalism and Science: Politics and the Pursuit of Knowledge.

    ERIC Educational Resources Information Center

    Rycroft, Robert W.

    1991-01-01

    Examination of the relationship between environmentalists and scientists concludes that environmentalism has had little impact on science. Topics discussed include the degree to which scientific research has become more applied; efforts to integrate and coordinate research projects; the synthesis of scientific information for policy purposes; and…

  10. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  11. Quantitative Reasoning in Environmental Science: A Learning Progression

    ERIC Educational Resources Information Center

    Mayes, Robert Lee; Forrester, Jennifer Harris; Christus, Jennifer Schuttlefield; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-01-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it…

  12. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    ERIC Educational Resources Information Center

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  13. "Operation Magpie": Inspiring Teachers' Professional Learning through Environmental Science

    ERIC Educational Resources Information Center

    Zeegers, Yvonne; Paige, Kathryn; Lloyd, David; Roetman, Philip

    2012-01-01

    Operation Magpie was a citizen science project that involved the community in collecting data about magpies. This article describes one aspect of the project from an education perspective. The study began with a collaboration of teacher educators, environmental scientists and a local radio station. After an initial workshop with 75 teachers, three…

  14. Environmental Science Misconceptions--Resolution of an Anomaly.

    ERIC Educational Resources Information Center

    Groves, Fred H.; Pugh, Ava F.

    This document reports on research on the ability of a short-term intervention to substantially increase elementary pre-service teacher knowledge of major environmental science issues. The study was conducted each semester over seven years. Student understanding of such issues as global warming, ozone depletion, and local groundwater problems was…

  15. Planetary boundaries and environmental citizenship: enhancing environmental science through the Princeton University Science and Engineering Education Initiative

    NASA Astrophysics Data System (ADS)

    Riihimaki, C. A.; Caylor, K. K.; Wilcove, D. S.

    2014-12-01

    Introductory courses in environmental science are challenging to teach effectively because instructors need to balance the breadth of content coverage with the depth needed to solve complex, interdisciplinary environmental problems. For three years, the Council on Science and Technology at Princeton University has been collaborating with faculty to enhance the introductory environmental science course as part of the Science and Engineering Education Initiative, which aims to ensure that all students, regardless of discipline, graduate with an appreciation for and literacy in science and engineering. Our primary aim in the course is to foster improved environmental citizenship by helping students develop a mechanistic understanding of our individual, societal, and global role as agents of environmental change; an ability to predict or forecast the potential impact that decisions may have on the future structure and function of Earth systems; and a sense of responsibility that leads to informed action and decision-making related to environmental issues. Toward those ends, we have 1) reframed the course curriculum to focus on the central theme of "planetary boundaries" (Rockstrom et al., 2009), including their scientific evidence and policy implications, 2) developed hands-on laboratory exercises that give students authentic research experiences, and 3) modified the assessment to ensure that the students have consistent and clear indications of their mastery of the material. Student feedback through course surveys has been positive, although challenges remain, including coordination across a large teaching staff (two lead instructors for lecture and three TAs for discussion sections, plus a lead lab instructor and one lab TA), optimizing learning activities across the course structure (lecture, precept, and an optional lab), and engaging students that have diverse academic interests.

  16. Environmental Sciences Division: Summaries of research in FY 1996

    SciTech Connect

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  17. Knowledge and Regulation of Cognition in College Science Students

    ERIC Educational Resources Information Center

    Roshanaei, Mehrnaz

    2014-01-01

    The research focused on three issues in college science students: whether there was empirical support for the two factor (knowledge of cognition and regulation of cognition) view of metacognition, whether the two factors were related to each other, and whether either of the factors was related to empirical measures of cognitive and metacognitive…

  18. An Overview of Environmental Education in Middle School Natural Science Courses

    ERIC Educational Resources Information Center

    Zhanbao, Shu

    2004-01-01

    Environmental education in middle school natural science courses is based on integrating environmental knowledge into natural science education. Therefore, environmental education objectives should be set as an extension of the objectives for natural science education. However, in order to reach the objectives laid out for environmental education…

  19. Environmental regulation in a network of simulated microbial ecosystems.

    PubMed

    Williams, Hywel T P; Lenton, Timothy M

    2008-07-29

    The Earth possesses a number of regulatory feedback mechanisms involving life. In the absence of a population of competing biospheres, it has proved hard to find a robust evolutionary mechanism that would generate environmental regulation. It has been suggested that regulation must require altruistic environmental alterations by organisms and, therefore, would be evolutionarily unstable. This need not be the case if organisms alter the environment as a selectively neutral by-product of their metabolism, as in the majority of biogeochemical reactions, but a question then arises: Why should the combined by-product effects of the biota have a stabilizing, rather than destabilizing, influence on the environment? Under certain conditions, selection acting above the level of the individual can be an effective adaptive force. Here we present an evolutionary simulation model in which environmental regulation involving higher-level selection robustly emerges in a network of interconnected microbial ecosystems. Spatial structure creates conditions for a limited form of higher-level selection to act on the collective environment-altering properties of local communities. Local communities that improve their environmental conditions achieve larger populations and are better colonizers of available space, whereas local communities that degrade their environment shrink and become susceptible to invasion. The spread of environment-improving communities alters the global environment toward the optimal conditions for growth and tends to regulate against external perturbations. This work suggests a mechanism for environmental regulation that is consistent with evolutionary theory.

  20. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  1. Challenges for Data Archival Centers in Evolving Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  2. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    SciTech Connect

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  3. Teaching Sustainability as a Large Format Environmental Science Elective

    NASA Astrophysics Data System (ADS)

    Davies, C.; Frisch, M.; Wagner, J.

    2012-12-01

    A challenge in teaching sustainability is engaging students in the global scale and immediacy of environmental impacts, and degree of societal change required to address environmental challenges. Succeeding in a large format Environmental Science elective course with a many as 100 students is an even greater challenge. ENVSC 322 Environmental Sustainability is an innovative new course integrating multiple disciplines, a wide range of external expert speakers and a hands-on community engagement project. The course, in its third year, has been highly successful and impacting for the students, community and faculty involved. The determination of success is based on student and community impacts. Students covered science topics on Earth systems, ecosystem complexity and services through readings and specialist speakers. The interconnection of society and climate was approached through global and local examples with a strong environmental justice component. Experts in a wide range of professional fields were engaged to speak with students on the role and impacts of sustainability in their particular field. Some examples are: Region VII Environmental Protection Agency Environmental Justice Director engaged students in both urban and rural aspects of environmental justice; a Principle Architect and national leader in Green architecture and redevelopment spoke with students regarding the necessity and potential for green urbanism; and industry innovators presented closed-cycle and alternative energy projects. The capstone project and highlight of the course was an individual or team community engagement project on sustainability, designed and implemented by the students. Community engagement projects completed throughout the Kansas City metro area have increased each year in number, quality and impact from 35 the first year to 70 projects this past spring. Students directly engage their communities and through this experience integrate knowledge of environmental systems

  4. Publications in biomedical and environmental sciences programs, 1981

    SciTech Connect

    Moody, J.B.

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  5. Just who is at risk? The ethics of environmental regulation.

    PubMed

    Simon, Ted

    2011-08-01

    The willingness to view risk as part of daily life has vanished. A risk-averse mindset among environmental regulators engenders confusion between the ethics of intention and the ethics of consequence, leading to the elevation of the precautionary principle with unintended and often unfortunate outcomes. Environmental risk assessment is conservative, but the actual level of conservatism cannot be determined. High-end exposure assumptions and current toxicity criteria from the USEPA, based on linear extrapolation for carcinogens and default uncertainty factors for systemic toxicants, obscure the degree of conservatism in risk assessments. Ideally, one could choose a percentile of the target population to include within environmental standards, but this choice is complicated by the food, pharmaceutical and advertising industries, whose activities, inadvertent or not, often promote maladaptive and unhealthy lifestyle choices. There has lately been much discussion about background exposures and disease processes and their potential to increase the risk from environmental chemicals. Should these background exposures or disease processes, especially those associated with maladaptive individual choices, be included as part of a regulatory risk evaluation? A significant ethical question is whether environmental regulation should protect those pursuing a self-destructive lifestyle that may add to or synergize with otherwise innocuous environmental exposures. Choosing a target percentile of protection would provide an increased level of transparency and the flexibility to choose a higher or lower percentile if such a choice is warranted. Transparency and flexibility will lead to more responsive environmental regulation that balances protection of public health and the stewardship of societal resources.

  6. The age of citizen science: Stimulating future environmental research

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.

    2010-12-01

    Public awareness of the state of the ocean is growing with issues such as climate change, over-harvesting, marine pollution, coral bleaching, ocean acidification and sea level rise appearing regularly in popular media outlets. Society is also placing greater value on the range of ecosystem services the ocean provides. This increased consciousness of environmental change due to a combination of anthropogenic activities and impacts from climate change offers scientists the opportunity of engaging citizens in environmental research. The term citizen science refers to scientific research carried out by citizens and led by professionals, which involves large scale data collection whilst simultaneously engaging and educating those who participate. Most projects that engage citizen scientists have been specifically designed to provide an educational benefit to the volunteer and benefit the scientific inquiry by collecting extensive data sets over large geographical areas. Engaging the public in environmental science is not a new concept and successful projects (such as the Audobon Christmas Bird Count and Earthwatch) have been running for several decades resulting in hundreds of thousands of people conducting long-term field research in partnership with scientists based at universities worldwide. The realm of citizen science projects is continually expanding, with public engagement options ranging from science online; to backyard afternoon studies; to fully immersive experiential learning projects running for weeks at a time. Some organisations, such as Earthwatch also work in partnership with private industry; giving scientists access to more funding opportunities than those avenues traditionally available. These scientist -industry partnerships provide mutual benefits as the results of research projects in environments such as coastal ecosystems feed directly back into business risk strategies; for example mitigating shoreline erosion, storm surges, over fishing and

  7. Opportunities for Web-Based Indicators in Environmental Sciences

    PubMed Central

    Malcevschi, Sergio; Marchini, Agnese; Savini, Dario; Facchinetti, Tullio

    2012-01-01

    This paper proposes a set of web-based indicators for quantifying and ranking the relevance of terms related to key-issues in Ecology and Sustainability Science. Search engines that operate in different contexts (e.g. global, social, scientific) are considered as web information carriers (WICs) and are able to analyse; (i) relevance on different levels: global web, individual/personal sphere, on-line news, and culture/science; (ii) time trends of relevance; (iii) relevance of keywords for environmental governance. For the purposes of this study, several indicators and specific indices (relational indices and dynamic indices) were applied to a test-set of 24 keywords. Outputs consistently show that traditional study topics in environmental sciences such as water and air have remained the most quantitatively relevant keywords, while interest in systemic issues (i.e. ecosystem and landscape) has grown over the last 20 years. Nowadays, the relevance of new concepts such as resilience and ecosystem services is increasing, but the actual ability of these concepts to influence environmental governance needs to be further studied and understood. The proposed approach, which is based on intuitive and easily replicable procedures, can support the decision-making processes related to environmental governance. PMID:22905118

  8. Environmental regulation of expression of virulence determinants in Bordetella pertussis.

    PubMed Central

    Melton, A R; Weiss, A A

    1989-01-01

    The trans-activator vir is required for expression of all virulence-associated genes in Bordetella pertussis. The nature of the global regulation of these factors by vir and environmental signals was examined by Northern blot analysis and with beta-galactosidase transcriptional fusions in five vir-regulated genes. Northern blots suggested that vir regulates at the level of transcription since Vir- organisms did not exhibit detectable mRNA from vir-regulated loci. Environmental signals such as high levels of salts, nicotinic acid, and 6-chloronicotinic acid or growth at low temperatures were examined. Of all of the cations and anions examined, only SO4 ions eliminated transcription of vir-regulated genes and reduced transcription of vir itself, suggesting that global regulation is obtained by modifying expression of the essential component, vir. Organisms grown on 6-chloronicotinic acid or quinaldic acid did not have detectable transcription from vir-regulated loci. Modulation by nicotinic acid, on the other hand, was strain dependent, acting at the level of transcription in strain 18-323 but not in Tohama I derivatives. Growth at lower temperatures reduced, but did not eliminate, transcription from vir-regulated loci. At 28 degrees C the ratio of pertussis toxin mRNA to recA mRNA (a non-vir-regulated factor) was equivalent to that at 37 degrees C, suggesting that transcription at low temperatures is reduced in a proportional manner and need not involve vir. Images PMID:2478524

  9. Applications of SAR Interferometry in Earth and Environmental Science Research.

    PubMed

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  10. Applications of SAR Interferometry in Earth and Environmental Science Research.

    PubMed

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  11. Applications of SAR Interferometry in Earth and Environmental Science Research

    PubMed Central

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  12. REU Site: Yosemite Research Training in Environmental Science

    NASA Astrophysics Data System (ADS)

    Conklin, M. H.; Dayrat, B.

    2009-12-01

    The Yosemite Research Training in Environmental Science offers undergraduate students a unique opportunity to actively experience field research in Environmental Science in a premier National Park, over a nine-week period in the summer. The Yosemite REU is a collaboration between three institutions: the University of California at Merced, Yosemite National Park, and the USGS Western Ecological Research Center. Student activities mainly consist of individual research projects, spanning a broad range of disciplines such as Ecology, Geosciences, Biodiversity, Conservation, Restoration, and Hydrology. All projects include a strong field component. Students are exposed to the benefits of multi-disciplinary research in weekly meetings in which all students talk about their most recent work. Students present their research in Yosemite Valley at the end of the program before a public audience (including visitors). Research training is provided by mentors from UC Merced (Schools of Natural Sciences, Engineering, and Social Sciences) and the USGS Western Ecological Research Center. In addition to their interactions with their mentors and other faculty, students have opportunities to meet with NPS professionals engaged in park-related activities, to learn more about the integration of science with resources management and about potential careers in research and science outside academia. Students also participate in field trips led by UCM, USGS, and NPS scientists, focusing on Yosemite and the Sierra Nevada. Students attend a weekly seminar in Environmental Science with a broad diversity of speakers, including researchers as well as other science-related professionals, such as freelance science writers and illustrators, as well as NPS scientists and staff. Finally, student participants engage in several other activities, including outreach (e.g., a day-long meeting with high-school Central Valley students from underrepresented minorities). The Yosemite REU has already run for

  13. Environmental regulations handbook for enhanced oil recovery. Final report

    SciTech Connect

    Wilson, T.D.

    1980-08-01

    A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

  14. Earth and Environmental Sciences 1999 Annual Report Meeting National Needs

    SciTech Connect

    Yonker, L.; Dannevik, B.

    2000-07-21

    Lawrence Livermore National Laboratory's Earth and Environmental Sciences 1999 Annual Report covers the following topics: (1) Nuclear Materials--Modeling Thermohydrologic Processes at the Proposed Yucca Mountain Nuclear-Waste Repository; Dose Assessments and Resettlement Support on Rongelap Atoll in the Marshall Islands. (2) Climate, Carbon, and Energy--Incorporating Surprise into Models of Global Climate Change: A Simple Climate Demonstrator Model; (3) Environmental Risk Reduction--The NASA Global Modeling Initiative: Analyzing the Atmospheric Impacts of Supersonic Aircraft; (4) National Security--Atmospheric Release Assessment Programs; and (5) Cross-Cutting Technologies/Capabilities--Advances in Technology at the Center for Accelerator Mass Spectrometry; Experimental Geophysics: Investigating Material Properties at Extreme Conditions.

  15. Community Environmental Policing: Assessing New Strategies of Public Participation in Environmental Regulation

    ERIC Educational Resources Information Center

    O'Rourke, Dara; Macey, Gregg P.

    2003-01-01

    This paper evaluates a new form of public participation in environmental monitoring and regulation advanced through local "bucket brigades," which allow community members to sample air emissions near industrial facilities. These brigades represent a new form of community environmental policing, in which residents participate in collecting,…

  16. Publications in biomedical and environmental sciences programs, 1982

    SciTech Connect

    Moody, J.B.

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  17. ESF EUROCORES Programmes In Geosciences And Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.

    2007-12-01

    In close cooperation with its Member Organisations, the European Science Foundation (ESF) has launched since late 2003 a series of European Collaborative Research (EUROCORES) Programmes. Their aim is to enable researchers in different European countries to develop cooperation and scientific synergy in areas where European scale and scope are required in a global context. The EUROCORES Scheme provides an open, flexible and transparent framework that allows national science funding and science performing agencies to join forces to support excellent European-led research, following a selection among many science-driven suggestions for new Programmes themes submitted by the scientific community. The EUROCORES instrument represents the first large scale attempt of national research (funding) agencies to act together against fragmentation, asynchronicity and duplication of research (funding) within Europe. There are presently 7 EUROCORES Programmes specifically dealing with cutting edge science in the fields of Earth, Climate and Environmental Sciences. The EUROCORES Programmes consist of a number of international, multidisciplinary collaborative research projects running for 3-4 years, selected through independent peer review. Under the overall responsibility of the participating funding agencies, those projects are coordinated and networked together through the scientific guidance of a Scientific Committee, with the support of a Programme Coordinator, responsible at ESF for providing planning, logistics, and the integration and dissemination of science. Strong links are aimed for with other major international programmes and initiatives worldwide. In this framework, linkage to IYPE would be of major interest for the scientific communities involved. Each Programme mobilises 5 to 13 million Euros in direct science funding from 9 to 27 national agencies from 8 to 20 countries. Additional funding for coordination, networking and dissemination is allocated by the ESF

  18. Environmental Sensor Networks: A revolution in the earth system science?

    NASA Astrophysics Data System (ADS)

    Hart, Jane K.; Martinez, Kirk

    2006-10-01

    Environmental Sensor Networks (ESNs) facilitate the study of fundamental processes and the development of hazard response systems. They have evolved from passive logging systems that require manual downloading, into 'intelligent' sensor networks that comprise a network of automatic sensor nodes and communications systems which actively communicate their data to a Sensor Network Server (SNS) where these data can be integrated with other environmental datasets. The sensor nodes can be fixed or mobile and range in scale appropriate to the environment being sensed. ESNs range in scale and function and we have reviewed over 50 representative examples. Large Scale Single Function Networks tend to use large single purpose nodes to cover a wide geographical area. Localised Multifunction Sensor Networks typically monitor a small area in more detail, often with wireless ad-hoc systems. Biosensor Networks use emerging biotechnologies to monitor environmental processes as well as developing proxies for immediate use. In the future, sensor networks will integrate these three elements ( Heterogeneous Sensor Networks). The communications system and data storage and integration (cyberinfrastructure) aspects of ESNs are discussed, along with current challenges which need to be addressed. We argue that Environmental Sensor Networks will become a standard research tool for future Earth System and Environmental Science. Not only do they provide a 'virtual' connection with the environment, they allow new field and conceptual approaches to the study of environmental processes to be developed. We suggest that although technological advances have facilitated these changes, it is vital that Earth Systems and Environmental Scientists utilise them.

