Sample records for environmental temperature

  1. Patterns of activity and body temperature of Aldabra giant tortoises in relation to environmental temperature.

    PubMed

    Falcón, Wilfredo; Baxter, Rich P; Furrer, Samuel; Bauert, Martin; Hatt, Jean-Michel; Schaepman-Strub, Gabriela; Ozgul, Arpat; Bunbury, Nancy; Clauss, Marcus; Hansen, Dennis M

    2018-02-01

    We studied the temperature relations of wild and zoo Aldabra giant tortoises ( Aldabrachelys gigantea ) focusing on (1) the relationship between environmental temperature and tortoise activity patterns ( n  = 8 wild individuals) and (2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to different environmental temperature ranges (seasons; n  = 4 wild and n  = 5 zoo individuals). In addition, we surveyed the literature to review the effect of body mass on core body temperature range in relation to environmental temperature in the Testudinidae. Diurnal activity of tortoises was bimodally distributed and influenced by environmental temperature and season. The mean air temperature at which activity is maximized was 27.9°C, with a range of 25.8-31.7°C. Furthermore, air temperature explained changes in the core body temperature better than did mass, and only during the coldest trial, did tortoises with higher mass show more stable temperatures. Our results, together with the overall Testudinidae overview, suggest that, once variation in environmental temperature has been taken into account, there is little effect of mass on the temperature stability of tortoises. Moreover, the presence of thermal inertia in an individual tortoise depends on the environmental temperatures, and we found no evidence for inertial homeothermy. Finally, patterns of core and external body temperatures in comparison with environmental temperatures suggest that Aldabra giant tortoises act as mixed conformer-regulators. Our study provides a baseline to manage the thermal environment of wild and rewilded populations of an important island ecosystem engineer species in an era of climate change.

  2. Temperature-based death time estimation with only partially known environmental conditions.

    PubMed

    Mall, Gita; Eckl, Mona; Sinicina, Inga; Peschel, Oliver; Hubig, Michael

    2005-07-01

    The temperature-oriented death time determination is based on mathematical model curves of postmortem rectal cooling. All mathematical models require knowledge of the environmental conditions. In medico-legal practice homicide is sometimes not immediately suspected at the death scene but afterwards during external examination of the body. The environmental temperature at the death scene remains unknown or can only be roughly reconstructed. In such cases the question arises whether it is possible to estimate the time since death from rectal temperature data alone recorded over a longer time span. The present study theoretically deduces formulae which are independent of the initial and environmental temperatures and thus proves that the information needed for death time estimation is contained in the rectal temperature data. Since the environmental temperature at the death scene may differ from that during the temperature recording, an additional factor has to be used. This is that the body core is thermally well isolated from the environment and that the rectal temperature decrease after a sudden change of environmental temperature will continue for some time at a rate similar to that before the sudden change. The present study further provides a curve-fitting procedure for such scenarios. The procedure was tested in rectal cooling data of from 35 corpses using the most commonly applied model of Henssge. In all cases the time of death was exactly known. After admission to the medico-legal institute the bodies were kept at a constant environmental temperature for 12-36 h and the rectal temperatures were recorded continuously. The curve-fitting procedure led to valid estimates of the time since death in all experiments despite the unknown environmental conditions before admission to the institute. The estimation bias was investigated statistically. The 95% confidence intervals amounted to +/-4 h, which seems reasonable compared to the 95% confidence intervals of the Henssge model with known environmental temperature. The presented method may be of use for determining the time since death even in cases in which the environmental temperature and rectal temperature at the death scene have unintentionally not been recorded.

  3. Effect of methergoline on body temperature in mice.

    PubMed

    Cardano, C; Strocchi, P; Gonni, D; Walsh, M; Agnati, L F

    1977-03-01

    Serotonin (5-HT) involvement in body temperature regulation has been studied in mice by means of a 5-HT-selective blocking agent (methergoline). This drug causes an effect on body temperature which is dependent on environmental temperature. At environmental temperatures of 25 degrees C and 11 degrees C methergoline has a hypothermic effect, while at 36 degrees C environmental temperature, methergoline has a hyperthermic effect. At 25 degrees C environmental temperature, the hypothermic effect induced by 125 mug/kg i.p. of methergoline could be antagonized by low doses of LAE-32 (80 mug/kg s.c.), while there was not such an antagonism using higher doses of LAE-32 (100 and 300 mug/kg s.c.). This has been explained using Jalfre's hypothesis of the existence of 5-HT inhibitory and excitatory receptors.

  4. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather.

    PubMed

    Agha, Mickey; Price, Steven J; Nowakowski, A Justin; Augustine, Ben; Todd, Brian D

    2017-04-20

    Emerging infectious diseases cause population declines in many ectotherms, with outbreaks frequently punctuated by periods of mass mortality. It remains unclear, however, whether thermoregulation by ectotherms and variation in environmental temperature is associated with mortality risk and disease progression, especially in wild populations. Here, we examined environmental and body temperatures of free-ranging eastern box turtles Terrapene carolina during a mass die-off coincident with upper respiratory disease. We recorded deaths of 17 turtles that showed clinical signs of upper respiratory disease among 76 adult turtles encountered in Berea, Kentucky (USA), in 2014. Of the 17 mortalities, 11 occurred approximately 14 d after mean environmental temperature dropped 2.5 SD below the 3 mo mean. Partial genomic sequencing of the major capsid protein from 1 sick turtle identified a ranavirus isolate similar to frog virus 3. Turtles that lacked clinical signs of disease had significantly higher body temperatures (23°C) than sick turtles (21°C) during the mass mortality, but sick turtles that survived and recovered eventually warmed (measured by temperature loggers). Finally, there was a significant negative effect of daily environmental temperature deviation from the 3 mo mean on survival, suggesting that rapid decreases in environmental temperature were correlated with mortality. Our results point to a potential role for environmental temperature variation and body temperature in disease progression and mortality risk of eastern box turtles affected by upper respiratory disease. Given our findings, it is possible that colder or more variable environmental temperatures and an inability to effectively thermoregulate are associated with poorer disease outcomes in eastern box turtles.

  5. Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans.

    PubMed

    Sugi, Takuma; Nishida, Yukuo; Mori, Ikue

    2011-06-26

    Animals cope with environmental changes by altering behavioral strategy. Environmental information is generally received by sensory neurons in the neural circuit that generates behavior. However, although environmental temperature inevitably influences an animal's entire body, the mechanism of systemic temperature perception remains largely unknown. We show here that systemic temperature signaling induces a change in a memory-based behavior in C. elegans. During behavioral conditioning, non-neuronal cells as well as neuronal cells respond to cultivation temperature through a heat-shock transcription factor that drives newly identified gene expression dynamics. This systemic temperature signaling regulates thermosensory neurons non-cell-autonomously through the estrogen signaling pathway, producing thermotactic behavior. We provide a link between systemic environmental recognition and behavioral plasticity in the nervous system.

  6. Environmental Radioactivity, Temperature, and Precipitation.

    ERIC Educational Resources Information Center

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  7. Variation in the thermal parameters of Odontophrynus occidentalis in the Monte desert, Argentina: response to the environmental constraints.

    PubMed

    Sanabria, Eduardo Alfredo; Quiroga, Lorena Beatriz; Martino, Adolfo Ludovico

    2012-03-01

    We studied the variation of thermal parameters of Odontophrynus occidentalis between season (wet and dry) in the Monte desert (Argentina). We measured body temperatures, microhabitat temperatures, and operative temperatures; while in the laboratory, we measured the selected body temperatures. Our results show a change in the thermal parameters of O. occidentalis that is related to environmental constraints of their thermal niche. Environmental thermal constraints are present in both seasons (dry and wet), showing variations in thermal parameters studied. Apparently imposed environmental restrictions, the toads in nature always show body temperatures below the set point. Acclimatization is an advantage for toads because it allows them to bring more frequent body temperatures to the set point. The selected body temperature has seasonal intraindividual variability. These variations can be due to thermo-sensitivity of toads and life histories of individuals that limits their allocation and acquisition of resources. Possibly the range of variation found in selected body temperature is a consequence of the thermal environmental variation along the year. These variations of thermal parameters are commonly found in deserts and thermal bodies of nocturnal ectotherms. The plasticity of selected body temperature allows O. occidentales to have longer periods of activity for foraging and reproduction, while maintaining reasonable high performance at different temperatures. The plasticity in seasonal variation of the thermal parameters has been poorly studied, and is greatly advantageous to desert species during changes in both seasonal and daily temperature, as these environments are known for their high environmental variability. © 2012 WILEY PERIODICALS, INC.

  8. Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard

    NASA Astrophysics Data System (ADS)

    Ortega, Zaida; Pérez-Mellado, Valentín

    2016-11-01

    In temperate areas, seasonal changes entail a source of environmental variation potentially important for organisms. Temperate ectotherms may be adapted to the seasonal fluctuations in environmental traits. For lizards, behavioural adaptations regarding microhabitat selection could arise to improve thermoregulation during the different seasons. However, little is still known about which traits influence microhabitat selection of lizards and their adaptation to seasonality. Here we used Podarcis guadarramae to study the role of potential intrinsic (body size, sex, age) and environmental traits (air and substrate temperatures, wind speed, and sunlight) in the seasonal changes of body temperatures and microhabitat selection of lizards. We measured body temperatures of lizards in the same habitat during the four seasons and compared the climatic variables of the microhabitats selected by lizards with the mean climatic conditions available in their habitat. Body temperatures were similar for adult males, adult females, and juveniles within each season, being significantly higher in summer than in the other seasons, and in spring than in winter. The same pattern was found regarding substrate and air temperatures of the selected microhabitats. Wind speed and air temperature did not affect body temperatures, while body length was marginally significant and substrate temperatures and season did affect the body temperatures of lizards. Our results during the whole year support the idea that the seasonality could be the most important factor affecting body temperatures of these temperate species. Regarding microhabitat selection, environmental constraints, as environmental temperatures and wind speed, affected the seasonal changes on behavioural thermoregulation of lizards. This effect was similar between sexes and age classes, and was independent of body size. In addition, importance of sunlight exposure of the selected microhabitats (full sun, filtered sun, or shade) also changed between seasons. Hence, environmental constraints were the main forces driving seasonal changes in microhabitat selection.

  9. Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus.

    PubMed

    Falibene, Agustina; Josens, Roxana

    2014-12-01

    Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hydrologic Engineering Center River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement

    DTIC Science & Technology

    2017-09-18

    Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement En vi ro nm en ta l L ab or at or y...Engineering Center-River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Project 396939, “Missouri River Recovery Management Plan and Environmental

  11. Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance.

    PubMed

    Vergara, Rodrigo C; Moënne-Loccoz, Cristóbal; Maldonado, Pedro E

    2017-01-01

    Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT), a flanker task (FT) and a counting task (CT). Using multiple linear regression models, we evaluated which variable(s) were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.

  12. Effect of high environmental temperature on semen parameters among fertile men.

    PubMed

    Momen, M Nabil; Ananian, Fredrick B; Fahmy, Ibrahim M; Mostafa, Taymour

    2010-04-01

    To evaluate the effect of high environmental occupational temperature on semen parameters of fertile men. Prospective. Steel-casting plant. Ninety fertile workers exposed to a high temperature compared with 40 fertile workers working under ordinary conditions as control subjects. Measurement of scrotal temperature by invagination thermometry, air temperature, relative humidity by aspirated psychrometer, radiant heat by globe thermometer, air velocity by light vane anemometer, and semen analysis. Scrotal temperature and semen analysis. Nonsignificant difference was found between the two groups regarding their scrotal temperature. Also, nonsignificant differences were demonstrated regarding semen analysis parameters being in the normozoospermic range. Under high environmental temperature, semen parameters were within normozoospermic levels owing to body acclimatization mechanisms. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    NASA Astrophysics Data System (ADS)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  14. Effects of environmental temperature on the gut microbial communities of tadpoles.

    PubMed

    Kohl, Kevin D; Yahn, Jeremiah

    2016-05-01

    Numerous studies have investigated the effects of diet, phylogeny and immune status on the gut microbial communities of animals. Most of these studies are conducted on endotherms, especially mammals, which maintain constant body temperature in the face of environmental temperature variability. However, the majority of animals and vertebrates are ectotherms, which often experience fluctuations in body temperature as a result of their environment. While there have been several studies investigating the gut microbial diversity of ectotherms, we lack an understanding of how environmental temperature affects these communities. Here, we used high-throughput sequencing to inventory the gut microbial communities of tadpoles exposed to cool (18°C) or warm (28°C) temperature treatments. We found that temperature significantly impacted the community structure and membership of the tadpole gut. Specifically, tadpoles in the warm treatment exhibited higher abundances of the phylum Planctomycetes and the genus Mycobacterium. These results may be due to the direct effects of temperature, or mediated through changes in host physiology. Given that environmental temperatures are expected to increase due to global climate change, understanding the effects of temperature on the diversity and function of gut microbial communities is critical. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Realization of the Energy Saving of the Environmental Examination Device Temperature Control System in Consideration of Temperature Characteristics

    NASA Astrophysics Data System (ADS)

    Onogaki, Hitoshi; Yokoyama, Shuichi

    The temperature control of the environmental examination device has loss of the energy consumption to cool it while warming it. This paper proposed a tempareture control system method with energy saving for the enviromental examination device without using cooling in consideration of temperature characteristics.

  16. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life

    PubMed Central

    Romero-Romero, M. Luisa; Risso, Valeria A.; Martinez-Rodriguez, Sergio; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2016-01-01

    The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms. PMID:27253436

  17. Assessment of the effects of environmental radiation on wind chill equivalent temperatures.

    PubMed

    Shitzer, Avraham

    2008-09-01

    Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.

  18. Deciphering the Environmental Impacts on Rice Quality for Different Rice Cultivated Areas.

    PubMed

    Li, Xiukun; Wu, Lian; Geng, Xin; Xia, Xiuhong; Wang, Xuhong; Xu, Zhengjin; Xu, Quan

    2018-01-19

    Rice (Oryza sativa L.) is cultivated in a wide range of climatic conditions, and is one of mankind's major staple foods. The interaction of environmental factors with genotype effects major agronomic traits such as yield, quality, and resistance in rice. However, studies on the environmental factors affecting agronomic traits are often difficult to conduct because most environmental factors are dynamic and constantly changing. A series of recombinant inbred lines (RILs) derived from an indica/japonica cross were planted into four typical rice cultivated areas arranging from latitude N22° to N42°. The environmental data from the heading to mature (45 days) stages were recorded for each RIL in the four areas. We determined that light, temperature, and humidity significantly affected the milling quality and cooking quality overall the four areas. Within each area, these environmental factors mainly affected the head rice ratio, grain length, alkali consumption, and amylose and protein content. Moreover, the effect of these environmental factors dynamically changed from heading to mature stage. Compared to light and humidity, temperature was more stable and predictable, and night temperature showed a stronger correlation efficiency to cooking quality than day temperature, and the daily temperature range had contrary effects compared to day and night temperature on grain quality. The present study evaluated the critical phase during the grain filling stage by calculating the dynamic changes of correlation efficiency between the quality traits and climate parameters. Our findings suggest that the sowing date could be adjusted to improve rice quality so as to adjust for environmental changes.

  19. Temperature-Dependent Growth Modeling of Environmental and Clinical Legionella pneumophila Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) Genotypes

    PubMed Central

    Sharaby, Yehonatan; Rodríguez-Martínez, Sarah; Oks, Olga; Pecellin, Marina; Mizrahi, Hila; Peretz, Avi; Brettar, Ingrid; Höfle, Manfred G.

    2017-01-01

    ABSTRACT Legionella pneumophila causes waterborne infections resulting in severe pneumonia. High-resolution genotyping of L. pneumophila isolates can be achieved by multiple-locus variable-number tandem-repeat analysis (MLVA). Recently, we found that different MLVA genotypes of L. pneumophila dominated different sites in a small drinking-water network, with a genotype-related temperature and abundance regime. The present study focuses on understanding the temperature-dependent growth kinetics of the genotypes that dominated the water network. Our aim was to model mathematically the influence of temperature on the growth kinetics of different environmental and clinical L. pneumophila genotypes and to compare it with the influence of their ecological niches. Environmental strains showed a distinct temperature preference, with significant differences among the growth kinetics of the three studied genotypes (Gt4, Gt6, and Gt15). Gt4 strains exhibited superior growth at lower temperatures (25 and 30°C), while Gt15 strains appeared to be best adapted to relatively higher temperatures (42 and 45°C). The temperature-dependent growth traits of the environmental genotypes were consistent with their distribution and temperature preferences in the water network. Clinical isolates exhibited significantly higher growth rates and reached higher maximal cell densities at 37°C and 42°C than the environmental strains. Further research on the growth preferences of L. pneumophila clinical and environmental genotypes will result in a better understanding of their ecological niches in drinking-water systems as well as in the human body. IMPORTANCE Legionella pneumophila is a waterborne pathogen that threatens humans in developed countries. The bacteria inhabit natural and man-made freshwater environments. Here we demonstrate that different environmental L. pneumophila genotypes have different temperature-dependent growth kinetics. Moreover, Legionella strains that belong to the same species but were isolated from environmental and clinical sources possess adaptations for growth at different temperatures. These growth preferences may influence the bacterial colonization at specific ecological niches within the drinking-water network. Adaptations for growth at human body temperatures may facilitate the abilities of some L. pneumophila strains to infect and cause illness in humans. Our findings may be used as a tool to improve Legionella monitoring in drinking-water networks. Risk assessment models for predicting the risk of legionellosis should take into account not only Legionella concentrations but also the temperature-dependent growth kinetics of the isolates. PMID:28159784

  20. Alterations in gonadotropin secretion and ovarian function in prepubertal gilts by elevated environmental temperature.

    PubMed

    Flowers, B; Day, B N

    1990-03-01

    The effect of chronic exposure to elevated environmental temperature on gonadotropin secretion and ovarian function was studied in prepubertal gilts. Gilts were maintained under control (15.6 degrees C) or elevated temperature (33.3 degrees C) conditions from 150 to 180 days of age. Endocrine and ovarian responses to bilateral (BLO), unilateral (ULO), and sham ovariectomy were evaluated between 175 and 180 days of age. During the 96-h sampling period after BLO, plasma concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were suppressed in heat-stressed females. Similarly, elevated temperatures abolished the transient rise in FSH and subsequent follicular growth normally associated with ULO. In contrast, environmental treatment had no effect on the secretion of FSH and LH after sham ovariectomy, yet the number of small follicles was lower in gilts exposed to elevated temperatures than in females maintained under control conditions. These results indicate that a chronic exposure to elevated environmental temperature during pubertal development diminished the ability of the hypothalamo-hypophyseal axis to secrete FSH and LH, which had physiological consequences on follicular growth. When provided an appropriate stimulus (ULO), an acute period of FSH secretion and subsequent development of follicles failed to occur in females exposed to elevated temperatures. Consequently, we propose that delayed puberty in gilts during periods of elevated environmental temperatures is due, in part, to a diminished capacity for gonadotropin secretion.

  1. High environmental temperature and preterm birth: a review of the evidence.

    PubMed

    Carolan-Olah, Mary; Frankowska, Dorota

    2014-01-01

    to examine the evidence in relation to preterm birth and high environmental temperature. this review was conducted against a background of global warming and an escalation in the frequency and severity of hot weather together with a rising preterm birth rate. electronic health databases such as: SCOPUS, MEDLINE, CINAHL, EMBASE and Maternity and Infant Care were searched for research articles, that examined preterm birth and high environmental temperature. Further searches were based on the reference lists of located articles. Keywords included a search term for preterm birth (preterm birth, preterm, premature, <37 weeks, gestation) and a search term for hot weather (heatwaves, heat-waves, global warming, climate change, extreme heat, hot weather, high temperature, ambient temperature). A total of 159 papers were retrieved in this way. Of these publications, eight met inclusion criteria. data were extracted and organised under the following headings: study design; dataset and sample; gestational age and effect of environmental heat on preterm birth. Critical Appraisal Skills Programme (CASP) guidelines were used to appraise study quality. in this review, the weight of evidence supported an association between high environmental temperature and preterm birth. However, the degree of association varied considerably, and it is not clear what factors influence this relationship. Differing definitions of preterm birth may also add to lack of clarity. preterm birth is an increasingly common and debilitating condition that affects a substantial portion of infants. Rates appear to be linked to high environmental temperature, and more especially heat stress, which may be experienced during extreme heat or following a sudden rise in temperature. When this happens, the body may be unable to adapt quickly to the change. As global warming continues, the incidence of high environmental temperature and dramatic temperature changes are also increasing. This situation makes it important that research effort is directed to understanding the degree of association and the mechanism by which high temperature and temperature increases impact on preterm birth. Research is also warranted into the development of more effective cooling practices to ameliorate the effects of heat stress. In the meantime, it is important that pregnant women are advised to take special precautions to avoid heat stress and to keep cool when there are sudden increases in temperature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  3. Sex Ratios at Birth and Environmental Temperatures

    NASA Astrophysics Data System (ADS)

    Lerchl, Alexander

    The relationship between average monthly air temperature and sex ratios at birth (SRB) was analyzed for children born in Germany during the period 1946-1995. Both the absolute temperature and - more markedly - the monthly temperature deviations from the overall mean were significantly positively correlated with the SRB (P<0.01) when temperatures were time-lagged against the SRB data by -10 or -11months. It is concluded that the sex of the offspring is partially determined by environmental temperatures prior to conception.

  4. Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research

    PubMed Central

    Bell, Michelle L.; Peng, Roger D.

    2013-01-01

    Background: Environmental health research employs a variety of metrics to measure heat exposure, both to directly study the health effects of outdoor temperature and to control for temperature in studies of other environmental exposures, including air pollution. To measure heat exposure, environmental health studies often use heat index, which incorporates both air temperature and moisture. However, the method of calculating heat index varies across environmental studies, which could mean that studies using different algorithms to calculate heat index may not be comparable. Objective and Methods: We investigated 21 separate heat index algorithms found in the literature to determine a) whether different algorithms generate heat index values that are consistent with the theoretical concepts of apparent temperature and b) whether different algorithms generate similar heat index values. Results: Although environmental studies differ in how they calculate heat index values, most studies’ heat index algorithms generate values consistent with apparent temperature. Additionally, most different algorithms generate closely correlated heat index values. However, a few algorithms are potentially problematic, especially in certain weather conditions (e.g., very low relative humidity, cold weather). To aid environmental health researchers, we have created open-source software in R to calculate the heat index using the U.S. National Weather Service’s algorithm. Conclusion: We identified 21 separate heat index algorithms used in environmental research. Our analysis demonstrated that methods to calculate heat index are inconsistent across studies. Careful choice of a heat index algorithm can help ensure reproducible and consistent environmental health research. Citation: Anderson GB, Bell ML, Peng RD. 2013. Methods to calculate the heat index as an exposure metric in environmental health research. Environ Health Perspect 121:1111–1119; http://dx.doi.org/10.1289/ehp.1206273 PMID:23934704

  5. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s.

    PubMed

    Christiansen-Jucht, Céline; Parham, Paul E; Saddler, Adam; Koella, Jacob C; Basáñez, María-Gloria

    2014-11-05

    Malaria transmission depends on vector life-history parameters and population dynamics, and particularly on the survival of adult Anopheles mosquitoes. These dynamics are sensitive to climatic and environmental factors, and temperature is a particularly important driver. Data currently exist on the influence of constant and fluctuating adult environmental temperature on adult Anopheles gambiae s.s. survival and on the effect of larval environmental temperature on larval survival, but none on how larval temperature affects adult life-history parameters. Mosquito larvae and pupae were reared individually at different temperatures (23 ± 1°C, 27 ± 1°C, 31 ± 1°C, and 35 ± 1°C), 75 ± 5% relative humidity. Upon emergence into imagoes, individual adult females were either left at their larval temperature or placed at a different temperature within the range above. Survival was monitored every 24 hours and data were analysed using non-parametric and parametric methods. The Gompertz distribution fitted the survivorship data better than the gamma, Weibull, and exponential distributions overall and was adopted to describe mosquito mortality rates. Increasing environmental temperature during the larval stages decreased larval survival (p < 0.001). Increases of 4°C (from 23°C to 27°C, 27°C to 31°C, and 31°C to 35°C), 8°C (27°C to 35°C) and 12°C (23°C to 35°C) statistically significantly increased larval mortality (p < 0.001). Higher environmental temperature during the adult stages significantly lowered adult survival overall (p < 0.001), with increases of 4°C and 8°C significantly influencing survival (p < 0.001). Increasing the larval environment temperature also significantly increased adult mortality overall (p < 0.001): a 4°C increase (23°C to 27°C) did not significantly affect adult survival (p > 0.05), but an 8°C increase did (p < 0.05). The effect of a 4°C increase in larval temperature from 27°C to 31°C depended on the adult environmental temperature. The data also suggest that differences between the temperatures of the larval and adult environments affects adult mosquito survival. Environmental temperature affects Anopheles survival directly during the juvenile and adult stages, and indirectly, since temperature during larval development significantly influences adult survival. These results will help to parameterise more reliable mathematical models investigating the potential impact of temperature and global warming on malaria transmission.

  6. Estimating Long-Term Survival Temperatures at the Assemblage Level in the Marine Environment: Towards Macrophysiology

    PubMed Central

    Richard, Joëlle; Morley, Simon Anthony; Thorne, Michael A. S.; Peck, Lloyd Samuel

    2012-01-01

    Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming. PMID:22509340

  7. Evaluation of the Environmental Bias on Accelerometer-Measured Total Daily Activity Counts and Owner Survey Responses in Dogs with Osteoarthritis.

    PubMed

    Katz, Erin M; Scott, Ruth M; Thomson, Christopher B; Mesa, Eileen; Evans, Richard; Conzemius, Michael G

    2017-11-01

    Objective  To determine if environmental variables affect the average daily activity counts (AC) of dogs with osteoarthritis (OA) and/or owners' perception of their dog's clinical signs or quality of life. Methods  The AC and Canine Brief Pain Inventory (CBPI) owner questionnaires of 62 dogs with OA were compared with daily environmental variables including the following: average temperature (°C), high temperature (°C), low temperature (°C), relative humidity (%), total precipitation (mm), average barometric pressure (hPa) and total daylight hours. Results  Daily AC significantly correlated with average temperature and total daylight hours, but average temperature and total daylight hours accounted for less than 1% of variation in AC. No other significant relationships were found between daily AC and daily high temperature, low temperature, relative humidity, total precipitation or average barometric pressure. No statistical relationship was found between daily AC and the CBPI, nor between environmental variables and the CBPI. Canine Brief Pain Inventory scores for pain severity and pain interference decreased significantly over the test period. Clinical Significance  The relationship between daily AC and average temperature and total daylight hours was significant, but unlikely to be clinically significant. Thus, environmental variables do not appear to have a clinically relevant bias on AC or owner CBPI questionnaires. The decrease over time in CBPI pain severity and pain interference values suggests owners completing the CBPI in this study were influenced by a caregiver placebo effect. Schattauer GmbH Stuttgart.

  8. Environmental stressors during space flight: potential effects on body temperature

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  9. Impact of environmental factors on neglected emerging arboviral diseases

    PubMed Central

    Azevedo, Thiago S.; Virginio, Flávia; Aguiar, Breno S.

    2017-01-01

    Background Brazil is a tropical country that is largely covered by rainforests and other natural ecosystems, which provide ideal conditions for the existence of many arboviruses. However, few analyses have examined the associations between environmental factors and arboviral diseases. Thus, based on the hypothesis of correlation between environment and epidemiology, the proposals of this study were (1) to obtain the probability of occurrence of Oropouche, Mayaro, Saint Louis and Rocio fevers in Brazil based on environmental conditions corresponding to the periods of occurrence of the outbreaks; (2) to describe the macroclimatic scenario in Brazil in the last 50 years, evaluating if there was any detectable tendency to increase temperatures and (3) to model future expansion of those arboviruses in Brazil based on future temperature projections. Methodology/Principal findings Our model assessed seven environmental factors (annual rainfall, annual temperature, elevation, seasonality of temperature, seasonality of precipitation, thermal amplitude, and daytime temperature variation) for their association with the occurrence of outbreaks in the last 50 years. Our results suggest that various environmental factors distinctly influence the distribution of each arbovirus, with temperature being the central determinant of disease distribution in all high-risk areas. These areas are subject to change, since the average temperature of some areas has increased significantly over the time. Conclusions/Significance This is the first spatio-temporal study of the Oropouche, Mayaro, Saint Louis, and Rocio arboviruses, and our results indicate that they may become increasingly important public health problems in Brazil. Thus, next studies and control programs should include these diseases and also take into consideration key environmental elements. PMID:28953892

  10. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  11. Effect of environmental temperature on the vector competence of mosquitoes for Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Environmental temperature has been shown to affect the ability of mosquitoes to transmit numerous arboviruses and for Rift Valley fever virus (RVFV) in particular. We evaluated the effect of incubation temperatures ranging from 14-26ºC on infection, dissemination, and transmission rates for Culex ta...

  12. Pyrite oxidation under simulated acid rain weathering conditions.

    PubMed

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  13. Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate

    NASA Astrophysics Data System (ADS)

    Igono, M. O.; Bjotvedt, G.; Sanford-Crane, H. T.

    1992-06-01

    The environmental profile of central Arizona is quantitatively described using meteorological data between 1971 and 1986. Utilizing ambient temperature criteria of hours per day less than 21° C, between 21 and 27° C, and more than 27° C, the environmental profile of central Arizona consists of varying levels of thermoneutral and heat stress periods. Milk production data from two commercial dairy farms from March 1990 to February 1991 were used to evaluate the seasonal effects identified in the environmental profile. Overall, milk production is lower during heat stress compared to thermoneutral periods. During heat stress, the cool period of hours per day with temperature less than 21° C provides a margin of safety to reduce the effects of heat stress on decreased milk production. Using minimum, mean and maximum ambient temperatures, the upper critical temperatures for milk production are 21, 27 and 32° C, respectively. Using the temperature-humidity index as the thermal environment indicator, the critical values for minimum, mean and maximum THI are 64, 72 and 76, respectively.

  14. Regulation of amino acid transport across intestines of goldfish acclimatized to different environmental temperatures

    PubMed Central

    Mepham, T. B.; Smith, M. W.

    1966-01-01

    1. Serosal transfers of valine and threonine were measured using everted sacs of anterior intestine taken from goldfish acclimatized to different temperatures. 2. Both valine and threonine were actively transported at incubation temperatures equal to or greater than the previous environmental temperature of the fish. There was also a positive serosal transfer of valine, but not threonine, at incubation temperatures below the previous environmental temperature of the fish. 3. The mean stable transmural potentials and amino-acid-evoked potentials depended both on the temperature to which the fish had been acclimatized and on the temperature at which the sacs were incubated. 4. There was a linear relation between the transmural potential and the serosal transfer of amino acid, one additional μmole of valine or threonine being transferred/2 hr incubation period for each 3 mV rise in potential. There was a less obvious correlation between the amino-acid-evoked potential and on serosal transfer of amino acid. 5. Acclimatization of the goldfish intestine from 8 to 25° C, assessed by changes occurring in the transmural potential and serosal transfer of amino acids, tended to stabilize both parameters, but the compensation in each case was only partial. 6. It is possible that the imbalance in transfer of valine-like and threonine-like amino acids, seen at incubation temperatures below the previous acclimatization temperature of the fish, has a special function in initiating the process of acclimatization to the new environmental temperature. PMID:5972157

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Environmental Impacts on Spiking Properties in Hodgkin-Huxley Neuron with Direct Current Stimulus

    NASA Astrophysics Data System (ADS)

    Yuan, Chang-Qing; Zhao, Tong-Jun; Zhan, Yong; Zhang, Su-Hua; Liu, Hui; Zhang, Yu-Hong

    2009-11-01

    Based on the well accepted Hodgkin-Huxley neuron model, the neuronal intrinsic excitability is studied when the neuron is subject to varying environmental temperatures, the typical impact for its regulating ways. With computer simulation, it is found that altering environmental temperature can improve or inhibit the neuronal intrinsic excitability so as to influence the neuronal spiking properties. The impacts from environmental factors can be understood that the neuronal spiking threshold is essentially influenced by the fluctuations in the environment. With the environmental temperature varying, burst spiking is realized for the neuronal membrane voltage because of the environment-dependent spiking threshold. This burst induced by changes in spiking threshold is different from that excited by input currents or other stimulus.

  16. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases.

    PubMed

    Null, Sarah E; Mouzon, Nathaniel R; Elmore, Logan R

    2017-07-15

    Environmental water purchases are increasingly used for ecological protection. In Nevada's Walker Basin (western USA), environmental water purchases augment streamflow in the Walker River and increase lake elevation of terminal Walker Lake. However, water quality impairments like elevated stream temperatures and low dissolved oxygen concentrations also limit ecosystems and species, including federally-threatened Lahontan cutthroat trout. In this paper, we prioritize water volumes and locations that most enhance water quality for riverine habitat from potential environmental water rights purchases. We monitored and modeled streamflows, stream temperatures, and dissolved oxygen concentrations using River Modeling System, an hourly, physically-based hydrodynamic and water quality model. Modeled environmental water purchases ranged from average daily increases of 0.11-1.41 cubic meters per second (m 3 /s) during 2014 and 2015, two critically dry years. Results suggest that water purchases consistently cooled maximum daily stream temperatures and warmed nightly minimum temperatures. This prevented extremely low dissolved oxygen concentrations below 5.0 mg/L, but increased the duration of moderate conditions between 5.5 and 6.0 mg/L. Small water purchases less than approximately 0.71 m 3 /s per day had little benefit for Walker River habitat. Dissolved oxygen concentrations were affected by upstream environmental conditions, where suitable upstream water quality improved downstream conditions and vice versa. Overall, this study showed that critically dry water years degrade environmental water quality and habitat, but environmental water purchases of at least 0.71 m 3 /s were promising for river restoration. Published by Elsevier Ltd.

  17. Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2013-12-01

    The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33°C), and a controlled temperature (33°C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study: (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban wastewater at ambient temperature (OEB=0.19 kW h m(-3)). LCA results reinforce the importance of maximising the recovery of nutrients (environmental impact in eutrophication can be reduced up to 45%) and dissolved methane (positive environmental impact can be obtained) from SAnMBR effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Temperature and population density: interactional effects of environmental factors on phenotypic plasticity, immune defenses, and disease resistance in an insect pest.