  19. 76 FR 38189 - New Proposed Collection; Comment Request; Environmental Science Formative Research Methodology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... Collection Title: Environmental Science Formative Research Methodology Studies for the National Children's... environmental science professional organizations and practitioners, and schools and child care organizations... HUMAN SERVICES National Institutes of Health New Proposed Collection; Comment Request;...

  20. PETRO-SAFE '92 conference papers: Volume 1 (Keynote session, environmental and safety regulations update, management strategies update, safety regulations) and Volume 2 (Environmental regulations)

    SciTech Connect

    Not Available

    1992-01-01

    This book is the first of three volumes generated from a conference on the environment and safety aspects of the oil, gas, and petrochemical industries. This volume presents papers on environmental and safety regulations, methods for developing safety programs, hazardous operations/training regulations, and management planning strategies to meet these regulations. Papers discuss remediation of contaminated sites, emergency response planning, pending and developing regulations, and waste management practices.

  1. Probing the Natural World, Level III, Teacher's Edition: Environmental Science. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit and its activities focuses on environmental pollution and hazards. Optional excursions are suggested for students who wish to study an area in greater depth. An introduction describes the problem…

  2. Probing the Natural World, Level III, Student Guide: Environmental Science. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's edition of one of the Intermediate Science Curriculum Study (ISCS) units for level III students (grade 9). The chapters contain basic information about environmental pollution and hazards, activities related to the subject, and optional excursions. A section on introductory notes to the student discusses how to use the book…

  3. 76 FR 31620 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ..., Division of Extramural Research and Training, National Institute of Environmental Health Sciences, P.O. Box... Committee: National Institute of Environmental Health Sciences Special Emphasis Panel, Virtual Consortium... Research and Training, National Institute of Environmental Health Sciences, P.O. Box 12233, MD...

  4. 78 FR 39739 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: July 24-26, 2013... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709,...

  5. 76 FR 38666 - Food and Drug Administration (FDA) and Marine Environmental Sciences Consortium/Dauphin Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Nutrition (CFSAN) and the Marine Environmental Sciences Consortium/Dauphin Island Sea Lab (DISL). The goal... Marine Environmental Science Consortium-Dauphin Island Sea Lab (DISL) will greatly contribute to FDA's... Objectives FDA Gulf Coast Seafood Laboratory (GCSL) and the Marine Environmental Science Consortium of...

  6. 75 FR 2876 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709, (919) 541-...

  7. 75 FR 41506 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box...

  8. 75 FR 3474 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The...: Discussion of program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building...

  9. 76 FR 11500 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233 MD...

  10. 75 FR 32797 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD...

  11. 75 FR 41505 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: August 10-12... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Conference Rooms...

  12. 77 FR 74198 - National Institute Environmental Health Sciences Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... HUMAN SERVICES National Institutes of Health National Institute Environmental Health Sciences Notice of....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building 101,...

  13. 77 FR 66853 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis Panel Career Grants in the Environmental Health Sciences. Date: November 29-30, 2012 Time: 8:00 a.m....

  14. 76 FR 63311 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...-Tilotta, PhD, Scientific Review Administrator, Nat. Institute of Environmental Health Sciences, Office...

  15. 75 FR 78719 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233 MD...

  16. 78 FR 27410 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  17. 76 FR 35225 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Training, Nat. Institute Environmental Health Sciences, P.O. Box 12233, MD EC-30,...

  18. 75 FR 68367 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park,...

  19. 76 FR 10040 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences, including... Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709....

  20. 78 FR 14312 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park,...

  1. 77 FR 4572 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... of Extramural Research and Training, Nat. Institute of Environmental Health Science, P.O. Box...

  2. 76 FR 13650 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park, NC 27709, (919)...

  3. 77 FR 60445 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park,...

  4. 76 FR 58521 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Science, P. O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park, NC 27709, (919)...

  5. 75 FR 61765 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. ] Name of Committee: National Institute of Environmental Health Sciences Special Emphasis.... Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O....

  6. 78 FR 20931 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The...: Discussion of program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building...

  7. 77 FR 43849 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: August 22-23... Training, Nat'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research...

  8. 78 FR 48695 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building 101,...

  9. 78 FR 51734 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences;...

  10. 78 FR 14562 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box 12233,...

  11. 76 FR 62080 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: Environmental Health Sciences Review Committee. Date: November 9, 2011...'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park,...

  12. 75 FR 49500 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The...: Discussion of program policies and issues. Place: Nat. Inst. of Environmental Health Sciences, Building...

  13. 78 FR 8156 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... of personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709,...

  14. 77 FR 3480 - National Institute of Environmental Health Sciences Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... of Committee: National Advisory Environmental Health Sciences Council. Date: February 15-16,...

  15. 75 FR 55807 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis...-Tilotta, PhD, Scientific Review Officer, Nat. Institute of Environmental Health Sciences, Office...

  16. 77 FR 37423 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis..., Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P.O....

  17. 76 FR 46823 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The... of Committee: National Advisory Environmental Health Sciences Council. Date: September 1-2,...

  18. 78 FR 25754 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special ] Emphasis.... Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park,...

  19. 75 FR 34147 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Extramural Research and Training, Nat. Institute Environmental Health Sciences, P.O. Box 12233, MD...

  20. 77 FR 30019 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... Research and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170...

  1. 76 FR 21387 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special Emphasis... and Training, Nat. Institute of Environmental Health Science, P.O. Box 12233, MD EC-30/Room 3170...

  2. Delivering Global Environmental Change Science Through Documentary Film

    NASA Astrophysics Data System (ADS)

    Dodgson, K.; Byrne, J. M.; Graham, J. R.

    2010-12-01

    Communicating authentic science to society presents a significant challenge to researchers. This challenge stems from unfortunate misrepresentation and misunderstanding in the mainstream media, particularly in relation to science on global environmental change. This has resulted in a lower level of confidence and interest amongst audiences in regards to global environmental change and anthropogenic climate change discussions. This project describes a new form of documentary film that aspires to break this trend and increase audiences’ interest, reinvigorating discussion about global environmental change. The documentary film adopts a form that marries traditional scientific presentation with the high entertainment value of narrative storytelling. This format maintains the authenticity of the scientific message and ensures audience engagement throughout the entire presentation due to the fact that a sense of equality and intimacy between the audience and the scientists is achieved. The film features interviews with scientists studying global environmental change and opens with a comparison of authentic scientific information and the mainstream media’s presentation, and subsequent public opinion. This enables an analysis of the growing disconnect between society and the scientific community. Topics investigated include: Arctic ice melt, coastal zone hypoxia, tropical cyclones and acidification. Upon completion of the film, public and private screenings with predetermined audience demographics will be conducted using a short, standardized survey to gain feedback regarding the audience’s overall review of the presentation. In addition to the poster, this presentation features an extended trailer for the documentary film.

  3. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    NASA Astrophysics Data System (ADS)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  4. Interdisciplinary Environmental-health Science Throughout Disaster Lifecycles

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Morman, S. A.; Hoefen, T. M.

    2014-12-01

    Potential human health effects from exposures to hazardous disaster materials and environmental contamination are common concerns following disasters. Using several examples from US Geological Survey environmental disaster responses (e.g., 2001 World Trade Center, mine tailings spills, 2005 Hurricane Katrina, 2007-2013 wildfires, 2011 Gulf oil spill, 2012 Hurricane Sandy, 2013 Colorado floods) and disaster scenarios (2011 ARkStorm, 2013 SAFRR tsunami) this presentation will illustrate the role for collaborative earth, environmental, and health science throughout disaster lifecycles. Pre-disaster environmental baseline measurements are needed to help understand environmental influences on pre-disaster health baselines, and to constrain the magnitude of a disaster's impacts. During and following disasters, there is a need for interdisciplinary rapid-response and longer-term assessments that: sample and characterize the physical, chemical, and microbial makeup of complex materials generated by the disasters; fingerprint material sources; monitor, map, and model dispersal and evolution of disaster materials in the environment; help understand how the materials are modified by environmental processes; and, identify key characteristics and processes that influence the exposures and toxicity of disaster materials to humans and the living environment. This information helps emergency responders, public health experts, and cleanup managers: 1) identify short- and long-term exposures to disaster materials that may affect health; 2) prioritize areas for cleanup; and 3) develop appropriate disposal solutions or restoration uses for disaster materials. By integrating lessons learned from past disasters with geospatial information on vulnerable sources of natural or anthropogenic contaminants, the environmental health implications of looming disasters or disaster scenarios can be better anticipated, which helps enhance preparedness and resilience. Understanding economic costs of

  5. Environmental Education Course Development for Preservice Secondary School Science Teachers in the Republic of Korea.

    ERIC Educational Resources Information Center

    Shin, Donghee S.

    2000-01-01

    Uses an opinionnaire survey to evaluate the opinions of Korean professors in earth science education and geology departments on science concepts related to environmental issues that might be important for secondary preservice earth science teachers. Respondents favored an environmental earth science course that emphasized human impact on the…

  6. A Reconstructed Vision of Environmental Science Literacy: The Case of Qatar

    ERIC Educational Resources Information Center

    Khishfe, Rola

    2014-01-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and…

  7. Needs assessment survey for Master's of Science training in environmental health science in Swaziland.

    PubMed

    Tiruneh, Ababu Teklemariam; Ndlela, William N; Gadaga, T H; Nkambule, Stanley J; Dlamini, Sabelo V

    2015-01-01

    A needs assessment survey research was carried out for Master's of Science training in environmental health in Swaziland. The objective of the survey was to acquire information on training needs, gaps, options of specializations, program structure, courses, topics, and research areas that are relevant to the needs of the stakeholders and sector organizations related to environmental health. A document study, focus group discussion with key informants, stakeholder forum workshop, and needs assessment questionnaire to the wider stakeholders were used for the study described here. The findings of the authors' study point to a shortage of qualified personnel in environmental health; lack of capacity in strategy planning and project management; and lack of capacity in research, data collection, and environmental monitoring skills, among other things. A program structure that takes into account the multidisciplinary nature of environmental health with provisions for specialization was favored. Suggestions on course content, mode of delivery, and research topics to be addressed were also given.

  8. A Knowledge-Based Representation Scheme for Environmental Science Models

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Dungan, Jennifer L.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    One of the primary methods available for studying environmental phenomena is the construction and analysis of computational models. We have been studying how artificial intelligence techniques can be applied to assist in the development and use of environmental science models within the context of NASA-sponsored activities. We have identified several high-utility areas as potential targets for research and development: model development; data visualization, analysis, and interpretation; model publishing and reuse, training and education; and framing, posing, and answering questions. Central to progress on any of the above areas is a representation for environmental models that contains a great deal more information than is present in a traditional software implementation. In particular, a traditional software implementation is devoid of any semantic information that connects the code with the environmental context that forms the background for the modeling activity. Before we can build AI systems to assist in model development and usage, we must develop a representation for environmental models that adequately describes a model's semantics and explicitly represents the relationship between the code and the modeling task at hand. We have developed one such representation in conjunction with our work on the SIGMA (Scientists' Intelligent Graphical Modeling Assistant) environment. The key feature of the representation is that it provides a semantic grounding for the symbols in a set of modeling equations by linking those symbols to an explicit representation of the underlying environmental scenario.

  9. 78 FR 22841 - Defense Federal Acquisition Regulation Supplement: Encouragement of Science, Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... Register at 78 FR 13604-13606. Manuel Quinones, Editor, Defense Acquisition Regulations System. BILLING... Regulation Supplement: Encouragement of Science, Technology, Engineering, and Mathematics (STEM) Programs... contractors to develop science, technology, engineering, and mathematics (STEM) programs. FOR...

  10. Environmental Sciences Laboratory dedication, February 26-27, 1979

    SciTech Connect

    Auerbach, S.I.; Millemann, N.T.

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  11. 75 FR 43161 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Engineering Committee AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The EPA Science Advisory Board (SAB) Staff Office announces a public teleconference of the SAB Environmental Engineering... SAB Environmental Engineering Committee (EEC) will hold a public teleconference to receive...

  12. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    NASA Astrophysics Data System (ADS)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  13. Building a Collaboratory in Environmental and Molecular Science

    SciTech Connect

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an `electronic community of scientists researching and developing innovative environmental preservation and restoration technologies.

  14. Science and Mathematics Teacher Candidates' Environmental Knowledge, Awareness, Behavior and Attitudes

    ERIC Educational Resources Information Center

    Yumusak, Ahmet; Sargin, Seyid Ahmet; Baltaci, Furkan; Kelani, Raphael R.

    2016-01-01

    The purpose of this study was to measure science and mathematics teacher candidates' environmental knowledge level, awareness, behavior and environmental attitudes. Four instruments comprising Environmental Sensitivity Scale, environmental Behavior Scale, Environmental Attitudes Scale and Environmental Knowledge Test were administered to a total…

  15. ISEES: an institute for sustainable software to accelerate environmental science

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Schildhauer, M.; Fox, P. A.

    2013-12-01

    Software is essential to the full science lifecycle, spanning data acquisition, processing, quality assessment, data integration, analysis, modeling, and visualization. Software runs our meteorological sensor systems, our data loggers, and our ocean gliders. Every aspect of science is impacted by, and improved by, software. Scientific advances ranging from modeling climate change to the sequencing of the human genome have been rendered possible in the last few decades due to the massive improvements in the capabilities of computers to process data through software. This pivotal role of software in science is broadly acknowledged, while simultaneously being systematically undervalued through minimal investments in maintenance and innovation. As a community, we need to embrace the creation, use, and maintenance of software within science, and address problems such as code complexity, openness,reproducibility, and accessibility. We also need to fully develop new skills and practices in software engineering as a core competency in our earth science disciplines, starting with undergraduate and graduate education and extending into university and agency professional positions. The Institute for Sustainable Earth and Environmental Software (ISEES) is being envisioned as a community-driven activity that can facilitate and galvanize activites around scientific software in an analogous way to synthesis centers such as NCEAS and NESCent that have stimulated massive advances in ecology and evolution. We will describe the results of six workshops (Science Drivers, Software Lifecycles, Software Components, Workforce Development and Training, Sustainability and Governance, and Community Engagement) that have been held in 2013 to envision such an institute. We will present community recommendations from these workshops and our strategic vision for how ISEES will address the technical issues in the software lifecycle, sustainability of the whole software ecosystem, and the critical

  16. Environmental GeoSciences Lectures and Transversal Public Workshops

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Redondo, A.; Babiano, A.

    2010-05-01

    Co/organized by the Campus Universitari de la Mediterrania, which is a consortium between the City hall of Vilanova i la Geltru, The Universitat Politecnica de Catalunya and the Generalitat. A series of high level workshops and summer schools have been used to prepare specific, hands on science and scientific, divulgation material aimed at different types of public. Some of the most attractive topics in geosciences, prepared by well established scientists in collaboration with primary and secondary school teachers are used to stimulate science and environmental topics in the clasroom. A collection of CDs with lectures, videos and experimental visual results cover a wide range of topics such as: Cloud shape analysis, Cetacean Acoustics, Turbulence, Soil percolation, Dynamic Oceanograpy, Oil Pollution, Solar Physics, Rainbows and colour, Snail shell structure, etc.. Some of the most popular themes are chosen, studied and presented by the diferent aged pupils from local schools.

  17. A Mentoring Program in Environmental Science for Underrepresented Groups

    NASA Astrophysics Data System (ADS)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  18. Impact of Environmental Factors on the Regulation of Cyanotoxin Production

    PubMed Central

    Boopathi, Thangavelu; Ki, Jang-Seu

    2014-01-01

    Cyanobacteria are capable of thriving in almost all environments. Recent changes in climatic conditions due to increased human activities favor the occurrence and severity of harmful cyanobacterial bloom all over the world. Knowledge of the regulation of cyanotoxins by the various environmental factors is essential for effective management of toxic cyanobacterial bloom. In recent years, progress in the field of molecular mechanisms involved in cyanotoxin production has paved the way for assessing the role of various factors on the cyanotoxin production. In this review, we present an overview of the influence of various environmental factors on the production of major group of cyanotoxins, including microcystins, nodularin, cylindrospermopsin, anatoxins and saxitoxins. PMID:24967641

  19. Environmental compliance policies (environmental quality). CECW-OA regulation No. 200-2-3

    SciTech Connect

    1996-10-30

    This regulation establishes the policy for the management of environmental compliance-related operations and maintenance (O&M) activities at U.S. Army Corps of Engineers (USACE) civil works and military projects and facilities. The environmental compliance mission is to assure that all USACE, facilities and associated lands (including outgrants) meet environmental standards contained in relevant Federal, state and local laws and regulations. Environmental compliance categories include, but are not limited to: (1) Air emissions management; (2) Cultural resources management; (3) Hazardous materials management; (4) Hazardous waste management; (5) Natural resources management; (6) Pesticides management; (7) Pesticides management; (8) Petroleum, oil, and lubricant management; (9) Solid waste management; (10) Storage tank management; (11) Toxic substances management; (12) Wastewater management; and (13) Water quality management.

  20. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs.

    PubMed

    Keselman, Alla; Levin, Daniel M; Hundal, Savreen; Kramer, Judy F; Matzkin, Karen; Dutcher, Gale

    2012-08-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students' daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers' and researchers' perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students' experience with socio-scientific argumentation.

  1. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs

    PubMed Central

    Keselman, Alla; Levin, Daniel M.; Hundal, Savreen; Kramer, Judy F.; Matzkin, Karen; Dutcher, Gale

    2013-01-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students’ daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers’ and researchers’ perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students’ experience with socio-scientific argumentation. PMID:24382985

  2. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs.

    PubMed

    Keselman, Alla; Levin, Daniel M; Hundal, Savreen; Kramer, Judy F; Matzkin, Karen; Dutcher, Gale

    2012-08-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students' daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers' and researchers' perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students' experience with socio-scientific argumentation. PMID:24382985

  3. Overview of Mars Science Laboratory (MSL) Environmental Program

    NASA Technical Reports Server (NTRS)

    Forgave, John C.; Man, Kin F.; Hoffman, Alan R.

    2006-01-01

    This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is

  4. Advances in Materials Science for Environmental and Energy Technologies II

    SciTech Connect

    Matyas, Dr Josef; Ohji, Tatsuki; Liu, Xingbo; Paranthaman, Mariappan Parans; Devanathan, Ram; Fox, Kevin; Singh, Mrityunjay; Wong-ng, Winnie

    2013-01-01

    The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

  5. National Center for Manufacturing Sciences: Environmentally conscious manufacturing

    NASA Technical Reports Server (NTRS)

    Vinton, Clare

    1995-01-01

    The purpose of this presentation is to share the results and some of the thinking of the Environmentally Conscious Manufacturing - Strategic Initiative Group (ECM-SIG) at the National Center for Manufacturing Sciences (NCMS). NCMS is a consortium of more than 185 North American Manufacturing organizations comprised of about 75 percent for profit manufacturing companies and about 25 percent nonprofit organizations that support manufacturing activities. NCMS conducts collaborative R&D programs designed to improve global competitiveness of its members and other North American manufacturers to address common issues that are important to manufacturing industries. NCMS is an industry driven organization whose agenda is established by industry with input from appropriate government agencies.

  6. SUstaiNability: a science communication website on environmental research

    NASA Astrophysics Data System (ADS)

    Gravina, Teresita; Rutigliano, Flora Angela

    2015-04-01

    Environmental news mainly reach not specialist people by mass media, which generally focuses on fascinating or catastrophic events without reporting scientific data. Otherwise, scientific data on environment are published in peer-reviewed journals with specific language, so they could be not understandable to common people. In the last decade, Internet spread made easier to divulge environmental information. This allows everyone (scientist or not) to publish information without revision. In fact, World Wide Web includes many scientific sites with different levels of confidence. Within Italian scientific websites, there are those of University and Research Centre, but they mainly contain didactic and bureaucratic information, generally lacking in research news, or reporting them in peer-reviewed format. University and Research Centre should have an important role to divulge certified information, but news should be adapted to a general audience without scientific skills, in order to help population to gain knowledge on environmental issues and to develop responsible behavior. Therefore, an attractive website (www.sunability.unina2.it) has been created in order to divulge research products of Environmental, Biological and Pharmaceutical Sciences and Technologies Department (DiSTABiF) of Second University of Naples-SUN (Campania, Southern Italy). This website contains divulgation articles derived from peer-reviewed publications of DiSTABiF researchers and concerning studies on environmental, nutrition, and health issues, closely related topics. Environmental studies mainly referred to Caserta district (Southern Italy), where DiSTABiF is located. Divulgation articles have been shared by main social networks (Facebook: sunability, Twitter: @SUNability) and accesses have been monitored for 28 days in order to obtain demographic and geographic information about users and visualization number of both DiSTABiF website and social network pages. Demographic and geographic

  7. Economic growth and energy regulation in the environmental Kuznets curve.

    PubMed

    Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín

    2016-08-01

    This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution. PMID:27164892

  8. Economic growth and energy regulation in the environmental Kuznets curve.

    PubMed

    Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín

    2016-08-01

    This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution.

  9. The regulation of agricultural biotechnology: science shows a better way.

    PubMed

    Miller, Henry I

    2010-11-30

    National and international regulation of recombinant DNA-modified, or 'genetically engineered' (also referred to as 'genetically modified' or GM), organisms is unscientific and illogical, a lamentable illustration of the maxim that bad science makes bad law. Instead of regulatory scrutiny that is proportional to risk, the degree of oversight is actually inversely proportional to risk. The current approach to regulation, which captures for case-by-case review organisms to be field tested or commercialized according to the techniques used to construct them rather than their properties, flies in the face of scientific consensus. This approach has been costly in terms of economic losses and human suffering. The poorest of the poor have suffered the most because of hugely inflated development costs of genetically engineered plants and food. A model for regulation of field trials known as the 'Stanford Model' is designed to assess risks of new agricultural introductions - whether or not the organisms are genetically engineered, and independent of the genetic modification techniques employed. It offers a scientific, rational, risk-based basis for field trial regulations. Using this sort of model for regulatory review would not only better protect human health and the environment, but would also permit more expeditious development and more widespread use of new plants and seeds.

  10. An Integrated Concept on Earth and Environmental Sciences Postgraduate Education

    NASA Astrophysics Data System (ADS)

    Grosfeld, Klaus; Lohmann, Gerrit; Ladstätter-Weißenmayer, Annette; Burrows, John; Sprengel, Claudia; Bijma, Jelle

    2010-05-01

    Today's graduate and postgraduate education in the field of Earth System and Environmental Science is a highly interdisciplinary and inter-institutional challenge. The integration of observations, palaeoclimate data, and climate modelling requires networks and collaborations of experts and specialists in order to better understand natural climate variations over a broad range of timescales and disciplines, and to cope with the challenges of recent climate change. The existing research infrastructure at the Alfred-Wegener-Institut Bremerhaven (AWI), University of Bremen, and Jacobs University Bremen offers a unique research environment in north-western Germany to study past, present and future changes of the climate system, with special focus on high latitudinal processes. It covers all kind of disciplines, climate science, geosciences and biosciences, and provides a consistent framework for education and qualification of a new generation of expertly trained, internationally competitive master and PhD students. On postgraduate level, the Postgraduate Programme Environmental Physics (PEP) at the University of Bremen (www.pep.uni-bremen.de) educates the participants on the complex relationship between atmosphere, hydrosphere (ocean), cryosphere (ice region) and solid earth (land). Here, the learning of experimental methods in environmental physics at the most advanced level, numerical data analysis using supercomputers, and data interpretation via sophisticated methods prepare students for a scientific career. Within cooperation with the Ocean University of China (OUC) students are participating one year in the PEP programme during their master studies since 2006, to get finally a double degree of both universities. Based on this successful cooperation a similar programme is in preparation with the Lulea University of Technology, Sweden. The Earth System Science Research School (ESSReS) (www.earth-system-science.org) at the AWI enables PhD students from a variety of

  11. Investing in citizen science can improve natural resource management and environmental protection

    USGS Publications Warehouse

    McKinley, Duncan C.; Miller-Rushing, Abraham J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia K.; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2015-01-01

    Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States, particularly in ecology, the environmental sciences, and related fields of inquiry. In this report, we explore the current use of citizen science in natural resource and environmental science and decision making in the United States and describe the investments organizations might make to benefit from citizen science.

  12. The role of metadata in managing large environmental science datasets. Proceedings

    SciTech Connect

    Melton, R.B.; DeVaney, D.M.; French, J. C.

    1995-06-01

    The purpose of this workshop was to bring together computer science researchers and environmental sciences data management practitioners to consider the role of metadata in managing large environmental sciences datasets. The objectives included: establishing a common definition of metadata; identifying categories of metadata; defining problems in managing metadata; and defining problems related to linking metadata with primary data.

  13. Science Education for Environmental Awareness: Approaches to Integrating Cognitive and Affective Domains

    ERIC Educational Resources Information Center

    Littledyke, Michael

    2008-01-01

    Science education has an important part in developing understanding of concepts that underpin environmental issues, leading potentially to pro-environmental behaviour. However, science is commonly perceived negatively, leading to inappropriate and negative models of science that do not connect to people's experiences. The article argues that the…

  14. Developing Preservice Science Teachers' Self-Determined Motivation toward Environment through Environmental Activities

    ERIC Educational Resources Information Center

    Karaarslan, Guliz; Sungur, Semra; Ertepinar, Hamide

    2014-01-01

    The aim of this study was to develop pre-service science teachers' self-determined motivation toward environment before, after and five months following the environmental course activities guided by self-determination theory. The sample of the study was 33 pre-service science teachers who participated in an environmental science course. This…

  15. A Look at Environmental Education through Science Teachers' Perspectives and Textbooks' Coverage

    ERIC Educational Resources Information Center

    Oguz, Ayse; Fortner, Rosanne; Adadan, Emine; Gay, Kyle; Kim, Chan Kook; Yalcinoglu, Pelin; Bektasli, Behzat; Cook-Hoggarth, Karen L.; McDonald, Craig; Mishler, Kristy; Manzo, Lyndsey

    2004-01-01

    The importance of teaching environmental issues within science curriculum is getting more important, because environmental education offers an opportunity to learn not only science subject matter but also introduce social and cognitive skills. The purpose of this paper is to look at the relationship between science education and environmental…

  16. Review of orders and regulations requiring environmental protection

    SciTech Connect

    Kelly, E.; Cunningham, R.; Michael, D.

    1996-09-01

    With the increased awareness of and interest in potential ecological risks associated with past, current, and future Department of Energy (DOE) activities, DOE`s Defense Programs (DP) Office of Technical and Environmental Support sponsored a study to (1) evaluate the effectiveness of the current compliance-driven environmental protection and assessment efforts relative to ecological concerns; (2) explore the need for a more focused, integrated approach to address ecological impacts; and (3) identify the requirements for an integrated approach. The study explored four questions. (a) Which federal regulations and DOE orders either explicitly require ecological assessments or implicitly require them through environmental protection language? (b) What currently is being done at selected DOE facilities to implement these regulations and orders? (c) What are private sector industries doing in terms of ecological risk assessments and how do industry approaches and issues compare with those of DOE? (d) What, if anything, in addition to current efforts is needed to ensure the protection of ecological resources associated with DOE facilities, to support defensible decision making, and to improve efficiency? The results of this study are presented in a report titled {open_quotes}Integrated, Comprehensive Ecological Impact Assessments In Support of Department of Energy Decision Making{close_quotes}. This report is a companion document to that report. This report provides a more detailed discussion of the document reviews of the relevant environmental protection regulations and current and pending DOE orders. The main goal of the document reviews was to understand existing requirements for ecological data collection and impact assessments.

  17. Enhancing Earth Science And IT Literacy Through Environmental Science Information Technology Activities

    NASA Astrophysics Data System (ADS)

    Cuff, K. E.; Molinaro, M.

    2004-12-01

    The Environmental Science Information Technology Activities (ESITA) program provides grades 9 and 10 students with under-represented minority backgrounds in the East San Francisco Bay Area with real-world opportunities to learn about and apply information technologies through a series of project-based activities related to environmental science. Supported by the NSF Information Technology Experiences for Students and Teachers (ITEST) program, ESITA activities engage students in the use of newly acquired information technology (IT) skills and understandings while performing air and water quality research investigations. One project that ESITA students have become involved in relates to the currently relevant issue of elevated levels of lead found in drinking waters in Washington, D.C. Students based in the Bay Area have initiated and maintained E-mail correspondence with children who attend elementary schools in the D.C. area. After receiving a thorough explanation of required sampling procedures devised by the Bay Area students, the elementary school children have sent 500 ml water samples from their homes and schools to Berkeley along with information about the locations from which the water samples were collected. These samples were then prepared for lead analysis at Lawrence Hall of Science by ESITA students, who used resulting data to perform a preliminary assessment of the geospatial distribution of lead trouble spots throughout Washington, DC. Later, ESITA student scientists will work with students from the UC Berkeley School of Public Health to develop surveys and questionnaires that generate high quality information useful with regard to assessing the impact of the current lead crisis on younger children in the Washington, D.C. area. Through the application of new understandings to current, real-world environmental problems and issues such as that related to lead, positive changes in students' attitudes towards IT and science have occurred, which accompany

  18. Tackling the Dilemma of the Science-Policy Interface in Environmental Policy Analysis

    ERIC Educational Resources Information Center

    Cimorelli, Alan J.; Stahl, Cynthia H.

    2005-01-01

    Scientifically derived environmental indicators are central to environmental decision analysis. This article examines the interface between science (environmental indicators) and policy, and the dilemma of their integration. In the past, science has been shown to dominate many policy debates, usually with unfavorable results. The issue, therefore,…

  19. Learning Pathways in Environmental Science Education: The Case of Hazardous Household Items

    ERIC Educational Resources Information Center

    Malandrakis, George N.

    2006-01-01

    The present study draws on environmental science education to explore aspects of children's conceptual change regarding hazardous household items. Twelve children from a fifth-grade class attended a 300-h teaching module of environmentally oriented science activities aimed at assessing their awareness about the environmental and health hazards…

  20. 78 FR 33416 - Notification of a Public Meeting of the Science Advisory Board Environmental Justice Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... AGENCY Notification of a Public Meeting of the Science Advisory Board Environmental Justice Technical... Science Advisory Board (SAB) Staff Office announces a public meeting of the SAB Environmental Justice... Guidance for Assessing Environmental Justice in Regulatory Analysis (May 1, 2013). DATES: The...

  1. 76 FR 5594 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the National Advisory Environmental Health Sciences Council. The.... Agenda: Discussion of program policies and issues. Place: Nat. Inst. of Environmental Health...

  2. The Development of New User Research Capabilities in Environmental Molecular Science: Workshop Report

    SciTech Connect

    Felmy, Andrew R.; Baer, Donald R.; Fredrickson, Jim K.; Gephart, Roy E.; Rosso, Kevin M.

    2006-10-31

    On August 1, and 2, 2006, 104 scientists representing 40 institutions including 24 Universities and 5 National Laboratories gathered at the W.R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility, to outline important science challenges for the next decade and identify major capabilities needed to pursue advanced research in the environmental molecular sciences. EMSL’s four science themes served as the framework for the workshop. The four science themes are 1) Biological Interactions and Interfaces, 2) Geochemistry/Biogeochemistry and Surface Science, 3) Atmospheric Aerosol Chemistry, and 4) Science of Interfacial Phenomena.

  3. SECUREarth: A CROSSCUTTING INITIATIVE FOR THE GEO- AND ENVIRONMENTAL SCIENCES

    SciTech Connect

    Redden, George D; Bo Bodvarsson; Ernie Majer; Rick Colwell; Palmer, Carl D

    2006-09-01

    "..addressing critical energy and environmental problems will probably have a larger societal impact than curing cancer. Now we just have to convince Congress of that." - Steven Chu, Nobel Laureate and Director of the Lawrence Berkeley National Laboratory, in a 2005 presentation at the LBNL "..a new national energy program is essential and must be initiated with the intensity and commitment of the Manhattan Project, and sustained until this problem is solved" "Considering the urgency of the energy problem, the magnitude of the needed scientific breakthroughs, and the historic rate of scientific discovery, current efforts will likely be too little, too late." - 2003, Basic Energy Science Advisory Committee recommendation Over the next several decades, the U.S. will be facing critical decisions regarding extraction and utilization of the Earth’s resources and stewardship of the Earth. Demands for energy (e.g., fossil, geothermal) and useable water supplies, as well as for places and methods to deal with waste products (e.g., carbon dioxide, radioactive waste), are increasing rapidly. Moreover, the demands are usually interdependent and conflicting. Postponing decisions will become increasingly difficult and unpopular. Complex policy decisions (examples?) with long-range consequences that must be made in the near future will depend on several types of information: social, economic, political and scientific. To balance the urgency with which social, economic, and political information will be used, pertinent scientific information must also be readily available, practical, and possessed with high degree of certainty. Therefore, there is a vital need for timely and relevant scientific information related to energy, resource and environmental issues that will enable decision makers to make better decisions related to public policy. SECUREarth was launched several years ago as a proposition by scientists from DOE national laboratories, universities and industry who

  4. Within the Pipeline: Self-Regulated Learning and Academic Achievement among College Students in Science Courses

    ERIC Educational Resources Information Center

    DiBenedetto, Maria K.; Bembenutty, Hefer

    2011-01-01

    The present study examined the associations between self-regulated learning and science achievement and whether the academic self-regulation variables described, such as self-efficacy, delay of gratification, and help seeking, predict science achievement in courses deemed necessary for a major in science. It was hypothesized that students who do…

  5. The Views of the Classroom Teacher Candidates Related to the Environmental Science Course and the Environmental Sensibility

    ERIC Educational Resources Information Center

    Yenice, Nilgun; Saracaloglu, A. Seda; Karacaoglu, O. Cem

    2008-01-01

    This research has been performed to determine the effects of the "Environmental Science Course" within the curriculum of Classroom Teacher Program in Education Faculty on the environmental sensibilities of the students, and the ideas of the students related to the effectiveness of their environmental education. The research has been performed on…

  6. Pacific Northwest Environmental Executive Directors: Science SessionSeattle, WA Presentation

    EPA Science Inventory

    Science is one of many important factors that inform natural resource policy decisions. I will discuss past and current experiences on integrating science into environmental governance and stewardship, how some approaches have been more effective than others, how forecasted budg...

  7. Review of State Oil and Natural Gas Environmental Regulations

    SciTech Connect

    Steve Souders

    2005-09-27

    The State Review Process is a multi-stakeholder process administered by the State Review of Oil and Natural Gas Environmental Regulations (STRONGER), Inc. and is a continuation of work initiated by the Interstate Oil and Gas Compact Commission (IOGCC) in 1989. The goal of the process is to assist oil and gas producing states in identifying innovative regulatory approaches to reducing environmental and administrative problems associated with the management of oil and gas exploration and production (E&P) industry wastes and to comprehensively assess and improve implementation and enforcement of state regulatory programs. The process consists of initial reviews of states E&P waste management regulatory programs by multi-stakeholder review teams and follow-up reviews to assess states responses to the initial review teams recommendations. Participation of citizens groups and environmental organizations in the state review process is encouraged and environmental training seminars are provided to citizens groups and others who are concerned about E&P waste management practices and interested in participating in state reviews. To date, 20 state programs have been reviewed and nine of these states have had follow-up reviews. The state review process has resulted in significant improvement to states E&P waste management regulatory programs and increased benefits to human health and the environment.