    PubMed

    Silva, Farley W S; Elliot, Simon L

    2016-06-01

    Temperature and crowding are key environmental factors mediating the transmission and epizooty of infectious disease in ectotherm animals. The host physiology may be altered in a temperature-dependent manner and thus affects the pathogen development and course of diseases within an individual and host population, or the transmission rates (or infectivity) of pathogens shift linearly with the host population density. To our understanding, the knowledge of interactive and synergistic effects of temperature and population density on the host-pathogen system is limited. Here, we tested the interactional effects of these environmental factors on phenotypic plasticity, immune defenses, and disease resistance in the velvetbean caterpillar Anticarsia gemmatalis . Upon egg hatching, caterpillars were reared in thermostat-controlled chambers in a 2 × 4 factorial design: density (1 or 8 caterpillars/pot) and temperature (20, 24, 28, or 32°C). Of the immune defenses assessed, encapsulation response was directly affected by none of the environmental factors; capsule melanization increased with temperature in both lone- and group-reared caterpillars, although the lone-reared ones presented the most evident response, and hemocyte numbers decreased with temperature regardless of the population density. Temperature, but not population density, affected considerably the time from inoculation to death of velvetbean caterpillar. Thus, velvetbean caterpillars succumbed to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) more quickly at higher temperatures than at lower temperatures. As hypothesized, temperature likely affected caterpillars' movement rates, and thus the contact between conspecifics, which in turn affected the phenotypic expression of group-reared caterpillars. Our results suggest that environmental factors, mainly temperature, strongly affect both the course of disease in velvetbean caterpillar population and its defenses against pathogens. As a soybean pest, velvetbean caterpillar may increase its damage on soybean fields under a scenario of global warming as caterpillars may reach the developmental resistance faster, and thus decrease their susceptibility to biological control by AgMNPV.

  19. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis

    PubMed Central

    Janssens, Lizanne; Stoks, Robby

    2013-01-01

    Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance). Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i) were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii) strongly differed depending on the fitness-related variable under study, (iii) were not always predictable based on the effect of the environmental condition in isolation, and (iv) bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities. PMID:23840819

  20. Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella.

    PubMed

    Triggs, Alison; Knell, Robert J

    2012-03-01

    1. Animals raised in good environmental conditions are expected to have more resources to invest in immunity than those raised in poor conditions. Variation in immune activity and parasite resistance in response to changes in environmental temperature, population density and food quality have been shown in many invertebrate species. 2. Almost all studies to date have examined the effects of individual variables in isolation. The aim of this study was to address whether environmental factors interact to produce synergistic effects on phenoloxidase (PO) activity and haemocyte count, both indicators of immune system activity. Temperature, food quality and density were varied in a fully factorial design for a total of eight treatment combinations. 3. Strong interactions between the three environmental variables led to the magnitude and in some cases the direction of the effect of most variables changing as the other environmental factors were altered. Overall, food quality had the most important and consistent influence, larvae raised on a good-quality diet having substantially higher PO activity in every case and substantially higher haemocyte counts in all treatments except unheated/low density. 4. When food quality was good, the larvae showed 'density-dependent prophylaxis': raising their investment in immunity when population density is high. When food quality was poor and the temperature low, however, those larvae raised at high densities invested less in immunity. 5. Increased temperature is often thought to lead to increased immune reactivity in ectotherms, but we found that the effect of temperature was strongly dependent on the values of other environmental variables. PO activity increased with temperature when larvae were raised on good food or when density was high, but when food was poor and density low, a higher temperature led to reduced PO activity. A higher temperature led to higher haemocyte counts when density was high and food quality was poor, but in all other cases, the effect of increased temperature was either close to zero or somewhat negative. 6. Although PO activity and haemocyte count were weakly correlated across the whole data set, there were a number of treatments where the two measures responded in different ways to environmental change. Overall, effect sizes for PO activity were substantially higher than those for haemocyte count, indicating that the different components of the immune system vary in their sensitivity to environmental change. 7. Predictions of the effect of environmental or population change on immunity and disease dynamics based on laboratory experiments that only investigate the effects of single variable are likely to be inaccurate or even entirely wrong. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  1. Behavioral buffering of global warming in a cold-adapted lizard.

    PubMed

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2016-07-01

    Alpine lizards living in restricted areas might be particularly sensitive to climate change. We studied thermal biology of Iberolacerta cyreni in high mountains of central Spain. Our results suggest that I. cyreni is a cold-adapted thermal specialist and an effective thermoregulator. Among ectotherms, thermal specialists are more threatened by global warming than generalists. Alpine lizards have no chance to disperse to new suitable habitats. In addition, physiological plasticity is unlikely to keep pace with the expected rates of environmental warming. Thus, lizards might rely on their behavior in order to deal with ongoing climate warming. Plasticity of thermoregulatory behavior has been proposed to buffer the rise of environmental temperatures. Therefore, we studied the change in body and environmental temperatures, as well as their relationships, for I. cyreni between the 1980s and 2012. Air temperatures have increased more than 3.5°C and substrate temperatures have increased by 6°C in the habitat of I. cyreni over the last 25 years. However, body temperatures of lizards have increased less than 2°C in the same period, and the linear relationship between body and environmental temperatures remains similar. These results show that alpine lizards are buffering the potential impact of the increase in their environmental temperatures, most probably by means of their behavior. Body temperatures of I. cyreni are still cold enough to avoid any drop in fitness. Nonetheless, if warming continues, behavioral buffering might eventually become useless, as it would imply spending too much time in shelter, losing feeding, and mating opportunities. Eventually, if body temperature exceeds the thermal optimum in the near future, fitness would decrease abruptly.

  2. Effects of living at two ambient temperatures on 24-h blood pressure and neuroendocrine function among obese and non-obese humans: a pilot study

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko; Sugenoya, Junichi

    2013-05-01

    The effects of environmental temperature on blood pressure and hormones in obese subjects in Japan were compared in two seasons: summer vs winter. Five obese (BMI, 32 ± 5 kg/m2) and five non-obese (BMI, 23 ±3 kg/m2) men participated in this experiment at latitude 35°10' N and longitude 136°57.9' E. The average environmental temperature was 29 ± 1 °C in summer and 3 ± 1 °C in winter. Blood samples were analyzed for leptin, ghrelin, catecholamines, thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), total cholesterol, triglycerides, insulin and glucose. Blood pressure was measured over the course of 24 h in summer and winter. A Japanese version of the Profile of Mood States (POMS) questionnaire was also administered each season. Systolic and diastolic blood pressures in obese men were significantly higher in winter (lower environmental temperatures) than in summer (higher environmental temperatures). Noradrenaline and dopamine concentrations were also significantly higher at lower environmental temperatures in obese subjects, but ghrelin, TSH, fT3, fT4, insulin and glucose were not significantly different in summer and winter between obese and non-obese subjects. Leptin, total cholesterol and triglyceride concentrations were significantly higher in winter in obese than non-obese men. Results from the POMS questionnaire showed a significant rise in Confusion at lower environmental temperatures (winter) in obese subjects. In this pilot study, increased blood pressure may have been due to increased secretion of noradrenaline in obese men in winter, and the results suggest that blood pressure control in obese men is particularly important in winter.

  3. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest): Striped Bass

    DTIC Science & Technology

    1988-03-01

    no ill effects (Table 5). Juve- Temperature niles acclimated to higher tempera- tures had higher lethal limits than Striped bass eggs have a broad fish...decrease was gradual (4 C/h). Adult tween 14 and 23 °C (Albrecht 1964). preferred temperatures varied with Table 3. Effects of selected environmental...34.% .N~ Table 4. Effects of selected environmental factors on striped bass larval stages. 0 Environmental Experimental factor conditions Tolerance

  4. VARIATION IN MORBIDITY AND MORTALITY OF MURINE TYPHUS INFECTION IN MICE WITH CHANGES IN THE ENVIRONMENTAL TEMPERATURE

    PubMed Central

    Moragues, Vicente; Pinkerton, Henry

    1944-01-01

    Murine typhus rickettsiae injected intraperitoneally in mice of the dba strain caused a uniformly fatal rickettsial peritonitis if the animals were kept at a room temperature ranging from 65–73°F. or from 70–80°F. With an environmental temperature range of 85–98°F., a mortality of less than 25 per cent was observed. By utilizing different strains of mice and controlling the environmental temperature, conditions may be created under which murine typhus will have any desired degree of mortality. Such conditions have obvious advantages for the evaluation of therapeutic measures in typhus infection. PMID:19871351

  5. Leaf growth dynamics in four plant species of the Patagonian Monte, Argentina.

    PubMed

    Campanella, M Victoria; Bertiller, Mónica B

    2013-07-01

    Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.

  6. Integration of body temperature into the analysis of energy expenditure in the mouse

    PubMed Central

    Abreu-Vieira, Gustavo; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L.

    2015-01-01

    Objectives We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. Methods The effect of environmental temperature (4–33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3-/y, lipodystrophic) was measured using continuous monitoring. Results Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts of energy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-induced thermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matched that calculated from the energy expenditure using Fourier's law of heat conduction. Mice defended a higher body temperature during physical activity. The cost of the warmer body temperature during the active phase is 4–16% of total daily energy expenditure. Parameters measured in diet-induced obese and Brs3-/y mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in mice is via physiological mechanisms. Conclusions At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis. PMID:26042200

  7. Development of an Integrated Thermocouple for the Accurate Sample Temperature Measurement During High Temperature Environmental Scanning Electron Microscopy (HT-ESEM) Experiments.

    PubMed

    Podor, Renaud; Pailhon, Damien; Ravaux, Johann; Brau, Henri-Pierre

    2015-04-01

    We have developed two integrated thermocouple (TC) crucible systems that allow precise measurement of sample temperature when using a furnace associated with an environmental scanning electron microscope (ESEM). Sample temperatures measured with these systems are precise (±5°C) and reliable. The TC crucible systems allow working with solids and liquids (silicate melts or ionic liquids), independent of the gas composition and pressure. These sample holder designs will allow end users to perform experiments at high temperature in the ESEM chamber with high precision control of the sample temperature.

  8. Effects of Environmental Temperature and Dietary Fat Content on The Performance and Heat Production and Substrate Oxidation in Growing Pigs.

    PubMed

    Han, Rui; Jiang, Hailong; Che, Dongsheng; Bao, Nan; Xiang, Dong; Liu, Feifei; Yang, Huaming; Ban, Zhibin; Qin, Guixin

    2017-01-01

    This study aimed to evaluate the effect of temperature and dietary fat level on growth performance, heat production, nutrient oxidation and nitrogen balance in growing pigs. Thirty-two pigs (Duroc × Landrace × Large White) with initial weight of 25±1.91 kg were assigned to treatments in 2×4 factorial design. All pigs were fed with two isoenergetic and isoproteic diets of different fat levels (low fat level: 3.68% fat of dry matter (DM) and high fat level: 8.39% fat of DM) under four environmental temperatures (23, 18, 13 and 8 ºC). Heat production (HP) and nutrient oxidation were calculated from gas exchange via measurement with respiration chambers. The results showed that there was no interaction effect on growth performance by the temperature and dietary fat level. The average daily feed intake (ADFI) was lower (P < 0.001), the average daily gain (ADG) was higher (P < 0.001) and feed utilization was more efficient at 23 ºC than 13 and 8 ºC (P < 0.001). Dietary fat had no effect on growth performance and feed utilization at the four different temperatures. A significant interaction (P < 0.001) between temperature and dietary fat level on oxidation of carbohydrate (OXCHO) and fat (OXF) was observed. HP, OXF and OXCHO were significantly increased (P < 0.001) as environment temperatures decreased. Increasing dietary fat generated an increase in the OXF and decrease in the OXCHO (P < 0.001). No significant difference was observed in protein oxidation (OXP) of two factors. The intakes of nitrogen, nitrogen excretion in feces (FN) and urine (UN) by the pigs kept in 8 ºC environment were highest. Nitrogen digestibility decreased as environmental temperature decreased, with the most efficient gains obtained at 23 ºC. However, nitrogen retention was not influenced by environmental temperature. Dietary fat level did not affect nitrogen balance. No significant interaction between temperature and dietary fat level was observed for nitrogen balance. These results indicated that the rate of growth and nutrition utilization in pigs fed ad libitum are influenced by the environmental temperatures in which they are maintained, and the oxidation of nutrition utilization of the pig to different environmental temperatures is altered by the dietary fat supplementation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. The automated analysis of clustering behaviour of piglets from thermal images in response to immune challenge by vaccination.

    PubMed

    Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L

    2018-01-01

    An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.

  10. Infrared thermography in newborns: the first hour after birth.

    PubMed

    Christidis, Iris; Zotter, Heinz; Rosegger, Hellfried; Engele, Heidi; Kurz, Ronald; Kerbl, Reinhold

    2003-01-01

    It was the aim of this study to investigate the surface temperature in newborns within the first hour after delivery. Furthermore, the influence of different environmental conditions with regard to surface temperature was documented. Body surface temperature was recorded under several environmental conditions by use of infrared thermography. 42 newborns, all delivered at term and with weight appropriate for date, were investigated under controlled conditions. The surface temperature immediately after birth shows a uniform picture of the whole body; however, it is significantly lower than the core temperature. Soon after birth, peripheral sites become cooler whereas a constant temperature is maintained at the trunk. Bathing in warm water again leads to a more even temperature profile. Radiant heaters and skin-to-skin contact with the mother are both effective methods to prevent heat loss in neonates. Infrared thermography is a simple and reliable tool for the measurement of skin temperature profiles in neonates. Without the need of direct skin contact, it may be helpful for optimizing environmental conditions at delivery suites and neonatal intensive-care units. Copyright 2003 S. Karger AG, Basel

  11. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue.

    PubMed

    Huang, Hui; Yao, Wenlin; Li, Ronghua; Ali, Amjad; Du, Juan; Guo, Di; Xiao, Ran; Guo, Zhanyu; Zhang, Zengqiang; Awasthi, Mukesh Kumar

    2018-02-01

    This study aimed to evaluate the chemical forms, behavior and environmental risk of heavy metal (HMs) Zn, Pb and Cd in phytoremediation residue (PMR) pyrolyzed at 350 °C, 550 °C and 750 °C, respectively. The behavior of HMs variation during the PMR pyrolysis process was analyzed and the potential HMs environmental risk of phytoremediation residue biochars (PMB) was assessed which was seldom investigated before. The results showed that the pyrolysis temperature increase decreased the soluble/exchangeable HMs fraction and alleviated the HMs bioavailability. When the temperature was over 550 °C, the adsorbed Zn(II), Pb(II) and Cd(II) were turned into oxides forms and concentrated in PMB with more stable forms exhibiting lower risk assessment code and potential ecological risk index. The ecotoxicity test showed higher pyrolysis temperature favored the reduction of PMB ecotoxicity. It is suggested that pyrolysis temperature above 550°C may be suitable for thermal treatment of PMR with acceptable environmental risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Stochastic environmental fluctuations drive epidemiology in experimental host–parasite metapopulations

    PubMed Central

    Duncan, Alison B.; Gonzalez, Andrew; Kaltz, Oliver

    2013-01-01

    Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host–parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5°C) and permissive (23°C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise. PMID:23966645

  13. Incorporating temporal heterogeneity in environmental conditions into a somatic growth model

    USGS Publications Warehouse

    Dzul, Maria C.; Yackulic, Charles B.; Korman, Josh; Yard, Michael D.; Muehlbauer, Jeffrey D.

    2017-01-01

    Evaluating environmental effects on fish growth can be challenging because environmental conditions may vary at relatively fine temporal scales compared to sampling occasions. Here we develop a Bayesian state-space growth model to evaluate effects of monthly environmental data on growth of fish that are observed less frequently (e.g., from mark-recapture data where time between captures can range from months to years). We assess effects of temperature, turbidity duration, food availability, flow variability, and trout abundance on subadult humpback chub (Gila cypha) growth in two rivers, the Colorado River (CR) and the Little Colorado River (LCR), and we use out-of-sample prediction to rank competing models. Environmental covariates explained a high proportion of the variation in growth in both rivers; however, the best growth models were river-specific and included either positive temperature and turbidity duration effects (CR) or positive temperature and food availability effects (LCR). Our approach to analyzing environmental controls on growth should be applicable in other systems where environmental data vary over relatively short time scales compared to animal observations.

  14. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  15. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  16. Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Moreno, Allison R.; Hagstrom, George I.; Primeau, Francois W.; Levin, Simon A.; Martiny, Adam C.

    2018-05-01

    Marine phytoplankton stoichiometry links nutrient supply to marine carbon export. Deviations of phytoplankton stoichiometry from Redfield proportions (106C : 1P) could therefore have a significant impact on carbon cycling, and understanding which environmental factors drive these deviations may reveal new mechanisms regulating the carbon cycle. To explore the links between environmental conditions, stoichiometry, and carbon cycling, we compared four different models of phytoplankton C : P: a fixed Redfield model, a model with C : P given as a function of surface phosphorus concentration (P), a model with C P given as a function of temperature, and a new multi-environmental model that predicts C : P as a function of light, temperature, and P. These stoichiometric models were embedded into a five-box ocean circulation model, which resolves the three major ocean biomes (high-latitude, subtropical gyres, and tropical upwelling regions). Contrary to the expectation of a monotonic relationship between surface nutrient drawdown and carbon export, we found that lateral nutrient transport from lower C : P tropical waters to high C : P subtropical waters could cause carbon export to decrease with increased tropical nutrient utilization. It has been hypothesized that a positive feedback between temperature and pCO2, atm will play an important role in anthropogenic climate change, with changes in the biological pump playing at most a secondary role. Here we show that environmentally driven shifts in stoichiometry make the biological pump more influential, and may reverse the expected positive relationship between temperature and pCO2, atm. In the temperature-only model, changes in tropical temperature have more impact on the Δ pCO2, atm (˜ 41 ppm) compared to subtropical temperature changes (˜ 4.5 ppm). Our multi-environmental model predicted a decline in pCO2, atm of ˜ 46 ppm when temperature spanned a change of 10 °C. Thus, we find that variation in marine phytoplankton stoichiometry and its environmental controlling factors can lead to nonlinear controls on pCO2, atm, suggesting the need for further studies of ocean C : P and the impact on ocean carbon cycling.

  17. Environmental and Physiological Factors Affect Football Head Impact Biomechanics.

    PubMed

    Mihalik, Jason P; Sumrall, Adam Z; Yeargin, Susan W; Guskiewicz, Kevin M; King, Kevin B; Trulock, Scott C; Shields, Edgar W

    2017-10-01

    Recent anecdotal trends suggest a disproportionate number of head injuries in collegiate football players occur during preseason football camp. In warmer climates, this season also represents the highest risk for heat-related illness among collegiate football players. Because concussion and heat illnesses share many common symptoms, we need 1) to understand if environmental conditions, body temperature, and hydration status affect head impact biomechanics; and 2) to determine if an in-helmet thermistor could provide a valid measure of gastrointestinal temperature. A prospective cohort of 18 Division I college football players (age, 21.1 ± 1.4 yr; height, 187.7 ± 6.6 cm; mass, 114.5 ± 23.4 kg). Data were collected during one control and three experimental sessions. During each session, the Head Impact Telemetry System recorded head impact biomechanics (linear acceleration, rotational acceleration, and severity profile) and in-helmet temperature. A wet bulb globe device recorded environmental conditions, and CorTemp™ Ingestible Core Body Temperature Sensors recorded gastrointestinal temperature. Our findings suggest that linear acceleration (P = 0.57), rotational acceleration (P = 0.16), and Head Impact Technology severity profile (P = 0.33) are not influenced by environmental or physiological conditions. We did not find any single or combination of predictors for impact severity. Rotational acceleration was approaching significance between our early experimental sessions when compared with our control session. More research should be conducted to better understand if rotational accelerations are a component of impact magnitudes that are affected due to changes in environmental conditions, body temperature, and hydration status.

  18. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications.

    PubMed

    Polgar, Gianluca; Khang, Tsung Fei; Chua, Teddy; Marshall, David J

    2015-01-01

    The relationship between acute thermal tolerance and habitat temperature in ectotherm animals informs about their thermal adaptation and is used to assess thermal safety margins and sensitivity to climate warming. We studied this relationship in an equatorial freshwater snail (Clea nigricans), belonging to a predominantly marine gastropod lineage (Neogastropoda, Buccinidae). We found that tolerance of heating and cooling exceeded average daily maximum and minimum temperatures, by roughly 20°C in each case. Because habitat temperature is generally assumed to be the main selective factor acting on the fundamental thermal niche, the discordance between thermal tolerance and environmental temperature implies trait conservation following 'in situ' environmental change, or following novel colonisation of a thermally less-variable habitat. Whereas heat tolerance could relate to an historical association with the thermally variable and extreme marine intertidal fringe zone, cold tolerance could associate with either an ancestral life at higher latitudes, or represent adaptation to cooler, higher-altitudinal, tropical lotic systems. The broad upper thermal safety margin (difference between heat tolerance and maximum environmental temperature) observed in this snail is grossly incompatible with the very narrow safety margins typically found in most terrestrial tropical ectotherms (insects and lizards), and hence with the emerging prediction that tropical ectotherms, are especially vulnerable to environmental warming. A more comprehensive understanding of climatic vulnerability of animal ectotherms thus requires greater consideration of taxonomic diversity, ecological transition and evolutionary history. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Multiscale Evaluation of Thermal Dependence in the Glucocorticoid Response of Vertebrates.

    PubMed

    Jessop, Tim S; Lane, Meagan L; Teasdale, Luisa; Stuart-Fox, Devi; Wilson, Robbie S; Careau, Vincent; Moore, Ignacio T

    2016-09-01

    Environmental temperature has profound effects on animal physiology, ecology, and evolution. Glucocorticoid (GC) hormones, through effects on phenotypic performance and life history, provide fundamental vertebrate physiological adaptations to environmental variation, yet we lack a comprehensive understanding of how temperature influences GC regulation in vertebrates. Using field studies and meta- and comparative phylogenetic analyses, we investigated how acute change and broadscale variation in temperature correlated with baseline and stress-induced GC levels. Glucocorticoid levels were found to be temperature and taxon dependent, but generally, vertebrates exhibited strong positive correlations with acute changes in temperature. Furthermore, reptile baseline, bird baseline, and capture stress-induced GC levels to some extent covaried with broadscale environmental temperature. Thus, vertebrate GC function appears clearly thermally influenced. However, we caution that lack of detailed knowledge of thermal plasticity, heritability, and the basis for strong phylogenetic signal in GC responses limits our current understanding of the role of GC hormones in species' responses to current and future climate variation.

  20. Plastic breeding system response to day length in the California wildflower Mimulus douglasii.

    PubMed

    Barnett, Laryssa L; Troth, Ashley; Willis, John H

    2018-04-25

    Angiosperms have evolved multiple breeding systems that allow reproductive success under varied conditions. Striking among these are cleistogamous breeding systems, where individuals can produce alternative flower types specialized for distinct mating strategies. Cleistogamy is thought to be environmentally-dependent, but little is known about environmental triggers. If production of alternate flowers is environmentally induced, populations may evolve locally adapted responses. Mimulus douglasii, exhibits a cleistogamous breeding system, and ranges across temperature and day-length gradients, providing an ideal system to investigate environmental parameters that control cleistogamy. We compared flowering responses across Mimulus douglasii population accessions that produce distinct outcrossing and self-pollinating flower morphs. Under controlled conditions, we determined time to flower, and number and type of flowers produced under different temperatures and day lengths. Temperature and day length both affect onset of flowering. Long days shift flower type from predominantly chasmogamous to cleistogamous. The strength of the response to day length varies across accessions whether temperature varies or is held constant. Cleistogamy is an environmentally sensitive polyphenism in Mimulus douglasii, allowing transition from one mating strategy to another. Longer days induce flowering and production of cleistogamous flowers. Shorter days induce chasmogamous flowers. Population origin has a small effect on response to environmental cues. © 2018 Botanical Society of America.

  1. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    PubMed

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.

  2. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel

    2014-01-01

    Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  3. Influence of Tree-Scale Environmental Variability on Tree-Ring Reconstructions of Temperature at Sonora Pass, CA

    NASA Astrophysics Data System (ADS)

    Ma, L.; Stine, A.

    2016-12-01

    Tree-ring width from treeline environments tend to covary with local interannual temperature variabilities. However, other environmental factors such as moisture and light availability may further modulate tree growth in cold climates. We investigate the influence of various environmental factors on a tree-ring record from a research plot near Sonora Pass, CA (38.32N, 119.64W; elev. 3130 m). This treeline ecotone is dominated by whitebark pine (Pinus albicaulis) growing as individuals and as stands, and at the transition between tree form and krummholtz. We surveyed all trees in the 160m x 90m site, mapping and coring all trees with a diameter at breast height greater than 10 cm. We use survey data to test for an influence of inter-tree competition on growth. We also test for modulation of growth by variation in distance from surface water, aspect and slope, and soil types. Initial result shows a relationship between tree ring width and local May-July temperature (R = 0.33, p < 0.01), suggesting summer temperature as a large-scale control on growth. Incorporating the tree-level metadata, we test for the effect of spatial variability on mean growth rate and on reconstructed temperatures. Trees that have larger or closer neighboring trees experience greater competition, and we hypothesize that competition will be inversely related to average growth rate. Further, we test the sensitivity of ring-width interannual variability to other non-temperature environmental drivers such as moisture availability, light competition, and spatial relations in the microenvironment. We hypothesize that trees that have ready access to light and water will likely produce ring records more closely correlated with the temperature record, and thus will produce a temperature reconstruction with a higher signal-to-noise ratio; whereas trees that experience more microenvironment limitations or competition will produce ring records resembling temperature and additional environmental factors or will contain more noise.

  4. Hypoxia tolerance of common sole juveniles depends on dietary regime and temperature at the larval stage: evidence for environmental conditioning.

    PubMed

    Zambonino-Infante, José L; Claireaux, Guy; Ernande, Bruno; Jolivet, Aurélie; Quazuguel, Patrick; Sévère, Armelle; Huelvan, Christine; Mazurais, David

    2013-05-07

    An individual's environmental history may have delayed effects on its physiology and life history at later stages in life because of irreversible plastic responses of early ontogenesis to environmental conditions. We chose a marine fish, the common sole, as a model species to study these effects, because it inhabits shallow marine areas highly exposed to environmental changes. We tested whether temperature and trophic conditions experienced during the larval stage had delayed effects on life-history traits and resistance to hypoxia at the juvenile stage. We thus examined the combined effect of global warming and hypoxia in coastal waters, which are potential stressors to many estuarine and coastal marine fishes. Elevated temperature and better trophic conditions had a positive effect on larval growth and developmental rates; warmer larval temperature had a delayed positive effect on body mass and resistance to hypoxia at the juvenile stage. The latter suggests a lower oxygen demand of individuals that had experienced elevated temperatures during larval stages. We hypothesize that an irreversible plastic response to temperature occurred during early ontogeny that allowed adaptive regulation of metabolic rates and/or oxygen demand with long-lasting effects. These results could deeply affect predictions about impacts of global warming and eutrophication on marine organisms.

  5. Clock Genes Explain a Large Proportion of Phenotypic Variance in Systolic Blood Pressure and This Control Is Not Modified by Environmental Temperature.

    PubMed

    Dashti, Hassan S; Aslibekyan, Stella; Scheer, Frank A J L; Smith, Caren E; Lamon-Fava, Stefania; Jacques, Paul; Lai, Chao-Qiang; Tucker, Katherine L; Arnett, Donna K; Ordovás, José M

    2016-01-01

    Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. We examined whether environmental temperature on the day of participants' assessment was associated with BP, using adjusted linear regression models in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) (n = 819) and the Boston Puerto Rican Health Study (BPRHS) (n = 1,248) cohorts. We estimated phenotypic variance in BP by 18 clock genes and examined individual single-nucleotide polymorphism (SNP) associations with BP using an additive genetic model, with further consideration of environmental temperature. In GOLDN, each additional 1 °C increase in environmental temperature was associated with 0.18 mm Hg lower systolic BP [SBP; β ± SE = -0.18 ± 0.05 mm Hg; P = 0.0001] and 0.10mm Hg lower diastolic BP [DBP; -0.10 ± 0.03 mm Hg; P = 0.001]. Similar results were seen in the BPRHS for SBP only. Clock genes explained a statistically significant proportion of the variance in SBP [V G/V P ± SE = 0.071 ± 0.03; P = 0.001] in GOLDN, but not in the BPRHS, and we did not observe associations between individual SNPs and BP. Environmental temperature did not influence the identified genetic associations. We identified clock genes that explained a statistically significant proportion of the phenotypic variance in SBP, supporting the importance of the circadian pathway underlying cardiac physiology. Although temperature was associated with BP, it did not affect results with genetic markers in either study. Therefore, it does not appear that temperature measures are necessary for interpreting associations between clock genes and BP. Trials related to this study were registered at clinicaltrials.gov as NCT00083369 (Genetic and Environmental Determinants of Triglycerides) and NCT01231958 (Boston Puerto Rican Health Study). © Published by Oxford University Press on behalf of American Journal of Hypertension Ltd 2015. This work is written by (a) US Government employees(s) and is in the public domain in the US.

  6. Structural damage detection for in-service highway bridge under operational and environmental variability

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Li, Jingcheng; Jang, Shinae; Sun, Xiaorong; Christenson, Richard

    2015-03-01

    Structural health monitoring has drawn significant attention in the past decades with numerous methodologies and applications for civil structural systems. Although many researchers have developed analytical and experimental damage detection algorithms through vibration-based methods, these methods are not widely accepted for practical structural systems because of their sensitivity to uncertain environmental and operational conditions. The primary environmental factor that influences the structural modal properties is temperature. The goal of this article is to analyze the natural frequency-temperature relationships and detect structural damage in the presence of operational and environmental variations using modal-based method. For this purpose, correlations between natural frequency and temperature are analyzed to select proper independent variables and inputs for the multiple linear regression model and neural network model. In order to capture the changes of natural frequency, confidence intervals to detect the damages for both models are generated. A long-term structural health monitoring system was installed on an in-service highway bridge located in Meriden, Connecticut to obtain vibration and environmental data. Experimental testing results show that the variability of measured natural frequencies due to temperature is captured, and the temperature-induced changes in natural frequencies have been considered prior to the establishment of the threshold in the damage warning system. This novel approach is applicable for structural health monitoring system and helpful to assess the performance of the structure for bridge management and maintenance.

  7. Shell architecture: a novel proxy for paleotemperature reconstructions?

    NASA Astrophysics Data System (ADS)

    Milano, Stefania; Nehrke, Gernot; Wanamaker, Alan D., Jr.; Witbaard, Rob; Schöne, Bernd R.

    2017-04-01

    Mollusk shells are unique high-resolution paleoenvironmental archives. Their geochemical properties, such as oxygen isotope composition (δ18Oshell) and element-to-calcium ratios, are routinely used to estimate past environmental conditions. However, the existing proxies have certain drawbacks that can affect paleoreconstruction robustness. For instance, the estimation of water temperature of brackish and near-shore environments can be biased by the interdependency of δ18Oshell from multiple environmental variables (water temperature and δ18Owater). Likely, the environmental signature can be masked by physiological processes responsible for the incorporation of trace elements into the shell. The present study evaluated the use of shell structural properties as alternative environmental proxies. The sensitivity of shell architecture at µm and nm-scale to the environment was tested. In particular, the relationship between water temperature and microstructure formation was investigated. To enable the detection of potential structural changes, the shells of the marine bivalves Cerastoderma edule and Arctica islandica were analyzed with Scanning Electron Microscopy (SEM), nanoindentation and Confocal Raman Microscopy (CRM). These techniques allow a quantitative approach to the microstructural analysis. Our results show that water temperature induces a clear response in shell microstructure. A significant alteration in the morphometric characteristics and crystallographic orientation of the structural units was observed. Our pilot study suggests that shell architecture records environmental information and it has potential to be used as novel temperature proxy in near-shore and open ocean habitats.

  8. Sensitivity of cell-based biosensors to environmental variables.

    PubMed

    Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A

    2005-01-15

    Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.

  9. Nonlinear dynamics of the CAM circadian rhythm in response to environmental forcing.

    PubMed

    Hartzell, Samantha; Bartlett, Mark S; Virgin, Lawrence; Porporato, Amilcare

    2015-03-07

    Crassulacean acid metabolism (CAM) photosynthesis functions as an endogenous circadian rhythm coupled to external environmental forcings of energy and water availability. This paper explores the nonlinear dynamics of a new CAM photosynthesis model (Bartlett et al., 2014) and investigates the responses of CAM plant carbon assimilation to different combinations of environmental conditions. The CAM model (Bartlett et al., 2014) consists of a Calvin cycle typical of C3 plants coupled to an oscillator of the type employed in the Van der Pol and FitzHugh-Nagumo systems. This coupled system is a function of environmental variables including leaf temperature, leaf moisture potential, and irradiance. Here, we explore the qualitative response of the system and the expected carbon assimilation under constant and periodically forced environmental conditions. The model results show how the diurnal evolution of these variables entrains the CAM cycle with prevailing environmental conditions. While constant environmental conditions generate either steady-state or periodically oscillating responses in malic acid uptake and release, forcing the CAM system with periodic daily fluctuations in light exposure and leaf temperature results in quasi-periodicity and possible chaos for certain ranges of these variables. This analysis is a first step in quantifying changes in CAM plant productivity with variables such as the mean temperature, daily temperature range, irradiance, and leaf moisture potential. Results may also be used to inform model parametrization based on the observed fluctuating regime. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Climate change: overview of data sources, observed and predicted temperature changes, and impacts on public and environmental health

    Treesearch

    David H. Levinson; Christopher J. Fettig

    2014-01-01

    This chapter addresses the societal and the environmental impacts of climate change related to increasing surface temperatures on air quality and forest health. Increasing temperatures at and near the earth’s surface, due to both a warming climate and urban heat island effects, have been shown to increase ground-level ozone concentrations in cities across the U.S. In...

  11. Living Membranes as Environmental Detectors

    DTIC Science & Technology

    2016-02-19

    followed. Initial studies were conducted for 30 days of storage at room temperature and 4⁰C. Results indicate that the living membrane is stable...4⁰C or room temperature in wet or lyophilized form. Freeze-dried mat Wet pellicle 4oC RT 4oC RT Figure 13: Stability of RFP Living Membrane...physically robust format able to withstand extremes of temperature , humidity, and other environmental variables The living membrane systems under

  12. DEMONSTRATION BULLETIN: LOW TEMPERATURE THERMAL AERATION (LTTA®) SYSTEM - CANONIE ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    The Low Temperature Thermal Aeration (LTTA®) process was developed by Canonie Environmental Services, Inc. (Canonie), as a treatment system that desorbs organic contaminants from soils by heating the soils up to 800 °F. The main components of the LTTA process include the follow...

  13. Effect of methyl jasmonate on seedling tolerance to drought and cold temperature stress

    USDA-ARS?s Scientific Manuscript database

    Environmental conditions are rarely optimal for plant growth, and nearly all plants experience some degree of abiotic stress during production. Commonly caused by inadequate water availability or unfavorably low or high temperatures, environmental stresses cause growth to slow or cease, reduce net p...

  14. Genetic diversity in the environmental conditioning of two sorghum (Sorghum bicolor L.) hybrids

    USDA-ARS?s Scientific Manuscript database

    Sorghum metabolism continually adapts to environmental temperature as thermal patterns modulate diurnally and seasonally. The degree of adaptation to any given temperature may be difficult to determine from phenotypic responses of the plants. The present study was designed to see if the efficiency o...

  15. Creep of Hi-Nicalon S Ceramic Fiber Tows at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2012-03-22

    temperature and environmental effects is a critical factor in development of composites with load carrying capacity and environmental durability...applications, including aircraft jet engines, gas turbines for electrical power/steam cogeneration , as well as nuclear power plant components. It is

  16. The Influence of Individual Variability on Zooplankton Population Dynamics under Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Bi, R.; Liu, H.