  8. BEST: Bilingual environmental science training: Grades 1--2

    SciTech Connect

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of ten lessons covering surface tension in water, the life cycle of plants, the protective function of the skeletal system, functions and behavior of the circulatory system and how to measure its activities, structure and functions of the digestive system, simple food chains, how that many foods come from different plant parts, importance of a good diet, distinguishing living and non-living things, and the benefits of composting. 8 figs.

  9. A hyperspectral image analysis workbench for environmental science applications

    SciTech Connect

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-10-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or ``hyperspectral`` imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne`s Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image ``texture spectra`` derived from fractal signatures computed for subimage tiles at each wavelength.

  10. A hyperspectral image analysis workbench for environmental science applications

    SciTech Connect

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-01-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or hyperspectral'' imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne's Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image texture spectra'' derived from fractal signatures computed for subimage tiles at each wavelength.

  11. Schools In Board - Bridging Arctic Research And Environmental Science Education

    NASA Astrophysics Data System (ADS)

    Barber, D. G.; Barber, L.

    2008-12-01

    Schools on Board (www.arcticnet.ulaval.ca) was created in 2002 to address the outreach objectives of a network of Canadian scientists conducting research in the High Arctic. The program was piloted with great success with the 2004 research program called the Canadian Arctic Shelf Study (CASES). Since then, the S/B program continues as an integral outreach program of the Canadian Network of Centres of Excellence (NCE) known as ArcticNet. The primary objective of the program is to bridge Arctic climate change research with science and environmental education in the public school system. It is a vehicle for scientists and graduate students to share their research program with high schools and the general public. The program encourages schools to include Arctic Sciences into their science programs by linking Arctic research to existing curriculum, providing resources and opportunities to send high school students and teachers into the Arctic to participate in a science expedition on board the Canadian research icebreaker CCGS Amundsen. The field program is an adventure into Arctic research that exposes students and teachers to the objectives and methods of numerous science teams representing a number of research disciplines and institutions from across Canada and beyond. Face-to-face interactions with scientists of all levels (masters, PhD's, researchers, CRC chairs), hands-on experiences in the field and in the labs, and access to state-of-the-art scientific instrumentation, combine to create a powerful learning environment. In addition to hands-on research activities the program introduces participants to many aspects of Canada's North, including local knowledge related to climate change, culture, history, and politics - within the educational program on the ship and the planned visits to Northern communities. During International Polar Year (IPY) Schools on Board collaborated with international researchers and northern agencies from 11 countries to offer one

  12. 75 FR 40754 - Government in the Sunshine Act Regulations of the National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION 45 CFR Part 614 RIN 3145-AA53 Government in the Sunshine Act Regulations of the National Science Board AGENCY: National Science Board (NSB), National Science Foundation (NSF). ACTION: Direct final...

  13. Environmental Remediation Sciences Program at the Stanford Synchrotron Radiation Laboratory

    SciTech Connect

    Bargar, John R.

    2006-11-15

    Synchrotron radiation (SR)-based techniques provide unique capabilities to address scientific issues underpinning environmental remediation science and have emerged as major research tools in this field. The high intensity of SR sources and x-ray photon-in/photon-out detection allow noninvasive in-situ analysis of dilute, hydrated, and chemically/structurally complex natural samples. SR x-rays can be focused to beams of micron and sub-micron dimension, which allows the study of microstructures, chemical microgradients, and microenvironments such as in biofilms, pore spaces, and around plant roots, that may control the transformation of contaminants in the environment. The utilization of SR techniques in environmental remediation sciences is often frustrated, however, by an ''activation energy barrier'', which is associated with the need to become familiar with an array of data acquisition and analysis techniques, a new technical vocabulary, beam lines, experimental instrumentation, and user facility administrative procedures. Many investigators find it challenging to become sufficiently expert in all of these areas or to maintain their training as techniques evolve. Another challenge is the dearth of facilities for hard x-ray micro-spectroscopy, particularly in the 15 to 23 KeV range, which includes x-ray absorption edges of the priority DOE contaminants Sr, U, Np, Pu, and Tc. Prior to the current program, there were only two (heavily oversubscribed) microprobe facilities in the U.S. that could fully address this energy range (one at each of APS and NSLS); none existed in the Western U.S., in spite of the relatively large number of DOE laboratories in this region.

  14. 75 FR 39577 - Draft Supplemental Environmental Impact Statement on the Issuance of Annual Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... Fish and Wildlife Service Draft Supplemental Environmental Impact Statement on the Issuance of Annual... supplemental environmental impact statement (SEIS) for the issuance of annual regulations permitting the...; and disclose the direct, indirect, and cumulative environmental effects of the proposed action...

  15. 76 FR 17127 - Federal Acquisition Regulation; Information Collection; Environmentally Sound Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Regulation; Information Collection; Environmentally Sound Products AGENCIES: Department of Defense (DOD... extension of a currently approved information collection requirement concerning environmentally sound...., Washington, DC 20405, telephone (202) 501-4755. Please cite OMB control No. 9000-0134, Environmentally...

  16. Directing Environmental Science towards Disease Surveillance Objectives: Waterborne Pathogens in the Developed World

    NASA Astrophysics Data System (ADS)

    Bridge, J. W.; Oliver, D.; Heathwaite, A.; Banwart, S.; Going Underground: Human Pathogens in The Soil-Water Environment Working Group

    2010-12-01

    We present the findings and recommendations of a recent UK working group convened to identify research priorities in environmental science and epidemiology of waterborne pathogens. Robust waterborne disease surveillance in the developed world remains a critical need, despite broad success of regulation and water treatment. Recent estimates suggest waterborne pathogens result in between 12 million and 19.5 million cases of illness per year in the US alone. Across the developed world, the value of preventing acute waterborne disease in 150 million people using small community or single-user supplies is estimated at above US$ 4,671 million. The lack of a high quality, reliable environmental knowledge base for waterborne pathogens is a key obstacle. Substantial improvements in understanding of pathogen survival and transport in soils, sediments and water are required both to aid identification of environmental aetiologies for organisms isolated in disease cases and to support novel mitigation responses directed towards specific exposure risks. However, the focus in monitoring and regulation on non-pathogenic faecal indicator organisms (easier and cheaper to detect in water samples) creates a lack of motivation to conduct detailed environmental studies of the actual pathogens likely to be encountered in disease surveillance. Robust disease surveillance may be regarded as an essential objective in epidemiology; but it constitutes a significant shift in perspective for the water industry. The health sector can play a vital role in changing attitudes by explicitly placing value on environmental water research which looks beyond compliance with water quality standards towards informing disease surveillance and influencing health outcomes. The summary of critical research priorities we outline provides a focus for developing and strengthening dialogue between health and water sectors to achieve a common goal - sophisticated management of waterborne diseases through

  17. Improving Science and IT Literacy by Providing Urban-Based Environmental Science Research Opportunities

    NASA Astrophysics Data System (ADS)

    Cuff, K. E.; Corazza, L.; Liang, J.

    2007-12-01

    A U.C. Berkeley-based outreach program known as Environmental Science Information Technology Activities has been in operation over the past four years. The primary aim of the program is to provide opportunities for grades 9 and 10 students in diverse East San Francisco Bay Area communities to develop deeper understandings of the nature and conduct of science, which will increase their capacity to enroll and perform successfully in science, technology, engineering, and mathematics (STEM) courses in the future. Design of the program has been informed by recent research that indicates a close relationship between educational activities that promote the perception of STEM as being relevant and the ability to foster development of deeper conceptual understandings among teens. Accordingly, ESITA includes an important student-led environmental science research project component, which provides participants with opportunities to engage in research investigations that are directly linked to relevant, real-world environmental problems and issues facing their communities. Analysis of evidence gleaned from questionnaires, interviews with participants and specific assessment/evaluation instruments indicates that ESITA program activities, including after-school meetings, summer and school year research projects, and conference preparations and presentations has provided students with high-quality inquiry science experiences that increased their knowledge of STEM and IT concepts, as well as their understanding of the nature of the scientific enterprise. In addition, the program has achieved a high degree of success in that it has: enhanced participants' intellectual self-confidence with regard to STEM; developed deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; and improved attitudes toward STEM. Overall

  18. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    ERIC Educational Resources Information Center

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-01-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of…

  19. Quantitative Reasoning in Environmental Science: A learning progression

    NASA Astrophysics Data System (ADS)

    Mayes, Robert Lee; Harris Forrester, Jennifer; Schuttlefield Christus, Jennifer; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-03-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it is the standard method for the development of learning progressions. The learning progression was informed by interviews of 39 middle and high school students from 5 schools in the Western USA using QR assessments. To inform the lower anchor, intermediate levels, and upper anchor of achievement for the QR learning progression, an extensive review of the literature on QR was conducted. A learning progression framework was then hypothesized. To confirm the framework, three QR assessments within the context of environmental literacy were constructed. The interviews were conducted using these QR assessments. The results indicated that students do not actively engage in quantitative discourse without prompting and display a low level of QR ability. There were no consistent increases on the QR learning progression either across grade levels or across scales of micro/atomic, macro, and landscape.

  20. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    SciTech Connect

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16).

  1. BEST: Bilingual environmental science training: Grades 5--6

    SciTech Connect

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of ten lessons that cover the following topics: safe and unsafe conditions for chemical combinations; growth rates and environmental needs of plants; photosynthesis and effects of ozone-layer depletion; the circulatory system, the importance of exercise to the heart, and selected circulatory diseases; the nervous system; specific nutritional values of the different food groups; significance of including, reducing, or eliminating certain foods for a healthy diet; effects of some common chemicals on plant growth and animal life; plants` and animals` natural habitats; and dangers of non-biodegradable garbage.

  2. Environmental protection: researches in National Institute of Radiological Sciences.

    PubMed

    Fuma, Shoichi; Ban-nai, Tadaaki; Doi, Masahiro; Fujimori, Akira; Ishii, Nobuyoshi; Ishikawa, Yuji; Kawaguchi, Isao; Kubota, Yoshihisa; Maruyama, Kouichi; Miyamoto, Kiriko; Nakamori, Taizo; Takeda, Hiroshi; Watanabe, Yoshito; Yanagisawa, Kei; Yasuda, Takako; Yoshida, Satoshi

    2011-07-01

    Some studies for radiological protection of the environment have been made at the National Institute of Radiological Sciences (NIRS). Transfer of radionuclides and related elements has been investigated for dose estimation of non-human biota. A parameter database and radionuclide transfer models have been also developed for the Japanese environments. Dose (rate)-effect relationships for survival, growth and reproduction have been investigated in conifers, Arabidopsis, fungi, earthworms, springtails, algae, duckweeds, daphnia and medaka. Also genome-wide gene expression analysis has been carried out by high coverage expression profiling (HiCEP). Effects on aquatic microbial communities have been studied in experimental ecosystem models, i.e., microcosms. Some effects were detected at a dose rate of 1 Gy day(-1) and were likely to arise from interspecies interactions. The results obtained at NIRS have been used in development of frameworks for environmental protection by some international bodies, and will contribute to environmental protection in Japan and other Asian countries. PMID:21502302

  3. Information Fusion Issues in the UK Environmental Science Community

    NASA Astrophysics Data System (ADS)

    Giles, J. R.

    2010-12-01

    The Earth is a complex, interacting system which cannot be neatly divided by discipline boundaries. To gain an holistic understanding of even a component of an Earth System requires researchers to draw information from multiple disciplines and integrate these to develop a broader understanding. But the barriers to achieving this are formidable. Research funders attempting to encourage the integration of information across disciplines need to take into account culture issues, the impact of intrusion of projects on existing information systems, ontologies and semantics, scale issues, heterogeneity and the uncertainties associated with combining information from diverse sources. Culture - There is a cultural dualism in the environmental sciences were information sharing is both rewarded and discouraged. Researchers who share information both gain new opportunities and risk reducing their chances of being first author in an high-impact journal. The culture of the environmental science community has to be managed to ensure that information fusion activities are encouraged. Intrusion - Existing information systems have an inertia of there own because of the intellectual and financial capital invested within them. Information fusion activities must recognise and seek to minimise the potential impact of their projects on existing systems. Low intrusion information fusions systems such as OGC web-service and the OpenMI Standard are to be preferred to whole-sale replacement of existing systems. Ontology and Semantics - Linking information across disciplines requires a clear understanding of the concepts deployed in the vocabulary used to describe them. Such work is a critical first step to creating routine information fusion. It is essential that national bodies, such as geological surveys organisations, document and publish their ontologies, semantics, etc. Scale - Environmental processes operate at scales ranging from microns to the scale of the Solar System and

  4. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  5. The environmental virtual observatory pilot (EVOp): a cloud solution demonstrating effective science for efficient decisions

    NASA Astrophysics Data System (ADS)

    Gurney, R. J.; Emmett, B.; McDonald, A.

    2012-12-01

    Environmental managers and policy makers face a challenging future trying to accommodate growing expectations of environmental well-being, while subject to maturing regulation, constrained budgets and a public scrutiny that expects easier and more meaningful access to data and decision logic. To support such a challenge requires new tools and new approaches. The EVOp is an initiative from the UK Natural Environment Research Council (NERC) designed to deliver proof of concept for these new tools and approaches. A series of exemplar 'big catchment science questions' are posed and the prospects for their solution are assessed. These are then used to develop cloud solutions for serving data, models, visualisation and analysis tools to scientists, regulators, private companies and the public, all of whom have different expectations of what environmental information is important. Approaches are tested regularly with users using SCRUM. The VO vision encompasses seven key ambitions: i. being driven by the need to contribute to the solution of major environmental issues that impinge on, or link to, catchment science ii. having the flexibility and adaptability to address future problems not yet defined or fully clarified iii. being able to communicate issues and solutions to a range of audiences iv. supporting easy access by a variety of users v. drawing meaningful information from data and models and identifying the constraints on application in terms of errors, uncertainties, etc vi. adding value and cost effectiveness to current investigations by supporting transfer and scale adjustment thus limiting the repetition of expensive field monitoring addressing essentially the same issues in varying locations vii. promoting effective interfacing of robust science with a variety of end users by using terminology or measures familiar to the user (or required by regulation), including financial and carbon accounting, whole life or fixed period costing, risk as probability or as

  6. The impact of environmental education on sixth-grade students' science achievement

    NASA Astrophysics Data System (ADS)

    Clavijo, Katherine Gillespie

    This study investigated the relationship between student involvement in environmental education (EE) and science achievement. The performance of students engaged in fifth and sixth grade classrooms identified as incorporating environmental education into science instruction was compared to that of students from similar classrooms that use traditional science instruction. Data from 4655 sixth grade students were analyzed using hierarchical multiple regression model to determine if environmental education improves prediction of science achievement beyond that afforded by differences in socioeconomic status and previous science achievement. The results indicated that environmental education, when integrated into science instruction, does not improve prediction of CTBS science scores beyond that afforded by differences in previous achievement in science and socioeconomic status. Previous achievement and socioeconomic status were the only two variables that predicted CTBS science subtest scores. The variable previous achievement (Score on fourth grade KIRIS test) explained 27.6% of the variance in CTBS test scores. The variable socioeconomic status (participation in free and reduced lunch program) explained 7.1% of the variance in CTBS science test scores. Participation in a fifth, sixth or both grades environmental education classroom did not add to the prediction of CTBS scores. This study illustrates that environmental education, while not correlated with high science achievement, does not correlate with low science achievement. Environmental education research may benefit from similar studies, which utilize alternative forms of student assessment. This study has implications for researchers interested in examining the impact of environmental education on science achievement, as it provides evidence for the importance of including background characteristics, such as socioeconomic status and previous achievement, in research models. This study provides an example of

  7. Environmental-stress-induced Chromatin Regulation and its Heritability

    PubMed Central

    Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K

    2014-01-01

    Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives. PMID:25045581

  8. Environmental-stress-induced Chromatin Regulation and its Heritability.

    PubMed

    Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K

    2014-01-15

    Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives.

  9. Regulation of indoor air quality: The last frontier of environmental regulation

    SciTech Connect

    Dickson, R.B.

    1994-12-31

    Indoor air pollution (IAP) is ranked by the Environmental Protection Agency (EPA) among the top five environmental risks to human health. The World Health Organization estimates that nearly one in every six commercial buildings in the United States suffers from sick-building syndrome and that occupants of another one in twelve suffer from building-related illnesses. Indoor air quality (IAQ) problems cost American business $10 billion per year through lowered productivity, absenteeism, and medical costs. Yet despite the importance and high cost of IAQ problems, indoor air is not yet specifically addressed in any federal regulatory program. The reason probably is because indoor air is a quanitatively different environment in which traditional modes of regulation, based on pollutant-by pollutant risk assessments, are of limited utility. This paper covers the following topics: four factors influencing IAQ regulation; EPA regulation of indoor air; the role of the consumer product safety commission; OSHA and IAQ issues; state regulation and economic concerns; the pressure for legislation.