    2016-02-01

    Understanding how biological components respond to environmental changes could be insightful to predict ecosystem trajectories under different climate scenarios. Zooplankton are key components of marine ecosystems and changes in their dynamics could have major impact on ecosystem structure. We developed an individual-based model of a common coastal calanoid copepod Acartia tonsa to examine how environmental factors affect zooplankton population dynamics and explore the role of individual variability in sustaining population under various environmental conditions consisting of temperature, food concentration and salinity. Total abundance, egg production and proportion of survival were used to measure population success. Results suggested population benefits from high level of individual variability under extreme environmental conditions including unfavorable temperature, salinity, as well as low food concentration, and selection on fast-growers becomes stronger with increasing individual variability and increasing environmental stress. Multiple regression analysis showed that temperature, food concentration, salinity and individual variability have significant effects on survival of A. tonsa population. These results suggest that environmental factors have great influence on zooplankton population, and individual variability has important implications for population survivability under unfavorable conditions. Given that marine ecosystems are at risk from drastic environmental changes, understanding how individual variability sustains populations could increase our capability to predict population dynamics in a changing environment.

  17. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen

    PubMed Central

    Niinemets, Ülo; Sun, Zhihong

    2015-01-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol–1 or elevated [CO2] of 780 μmol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  18. Block 2 solar cell module environmental test program

    NASA Technical Reports Server (NTRS)

    Holloway, K. L.

    1978-01-01

    Environmental tests were performed of on 76 solar cell modules produced by four different manufacturers. The following tests were performed: (1) 28 day temperature and humidity; (2) rain and icing; (3) salt fog; (4) sand and dust; (5) vacuum/steam/pressure; (6) fungus; (7) temperature/altitude; and (8) thermal shock. Environmental testing of the solar cell modules produced cracked cells, cracked encapsulant and encapsulant delaminations on various modules. In addition, there was some minor cell and frame corrosion.

  19. Compensation of thermal constraints along a natural environmental gradient in a Malagasy iguanid lizard (Oplurus quadrimaculatus).

    PubMed

    Theisinger, Ole; Berg, W; Dausmann, K H

    2017-08-01

    Physiological or behavioural adjustments are a prerequisite for ectotherms to cope with different thermal environments. One of the world's steepest environmental gradients in temperature and precipitation can be found in southeastern Madagascar. This unique gradient allowed us to study the compensation of thermal constraints in the heliothermic lizard Oplurus quadrimaculatus on a very small geographic scale. The lizard occurs from hot spiny forest to intermediate gallery and transitional forest to cooler rain forest and we investigated whether these habitat differences are compensated behaviourally or physiologically. To study activity skin temperature (as proxy for body temperature) and the activity time of lizards, we attached temperature loggers to individuals in three different habitats. In addition, we calculated field resting costs from field resting metabolic rate to compare energy expenditure along the environmental gradient. We found no variation in activity skin temperature, despite significant differences in operative environmental temperature among habitats. However, daily activity time and field resting costs were reduced by 35% and 28% in the cool rain forest compared to the hot spiny forest. Our study shows that O. quadrimaculatus relies on behavioural mechanisms rather than physiological adjustments to compensate thermal differences between habitats. Furthermore, its foraging activity in open, sun exposed habitats facilitates such a highly effective thermoregulation that cold operative temperature, not energetically expensive heat, presents a greater challenge for these lizards despite living in a hot environment. Copyright © 2017. Published by Elsevier Ltd.

  20. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals

    PubMed Central

    Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.

    2015-01-01

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359

  1. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle.

    PubMed

    Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W

    2007-08-01

    Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.

  2. Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions.

    PubMed

    Wei, Zhong; Huang, Jianfeng; Yang, Tianjie; Jousset, Alexandre; Xu, Yangchun; Shen, Qirong; Friman, Ville-Petri

    2017-10-01

    Microbe-based biocontrol applications hold the potential to become an efficient way to control plant pathogen disease outbreaks in the future. However, their efficiency is still very variable, which could be due to their sensitivity to the abiotic environmental conditions.Here, we assessed how environmental temperature variation correlates with ability of Ralstonia pickettii , an endophytic bacterial biocontrol agent, to suppress the Ralstonia solanacearum pathogen during different tomato crop seasons in China.We found that suppression of the pathogen was highest when the seasonal mean temperatures were around 20 °C and rapidly decreased with increasing mean crop season temperatures. Interestingly, low levels of disease incidence did not correlate with low pathogen or high biocontrol agent absolute densities. Instead, the biocontrol to pathogen density ratio was a more important predictor of disease incidence levels between different crop seasons. To understand this mechanistically, we measured the growth and strength of competition between the biocontrol agent and the pathogen over a naturally occurring temperature gradient in vitro . We found that the biocontrol strain grew relatively faster at low temperature ranges, and the pathogen at high temperature ranges, and that similar to field experiments, pathogen suppression peaked at 20 °C.Together, our results suggest that temperature-mediated changes in the strength of bacterial competition could potentially explain the variable R. solanacearum biocontrol outcomes between different crop seasons in China. Synthesis and applications . Our results suggest that abiotic environmental conditions, such as temperature, can affect the efficacy of biocontrol applications. Thus, in order to develop more consistent biocontrol applications in the future, we might need to find and isolate bacterial strains that can retain their functionality regardless of the changing environmental conditions.

  3. Thermal effects on fish ecology

    USGS Publications Warehouse

    Coutant, Charles C.

    1976-01-01

    Of all the environmental factors that influence aquatic organisms, temperature is the most all-pervasive. There is always an environmental temperature while other factors may or may not be present to exert their effects. Fish are, for all practical purposes, thermal conformers, or obligate poikilotherms. That is, they are able to exert little significant influence on maintaining a certain body temperature by specialized metabolic or behavioral means. Their body temperature thus fluctuates nearly in concert with the temperature of their aquatic medium (although particularly large, actively-moving fish such as tuna have deep muscle temperatures slightly higher than the water). Intimate contact at the gills of body fluids with the outside water and the high specific heat of water provide a very efficient heat exchanger that insures this near identity of internal and external temperatures.

  4. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    PubMed

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  5. Effects of temperature and Ca2+ on the larval development of the decapoda crustacean: Eriocheir sinensis

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Du, Nan-Shan; Lai, Wei

    2001-09-01

    With increasing demand in China for the mitten crab larvae, understanding its survival mechanism gets more important. This research focused on the effects of temperature and Ca2+ on the larval growth and development. Eriocheir sinensis larvae were reared in laboratory under, 21 different combinations of temperature (15, 20, 25°C) and Ca2+ content (120, 130, 140, 150, 160, 170, 180 mg/l) and constant salinity (20) and pH (8). The results suggested that the survival rate increases with temperature and Ca2+ content. These combinations of temperature and Ca2+ content maximized survival rate in our study and it may be the optimum water environmental conditions for culturing, the larvae. To predict surviving larvae number under different water environmental conditions, 21 dynamic mathematical models were developed. This for the first time observation of the zoeal VI larvae of the Changjiang River E. sinesis population showed that they occurred under stressed water environmental conditions: temperature of 15°C and Ca2+ content of 120, 130 mg/l.

  6. Road structural elements temperature trends diagnostics using sensory system of own design

    NASA Astrophysics Data System (ADS)

    Dudak, Juraj; Gaspar, Gabriel; Sedivy, Stefan; Pepucha, Lubomir; Florkova, Zuzana

    2017-09-01

    A considerable funds is spent for the roads maintenance in large areas during the winter. The road maintenance is significantly affected by the temperature change of the road structure. In remote locations may occur a situation, when it is not clear whether the sanding is actually needed because the lack of information on road conditions. In these cases, the actual road conditions are investigated by a personal inspection or by sending out a gritting vehicle. Here, however, is a risk of unnecessary trip the sanding vehicle. This situation is economically and environmentally unfavorable. The proposed system solves the problem of measuring the temperature profile of the road and the utilization of the predictive model to determine the future development trend of temperature. The system was technically designed as a set of sensors to monitor environmental values such as the temperature of the road, ambient temperature, relative air humidity, solar radiation and atmospheric pressure at the measuring point. An important part of the proposal is prediction model which based on the inputs from sensors and historical measurements can, with some probability, predict temperature trends at the measuring point. The proposed system addresses the economic and environmental aspects of winter road maintenance.

  7. Time-series modeling and prediction of global monthly absolute temperature for environmental decision making

    NASA Astrophysics Data System (ADS)

    Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun

    2013-03-01

    A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.

  8. Lowering Temperature is the Trigger for Glycogen Build-Up and Winter Fasting in Crucian Carp (Carassius carassius).

    PubMed

    Varis, Joonas; Haverinen, Jaakko; Vornanen, Matti

    2016-02-01

    Seasonal changes in physiology of vertebrate animals are triggered by environmental cues including temperature, day-length and oxygen availability. Crucian carp (Carassius carassius) tolerate prolonged anoxia in winter by using several physiological adaptations that are seasonally activated. This study examines which environmental cues are required to trigger physiological adjustments for winter dormancy in crucian carp. To this end, crucian carp were exposed to changing environmental factors under laboratory conditions: effects of declining water temperature, shortening day-length and reduced oxygen availability, separately and in different combinations, were examined on glycogen content and enzyme activities involved in feeding (alkaline phosphatase, AP) and glycogen metabolism (glycogen synthase, GyS; glycogen phosphorylase, GP). Lowering temperature induced a fall in activity of AP and a rise in glycogen content and rate of glycogen synthesis. Relative mass of the liver, and glycogen concentration of liver, muscle and brain increased with lowering temperature. Similarly activity of GyS in muscle and expression of GyS transcripts in brain were up-regulated by lowering temperature. Shortened day-length and oxygen availability had practically no effects on measured variables. We conclude that lowering temperature is the main trigger in preparation for winter anoxia in crucian carp.

  9. EHL Transition Temperature Measurements on a Geostationary Operational Environmental Satellite (GOES) Filter Wheel Bearing

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.; Predmore, Roamer E.; Shogrin, Bradley A.

    2001-01-01

    The elastohydrodynamic lubrication (EHL) transition temperature was measured for a Geostationary Operational Environmental Satellite (GOES) sounder filter wheel bearing in a vacuum tribometer. Conditions included both an 89 N (20 lb.) hard and soft load, 600 rpm, temperatures between 23 C (73 F) and 85 C (185 F), and a vacuum of approximately 1.3 x 10(exp -5) Pa. Elastohydrodynamic to mixed lubrication started to occur at approximately 70 C (158 F).

  10. Variation in calcification rate of Acropora downingi relative to seasonal changes in environmental conditions in the northeastern Persian Gulf

    NASA Astrophysics Data System (ADS)

    Vajed Samiei, Jahangir; Saleh, Abolfazl; Shirvani, Arash; Sheijooni Fumani, Neda; Hashtroudi, Mehri; Pratchett, Morgan Stuart

    2016-12-01

    There is a strong interest in understanding how coral calcification varies with changing environmental conditions, especially given the projected changes in temperature and aragonite saturation due to climate change. This study explores in situ variation in calcification rates of Acropora downingi in the northeastern Persian Gulf relative to seasonal changes in temperature, irradiance and aragonite saturation state ( Ω arag). Calcification rates of A. downingi were highest in the spring and lowest in the winter, and intra-annual variation in calcification rate was significantly related to temperature ( r 2 = 0.30) and irradiance ( r 2 = 0.36), but not Ω arag ( r 2 = 0.02). Seasonal differences in temperature are obviously confounded by differences in other environmental conditions and vice versa. Therefore, we used published relationships from experimental studies to establish which environmental parameter(s) (temperature, irradiance, and/or Ω arag) placed greatest constraints on calcification rate (relative to the maximum spring rate) in each season. Variation in calcification rates was largely attributable to seasonal changes in irradiance and temperature (possibly 57.4 and 39.7% respectively). Therefore, we predict that ocean warming may lead to increased rates of calcification during winter, but decelerate calcification during spring, fall and especially summer, resulting in net deceleration of calcification for A. downingi in the Persian Gulf.

  11. Phenophases alter the soil respiration-temperature relationship in an oak-dominated forest

    Treesearch

    Jared L. DeForest; Askoo Noormets; Steve G. McNulty; Ge Sun; Gwen Teeney; Jiquan Chen

    2006-01-01

    Soil respiration (SR) represents a major component of forest ecosystem respiration and is influenced seasonally by environmental factors such as temperature, soil moisture, root respiration, and litter fall. Changes in these environmental factors correspond with shifts in plant phenology. In this study, we examined the relationship between canopy phenophases @re-growth...

  12. Environmental harshness, heat stress, and Marmota flaviventris.

    PubMed

    Webb, D R

    1979-01-01

    Yellow-bellied marmots (Marmota flaviventris) were studied at three sites in central Oregon. Juveniles substantially reduced their foraging activity when equivalent black-body temperatures exceeded their upper critical temperature. Inclusion of heat stress into estimates of environmental harshness drastically reduced the differences in available foraging time between high elevation and low elevation sites.

  13. Interaction of temperature and an environmental stressor: Moina macrocopa responds with increased body size, increased lifespan, and increased offspring numbers slightly above its temperature optimum.

    PubMed

    Engert, Antonia; Chakrabarti, Shumon; Saul, Nadine; Bittner, Michal; Menzel, Ralph; Steinberg, Christian E W

    2013-02-01

    For organisms, temperature is one of the most important environmental factors and gains increasing importance due to global warming, since increasing temperatures may pose organisms close to their environmental tolerance limits and, thus, they may become more vulnerable to environmental stressors. We analyzed the temperature-dependence of the water-soluble antioxidant capacity of the cladoceran Moina macrocopa and evaluated its life trait variables with temperature (15, 20, 25, 30°C) and humic substance (HS) concentrations (0, 0.18, 0.36, 0.90, 1.79 mM DOC) as stressors. Temperatures below and above the apparent optimum (20°C) reduced the antioxidative capacity. Additions of HSs increased body length, but decreased mean lifespan at 15 and 20°C. There was no clear HS-effect on offspring numbers at 15, 20, and 30°C. At 25°C with increasing HS-concentration, lifespan was extended and offspring numbers increased tremendously, reaching 250% of the control. Although the applied HS preparation possesses estrogenic and antiandrogenic activities, a xenohormone mechanism does not seem plausible for the reproductive increase, because comparable effects did not occur at other temperatures. A more convincing explanation appears to be the mitohormesis hypothesis which states that a certain increase of reactive oxygen production leads to improved health and longevity and, with Moina, also to increased offspring numbers. Our results suggest that at least with the eurythermic M. macrocopa, a temperature above the optimum can be beneficial for several life trait variables, even when combined with a chemical stressor. Temperatures approximately 10°C above its optimum appear to adversely affect the lifespan and reproduction of M. macrocopa. This indicates that this cladoceran species seems to be able to utilize temperature as an ecological resource in a range slightly above its thermal optimum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Acting green elicits a literal warm glow

    NASA Astrophysics Data System (ADS)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  15. Thermotaxis, circadian rhythms, and TRP channels in Drosophila

    PubMed Central

    Bellemer, Andrew

    2015-01-01

    The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026

  16. Comparison of auricular and rectal temperature measurement in normothermic, hypothermic, and hyperthermic dogs.

    PubMed

    Konietschke, U; Kruse, B D; Müller, R; Stockhaus, C; Hartmann, K; Wehner, A

    2014-01-01

    Measurement of rectal temperature is the most common method and considered gold standard for obtaining body temperature in dogs. So far, no study has been performed comparing agreement between rectal and auricular measurements in a large case series. The purpose of the study was to assess agreement between rectal and auricular temperature measurement in normothermic, hypothermic, and hyperthermic dogs with consideration of different environmental conditions and ear conformations. Reference values for both methods were established using 62 healthy dogs. Three hundred dogs with various diseases (220 normothermic, 32 hypothermic, 48 hyperthermic) were enrolled in this prospective study. Rectal temperature was compared to auricular temperature and differences in agreement with regard to environmental temperature, relative humidity, and different ear conformations (pendulous versus prick ears) were evaluated using Pearson's correlation coefficient and Bland-Altman analysis. Correlation between rec- tal and auricular temperature was significant (r: 0.892; p  <  0.01). However, Bland-Altman plots showed an inacceptable variation of values (bias: 0.300 °C; limits of agreement: -0.606 to 1.206 °C). This variation was above a maximal clinical tolerance of 0.3 °C, which was established by experts' opinion (n = 16). Relative humidity had a significant influence (p   =   0.001), whereas environmental temperature did not. Variation between the two methods of measuring body temperature was clinically unacceptable. Although measurement of auricular temperature is fast, simple, and well tolerated, this method provides a clinically unacceptable difference to the rectal measurement.

  17. Physical efficiency of Bengali farmers in response to change in environmental factors.

    PubMed

    Chandra, A M; Mahanta, S; Sadhu, N

    1994-06-01

    The present study was conducted on young farmers, selected randomly from a village of West Bengal. Their pre-exercise heart rate (HR), blood pressure (BP), mean arterial pressure (MAP), and other physical parameters were recorded. They were asked to perform standard step test at four different times of a day when environmental factors were recorded. Recorded environmental factors were maximum ambient temperature (Tmax), and minimum ambient temperature (Tmin) for the whole day, ambient temperature (Ta), relative humidity (RH), air velocity (AV), and globe temperature (Tg). The barometric pressure (P) was noted to be constant throughout the experiment. Post-exercise HR and MAP were also recorded. Our observations showed that environmental factors changed as the day progressed from the morning to noon and from noon to night; the physiological parameters of the farmers also changed. HR was lowest in the morning and night but highest in the evening while MAP was highest at midday and gradually returned to the pre-exercise level by the evening. The determined Physical Fitness Index (PFI) of the farmers was noted to be lowest at midday but highest at night. Our studies indicate that environmental factors have a role on the physical efficiency of farmers. Ta, RH and Tg appear to be primarily responsible for the alterations in the physiological functions and PFI.

  18. Assessing environmental correlates of fish movement on a coral reef

    NASA Astrophysics Data System (ADS)

    Currey, Leanne M.; Heupel, Michelle R.; Simpfendorfer, Colin A.; Williams, Ashley J.

    2015-12-01

    Variation in dispersal and movement patterns of coral reef fishes is likely linked to changes in environmental conditions. Monitoring in situ environmental parameters on coral reefs in conjunction with the movements of fishes can help explain the relationship between exploited populations and their environment. Sixty adult Lethrinus miniatus were acoustically tagged and monitored along a coral reef slope for up to 1 yr. Individuals occurred more often on the reef slope during days of cooler temperatures, suggesting a thermal tolerance threshold may exist. Results indicate that individuals responded to elevated temperatures by moving away from the reef slope to deeper adjacent habitats, thus shifting their position in the water column to remain at a preferred temperature. Space use within the water column (vertical activity space) was not influenced by environmental parameters or fish size, but this result was possibly influenced by use of deeper habitat outside the acoustic array that was not monitored. With elevation of ocean temperature, L. miniatus may need to adapt to warmer waters or disperse into cooler habitats, by either shifting their distribution deeper or towards higher latitudes. Identifying key environmental drivers that affect the distribution of reef fishes is important, and may allow managers to predict the effect of these changes on exploited species.

  19. Grey Incidence analyze of Environment Monitoring Data and Research on the Disease Prevention Measures of Longmen Grottoes

    NASA Astrophysics Data System (ADS)

    LeiLei, Zheng; XueZhi, Fu; Fei, Chu

    2018-05-01

    Longmen Grottoes was afflicted with many diseases for a long period such as weathering, seepage water and organism growth. Those adverse factors were threatening to preserve cultural relic. Longmen Grottoes conservation and restoration project being put into effect by UNESCO in 2002. The Longmen Grottoes area environmental monitoring system was built in order to comprehensively master the distribution law of environmental factors over the Longmen Grottoes. The monitoring items contains temperature, humidity, wind direction, wind speed, precipitation, light intensity,water content in soil, the rock surface temperature and so on. At the same time, monitoring three experiment caves, monitoring the inside temperature, humidity, seepage water and the wall face temperature etc. So as to analyze the relationship between cave environment and regional environment. We statistical and arrange the data using Excel software, Kgraph software and DPS software. Through the grey incidence analyze, the incidence matrix and the correlation degree of the environmental factors was obtained[1]. The main environment factors for the formation of the disease had been researched. Based on the existing environmental monitor data, the relevance of seepage water and fracture displacement with other environmental factors had been studied, and the relational order was obtained. Corresponding preventive measures were put forward by the formation mechanism analyze of the disease.

  20. Inactivation of Burkholderia pseudomallei on environmental surfaces using spray-applied, common liquid disinfectants.

    PubMed

    Calfee, M W; Wendling, M

    2015-11-01

    Five commercially available liquid antimicrobials were evaluated for their ability to decontaminate common environmental surface materials, contaminated with Burkholderia pseudomallei, using a spray-based disinfectant delivery procedure. Tests were conducted at both an ambient temperature (c. 20°C) and a lower temperature (c. 12°C) condition. Nonporous materials (glass and aluminium) were more easily decontaminated than porous materials (wood, concrete and carpet). Citric acid (1%) demonstrated poor efficacy in all test conditions. Bleach (pH-adjusted), ethanol (70%), quaternary ammonium and PineSol®, demonstrated high (>6 log10 reduction) efficacies on glass and aluminium at both temperatures, but achieved varying results for wood, carpet and concrete. Temperature had minimal effect on decontamination efficacy during these tests. Much of the antimicrobial efficacy data for pathogenic micro-organisms are generated with testing that utilizes hard nonporous surface materials. These data are not directly translatable for decontaminant selection following an incident whereby complex and porous environmental surfaces are contaminated. This study presents efficacy data for spray-applied antimicrobial liquids, when used to decontaminate common environmental surfaces contaminated with Burkholderia pseudomallei. These data can help responders develop effective remediation strategies following an environmental contamination incident involving B. pseudomallei. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  1. Robust estimates of environmental effects on population vital rates: an integrated capture–recapture model of seasonal brook trout growth, survival and movement in a stream network

    USGS Publications Warehouse

    Letcher, Benjamin H.; Schueller, Paul; Bassar, Ronald D.; Nislow, Keith H.; Coombs, Jason A.; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B.; Whiteley, Andrew R.; O'Donnell, Matthew J.; Dubreuil, Todd L.

    2015-01-01

    Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses.We developed an integrated capture–recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival.We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature.Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall.These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful.

  2. Robust estimates of environmental effects on population vital rates: an integrated capture-recapture model of seasonal brook trout growth, survival and movement in a stream network.

    PubMed

    Letcher, Benjamin H; Schueller, Paul; Bassar, Ronald D; Nislow, Keith H; Coombs, Jason A; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B; Whiteley, Andrew R; O'Donnell, Matthew J; Dubreuil, Todd L

    2015-03-01

    Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses. We developed an integrated capture-recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival. We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature. Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall. These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Archaea in aquaria: Investigating the role of environmental influences on TEX86 in long-term culture experiments

    NASA Astrophysics Data System (ADS)

    Warren, C.; Pagani, M.

    2016-12-01

    The TEX86 paleotemperature proxy has experienced a recent rise in application, due in part to its capacity to estimate temperatures above 30°C, and to the ubiquity of the archaeal membrane lipids that comprise it. Studies comparing environmental influences and archaeal lipids - specifically core glycerol dibiphytanyl glycerol tetraethers (GDGTs) - offer insights into non-temperature influences on TEX86. Here we present environmental measurements and lipid distributions from >200 long-running aquarium systems using source water from North American coastal sites ranging in latitude from 60.12ºN to 24.56ºN. The influence of 32 environmental variables (depth, pH, etc.) was evaluated in the entire dataset, as well as in a subset that limited the influence of community structure. Based on multiple correlation analyses we demonstrate that temperature is the central factor influencing the distribution of core GDGTs in aquarium tanks, with the possible exception of GDGT-1, for which dissolved oxygen concentration is equivocally significant when GDGT-4 is included in the calculation of relative abundances. Temperature was found to have the most significant relationship with TEX86, with neither oxygen concentration nor water density making comparable contributions. Salinity, pH, and community structure have emerged as important, but less significant secondary influences of TEX86. Low salinity (<15 PSU) was consistently associated with TEX86 values that substantially overestimate tank temperature. The presence and abundance of MG-II Euryarchaeota, when considered, do not appear to significantly change the TEX86-temperature relationship. In addition, Illumina MiSeq 16S rDNA sequencing was used to assess whether archaeal communities differed along a spectrum of TEX86 values and environmental conditions. This technique allowed for the assessment of a taxonomically constrained subset of samples (n=54) where the archaeal tank populations were >98% sequences recognized as associated with the genus Nitrosopumilus (cultured ammonia oxidizers). In this dataset the relative abundance of GDGT-0 provided a better estimate of temperature than TEX86, and unusually high nitrite concentrations strongly correlated with underestimates of TEX86-based temperature relative to measured water temperature.

  4. Genetic variation in heat-stress tolerance among South American Drosophila populations.

    PubMed

    Fallis, Lindsey C; Fanara, Juan Jose; Morgan, Theodore J

    2011-10-01

    Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature.

  5. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    PubMed

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. An experimental test of the role of environmental temperature variability on ectotherm molecular, physiological and life-history traits: implications for global warming.

    PubMed

    Folguera, Guillermo; Bastías, Daniel A; Caers, Jelle; Rojas, José M; Piulachs, Maria-Dolors; Bellés, Xavier; Bozinovic, Francisco

    2011-07-01

    Global climate change is one of the greatest threats to biodiversity; one of the most important effects is the increase in the mean earth surface temperature. However, another but poorly studied main characteristic of global change appears to be an increase in temperature variability. Most of the current analyses of global change have focused on mean values, paying less attention to the role of the fluctuations of environmental variables. We experimentally tested the effects of environmental temperature variability on characteristics associated to the fitness (body mass balance, growth rate, and survival), metabolic rate (VCO(2)) and molecular traits (heat shock protein expression, Hsp70), in an ectotherm, the terrestrial woodlouse Porcellio laevis. Our general hypotheses are that higher values of thermal amplitude may directly affect life-history traits, increasing metabolic cost and stress responses. At first, results supported our hypotheses showing a diversity of responses among characters to the experimental thermal treatments. We emphasize that knowledge about the cellular and physiological mechanisms by which animals cope with environmental changes is essential to understand the impact of mean climatic change and variability. Also, we consider that the studies that only incorporate only mean temperatures to predict the life-history, ecological and evolutionary impact of global temperature changes present important problems to predict the diversity of responses of the organism. This is because the analysis ignores the complexity and details of the molecular and physiological processes by which animals cope with environmental variability, as well as the life-history and demographic consequences of such variability. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. [Effects of environmental factors on β diversity of zooplankton community in thermal discharge seawaters near Guohua Power Plant in Xiangshan Bay, Zhejiang, China].

    PubMed

    Zhu, Yi-feng; Dai, Mei-xia; Zhou, Xiao-hong; Lin, Xia; Mao, Shuo-qian; Yan, Xiao-jun

    2015-08-01

    Zooplankton samples were seasonally collected at 10 stations in thermal discharge seawaters near Guohua Power Plant in Xiangshan Bay. The abundance data from these samples were pooled and further combined with field environmental factors, then generalised dissimilarity modelling (GDM) was used to explore the effects of environmental factors on β diversity of zooplankton community. The results showed that altogether 95 species of zooplankton belonging to 14 taxa were found. In these taxa, small zooplankton with 62.6% of abundance was the main taxa, while copepods dominated in adult groups, which abundance accounted for 35.3%. According to Whittaker's definition and additive partition, a diversity accounted for 36.3% and β diversity 63.7%. Environmental factors explained 43.8% of β diversity, and geographical distance between sampling sites had no effect on β diversity. However, there were still 19.9% of β diversity remained to be explained. After GDM fitting, there were nine environmental variables affecting zooplankton β diversity and explaining 68.8% of β diversity. The variables contributing to β diversity from high to low were seasonal water temperature, dissolved oxygen, seawater temperature increment, conductivity, suspended particulate matter, salinity, transparency, water depth and redox potential, respectively. Seasonal water temperature, dissolved oxygen and seawater temperature increment were the most important factors for driving β diversity changes, and accounted for 23.9%, 13.7% and 9.7% of absolute contribution to the interpretable portion of the β diversity, respectively. When seasonal water temperature, dissolved oxygen and seawater temperature increment were below 25 °C, greater than 5 mg · L(-1) and over 1 °C, respectively, β diversity rapidly increased with the increasing variable gradients. Furthermore, other predictors had little effect on β diversity.

  8. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  9. Soman toxicity during and after exposure to different environmental temperatures.

    PubMed

    Wheeler, T G

    1989-01-01

    A systematic study has been conducted to determine physiological susceptibility to the potent anticholinesterase soman during and after exposure to different environmental temperatures. Rats were placed in an environmental chamber set at -1, 7, 15, 23, or 31 degrees C (80% relative humidity, RH) from 0000 to 0800 h. Soman injections were given subcutaneously (sc) at 0600 h (during thermal stress), or at 0810 h after removal from the chamber (injected and tested at 23 degrees C, 60% RH). The measures (taken 30 min after soman injection) included core temperature, grip strength, general state of health, and LD10 estimates (taken 2 h post injection). Soman exposure produced a dose-related effect on each measure under all thermal stress conditions. During thermal stress, soman exposure produced major changes in core temperature ranging from 26 to 41 degrees C, which were linearly related to the environmental temperature condition. After removal from the chamber, soman exposure reduced core temperature by only 1 degree C without regard to prior thermal stress temperature. Grip strength and subjective health rating were soman dose-related with only a minor chamber temperature influence. The toxicity of soman was increased during exposure to either cold or hot environments and after removal from the cold environments. The adrenal-cortical stress response to cold involves increased metabolism and oxygen requirement. The exception was the decreased toxicity observed when soman exposure occurred after removal from a hot environment, exacerbated by a failure in the respiratory system due to anticholinesterase exposure. The increased toxicity of soman while in or after removal from a cold environment is believed to be due to a generalized adrenal-cortical stress response. The increased soman toxicity while in a hot environment, but decreased toxicity after removal from the hot environment, provides an interesting subject for further research.

  10. Comparison of environmental and body temperatures as predictors of mating call parameters of spring peepers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.E.; Brown, J.R.

    1977-01-01

    Parameters of the mating call of spring peepers (Hyla crucifer) were best predicted by water temperature rather than air or body temperature. Thus, water temperature should most closely approach the true body temperature of the calling frogs.

  11. Technical Testing of the Wristwatch Size Automatic Physiological and Environmental Monitor (WAPEM): Laboratory and Outdoor Evaluations of Environmental Sensors Performance

    DTIC Science & Technology

    2004-03-01

    relative humidity (RH), ambient temperature (Ta), solar radiation (SR), and human activity in a small, water- resistant, durable enclosure. It is fitted...temperature, SR, and human activity . The activity channel is designed to function for sleep scoring (ZGM), as well as monitoring daytime activity with the

  12. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic). Blue Crab

    DTIC Science & Technology

    1989-03-01

    size only by Music 1979). molting (Hay 1905). Zoeal development depends on salinity and temperature, Growth and maturation proceed but development time...substrates. the effects depends on the toxicant, concentration, time exposed, salinity , tidal cycle, age and molt phase of Other Environmental Factors...Temperature .......................................................... 11 Salinity ............................................................. I11

  13. Clock genes explain large proportion of phenotypic variance in systolic blood pressure and this control is not modified by environmental temperature

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. METHODS: We examin...

  14. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape

    PubMed Central

    Zimmerman, Naupaka B.; Vitousek, Peter M.

    2012-01-01

    We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500–5,500 mm of rain/y; 10–22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai’i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities. PMID:22837398

  15. Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly ( Gonepteryx rhamni, Pieridae, Lepidoptera)

    NASA Astrophysics Data System (ADS)

    Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel

    2014-12-01

    The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.

  16. Alternate Methods in Refining the SLS Nozzle Plug Loads

    NASA Technical Reports Server (NTRS)

    Burbank, Scott; Allen, Andrew

    2013-01-01

    Numerical analysis has shown that the SLS nozzle environmental barrier (nozzle plug) design is inadequate for the prelaunch condition, which consists of two dominant loads: 1) the main engines startup pressure and 2) an environmentally induced pressure. Efforts to reduce load conservatisms included a dynamic analysis which showed a 31% higher safety factor compared to the standard static analysis. The environmental load is typically approached with a deterministic method using the worst possible combinations of pressures and temperatures. An alternate probabilistic approach, utilizing the distributions of pressures and temperatures, resulted in a 54% reduction in the environmental pressure load. A Monte Carlo simulation of environmental load that used five years of historical pressure and temperature data supported the results of the probabilistic analysis, indicating the probabilistic load is reflective of a 3-sigma condition (1 in 370 probability). Utilizing the probabilistic load analysis eliminated excessive conservatisms and will prevent a future overdesign of the nozzle plug. Employing a similar probabilistic approach to other design and analysis activities can result in realistic yet adequately conservative solutions.

  17. Effects of interaction between temperature conditions and copper exposure on immune defense and other life-history traits of the blow fly Protophormia terraenovae.

    PubMed

    Pölkki, Mari; Kangassalo, Katariina; Rantala, Markus J

    2014-01-01

    Environmental pollution is considered one of the major threats to organisms. Direct effects of heavy metal pollution on various life-history traits are well recognized, while the effects of potential interactions between two distinct environmental conditions on different traits are poorly understood. Here, we have tested the effects of interactions between temperature conditions and heavy metal exposure on innate immunity and other life-history traits. Maggots of the blow fly Protophormia terraenovae were reared on either copper-contaminated or uncontaminated food, under three different temperature environments. Encapsulation response, body mass, and development time were measured for adult flies that were not directly exposed to copper. We found that the effects of copper exposure on immunity and other traits are temperature-dependent, suggesting that the ability to regulate toxic compounds in body tissues might depend on temperature conditions. Furthermore, we found that temperature has an effect on sex differences in immune defense. Males had an encapsulation response at higher temperatures stronger than that of females. Our results indicate that the effects of environmental conditions on different traits are much more intricate than what can be predicted. This is something that should be considered when conducting immunological experiments or comparing results of previous studies.

  18. Case study: beverage temperature at aid stations in ironman triathlon.

    PubMed

    Burdon, Catriona A; Johnson, Nathan A; Chapman, Phillip G; Munir Che Muhamed, Ahmad; O'Connor, Helen T

    2013-08-01

    The aim of this study was to measure the effect of environmental conditions and aid-station beverage- cooling practices on the temperature of competitor beverages. Environmental and beverage temperatures were measured at three cycling and two run course aid stations at the 2010 Langkawi, Malaysia (MA), and Port Macquarie, Australia (AU), Ironman triathlon events. To measure the specific effect of radiant temperature, additional fluid-filled (600 ml) drink bottles (n = 12) were cooled overnight (C) and then placed in direct sun (n = 6) or shade (n = 6) near to a cycle aid station at AU. During both events, beverage temperature increased over time (p < .05) as environmental conditions, particularly radiant temperature increased (p < .05). Mean beverage temperature ranged between 14-26°C and during both events was above the palatable range (15-22°C) for extended periods. At AU, bottles placed in direct sunlight heated faster (6.9 ± 2.3 °C·h-1) than those in the shade (4.8 ±1.1°C·h-1, p = .05). Simple changes to Ironman aid-station practices, including shade and chilling beverages with ice, result in the provision of cooler beverages. Future studies should investigate whether provision of cool beverages at prolonged endurance events influences heat-illness incidence, beverage-consumption patterns, and competitor performance.

  19. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1.

    PubMed

    Dixon, Laura E; Farré, Alba; Finnegan, E Jean; Orford, Simon; Griffiths, Simon; Boden, Scott A

    2018-01-04

    FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FT-like genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FT-B1 through analysis of FT-B1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FT-B1 alleles perform differently under diverse environmental conditions; most notably, the FT-B1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FT-B1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FT-dependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  20. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  1. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions

    PubMed Central

    2013-01-01

    Background The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse’s general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Results Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). Conclusion The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures. PMID:23298405

  2. Intelligent neonatal monitoring based on a virtual thermal sensor

    PubMed Central

    2014-01-01

    Background Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes. Methods Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate’s geometry. Results The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate’s body surface. Conclusions This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate’s skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has been confirming. PMID:24580961

  3. Intelligent neonatal monitoring based on a virtual thermal sensor.

    PubMed

    Abbas, Abbas K; Leonhardt, Steffen

    2014-03-02

    Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes. Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate's geometry. The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate's body surface. This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate's skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has been confirming.

  4. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions.

    PubMed

    Poller, Christin; Hopster, Klaus; Rohn, Karl; Kästner, Sabine Br

    2013-01-08

    The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse's general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures.

  5. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions.

    PubMed

    Azuma, Akifumi; Yakushiji, Hiroshi; Koshita, Yoshiko; Kobayashi, Shozo

    2012-10-01

    Temperature and light are important environmental factors that affect flavonoid biosynthesis in grape berry skin. However, the interrelationships between temperature and light effects on flavonoid biosynthesis have not been fully elucidated at the molecular level. Here, we investigated the effects of temperature and light conditions on the biosynthesis of flavonoids (anthocyanins and flavonols) and the expression levels of related genes in an in vitro environmental experiment using detached grape berries. Sufficient anthocyanin accumulation in the grape skin was observed under a low temperature (15 °C) plus light treatment, whereas high temperature (35 °C) or dark treatment severely suppressed anthocyanin accumulation. This indicates that the accumulation of anthocyanins is dependent on both low temperature and light. qRT-PCR analysis showed that the responses of three MYB-related genes (VlMYBA1-3, VlMYBA1-2, and VlMYBA2) to temperature and light differed greatly even though the products of all three genes had the ability to regulate anthocyanin biosynthesis pathway genes. Furthermore, the expression levels of other MYB-related genes and many flavonoid biosynthesis pathway genes were regulated independently by temperature and light. We also found that temperature and light conditions affected the anthocyanin composition in the skin through the regulation of flavonoid biosynthesis pathway genes. Our results suggest that low temperature and light have a synergistic effect on the expression of genes in the flavonoid biosynthesis pathway. These findings provide new information about the relationships between environmental factors and flavonoid accumulation in grape berry skin.

  6. Thermoregulatory challenges in the habitat of the world's smallest tortoise, Chersobius signatus.

    PubMed

    Loehr, Victor J T

    2018-01-01

    Ectotherms have various means of dealing with low environmental temperatures, but relatively few species have been rigorously investigated. Consequently, we have little information to predict how ectotherm populations might respond to global temperature changes. Tortoises from temperate and subtropical regions often overcome periodically cool conditions by hibernation, but speckled dwarf tortoises (Chersobius signatus) need to remain active to exploit ephemeral resources in their arid winter-rainfall habitat. This study investigated how dwarf tortoises cope with low temperatures in winter and spring, by measuring thermal habitat quality and thermoregulation based on differently-sized operative temperature models in sun, shade, and in deep crevices. Investigations continued in summer and autumn to obtain a year-round picture of thermoregulatory challenges. Although large models (i.e., larger than dwarf tortoises) were expected to have lower operative temperatures than smaller models, due to the former's larger thermal inertia, all model sizes had similar temperatures. Hence, the species' small body size does not appear constrained by obtainable body temperatures in cool seasons. Nevertheless, low operative temperatures in winter posed a challenge for the tortoises, which reached their field-preferred body temperature for an average of only 0.8-0.9h per day. Moreover, a low thermoregulation effectiveness suggested that tortoises traded-off physiological benefits of favourable body temperatures against predation risk. Spring and autumn provided higher temperatures, but summer caused the greatest thermoregulatory challenge. Although summer body temperatures were closer to field-preferred body temperature than in any other season, tortoises required rock crevices to avoid overheating. The small size of dwarf tortoises might help them utilise crevices. In summer, maximum operative temperatures in crevices were similar to field-preferred body temperature, indicating that an increase in environmental temperatures might be detrimental to dwarf tortoises. In light of projected temperature rises, future studies should assess if dwarf tortoises can cope with higher environmental temperatures in summer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Lisa R.

    2008-11-15

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that aremore » elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition.« less

  8. Environmental triggers of acute myocardial infarction: results of a nationwide multiple-factorial population study.

    PubMed

    Claeys, Marc J; Coenen, Sarah; Colpaert, Charlotte; Bilcke, Joke; Beutels, Phillip; Wouters, Kristien; Legrand, Victor; Van Damme, Pierre; Vrints, Christiaan

    2015-12-01

    The objective of this study was to study the independent environmental triggers of ST-elevation myocardial infarction (STEMI) in a multifactorial environmental population model. Daily counts of all STEMI patients who underwent urgent percutaneous coronary intervention over the period 2006-2009 in Belgium were associated with average daily meteorological data and influenza-like illness incidence data. The following meteorological measures were investigated: particulate matter less than 10 μM (PM10) and less than 2.5 μM (PM(2.5)), ozone, black smoke, temperature and relative humidity. During the study period a total of 15,964 STEMI patients (mean age 63, 75% male) were admitted with a daily average admission rate of 11 ± 4 patients. A multivariate Poisson regression analysis showed that only the temperature was significantly correlated with STEMI, with an 8% increase in the risk of STEMI for each 10°C decrease in temperature (adjusted incidence risk ratio (IRR) 0.92, 95% CI 0.89-0.96). The effects of temperature were consistent among several subpopulations but the strongest effect was seen in diabetic patients (IRR 0.85, 95% CI 0.78 -0.95). There was a trend for an incremental risk of STEMI for each 10 μg/m³ PM(2.5) increase and during influenza epidemics with IRR of 1.02 (95% CI 1.00-1.04) and 1.07 (95% CI 0.98-1.16), respectively. In a global environmental model, low temperature is the most important environmental trigger for STEMI, whereas air pollution and influenza epidemics only seem to have a modest effect.

  9. Environmental effects on vertebrate species richness: testing the energy, environmental stability and habitat heterogeneity hypotheses.

    PubMed

    Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang

    2012-01-01

    Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100 × 100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis.

  10. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna.

    PubMed

    Kim, Jungkon; Park, Jeongim; Kim, Pan-Gyi; Lee, Chulwoo; Choi, Kyunghee; Choi, Kyungho

    2010-04-01

    Global environmental change poses emerging environmental health challenges throughout the world. One of such threats could be found in chemical safety in aquatic ecosystem. In the present study, we evaluated the effect of several environmental factors, such as water pH, temperature and ultraviolet light on the toxicity of pharmaceutical compounds in water, using freshwater invertebrate Daphnia magna. Seven pharmaceuticals including ibuprofen, acetaminophen, lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline and sulfathiazole were chosen as test compounds based on their frequent detection in water. The experimental conditions of environmental parameters were selected within the ranges that could be encountered in temperate environment, i.e., water temperature (15, 21, and 25 degrees C), pH (7.4, 8.3, and 9.2), and UV-B light intensity (continuous irradiation of 15.0 microW/cm(2)). For acetaminophen, enrofloxacin and sulfathiazole, decrease in water pH generally led to increase of acute lethal toxicity, which could be explained by the unionized fraction of pharmaceuticals. Increase of water temperature enhanced the acute toxicity of the acetaminophen, enrofloxacin and chlortetracycline, potentially due to alteration in toxicokinetics of chemicals as well as impact on physiological mechanisms of the test organism. The presence of UV-B light significantly increased the toxicity of sulfathiazole, which could be explained by photo-modification of this chemical that lead to oxidative stress. Under the UV light, however, acute toxicity of enrofloxacin decreased, which might be due to photo-degradation. Since changing environmental conditions could affect exposure and concentration-response profile of environmental contaminants, such conditions should be identified and evaluated in order to better manage ecosystem health under changing global environment.

  11. Environmental Effects on Vertebrate Species Richness: Testing the Energy, Environmental Stability and Habitat Heterogeneity Hypotheses

    PubMed Central

    Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang

    2012-01-01

    Background Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. Methodology/Principal Findings A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100×100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. Conclusions/Significance The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis. PMID:22530038

  12. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  13. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  14. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  15. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  16. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  17. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  18. Characteristics of wettedness and equi-skin temperature line in the evaporative regulation region

    NASA Astrophysics Data System (ADS)

    Mochida, T.

    1983-07-01

    As a result of the analysis of physiological experimental data, the characteristics of the wettedness were clarified, i.e., the value of the wettedness is not constant but differs in accordance with the environmental humidity even when the skin temperature is the same, and it was shown that the evaporative heat loss from the skin surface is inversely proportional to the wetttedness. Based on the properties of the wetedness observed, a new thermal sensation chart in the evaporative regulation region was proposed as an index for evaluating the warmth or the coldness in the environment. The feature of the present chart is that the locus of the equal skin temperature appears as a curved line on the psychrometric chart and that the wettedness on the equi-skin temperature line is not constant but takes varying values. The curved equal skin temperature line means that the influence of the environmental humidity on thermal sensation becomes smaller as the humidity of the environmental humidity on thermal sensation becomes smaller as the humidity of the environment is lowered.

  19. The temperature size rule in arthropods: independent of macro-environmental variables but size dependent.

    PubMed

    Klok, C Jaco; Harrison, Jon F

    2013-10-01

    Temperature is a key factor that affects the rates of growth and development in animals, which ultimately determine body size. Although not universal, a widely documented and poorly understood pattern is the inverse relationship between the temperature at which an ectothermic animal is reared and its body size (temperature size rule [TSR]). The proximate and ultimate mechanisms for the TSR remain unclear. To explore possible explanations for the TSR, we tested for correlations between the magnitude/direction of the TSR and latitude, temperature, elevation, habitat, availability of oxygen, capacity for flight, and taxonomic grouping in 98 species/populations of arthropods. The magnitude and direction of the TSR was not correlated with any of the macro-environmental variables we examined, supporting the generality of the TSR. However, body size affected the magnitude and direction of the TSR, with smaller arthropods more likely to demonstrate a classic TSR. Considerable variation among species exists in the TSR, suggesting either strong interactions with nutrition, or selection based on microclimatic or seasonal variation not captured in classic macro-environmental variables.

  20. Environmental change at Kartchner Caverns: trying to separate natural and anthropogenic changes

    Treesearch

    Rickard S. Toomey; Ginger Nolan

    2005-01-01

    Cave temperature and moisture levels are important factors in the environmental health of Kartchner Caverns. Monitoring indicates the cave has warmed and moisture levels have fallen over the past 14 years. Timing and patterns of change within the cave suggest that changes are due to development as a show cave. However, changes in other caves, surface temperature and...

  1. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  2. A model for global diversity in response to temperature change over geological time scales, with reference to planktic organisms.

    PubMed

    De Blasio, Fabio Vittorio; Liow, Lee Hsiang; Schweder, Tore; De Blasio, Birgitte Freiesleben

    2015-01-21

    There are strong propositions in the literature that abiotic factors override biotic drivers of diversity on time scales of the fossil record. In order to study the interaction of biotic and abiotic forces on long term changes, we devise a spatio-temporal discrete-time Markov process model of macroevolution featuring population formation, speciation, migration and extinction, where populations are free to migrate. In our model, the extinction probability of these populations is controlled by latitudinally and temporally varying environment (temperature) and competition. Although our model is general enough to be applicable to disparate taxa, we explicitly address planktic organisms, which are assumed to disperse freely without barriers over the Earth's oceans. While rapid and drastic environmental changes tend to eliminate many species, generalists preferentially survive and hence leave generalist descendants. In other words, environmental fluctuations result in generalist descendants which are resilient to future environmental changes. Periods of stable or slow environmental changes lead to more specialist species and higher population numbers. Simulating Cenozoic diversity dynamics with both competition and the environmental component of our model produces diversity curves that reflect current empirical knowledge, which cannot be obtained with just one component. Our model predicts that the average temperature optimum at which planktic species thrive best has declined over the Neogene, following the trend of global average temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Identify the dominant variables to predict stream water temperature

    NASA Astrophysics Data System (ADS)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  4. Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development.

    PubMed

    Lau, On Sun; Song, Zhuojun; Zhou, Zimin; Davies, Kelli A; Chang, Jessica; Yang, Xin; Wang, Shenqi; Lucyshyn, Doris; Tay, Irene Hui Zhuang; Wigge, Philip A; Bergmann, Dominique C

    2018-04-23

    Environmental factors shape the phenotypes of multicellular organisms. The production of stomata-the epidermal pores required for gas exchange in plants-is highly plastic and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production, but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the basic-helix-loop-helix (bHLH) transcription factor that serves as the master regulator of stomatal lineage initiation [6, 7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high-temperature signaling [8]. Importantly, we demonstrate that, upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where warm-temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at elevated temperatures. Our work identifies a molecular link connecting high-temperature signaling and stomatal development and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly expressed environmental signaling factor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. 40 CFR 1066.950 - Fuel temperature profile.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel temperature profile. 1066.950 Section 1066.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... Test Procedures for Motor Vehicles § 1066.950 Fuel temperature profile. Develop fuel temperature...

  6. Standby energy conservation plan no. 2: Building temperature restrictions plan

    NASA Astrophysics Data System (ADS)

    1980-02-01

    The environmental impacts of the proposed building temperature restrictions plan are analyzed. The plan would result in fuel and energy savings which could be diverted to other areas. Environmental impacts, with emphasis on air quality, were analyzed and found to result in a very minor improvement in air quality. Public health impacts are also minimal, and although some individuals may experience discomfort, it can be minimized by adjustments in clothing. The change in temperature is insufficient to have any significant impact on persons suffering from most diseases.

  7. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  8. [The physiological classification of human thermal states under high environmental temperatures].

    PubMed

    Bobrov, A F; Kuznets, E I

    1995-01-01

    The paper deals with the physiological classification of human thermal states in a hot environment. A review of the basic systems of classifications of thermal states is given, their main drawbacks are discussed. On the basis of human functional state research in a broad range of environmental temperatures the system of evaluation and classification of human thermal states is proposed. New integral one-dimensional multi-parametric criteria for evaluation are used. For the development of these criteria methods of factor, cluster and canonical correlation analyses are applied. Stochastic nomograms capable of identification of human thermal state for different intensity of influence are given. In this case evaluation of intensity is estimated according to one-dimensional criteria taking into account environmental temperature, physical load and time of man's staying in overheating conditions.

  9. Effects of changing environmental conditions on synthetic aperture radar backscattering coefficient, scattering mechanisms, and class separability in a forest area

    NASA Astrophysics Data System (ADS)

    Mahdavi, Sahel; Maghsoudi, Yasser; Amani, Meisam

    2017-07-01

    Environmental conditions have considerable effects on synthetic aperture radar (SAR) imagery. Therefore, assessing these effects is important for obtaining accurate and reliable results. In this study, three series of RADARSAT-2 SAR images were evaluated. In each of these series, the sensor configuration was fixed, but the environmental conditions differed. The effects of variable environmental conditions were also investigated on co- and cross-polarized backscattering coefficients, Freeman-Durden scattering contributions, and the pedestal height in different classes of a forest area in Ottawa, Ontario. It was observed that the backscattering coefficient of wet snow was up to 2 dB more than that of dry snow. The absence of snow also caused a decrease of up to 3 dB in the surface scattering of ground and up to 5 dB in that of trees. In addition, the backscatter coefficients of ground vegetation, hardwood species, and softwood species were more similar at temperatures below 0°C than those at temperatures above 0°C. Moreover, the pedestal height was generally greater at temperatures above 0°C than at temperatures below 0°C. Finally, the highest class separability was observed when the temperature was at or above 0°C and there was no snow on the ground or trees.

  10. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    PubMed

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.

  11. Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography.

    PubMed

    Jia, Lijuan; Ma, Jiakai; Shi, Qiuyi; Long, Chao

    2017-01-03

    Hyper-cross-linked polymeric resin (HPR) represents a class of predominantly microporous adsorbents and has good adsorption performance toward VOCs. However, adsorption equilibrium of VOCs onto HPR are limited. In this research, a novel method for predicting adsorption capacities of VOCs on HPR at environmentally relevant temperatures and concentrations using inverse gas chromatography data was proposed. Adsorption equilibrium of six VOCs (n-pentane, n-hexane, dichloromethane, acetone, benzene, 1, 2-dichloroethane) onto HPR in the temperature range of 403-443 K were measured by inverse gas chromatography (IGC). Adsorption capacities at environmentally relevant temperatures (293-328 K) and concentrations (P/P s = 0.1-0.7) were predicted using Dubinin-Radushkevich (DR) equation based on Polany's theory. Taking consideration of the swelling properties of HPR, the volume swelling ratio (r) was introduced and r·V micro was used instead of V micro determined by N 2 adsorption data at 77 K as the parameter q 0 (limiting micropore volume) of the DR equation. The results showed that the adsorption capacities of VOCs at environmentally relevant temperatures and concentrations can be predicted effectively using IGC data, the root-mean-square errors between the predicted and experimental data was below 9.63%. The results are meaningful because they allow accurate prediction of adsorption capacities of adsorbents more quickly and conveniently using IGC data.

  12. A simple method to predict body temperature of small reptiles from environmental temperature.

    PubMed

    Vickers, Mathew; Schwarzkopf, Lin

    2016-05-01

    To study behavioral thermoregulation, it is useful to use thermal sensors and physical models to collect environmental temperatures that are used to predict organism body temperature. Many techniques involve expensive or numerous types of sensors (cast copper models, or temperature, humidity, radiation, and wind speed sensors) to collect the microhabitat data necessary to predict body temperatures. Expense and diversity of requisite sensors can limit sampling resolution and accessibility of these methods. We compare body temperature predictions of small lizards from iButtons, DS18B20 sensors, and simple copper models, in both laboratory and natural conditions. Our aim was to develop an inexpensive yet accurate method for body temperature prediction. Either method was applicable given appropriate parameterization of the heat transfer equation used. The simplest and cheapest method was DS18B20 sensors attached to a small recording computer. There was little if any deficit in precision or accuracy compared to other published methods. We show how the heat transfer equation can be parameterized, and it can also be used to predict body temperature from historically collected data, allowing strong comparisons between current and previous environmental temperatures using the most modern techniques. Our simple method uses very cheap sensors and loggers to extensively sample habitat temperature, improving our understanding of microhabitat structure and thermal variability with respect to small ectotherms. While our method was quite precise, we feel any potential loss in accuracy is offset by the increase in sample resolution, important as it is increasingly apparent that, particularly for small ectotherms, habitat thermal heterogeneity is the strongest influence on transient body temperature.

  13. High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5

    PubMed Central

    Kim, Sara; Hwang, Geonhee; Lee, Seulgi; Zhu, Jia-Ying; Paik, Inyup; Nguyen, Thom Thi; Kim, Jungmook; Oh, Eunkyoo

    2017-01-01

    Anthocyanins are flavonoid compounds that protect plant tissues from many environmental stresses including high light irradiance, freezing temperatures, and pathogen infection. Regulation of anthocyanin biosynthesis is intimately associated with environmental changes to enhance plant survival under stressful environmental conditions. Various factors, such as UV, visible light, cold, osmotic stress, and pathogen infection, can induce anthocyanin biosynthesis. In contrast, high temperatures are known to reduce anthocyanin accumulation in many plant species, even drastically in the skin of fruits such as grape berries and apples. However, the mechanisms by which high temperatures regulate anthocyanin biosynthesis in Arabidopsis thaliana remain largely unknown. Here, we show that high ambient temperatures repress anthocyanin biosynthesis through the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and the positive regulator of anthocyanin biosynthesis ELONGATED HYPOCOTYL5 (HY5). We show that an increase in ambient temperature decreases expression of genes required in both the early and late steps of the anthocyanin biosynthesis pathway in Arabidopsis seedlings. As a result, seedlings grown at a high temperature (28°C) accumulate less anthocyanin pigment than those grown at a low temperature (17°C). We further show that high temperature induces the degradation of the HY5 protein in a COP1 activity-dependent manner. In agreement with this finding, anthocyanin biosynthesis and accumulation do not respond to ambient temperature changes in cop1 and hy5 mutant plants. The degradation of HY5 derepresses the expression of MYBL2, which partially mediates the high temperature repression of anthocyanin biosynthesis. Overall, our study demonstrates that high ambient temperatures repress anthocyanin biosynthesis through a COP1-HY5 signaling module. PMID:29104579

  14. Trans-generational plasticity in response to immune challenge is constrained by heat stress.

    PubMed

    Roth, Olivia; Landis, Susanne H

    2017-06-01

    Trans-generational plasticity (TGP) is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent-offspring environments. In a global change scenario, several performance-related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of TGP. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans-generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat-killed bacterial epitope treatment. Differential gene expression (immune genes and DNA- and histone-modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans-generational effects are limited. Temperature is the master regulator of trans-generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of TGP as a short-term option to buffer environmental variation in the light of climate change.

  15. Studies of adaptive traits of Bali cattle in Buleleng district, Bali and Barru district, South Sulawesi

    NASA Astrophysics Data System (ADS)

    Aritonang, S. B.; Yuniati, R.; Abinawanto, Imron, M.; Bowolaksono, A.

    2017-05-01

    Bali cattle have high adaptability, so the distribution area is spread across Indonesia. These studies aimed to determine the effect of environmental factors on physiology performance of Bali cattle in Buleleng district and Barru district. Skin and rectal temperature and respiration rate within a minute were measured in cattle across 5-days. Ambient temperature, relative humidity, wind speed, and light intensity were measured as environmental factors. Our findings suggest that environmental factors between the two districts were different (p<0.05), but the temperature and wind speed were not. In Buleleng, the relative humidity was 82.6 ± 1 4.4% and light intensity was 123.03 ± 24.83 kW/m2, whereas in Barru the relative humidity was 75.4 ± 12.6% and light intensity was 200.96 ± 25.11 kW/m2. Although both regions had different environmental conditions, the respiration rate of cattle was different between the two districts (p<0.05). Cattle respiration rate in Buleleng was 26-34 BPM, whereas in Barru it was 22-28 BPM. Our results indicate that the changes in environmental conditions affect changes in the cattle physiology profile in each district. Thus, Bali cattle have adaptability towards a variety of environmental conditions.

  16. Disruption, not displacement: Environmental variability and temporary migration in Bangladesh

    PubMed Central

    Gray, Clark; Yunus, Mohammad; Emch, Michael

    2018-01-01

    Mass migration is one of the most concerning potential outcomes of global climate change. Recent research into environmentally induced migration suggests that relationship is much more complicated than originally posited by the ‘environmental refugee’ hypothesis. Climate change is likely to increase migration in some cases and reduce it in others, and these movements will more often be temporary and short term than permanent and long term. However, few large-sample studies have examined the evolution of temporary migration under changing environmental conditions. To address this gap, we measure the extent to which temperature, precipitation, and flooding can predict temporary migration in Matlab, Bangladesh. Our analysis incorporates high-frequency demographic surveillance data, a discrete time event history approach, and a range of sociodemographic and contextual controls. This approach reveals that migration declines immediately after flooding but quickly returns to normal. In contrast, optimal precipitation and high temperatures have sustained positive effects on temporary migration that persist over one to two year periods. Building on previous studies of long-term migration, these results challenge the common assumption that flooding, precipitation extremes and high temperatures will consistently increase temporary migration. Instead, our results are consistent with a livelihoods interpretation of environmental migration in which households draw on a range of strategies to cope with environmental variability. PMID:29375196

  17. Disruption, not displacement: Environmental variability and temporary migration in Bangladesh.

    PubMed

    Call, Maia A; Gray, Clark; Yunus, Mohammad; Emch, Michael

    2017-09-01

    Mass migration is one of the most concerning potential outcomes of global climate change. Recent research into environmentally induced migration suggests that relationship is much more complicated than originally posited by the 'environmental refugee' hypothesis. Climate change is likely to increase migration in some cases and reduce it in others, and these movements will more often be temporary and short term than permanent and long term. However, few large-sample studies have examined the evolution of temporary migration under changing environmental conditions. To address this gap, we measure the extent to which temperature, precipitation, and flooding can predict temporary migration in Matlab, Bangladesh. Our analysis incorporates high-frequency demographic surveillance data, a discrete time event history approach, and a range of sociodemographic and contextual controls. This approach reveals that migration declines immediately after flooding but quickly returns to normal. In contrast, optimal precipitation and high temperatures have sustained positive effects on temporary migration that persist over one to two year periods. Building on previous studies of long-term migration, these results challenge the common assumption that flooding, precipitation extremes and high temperatures will consistently increase temporary migration. Instead, our results are consistent with a livelihoods interpretation of environmental migration in which households draw on a range of strategies to cope with environmental variability.

  18. Thermal Imaging of Forest Canopy Temperatures: Relationships with Biological and Biophysical Drivers and Ecosystem Fluxes

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Kim, Y.; Hanson, C. V.; Law, B. E.; Kwon, H.; Schulze, M.; Pau, S.; Detto, M.

    2015-12-01

    Temperature is a primary environmental control on plant processes at a range of spatial and temporal scales, affecting enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with environmental drivers, and can be used to examine forest responses to stresses like droughts and heat waves. Direct measurements of plant canopy temperatures using thermocouple sensors have been challenging and offer limited information. Such measurements are usually conducted over short periods of time and a limited spatial extent of the canopy. By contrast, thermal infrared (TIR) imaging allows for extensive temporal and spatial measurement of canopy temperature regimes. We present results of TIR imaging of forest canopies at a range of well-studied forest sites in the United States and Panama. These forest types include temperate rainforests, a semi­arid pine forest, and a semi­deciduous tropical forest. Canopy temperature regimes at these sites are highly variable spatially and temporally and display frequent departures from air temperature, particularly during clear sky conditions. Canopy tissue temperatures are often warmer (daytime) and colder (nighttime) than air temperature, and canopy structure seems to have a large influence on the thermal regime. Additionally, comparison of canopy temperatures to eddy covariance fluxes of carbon dioxide, water vapor, and energy reveals relationships not apparent using air temperature. Initial comparisons between our forest canopy temperatures and remotely sensed skin temperature using Landsat and MODIS data show reasonably good agreement. We conclude that temporal and spatial changes in canopy temperature and its relationship to biological and environmental factors can improve our understanding of how climate change is affecting forest function, and argue for wider deployment of thermal cameras in other ecosystems.

  19. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    PubMed Central

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O’Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. PMID:25977814

  20. A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009.

    PubMed

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  1. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    USGS Publications Warehouse

    Sharma, Sapna; Gray, Derek; Read, Jordan S.; O'Reilly, Catherine; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie; Hook, Simon; Lenters, John; Livingstone, David M.; McIntyre, Peter B.; Adrian, Rita; Allan, Mathew; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John E.; Baron, Jill S.; Brookes, Justin D; Chen, Yuwei; Daly, Robert; Ewing, Kye; de Eyto, Elvira; Dokulil, Martin; Hamilton, David B.; Havens, Karl; Haydon, Shane; Hetzenaeur, Harald; Heneberry, Jocelyn; Hetherington, Amy; Higgins, Scott; Hixson, Eric; Izmest'eva, Lyubov; Jones, Benjamin M.; Kangur, Kulli; Kasprzak, Peter; Kraemer, Benjamin; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Dörthe Müller-Navarra,; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Pius Niederhauser,; North, Ryan P.; Andrew Paterson,; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Daniel E. Schindler,; Geoffrey Schladow,; Schmidt, Silke R.; Tracey Schultz,; Silow, Eugene A.; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A.; Craig E. Williamson,; Kara H. Woo,

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  2. The effects of environment on Arctica islandica shell formation and architecture

    NASA Astrophysics Data System (ADS)

    Milano, Stefania; Nehrke, Gernot; Wanamaker, Alan D., Jr.; Ballesta-Artero, Irene; Brey, Thomas; Schöne, Bernd R.

    2017-03-01

    Mollusks record valuable information in their hard parts that reflect ambient environmental conditions. For this reason, shells can serve as excellent archives to reconstruct past climate and environmental variability. However, animal physiology and biomineralization, which are often poorly understood, can make the decoding of environmental signals a challenging task. Many of the routinely used shell-based proxies are sensitive to multiple different environmental and physiological variables. Therefore, the identification and interpretation of individual environmental signals (e.g., water temperature) often is particularly difficult. Additional proxies not influenced by multiple environmental variables or animal physiology would be a great asset in the field of paleoclimatology. The aim of this study is to investigate the potential use of structural properties of Arctica islandica shells as an environmental proxy. A total of 11 specimens were analyzed to study if changes of the microstructural organization of this marine bivalve are related to environmental conditions. In order to limit the interference of multiple parameters, the samples were cultured under controlled conditions. Three specimens presented here were grown at two different water temperatures (10 and 15 °C) for multiple weeks and exposed only to ambient food conditions. An additional eight specimens were reared under three different dietary regimes. Shell material was analyzed with two techniques; (1) confocal Raman microscopy (CRM) was used to quantify changes of the orientation of microstructural units and pigment distribution, and (2) scanning electron microscopy (SEM) was used to detect changes in microstructural organization. Our results indicate that A. islandica microstructure is not sensitive to changes in the food source and, likely, shell pigment are not altered by diet. However, seawater temperature had a statistically significant effect on the orientation of the biomineral. Although additional work is required, the results presented here suggest that the crystallographic orientation of biomineral units of A. islandica may serve as an alternative and independent proxy for seawater temperature.

  3. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wexler, D.B.; Moore-ede, M.C.

    1986-12-01

    Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophasemore » shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function. 13 references.« less

  4. Does climate influence assemblages of anurans and lizards in a coastal area of north-eastern Brazil?

    NASA Astrophysics Data System (ADS)

    Rodrigues, João Fabrício Mota; Borges-Leite, Maria Juliana; Borges-Nojosa, Diva Maria

    2016-11-01

    Environmental factors influence diverse assemblage features such as species abundances, richness, and nestedness. Amphibians and reptiles play important roles in terrestrial ecosystems, but there is still a lack of information about the assemblages of these animals in many regions. In this study, we aimed to understand how environmental factors influence the anurans and lizards assemblages from São Gonçalo do Amarante, Ceará, Brazil. Herpetofauna samplings were performed monthly in São Gonçalo do Amarante from January 2008 to May 2009, excluding April 2008. We sampled animals (anurans and lizards) using pitfall traps and active searches. The abundance and richness of lizards were positively related to temperature and negatively related to precipitation. Anuran assemblage was not influenced by precipitation, but its abundance was negatively influenced by temperature. Temperature generated a nested pattern in the lizard assemblage, but precipitation did not produce this pattern in anurans. Finally, our results reinforce the importance of environmental factors, mainly temperature, in structuring assemblages of anurans and lizards.

  5. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle

    NASA Technical Reports Server (NTRS)

    Wexler, D. B.; Moore-Ede, M. C.

    1986-01-01

    Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophase shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function.

  6. Comparison of rectal, microchip transponder, and infrared thermometry techniques for obtaining body temperature in the laboratory rabbit (Oryctolagus cuniculus).

    PubMed

    Chen, Patty H; White, Charles E

    2006-01-01

    This study compared rabbit rectal thermometry with 4 other thermometry techniques: an implantable microchip temperature transponder, an environmental noncontact infrared thermometer, a tympanic infrared thermometer designed for use on humans, and a tympanic infrared thermometer designed for use on animals. The microchip transponder was implanted between the shoulder blades; the environmental noncontact infrared thermometer recorded results from the base of the right pinna and the left inner thigh, and the tympanic infrared thermometer temperatures were taken from the right ear. Results from each technique were compared to determine agreement between the test modality and the rectal temperature. The practicality and reliability of the modalities were reviewed also. According to this study, the implantable microchip transponder measurements agreed most closely with the rectal temperature.

  7. REPORT OF THE QUALIFICATION TESTING OF SNAP 10A FUSISTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holtwick, J.S. III; Nowell, V.P.

    1963-07-31

    Qualification testing of SNAP 10A fusistors was performed. Test operations included: visual inspection, insulation resistance, dielectric strength, and d-c resistance testing prior to subjecting the fusisters to environmental testing; opening-time testing prior to, during, and following vacuum and temperature testing; and insulation resistance, dielectric strength, and d-c resistance testing following environmental applications of temperature, vacuum, and sinusoidal vibration. (auth)

  8. Environmental microbiology as related to planetary quarantine

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    The experiments carried out to determine the effects of temperature and relative humidity on the survival rate of Bacillus subtillis var. niger spores are reported. The experiments were conducted in environmental chambers at temperatures of 75 and 90 C. Data are also included on the survival characteristics of the spores suspended in sucrose solutions at 90 C with water activities of 0.99, 0.9, and 0.85

  9. The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars.

    PubMed

    Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  10. Loggerhead sea turtle environmental sex determination: implications of moisture and temperature for climate change based predictions for species survival.

    PubMed

    Wyneken, Jeanette; Lolavar, Alexandra

    2015-05-01

    It has been proposed that because marine turtles have environmentally determined sex by incubation temperature, elevated temperatures might skew sex ratios to unsustainable levels, leading to extinction. Elevated temperatures may also reduce availability of suitable nesting sites via sea level rise. Increased tropical storm activity can directly affect nest site moisture, embryonic development, and the probability that nests will survive. Here, we question some of these assumptions and review the limits of sex ratio estimates. Sea turtles may be more resilient to climate change than previously thought, in part because of hitherto unappreciated mechanisms for coping with variable incubation conditions. © 2015 Wiley Periodicals, Inc.

  11. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions

    PubMed Central

    2013-01-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl and Mtotal, but Llower did not. Subjects hardly changed Llower under environmental comfort conditions between March and October. This indicates that each of the Tchest, Mtotal, and Lupper was a factor in predicting Icl. Tinnermost might also be a more influential factor than the clothing microclimate temperature. PMID:23816370

  12. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests (in air), to investigate the water vapor effect. All cyclic tests were conducted using a 60-min hot-time temperature.

  14. Fuzzy comprehensive evaluation of multiple environmental factors for swine building assessment and control.

    PubMed

    Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin

    2017-10-15

    In confined swine buildings, temperature, humidity, and air quality are all important for animal health and productivity. However, the current swine building environmental control is only based on temperature; and evaluation and control methods based on multiple environmental factors are needed. In this paper, fuzzy comprehensive evaluation (FCE) theory was adopted for multi-factor assessment of environmental quality in two commercial swine buildings using real measurement data. An assessment index system and membership functions were established; and predetermined weights were given using analytic hierarchy process (AHP) combined with knowledge of experts. The results show that multi-factors such as temperature, humidity, and concentrations of ammonia (NH 3 ), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S) can be successfully integrated in FCE for swine building environment assessment. The FCE method has a high correlation coefficient of 0.737 compared with the method of single-factor evaluation (SFE). The FCE method can significantly increase the sensitivity and perform an effective and integrative assessment. It can be used as part of environmental controlling and warning systems for swine building environment management to improve swine production and welfare. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions

    PubMed Central

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-01-01

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264

  16. The design of tea garden environmental monitoring system based on WSN

    NASA Astrophysics Data System (ADS)

    Chen, Huajun; Yuan, Lina

    2018-01-01

    Through the application of wireless sensor network (WSN) in tea garden, it can realize the change of traditional tea garden to the modern ones, and effectively improves the comprehensive productive capacity of tea garden. According to the requirement of real-time remote in agricultural information collection and monitoring and the power supply affected by environmental limitations, based on WSN, this paper designs a set of tea garden environmental monitoring system, which achieves the monitoring nodes with ad-hoc network as well as automatic acquisition and transmission to the tea plantations of air temperature, light intensity, soil temperature and humidity.