  10. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    SciTech Connect

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  11. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    ERIC Educational Resources Information Center

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  12. Science, Technology and the Environment: The Views of Urban Children and Implications for Science and Environmental Education in Korea

    ERIC Educational Resources Information Center

    Kim, Mijung

    2011-01-01

    With science and technology playing profound roles in mediating human relationships with the environment, a key question concerns which expectations and views of science and technology have emerged and prevail in visions of the social and environmental development of contemporary societies. This study engages this question through examining…

  13. Effects of Science Interest and Environmental Responsibility on Science Aspiration and Achievement: Gender Differences and Cultural Supports

    ERIC Educational Resources Information Center

    Chiu, Mei-Shiu

    2010-01-01

    The aim of the present study is twofold: (1) to investigate gender differences in the effects of science interest and environmental responsibility on science aspiration and achievement and (2) to explore the relations between cultural supports (macroeconomic and gender equality) and both boys' and girls' tendencies to integrate the aforementioned…

  14. Mars Environmental Survey (MESUR): Science objectives and mission description

    NASA Technical Reports Server (NTRS)

    Hubbard, G. Scott; Wercinski, Paul F.; Sarver, George L.; Hanel, Robert P.; Ramos, Ruben

    1992-01-01

    In-situ observations and measurements of Mars are objectives of a feasibility study beginning at the Ames Research Center for a mission called the Mars Environmental SURvey (MESUR). The purpose of the MESUR mission is to emplace a pole-to-pole global distribution of landers on the Martian surface to make both short- and long-term observations of the atmosphere and surface. The basic concept is to deploy probes which would directly enter the Mars atmosphere, provide measurements of the upper atmospheric structure, image the local terrain before landing, and survive landing to perform meteorology, seismology, surface imaging, and soil chemistry measurements. MESUR is intended to be a relatively low-cost mission to advance both Mars science and human presence objectives. Mission philosophy is to: (1) 'grow' a network over a period of years using a series of launch opportunities, thereby minimizing the peak annual costs; (2) develop a level-of-effort which is flexible and responsive to a broad set of objectives; (3) focus on science while providing a solid basis for human exploration; and (4) minimize project cost and complexity wherever possible. In order to meet the diverse scientific objectives, each MESUR lander will carry the following strawman instrument payload consisting of: (1) Atmospheric structure experiment, (2) Descent and surface imagers, (3) Meteorology package, (4) Elemental composition instrument, (5) 3-axis seismometer, and (6) Thermal analyzer/evolved gas analyzer. The feasibility study is primarily to show a practical way to design an early capability for characterizing Mars' surface and atmospheric environment on a global scale. The goals are to answer some of the most urgent questions to advance significantly our scientific knowledge about Mars, and for planning eventual exploration of the planet by robots and humans.

  15. 77 FR 9673 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is hereby given of a meeting of the Board of Scientific Counselors, NIEHS. The meeting will be... and projects conducted by the National Institute of Environmental Health Sciences,...

  16. 76 FR 57065 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice....), notice is ] hereby given of a meeting of the Board of Scientific Counselors, NIEHS. The meeting will be... and projects conducted by the National Institute of Environmental Health Sciences,...

  17. From Yeast to Hair Dryers: Effective Activities for Teaching Environmental Sciences.

    ERIC Educational Resources Information Center

    Nolan, Kathleen A.

    2001-01-01

    Reports on four experiments and/or activities that were used to stimulate student interest in environmental science. Makes the case that varying classroom activities in the environmental science classroom makes the teaching and learning experience more alive and vital to both instructor and student. (Author/MM)

  18. A Module-Based Environmental Science Course for Teaching Ecology to Non-Majors

    ERIC Educational Resources Information Center

    Smith, Geoffrey R.

    2010-01-01

    Using module-based courses has been suggested to improve undergraduate science courses. A course based around a series of modules focused on major environmental issues might be an effective way to teach non-science majors about ecology and ecology's role in helping to solve environmental problems. I have used such a module-based environmental…

  19. Beyond Contradiction: Exploring the Work of Secondary Science Teachers as They Embed Environmental Education in Curricula

    ERIC Educational Resources Information Center

    Steele, Astrid

    2011-01-01

    Traditional secondary science education draws on markedly different pedagogies than those made use of in contemporary environmental education, therefore, embedding environmental education within secondary science curriculum presents both epistemological and practical difficulties for teachers. This ethnographic study examines the work of six…

  20. Exploring Mars and Beyond: Science Fiction a Resource for Environmental Education.

    ERIC Educational Resources Information Center

    Miller, Ryder W.

    The purpose of this article is to show how traditional science fiction, an empowering literature of social criticism, can be used by environmental educators to reach the traditional goals of environmental education. The sub-genres of science fiction are discussed along with ways in which they can be used to reach certain goals of environmental…

  1. Thinking/Acting Locally/Globally: Western Science and Environmental Education in a Global Knowledge Economy.

    ERIC Educational Resources Information Center

    Gough, Noel

    2002-01-01

    Appraises a number of approaches to 'thinking globally' in environmental education with particular reference to popular assumptions about the universal applicability of Western science. Suggests that the contribution of Western science to understanding and resolving environmental problems might be enhanced by seeing it as one among many local…

  2. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    SciTech Connect

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  3. Education, Learning, and Communications, Undergraduate Studies in Environmental Science, Session 1.

    ERIC Educational Resources Information Center

    Hafner, Everett M.; And Others

    This set of two cassette tapes resulted from the 1969 AAAS conference on undergraduate environmental science. The topics selected for the seminar were: (1) What is the Field of Environmental Science and how does it relate to the Ecological crisis? (2) What should be the role and the goals of the educational institutions in dealing with these…

  4. Applying Sociology to Policy: Social Science and the Environmental Impact Statement.

    ERIC Educational Resources Information Center

    Freudenburg, William R.; Keating, Kenneth M.

    1985-01-01

    Reviews legal requirements for use of social science expertise in environmental impact statements and reasons for the general failure to include such input. Explores possibilities for improving social science involvement including legal challenges, cooperation with environmental and public interest groups, objective research, and more adversarial…

  5. 76 FR 19378 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    .... Institute of Environmental Health Sciences, Office of Program Operations, Scientific Review Branch, P.O. Box..., Research Triangle Park, NC 27709, (Virtual Meeting). Contact Person: RoseAnne M. McGee, Associate.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30, Research Triangle Park, NC 27709,...

  6. Bringing the Tools of Big Science to Bear on Local Environmental Challenges

    ERIC Educational Resources Information Center

    Bronson, Scott; Jones, Keith W.; Brown, Maria

    2013-01-01

    We describe an interactive collaborative environmental education project that makes advanced laboratory facilities at Brookhaven National Laboratory accessible for one-year or multi-year science projects for the high school level. Cyber-enabled Environmental Science (CEES) utilizes web conferencing software to bring multi-disciplinary,…

  7. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    ERIC Educational Resources Information Center

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  8. 78 FR 32259 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences... Environmental Health Sciences Special Emphasis Panel, July 15, 2013, 8:00 a.m. to July 15, 2013, 5:00 p.m... on May 20, 2013, 78 FR 97. The meeting notice is amended to change the location of the meeting...

  9. 78 FR 47715 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the Environmental Health Sciences Review Committee, July 24, 2013, 08:00 a.m. to July 26, 2013, 02:00 p.m., Double Tree by...

  10. 78 FR 35637 - National Institute of Environmental Health Sciences; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Environmental Health Sciences Special...

  11. 75 FR 57280 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... Toxicology. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W...: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander..., Rodbell Auditorium, 111 T. W. Alexander Drive, Conference Rooms 101 A, B, and C, Research Triangle...

  12. Global atmospheric change and research needs in environmental health sciences

    SciTech Connect

    Goldstein, B.D. ); Reed, D.J. )

    1991-12-01

    On November 6-7, 1989, the National Institute of Environmental Health Sciences (NIEHS) held a conference on Global Atmospheric Change and Human Health. As a result, and in the months since this conference, many important areas of research have been identified with regard to the impacts of climatic changes on human health. To develop comprehensive research programs that address important human health issues related to global warming, it is necessary to begin by recognizing that some of the health effects will be direct such as those due to temperature changes, and others will be indirect consequences of environmental alterations resulting in crop loss, changing disease vectors, population migration, etc. It should also be recognized that the conditions leading to global warming have importance to human health and the environment other than through increasing concentrations of CO[sub 2] in the atmosphere, rising surface temperatures, and rising sea levels. Much of the increase in CO[sub 2] in the atmosphere is due to the increased combustion of fossil fuels for transportation and electric power production. Over the next 30 years, the demand for electrical power is expected to grow at a rate of 2 to 4% per year in the United States alone, and even faster growth is likely for developing countries. Much of this energy will be derived from the combustion of fossil fuels, including coal, which result in pollutant emissions to the air such as metals, radioactivity, SO[sub x], NO[sub x], and particles. Therefore, with increasing concentrations of CO[sub 2] there will not only be the effects of global warming on health, but also increasing concentrations of many serious air pollutants in urban areas, including the precursors of acid rain and acid deposition over large regional areas.

  13. Heterogeneity of the environmental regulation of industrial wastewater: European wineries.

    PubMed

    Román-Sánchez, Isabel M; Aznar-Sánchez, José A; Belmonte-Ureña, Luis J

    2015-01-01

    The European legislation of the pollution of industrial wastewater shows a high degree of heterogeneity. This fact implies that there is a market failure with relevant consequences. Within the European Union, each Member State performs a specific transposition of the Water Framework Directive 2000/60. The member states introduce different sanitation fees to correct water pollution. In this paper, the case of the European wine industry is analyzed. It studies the sanitation fees of the five major wine producing countries: France, Italy, Spain, Germany and Portugal. Results show significant differences among the wastewater fees and the study reveals how such heterogeneity leads to relevant market distortions. The research concludes that more homogeneous environmental regulation would promote more sustainable wine production processes with more efficient water management and purification systems, as well as the introduction of cutting edge technologies.

  14. Heterogeneity of the environmental regulation of industrial wastewater: European wineries.

    PubMed

    Román-Sánchez, Isabel M; Aznar-Sánchez, José A; Belmonte-Ureña, Luis J

    2015-01-01

    The European legislation of the pollution of industrial wastewater shows a high degree of heterogeneity. This fact implies that there is a market failure with relevant consequences. Within the European Union, each Member State performs a specific transposition of the Water Framework Directive 2000/60. The member states introduce different sanitation fees to correct water pollution. In this paper, the case of the European wine industry is analyzed. It studies the sanitation fees of the five major wine producing countries: France, Italy, Spain, Germany and Portugal. Results show significant differences among the wastewater fees and the study reveals how such heterogeneity leads to relevant market distortions. The research concludes that more homogeneous environmental regulation would promote more sustainable wine production processes with more efficient water management and purification systems, as well as the introduction of cutting edge technologies. PMID:26524460

  15. Molecular targets of epigenetic regulation and effectors of environmental influences

    SciTech Connect

    Choudhuri, Supratim; Cui Yue; Klaassen, Curtis D.

    2010-06-15

    The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.

  16. Trends in the Use of Supplementary Materials in Environmental Science Journals

    ERIC Educational Resources Information Center

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  17. BEST: Bilingual environmental science training, Grades 3--4

    SciTech Connect

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references with annotations in English. This booklet includes descriptions of ten lessons that cover the following topics: the identification of primary and secondary colors in the environment; recognizing the basic food tastes; the variety of colors that can be made by crushing plant parts; the variety of animal life present in common soil; animal tracks; evidence of plant and animal life in the local environment; recycling, reducing, and composting as alternative means of garbage disposal; waste associated with packaging; paper- recycling principles; and how organic waste can be composted into usable soil. 2 figs.

  18. Climatology and archaeoastronomy - Environmental anthropology, a multidisciplinary exact science

    NASA Astrophysics Data System (ADS)

    Gregori, G. P.; Gregori, L. G.

    2003-04-01

    During the last few tens thousand years, a dominating unprecedented "virus" - the human kind - controlled climate. It widespread over the Earth's surface and implied both short- and long-range effects in space and time. Phenomena can be expressively investigated like cycles of climate and civilisation, by which the entire human history has to be reinterpreted in terms of environmental anthropology. This is just much like every classical and conventional exact science, based on experimental quantitative observations. Archaeoastronomy is the "instrumental" tool for exploiting such measurements (much like a particle accelerator is the instrument for high-energy subnuclear physics, or a telescope for astrophysics). Its comparative wealth of information is even much larger. The anthropic factor is one leader in climate control, and such understanding helps in facing present disquieting challenges of society. Deontologically, such multidisciplinary studies are a "must" for every savant in order to avoid (i) misunderstanding that can lead to false or non-sense concerns, and (ii) correct underestimating of the real severe challenges and hazards.

  19. Investigation of Environmental Topics in the Science and Technology Curriculum and Textbooks in Terms of Environmental Ethics and Aesthetics

    ERIC Educational Resources Information Center

    Lacin Simsek, Canan

    2011-01-01

    In order to solve environmental problems, it is thought that education should be connected with values. For this reason, it is emphasized that environmental issues should be integrated with ethical and aesthetic values. In this study, 6th, 7th and 8th grade science and technology curriculum and textbooks were investigated to find out how much…

  20. Secondary Education Through Health -- environmental health curriculum: A Superfund science literacy outreach project

    SciTech Connect

    Sherman, L.R.

    1996-12-31

    Inner-city high school students are disproportionately affected by health problems that stem from environmental conditions. Also, they are not adequately prepared in Science -- especially in the concepts, methods, and procedures of environmental-health science research -- and are generally unaware of the career opportunities in this field. A Superfund program was developed to increase Science literacy and expand career knowledge in environmental health among a cohort of minority high school students from New York City. The year-round program features lectures, laboratory tours, seminars, investigations, and research taught by faculty and Superfund investigators at Mount Sinai`s Environmental Health Sciences Center. The students made remarkable progress in terms of gaining environmental health knowledge, laboratory and scientific research skills, and awareness of environmental health careers.

  1. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What regulations apply to the Minority Science and Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE...

  2. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What regulations apply to the Minority Science and Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE...

  3. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What regulations apply to the Minority Science and Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE...

  4. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply to the Minority Science and Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE...

  5. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply to the Minority Science and Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE...

  6. Applying gene flow science to environmental policy needs: a boundary work perspective.

    PubMed

    Ridley, Caroline E; Alexander, Laurie C

    2016-08-01

    One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers. PMID:27468309

  7. Shaping Self-Regulation in Science Teachers' Professional Growth: Inquiry Skills

    ERIC Educational Resources Information Center

    Michalsky, Tova

    2012-01-01

    This study examined 188 preservice science teachers' professional growth along three dimensions--self-regulated learning (SRL) in a science pedagogical context, pedagogical content knowledge, and self-efficacy in teaching science--comparing four learner-centered, active-learning, peer-collaborative environments for learning to teach higher order…

  8. Environmental Sciences Division annual progress report for period ending September 30, 1992

    SciTech Connect

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  9. Environmental Sciences Division annual progress report for period ending September 30, 1992

    SciTech Connect

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  10. National Institute of Environmental Health Sciences Kids' Pages

    MedlinePlus

    ... Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works The Natural World Games Brainteasers Puzzles Riddles Songs Activities Be a Scientist Coloring Science Experiments Stories Lessons Topics Games Activities Lessons MENU ...

  11. The interaction of Michigan Environmental Education curriculum, science teachers' pedagogical content knowledge, and environmental action competence

    NASA Astrophysics Data System (ADS)

    Alvarado, Angelita P.

    One of the main goals of Environmental Education (EE) is to develop people's environmental stewardship, which includes people's capacity to take environmental action -- their action competence (AC). The purposes of my study were to characterize the interactions found in an EE curriculum, science teachers' pedagogical content knowledge (PCK), and their use of AC, and to identify factors that appear to be associated with the use of AC in curriculum and instruction. My study was divided into three parts: (1) content analysis of the Water Quality Unit of the Michigan Environmental Education Curriculum Support (MEECS, nine lessons); (2) a survey of MEECS training participants (N=131 [28.4% response rate]); and (3) an in-depth examination of pedagogical content strategies and use of AC of four science teachers using class observations (December 2007 -- April 2008: N=38), semi-structured interviews (October 2007 -- April 2008: N=20), Content Representations (CoRes: N=6), and surveys (N=4). The extent that individual elements of AC occurred in each data source was variable; that is, some elements were more prevalent in one data source than another. Of the five elements of AC, knowledge/insight, planning and action experiences, and critical thinking and reflection were more prevalent than commitment and visions in two of the three data sources, namely, the Water Quality Unit (EE curriculum) and the four teachers. Visions was consistently the least prevalent element of AC in each of the three data sources. In general, the types of and/or extent that goals and beliefs, pedagogical approaches, instructional methods, student skills foci, and manifestations of PCK occurred helped explain the prevalence of individual elements of AC across the data sources. For example, use of activity-driven, project-based, and process-oriented pedagogical approaches appeared important for engaging students in real world planning and action experiences. Other factors that appeared to be

  12. Tales from a troubled marriage: science and law in environmental policy.

    PubMed

    Houck, Oliver

    2003-12-12

    Early environmental policy depended on science, with mixed results. Newer approaches continue to rely on science to identify problems and solve them, but use other mechanisms to set standards and legal obligations. Given the important role that science continues to play, however, several cautionary tales are in order concerning "scientific management," "good science," the lure of money, and the tension between objectivity and involvement in important issues of our time.

  13. Environmental Education in the Elementary School. A Selection of Articles Reprinted from Science and Children.

    ERIC Educational Resources Information Center

    Shugrue, Sylvia K., Comp.; Lamberton, Berenice, Comp.

    Included in this document are a selection of articles reprinted from SCIENCE AND CHILDREN. They focus on environmental education in the elementary school, and present a number of environmental perspectives. Those concerning general or background information are: an examination of environmental education: children's attitudes about the environment;…

  14. Teaching Science or Cultivating Values? Conservation NGOs and Environmental Education in Costa Rica

    ERIC Educational Resources Information Center

    Blum, Nicole

    2009-01-01

    A key ongoing debate in environmental education practice and its research relates to the content and goals of environmental education programmes. Specifically, there is a long history of debate between advocates of educational perspectives that emphasise the teaching of science concepts and those that seek to more actively link environmental and…

  15. An Investigation of the Goals for an Environmental Science Course: Teacher and Student Perspectives

    ERIC Educational Resources Information Center

    Blatt, Erica N.

    2015-01-01

    This investigation uses an ethnographic case study approach to explore the benefits and challenges of including a variety of goals within a high school Environmental Science curriculum. The study focuses on environmental education (EE) goals established by the Belgrade Charter (1975), including developing students' environmental awareness and…

  16. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    USGS Publications Warehouse

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  17. Teaching Environmental Soil Science to Students older than 55

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Civera, Cristina; Giménez-Morera, Antonio; Burguet, María

    2014-05-01

    The life expectancy growth is a general trend for the world population, which translates into an increase of people older than 55 years in Western societies. This entails to the rise of health problems as well as large investments in healthcare. In general, we are spectators Y tambe voldria saber si ens pots fer una asse of how a large group of citizens have a new life after retirement. The XXI century societies are facing the problem of the need of a healthy population, even after retirement. There is a need in developing new strategies to allow those citizens to improve their knowledge of the environmental changes. The research in Soil Science and related disciplines is the strategy we are using on the Geograns program to inform the students (older than 55) about the changes the Earth and the Soil System are suffering. And this should be done in a healthy and active teaching environment. The NAUGRAN program is being developed by the University of Valencia for more than 10 years and shows the advances on education for senior students. Within this program, Geograns is bringing the environmentalist ideas to the students. This is a difficult task as those students were born in a society were nature was created to be exploited and not to be conserved (e.g. Green Revolution, agricultural transformations of the 60's in Spain). This is the reason why the University of Valencia developed at the end of the 90's a program to teach students older than 55. This paper shows the advances on new strategies developed during 2013 with a group of these senior students. The main strategy was to take the students to visit the nature and to explain the functioning of the Earth and Soil System. Those visits were organized with the collaboration of scientist, environmentalist, farmers and technicians; and the guiding thread was trekking. This mix showed our students different views and sides of the same phenomena (e.g. tillage operations, soil erosion problems, water quantity and

  18. A confluence of traditions: Examining teacher practice in the merging of secondary science and environmental education

    NASA Astrophysics Data System (ADS)

    Astrid, Steele

    Embedding environmental education within secondary science curriculum presents both philosophical and practical difficulties for teachers. This ethnographic/narrative study, with its methodology grounded in eco-feminism and realism/constructivism, examines the work of six secondary science teachers as they engage in an action research project focused on merging environmental education in their science lessons. Over the course of several months the teachers examine and discuss their views and their professional development related to the project. In the place of definitive conclusions, eight propositions relating the work of secondary science teachers to environmental education, form the basis for a discussion of the implications of the study. The implications are particularly relevant to secondary schools in Ontario, Canada, where the embedding of environmental education in science studies has been mandated.

  19. Environmental Regulation of Heterosis in the Allopolyploid Arabidopsis suecica.

    PubMed

    Solhaug, Erik M; Ihinger, Jacie; Jost, Maria; Gamboa, Veronica; Marchant, Blaine; Bradford, Denise; Doerge, R W; Tyagi, Anand; Replogle, Amy; Madlung, Andreas

    2016-04-01

    Allopolyploids are organisms possessing more than two complete sets of chromosomes from two or more species and are frequently more vigorous than their progenitors. To address the question why allopolyploids display hybrid vigor, we compared the natural allopolyploid Arabidopsis suecica to its progenitor species Arabidopsis thaliana and Arabidopsis arenosa. We measured chlorophyll content, CO2 assimilation, and carbohydrate production under varying light conditions and found that the allopolyploid assimilates more CO2 per unit chlorophyll than either of the two progenitor species in high intensity light. The increased carbon assimilation corresponds with greater starch accumulation, but only in strong light, suggesting that the strength of hybrid vigor is dependent on environmental conditions. In weaker light A. suecica tends to produce as much primary metabolites as the better progenitor. We found that gene expression of LIMIT DEXTRINASE1, a debranching enzyme that cleaves branch points within starch molecules, is at the same level in the allopolyploid as in the maternal progenitor A. thaliana and significantly more expressed than in the paternal progenitor A. arenosa. However, expression differences of β-amylases and GLUCAN-WATER DIKINASE1 were not statistically significantly elevated in the allopolyploid over progenitor expression levels. In contrast to allopolyploids, autopolyploid A. thaliana showed the same photosynthetic rate as diploids, indicating that polyploidization alone is likely not the reason for enhanced vigor in the allopolyploid. Taken together, our data suggest that the magnitude of heterosis in A. suecica is environmentally regulated, arises from more efficient photosynthesis, and, under specific conditions, leads to greater starch accumulation than in its progenitor species. PMID:26896394

  20. 76 FR 28757 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... of the Secretary Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Notice of Availability (NOA) of Revised Defense Logistics Agency Regulation. SUMMARY: The Defense...

  1. Integrating Social Science, Environmental Science, and Engineering to Understand Vulnerability and Resilience to Environmental Hazards in the Bengal Delta

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; Ackerly, B.; Goodbred, S. L.

    2013-12-01

    the delta. Assessing the impacts of climate change and other environmental stresses on delta populations and designing effective responses will require understanding interactions between the physical and human environments at multiple scales. As part of a multidisciplinary research project drawing on sedimentology, hydrology, remote-sensing, engineering, political science, sociology, psychology, and anthropology we are studying the interactions of human and natural systems in coastal Bangladesh to understand conditions that contribute to vulnerability and resilience at both the household and the community level. Building on Elinor Ostrom's socioecological systems approach, we have developed a theoretical framework for studying vulnerability and resilience when coupled human-natural systems are subject to significant changes and exogenous forcings. We will report on this framework using examples of successful and unsuccessful interventions to manage or mitigate exposure to environmental hazards, and we will also report on progress toward using our framework to identify and understand factors that contribute to the success or failure of such projects.

  2. Symposium on Integrating the Science of Environmental Justice into Decision-Making at the Environmental Protection Agency: An Overview

    PubMed Central

    Payne-Sturges, Devon; Garcia, Lisa; Lee, Charles; Zenick, Hal; Grevatt, Peter; Sanders, William H.; Case, Heather; Dankwa-Mullan, Irene

    2011-01-01

    In March 2010, the Environmental Protection Agency (EPA) collaborated with government and nongovernmental organizations to host a groundbreaking symposium, “Strengthening Environmental Justice Research and Decision Making: A Symposium on the Science of Disproportionate Environmental Health Impacts.” The symposium provided a forum for discourse on the state of scientific knowledge about factors identified by EPA that may contribute to higher burdens of environmental exposure or risk in racial/ethnic minorities and low-income populations. Also featured were discussions on how environmental justice considerations may be integrated into EPA's analytical and decision-making frameworks and on research needs for advancing the integration of environmental justice into environmental policymaking. We summarize key discussions and conclusions from the symposium and briefly introduce the articles in this issue. PMID:22028456

  3. Symposium on integrating the science of environmental justice into decision-making at the Environmental Protection Agency: an overview.

    PubMed

    Nweke, Onyemaechi C; Payne-Sturges, Devon; Garcia, Lisa; Lee, Charles; Zenick, Hal; Grevatt, Peter; Sanders, William H; Case, Heather; Dankwa-Mullan, Irene

    2011-12-01

    In March 2010, the Environmental Protection Agency (EPA) collaborated with government and nongovernmental organizations to host a groundbreaking symposium, "Strengthening Environmental Justice Research and Decision Making: A Symposium on the Science of Disproportionate Environmental Health Impacts." The symposium provided a forum for discourse on the state of scientific knowledge about factors identified by EPA that may contribute to higher burdens of environmental exposure or risk in racial/ethnic minorities and low-income populations. Also featured were discussions on how environmental justice considerations may be integrated into EPA's analytical and decision-making frameworks and on research needs for advancing the integration of environmental justice into environmental policymaking. We summarize key discussions and conclusions from the symposium and briefly introduce the articles in this issue.

  4. Number and regulation of protozoan aquaporins reflect environmental complexity.

    PubMed

    Von Bülow, Julia; Beitz, Eric

    2015-08-01

    Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship.

  5. Number and regulation of protozoan aquaporins reflect environmental complexity.

    PubMed

    Von Bülow, Julia; Beitz, Eric

    2015-08-01

    Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship. PMID:26338868

  6. Genetics and environmental regulation of Shigella iron transport systems.

    PubMed

    Wyckoff, Elizabeth E; Boulette, Megan L; Payne, Shelley M

    2009-02-01

    Shigella spp. have transport systems for both ferric and ferrous iron. The iron can be taken up as free iron or complexed to a variety of carriers. All Shigella species have both the Feo and Sit systems for acquisition of ferrous iron, and all have at least one siderophore-mediated system for transport of ferric iron. Several of the transport systems, including Sit, Iuc/IutA (aerobactin synthesis and transport), Fec (ferric di-citrate uptake), and Shu (heme transport) are encoded within pathogenicity islands. The presence and the genomic locations of these islands vary considerably among the Shigella species, and even between isolates of the same species. The expression of the iron transport systems is influenced by the concentration of iron and by environmental conditions including the level of oxygen. ArcA and FNR regulate iron transport gene expression as a function of oxygen tension, with the sit and iuc promoters being highly expressed in aerobic conditions, while the feo ferrous iron transporter promoter is most active under anaerobic conditions. The effects of oxygen are also seen in infection of cultured cells by Shigella flexneri; the Sit and Iuc systems support plaque formation under aerobic conditions, whereas Feo allows plaque formation anaerobically.

  7. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    ERIC Educational Resources Information Center

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  8. An ethnographic investigation of the process of change in students' environmental identity and pro-environmental behavior in an Environmental Science course

    NASA Astrophysics Data System (ADS)

    Blatt, Erica N.

    In recent years, the Environmental Science course has become increasingly integrated into the high school curriculum as a component of the core curriculum, an AP course, or as an elective (Edelson, 2007); however, little research has been conducted to evaluate the course's effectiveness in developing students' understanding of their relationship with the environment (Zelezny, 1999). Therefore, this ethnographic study at a public high school in the Northeastern United States focuses on the teacher's goals for the Environmental Science course, how students respond to the enactment of these objectives during activities in the classroom, and how the class impacts students' views of their relationship with the environment and their pro-environmental behavior. A sociocultural approach is utilized to explore how students' environmental identities, their interactions with the course content, as well as their social interactions affect their experiences in the Environmental Science classroom. The study's conceptual framework is based upon Kempton and Holland's (2003) stages of environmental identity development, as well as symbolic interactionist theories of emotion. The participants in this study are an Environmental Science teacher and the 10-12th grade students (N=17) in her semester-long elective, "Environmental Science." The researcher collected data for a period of six months during the spring semester of 2009, attending class on a daily basis. Data was collected through participant observation, videotaping, interviews, cogenerative dialogues, and various surveys. The objectives for the Environmental Science course explored in this research include the role of science content knowledge and critical thinking as students are exposed to new environmental information; developing students' emotional connection with environmental issues; influencing students' environmental behavior; and empowering students to feel that they can make a difference through their own actions

  9. Students' Regulation of Their Emotions in a Science Classroom

    ERIC Educational Resources Information Center

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  10. Impacts of proposed RCRA regulations and other related federal environmental regulations on Fossil Fuel-Fired Facilities: Final report, Volume 1

    SciTech Connect

    Not Available

    1987-03-01

    In order to fulfill its responsibilities, DOE contracted with Engineering-Science to perform a multi-phase engineering and economics study to evaluate the impact of the proposed RCRA regulations and other related federal environmental regulations on coal-fired utilities. This Interim Phase I report presents the findings of the impacts of proposed RCRA and related federal regulations on the utility sector fossil fuel-fired facilities. Subsequent phases involve parallel engineering studies on the industrial sector as well as economic evaluations. The framework of this study was based on the development and analysis (engineering and economic) of four regulatory scenarios for the disposal of fly ash, bottom ash and FGD sludge from the utility industry.

  11. SCIENCE, RISK, AND RISK ASSESSMENT AND THEIR ROLE(S) SUPPORTING ENVIRONMENTAL RISK MANAGEMENT

    EPA Science Inventory

    Abstract: The U.S. Environmental Protection Agency (EPA) fulfills its mission of protecting public health and the environment by, among other things, developing and enforcing regulations that implement environmental laws enacted by Congress. Ensuring that its regulations have a s...

  12. Science.

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science instruction and technology: "A 3-D Journey in Space: A New Visual Cognitive Adventure" (Yoav Yair, Rachel Mintz, and Shai Litvak); "Using Collaborative Inquiry and Interactive Technologies in an Environmental Science Project for Middle School Teachers: A Description and Analysis" (Patricia…

  13. Environmental Sciences Division. Annual progress report for period ending September 30, 1980. [Lead abstract

    SciTech Connect

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report.

  14. 75 FR 22818 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Panel; Virtual Consortium for Transdisciplinary/Translational Environmental Research (VICTER). Date: May... Health Science, P.O. Box 12233, MD EC-30/Room 3170 B, Research Triangle Park, NC 27709,...

  15. 75 FR 21339 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ..., 530 Davis Drive, Research Triangle Park, NC 27709, (Virtual Meeting). Contact Person: Leroy Worth, PhD.... Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30/Room 3171, Research Triangle Park,...

  16. Environmental policy and industrialization: The politics of regulation in Puerto Rico

    SciTech Connect

    Concepcion, C.M.

    1990-01-01

    The effects of economic development on environmental regulation in Puerto Rico are examined. In particular, the research analyzes how the Puerto Rican industrialization process has affected implementation of the environmental-review process. Puerto Rico exemplifies an acute conflict between an industrialization process based on capital-intensive, highly polluting industries, and a regulatory framework of insular and US environmental laws and regulations. While industrialization has not solved unemployment problems on the island, environmental and health hazards have increased significantly, despite environmental regulations. The study focuses on a change in the environmental review process in response to economic development concerns. In particular, it examines the growth and extensive use of a new environmental review document, the Environmental Assessment. This study explains this policy shift and, more fundamentally, analyzes how and under what circumstances this change came about.

  17. The Interstate 99 (I-99) project and geological information exchanges: A study of the interplay among selected variables from science education, geology/earth science, and environmental policy

    NASA Astrophysics Data System (ADS)

    Snowden, Daniel Eugene

    The Interstate 99 (I-99) highway project has been the source of extensive attention over the past few years. Its most infamous aspect is the excavation of a geological formation---the Bald Eagle Sandstone---that was found to contain acidic rock material, which, upon exposure to water, leached sulfuric acid to several surface water bodies and private groundwater wells. This matter managed to suspend construction of the project for several years. Numerous parties, representing academia, government (particularly the Pennsylvania Department of Environmental Protection (PA DEP) and the Pennsylvania Department of Transportation (PennDOT)), private industry (consultants), environmental organizations and advocacy groups, and the citizenry, have been involved in the development of a resolution to the I-99 acidic rock problem. The interactions among these parties are interdisciplinary by nature, given the sectors of society that they represent. Consideration of how these parties interacted with each other while evaluating the options for addressing the environmental dilemma posed by the I-99 project provides opportunities for academic research. The discipline of Science Education is viable for studying the I-99 case, with accompaniment by 2 other disciplines, which have direct relevance to this case: Geology/Earth Science (per the underlying cause of the I-99 acidic rock problem) and Environmental Policy (per the regulations and policies that had to be followed while developing a solution to the environmental dilemma). Pairing Science Education with the other two aforementioned disciplines can create additional niches for the former discipline, and enhance academic research both within itself, and, across other disciplines, as relevant.

  18. Earth and environmental science in the 1980's: Part 1: Environmental data systems, supercomputer facilities and networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Overview descriptions of on-line environmental data systems, supercomputer facilities, and networks are presented. Each description addresses the concepts of content, capability, and user access relevant to the point of view of potential utilization by the Earth and environmental science community. The information on similar systems or facilities is presented in parallel fashion to encourage and facilitate intercomparison. In addition, summary sheets are given for each description, and a summary table precedes each section.

  19. Integrating writing into an introductory environmental science curriculum: Perspectives from biology and physics

    NASA Astrophysics Data System (ADS)

    Selkin, P. A.; Cline, E. T.; Beaufort, A.

    2008-12-01

    In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.

  20. Guidance for Environmental Mangement Science and Technology Roadmapping

    SciTech Connect

    Dixon, Brent Wayne

    2001-02-01

    Science and technology roadmapping is a planning process to help identify technical capabilities needed for both project- and program-level cleanup efforts, map them into technology alternatives, and develop plans to ensure that the required scientific knowledge and tools will be available when needed. Application of science and technology roadmapping within Invironmental Management (EM) requires significant flexibility to accommodate the variations between different projects and programs and the different levels of roadmapping application. The author has provided direct support to EM’s Office of Science and Technology (OST) in the development of draft guidance for science and technology roadmapping in EM. This paper provides a summary of this guidance and a synopsis of lessons learned from the application of roadmapping to a number of EM projects and programs.

  1. Self-regulated learning and science achievement in a community college

    NASA Astrophysics Data System (ADS)

    Maslin, (Louisa) Lin-Yi L.

    Self-regulated learning involves students' use of strategies and skills to adapt and adjust towards achievement in school. This research investigates the extent to which self-regulated learning is employed by community college students, and also the correlates of self-regulated learning: Is it used more by students in advanced science classes or in some disciplines? Is there a difference in the use of it by students who complete a science course and those who do not? How does it relate to GPA and basic skills assessments and science achievement? Does it predict science achievement along with GPA and assessment scores? Community college students (N = 547) taking a science course responded to the Motivated Strategies for Learning Questionnaire (MSLQ). The scales measured three groups of variables: (1) cognitive strategies (rehearsal, elaboration, organization, and critical thinking); (2) metacognitive self-regulation strategies (planning, monitoring, and self-regulation); and (3) resource management strategies (time and study environment, effort regulation, peer learning, and help-seeking). Students' course scores, college GPA, and basic skills assessment scores were obtained from faculty and college records. Students who completed a science course were found to have higher measures on cumulative college GPAs and assessment scores, but not on self-regulated learning. Self-regulated learning was found not to be used differently between students in the advanced and beginning science groups, or between students in different disciplines. The exceptions were that the advanced group scored higher in critical thinking but lower in effort regulation than the beginning group. Course achievement was found to be mostly unrelated to self-regulated learning, except for several significant but very weak and negative relationships in elaboration, self-regulation, help-seeking, and effort regulation. Cumulative GPA emerged as the only significant predictor of science achievement

  2. 10 CFR 20.2007 - Compliance with environmental and health protection regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Compliance with environmental and health protection regulations. 20.2007 Section 20.2007 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2007 Compliance with environmental and health protection regulations....