  17. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    NASA Technical Reports Server (NTRS)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  18. Design and experimental investigation of a cryogenic system for environmental test applications

    NASA Astrophysics Data System (ADS)

    Yan, Lutao; Li, Hong; Liu, Yue; Han, Che; Lu, Tian; Su, Yulei

    2015-04-01

    This paper is concerned with the design, development and performance testing of a cryogenic system for use in high cooling power instruments for ground-based environmental testing. The system provides a powerful tool for a combined environmental test that consists of high pressure and cryogenic temperatures. Typical cryogenic conditions are liquid hydrogen (LH2) and liquid oxygen (LO2), which are used in many fields. The cooling energy of liquid nitrogen (LN2) and liquid helium (LHe) is transferred to the specimen by a closed loop of helium cycle. In order to minimize the consumption of the LHe, the optimal design of heat recovery exchangers has been used in the system. The behavior of the system is discussed based on experimental data of temperature and pressure. The results show that the temperature range from room temperature to LN2 temperature can be achieved by using LN2, the pressurization process is stable and the high test pressure is maintained. Lower temperatures, below 77 K, can also be obtained with LHe cooling, the typical cooling time is 40 min from 90 K to 22 K. Stable temperatures of 22 K at the inlet of the specimen have been observed, and the system in this work can deliver to the load a cooling power of several hundred watts at a pressure of 0.58 MPa.

  19. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.

    PubMed

    Jin, Junwei; Li, Yanan; Zhang, Jianyun; Wu, Shengchun; Cao, Yucheng; Liang, Peng; Zhang, Jin; Wong, Ming Hung; Wang, Minyan; Shan, Shengdao; Christie, Peter

    2016-12-15

    Dried raw sludge was pyrolyzed at temperatures ranging from 400 to 600°C at the increase of 50°C intervals to investigate the influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochar derived from municipal sewage sludge. The sludge biochar yield decreased significantly with increasing pyrolysis temperature but the pH, ash content and specific surface area increased. Conversion of sludge to biochar markedly decreased the H/C and N/C ratios. FT-IR analysis confirmed a dramatic depletion of H and N and a higher degree of aromatic condensation in process of biochar formation at higher temperatures. The total concentrations of Cu, Zn, Pb, Cr, Mn, and Ni increased with conversion of sludge to biochar and increasing pyrolysis temperature. However, using BCR sequential extraction and analysis, it was found that most of the heavy metals existed in the oxizable and residual forms after pyrolysis, especially at 600°C, resulting in a significant reduction in their bioavailability, leading to a very low environmental risk of the biochar. The present study indicates pyrolysis is a promising sludge treatment method for heavy metals immobilization in biochar, and highlights the potential to minimize the harmful effects of biochar by controlling pyrolysis temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Diurnal flight behavior of Ichneumonoidea (Insecta: Hymenoptera) related to environmental factors in a tropical dry forest.

    PubMed

    González-Moreno, A; Bordera, S; Leirana-Alcocer, J; Delfín-González, H

    2012-06-01

    The biology and behavior of insects are strongly influenced by environmental conditions such as temperature and precipitation. Because some of these factors present a within day variation, they may be causing variations on insect diurnal flight activity, but scant information exists on the issue. The aim of this work was to describe the patterns on diurnal variation of the abundance of Ichneumonoidea and their relation with relative humidity, temperature, light intensity, and wind speed. The study site was a tropical dry forest at Ría Lagartos Biosphere Reserve, Mexico; where correlations between environmental factors (relative humidity, temperature, light, and wind speed) and abundance of Ichneumonidae and Braconidae (Hymenoptera: Ichneumonoidea) were estimated. The best regression model for explaining abundance variation was selected using the second order Akaike Information Criterion. The optimum values of temperature, humidity, and light for flight activity of both families were also estimated. Ichneumonid and braconid abundances were significantly correlated to relative humidity, temperature, and light intensity; ichneumonid also showed significant correlations to wind speed. The second order Akaike Information Criterion suggests that in tropical dry conditions, relative humidity is more important that temperature for Ichneumonoidea diurnal activity. Ichneumonid wasps selected toward intermediate values of relative humidity, temperature and the lowest wind speeds; while Braconidae selected for low values of relative humidity. For light intensity, braconids presented a positive selection for moderately high values.

  1. Design and evaluation of a bioreactor with application to forensic burial environments.

    PubMed

    Dunphy, Melissa A; Weisensee, Katherine E; Mikhailova, Elena A; Harman, Melinda K

    2015-12-01

    Existing forensic taphonomic methods lack specificity in estimating the postmortem interval (PMI) in the period following active decomposition. New methods, such as the use of citrate concentration in bone, are currently being considered; however, determining the applicability of these methods in differing environmental contexts is challenging. This research aims to design a forensic bioreactor that can account for environmental factors known to impact decomposition, specifically temperature, moisture, physical damage from animals, burial depth, soil pH, and organic matter content. These forensically relevant environmental variables were characterized in a soil science context. The resulting metrics were soil temperature regime, soil moisture regime, slope, texture, soil horizon, cation exchange capacity, soil pH, and organic matter content. Bioreactor chambers were constructed using sterilized thin-walled polystyrene boxes housed in calibrated temperature units. Gravesoil was represented using mineral soil (Ultisols), and organic soil proxy for Histosols, horticulture mix. Gravesoil depth was determined using mineral soil horizons A and Bt2 to simulate surface scatter and shallow grave burial respectively. A total of fourteen different environmental conditions were created and controlled successfully over a 90-day experiment. These results demonstrate successful implementation and control of forensic bioreactor simulating precise environments in a single research location, rather than site-specific testing occurring in different geographic regions. Bone sections were grossly assessed for weathering characteristics, which revealed notable differences related to exposure to different temperature regimes and soil types. Over the short 90-day duration of this experiment, changes in weathering characteristics were more evident across the different temperature regimes rather than the soil types. Using this methodology, bioreactor systems can be created to replicate many different clandestine burial contexts, which will allow for the more rapid understanding of environmental effects on skeletal remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Low Temperature Soda-Oxygen Pulping of Bagasse.

    PubMed

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  3. Impact of patient and environmental factors on capillary refill time in adults.

    PubMed

    Anderson, Bronwyn; Kelly, Anne-Maree; Kerr, Debra; Clooney, Megan; Jolley, Damien

    2008-01-01

    Capillary refill time (CRT) has been taught as a rapid indicator of circulatory status. The aim of this study was to define normal CRT in the Australian context and the environmental, patient, and drug factors that influence it. This prospective observational study included healthy adults at hospital clinics, workplaces, universities, and community groups. Volunteer participants provided their age, sex, ethnic group, and use of hypertensive or cardiac medications. Capillary refill time, ambient temperature, and patient temperature were recorded in a standard manner. Data were analyzed using descriptive statistics and regression analyses. The 95th percentile was used to define the upper limit of normal. One thousand participants were included; 57% were women, 90% were white, and 21% were taking cardiac medications. The median CRT was 1.9 seconds (95th percentile, 3.5 seconds). The CRT increased 3.3% for each additional decade of age. The CRT was also on average 7% lower in men than in women. The CRT decreased by 1.2% per degree-Celsius rise of ambient temperature, independently of patient's temperature, and decreased by 5% for each degree-Celsius rise in patient temperature, independently of ambient temperature. On multivariant analysis, age, sex, ambient temperature, and patient temperature were statistically significant predictors of CRT, but together explain only 8% of the observed variability. Capillary refill time varies with environmental and patient factors, but these account for only a small proportion of the variability observed. Its suitability as a reliable clinical test is doubtful.

  4. Is telomere length a molecular marker of past thermal stress in wild fish?

    PubMed

    Debes, Paul V; Visse, Marko; Panda, Bineet; Ilmonen, Petteri; Vasemägi, Anti

    2016-11-01

    Telomeres protect eukaryotic chromosomes; variation in telomere length has been linked (primarily in homoeothermic animals) to variation in stress, cellular ageing and disease risk. Moreover, telomeres have been suggested to function as biomarker for quantifying past environmental stress, but studies in wild animals remain rare. Environmental stress, such as extreme environmental temperatures in poikilothermic animals, may result in oxidative stress that accelerates telomere attrition. However, growth, which may depend on temperature, can also contribute to telomere attrition. To test for associations between multitissue telomere length and past water temperature while accounting for the previous individual growth, we used quantitative PCR to analyse samples from 112 young-of-the-year brown trout from 10 natural rivers with average water temperature differences of up to 6°C (and an absolute maximum of 23°C). We found negative associations between relative telomere length (RTL) and both average river temperature and individual body size. We found no indication of RTL-temperature association differences among six tissues, but we did find indications for differences among the tissues for associations between RTL and body size; size trends, albeit nonsignificant in their differences, were strongest in muscle and weakest in fin. Although causal relationships among temperature, growth, oxidative stress, and cross-sectional telomere length remain largely unknown, our results indicate that telomere-length variation in a poikilothermic wild animal is associated with both past temperature and growth. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  5. Lunar and Martian environmental interactions with nuclear power system radiators

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Katzan, Cynthia M.

    1992-01-01

    Future NASA space missions include a permanent manned presence on the moon and an expedition to the planet Mars. Such steps will require careful consideration of environmental interactions in the selection and design of required power systems. Several environmental constituents may be hazardous to performance integrity. Potential threats common to both the moon and Mars are low ambient temperatures, wide daily temperature swings, solar flux, and large quantities of dust. The surface of Mars provides the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. In this review, the anticipated environmental interactions with surface power system radiators are described, as well as the impacts of these interactions on radiator durability, which were identified at NASA Lewis Research Center.

  6. Environmental performance evaluation of an advanced-design solid-state television camera

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.

  7. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass

    NASA Astrophysics Data System (ADS)

    Claireaux, G.; Lagardère, J.-P.

    1999-09-01

    Standard (SMR) and routine (RMR) metabolic rates of groups (4 to 5 individuals) of European sea bass ( Dicentrarchus labrax) were measured at combinations of the following factors: temperature (10, 15, 20 and 25°C), oxygenation level (air saturation to 1.5 mg dm -3) and salinity (30, 20, 10 and 5‰). The influence of these environmental conditions on fish metabolic demand was then analysed through ANOVA. At 10, 15, 20 and 25°C, standard metabolic rates were 36, 65, 89, and 91 mg O 2 kg -1 h -1, respectively, while routine oxygen consumptions covered most of the metabolic range accessible. Osmoregulatory costs are linked to metabolic activity through ventilation. This relationship was highlighted by the observed interaction between environmental salinity and temperature. We were, however, unable to detect interactions between salinity and routine metabolic rate, or between salinity and oxygenation level. In order to delineate more precisely the restrictions imposed by water oxygenation on fish metabolic performance we determined the limiting oxygen concentration curves at each experimental temperature. We followed up by modelling the bass active metabolic rate (AMR) and metabolic scope (MS) as functions of both ambient temperature and oxygenation. These mathematical models allowed the characterisation of the controlling and limiting effects of water temperature and oxygen content on the metabolic capacity of the species. Thus, AMR at 10, 15 and 20°C were estimated at 65, 160 and 360 mg O 2 kg -1 h -1, respectively. However, at higher temperature (25°C) AMR dropped slightly (to 340 mg O 2 kg -1 h -1). Bass MS increased by a factor of 9 between 10 and 20°C, but diminished at higher temperatures. The present study contributes to our current understanding of the influences of environmental factors on the metabolism of sea bass and provides a bioenergetic basis for a study of how environmental constraints govern the spatial and temporal distribution pattern of this species.

  8. Poor environmental tracking can make extinction risk insensitive to the colour of environmental noise

    PubMed Central

    van de Pol, Martijn; Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar; Ens, Bruno J.; Oosterbeek, Kees; Tinbergen, Joost M.

    2011-01-01

    The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms—which probably act in many species—can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought. PMID:21561978

  9. Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment.

    PubMed

    de Vries, Pepijn; Tamis, Jacqueline E; Murk, Albertinka J; Smit, Mathijs G D

    2008-12-01

    Current European legislation has static water quality objectives for temperature effects, based on the most sensitive species. In the present study a species sensitivity distribution (SSD) for elevated temperatures is developed on the basis of temperature sensitivity data (mortality) of 50 aquatic species. The SSD applies to risk assessment of heat discharges that are localized in space or time. As collected median lethal temperatures (LT50 values) for different species depend on the acclimation temperature, the SSD is also a function of the acclimation temperature. Data from a thermal discharge in The Netherlands are used to show the applicability of the developed SSD in environmental risk assessment. Although restrictions exist in the application of the developed SSD, it is concluded that the SSD approach can be applied to assess the effects of elevated temperature. Application of the concept of SSD to temperature changes allows harmonization of environmental risk assessment for stressors in the aquatic environment. When a synchronization of the assessment methods is achieved, the steps to integration of risks from toxic and nontoxic stressors can be made.

  10. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient air temperature... line voltage and ambient temperature. 53.55 Section 53.55 Protection of Environment ENVIRONMENTAL... power line voltage and ambient temperature. (a) Overview. (1) This test procedure is a combined...

  11. A Study of Repeated Wrist Temperature of Sixth, Seventh, and Eighth Graders.

    ERIC Educational Resources Information Center

    Matthews, Doris B.; Quinn, Jimmy L.

    While evidence exists that a person's peripheral temperature responds to his state of arousal or stress, it also responds to other environmental factors. Wrist temperature has been found to vary with ambient temperature, and to increase during the school day. Before wrist temperature can be established as a valid measure of anxiety, stress, or…

  12. The physiological basis for spacecraft environmental limits

    NASA Technical Reports Server (NTRS)

    Waligora, J. M. (Compiler)

    1979-01-01

    Limits for operational environments are discussed in terms of acceptable physiological changes. The environmental factors considered are pressure, contaminants, temperature, acceleration, noise, rf radiation, and weightlessness.

  13. The Relative Importance of Spatial and Local Environmental Factors in Determining Beetle Assemblages in the Inner Mongolia Grassland.

    PubMed

    Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang

    2016-01-01

    The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.

  14. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    PubMed Central

    Cahon, Thomas; Caillon, Robin

    2018-01-01

    Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342

  15. Impacts of meteorological and environmental factors on allergic rhinitis in children

    NASA Astrophysics Data System (ADS)

    He, Shan; Mou, Zhe; Peng, Li; Chen, Jie

    2017-05-01

    Meteorological and environmental factors influence the pathogenesis of allergic rhinitis (AR). An understanding of the risk factors will facilitate the development of diagnostic and preventative tools for AR children and improve their quality of life. However, research on the impact of these factors on subjective symptoms in AR children remains scarce. This study explored the relationships between subjective symptoms in pollen and dust mite positive AR children, and meteorological and environmental factors. Using a linear mixed effect model, we analyzed the correlations between monthly data on the subjective symptoms of 351 AR children (from the Shanghai Children's Medical Center) and meteorological and environmental factors during 2013. The monthly meteorological and environmental data were provided by the Shanghai Meteorological Service and Shanghai Environmental Protection Bureau. Temperature and humidity were negatively correlated with the subjective symptom score, with a 0.04 point increase observed for every 1 °C decrease in temperature ( P < 0.0001) or 10 % decline in humidity ( P = 0.0412). The particulate matter (PM) 10 and PM2.5 concentrations were positively correlated with the subjective symptom score, with a 10 μg/m3 increase in PM10 and PM2.5 yielding a 0.02 ( P = 0.0235) and 0.03 ( P = 0.0281) increase in the subjective symptom score, respectively. In conclusion, meteorological and environmental factors were correlated with subjective symptoms in AR children. Low temperatures, lower humidity, and high PM10 and PM2.5 concentrations aggravated subjective symptoms in AR children.

  16. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees.

    PubMed

    Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Oribe, Yuichiro; Funada, Ryo

    2013-01-01

    The timing of cambial reactivation plays an important role in determination of the amount and quality of wood and the environmental adaptivity of trees. Environmental factors, such as temperature, influence the growth and development of trees. Temperatures from late winter to early spring affect the physiological processes that are involved in the initiation of cambial cell division and xylem differentiation in trees. Cumulative elevated temperatures from late winter to early spring result in earlier initiation of cambial reactivation and xylem differentiation in tree stems and an extended growth period. However, earlier cambial reactivation increases the risk for frost damage because the cold tolerance of cambium decreases after cambial reactivation. The present review focuses on temperature regulation on the timing of cambial reactivation and xylem differentiation in trees, and also highlights recent advances in our understanding of seasonal changes in the cold stability of microtubules in trees. The review also summarizes the present understanding of the relationships between the timing of cambial reactivation, the start of xylem differentiation and changes in levels of storage materials in trees, as well as an attempt to identify the source of energy for cell division and differentiation. A better understanding of the mechanisms that regulate wood formation in trees and the influence of environmental conditions on such mechanisms should help in efforts to improve and enhance the exploitation of wood for commercial applications and to prepare for climatic change. Copyright © Physiologia Plantarum 2012.

  17. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    PubMed Central

    Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich

    2017-01-01

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology. PMID:27420030

  18. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  19. Diverse of Erythropoiesis Responding to Hypoxia and Low Environmental Temperature in Vertebrates.

    PubMed

    Maekawa, Shun; Kato, Takashi

    2015-01-01

    Erythrocytes are responsible for transporting oxygen to tissue and are essential for the survival of almost all vertebrate animals. Circulating erythrocyte counts are tightly regulated and respond to erythrocyte mass and oxygen tension. Since the discovery of erythropoietin, the erythropoietic responses to environment and tissue oxygen tension have been investigated in mice and human. Moreover, it has recently become increasingly clear that various environmental stresses could induce the erythropoiesis via various modulating systems, while all vertebrates live in various environments and habitually adapt to environmental stress. Therefore, it is considered that investigations of erythropoiesis in vertebrates provide a lead to the various erythropoietic responses to environmental stress. This paper comparatively introduces the present understanding of erythropoiesis in vertebrates. Indeed, there is a wide range of variations in vertebrates' erythropoiesis. This paper also focused on erythropoietic responses to environmental stress, hypoxia, and lowered temperature in vertebrates.

  20. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    PubMed Central

    Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P.; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment. PMID:22163405

  1. Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation

    NASA Technical Reports Server (NTRS)

    Herring, Helen

    2003-01-01

    Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.

  2. Determination of the coalescence temperature of latexes by environmental scanning electron microscopy.

    PubMed

    Gonzalez, Edurne; Tollan, Christopher; Chuvilin, Andrey; Barandiaran, Maria J; Paulis, Maria

    2012-08-01

    A new methodology for quantitative characterization of the coalescence process of waterborne polymer dispersion (latex) particles by environmental scanning electron microscopy (ESEM) is proposed. The experimental setup has been developed to provide reproducible latex monolayer depositions, optimized contrast of the latex particles, and a reliable readout of the sample temperature. Quantification of the coalescence process under dry conditions has been performed by image processing based on evaluation of the image autocorrelation function. As a proof of concept the coalescence of two latexes with known and differing glass transition temperatures has been measured. It has been shown that a reproducibility of better than 1.5 °C can be obtained for the measurement of the coalescence temperature.

  3. Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario

    PubMed Central

    Chen, Chii-Shiarng; Fan, Tung-Yung; Li, Hsing-Hui

    2017-01-01

    The success of early life-history stages is an environmentally sensitive bottleneck for many marine invertebrates. Responses of larvae to environmental stress may vary due to differences in maternal investment of energy stores and acclimatization/adaptation of a population to local environmental conditions. In this study, we compared two populations from sites with different environmental regimes (Moorea and Taiwan). We assessed the responses of Pocillopora damicornis larvae to two future co-occurring environmental stressors: elevated temperature and ocean acidification. Larvae from Taiwan were more sensitive to temperature, producing fewer energy-storage lipids under high temperature. In general, planulae in Moorea and Taiwan responded similarly to pCO2. Additionally, corals in the study sites with different environments produced larvae with different initial traits, which may have shaped the different physiological responses observed. Notably, under ambient conditions, planulae in Taiwan increased their stores of wax ester and triacylglycerol in general over the first 24 h of their dispersal, whereas planulae from Moorea consumed energy-storage lipids in all cases. Comparisons of physiological responses of P. damicornis larvae to conditions of ocean acidification and warming between sites across the species' biogeographic range illuminates the variety of physiological responses maintained within P. damicornis, which may enhance the overall persistence of this species in the light of global climate change. PMID:28446693

  4. Sperm quality and environment: A retrospective, cohort study in a Northern province of Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santi, Daniele, E-mail: santi.daniele@gmail.com; Department of Medicine, Endocrinology, Metabolism and Geriatrics; Vezzani, Silvia

    Background: Several studies proposed a relationship between environmental factors and semen quality, as well as the negative effect of air pollution on spermatogenesis and gonadal function. No specific studies evaluated the environmental influence on semen quality in a specific geographical area. Aim: to evaluate the environmental influence on male sperm parameters in a Northern Italian population referred for semen analysis in the National Health System. The objective of the study is the assessment of the relationship of both air pollution and environmental parameters with quality-related sperm variables, during the coldest months of the year when air is usually most polluted,more » due to low ventilation and poor rainfall. Study design: A retrospective, observational, cohort study was carried out in the province of Modena, located in the Emilia-Romagna region of Northern Italy. Methods: Semen analyses (n=406), environmental temperature, air humidity and air particulate matter (PM) measurements from the 1st of November 2014 to the 19th of February 2015 were acquired to the first database. Since spermatogenesis lasts over two months, a second, wider database was arranged, evaluating environmental exposure in the 3 months before semen collection (from August 1st 2014). All data included in the database were registered by geo-coding the residential address of the patients and the site of registration of environmental factors. The geo-codification of parameters was performed using Fusion Tables of Google available at (https://www.google.com/fusiontables/data? dsrcid=implicit), considering the exact time of measurement. Results: Average air temperature was inversely related to sperm concentration and to total sperm number (p<0.001). Semen volume was inversely related only to the minimum (p<0.001) and not to maximum recorded temperature (p=0.110). Air humidity was not related to sperm quantity and quality. PM{sub 2.5} was directly related to total sperm number (p<0.001). PM{sub 10} was directly related to both semen volume (0<0.001), and typical forms (p<0.001), inversely related to atypical forms (p<0.001), but related neither to sperm concentration (p=0.430) nor to sperm motility. The extended analyses considering environmental parameters in the 3 months before semen collection, confirmed the relationship between air temperature and sperm quantity, whereas no influence was found between PM and sperm quality. Conclusion: An influence of environmental temperature on semen quantity is suggested, without a clear effect of air pollution, as assessed through PM{sub 10} levels, on sperm parameter variations.« less

  5. Sperm quality and environment: A retrospective, cohort study in a Northern province of Italy.

    PubMed

    Santi, Daniele; Vezzani, Silvia; Granata, Antonio Rm; Roli, Laura; De Santis, Maria Cristina; Ongaro, Chiara; Donati, Federica; Baraldi, Enrica; Trenti, Tommaso; Setti, Monica; Simoni, Manuela

    2016-10-01

    Several studies proposed a relationship between environmental factors and semen quality, as well as the negative effect of air pollution on spermatogenesis and gonadal function. No specific studies evaluated the environmental influence on semen quality in a specific geographical area. to evaluate the environmental influence on male sperm parameters in a Northern Italian population referred for semen analysis in the National Health System. The objective of the study is the assessment of the relationship of both air pollution and environmental parameters with quality-related sperm variables, during the coldest months of the year when air is usually most polluted, due to low ventilation and poor rainfall. A retrospective, observational, cohort study was carried out in the province of Modena, located in the Emilia-Romagna region of Northern Italy. Semen analyses (n=406), environmental temperature, air humidity and air particulate matter (PM) measurements from the 1st of November 2014 to the 19th of February 2015 were acquired to the first database. Since spermatogenesis lasts over two months, a second, wider database was arranged, evaluating environmental exposure in the 3 months before semen collection (from August 1st 2014). All data included in the database were registered by geo-coding the residential address of the patients and the site of registration of environmental factors. The geo-codification of parameters was performed using Fusion Tables of Google available at https://www.google.com/fusiontables/data? dsrcid=implicit, considering the exact time of measurement. Average air temperature was inversely related to sperm concentration and to total sperm number (p<0.001). Semen volume was inversely related only to the minimum (p<0.001) and not to maximum recorded temperature (p=0.110). Air humidity was not related to sperm quantity and quality. PM2.5 was directly related to total sperm number (p<0.001). PM10 was directly related to both semen volume (0<0.001), and typical forms (p<0.001), inversely related to atypical forms (p<0.001), but related neither to sperm concentration (p=0.430) nor to sperm motility. The extended analyses considering environmental parameters in the 3 months before semen collection, confirmed the relationship between air temperature and sperm quantity, whereas no influence was found between PM and sperm quality. An influence of environmental temperature on semen quantity is suggested, without a clear effect of air pollution, as assessed through PM10 levels, on sperm parameter variations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The effects of a tranquilizer on body temperature.

    DOT National Transportation Integrated Search

    1963-10-01

    Four young adult mongrel dogs were exposed twice untranquilized to each of three environmental temperatures: 4.4C, 23.9C, and 37.8C and exposed twice tranquilized with 2.2 mg/Kg propiopromazine hydrochloride. Rectal temperatures were monitored ...

  7. THE ROLE OF TEMPERATURE DISEQUILIBRIUM IN MONITORING LOW VOLATILITY CONTAMINANT MIGRATION

    EPA Science Inventory

    Temperature disequilibrium is a common phenomenon within and among envirornnental media at local regional continental and global scales. The significance of temperature disequilibrium on low vapor pressure environmental contaminant migration has only rarely been addressed in the ...

  8. Development of Advanced Environmental Barrier Coatings for SiC/SiC Composites at NASA GRC: Prime-Reliant Design and Durability Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2017-01-01

    Environmental barrier coatings (EBCs) are considered technologically important because of the critical needs and their ability to effectively protect the turbine hot-section SiC/SiC ceramic matrix composite (CMC) components in harsh engine combustion environments. The development of NASA's advanced environmental barrier coatings have been aimed at significantly improved the coating system temperature capability, stability, erosion-impact, and CMAS resistance for SiC/SiC turbine airfoil and combustors component applications. The NASA environmental barrier coating developments have also emphasized thermo-mechanical creep and fatigue resistance in simulated engine heat flux and environments. Experimental results and models for advanced EBC systems will be presented to help establishing advanced EBC composition design methodologies, performance modeling and life predictions, for achieving prime-reliant, durable environmental coating systems for 2700-3000 F engine component applications. Major technical barriers in developing environmental barrier coating systems and the coating integration with next generation composites having further improved temperature capability, environmental stability, EBC-CMC fatigue-environment system durability will be discussed.

  9. Validity and Reliability of Devices That Assess Body Temperature During Indoor Exercise in the Heat

    PubMed Central

    Ganio, Matthew S; Brown, Christopher M; Casa, Douglas J; Becker, Shannon M; Yeargin, Susan W; McDermott, Brendon P; Boots, Lindsay M; Boyd, Paul W; Armstrong, Lawrence E; Maresh, Carl M

    2009-01-01

    Context: When assessing exercise hyperthermia outdoors, the validity of certain commonly used body temperature measuring devices has been questioned. A controlled laboratory environment is generally less influenced by environmental factors (eg, ambient temperature, solar radiation, wind) than an outdoor setting. The validity of these temperature measuring devices in a controlled environment may be more acceptable. Objective: To assess the validity and reliability of commonly used temperature devices compared with rectal temperature in individuals exercising in a controlled, high environmental temperature indoor setting and then resting in a cool environment. Design: Time series study. Setting: Laboratory environmental chamber (temperature  =  36.4 ± 1.2°C [97.5 ± 2.16°F], relative humidity  =  52%) and cool laboratory (temperature  =  approximately 23.3°C [74.0°F], relative humidity  =  40%). Patients or Other Participants: Fifteen males and 10 females. Intervention(s): Rectal, gastrointestinal, forehead, oral, aural, temporal, and axillary temperatures were measured with commonly used temperature devices. Temperature was measured before and 20 minutes after entering the environmental chamber, every 30 minutes during a 90-minute treadmill walk in the heat, and every 20 minutes during a 60-minute rest in mild conditions. Device validity and reliability were assessed with various statistical measures to compare the measurements using each device with rectal temperature. A device was considered invalid if the mean bias (average difference between rectal and device temperatures) was more than ±0.27°C (±0.50°F). Main Outcome Measure(s): Measured temperature from each device (mean and across time). Results: The following devices provided invalid estimates of rectal temperature: forehead sticker (0.29°C [0.52°F]), oral temperature using an inexpensive device (−1.13°C [−2.03°F]), temporal temperature measured according to the instruction manual (−0.87°C [−1.56°F]), temporal temperature using a modified technique (−0.63°C [−1.13°F]), oral temperature using an expensive device (−0.86°C, [−1.55°F]), aural temperature (−0.67°C, [−1.20°F]), axillary temperature using an inexpensive device (−1.25°C, [−2.24°F]), and axillary temperature using an expensive device (−0.94°F [−1.70°F]). Measurement of intestinal temperature (mean bias of −0.02°C [−0.03°F]) was the only device considered valid. Devices measured in succession (intestinal, forehead, temporal, and aural) showed acceptable reliability (all had a mean bias  =  0.09°C [0.16°F] and r ≥ 0.94]). Conclusions: Even during laboratory exercise in a controlled environment, devices used to measure forehead, temporal, oral, aural, and axillary body sites did not provide valid estimates of rectal temperature. Only intestinal temperature measurement met the criterion. Therefore, we recommend that rectal or intestinal temperature be used to assess hyperthermia in individuals exercising indoors in the heat. PMID:19295956

  10. Biophysics, environmental stochasticity, and the evolution of thermal safety margins in intertidal limpets.

    PubMed

    Denny, M W; Dowd, W W

    2012-03-15

    As the air temperature of the Earth rises, ecological relationships within a community might shift, in part due to differences in the thermal physiology of species. Prediction of these shifts - an urgent task for ecologists - will be complicated if thermal tolerance itself can rapidly evolve. Here, we employ a mechanistic approach to predict the potential for rapid evolution of thermal tolerance in the intertidal limpet Lottia gigantea. Using biophysical principles to predict body temperature as a function of the state of the environment, and an environmental bootstrap procedure to predict how the environment fluctuates through time, we create hypothetical time-series of limpet body temperatures, which are in turn used as a test platform for a mechanistic evolutionary model of thermal tolerance. Our simulations suggest that environmentally driven stochastic variation of L. gigantea body temperature results in rapid evolution of a substantial 'safety margin': the average lethal limit is 5-7°C above the average annual maximum temperature. This predicted safety margin approximately matches that found in nature, and once established is sufficient, in our simulations, to allow some limpet populations to survive a drastic, century-long increase in air temperature. By contrast, in the absence of environmental stochasticity, the safety margin is dramatically reduced. We suggest that the risk of exceeding the safety margin, rather than the absolute value of the safety margin, plays an underappreciated role in the evolution of thermal tolerance. Our predictions are based on a simple, hypothetical, allelic model that connects genetics to thermal physiology. To move beyond this simple model - and thereby potentially to predict differential evolution among populations and among species - will require significant advances in our ability to translate the details of thermal histories into physiological and population-genetic consequences.

  11. The impact of environmental temperature on the diagnosis of gestational diabetes mellitus.

    PubMed

    Vasileiou, Vasiliki; Kyratzoglou, Eleni; Paschou, Stavroula A; Kyprianou, Miltiades; Anastasiou, Eleni

    2018-03-01

    To investigate a probable impact of seasons on the diagnosis of GDM, as well as the specific effect of the environmental temperature on the diagnosis of this clinical entity. Two observational studies, one retrospective and one prospective, were conducted in a referral center. Study A included retrospectively 7618 pregnant women who underwent a 3-h 100 g OGTT during the 3rd trimester of gestation. Study B prospectively included 768 pregnant women tested in the 3rd trimester of gestation with a 75 g OGTT. Temperature was recorded every day at 09:00 h. Retrospective Study A: GDM prevalence differed significantly by season: winter = 28.1%, summer = 39.2%, spring = 32.4% and autumn = 32.4% ( P  < 0.0001). The odds ratio for being diagnosed with GDM was much higher during summer 1.65 (95% CI: 1.43-1.90), with spring and autumn following with 1.23 (95% CI: 1.08-1.39) compared to winter. Glucose levels during OGTT were measured: significantly increased blood glucose values were observed at 60, 120 and 180 min in summer, which remained significant after adjustment for age, gestational age, BMI, weight gain during pregnancy and blood pressure. Prospective Study B: At temperatures above 25°C, the average glucose 60-min and 120-min levels were increased. The relative risk for abnormal glucose values at 60 min, when the environmental temperature increased over 25°C, was 2.2 (1.5-3.3). GDM prevalence in Greece presents seasonal variation, with higher risk during summer due to post glucose load level variations. These variations could be attributed to differences in environmental temperature. © 2018 European Society of Endocrinology.

  12. Living on the edge: Daily, seasonal and annual body temperature patterns of Arabian oryx in Saudi Arabia.

    PubMed

    Streicher, S; Lutermann, H; Bennett, N C; Bertelsen, M F; Mohammed, O B; Manger, P R; Scantlebury, M; Ismael, K; Alagaili, A N

    2017-01-01

    Heterothermy, the ability to allow body temperature (Tb) to fluctuate, has been proposed as an adaptive mechanism that enables large ungulates to cope with the high environmental temperatures and lack of free water experienced in arid environments. By storing heat during the daytime and dissipating it during the night, arid-adapted ungulates may reduce evaporative water loss and conserve water. Adaptive heterothermy in large ungulates should be particularly pronounced in hot environments with severely limited access to free water. In the current study we investigated the effects of environmental temperature (ambient, Ta and soil, Ts) and water stress on the Tb of wild, free-ranging Arabian oryx (Oryx leucoryx) in two different sites in Saudi Arabia, Mahazat as-Sayd (MS) and Uruq Bani Ma'arid (UBM). Using implanted data loggers wet took continuous Tb readings every 10 minutes for an entire calendar year and determined the Tb amplitude as well as the heterothermy index (HI). Both differed significantly between sites but contrary to our expectations they were greater in MS despite its lower environmental temperatures and higher rainfall. This may be partially attributable to a higher activity in an unfamiliar environment for translocated animals in UBM. As expected Tb amplitude and HI were greatest during summer. Only minor sex differences were apparent that may be attributable to sex-specific investment into reproduction (e.g. male-male competition) during rut. Our results suggest that the degree of heterothermy is not only driven by extrinsic factors (e.g. environmental temperatures and water availability), but may also be affected by intrinsic factors (e.g. sex and/or behaviour).