  3. 10 CFR 20.2007 - Compliance with environmental and health protection regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Compliance with environmental and health protection regulations. 20.2007 Section 20.2007 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2007 Compliance with environmental and health protection regulations....

  4. 10 CFR 20.2007 - Compliance with environmental and health protection regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Compliance with environmental and health protection regulations. 20.2007 Section 20.2007 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2007 Compliance with environmental and health protection regulations....

  5. 10 CFR 20.2007 - Compliance with environmental and health protection regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Compliance with environmental and health protection regulations. 20.2007 Section 20.2007 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2007 Compliance with environmental and health protection regulations....

  6. 10 CFR 20.2007 - Compliance with environmental and health protection regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Compliance with environmental and health protection regulations. 20.2007 Section 20.2007 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2007 Compliance with environmental and health protection regulations....

  7. 77 FR 18252 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle... Health Sciences, 615 Davis Dr., KEY615/3112, Research Triangle Park, NC 27709, (919) 541-4980, collman..., Rodbell Auditorium, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709. Open: May 23, 2012, 8:30...

  8. 77 FR 48164 - National Institute Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709... Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93... Auditorium, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709. Open: 1:15 p.m. to 2:15 p.m....

  9. 75 FR 19981 - National Institute of Environmental Health Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle... Health Sciences, 615 Davis Dr., KEY615/ 3112, Research Triangle Park, NC 27709, (919) 541-4980, collman..., Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709. Open: May 13, 2010,...

  10. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States

    ERIC Educational Resources Information Center

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.

    2016-01-01

    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  11. Fieldwork, Co-Teaching and Co-Generative Dialogue in Lower Secondary School Environmental Science

    ERIC Educational Resources Information Center

    Rahmawati, Yuli; Koul, Rekha

    2016-01-01

    This article reports one of the case studies in a 3-year longitudinal study in environmental science education. This case explores the process of teaching about ecosystems through co-teaching and co-generative dialogue in a Year-9 science classroom in Western Australia. Combining with co-teaching and co-generative dialogue aimed at transforming…

  12. A Reconstructed Vision of Environmental Science Literacy: The case of Qatar

    NASA Astrophysics Data System (ADS)

    Khishfe, Rola

    2014-12-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and socioscientific issues (SSI). A conceptual understanding of these pillars as interconnected was presented and justified. Then the developed framework was used to examine the potential of the Qatari science standards to prepare environmentally literate citizens. Results showed that the secondary Qatari science standards generally take up the pillars of science content and scientific inquiry in an explicit manner. The NOS pillar is rarely addressed, while the SSI pillar is not addressed in the objectives and activities in a way that aligns with the heavy emphasis given in the overall aims. Moreover, the connections among pillars are mostly manifested within the activities and between the science content and scientific inquiry. The objectives and activities targeting the environment were less frequent among the four pillars across the Qatari standards. Again, the connections related to the environment were less frequent in conformity with the limited environmental objectives and activities. Implications from this study relate to the need for the distribution of the four pillars across the standards as well as the presentation of the different pillars as interconnected.

  13. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    ERIC Educational Resources Information Center

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  14. 75 FR 63844 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and Manpower Development in... Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709... Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P. O. Box 12233, MD...

  15. Undergraduate Students' Science-Related Ideas as Embedded in Their Environmental Worldviews

    ERIC Educational Resources Information Center

    Liu, Shu-Chiu; Lin, Huann-shyang

    2014-01-01

    This study explored environmental worldviews of selected undergraduate students in Taiwan and located the associations of these worldviews with science. The "environment" is represented as nature or the natural world, as opposed to the social and spiritual world. The participants were undergraduate students (14 science and 15 nonscience…

  16. Training Future Science Librarians: A Successful Partnership between Academia and the United States Environmental Protection Agency.

    ERIC Educational Resources Information Center

    Roland, Kristen Conahan

    2000-01-01

    Describes a partnership between the School of Information and Library Science at the University of North Carolina (Chapel Hill) and the Environmental Protection Agency library in Research Park Triangle that provides the opportunity for master's level students to acquire practical experience working in a science library while taking classes.…

  17. Advances in Environmental Science and Technology, Volume Two.

    ERIC Educational Resources Information Center

    Pitts, James N., Jr., Ed.; Metcalf, Robert L., Ed.

    The aim of this volume is to help delineate and solve the multitude of environmental problems our technology has created. Representing a diversity of notable approaches to crucial environmental issues, it features eight self-contained chapters by noted scientists. Topics range from broad considerations of air pollution and specific techniques for…

  18. Citizen science can improve conservation science, natural resource management, and environmental protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we sh...

  19. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    ERIC Educational Resources Information Center

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES…

  20. Federal environmental legislation in the U.S. for protection of wildlife and regulation of environmental contaminants.

    PubMed

    Fairbrother, Anne

    2009-10-01

    The U.S. has a long history of legislation to protect wildlife, beginning with the Lacey Act of 1900. There are now over 170 Federal laws that regulate environmental activities which may affect wildlife. Two important laws are the Pittman-Robertson Act enacted in 1937 that authorizes a tax for wildlife management and the Fish and Wildlife Coordination Act passed in 1958 whose primary purpose is conservation of fish and wildlife, both of which continue to provide significant funding for wildlife management. Modern environmental regulations began by passage of the National Environmental Policy Act in 1969, followed by the Clean Water Act, Superfund, and other laws to regulate pesticides and toxics and clean up contaminated sites. International conventions regulate sale, use and disposal of toxics and ocean dumping. These laws and conventions should protect wildlife from unintended consequences of global industrialization. PMID:19562483

  1. Federal environmental legislation in the U.S. for protection of wildlife and regulation of environmental contaminants.

    PubMed

    Fairbrother, Anne

    2009-10-01

    The U.S. has a long history of legislation to protect wildlife, beginning with the Lacey Act of 1900. There are now over 170 Federal laws that regulate environmental activities which may affect wildlife. Two important laws are the Pittman-Robertson Act enacted in 1937 that authorizes a tax for wildlife management and the Fish and Wildlife Coordination Act passed in 1958 whose primary purpose is conservation of fish and wildlife, both of which continue to provide significant funding for wildlife management. Modern environmental regulations began by passage of the National Environmental Policy Act in 1969, followed by the Clean Water Act, Superfund, and other laws to regulate pesticides and toxics and clean up contaminated sites. International conventions regulate sale, use and disposal of toxics and ocean dumping. These laws and conventions should protect wildlife from unintended consequences of global industrialization.

  2. Self-Regulated Learning Behavior of College Students of Science and Their Academic Achievement

    NASA Astrophysics Data System (ADS)

    Peng, Cuixin

    This study focuses on the relationship between self-regulated learning behavior and their academic achievement of college students of science. For students of science, their involvement in motivational components is closely tied to their performance in the examinations. Cognitive strategies have the strongest influence on scores of the English achievement.

  3. Effective Self-Regulated Science Learning through Multimedia-Enriched Skeleton Concept Maps

    ERIC Educational Resources Information Center

    Maree, Ton J.; van Bruggen, Jan M.; Jochems, Wim M. G.

    2013-01-01

    Background: This study combines work on concept mapping with scripted collaborative learning. Purpose: The objective was to examine the effects of self-regulated science learning through scripting students' argumentative interactions during collaborative "multimedia-enriched skeleton concept mapping" on meaningful science learning and retention.…

  4. Students' Self-Regulation and Teachers' Influences in Science: Interplay between Ethnicity and Gender

    ERIC Educational Resources Information Center

    Elstad, Eyvind; Turmo, Are

    2010-01-01

    The purpose of this study is to explore students' self-regulation and teachers' influence in science and to examine interplay between ethnicity and gender. Analysis of data from seven Oslo schools (1112 sampled students in the first year of high school) shows that the ethnic minority students reported using learning strategies in science more…

  5. The Role of Regulation and Processing Strategies in Understanding Science Text among University Students

    ERIC Educational Resources Information Center

    Vilppu, Henna; Mikkila-Erdmann, Mirjamaija; Ahopelto, Ilona

    2013-01-01

    The aim of the study was to investigate the role of regulation and processing strategies in understanding science text. A total of 91 student teachers answered open-ended questions concerning photosynthesis before and after reading either a traditional or a refutational science text. After this, they also answered parts of the Inventory of…

  6. Technical guidance document for environmental requirements of commercial OTEC licensing regulations (15 CFR Part 981)

    SciTech Connect

    Not Available

    1981-09-01

    This document provides a potential OTEC applicant with the insights believed needed to satisfy the environmental information requirements of the regulations for licensing commercial OTEC facilities and plantships. This information should be used by applicants to define the site-specific details of the needed environmental assessment, and the details should then form a basis for pre-application consultations on the environmental requirements.

  7. Geomicrobial ecotoxicology as a new subject in environmental sciences is proposed.

    PubMed

    Gu, Ji-Dong; Wang, Yanxin

    2014-12-01

    Environmental sciences is an interdisciplinary subject and current development allows investigation of environmental issues from physical, chemical, geological, biological and toxicological approaches. Based on such development, geomicrobial ecotoxicology or microbial ecotoxicology is proposed to advance the information gathering on ecosystem processes and function because microorganisms are numerous and fundamental to the cycling of nutrients and energy flow.

  8. Secondary School Students' Interests, Attitudes and Values Concerning School Science Related to Environmental Issues in Finland

    ERIC Educational Resources Information Center

    Uitto, Anna; Juuti, Kalle; Lavonen, Jari; Byman, Reijo; Meisalo, Veijo

    2011-01-01

    This paper explores the relationship between students' interests in environmental issues, attitudes to environmental responsibility and biocentric values in school science education. The factors were investigated within the framework of three moderators: gender, school and residential area of the school. The survey was carried out using the…

  9. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    ERIC Educational Resources Information Center

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  10. Synthesis for the Interdisciplinary Environmental Sciences: Integrating Systems Approaches and Service Learning

    ERIC Educational Resources Information Center

    Simon, Gregory L.; Wee, Bryan Shao-Chang; Chin, Anne; Tindle, Amy Depierre; Guth, Dan; Mason, Hillary

    2013-01-01

    As our understanding of complex environmental issues increases, institutions of higher education are evolving to develop new learning models that emphasize synthesis across disciplines, concepts, data, and methodologies. To this end, we argue for the implementation of environmental science education at the intersection of systems theory and…

  11. Environmental Sciences Division annual progress report for period ending September 30, 1981

    SciTech Connect

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  12. 75 FR 65364 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Substances--Basic Research and Education; 93.894, Resources and Manpower Development in the Environmental..., Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709 (Telephone... Extramural Research and Training, Nat'l Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-...

  13. 77 FR 73667 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ...--Basic Research and Education; 93.894, Resources and Manpower Development in the Environmental Health... Building, 530 Davis Drive, Research Triangle Park, NC 27709, (Telephone Conference Call). Contact Person... Research and Training, Nat. Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-30,...

  14. The Power of One: The Impact of Family and Consumer Sciences Education on Environmental Sustainability

    ERIC Educational Resources Information Center

    Thompson, Nancy E.

    2010-01-01

    The issues related to environmental sustainability can be overwhelming. It is difficult to imagine that actions of one person could make a difference. This article addresses that perception and illustrates the impact of one person, a family and consumer sciences educator, on the lives of others and on environmental resources. Making a difference…

  15. Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada

    ERIC Educational Resources Information Center

    Karagatzides, Jim D.; Kozlovic, Daniel R.; De Iuliis, Gerry; Liberda, Eric N.; General, Zachariah; Liedtke, Jeff; McCarthy, Daniel D.; Gomez, Natalya; Metatawabin, Daniel; Tsuji, Leonard J. S.

    2011-01-01

    We connected youth of the Mushkegowuk Territory (specifically Fort Albany First Nation) with environmental science and technology mentors in an outreach program contextualized to subarctic Ontario that addressed some of the environmental concerns identified by members of Fort Albany First Nation. Most activities were community-based centering on…

  16. Literacy and Arts-Integrated Science Lessons Engage Urban Elementary Students in Exploring Environmental Issues

    ERIC Educational Resources Information Center

    Gray, P.; Elser, C. F.; Klein, J. L.; Rule, A. C.

    2016-01-01

    This descriptive case study examined student attitudes, writing skills and content knowledge of urban fourth and fifth graders (6 males, 9 female) during a six-week literacy, thinking skill, and art-integrated environmental science unit. Pre- and post-test questions were used to address knowledge of environmental problems and student environmental…

  17. Advanced Technologies and Data Management Practices in Environmental Science: Lessons from Academia

    ERIC Educational Resources Information Center

    Hernandez, Rebecca R.; Mayernik, Matthew S.; Murphy-Mariscal, Michelle L.; Allen, Michael F.

    2012-01-01

    Environmental scientists are increasing their capitalization on advancements in technology, computation, and data management. However, the extent of that capitalization is unknown. We analyzed the survey responses of 434 graduate students to evaluate the understanding and use of such advances in the environmental sciences. Two-thirds of the…

  18. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  19. Did environmental regulations play a significant role in the economic downturn of the 1970s

    SciTech Connect

    Christainsen, G.B.

    1983-01-01

    The poor performance of the US economy during the 1970s is sometimes attributed to environmental regulations. Several studies, varying widely in method, have attempted to assess the effects of these regulations on the growth of productivity, inflation, and unemployment. In this paper, some of the major studies are reviewed and critiqued, and a summary appraisal of the likely impact of environmental regulations on the country's key macroeconomic indicators is offered. 20 references, 2 tables.

  20. Empirical studies on environmental education in Germany: Contributions by the institute for science education

    NASA Astrophysics Data System (ADS)

    Dempsey, Rachael; Gresele, Christiane; Bögeholz, Susanne; Martens, Thomas; Mayer, Jürgen; Rode, Horst; Rost, Jürgen

    1998-06-01

    The Institute for Science Education (IPN) in Kiel, Germany, has a long tradition in environmental education research, material and instruction development, and teacher education. This paper presents its research program on “Factors of Environmental Activity” consisting, at present, of three empirical research studies. These projects share a common theoretical model, the Integrated Action Model, describing the environmental action generating process. Study 1 evaluates the validity of this model; Study 2 applies it to evaluate the effects of school environmental instruction; Study 3 applies it to evaluate the effects of nature experience. As this research pertains to Germany, a description of the school system and institutionalisation of environmental instruction is included.

  1. Problem-Solving Environmental Science on the Chesapeake Bay.

    ERIC Educational Resources Information Center

    Goodwin, Dean; Adkins, Jeannette C.

    1997-01-01

    Presents a continuing study on the Chesapeake Bay as an example of a problem-based approach to environmental education using real life problems. Argues that the approach gives students responsibility for their own learning. (DDR)

  2. Applied Science Division annual report, Environmental Research Program FY 1983

    SciTech Connect

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  3. Creative by Nature: Integrating the Arts into Environmental Science Education.

    ERIC Educational Resources Information Center

    Holmes, Susan A.

    2002-01-01

    Incorporates environmental education into the arts to enhance student learning, imagination, and ability to invent solutions. Provides lesson ideas such as a river walk, bird adaptation sculptures, and a tree scavenger hunt. (YDS)

  4. NOAA Interdisciplinary Scientific Environmental Technology Cooperative Science Center

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon

    2008-10-01

    ISETCS is led by North Carolina Agricultural & Technical State University in collaboration with thirty one scientists and engineers in nine academic departments in seven academic partnering institutions. The focus of the ISET Cooperative Science Center (ISETCSC) is to conduct research on sensor science and sensor technology for oceanic and atmospheric applications; perform analysis of global observing systems that include numerical and physical research and analysis of hurricanes; and, develop information technology tools for data fusion, data mining and geospatial modeling and analysis. In collaboration with Keith Schimmel and Abdollah Homaifar, North Carolina A&T State University; Frederick Semazzi, North Carolina State University; and Samir Ahmed, City University of New York.

  5. Environmental Sciences Division: Summaries of research in FY 1995

    SciTech Connect

    1996-09-01

    This report focuses on research in global change, as well as environmental remediation. Global change research investigates the following: distribution and balance of radiative heat energy; identification of the sources and sinks of greenhouse gases; and prediction of changes in the climate and concomitant ecological effects. Environmental remediation develops the basic understanding needed to remediate soils, sediments, and ground water that have undergone radioactive and chemical contamination.

  6. Leaving the classroom: a didactic framework for education in environmental sciences

    NASA Astrophysics Data System (ADS)

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-06-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic point of view, it is less effective to teach environmental science with negative examples such as catastrophe, tragedy, and crisis. Rather, teaching environmental sciences and sustainable development might be focused on positive human-environment relationships, which is both important for the further development of students and educators. Within rural settings, there are many such examples of positive relationships that can be emphasized and integrated into the curriculum. In this article, we propose teaching environmental sciences through immersion in rural cultural life. We discuss how fieldwork serves as a learning methodology. When students are engaged through research with traditional cultural practices of environmental management, which is a part of the real and traditional culture of a region, they better understand how positive pedagogy instead of pedagogy structured around how not-to-do examples, can be used to stimulate the interactions between humans and the environment with their students. In this way, cultural goods serve as teaching resources in science and environmental education. What we present is authentic cases where adults involved in a course of Continuous Education explore `environmentally-friendly' practices of traditional agriculture in Asturias (north of Spain), employing methodologies of cultural studies.

  7. Developing tools to link environmental flows science and its practice in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Eriyagma, N.; Jinapala, K.