  13. Living on the edge: Daily, seasonal and annual body temperature patterns of Arabian oryx in Saudi Arabia

    PubMed Central

    Lutermann, H.; Bennett, N. C.; Bertelsen, M. F.; Mohammed, O. B.; Manger, P. R.; Scantlebury, M.; Ismael, K.; Alagaili, A. N.

    2017-01-01

    Heterothermy, the ability to allow body temperature (Tb) to fluctuate, has been proposed as an adaptive mechanism that enables large ungulates to cope with the high environmental temperatures and lack of free water experienced in arid environments. By storing heat during the daytime and dissipating it during the night, arid-adapted ungulates may reduce evaporative water loss and conserve water. Adaptive heterothermy in large ungulates should be particularly pronounced in hot environments with severely limited access to free water. In the current study we investigated the effects of environmental temperature (ambient, Ta and soil, Ts) and water stress on the Tb of wild, free-ranging Arabian oryx (Oryx leucoryx) in two different sites in Saudi Arabia, Mahazat as-Sayd (MS) and Uruq Bani Ma’arid (UBM). Using implanted data loggers wet took continuous Tb readings every 10 minutes for an entire calendar year and determined the Tb amplitude as well as the heterothermy index (HI). Both differed significantly between sites but contrary to our expectations they were greater in MS despite its lower environmental temperatures and higher rainfall. This may be partially attributable to a higher activity in an unfamiliar environment for translocated animals in UBM. As expected Tb amplitude and HI were greatest during summer. Only minor sex differences were apparent that may be attributable to sex-specific investment into reproduction (e.g. male-male competition) during rut. Our results suggest that the degree of heterothermy is not only driven by extrinsic factors (e.g. environmental temperatures and water availability), but may also be affected by intrinsic factors (e.g. sex and/or behaviour). PMID:28854247

  14. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data.

    PubMed

    Yee, Susan Harrell; Barron, Mace G

    2010-02-01

    Coral reefs have experienced extensive mortality over the past few decades as a result of temperature-induced mass bleaching events. There is an increasing realization that other environmental factors, including water mixing, solar radiation, water depth, and water clarity, interact with temperature to either exacerbate bleaching or protect coral from mass bleaching. The relative contribution of these factors to variability in mass bleaching at a global scale has not been quantified, but can provide insights when making large-scale predictions of mass bleaching events. Using data from 708 bleaching surveys across the globe, a framework was developed to predict the probability of moderate or severe bleaching as a function of key environmental variables derived from global-scale remote-sensing data. The ability of models to explain spatial and temporal variability in mass bleaching events was quantified. Results indicated approximately 20% improved accuracy of predictions of bleaching when solar radiation and water mixing, in addition to elevated temperature, were incorporated into models, but predictive accuracy was variable among regions. Results provide insights into the effects of environmental parameters on bleaching at a global scale.

  15. Overview of Nepal's energy sources and environment

    NASA Astrophysics Data System (ADS)

    Sharma, C. K.

    In the Kathmandu Valley, Nepal faces environmental problems of most industrialized countries whereas it has problems similar to the least developed countries, in the hills. Types and quantity of energy use have a close link with the environmental degradation in Nepal Himalaya. Over dependence on the forest to meet the energy demand in the hills has aggravated the environmental problems. Lack of forest cover on the hills, the intense monsoon rain, the fragile geology and steep terrain are contributing to the acceleration of landslides, soil erosion and temperature rise. The rise of average minimum temperature is causing glaciers to retreat and thereby the development of large bodies of glacial lake. Glacial lake outbursts of 1981 in Kodari and of 1985 in Namche bazar area caused extensive damage on infrastructures down stream. Heavy use of commercial fuel (hydrocarbons) in the bowl shaped Kathmandu valley is causing air and water pollution and an increase in the average minimum temperature. Extensive development of hydropower, biogas plants and massive reforestation on naked hills and efficient use of imported hydrocarbons are the solution to existing energy and environmental problems.

  16. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY: Environmental... Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...

  17. Managing the Environment for Older Students.

    ERIC Educational Resources Information Center

    Gelwicks, Louis E.; Weinstock, Ruth

    1980-01-01

    The environmental adjustments required to make campuses responsive to the needs of older persons are seen as tending to fall in the realm of environmental management. Security, orientation, sight, sound, ambient temperature, seating, time, transportation, lounges, and campus residence halls are some environmental needs which are discussed. (MLW)

  18. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when integrated with advanced EBC top coats, showed promise to achieve 1500 C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and long-term durability.

  19. Restraint ulcers in the rat. 1: Influence on ulcer frequency of fasting and of environmental temperature associated with immobilization of varying durations

    NASA Technical Reports Server (NTRS)

    Buchel, L.; Gallaire, D.

    1980-01-01

    The results of the production of experimental ulcers in rats are described. Two experimental conditions were found to regularly provoke the appearance of gastric ulcers in a high percentage of rats: (1) two-and-a-half hour restraint, proceeded by a 24 hour fast; and (2) one-and-a-half hour restraint with lowering of the environmental temperature while fasting.

  20. Gas-film coefficients for the volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tal, D.Y.

    1986-01-01

    Gas-film coefficients for the volatilization of ethylene dibromide (EDB) and water were determined in the laboratory as a function of wind speed and temperature. The ratio of the coefficients was independent of wind speed and increased slightly with temperature. Use of this ratio with an environmentally determined gas-film coefficient for the evaporation of water permits determination of the gas-film coefficient for the volatilization of EDB from environmental waters.

  1. Ambient intelligence application based on environmental measurements performed with an assistant mobile robot.

    PubMed

    Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi

    2014-03-27

    This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.

  2. Predictions of avian Plasmodium expansion under climate change.

    PubMed

    Loiseau, Claire; Harrigan, Ryan J; Bichet, Coraline; Julliard, Romain; Garnier, Stéphane; Lendvai, Adám Z; Chastel, Olivier; Sorci, Gabriele

    2013-01-01

    Vector-borne diseases are particularly responsive to changing environmental conditions. Diurnal temperature variation has been identified as a particularly important factor for the development of malaria parasites within vectors. Here, we conducted a survey across France, screening populations of the house sparrow (Passer domesticus) for malaria (Plasmodium relictum). We investigated whether variation in remotely-sensed environmental variables accounted for the spatial variation observed in prevalence and parasitemia. While prevalence was highly correlated to diurnal temperature range and other measures of temperature variation, environmental conditions could not predict spatial variation in parasitemia. Based on our empirical data, we mapped malaria distribution under climate change scenarios and predicted that Plasmodium occurrence will spread to regions in northern France, and that prevalence levels are likely to increase in locations where transmission already occurs. Our findings, based on remote sensing tools coupled with empirical data suggest that climatic change will significantly alter transmission of malaria parasites.

  3. Ambient Intelligence Application Based on Environmental Measurements Performed with an Assistant Mobile Robot

    PubMed Central

    Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi

    2014-01-01

    This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile. PMID:24681671

  4. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  5. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  6. Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Chambers, John; Rohrback. Scott; Bly, Vincent; Morell, Armando; Budinoff, Jason

    2013-01-01

    This innovation is the environmental qualification of a single-crystal silicon mirror for spaceflight use. The single-crystal silicon mirror technology is a previous innovation, but until now, a mirror of this type has not been qualified for spaceflight use. The qualification steps included mounting, gravity change measurements, vibration testing, vibration- induced change measurements, thermal cycling, and testing at the cold operational temperature of 225 K. Typical mirrors used for cold applications for spaceflight instruments include aluminum, beryllium, glasses, and glass-like ceramics. These materials show less than ideal behavior after cooldown. Single-crystal silicon has been demonstrated to have the smallest change due to temperature change, but has not been spaceflight-qualified for use. The advantage of using a silicon substrate is with temperature stability, since it is formed from a stress-free single crystal. This has been shown in previous testing. Mounting and environmental qualification have not been shown until this testing.

  7. Dynamic temperature and humidity environmental profiles: impact for future emergency and disaster preparedness and response.

    PubMed

    Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J

    2014-02-01

    During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days not represented well primarily had continuously high humidity. Mean kinetic temperature was useful for severity ranking. Simulating temperature and humidity conditions clearly reveals operational challenges encountered during disasters and emergencies. Understanding of environmental stresses and MKT leads to insights regarding operational robustness necessary for safe and accurate use of POC devices and reagents. Rescue personnel should understand these principles before performing POC testing in adverse environments.

  8. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    NASA Astrophysics Data System (ADS)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  9. Circadian rhythm of body temperature in an ectotherm (Iguana iguana).

    PubMed

    Tosini, G; Menaker, M

    1995-09-01

    Ectothermic animals regulate their body temperatures primarily by behavioral adjustment in relation to the thermal characteristics of the environment. Several studies have shown that some vertebrate ectotherms may show a daily pattern of body temperature selection when given a choice of environmental temperature. The pattern of body temperature selection free-runs when the animals are kept in constant darkness, demonstrating the existence of circadian regulation. To test whether there might also be a low amplitude circadian rhythm of body temperature itself, we examined the pattern of body temperature and locomotor activity of the lizard Iguana iguana held in a constant environmental temperature. Both variables were recorded for 3 days in a light:dark cycle and then for 10 days in constant dim light (0.1 lux). Under these conditions the body temperature of the lizard oscillates with a circadian period as does the locomotor behavior. These results demonstrate for the first time that ectothermic animals may display physiologically generated circadian rhythms of body temperature similar to those recorded in endotherms. In some animals the circadian rhythms of body temperature and locomotor activity showed different free-running periods, demonstrating that the body temperature rhythm was not caused by locomotor activity and suggesting internal desyncronization of the two rhythms.

  10. Environmental tests of metallization systems for terrestrial photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  11. Thermal and energetic constraints on ectotherm abundance: A global test using lizards

    USGS Publications Warehouse

    Buckley, L.B.; Rodda, G.H.; Jetz, W.

    2008-01-01

    Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales. ?? 2008 by the Ecological Society of America.

  12. Thermal and energetic constraints on ectotherm abundance: a global test using lizards.

    PubMed

    Buckley, Lauren B; Rodda, Gordon H; Jetz, Walter

    2008-01-01

    Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales.

  13. A Preliminary Investigation of Temperature Dependency of a Shape Memory Actuator with Time-Based Control in Aircraft Interiors

    NASA Astrophysics Data System (ADS)

    Otibar, Dennis; Weirich, Antonia; Kortenjann, Marcus; Kuhlenkötter, Bernd

    2017-06-01

    Shape memory alloys (SMA) possess an array of unique functional properties which are influenced by a complex interaction of different factors. Due to thermal sensitivity, slight changes in the environmental temperature may cause the properties to change significantly. This poses a huge challenge especially for the use of SMAs as actuators. The most common and elementary activation strategy of SMA actuators is based on the duration of activation and cooling with constant activation parameters. However, changing environmental influences cause the necessity to modify these parameters. This circumstance needs to be especially considered in the design process of actuator controls. This paper focuses on investigating the influence of environmental temperature changes on time-based activated SMA actuators. The results of the described experiments form the base for designing reactive control strategies for SMA actuators used in alternating environments. An example for application fields with changing environments and particularly changing temperatures are aircraft related implementations. This area also stands to benefit from the actuators’ advantages in ecological efficiency.

  14. Co-Gradient Variation in Growth Rate and Development Time of a Broadly Distributed Butterfly

    PubMed Central

    Barton, Madeleine; Sunnucks, Paul; Norgate, Melanie; Murray, Neil; Kearney, Michael

    2014-01-01

    Widespread species often show geographic variation in thermally-sensitive traits, providing insight into how species respond to shifts in temperature through time. Such patterns may arise from phenotypic plasticity, genetic adaptation, or their interaction. In some cases, the effects of genotype and temperature may act together to reduce, or to exacerbate, phenotypic variation in fitness-related traits across varying thermal environments. We find evidence for such interactions in life-history traits of Heteronympha merope, a butterfly distributed across a broad latitudinal gradient in south-eastern Australia. We show that body size in this butterfly is negatively related to developmental temperature in the laboratory, in accordance with the temperature-size rule, but not in the field, despite very strong temperature gradients. A common garden experiment on larval thermal responses, spanning the environmental extremes of H. merope's distribution, revealed that butterflies from low latitude (warmer climate) populations have relatively fast intrinsic growth and development rates compared to those from cooler climates. These synergistic effects of genotype and temperature across the landscape (co-gradient variation) are likely to accentuate phenotypic variation in these traits, and this interaction must be accounted for when predicting how H. merope will respond to temperature change through time. These results highlight the importance of understanding how variation in life-history traits may arise in response to environmental change. Without this knowledge, we may fail to detect whether organisms are tracking environmental change, and if they are, whether it is by plasticity, adaptation or both. PMID:24743771

  15. Climate change and pollution speed declines in zebrafish populations.

    PubMed

    Brown, A Ross; Owen, Stewart F; Peters, James; Zhang, Yong; Soffker, Marta; Paull, Gregory C; Hosken, David J; Wahab, M Abdul; Tyler, Charles R

    2015-03-17

    Endocrine disrupting chemicals (EDCs) are potent environmental contaminants, and their effects on wildlife populations could be exacerbated by climate change, especially in species with environmental sex determination. Endangered species may be particularly at risk because inbreeding depression and stochastic fluctuations in male and female numbers are often observed in the small populations that typify these taxa. Here, we assessed the interactive effects of water temperature and EDC exposure on sexual development and population viability of inbred and outbred zebrafish (Danio rerio). Water temperatures adopted were 28 °C (current ambient mean spawning temperature) and 33 °C (projected for the year 2100). The EDC selected was clotrimazole (at 2 μg/L and 10 μg/L), a widely used antifungal chemical that inhibits a key steroidogenic enzyme [cytochrome P450(CYP19) aromatase] required for estrogen synthesis in vertebrates. Elevated water temperature and clotrimazole exposure independently induced male-skewed sex ratios, and the effects of clotrimazole were greater at the higher temperature. Male sex ratio skews also occurred for the lower clotrimazole exposure concentration at the higher water temperature in inbred fish but not in outbred fish. Population viability analysis showed that population growth rates declined sharply in response to male skews and declines for inbred populations occurred at lower male skews than for outbred populations. These results indicate that elevated temperature associated with climate change can amplify the effects of EDCs and these effects are likely to be most acute in small, inbred populations exhibiting environmental sex determination and/or differentiation.

  16. Zebrafish take their cue from temperature but not photoperiod for the seasonal plasticity of thermal performance.

    PubMed

    Condon, Catriona H; Chenoweth, Stephen F; Wilson, Robbie S

    2010-11-01

    Organisms adjust to seasonal variability in the environment by responding to cues that indicate environmental change. As most studies of seasonal phenotypic plasticity test only the effect of a single environmental cue, how animals may integrate information from multiple cues to fine-tune plastic responses remains largely unknown. We examined the interaction between correlated (seasonally matching) and conflicting (seasonally opposite) temperature and photoperiod cues on the acclimation of performance traits in male zebrafish, Danio rerio. We acclimated fish for 8 weeks and then tested the change in thermal dependence of maximum burst swimming and feeding rate between 8 and 38°C. We predicted that correlated environmental cues should induce a greater acclimation response than uncorrelated cues. However, we found that only temperature was important for the seasonal acclimation of performance traits in zebrafish. Thermal acclimation shifted the thermal performance curve of both traits. For maximum burst swimming, performance increased for each group near the acclimation temperature and reduced in environments that were far from their acclimation temperature. The feeding rate of cold-acclimated zebrafish was reduced across the test temperature range compared with that of warm-acclimated fish. Our study is the first that has found no effect of the covariation between temperature and photoperiod acclimation cues on locomotor performance in fishes. Our results support the intuitive idea that photoperiod may be a less important seasonal cue for animals living at lower latitudes.

  17. The effects of body thermal state on manual performance.

    DOT National Transportation Integrated Search

    1968-05-01

    Thirty-six young men were exposed for 2 hours to environmental temperatures of 10, 26.7, or 46C. Measurements of rectal and skin temperature, heart rate and respiratory rate were made, and average skin and average body temperatures were calculated. M...

  18. Temporal variation in temperature determines disease spread and maintenance in Paramecium microcosm populations

    PubMed Central

    Duncan, Alison B.; Fellous, Simon; Kaltz, Oliver

    2011-01-01

    The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host–parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range. PMID:21450730

  19. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  20. Legume-rhizobia signal exchange: promiscuity and environmental effects.

    PubMed

    Lira, Mario A; Nascimento, Luciana R S; Fracetto, Giselle G M

    2015-01-01

    Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.

  1. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus.

    PubMed

    Sheth, Seema N; Angert, Amy L

    2014-10-01

    The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. Identification and compensation of the temperature influences in a miniature three-axial accelerometer based on the least squares method

    NASA Astrophysics Data System (ADS)

    Grigorie, Teodor Lucian; Corcau, Ileana Jenica; Tudosie, Alexandru Nicolae

    2017-06-01

    The paper presents a way to obtain an intelligent miniaturized three-axial accelerometric sensor, based on the on-line estimation and compensation of the sensor errors generated by the environmental temperature variation. Taking into account that this error's value is a strongly nonlinear complex function of the values of environmental temperature and of the acceleration exciting the sensor, its correction may not be done off-line and it requires the presence of an additional temperature sensor. The proposed identification methodology for the error model is based on the least square method which process off-line the numerical values obtained from the accelerometer experimental testing for different values of acceleration applied to its axes of sensitivity and for different values of operating temperature. A final analysis of the error level after the compensation highlights the best variant for the matrix in the error model. In the sections of the paper are shown the results of the experimental testing of the accelerometer on all the three sensitivity axes, the identification of the error models on each axis by using the least square method, and the validation of the obtained models with experimental values. For all of the three detection channels was obtained a reduction by almost two orders of magnitude of the acceleration absolute maximum error due to environmental temperature variation.

  3. Thermal physiology of Amazonian lizards (Reptilia: Squamata)

    PubMed Central

    Caetano, Gabriel H. O.; Pontes, Emerson; Ávila-Pires, Teresa C. S.

    2018-01-01

    We summarize thermal-biology data of 69 species of Amazonian lizards, including mode of thermoregulation and field-active body temperatures (Tb). We also provide new data on preferred temperatures (Tpref), voluntary and thermal-tolerance ranges, and thermal-performance curves (TPC’s) for 27 species from nine sites in the Brazilian Amazonia. We tested for phylogenetic signal and pairwise correlations among thermal traits. We found that species generally categorized as thermoregulators have the highest mean values for all thermal traits, and broader ranges for Tb, critical thermal maximum (CTmax) and optimal (Topt) temperatures. Species generally categorized as thermoconformers have large ranges for Tpref, critical thermal minimum (CTmin), and minimum voluntary (VTmin) temperatures for performance. Despite these differences, our results show that all thermal characteristics overlap between both groups and suggest that Amazonian lizards do not fit into discrete thermoregulatory categories. The traits are all correlated, with the exceptions of (1) Topt, which does not correlate with CTmax, and (2) CTmin, and correlates only with Topt. Weak phylogenetic signals for Tb, Tpref and VTmin indicate that these characters may be shaped by local environmental conditions and influenced by phylogeny. We found that open-habitat species perform well under present environmental conditions, without experiencing detectable thermal stress from high environmental temperatures induced in lab experiments. For forest-dwelling lizards, we expect warming trends in Amazonia to induce thermal stress, as temperatures surpass the thermal tolerances for these species. PMID:29513695

  4. Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays.

    PubMed

    Lo, Miranda; Bulach, Dieter M; Powell, David R; Haake, David A; Matsunaga, James; Paustian, Michael L; Zuerner, Richard L; Adler, Ben

    2006-10-01

    Leptospirosis is an important zoonosis of worldwide distribution. Humans become infected via exposure to pathogenic Leptospira spp. from infected animals or contaminated water or soil. The availability of genome sequences for Leptospira interrogans, serovars Lai and Copenhageni, has opened up opportunities to examine global transcription profiles using microarray technology. Temperature is a key environmental factor known to affect leptospiral protein expression. Leptospira spp. can grow in artificial media at a range of temperatures reflecting conditions found in the environment and the mammalian host. Therefore, transcriptional changes were compared between cultures grown at 20 degrees C, 30 degrees C, 37 degrees C, and 39 degrees C to represent ambient temperatures in the environment, growth under laboratory conditions, and temperatures in healthy and febrile hosts. Data from direct pairwise comparisons of the four temperatures were consolidated to examine transcriptional changes at two generalized biological conditions representing mammalian physiological temperatures (37 degrees C and 39 degrees C) versus environmental temperatures (20 degrees C and 30 degrees C). Additionally, cultures grown at 30 degrees C then shifted overnight to 37 degrees C were compared with those grown long-term at 30 degrees C and 37 degrees C to identify genes potentially expressed in the early stages of infection. Comparison of data sets from physiological versus environmental experiments with upshift experiments provided novel insights into possible transcriptional changes at different stages of infection. Changes included differential expression of chemotaxis and motility genes, signal transduction systems, and genes encoding proteins involved in alteration of the outer membrane. These findings indicate that temperature is an important factor regulating expression of proteins that facilitate invasion and establishment of disease.

  5. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions.

    PubMed

    Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo

    2017-02-10

    In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p < 0.05), which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  6. Environmental factors influencing the development of black leaf streak (Mycosphaerella fijiensis Morelet) on bananas in Puerto Rico.

    USDA-ARS?s Scientific Manuscript database

    The effects of environmental factors on the development of black leaf streak (BLS) were studied in Puerto Rico under field conditions. Environmental factors evaluated included temperature, relative humidity, rainfall and solar radiation. Their effect on BLS was determined by recording the youngest...

  7. 21 CFR 864.9575 - Environmental chamber for storage of platelet concentrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to hold platelet-rich plasma within a preselected temperature range. (b) Classification. Class II... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Environmental chamber for storage of platelet... Establishments That Manufacture Blood and Blood Products § 864.9575 Environmental chamber for storage of platelet...

  8. 21 CFR 864.9575 - Environmental chamber for storage of platelet concentrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to hold platelet-rich plasma within a preselected temperature range. (b) Classification. Class II... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Environmental chamber for storage of platelet... Establishments That Manufacture Blood and Blood Products § 864.9575 Environmental chamber for storage of platelet...

  9. 21 CFR 864.9575 - Environmental chamber for storage of platelet concentrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to hold platelet-rich plasma within a preselected temperature range. (b) Classification. Class II... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Environmental chamber for storage of platelet... Establishments That Manufacture Blood and Blood Products § 864.9575 Environmental chamber for storage of platelet...

  10. 21 CFR 864.9575 - Environmental chamber for storage of platelet concentrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to hold platelet-rich plasma within a preselected temperature range. (b) Classification. Class II... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Environmental chamber for storage of platelet... Establishments That Manufacture Blood and Blood Products § 864.9575 Environmental chamber for storage of platelet...

  11. 21 CFR 864.9575 - Environmental chamber for storage of platelet concentrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to hold platelet-rich plasma within a preselected temperature range. (b) Classification. Class II... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Environmental chamber for storage of platelet... Establishments That Manufacture Blood and Blood Products § 864.9575 Environmental chamber for storage of platelet...

  12. Is Climate Simulation in Growth Chambers Necessary?

    Treesearch

    Z.M. Wang; K.H. Johnsen; M.J. Lechowicz

    1999-01-01

    In the expression of their genetic potential as phenotypes, trees respond to environmental cues such as photoperiod, temperature and soil and atmospheric water. However, growth chamber experiments often utilize simple and standard environmental conditions that might not provide these important environmental signals. We conducted a study to compare seedling growth in...

  13. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment

    NASA Astrophysics Data System (ADS)

    Ubertini, Filippo; Comanducci, Gabriele; Cavalagli, Nicola; Laura Pisello, Anna; Luigi Materazzi, Annibale; Cotana, Franco

    2017-01-01

    Continuously identified natural frequencies of vibration can provide unique information for low-cost automated condition assessment of civil constructions and infrastructures. However, the effects of changes in environmental parameters, such as temperature and humidity, need to be effectively investigated and accurately removed from identified frequency data for an effective performance assessment. This task is particularly challenging in the case of historical constructions that are typically massive and heterogeneous masonry structures characterized by complex variations of materials' properties with varying environmental parameters and by a differential heat conduction process where thermal capacity plays a major role. While there is abundance of documented monitoring data highlighting correlations between environmental parameters and natural frequencies in the case of new structures, such as long-span bridges, similar studies for historical constructions are still missing, with only a few literature works occasionally reporting increments in natural frequencies with increasing temperature of construction materials due to the closure of internal micro-cracks in the mortar layers caused by thermal expansion. In order to gain some knowledge on the effects of changes in temperature and humidity on the natural frequencies of slender masonry buildings, the paper focuses on the case study of an Italian monumental bell tower that has been monitored by the authors for more than nine months. Correlations between natural frequencies and environmental parameters are investigated in detail and the predictive capabilities of linear statistical regressive models based on the use of several environmental continuous monitoring sensors are assessed. At the end, three basic mechanisms governing environmentally-induced changes in the dynamic behavior of the tower are identified and essential information is achieved on the optimal location and minimum number of environmental sensors that are necessary in a structural health monitoring perspective.

  14. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    DOEpatents

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  15. Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Lifshitz, J. M.

    1981-01-01

    Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented.

  16. Physiological mechanisms of thermoregulation in reptiles: a review.

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2005-11-01

    The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.

  17. Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment

    NASA Astrophysics Data System (ADS)

    De, Kalyan; Kumar, Davendra; Saxena, Vijay Kumar; Thirumurugan, Palanisamy; Naqvi, Syed Mohammed Khursheed

    2017-07-01

    High environmental temperature is a major constraint in sheep production under semi-arid tropical environment. Behavior is the earliest indicator of animal's adaptation and responses to the environmental alteration. Therefore, the objective of this study was to assess the effects of high ambient temperature on the behavior of sheep under a semi-arid tropical environment. The experiment was conducted for 6 weeks on 16 Malpura cross (Garole × Malpura × Malpura (GMM)) rams. The rams were divided equally into two groups, designated as C and T. The rams of C were kept in comfortable environmental conditions served as control. The rams of T were exposed to a different temperature at different hours of the day in a climatic chamber, to simulate a high environmental temperature of summer in semi-arid tropic. The behavioral observations were taken by direct instantaneous observation at 15-min intervals for each animal individually. The feeding, ruminating, standing, and lying behaviors were recorded twice a week from morning (0800 hours) to afternoon (1700 hours) for 6 weeks. Exposure of rams to high temperature (T) significantly ( P < 0.05) decreased the proportion of time spent in feeding during the observation period in most of the hours of the day as compared to the C. The proportion of time spent in rumination and lying was significantly ( P < 0.05) lower in the T group compared to the C. The animals of T spent significantly ( P < 0.05) more time in rumination in standing position as compared to the C. The overall proportion of time spent in standing, panting in each hour, and total panting time was significantly ( P < 0.05) higher in the T as compared to the C. The result of the study indicates that the exposure of sheep to high ambient temperature severely modulates the behavior of sheep which is directed to circumvent the effect of the stressor.

  18. Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment.

    PubMed

    De, Kalyan; Kumar, Davendra; Saxena, Vijay Kumar; Thirumurugan, Palanisamy; Naqvi, Syed Mohammed Khursheed

    2017-07-01

    High environmental temperature is a major constraint in sheep production under semi-arid tropical environment. Behavior is the earliest indicator of animal's adaptation and responses to the environmental alteration. Therefore, the objective of this study was to assess the effects of high ambient temperature on the behavior of sheep under a semi-arid tropical environment. The experiment was conducted for 6 weeks on 16 Malpura cross (Garole × Malpura × Malpura (GMM)) rams. The rams were divided equally into two groups, designated as C and T. The rams of C were kept in comfortable environmental conditions served as control. The rams of T were exposed to a different temperature at different hours of the day in a climatic chamber, to simulate a high environmental temperature of summer in semi-arid tropic. The behavioral observations were taken by direct instantaneous observation at 15-min intervals for each animal individually. The feeding, ruminating, standing, and lying behaviors were recorded twice a week from morning (0800 hours) to afternoon (1700 hours) for 6 weeks. Exposure of rams to high temperature (T) significantly (P < 0.05) decreased the proportion of time spent in feeding during the observation period in most of the hours of the day as compared to the C. The proportion of time spent in rumination and lying was significantly (P < 0.05) lower in the T group compared to the C. The animals of T spent significantly (P < 0.05) more time in rumination in standing position as compared to the C. The overall proportion of time spent in standing, panting in each hour, and total panting time was significantly (P < 0.05) higher in the T as compared to the C. The result of the study indicates that the exposure of sheep to high ambient temperature severely modulates the behavior of sheep which is directed to circumvent the effect of the stressor.

  19. Effects of environmental variables on surface temperature of breeding adult female northern elephant seals, Mirounga angustirostris, and pups.

    PubMed

    Codde, Sarah A; Allen, Sarah G; Houser, Dorian S; Crocker, Daniel E

    2016-10-01

    Pinnipeds spend extended periods of time on shore during breeding, and some temperate species retreat to the water if exposed to high ambient temperatures. However, female northern elephant seals (Mirounga angustirostris) with pups generally avoid the water, presumably to minimize risks to pups or male harassment. Little is known about how ambient temperature affects thermoregulation of well insulated females while on shore. We used a thermographic camera to measure surface temperature (T s ) of 100 adult female elephant seals and their pups during the breeding season at Point Reyes National Seashore, yielding 782 thermograms. Environmental variables were measured by an onsite weather station. Environmental variables, especially solar radiation and ambient temperature, were the main determinants of mean and maximum T s of both females and pups. An average of 16% of the visible surface of both females and pups was used as thermal windows to facilitate heat loss and, for pups, this area increased with solar radiation. Thermal window area of females increased with mean T s until approximately 26°C and then declined. The T s of both age classes were warmer than ambient temperature and had a large thermal gradient with the environment (female mean 11.2±0.2°C; pup mean 14.2±0.2°C). This large gradient suggests that circulatory adjustments to bypass blubber layers were sufficient to allow seals to dissipate heat under most environmental conditions. We observed the previously undescribed behavior of females and pups in the water and determined that solar radiation affected this behavior. This may have been possible due to the calm waters at the study site, which reduced the risk of neonates drowning. These results may predict important breeding habitat features for elephant seals as solar radiation and ambient temperatures change in response to changing climate. Published by Elsevier Ltd.

  20. Prolonged self-paced exercise in the heat – environmental factors affecting performance

    PubMed Central

    Junge, Nicklas; Jørgensen, Rasmus; Flouris, Andreas D.; Nybo, Lars

    2016-01-01

    ABSTRACT In this review we examine how self-paced performance is affected by environmental heat stress factors during cycling time trial performance as well as considering the effects of exercise mode and heat acclimatization. Mean power output during prolonged cycling time trials in the heat (≥30°C) was on average reduced by 15% in the 14 studies that fulfilled the inclusion criteria. Ambient temperature per se was a poor predictor of the integrated environmental heat stress and 2 of the prevailing heat stress indices (WBGT and UTCI) failed to predict the environmental influence on performance. The weighing of wind speed appears to be too low for predicting the effect for cycling in trained acclimatized subjects, where performance may be maintained in outdoor time trials at ambient temperatures as high as 36°C (36°C UTCI; 28°C WBGT). Power output during indoor trials may also be maintained with temperatures up to at least 27°C when humidity is modest and wind speed matches the movement speed generated during outdoor cycling, whereas marked reductions are observed when air movement is minimal. For running, representing an exercise mode with lower movement speed and higher heat production for a given metabolic rate, it appears that endurance is affected even at much lower ambient temperatures. On this basis we conclude that environmental heat stress impacts self-paced endurance performance. However, the effect is markedly modified by acclimatization status and exercise mode, as the wind generated by the exercise (movement speed) or the environment (natural or fan air movement) exerts a strong influence. PMID:28090557

  1. Plasticity of crassulacean acid metabolism at subtropical latitudes: a pineapple case study.

    PubMed

    Rainha, Nuno; Medeiros, Violante P; Câmara, Mariana; Faustino, Hélder; Leite, João P; Barreto, Maria do Carmo; Cruz, Cristina; Pacheco, Carlos A; Ponte, Duarte; Bernardes da Silva, Anabela

    2016-01-01

    Plants with the crassulacean acid metabolism (CAM) express high-metabolic plasticity, to adjust to environmental stresses. This article hypothesizes that irradiance and nocturnal temperatures are the major limitations for CAM at higher latitudes such as the Azores (37°45'N). Circadian CAM expression in Ananas comosus L. Merr. (pineapple) was assessed by the diurnal pattern of leaf carbon fixation into l-malate at the solstices and equinoxes, and confirmed by determining maximal phosphoenolpyruvate carboxylase (PEPC) activity in plant material. Metabolic adjustments to environmental conditions were confirmed by gas exchange measurements, and integrated with environmental data to determine CAM's limiting factors: light and temperature. CAM plasticity was observed at the equinoxes, under similar photoperiods, but different environmental conditions. In spring, CAM expression was similar between vegetative and flowering plants, while in autumn, flowering (before anthesis) and fructifying (with fully developed fruit before ripening) plants accumulated more l-malate. Below 100 µmol m(-2) s(-1) , CAM phase I was extended, reducing CAM phase III during the day. Carbon fixation inhibition may occur by two major pathways: nocturnal temperature (<15°C) inhibiting PEPC activity and l-malate accumulation; and low irradiance influencing the interplay between CAM phase I and III, affecting carboxylation and decarboxylation. Both have important consequences for plant development in autumn and winter. Observations were confirmed by flowering time prediction using environmental data, emphasizing that CAM expression had a strong seasonal regulation due to a complex network response to light and temperature, allowing pineapple to survive in environments not suitable for high productivity. © 2015 Scandinavian Plant Physiology Society.

  2. Impacts of meteorological and environmental factors on allergic rhinitis in children.

    PubMed

    He, Shan; Mou, Zhe; Peng, Li; Chen, Jie

    2017-05-01

    Meteorological and environmental factors influence the pathogenesis of allergic rhinitis (AR). An understanding of the risk factors will facilitate the development of diagnostic and preventative tools for AR children and improve their quality of life. However, research on the impact of these factors on subjective symptoms in AR children remains scarce. This study explored the relationships between subjective symptoms in pollen and dust mite positive AR children, and meteorological and environmental factors. Using a linear mixed effect model, we analyzed the correlations between monthly data on the subjective symptoms of 351 AR children (from the Shanghai Children's Medical Center) and meteorological and environmental factors during 2013. The monthly meteorological and environmental data were provided by the Shanghai Meteorological Service and Shanghai Environmental Protection Bureau. Temperature and humidity were negatively correlated with the subjective symptom score, with a 0.04 point increase observed for every 1 °C decrease in temperature (P < 0.0001) or 10 % decline in humidity (P = 0.0412). The particulate matter (PM) 10 and PM2.5 concentrations were positively correlated with the subjective symptom score, with a 10 μg/m 3 increase in PM10 and PM2.5 yielding a 0.02 (P = 0.0235) and 0.03 (P = 0.0281) increase in the subjective symptom score, respectively. In conclusion, meteorological and environmental factors were correlated with subjective symptoms in AR children. Low temperatures, lower humidity, and high PM10 and PM2.5 concentrations aggravated subjective symptoms in AR children.