    2014-09-01

    The term "Environmental Flows (EF)" may be defined as "the quantity, timing and quality of water flows required to sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems". It may be regarded as "water for nature" or "environmental demand" similar to crop water requirements, industrial or domestic water demand. The practice of EF is still limited to a few developed countries such as Australia, South Africa and the UK. In many developing countries EF is rarely considered in water resources planning and is often deemed "unimportant". Sri Lanka, being a developing country, is no exception to this general rule. Although the country underwent an extensive irrigation/water resources development phase during the 1960s through to the 1980s, the concept of EF was hardly considered. However, as Sri Lanka's water resources are being exploited more and more for human usage, ecologists, water practitioners and policymakers alike have realized the importance of EF in sustaining not only freshwater and estuarine ecosystems, but also their services to humans. Hence estimation of EF has been made mandatory in environmental impact assessments (EIAs) of all large development projects involving river regulation/water abstraction. Considering EF is especially vital under the rapid urbanization and infrastructure development phase that dawned after the end of the war in the North and the East of the country in 2009. This paper details simple tools (including a software package which is under development) and methods that may be used for coarse scale estimation of EF at/near monitored locations on major rivers of Sri Lanka, along with example applications to two locations on River Mahaweli. It is hoped that these tools will help bridge the gap between EF science and its practice in Sri Lanka and other developing countries.

  8. Does the Manitoba science curriculum help teach teens to be more environmentally-minded?

    NASA Astrophysics Data System (ADS)

    Kraljevic, Gabriel M.

    Manitoba does not have a specific course in environmental education (EE) but has related outcomes within the current science and social studies curricula. Has the curriculum created a populace with the knowledge, attitudes and skills to begin to act for environmental change? Do students and teachers perceive science to be the course that should teach EE? This mixed-method study used surveys, student focus groups, observations of recycling habits and teacher interviews to determine if grade 10 students (last year of required science) are acting in positive ways toward the environment. Students from grades nine and ten exhibited almost the same environmental knowledge and attitudes, but the grade tens were more alarmed about the state of the environment and less naive about their abilities to have individual impact. While both groups reported pro-environmental behaviours, neither recycled materials after a luncheon. Where EE should be taught differed between all groups studied.

  9. QUALITY SCIENCE AND QUALITY ASSURANCE: OBSERVATIONS OR AN ENVIRONMENTAL SCIENTIST

    EPA Science Inventory

    --

    ABSTRACT
    The purpose of this manuscript is to examine the relationship between quality science (QS) and quality assurance (QA). Many research scientists definitely want to do QS, but are afraid or do not want to do QA because they are intimidated by the QA proc...

  10. Environmental Scientists' Perceptions of the Science-Policy Linkage.

    ERIC Educational Resources Information Center

    Alm, Leslie R.; Simon, Marc

    2001-01-01

    Describes the criticisms coming from scientists on the assessment report on acid rain released by the National Acid Preparation Assessment Program (NAPAP) with the purpose of providing relevant information to policy makers about acid rain. Investigates n=129 scientists' point of view on the linkage of science to policy. (YDS)

  11. SimRiver: Environmental Modeling Software for the Science Classroom

    ERIC Educational Resources Information Center

    Hoffer, Jeannette; Mayama, Shigeki; Lingle, Kristin; Conroy, Kathryn; Julius, Matthew

    2011-01-01

    While students may acknowledge the impact that land use and development have on our environment, they do not necessarily understand the relationship between human activities and ecosystem responses. Therefore, the nature of the relationships leaves the science teacher to most often present information in a purely narrative form without any…

  12. Environmental Science, Teacher's Edition. Probing the Natural World/3.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Dept. of Science Education.

    Air pollution, pesticides, water pollution, and population are the main topics treated in this teacher's guide, one in a series of Intermediate Science Curriculum Study (ISCS) materials. Part One of the book contains the student text with subject information, questions, and activities. Teacher notes in the margin indicate emphasis of the chapter,…

  13. Key Concepts of Environmental Sustainability in Family and Consumer Sciences

    ERIC Educational Resources Information Center

    Thompson, Nancy E.; Harden, Amy J.; Clauss, Barbara; Fox, Wanda S.; Wild, Peggy

    2012-01-01

    It is the vision of the American Association of Family & Consumer Sciences to be "recognized as the driving force in bringing people together to improve the lives of individuals, families, and communities" (AAFCS, 2010). Because of this focus on individuals and families and its well-established presence in American schools, family and consumer…

  14. Science Trips, Guide to Environmental Resources in New York City.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY.

    Utilizing city resources as a supplement to the elementary school science curriculum is the goal of this guide for elementary teachers. It is designed to extend the walls of the classroom by illustrating educational resources, facilities, and exhibits available in zoos, museums, botanical gardens, aquariums, and open parks within New York City.…

  15. Environmental Study: Science and Engineering Buildings. ABS Publication No. 1.

    ERIC Educational Resources Information Center

    California Univ., Berkeley.

    This report is the first of a series which present the results of a systems analysis of the problem of providing science and engineering buildings at the university level conducted by the Academic Building Systems (ABS) program. The document includes (1) a user survey (data and conclusions from a series of studies involving a spectrum of…

  16. GLOBE: A Worldwide Environmental Science and Education Partnership.

    ERIC Educational Resources Information Center

    Finarelli, Margaret G.

    1998-01-01

    Provides general information on the Global Learning and Observations to Benefit the Environment (GLOBE) Program. Discusses the program design and development, science and education, the GLOBE computer and communications systems, student-scientist partnerships, and explains how to join the GLOBE program. (DDR)

  17. Probing the Natural World, Volume 3A, Environmental Science, Crusty Problems, and Why You're You.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Dept. of Science Education.

    This volume is the first of a three volume, one year program for use in junior high school, and consists of these three units: Environmental Science, Crusty Problems (earth science), and Why You're You (heredity). The environmental science unit is composed of chapters relating to these subjects: the black death (plague); energy, food chain, and…

  18. Learning and teaching for an ecological sense of place: Toward environmental/science education praxis

    NASA Astrophysics Data System (ADS)

    Hug, J. William

    1998-09-01

    This research presents a teaching model designed to enable learners to construct a highly developed ecological perspective and sense of place. The contextually-based research process draws upon scientific and indigenous knowledge from multiple data sources including: autobiographical experiences, environmental literature, science and environmental education research, historical approaches to environmental education, and phenomenological accounts from research participants. Data were analyzed using the theoretical frameworks of qualitative research, hermeneutic phenomenology, heuristics, and constructivism. The resulting model synthesizes and incorporates key educational philosophies and practices from: nature study, resident outdoor education, organized camping, conservation education, environmental education, earth education, outdoor recreation, sustainability, bio-regionalism, deep ecology, ecological and environmental literacy, science and technology in society, and adventure/challenge/experiential education. The model's four components--environmental knowledge, practicing responsible environmental behaviors, community-focused involvement, and direct experience in outdoor settings--contribute in a synergistic way to the development of ecological perspective and a sense of place. The model was honed through experiential use in an environmental science methods course for elementary and secondary prospective science teachers. The instructor/researcher employed individualized instruction, community-based learning, service learning, and the modeling of reflective teaching principles in pursuit of the model's goals. The resulting pedagogical knowledge extends the model's usefulness to such formal and non-formal educational contexts as: elementary/secondary classrooms, nature centers, museums, youth groups, and community organizations. This research has implications for the fields of education, geography, recreation/leisure studies, science teaching, and environmental

  19. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    ERIC Educational Resources Information Center

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  20. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    SciTech Connect

    Busse, M.R.; Keohane, N.O.

    2007-01-01

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  1. A SUPER!{sub sm} experience. Science understanding promotes environmental responsibility

    SciTech Connect

    Scott, K.

    1994-12-31

    SUPER!{sub sm} presents a model for how industries can share their technical work with their local communities. Designed to teach teachers the science behind environmental issues, SUPER!{sub sm} focuses on how Sandia is working to find innovative solutions to their nation`s environmental problems. SUPER!{sub sm} is a four week summer institute for middle and high school science teachers that examines the science behind the environmental issues. It is held at Sandia National Laboratories/California in Livermore during July. The institute has three goals: increasing scientific knowledge, improving and updating teaching methods, and increasing leadership skills. These goals are met through a combination of presentations by scientists and educators, field trips, and hand-on activities. The majority of hands-on materials used in this institute are from SEPUP (Science Education for Public Understanding Program, previously CEPUP, Chemical Education for Public Understanding Program). The institute is a partnership that brings together the technical resources of Sandia National Laboratories, the educational expertise of Lawrence Hall of Science and the California Department of Education, the leadership expertise of the Scope, Sequence and Coordination Project and the California Science Implementation Network, and the environmental expertise of the California Department of Toxic Substances Control.

  2. Selected Characteristics of Persons in Environmental Science: 1978.

    ERIC Educational Resources Information Center

    Palumbo, Thomas J.; And Others

    1982-01-01

    This report is the third of a series of reports based on data collected in the 1978 National Sample of Scientists and Engineers survey. Profiled are the characteristics of 29,775 persons represented in the national sample's field of environmental scientists: 24,615 earth scientists, 3,481 atmospheric scientists, and 1,678 oceanographers.…

  3. Environmental Science: Activities with Plants of the Southwest.

    ERIC Educational Resources Information Center

    Hackley, Sharon; Hackley, Mike

    In this book for students of all ages, the author introduces unusual recipe ideas for the prickly, odd, and pestiferous plants of the American southwestern desert. Students are involved in cooking activities designed to spark interest in ecology, trigger logical thinking, utilize math skills, and build sound environmental concepts. Care was taken…

  4. Environmental Studies, Conference Report, Secondary Schools Science Committee.

    ERIC Educational Resources Information Center

    Victoria Education Dept. (Australia).

    In addition to complete texts or summaries of a number of papers considering the scope and relevance of "environmental studies" to the secondary and elementary school programs in Victoria (Australia), many teaching techniques are described. Techniques for measuring carrying capacity of roadways, examining published air pollution data, estimation…

  5. National conference on environmental remediation science and technology: Abstracts

    SciTech Connect

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  6. Literature and Science: An Interdisciplinary Approach to Environmental Studies.

    ERIC Educational Resources Information Center

    Abrams, Kathleen S.

    1979-01-01

    Using wilderness themes from such diverse authors as Henry Thoreau, Joseph Wood Krutch, and Kurt Vonnegut, and the train-as-technology metaphor from Ray Bradbury and Robert Frost, the author describes a unique team-teaching curriculum that interweaves the literary and laboratory aspects of environmental concerns. (Editor)

  7. Scale and scaling in agronomy and environmental sciences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scale is of paramount importance in environmental studies, engineering, and design. The unique course covers the following topics: scale and scaling, methods and theories, scaling in soils and other porous media, scaling in plants and crops; scaling in landscapes and watersheds, and scaling in agro...

  8. Pharmaceuticals as Environmental Contaminants: An Overview of the Science

    EPA Science Inventory

    Over the last decade, a new dimension to environmental pollution has become evident C one involving the actions, behaviors, and activities of the individual consumer as a source of chemical pollutants. A major focus on consumer-use chemicals has been directed at the numerous type...

  9. Environmental Change Science Literacy Through Writing: Successes in an Undergraduate Writing and Composition Course

    NASA Astrophysics Data System (ADS)

    Small, J. D.

    2007-12-01

    Basic science literacy, especially with regards to environmental change science, is often lacking in traditional K- 12 and undergraduate education. This generally leads to broad misconceptions based on distorted presentations of science in the media. Current educational research suggests that the teaching and learning of science can happen in many ways, whether it is through lectures, labs, research, inquiry or informal learning activities. This study was motivated by the desire to investigate the ability to teach environmental change science content in the non-traditional mode of an undergraduate composition and writing course. This technique offers educators another option for the integration of climate and environmental change material into their curriculum. The study incorporates the assessment and evaluation of student writing, in-class participation and student self- evaluations from "Writing about Change: Global Environmental Change and Society" a writing course that fulfils a requirement to graduate from the University of California - Santa Cruz. The course was taught Winter Quarter 2007 with a total of 28 days of instruction and the participation of 20 undergraduate students. The overarching goals of this study can be broadly classified as attitudinal, skills development and content retention. This study was designed to address three broad questions related to the above broad goals: i) Did students leave the class more comfortable and confident with environmental change issues and content? ii) Did students develop skills that are useful for reading and writing about scientific material? iii) What did students learn (retain): more general concepts or specific facts regarding climate and environmental change? Preliminary analysis and coding of student work clearly show that students were successful in developing skills for understanding and utilizing scientific information via writing and making thoughtful judgments regarding the reliability of environmental

  10. Effects of the design of environmental disclosure regulation on information provision: the case of Israeli securities regulation.

    PubMed

    Kerret, Dorit; Menahem, Gila; Sagi, Rinat

    2010-11-01

    Focusing on the potential of information regulations, this article aims to contribute to ongoing efforts of policymakers to improve policy tools, in light of the increasing complexity of assessing the environmental impacts of new technologies and industrial corporations. Using the annual reports of corporations and performance data from the Ministry of Environmental Protection, the study analyzed the quality of responses to the amendments of Israel's Securities Regulations by major, publicly traded, polluting industrial corporations in Israel. The main theoretical claim of this paper is that within mandatory regulations there may be a large variability in the degree of specification of requirements. When considerable discretion is left to corporations, the result is a mixed mandatory-voluntary regulation regime. Our findings suggest that such variability impacts the implementation outcomes, as responses to environmental requirements depend on the level of discretion. Facilities increased their reported information, including the negative aspects, when specific mandatory prescriptions were stipulated. However, voluntary motivations did not result in the provision of information when corporations were allowed a high level of discretion. The authors recommend the delineation of exact stipulations of prescriptive requirements for the provision of comparative environmental information in order to obtain the environmental information deemed necessary. PMID:20923222

  11. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    SciTech Connect

    Reynolds, T.D.; Morris, R.C.; Markham, O.D.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.

  12. Essential amino acids: master regulators of nutrition and environmental footprint?

    PubMed Central

    Tessari, Paolo; Lante, Anna; Mosca, Giuliano

    2016-01-01

    The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients’ environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference. PMID:27221394

  13. Essential amino acids: master regulators of nutrition and environmental footprint?

    PubMed

    Tessari, Paolo; Lante, Anna; Mosca, Giuliano

    2016-05-25

    The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients' environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference.

  14. Essential amino acids: master regulators of nutrition and environmental footprint?

    PubMed

    Tessari, Paolo; Lante, Anna; Mosca, Giuliano

    2016-01-01

    The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients' environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference. PMID:27221394

  15. Development and Validation of the ACSI: Measuring Students' Science Attitudes, Pro-Environmental Behaviour, Climate Change Attitudes and Knowledge

    ERIC Educational Resources Information Center

    Dijkstra, E. M.; Goedhart, M. J.

    2012-01-01

    This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students' pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of science, scientists, a career in science and the urgency…

  16. Environmental parameters of shuttle support for life sciences experiments

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.

    1976-01-01

    The environments provided by the Orbiter vehicle and by the Spacelab will differ substantially from the environment provided by prior spacecraft. The specific design limits for each environmental parameter and expected operating characteristics are presented for both the Orbiter and the Spacelab. The environments are compared with those of earlier spacecraft and with the normal earth laboratory. Differences between the spacecraft environments and the normal laboratory environment and the impact of these differences on experiments and equipment design are discussed.

  17. A hyperspectral image data exploration workbench for environmental science applications

    SciTech Connect

    Woyna, M.A.; Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.

    1994-08-01

    The Hyperspectral Image Data Exploration Workbench (HIDEW) software system has been developed by Argonne National Laboratory to enable analysts at Unix workstations to conveniently access and manipulate high-resolution imagery data for analysis, mapping purposes, and input to environmental modeling applications. HIDEW is fully object-oriented, including the underlying database. This system was developed as an aid to site characterization work and atmospheric research projects.

  18. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  19. A study of assessment indicators for environmental sustainable development of science parks in Taiwan.

    PubMed

    Chen, Han-Shen; Chien, Li-Hsien; Hsieh, Tsuifang

    2013-08-01

    This study adopted the ecological footprint calculation structure to calculate the ecological footprints of the three major science parks in Taiwan from 2008 to 2010. The result shows that the ecological footprints of the Hsinchu Science Park, the Central Taiwan Science Park, and the Southern Taiwan Science Park were about 3.964, 2.970, and 4.165 ha per capita. The ecological footprint (EF) of the Central Taiwan Science Park was the lowest, meaning that the influence of the daily operations in the Central Taiwan Science Park on the environment was rather low. Secondly, the population density was relatively high, and the EF was not the highest of the Hsinchu Science Park, meaning that, while consuming ecological resources, the environmental management done was effective. In addition, the population density in Southern Taiwan Science Park is 82.8 units, lower than that of Hsinchu Science Park, but its ecological footprint per capita is 0.201 units, higher than Hsinchu, implying its indicator management has space for improvement. According to the analysis result above, in the science parks, the percentages of high-energy-consuming industries were rather high. It was necessary to encourage development of green industries with low energy consumption and low pollution through industry transformation.

  20. Can Pollution Problems Be Effectively Solved by Environmental Science and Technology? An Analysis of Critical Limitations

    SciTech Connect

    Huesemann, Michael H. )

    2000-12-01

    It is currently believed that science and technology can provide effective solutions to most, if not all, environmental problems facing western industrial societies. The validity of this optimistic assumption is highly questionable for at least three reasons: First, current mechanistic, reductionist science is inherently incapable of providing the complete and accurate information which is required to successfully address environmental problems. Second, both the conservation of mass principle and the second law of thermodynamics dictate that most remediation technologies - while successful in solving specific pollution problems - cause unavoidable negative environmental impacts elsewhere or in the future. Third, it is intrinsically impossible to design industrial processes that have no negative environmental impacts. This follows not only from the entropy law but also from the fact that any generation of energy is impossible without negative environmental consequences. It can therefore be concluded that science and technology have only very limited potential in solving current and future environmental problems. Consequently, it will be necessary to address the root cause of environmental deterioration, namely the prevailing materialistic values that are the main driving force for both overpopulation and overconsumption. The long-term protection of the environment is therefore not primarily a technical problem but rather a social and moral problem that can only be solved by drastically reducing the strong influence of materialistic values.