  3. Integrated Impacts of environmental factors on the degradation of fumigants

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yates, S. R.

    2007-12-01

    Volatilization of fumigants has been concerned as one of air pollution sources. Fumigants are used to control nematodes and soil-born pathogens for a pre-plant treatment to increase the production of high-cash crops. One of technologies to reduce the volatilization of fumigants to atmosphere is to enhance the degradation of fumigants in soil. Fumigant degradation is affected by environmental factors such as moisture content, temperature, initial concentration of injected fumigants, and soil properties. However, effects of each factor on the degradation were limitedly characterized and integrated Impacts from environmental factors has not been described yet. Degradation of 1,3- dichloropropene (1,3-D) was investigated in various condition of temperatures (20-60 °C), moisture contents (0 ¡V 30 %) and initial concentrations (0.6 ¡V 60 mg/kg) with Arlington sandy loam soil. Abiotic and biotic degradation processes were distinguished using two sterilization methods with HgCl2 and autoclave and impacts of environmental factors were separately assessed for abiotic and biotic degradations. Initially, degradation rates (k) of cis and trans 1,3-D isomers were estimated by first-order kinetics and modified depending on impacts from environmental factors. Arrhenius equation and Walker¡¦s equation which were conventionally used to describe temperature and moisture effects on degradation were assessed for integrated impacts from environmental factors and logarithmical correlation was observed between initial concentrations of applied fumigants and degradation rates. Understanding integrated impacts of environmental factors on degradation will help to design more effective emission reduction schemes in various conditions and provide more practical parameters for modeling simulations.

  4. Quantifying environmental limiting factors on tree cover using geospatial data.

    PubMed

    Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L

    2015-01-01

    Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.

  5. The Analysis and Modeling of Phase Stability and Multiphase Designs in High Temperature Refractory Metal-Silicon-Boron Alloys

    DTIC Science & Technology

    2009-01-27

    high temperature mechanical properties , it was confirmed that the three phase eutectic structure exhibited exceptionally high strength and creep...microstructurc constituent, offer an attractive property balance of high melting temperature, oxidation resistance and useful high temperature mechanical ...design of new multiphase high-temperature alloys with balanced environmental and mechanical properties . 15. SUBJECT TERMS Phase Stability, Alloying

  6. Temporal and spatial variation in temperature experienced by macrofauna at Main Endeavour hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Lee, Raymond W.; Robert, Katleen; Matabos, Marjolaine; Bates, Amanda E.; Juniper, S. Kim

    2015-12-01

    A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10-12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays ranged from 4.1 to 11.0 °C during the deployment, indicating that on an hourly timescale the temperature conditions in this tubeworm community were fairly moderate and stable. The generality of these findings and behavioral responses of vent organisms to predictable rhythmicity and non-periodic temperature shifts are areas for further investigation.

  7. A Temperature-Monitoring Vaginal Ring for Measuring Adherence

    PubMed Central

    Boyd, Peter; Desjardins, Delphine; Kumar, Sandeep; Fetherston, Susan M.; Le-Grand, Roger; Dereuddre-Bosquet, Nathalie; Helgadóttir, Berglind; Bjarnason, Ásgeir; Narasimhan, Manjula; Malcolm, R. Karl

    2015-01-01

    Background Product adherence is a pivotal issue in the development of effective vaginal microbicides to reduce sexual transmission of HIV. To date, the six Phase III studies of vaginal gel products have relied primarily on self-reporting of adherence. Accurate and reliable methods for monitoring user adherence to microbicide-releasing vaginal rings have yet to be established. Methods A silicone elastomer vaginal ring prototype containing an embedded, miniature temperature logger has been developed and tested in vitro and in cynomolgus macaques for its potential to continuously monitor environmental temperature and accurately determine episodes of ring insertion and removal. Results In vitro studies demonstrated that DST nano-T temperature loggers encapsulated in medical grade silicone elastomer were able to accurately and continuously measure environmental temperature. The devices responded quickly to temperature changes despite being embedded in different thickness of silicone elastomer. Prototype vaginal rings measured higher temperatures compared with a subcutaneously implanted device, showed high sensitivity to diurnal fluctuations in vaginal temperature, and accurately detected periods of ring removal when tested in macaques. Conclusions Vaginal rings containing embedded temperature loggers may be useful in the assessment of product adherence in late-stage clinical trials. PMID:25965956

  8. Temperature dependence of the multistability of lactose utilization network of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    Biological systems are capable of producing multiple states out of a single set of inputs. Multistability acts like a biological switch that allows organisms to respond differently to different environmental conditions and hence plays an important role in adaptation to changing environment. One of the widely studied gene regulatory networks underlying the metabolism of bacteria is the lactose utilization network, which exhibits a multistable behavior as a function of lactose concentration. We have studied the effect of temperature on multistability of the lactose utilization network at various concentrations of thio-methylgalactoside (TMG), a synthetic lactose. We find that while the lactose utilization network exhibits a bistable behavior for temperature T >20° C , a graded response arises for temperature T <=20° C. Furthermore, we construct a phase diagram of the graded and bistable response of lactose utilization network as a function of temperature and TMG concentration. Our results suggest that environmental conditions, in this case temperature, can alter the nature of cellular regulation of metabolism.

  9. Effect of High Temperature Storage in Vacuum, Air, and Humid Conditions on Degradation of Gold/Aluminum Wire Bonds in PEMs

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.

  10. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope.

    PubMed

    Neděla, Vilém; Tihlaříková, Eva; Hřib, Jiří

    2015-01-01

    The use of non-standard low-temperature conditions in environmental scanning electron microscopy might be promising for the observation of coniferous tissues in their native state. This study is aimed to analyse and evaluate the method based on the principle of low-temperature sample stabilization. We demonstrate that the upper mucous layer is sublimed and a microstructure of the sample surface can be observed with higher resolution at lower gas pressure conditions, thanks to a low-temperature method. An influence of the low-temperature method on sample stability was also studied. The results indicate that high-moisture conditions are not suitable for this method and often cause the collapse of samples. The potential improvement of stability to beam damage has been demonstrated by long-time observation at different operation parameters. We finally show high applicability of the low-temperature method on different types of conifers and Oxalis acetosella. © 2014 Wiley Periodicals, Inc.

  11. A Random Walk in the Park: An Individual-Based Null Model for Behavioral Thermoregulation.

    PubMed

    Vickers, Mathew; Schwarzkopf, Lin

    2016-04-01

    Behavioral thermoregulators leverage environmental temperature to control their body temperature. Habitat thermal quality therefore dictates the difficulty and necessity of precise thermoregulation, and the quality of behavioral thermoregulation in turn impacts organism fitness via the thermal dependence of performance. Comparing the body temperature of a thermoregulator with a null (non-thermoregulating) model allows us to estimate habitat thermal quality and the effect of behavioral thermoregulation on body temperature. We define a null model for behavioral thermoregulation that is a random walk in a temporally and spatially explicit thermal landscape. Predicted body temperature is also integrated through time, so recent body temperature history, environmental temperature, and movement influence current body temperature; there is no particular reliance on an organism's equilibrium temperature. We develop a metric called thermal benefit that equates body temperature to thermally dependent performance as a proxy for fitness. We measure thermal quality of two distinct tropical habitats as a temporally dynamic distribution that is an ergodic property of many random walks, and we compare it with the thermal benefit of real lizards in both habitats. Our simple model focuses on transient body temperature; as such, using it we observe such subtleties as shifts in the thermoregulatory effort and investment of lizards throughout the day, from thermoregulators to thermoconformers.

  12. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk.

    PubMed

    Beck-Johnson, Lindsay M; Nelson, William A; Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B; Bjørnstad, Ottar N

    2017-03-01

    Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population's capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk.

  13. Inter-annual dynamics of the Barents Sea red king crab (Paralithodes camtschaticus) stock indices in relation to environmental factors

    NASA Astrophysics Data System (ADS)

    Dvoretsky, Alexander G.; Dvoretsky, Vladimir G.

    2016-12-01

    Knowledge of relationships between environmental variables and biological processes can greatly improve fisheries assessment and management in commercially important species. We analyzed the effects of environmental factors (climatic indices and water temperature) on the stock characteristics (total population number, number of pre-recruits and number of legal males) of the red king crab (Paralithodes camtschaticus), an introduced species in the Barents Sea. Stock trends in red king crab appear to be related to decadal climate shifts. Abundances were negatively related to the North Atlantic Oscillation index (NAO) in August and positively related to water temperature in late winter-early summer. Total and commercial stock abundance were negatively correlated with the lag-1 Arctic Oscillation index (AO) in August and the lag-2 winter NAO index. The total number of P. camtschaticus was most strongly associated with water temperature in spring and summer and NAO/AO indices in April and May. Lagged NAO indices in February and August (9 or 10 yr) had a positive relationship to the commercial stock of P. camtschaticus. These findings suggest that temperature conditions of current and previous year affect natural mortality of larvae and juvenile red king crabs. Warmer temperature conditions lead to increased biomass of red king crab food items. Negative correlations between climatic indices and the red king crab stocks may be associated with predator pressure on juvenile red king crabs or higher mortality because of predator or parasite pressure and diseases. The associations between stock indices and environmental variables could help better predict recruitment patterns of P. camtschaticus.

  14. Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    Engel, Joshua Allen

    2017-01-01

    The Environmental Control System provides a controlled air purge to Orion and SLS. The ECS performs this function by processing 100% ambient air while simultaneously controlling temperature, pressure, humidity, cleanliness and purge distribution.

  15. Fabrication and Qualification of Coated Chip-on-Board Technology for Miniaturized Space Systems

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Le, B. Q.; Nhan, E.; Lew, A. L.; Darrin, M. Ann Garrison

    1997-01-01

    The results of a study carried out in order to manufacture and verify the quality of chip-on-board (COB) packaging technology are presented. The COB, designed for space applications, was tested under environmental stresses, temperature cycling, and temperature-humidity-bias. Both robustness in space applications and in environmental protection on the ground-complete reliability without hermeticity were searched for. The epoxy-parylene combinations proved to be superior to other materials tested.

  16. Mesocosms of aquatic bacterial communities from the Cuatro Cienegas Basin (Mexico): a tool to test bacterial community response to environmental stress.

    PubMed

    Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria

    2012-08-01

    Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.

  17. Proteome Analysis of Borrelia burgdorferi Response to Environmental Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Thomas E.; Luft, Benjamin J.; Yang, Xiaohua

    2010-11-02

    We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism’s life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis.more » We identified 1031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals.« less

  18. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    PubMed Central

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-01-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998

  19. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    PubMed

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid inconsistent antifungal activity, bacteria evaluated for use in chytridiomycosis biocontrol should be tested over a range of environmental temperatures spanning those likely to be encountered in the field.

  20. Bill Sekulic | NREL

    Science.gov Websites

    ;Back-of-Module Temperature Measurement Methods." Solar Pro, 4.6, Nov/Dec 2014; NREL/JA-5200-52213 -temperature-measurement-methods. Sekulic, B. 2004. DC Current Transducer Environmental Drift Test (Technical

  1. Special Issue: Response of Microbial Communities to Environmental Changes.

    PubMed

    Stingl, Ulrich

    2018-03-30

    Environmental issues such as eutrophication, ocean acidification, sea level rise, saltwater intrusion, increase in carbon dioxide levels, or rise of average global temperatures, among many others, are impacting and changing whole ecosystems [...].

  2. High temperature impact on fatigue life of asphalt mixture in Slovakia

    NASA Astrophysics Data System (ADS)

    Mandula, Ján; Olexa, Tomáš

    2017-09-01

    Temperature dependence of materials bonded with bitumen is a well-known fact. The impact of temperature changes the behaviour of asphalt mixtures from elastic to viscous state, and it also influences the complex modulus, phase angle and other properties of asphalt mixtures. This study observed the summer temperature influence on fatigue behaviour of an asphalt mixture for the surface course of roads in conditions of Slovakia. Measurements were made using the four-point bending method on the asphalt mixture with maximum grain size of 11 mm bonded with polymer modified bitumen. Summer conditions were represented by environmental temperature of 27 °C according to the Slovakian pavement design method. Ordinary temperatures for fatigue measurements are 10 °C, 15 °C and 20 °C according to European standards for asphalt mixture testing. Structural changes in the material were observed by dissipation energy calculations for each loading cycle. The aim of the study was to find out if the influence of high environmental temperature is positive or negative for the lifespan of asphalt mixtures.

  3. Decreasing the exhaust outlet temperatures on a class III bus with the lowest impact on the exhaust backpressure and the fuel consumption

    NASA Astrophysics Data System (ADS)

    Aslan, E.; Ozturk, Y.; Dileroglu, S.

    2017-07-01

    The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.

  4. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  5. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  6. Temperature is better than precipitation as a predictor of plant community assembly across a dryland region

    USGS Publications Warehouse

    Butterfield, Bradley J.; Munson, Seth M.

    2016-01-01

    QuestionHow closely do plant communities track climate? Research suggests that plant species converge toward similar environmental tolerances relative to the environments that they experience. Whether these patterns apply to severe environments or scale up to plant community-level patterns of relative climatic tolerances is poorly understood. Using estimates of species' climatic tolerances acquired from occurrence records, we determined the contributions of individual species' climatic niche breadths and environmental filtering to the relationships between community-average climatic tolerances and the local climates experienced by those communities.LocationSouthwestern United States drylands.MethodsInterspecific variation in niche breadth was assessed as a function of species' climatic optima (median climatic niche value). The relationships between climatic optima and tolerances were used as null expectations for the relationship between abundance-weighted mean climatic tolerances of communities and the local climate of that community. Deviations from this null expectation indicate that species with greater or lesser climatic tolerances are favoured relative to co-occurring species. The intensity of environmental filtering was estimated by comparing the range of climatic tolerances within each community to a null distribution generated from a random assembly algorithm.ResultsThe temperature niches of species were consistently symmetrical and of similar breadths, regardless of their temperature optima. In contrast, precipitation niches were skewed toward wetter conditions, and niche breadth increased with increasing precipitation optima. At the community level, relationships with climate were much stronger for temperature than for precipitation. Furthermore, cold and heat were stronger assembly filters than drought or precipitation, with the intensity of environmental filtering increasing at both ends of climatic gradients. Community-average climatic tolerances did deviate significantly from null expectations, indicating that species with higher or lower relative climatic tolerances were favoured under certain conditions.ConclusionsDespite strong water limitation of plant performance in dryland ecosystems, communities tracked variation in temperature much more closely, intimating strong responses to anticipated temperature increases. Furthermore, abundance distributions were biased toward species with higher or lower relative climatic tolerances under different climatic conditions, but predictably so, indicating the need for assembly models that include processes other than simple environmental filtering.

  7. Elemental Markers in Elasmobranchs: Effects of Environmental History and Growth on Vertebral Chemistry

    PubMed Central

    Smith, Wade D.; Miller, Jessica A.; Heppell, Selina S.

    2013-01-01

    Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These results support the assumption that vertebral elemental composition reflects the environmental conditions during deposition and validates the use of vertebral elemental signatures as natural markers in an elasmobranch. Vertebral elemental analysis is a promising tool for the study of elasmobranch population structure, movement, and habitat use. PMID:24098320

  8. Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.

    2011-03-01

    SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.

  9. Elemental markers in elasmobranchs: effects of environmental history and growth on vertebral chemistry.

    PubMed

    Smith, Wade D; Miller, Jessica A; Heppell, Selina S

    2013-01-01

    Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These results support the assumption that vertebral elemental composition reflects the environmental conditions during deposition and validates the use of vertebral elemental signatures as natural markers in an elasmobranch. Vertebral elemental analysis is a promising tool for the study of elasmobranch population structure, movement, and habitat use.

  10. Environmental factors that influence the location of crop agriculture in the conterminous United States

    USGS Publications Warehouse

    Baker, Nancy T.; Capel, Paul D.

    2011-01-01

    Most crops are grown on land with shallow slope where the temperature, precipitation, and soils are favorable. In areas that are too steep, wet, or dry, landscapes have been modified to allow cultivation. Some of the limitations of the environmental factors that determine the location of agriculture can be overcome through modifications, but others cannot. On a larger-than-field scale, agricultural modifications commonly influence water availability through irrigation and (or) drainage and soil fertility and (or) organic-matter content through amendments such as manure, commercial fertilizer and lime. In general, it is not feasible to modify the other environmental factors, soil texture, soil depth, soil mineralogy, temperature, and terrain at large scales.

  11. In situ assay of nitrate reductase activity using portable water bath

    Treesearch

    Adam Rajsz; Bronisław Wojtuń; Andrzej Bytnerowicz

    2017-01-01

    In environmental research (i.e., plant ecophysiology, environmental microbiology, and environmental chemistry), some assays require incubation of samples at controlled temperature and darkness. Until now, due to a lack of equipment providing such possibility in situ, researchers had to move collected samples to the laboratory for incubation. Obviously, a delayed...

  12. Estimating past precipitation and temperature from fossil ostracodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.J.; Forester, R.M.

    1994-12-31

    The fossil records of certain aquatic organisms provide a way of obtaining meaningful estimates of past temperature and precipitation. These estimates of past environmental conditions are derived from multivariate statistical methods that are in turn based on the modern biogeographic distributions and environmental tolerances of the biota of interest. These estimates are helpful in conducting slimate studies as part of the Yucca Mountain site characterization. Ostracodes are microscopic crustaceans that produce bivalved calcite shells which are easily fossilized in the sediments of the lakes and wetlands in which the animals lived. The modern biogeographic distribution and environmental conditions of livingmore » ostracodes are the basis for the interpretation of the past environmental conditions of the fossil ostracodes. The major assumption in this method of interpretation is that the environmental tolerances of ostracodes have not changed substantially over thousands of years. Two methods using these modern analogs to determine past environmental conditions are the modern analog method and the range method. The range method also considers the information provided by fossil ostracode assemblages that have no modern analog in today`s world.« less

  13. Appraisal of Environmental Influence on Radon Variability in 10 m deep Borehole at Ghuttu, Northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Arora, B.. R.; Choubey, V. M.; Barbosa, S. M.

    2009-04-01

    Wadia Institute of Himalayan Geology (WIHG) has recently established the first Indian Multi-Parametric Geophysical Observatory (MPGO) at Ghuttu (30.53 N, 78.74 E) in Garhwal Himalayas (Uttarakhand), India to study the earthquake precursors in integrated manner. Given the rationale and significance of this inter-disciplinary approach, the paper with the help of recorded radon time series shall illustrate the complex time variability that needs to be quantified in terms of influencing environmental factors before residual field can be used to search anticipated earthquake precursory signals. Monitoring of 222radon (Rn) is carried out using a gamma ray radon monitoring probe based on 1.5" x 1.5" NaI scintillation. Measurement of radon concentration at 15 min interval has been done at 10m depth in air column above the variable water level in a 68m deep borehole together with simultaneous recordings of ground water level and environmental variables such as atmospheric pressure, temperature, rain fall etc. Apart from strong seasonal cycle in Rn concentration, with high values in summer (July to September) and low values in the winter months (January to March), the most obvious feature in the time series is the distinct nature of daily variation pattern. Four types of daily variations observed are a) positive peaks, b) negative peaks and c) sinusoidal peaks and d) long intervals when daily variations are conspicuously absent, particularly in winter and rainy season. Examination and correlation with environmental factors has revealed that when surface atmospheric temperature is well below the water temperature in borehole (later is constant around 19oC in all seasons) temperature gradients are not conducive to set up the convection currents for the emanation of radon to surface, thus explaining the absence of daily variation in radon concentration in winter. During the rainy season, following continuous rainfalls, once the soil/rocks are saturated with water radon concentrations show fair stability. Long pauses in rainfall give jerky variability during rainy season with no clear pattern of daily variation. During rest of the seasons when surface temperature are always higher that water temperature, the nature of observed pattern can be reconciled in terms of the form and amplitude of daily progression in temperature gradient. An accurate description of the effect of environmental variables is essential if we to wish decipher information related to stress/strain accumulation.

  14. Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association.

    PubMed

    Franke, Frederik; Armitage, Sophie A O; Kutzer, Megan A M; Kurtz, Joachim; Scharsack, Jörn P

    2017-06-02

    Increasing temperatures are predicted to strongly impact host-parasite interactions, but empirical tests are rare. Host species that are naturally exposed to a broad temperature spectrum offer the possibility to investigate the effects of elevated temperatures on hosts and parasites. Using three-spined sticklebacks, Gasterosteus aculeatus L., and tapeworms, Schistocephalus solidus (Müller, 1776), originating from a cold and a warm water site of a volcanic lake, we subjected sympatric and allopatric host-parasite combinations to cold and warm conditions in a fully crossed design. We predicted that warm temperatures would promote the development of the parasites, while the hosts might benefit from cooler temperatures. We further expected adaptations to the local temperature and mutual adaptations of local host-parasite pairs. Overall, S. solidus parasites grew faster at warm temperatures and stickleback hosts at cold temperatures. On a finer scale, we observed that parasites were able to exploit their hosts more efficiently at the parasite's temperature of origin. In contrast, host tolerance towards parasite infection was higher when sticklebacks were infected with parasites at the parasite's 'foreign' temperature. Cold-origin sticklebacks tended to grow faster and parasite infection induced a stronger immune response. Our results suggest that increasing environmental temperatures promote the parasite rather than the host and that host tolerance is dependent on the interaction between parasite infection and temperature. Sticklebacks might use tolerance mechanisms towards parasite infection in combination with their high plasticity towards temperature changes to cope with increasing parasite infection pressures and rising temperatures.

  15. Does energy consumption contribute to environmental pollutants? Evidence from SAARC countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Irfan, Danish; Khan, Muhammad Mushtaq

    2014-05-01

    The objective of the study is to examine the causal relationship between energy consumption and environmental pollutants in selected South Asian Association for Regional Cooperation (SAARC) countries, namely, Bangladesh, India, Nepal, Pakistan, and Srilanka, over the period of 1975-2011. The results indicate that energy consumption acts as an important driver to increase environmental pollutants in SAARC countries. Granger causality runs from energy consumption to environmental pollutants, but not vice versa, except carbon dioxide (CO2) emissions in Nepal where there exists a bidirectional causality between CO2 and energy consumption. Methane emissions in Bangladesh, Pakistan, and Srilanka and extreme temperature in India and Srilanka do not Granger cause energy consumption via both routes, which holds neutrality hypothesis. Variance decomposition analysis shows that among all the environmental indicators, CO2 in Bangladesh and Nepal exerts the largest contribution to changes in electric power consumption. Average precipitation in India, methane emissions in Pakistan, and extreme temperature in Srilanka exert the largest contribution.

  16. Impact of Environmental Conditions on the Survival of Cryptosporidium and Giardia on Environmental Surfaces

    PubMed Central

    Alum, Absar; Absar, Isra M.; Asaad, Hamas; Rubino, Joseph R.; Ijaz, M. Khalid

    2014-01-01

    The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control. PMID:25045350

  17. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    PubMed

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Organismal climatology: analyzing environmental variability at scales relevant to physiological stress.

    PubMed

    Helmuth, Brian; Broitman, Bernardo R; Yamane, Lauren; Gilman, Sarah E; Mach, Katharine; Mislan, K A S; Denny, Mark W

    2010-03-15

    Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species' range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different from those that set limits today. We quantitatively examine a nine-year time series of temperature records relevant to the body temperatures of intertidal mussels as measured using biomimetic sensors. Specifically, we explore how a 'climatology' of body temperatures, as opposed to long-term records of habitat-level parameters such as air and water temperatures, can be used to extrapolate meaningful spatial and temporal patterns of physiological stress. Using different metrics that correspond to various aspects of physiological stress (seasonal means, cumulative temperature and the return time of extremes) we show that these potential environmental stressors do not always occur in synchrony with one another. Our analysis also shows that patterns of animal temperature are not well correlated with simple, commonly used metrics such as air temperature. Detailed physiological studies can provide guidance to predicting the effects of global climate change on natural ecosystems but only if we concomitantly record, archive and model environmental signals at appropriate scales.

  19. Interactive effects of temperature and glyphosate on the behavior of blue ridge two-lined salamanders (Eurycea wilderae).

    PubMed

    Gandhi, Jaina S; Cecala, Kristen K

    2016-09-01

    The objective of the present study was to evaluate the potential interactive effects of stream temperatures and environmentally relevant glyphosate-based herbicide concentrations on movement and antipredator behaviors of larval Eurycea wilderae (Blue Ridge two-lined salamander). Larval salamanders were exposed to 1 of 4 environmentally relevant glyphosate concentrations (0.00 µg acid equivalent [a.e.]/L, 0.73 µg a.e./L, 1.46 µg a.e./L, and 2.92 µg a.e./L) at either ambient (12 °C) or elevated (23 °C) water temperature. Behaviors observed included the exploration of a novel habitat, use of refuge, habitat selection relative to a potential predator, and burst movement distance. In the absence of glyphosate, temperature consistently affected movement and refuge-use behavior, with individuals moving longer distances more frequently and using refuge less at warm temperatures; however, when glyphosate was added, the authors observed inconsistent effects of temperature that may have resulted from differential toxicity at various temperatures. Larval salamanders made shorter, more frequent movements and demonstrated reduced burst distance at higher glyphosate concentrations. The authors also found that lower glyphosate concentrations sometimes had stronger effects than higher concentrations (i.e., nonmonotonic dose responses), suggesting that standard safety tests conducted only at higher glyphosate concentrations might overlook important sublethal effects on salamander behavior. These data demonstrate that sublethal effects of glyphosate-based herbicides on natural behaviors of amphibians can occur with short-term exposure to environmentally relevant concentrations. Environ Toxicol Chem 2016;35:2297-2303. © 2016 SETAC. © 2016 SETAC.

  20. Calibration Assessment of Uncooled Thermal Cameras for Deployment on UAV platforms

    NASA Astrophysics Data System (ADS)

    Aragon, B.; Parkes, S. D.; Lucieer, A.; Turner, D.; McCabe, M.

    2017-12-01

    In recent years an array of miniaturized sensors have been developed and deployed on Unmanned Aerial Vehicles (UAVs). Prior to gaining useful data from these integrations, it is vitally important to quantify sensor accuracy, precision and cross-sensitivity of retrieved measurements on environmental variables. Small uncooled thermal frame cameras provide a novel solution to monitoring surface temperatures from UAVs with very high spatial resolution, with retrievals being used to investigate heat stress or evapotranspiration. For these studies, accuracies of a few degrees are generally required. Although radiometrically calibrated thermal cameras have recently become commercially available, confirmation of the accuracy of these sensors is required. Here we detail a system for investigating the accuracy and precision, start up stabilisation time, dependence of retrieved temperatures on ambient temperatures and image vignetting. The calibration system uses a relatively inexpensive blackbody source deployed with the sensor inside an environmental chamber to maintain and control the ambient temperature. Calibration of a number of different thermal sensors commonly used for UAV deployment was investigated. Vignetting was shown to be a major limitation on sensor accuracy, requiring characterization through measuring a spatially uniform temperature target such as the blackbody. Our results also showed that a stabilization period is required after powering on the sensors and before conducting an aerial survey. Through use of the environmental chamber it was shown the ambient temperature influenced the temperatures retrieved by the different sensors. This study illustrates the importance of determining the calibration and cross-sensitivities of thermal sensors to obtain accurate thermal maps that can be used to study crop ecosystems.

  1. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico). COMMON RANGIA.

    DTIC Science & Technology

    1985-04-01

    osmoconformer at salinities greater ENVIRONMENTAL REQUIREMENTS than 10 ppt, and an osmoregulator at lower salinities (Bedford and Anderson 1972a,b; Otto...1973, 1974) tested the combined effects of temperature (8 to 32°C) and salinity (0 to 20 ppt) on .. k6.. Temperature embryos and larvae of common...Bedford, W. B. , and J. W. Anderson. Allen, K. 1961. The effect of salin - 1972a. The physiological response ity on the amino acid concentra- of the

  2. Telemetric measurement system of beehive environment conditions

    NASA Astrophysics Data System (ADS)

    Walendziuk, Wojciech; Sawicki, Aleksander

    2014-11-01

    This work presents a measurement system of beehive environmental conditions. The purpose of the device is to perform measurements of parameters such as ambient temperature, atmospheric pressure, internal temperature, humidity and sound level. The measured values were transferred to the MySQL database, which is located on an external server, with the use of GPRS protocol. A website presents the measurement data in the form of tables and graphs. The study also shows exemplary results of environmental conditions measurements recorded in the beehive by hour cycle.

  3. Evaluation of the Physiological Challenges in Extreme Environments: Implications for Enhanced Training, Operational Performance and Sex-Specific Responses

    DTIC Science & Technology

    2017-10-01

    analyses for the first years project. 1. The University of Montana approved the IRB for study 2, “ Effects of Environmental Temperature on Exercise...surrounding phase 2 of the study series. Study 2: Effects of environmental temperature on exercise response and adaptation. We have previously...HH after exercise appears to have a greater effect on muscle oxygen transport (SpO2 and heart rate) than NH. Furthermore, MSTN tends to be further

  4. Low temperature exposure to post-vitellogenic channel catfish, Ictalurus punctatus extend reporductive readiness

    USDA-ARS?s Scientific Manuscript database

    Channel catfish, Ictalurus punctatus.spawn annually during the spring and early summer (24 -30 °C). Environmental temperature is the main factor that controls the seasonal maturation of gonads and the timing of spawning. Temperature fluctuations can adversely affect spawning and broodfish conditio...

  5. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...

  6. Can Personal Exposures to Higher Nighttime and Early Morning Temperatures Increase Blood Pressure?

    EPA Science Inventory

    Environmental temperatures are inversely related to BP; however, the effects of short-term temperature changes within a 24-hour period and measured with high accuracy at the personal level have not been described. Fifty-one nonsmoking patients living in the Detroit area had up to...

  7. Environmental Measurement in Schools: Electronics in Field Studies.

    ERIC Educational Resources Information Center

    Crellin, J. R.

    1978-01-01

    The use of environmental meters designed to measure conductivity, light level, oxygen, pH, sound, and temperature are discussed. Criteria for choosing suitable equipment are suggested and, where possible, cheaper alternatives are mentioned. (Author/BB)

  8. Relationships of Biomass with Environmental Factors in the Grassland Area of Hulunbuir, China

    PubMed Central

    Liu, Miao; Liu, Guohua; Gong, Li; Wang, Dongbo; Sun, Jian

    2014-01-01

    Many studies have focused on the relationship between vegetation biomass and environmental factors in grassland. However, several questions remain to be answered, especially with regards to the spatial pattern of vegetation biomass. Thus, the distributed mechanism will be explored in the present study. Here, plant biomass was measured at 23 sites along a transect survey during the peak growing season in 2006. The data were analyzed with a classification and regression tree (CART) model. The structural equation modeling (SEM) was conducted to explicitly evaluate the both direct and indirect effects of these critical environmental elements on vegetation biomass. The results demonstrated that mean annual temperature (MAT) affected aboveground biomass (AGB) scored at −0.811 (P<0.05). The direct effect of MAT on belowground biomass (BGB) was −0.490 (P<0.05). The results were determined by SEM. Our results indicate that AGB and BGB in semi-arid ecosystems is strongly affected by precipitation and temperature. Future work shall attempt to take into account the integrated effects of precipitation and temperature. Meanwhile, partitioning the influences of environmental variations and vegetation types are helpful in illuminating the internal mechanism of biomass distribution. PMID:25032808

  9. Relationships of biomass with environmental factors in the grassland area of Hulunbuir, China.

    PubMed

    Liu, Miao; Liu, Guohua; Gong, Li; Wang, Dongbo; Sun, Jian

    2014-01-01

    Many studies have focused on the relationship between vegetation biomass and environmental factors in grassland. However, several questions remain to be answered, especially with regards to the spatial pattern of vegetation biomass. Thus, the distributed mechanism will be explored in the present study. Here, plant biomass was measured at 23 sites along a transect survey during the peak growing season in 2006. The data were analyzed with a classification and regression tree (CART) model. The structural equation modeling (SEM) was conducted to explicitly evaluate the both direct and indirect effects of these critical environmental elements on vegetation biomass. The results demonstrated that mean annual temperature (MAT) affected aboveground biomass (AGB) scored at -0.811 (P<0.05). The direct effect of MAT on belowground biomass (BGB) was -0.490 (P<0.05). The results were determined by SEM. Our results indicate that AGB and BGB in semi-arid ecosystems is strongly affected by precipitation and temperature. Future work shall attempt to take into account the integrated effects of precipitation and temperature. Meanwhile, partitioning the influences of environmental variations and vegetation types are helpful in illuminating the internal mechanism of biomass distribution.

  10. Effect of environmental and physiological factors on the antibacterial activity of Curvularia haloperoxidase system against Escherichia coli.

    PubMed

    Hansen, E H; Schäfer, T; Molin, S; Gram, L

    2005-01-01

    The aim of this study was to investigate the influence of environmental and physiological factors on the susceptibility of Escherichia coli to the Curvularia haloperoxidase system. The Curvularia haloperoxidase system is a novel enzyme system that produces reactive oxygen species which have an antimicrobial effect. Escherichia coli MG1655 was exposed to the Curvularia haloperoxidase system under different temperatures and NaCl concentrations and after exposure to different stress factors. Temperature clearly affected enzymatic activity with increasing antibacterial effect at increasing temperature. The presence of NaCl interfered with the enzyme system and in the presence of 1% NaCl, no antibacterial effect could be observed at pH 7. Cells grown at pH 8.0 were in one experiment more resistant than cells grown at pH 6.5, whereas cells grown in the presence of 2% NaCl were more susceptible to the Curvularia haloperoxidase system. Environmental and physiological factors can affect the antibacterial activity of the Curvularia haloperoxidase system. The study demonstrates a systematic approach in assessing the effect of environmental and physiological factors on microbial susceptibility to biocides. Such information is crucial for prediction of application as well as potential side-effects.

  11. Both natural selection and isolation by distance explain phenotypic divergence in bill size and body mass between South Australian little penguin colonies.

    PubMed

    Colombelli-Négrel, Diane

    2016-11-01

    Morphological variation between populations of the same species can arise as a response to genetic variation, local environmental conditions, or a combination of both. In this study, I examined small-scale geographic variation in bill size and body mass in little penguins ( Eudyptula minor ) across five breeding colonies in South Australia separated by <150 km. To help understand patterns driving the differences, I investigated these variations in relation to environmental parameters (air temperature, sea surface temperature, and water depth) and geographic distances between the colonies. I found substantial morphological variation among the colonies for body mass and bill measurements (except bill length). Colonies further located from each other showed greater morphological divergence overall than adjacent colonies. In addition, phenotypic traits were somewhat correlated to environmental parameters. Birds at colonies surrounded by hotter sea surface temperatures were heavier with longer and larger bills. Birds with larger and longer bills were also found at colonies surrounded by shallower waters. Overall, the results suggest that both environmental factors (natural selection) and interpopulation distances (isolation by distance) are causes of phenotypic differentiation between South Australian little penguin colonies.

  12. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.

  13. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  14. Environmental change and the conversion of permanently frozen ground to wetlands

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Much of the land around the arctic is permanently frozen, even in the summer. However, because the world is getting warmer, this frozen ground, known as permafrost, is thawing. When permafrost thaws, the ground collapses and sinks, and often a wetland forms within the collapsed area. This conversion of a permanently frozen landscape to a wetland changes the exchange of greenhouse gases between the land and atmosphere, which can, in turn, impact global temperatures and environmental conditions. Wetlands pull carbon dioxide out of the atmosphere because they support the growth of many plants. This uptake of atmospheric carbon dioxide by wetlands helps reduce global warming. However, wetlands also release methane into the atmosphere, which is a potent greenhouse gas — more potent than carbon dioxide. The net effect on global temperatures and environmental conditions depends on the balance between wetland uptake of atmospheric carbon dioxide and release of methane. We are measuring the exchange of these two greenhouse gases between the land and atmosphere in a wetland that formed after permafrost thawed so we can know how global temperatures and environmental conditions will change as northern landscapes continue to thaw.

  15. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.

    PubMed Central

    Lowe, S E; Jain, M K; Zeikus, J G

    1993-01-01

    Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology. Images PMID:8336675

  16. A correlational analysis of the effects of changing environmental conditions on the NR atomic hydrogen maser

    NASA Technical Reports Server (NTRS)

    Dragonette, Richard A.; Suter, Joseph J.

    1992-01-01

    An extensive statistical analysis has been undertaken to determine if a correlation exists between changes in an NR atomic hydrogen maser's frequency offset and changes in environmental conditions. Correlation analyses have been performed comparing barometric pressure, humidity, and temperature with maser frequency offset as a function of time for periods ranging from 5.5 to 17 days. Semipartial correlation coefficients as large as -0.9 have been found between barometric pressure and maser frequency offset. Correlation between maser frequency offset and humidity was small compared to barometric pressure and unpredictable. Analysis of temperature data indicates that in the most current design, temperature does not significantly affect maser frequency offset.

  17. Tolerance of an Antarctic Bacterium to Multiple Environmental Stressors.

    PubMed

    Sengupta, Dipanwita; Sangu, Kavya; Shivaji, Sisinthy; Chattopadhyay, Madhab K

    2015-10-01

    A population of cold-tolerant Antarctic bacteria was screened for their ability to tolerate other environmental stress factors. Besides low temperature, they were predominantly found to be tolerant to alkali. Attempt was also made to postulate a genetic basis of their multistress-tolerance. Transposon mutagenesis of an isolate Pseudomonas syringae Lz4W was performed, and mutants with delayed growth at low temperature were further screened for sensitivity to some other stress factors. A number of multistress-sensitive mutants were isolated. The mutated gene in one of the mutants sensitive to low temperature, acid and alkali was found to encode citrate synthase. Possible role of citrate synthase in conferring multistress-tolerance was postulated.

  18. Stress modification of the toxicity of antimotion sickness drugs and Aspirin

    NASA Technical Reports Server (NTRS)

    Shields, D.; Marra, C.; Goodwin, A.; Vernikos-Danellis, J.

    1975-01-01

    The effect of environmental temperature on the toxicity of cyclizine, trimethobenzamide, and Aspirin were studied in mice. LD-50s were compared at 30 C, 22 C, and 15 C. At 30 C the toxicity of all three drugs increased, with that to Aspirin being affected most. Cooling decreased the toxicity of cyclizine and had no significant effect on that of trimethobenzamide or aspirin. These findings indicate that alterations in environmental temperature markedly affect drug toxicity. They emphasize that such alterations, and particularly increases in temperature, do not have to be particularly drastic, but that 'mild' variations in the environment are effective in altering an animal's sensitivity to a drug.

  19. Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.

    1976-01-01

    A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.

  20. High accuracy demodulation for twin-grating based sensor network with hybrid TDM/FDM

    NASA Astrophysics Data System (ADS)

    Ai, Fan; Sun, Qizhen; Cheng, Jianwei; Luo, Yiyang; Yan, Zhijun; Liu, Deming

    2017-04-01

    We demonstrate a high accuracy demodulation platform with a tunable Fabry-Perot filter (TFF) for twin-grating based fiber optic sensing network with hybrid TDM/FDM. The hybrid TDM/FDM scheme can improve the spatial resolution to centimeter but increases the requirement of high spectrum resolution. To realize the demodulation of the complex twin-grating spectrum, we adopt the TFF demodulation method and compensate the environmental temperature change and nonlinear effect through calibration FBGs. The performance of the demodulation module is tested by a temperature experiment. Spectrum resolution of 1pm is realized with precision of 2.5pm while the environmental temperature of TFF changes 9.3°C.

  1. Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials

    NASA Technical Reports Server (NTRS)

    Lee,Kang

    2001-01-01

    The upper use temperature of current Environmental Barrier Coatings (EBC's) based on mullite and BSAS (EPM EBC's) is limited to -255 F due to silica volatility, chemical reactions, and high thermal conductivity. Therefore, new EBC s having low CTE, good chemical compatibility, and high melting point (greater than 2700 F ) are being investigated. Sinter-resistant, low thermal conductivity EBC s are strongly desired to achieve the UEET EBC goal of 270 F EBC surface temperature and 30 F AT over long exposures (greater than 1000 hr). Key areas affecting the upper temperature limit of current EBC s as well as the ongoing efforts to develop next generation EBC s in the UEET Program will be discussed.

  2. Effect of nesting environment on incubation temperature and hatching success of Morelet's crocodile (Crocodylus moreletii) in an urban lake of Southeastern Mexico.

    PubMed

    López-Luna, Marco A; Hidalgo-Mihart, Mircea G; Aguirre-León, Gustavo; González-Ramón, Mariana Del C; Rangel-Mendoza, Judith A

    2015-01-01

    Incubation temperature is an important aspect in terms of biological performance among crocodiles, and several controlled experiments have demonstrated a significant relationship between incubation temperature, success in hatching and survival of hatchlings. However, a few studies have tested these relationships in the wild. The objective of this study was to determine the relationship of nest characteristics and environment (hatch year, nest basal area and height, clutch size, distance to shore line, and vegetation cover), to incubation temperature and hatching success among Morelet's crocodile (Crocodylus moreletii). The study was carried out during the nesting seasons of Morelet's crocodile, from 2007 to 2009 in the Laguna de Las Ilusiones, an urban lake located in Villahermosa, Tabasco, Mexico. We physically characterized 18 nests and inserted a temperature data logger in each nest chamber. At the end of the nesting season and prior to hatching, we recovered the crocodile eggs and data loggers and calculated hatching success, under laboratory conditions. We related the environmental variables of the nest with the mean and fluctuation (standard deviation) of nest temperature, using linear models. We also related the environmental variables affecting the nest, to mean nest temperature and fluctuation in incubation temperature and to hatching success, using linear models. Although we found differences in incubation temperature between nests, mean incubation temperature did not differ between years, but there were differences in nest thermal fluctuation between years. The mean incubation temperature for 11 nests (61.1%) was lower than the suggested Female-Male pivotal temperature (producing 50% of each sex) for this species, and all hatchlings obtained were males. There were no differences in clutch size between years, but hatching success varied. Our study indicates that hatching success depends on certain environmental variables and nest conditions to which the eggs are subjected, including season, nest size and clutch size. We also discuss the importance of the fluctuation of incubation temperature on hatching success and sex determination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Thermoregulation in homeothermic and poikilothermic organisms

    EPA Science Inventory

    Homeothermic organisms (birds and mammals) have evolved autonomic and behavioral thermoeffectors to maintain a relatively constant core temperature over a wide range of environmental temperatures. Poikilotherms, including reptiles, amphibians, fish, and insects have internal temp...

  4. Comparative thermal analysis of the Space Station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling acting within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  5. Comparative thermal analysis of the space station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling action within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  6. Temperature-dependent conformational variation of chromophoric dissolved organic matter and its consequent interaction with phenanthrene.

    PubMed

    Chen, Wei; Liu, Xiao-Yang; Yu, Han-Qing

    2017-03-01

    Temperature variation caused by climate change, seasonal variation and geographic locations affects the physicochemical compositions of chromophoric dissolved organic matter (CDOM), resulting in difference in the fates of CDOM-related environmental pollutants. Exploration into the thermal induced structural transition of CDOM can help to better understand their environmental impacts, but information on this aspect is still lacking. Through integrating fluorescence excitation-emission matrix coupled parallel factor analysis with synchronous fluorescence two-dimensional correlation spectroscopy, this study provides an in-depth insight into the temperature-dependent conformational transitions of CDOM and their impact on its hydrophobic interaction with persistent organic pollutants (with phenanthrene as an example) in water. The fluorescence components in CDOM change linearly to water temperature with different extents and different temperature regions. The thermal induced transition priority in CDOM is protein-like component → fulvic-like component → humic-like component. Furthermore, the impact of thermal-induced conformational transition of CDOM on its hydrophobic interaction with phenanthrene is observed and explored. The fluorescence-based analytic results reveal that the conjugation degree of the aromatic groups in the fulvic- and humic-like substances, and the unfolding of the secondary structure in the protein-like substances with aromatic structure, contribute to the conformation variation. This integrated approach jointly enhances the characterization of temperature-dependent conformational variation of CDOM, and provides a promising way to elucidate the environmental behaviours of CDOM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Response of Environmental Capacity for Malaria Transmission in West Africa to Climate Change

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Eltahir, E. A.

    2011-12-01

    The climate of West Africa is characterized by north-south gradients in temperature and rainfall. Environmental capacity for malaria transmission (e.g. as measured by vectorial capacity) is strongly tied to these two variables; temperature affects the development rate of the malaria parasite, as well as the lifespan of the mosquitoes that transmit the disease, and rainfall is tied to mosquito abundance, as the vector lays its eggs in rain-fed water pools. A change in climate is therefore expected to lead to changes in the distribution of malaria transmission. Current general circulation models agree that the temperature in West Africa is expected to increase by several degrees in the next century. However they predict a wide range of possible rainfall scenarios in the future, from intense drying to significant increases in rainfall (Christensen et al., 2007). The effects these changes will have on environmental capacity for malaria transmission depend on the magnitude and direction of the changes, and on current conditions. For example, malaria transmission will be more sensitive to positive changes in rainfall in dry areas where mosquito populations are currently limited by water availability than in relatively wet areas. Here, we analyze combinations of changes in rainfall and temperature within the ranges predicted by GCMs, and assess the impact these combinations will have on the environmental capacity for malaria transmission. In particular, we identify climate change scenarios that are likely to have the greatest impact on environmental capacity for malaria transmission, as well as geographic "hot spots" where the greatest changes are to be expected. Christensen, J. H., Busuioc, A., & et al. (2007). Regional climate projections. In S. Solomon (Ed.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  8. The seasonal variation in skin hydration, sebum, scaliness, brightness and elasticity in Korean females.

    PubMed

    Nam, G W; Baek, J H; Koh, J S; Hwang, J-K

    2015-02-01

    Age, gender, regional, and ethnic differences influence skin conditions. The purpose of this study was to observe the effects of environments, especially the air temperature, relative humidity, air pressure, duration of sunshine, and precipitation on skin, and the seasonal variation in skin hydration, sebum, scales, brightness, and elasticity in Korean females. The study included 89 Korean subjects, aged 29.7 ± 6.2 years. The five skin biophysical parameters (skin hydration, sebum, scales, brightness, and elasticity) were measured at six sites: forehead, under the eye, frontal cheek, crow's foot, lateral cheek, and inner forearm. Skin hydration was measured using the Corneometer® CM 825. Skin sebum was measured with Sebumeter® SM 815. Skin scaliness was measured with Visioscan® VC 98. Skin brightness (L* value) was measured by using Spectrophotometer. A suction chamber device, Cutometer® MPA 580, was used to measure the skin elasticity. The measurements were performed every month for 13 months, from April 2007 to April 2008. There were significantly seasonal variations in environmental factors. The air temperature was the lowest in January (-1.7°C), and the highest in August (26.5°C). The relative humidity was the lowest in February (46%), and the highest in July and August (75%). There was a negative correlation between skin scaliness and three environmental factors such as air temperature, relative humidity, and highest precipitation. There was a positive correlation between skin scaliness and two environmental factors such as air pressure and duration of sunshine. Elasticity was correlated with air temperature positively and with air pressure negatively. The correlations shown between the skin biophysical parameters and environmental factors demonstrate that the skin biophysical parameters are affected by environmental factors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Effects of Climate Change and Fisheries Bycatch on Shy Albatross (Thalassarche cauta) in Southern Australia

    PubMed Central

    2015-01-01

    The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change. PMID:26057739

  10. Effects of Climate Change and Fisheries Bycatch on Shy Albatross (Thalassarche cauta) in Southern Australia.

    PubMed

    Thomson, Robin B; Alderman, Rachael L; Tuck, Geoffrey N; Hobday, Alistair J

    2015-01-01

    The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change.

  11. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    PubMed

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.

  12. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    PubMed Central

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing. PMID:24023616

  13. Association between environmental factors and hospitalisations for bronchiectasis in Badalona, Barcelona, Spain (2007-2015).

    PubMed

    Garcia-Olivé, Ignasi; Radua, Joaquim; Sánchez-Berenguer, Dan; Hernández-Biette, Agnes; Raya-Márquez, Patricia; Stojanovic, Zoran; Martínez-Rivera, Carlos; Fernandez Serrano, Silvia; Ruiz Manzano, Juan

    2018-04-13

    The relationship between environmental factors and the exacerbation of respiratory diseases has been widely studied. However, there are no studies examining the relationship between these factors and bronchiectasis exacerbations. Our objective was to analyse the association between various environmental factors and hospitalisation for bronchiectasis. This was a retrospective observational study conducted at two hospitals in Badalona (Barcelona). The number of hospital admissions for exacerbation of bronchiectasis between 2007 and 2015 was obtained. Through multiple regression we analysed the relationship between the number of exacerbations and mean monthly values of temperature, SO 2 , NO, NO 2 , O 3 and CO. Temperature, SO 2 , NO, NO 2 , O 3 and CO were significantly associated with an increase in admissions due to exacerbation of bronchiectasis. By controlling the effect of temperature on the pollution variables, only SO 2 maintained statistical significance (P=.008). We have detected an increase in hospital admissions for exacerbation of bronchiectasis with increases in the atmospheric concentration of SO 2 and the decrease in temperature. Prospective studies with different geographical locations to confirm these results are needed. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. Thermal Conductivity and Stability of HfO2-Y2O3 and La2Zr2O7 Evaluated for 1650 Deg C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Bansal, Narottam P.; Miller, Robert A.

    2003-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal and environmental barrier coating (T/EBC) materials for gas turbine ceramic matrix composite (CMC) combustor applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature stability of hot-pressed and plasma sprayed specimens with representative partially-stabilized and fully-cubic HfO2-Y2O3 compositions and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasmasprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC hexoloy or SiC/SiC CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications are also discussed.

  15. Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    NASA Technical Reports Server (NTRS)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2016-01-01

    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  16. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions.

    PubMed

    Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S

    2017-07-01

    Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities. © 2016 John Wiley & Sons Ltd.

  17. Effect of thermal stress on HSP90 expression of Bali cattle in Barru district, South Sulawesi

    NASA Astrophysics Data System (ADS)

    Aritonang, S. B.; Yuniati, R.; Abinawanto, Imron, M.; Bowolaksono, A.

    2017-07-01

    Heat shock protein 90-kDa is induced stress protein that expressed in response to stress and play crucial roles in environmental stress tolerance and adaptation. This study aimed to determine effect of environmental heat stress on the HSP90 expression of Bali cattle. Heat stress was measured by temperature humidity index in the morning and evening across 5-days on August 2016. The blood samples of Bali cattle were taken from venous jungularis. HSP90 was derived from RNA isolation of whole blood then was followed reverse transcription two steps. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to analyze the transcript variants of HSP90, followed by comparative ΔΔCt to determine HSP90 expression. The results of temperature and humidity index (THI) measurement indicated THI on afternoon was higher than in the morning. The difference in environmental conditions in the morning and afternoon effected changes on rectal temperature but neither did on Hsp90 expression.

  18. The United States Army Medical Department Journal. January-March 2013

    DTIC Science & Technology

    2013-01-01

    before he  needs supplemental oxygen ? What ocean temperature is too cold to use the dogs  in maritime operations? Do nutritional supplements help...any adverse effects . Yet, by convention, most veterinary personnel learn that any rectal temperature over 106°F is a critical temperature indicating...conditions Core temperature may be a more accurate measure of a dog’s temperature while working in extreme environments. THE EFFECTS OF ENVIRONMENTAL

  19. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef

    PubMed Central

    Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  20. Environmental Monitoring of Microbe Metabolic Transformation

    NASA Technical Reports Server (NTRS)

    Bebout, Brad (Inventor); Fleming, Erich (Inventor); Piccini, Matthew (Inventor); Beasley, Christopher (Inventor); Bebout, Leslie (Inventor)

    2013-01-01

    Mobile system and method for monitoring environmental parameters involved in growth or metabolic transformation of algae in a liquid. Each of one or more mobile apparati, suspended or partly or wholly submerged in the liquid, includes at least first and second environmental sensors that sense and transmit distinct first and second environmental, growth or transformation parameter values, such as liquid temperature, temperature of gas adjacent to and above the exposed surface, liquid pH, liquid salinity, liquid turbidity, O.sub.2 dissolved in the liquid, CO.sub.2 contained in the liquid, oxidization and reduction potential of the liquid, nutrient concentrations in the liquid, nitrate concentration in the liquid, ammonium concentration in the liquid, bicarbonate concentration in the liquid, phosphate concentration in the liquid, light intensity at the liquid surface, electrical conductivity of the liquid, and a parameter.alpha.(alga) associated with growth stage of the alga, using PAM fluorometry or other suitable parameter measurements.

  1. Seasonality of suicides: environmental, sociological and biological covariations.

    PubMed

    Souêtre, E; Salvati, E; Belugou, J L; Douillet, P; Braccini, T; Darcourt, G

    1987-01-01

    The monthly rates of completed suicides in France from 1978 until 1982 were analyzed. The seasonal variations of environmental (daylight and sunlight durations, mean temperature, geomagnetism), sociological (unemployment, deaths of all causes, birth and conception rates), and biological (melatonin, cortisol and serotonin circannual rhythms) factors were compared to the seasonal patterns of suicides. A clear seasonal variation (with peaks in May and September) in suicidal behavior was detected. These patterns tended to differ as a function of age (bimodal in young, unimodal in old people). The component analysis clearly pointed out that seasonal patterns of suicides may be considered as the sum of two components, unimodal and bimodal. Almost similar covariations were found between the main seasonal (unimodal) component of suicides and environmental (daylight duration and mean monthly temperature) or sociological factors whereas the secondary component was more correlated to variations in environmental factors and, to some extent, to biological parameters.

  2. The impact of environmental factors on carbon dioxide fixation by microalgae.

    PubMed

    Morales, Marcia; Sánchez, León; Revah, Sergio

    2018-02-01

    Microalgae are among the most productive biological systems for converting sunlight into chemical energy, which is used to capture and transform inorganic carbon into biomass. The efficiency of carbon dioxide capture depends on the cultivation system configuration (photobioreactors or open systems) and can vary according to the state of the algal physiology, the chemical composition of the nutrient medium, and environmental factors such as irradiance, temperature and pH. This mini-review is focused on some of the most important environmental factors determining photosynthetic activity, carbon dioxide biofixation, cell growth rate and biomass productivity by microalgae. These include carbon dioxide and O2 concentrations, light intensity, cultivation temperature and nutrients. Finally, a review of the operation of microalgal cultivation systems outdoors is presented as an example of the impact of environmental conditions on biomass productivity and carbon dioxide fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica.

    PubMed

    Tsumura, Y; Uchiyama, K; Moriguchi, Y; Ueno, S; Ihara-Ujino, T

    2012-12-01

    Local adaptation is important in evolutionary processes and speciation. We used multiple tests to identify several candidate genes that may be involved in local adaptation from 1026 loci in 14 natural populations of Cryptomeria japonica, the most economically important forestry tree in Japan. We also studied the relationships between genotypes and environmental variables to obtain information on the selective pressures acting on individual populations. Outlier loci were mapped onto a linkage map, and the positions of loci associated with specific environmental variables are considered. The outlier loci were not randomly distributed on the linkage map; linkage group 11 was identified as a genomic island of divergence. Three loci in this region were also associated with environmental variables such as mean annual temperature, daily maximum temperature, maximum snow depth, and so on. Outlier loci identified with high significance levels will be essential for conservation purposes and for future work on molecular breeding.

  4. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress

    PubMed Central

    Ambavaram, Madana M. R.; Basu, Supratim; Krishnan, Arjun; Ramegowda, Venkategowda; Batlang, Utlwang; Rahman, Lutfor; Baisakh, Niranjan; Pereira, Andy

    2014-01-01

    Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions. PMID:25358745

  5. Influence of environmental temperature on 40 km cycling time-trial performance.

    PubMed

    Peiffer, Jeremiah J; Abbiss, Chris R

    2011-06-01

    The purpose of this study was to examine the effect of environmental temperature on variability in power output, self-selected pacing strategies, and performance during a prolonged cycling time trial. Nine trained male cyclists randomly completed four 40 km cycling time trials in an environmental chamber at 17°C, 22°C, 27°C, and 32°C (40% RH). During the time trials, heart rate, core body temperature, and power output were recorded. The variability in power output was assessed with the use of exposure variation analysis. Mean 40 km power output was significantly lower during 32°C (309 ± 35 W) compared with 17°C (329 ± 31 W), 22°C (324 ± 34 W), and 27°C (322 ± 32 W). In addition, greater variability in power production was observed at 32°C compared with 17°C, as evidenced by a lower (P = .03) standard deviation of the exposure variation matrix (2.9 ± 0.5 vs 3.5 ± 0.4 units, respectively). Core temperature was greater (P < .05) at 32°C compared with 17°C and 22°C from 30 to 40 km, and the rate of rise in core temperature throughout the 40 km time trial was greater (P < .05) at 32°C (0.06 ± 0.04°C·km-1) compared with 17°C (0.05 ± 0.05°C·km-1). This study showed that time-trial performance is reduced under hot environmental conditions, and is associated with a shift in the composition of power output. These finding provide insight into the control of pacing strategies during exercise in the heat.

  6. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows

    NASA Astrophysics Data System (ADS)

    Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2017-02-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation ( P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  7. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Hall, Edward K.

    2012-01-01

    As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.

  8. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.

    PubMed

    Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D

    2012-09-10

    Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Perceptions of temperature, moisture and comfort in clothing during environmental transients.

    PubMed

    Li, Y

    2005-02-22

    A study has been carried out to investigate the psychophysical mechanisms of the perception of temperature and moisture sensations in clothing during environmental transients. A series of wear trials was conducted to measure the psychological perception of thermal and moisture sensations and the simultaneous temperature and humidity at the skin surface, fabric surface and in the clothing under simulated moderate rain conditions. Jumpers made from wool and acrylic fibres were used in the trial. Analysis has been carried out to study the relationship between psychological perceptions of temperature and moisture and the objectively measured skin and fabric temperatures and relative humidity in clothing microclimate. The perception of warmth seems to follow Fechner's law and Stevens' power law, having positive relationships with the skin temperature and fabric temperatures. The perception of dampness appears to follow Fechner's law more closely than Stevens' power law with a negative relationship with skin temperature, and is nonlinearly and positively correlated with relative humidity in clothing microclimate. The perception of comfort is positively related to the perception of warmth and negatively to the perception of dampness. This perception of comfort is positively related to the skin temperature, which appears to follow both Fechner's law and Stevens' law, also non-linearly and negatively related to relative humidity in clothing microclimate.

  10. Application of Universal Thermal Climate Index (UTCI) for assessment of occupational heat stress in open-pit mines.

    PubMed

    Nassiri, Parvin; Monazzam, Mohammad Reza; Golbabaei, Farideh; Dehghan, Somayeh Farhang; Rafieepour, Athena; Mortezapour, Ali Reza; Asghari, Mehdi

    2017-10-07

    The purpose of this article is to examine the applicability of Universal Thermal Climate Index (UTCI) index as an innovative index for evaluating of occupational heat stress in outdoor environments. 175 workers of 12 open-pit mines in Tehran, Iran were selected for this research study. First, the environmental variables such as air temperature, wet-bulb temperature, globe temperature, relative humidity and air flow rate were measured; then UTCI, wet-bulb globe temperature (WBGT) and heat stress index (HSI) indices were calculated. Simultaneously, physiological parameters including heart rate, oral temperature, tympanic temperature and skin temperature of workers were measured. UTCI and WBGT are positively significantly correlated with all environmental parameters (p<0.03), except for air velocity (r<-0.39; p>0.05). Moreover, a strong significant relationship was found between UTCI and WBGT (r=0.95; p<0.001). The significant positive correlations exist between physiological parameters including oral temperature, tympanic and skin temperatures and heart rate and both the UTCI and WBGT indices (p<0.029). The highest correlation coefficient has been found between the UTCI and physiological parameters. Due to the low humidity and air velocity (~<1 m/s) in understudied mines, UTCI index appears to be appropriate to assess the occupational heat stress in these outdoor workplaces.

  11. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  12. What do foraging wasps optimize in a variable environment, energy investment or body temperature?

    PubMed

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2015-11-01

    Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.

  13. Impact of Indoor Physical Environment on Learning Efficiency in Different Types of Tasks: A 3 × 4 × 3 Full Factorial Design Analysis.

    PubMed

    Xiong, Lilin; Huang, Xiao; Li, Jie; Mao, Peng; Wang, Xiang; Wang, Rubing; Tang, Meng

    2018-06-13

    Indoor physical environments appear to influence learning efficiency nowadays. For improvement in learning efficiency, environmental scenarios need to be designed when occupants engage in different learning tasks. However, how learning efficiency is affected by indoor physical environment based on task types are still not well understood. The present study aims to explore the impacts of three physical environmental factors (i.e., temperature, noise, and illuminance) on learning efficiency according to different types of tasks, including perception, memory, problem-solving, and attention-oriented tasks. A 3 × 4 × 3 full factorial design experiment was employed in a university classroom with 10 subjects recruited. Environmental scenarios were generated based on different levels of temperature (17 °C, 22 °C, and 27 °C), noise (40 dB(A), 50 dB(A), 60 dB(A), and 70 dB(A)) and illuminance (60 lx, 300 lx, and 2200 lx). Accuracy rate (AC), reaction time (RT), and the final performance indicator (PI) were used to quantify learning efficiency. The results showed ambient temperature, noise, and illuminance exerted significant main effect on learning efficiency based on four task types. Significant concurrent effects of the three factors on final learning efficiency was found in all tasks except problem-solving-oriented task. The optimal environmental scenarios for top learning efficiency were further identified under different environmental interactions. The highest learning efficiency came in thermoneutral, relatively quiet, and bright conditions in perception-oriented task. Subjects performed best under warm, relatively quiet, and moderately light exposure when recalling images in the memory-oriented task. Learning efficiency peaked to maxima in thermoneutral, fairly quiet, and moderately light environment in problem-solving process while in cool, fairly quiet and bright environment with regard to attention-oriented task. The study provides guidance for building users to conduct effective environmental intervention with simultaneous controls of ambient temperature, noise, and illuminance. It contributes to creating the most suitable indoor physical environment for improving occupants learning efficiency according to different task types. The findings could further supplement the present indoor environment-related standards or norms with providing empirical reference on environmental interactions.

  14. Seasonal variation of semen parameters correlates with environmental temperature and air pollution: A big data analysis over 6 years.

    PubMed

    Santi, Daniele; Magnani, Elisa; Michelangeli, Marco; Grassi, Roberto; Vecchi, Barbara; Pedroni, Gioia; Roli, Laura; De Santis, Maria Cristina; Baraldi, Enrica; Setti, Monica; Trenti, Tommaso; Simoni, Manuela

    2018-04-01

    Male fertility is progressively declining in many developed countries, but the relationship between male infertility and environmental factors is still unclear. To assess the influence of environmental temperature and air pollution on semen parameters, using a big-data approach. A big data analysis of parameters related to 5131 men, living in a province of Northern Italy and undergoing semen analyses between January 2010 and March 2016 was performed. Ambient temperature was recorded on the day of analysis and the 90 days prior to the analysis and the average value of particulate matter (PM) and NO2 in the year of the test. All data were acquired by geocoding patients residential address. A data warehouse containing 990,904,591 data was generated and analysed by multiple regressions. 5573 semen analyses were collected. Both maximum and minimum temperatures registered on the day of collection were inversely related to total sperm number (p < .001), non-progressive motility (NPrM) (p < .005) and normal forms (p < .001). Results were confirmed considering temperature in the 30 and 60 days before collection, but not in the 90 days before collection. Total sperm number was lower in summer/autumn (p < .001) and was inversely related with daylight duration (p < .001). PM10 and PM2.5 were inversely related to PrM (p < .001 and p < .005) and abnormal forms (p < .001). This is the first evaluation of the relationship between male fertility-related parameters and environment using a big-data approach. A seasonal change in semen parameters was found, with a fluctuation related to both temperature and daylight duration. A negative correlation between air pollution and semen quality is suggested. Such seasonal and environmental associations should be considered when assessing changes of male fertility-related parameters over time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears.

    PubMed

    Friebe, Andrea; Evans, Alina L; Arnemo, Jon M; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human.

  16. Factors Affecting Date of Implantation, Parturition, and Den Entry Estimated from Activity and Body Temperature in Free-Ranging Brown Bears

    PubMed Central

    Friebe, Andrea; Evans, Alina L.; Arnemo, Jon M.; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E.; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human. PMID:24988486

  17. Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea

    PubMed Central

    Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.

    2014-01-01

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication. PMID:25137123

  18. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea.

    PubMed

    Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R

    2014-01-01

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication.

  19. Surveillance and Control of Malaria Transmission Using Remotely Sensed Meteorological and Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, R.; Adimi, F.; Nigro, J.

    2007-01-01

    Meteorological and environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters can most conveniently be obtained using remote sensing. Selected provinces and districts in Thailand and Indonesia are used to illustrate how remotely sensed meteorological and environmental parameters may enhance the capabilities for malaria surveillance and control. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.

  20. Adverse Impact of Electromagnetic Radiation on Urban Environment and Natural Resources using Optical Sensors

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Katiyar, Swati; Rani, Meenu

    2016-07-01

    We are living in the age of a rapidly growing population and changing environmental conditions with an advance technical capacity.This has resulted in wide spread land cover change. One of the main causes for increasing urban heat is that more than half of the world's population lives in a rapidly growing urbanized environment. Satellite data can be highly useful to map change in land cover and other environmental phenomena with the passage of time. Among several human-induced environmental and urban thermal problems are reported to be negatively affecting urban residents in many ways. The built-up structures in urbanized areas considerably alter land cover thereby affecting thermal energy flow which leads to development of elevated surface and air temperature. The phenomenon Urban Heat Island implies 'island' of high temperature in cities, surrounded by relatively lower temperature in rural areas. The UHI for the temporal period is estimated using geospatial techniques which are then utilized for the impact assessment on climate of the surrounding regions and how it reduce the sustainability of the natural resources like air, vegetation. The present paper describes the methodology and resolution dynamic urban heat island change on climate using the geospatial approach. NDVI were generated using day time LANDSAT ETM+ image of 1990, 2000 and 2013. Temperature of various land use and land cover categories was estimated. Keywords: NDVI, Surface temperature, Dynamic changes.

  1. The subtle intracapsular survival of the fittest: maternal investment, sibling conflict, or environmental effects?

    PubMed

    Smith, Kathryn E; Thatje, Sven

    2013-10-01

    Developmental resource partitioning and the consequent offspring size variations are of fundamental importance for marine invertebrates, in both an ecological and evolutionary context. Typically, differences are attributed to maternal investment and the environmental factors determining this; additional variables, such as environmental factors affecting development, are rarely discussed. During intracapsular development, for example, sibling conflict has the potential to affect resource partitioning. Here, we investigate encapsulated development in the marine gastropod Buccinum undatum. We examine the effects of maternal investment and temperature on intracapsular resource partitioning in this species. Reproductive output was positively influenced by maternal investment, but additionally, temperature and sibling conflict significantly affected offspring size, number, and quality during development. Increased temperature led to reduced offspring number, and a combination of high sibling competition and asynchronous early development resulted in a common occurrence of "empty" embryos, which received no nutrition at all. The proportion of empty embryos increased with both temperature and capsule size. Additionally, a novel example ofa risk in sibling conflict was observed; embryos cannibalized by others during early development ingested nurse eggs from inside the consumer, killing it in a "Trojan horse" scenario. Our results highlight the complexity surrounding offspring fitness. Encapsulation should be considered as significant in determining maternal output. Considering predicted increases in ocean temperatures, this may impact offspring quality and consequently species distribution and abundance.

  2. Waterborne Electrospinning of Poly(N-isopropylacrylamide) by Control of Environmental Parameters.

    PubMed

    Schoolaert, Ella; Ryckx, Paulien; Geltmeyer, Jozefien; Maji, Samarendra; Van Steenberge, Paul H M; D'hooge, Dagmar R; Hoogenboom, Richard; De Clerck, Karen

    2017-07-19

    With increasing toxicity and environmental concerns, electrospinning from water, i.e., waterborne electrospinning, is crucial to further exploit the resulting nanofiber potential. Most water-soluble polymers have the inherent limitation of resulting in water-soluble nanofibers, and a tedious chemical cross-linking step is required to reach stable nanofibers. An interesting alternative route is the use of thermoresponsive polymers, such as poly(N-isopropylacrylamide) (PNIPAM), as they are water-soluble beneath their lower critical solution temperature (LCST) allowing low-temperature electrospinning while the obtained nanofibers are water-stable above the LCST. Moreover, PNIPAM nanofibers show major potential to many application fields, including biomedicine, as they combine the well-known on-off switching behavior of PNIPAM, thanks to its LCST, with the unique properties of nanofibers. In the present work, based on dedicated turbidity and rheological measurements, optimal combinations of polymer concentration, environmental temperature, and relative humidity are identified allowing, for the first time, the production of continuous, bead-free PNIPAM nanofibers electrospun from water. More specifically, PNIPAM gelation was found to occur well below its LCST at higher polymer concentrations leading to a temperature regime where the viscosity significantly increases without compromising the polymer solubility. This opens up the ecological, water-based production of uniform PNIPAM nanofibers that are stable in water at temperatures above PNIPAM's LCST, making them suitable for various applications, including drug delivery and switchable cell culture substrates.

  3. Metabolic Microenvironmental Control by Photosynthetic Biofilms under Changing Macroenvironmental Temperature and pH Conditions▿ †

    PubMed Central

    Bissett, Andrew; Reimer, Andreas; de Beer, Dirk; Shiraishi, Fumito; Arp, Gernot

    2008-01-01

    Ex situ microelectrode experiments, using cyanobacterial biofilms from karst water creeks, were conducted under various pH, temperature, and constant-alkalinity conditions to investigate the effects of changing environmental parameters on cyanobacterial photosynthesis-induced calcification. Microenvironmental chemical conditions around calcifying sites were controlled by metabolic activity over a wide range of photosynthesis and respiration rates, with little influence from overlying water conditions. Regardless of overlying water pH levels (from 7.8 to 8.9), pH at the biofilm surface was approximately 9.4 in the light and 7.8 in the dark. The same trend was observed at various temperatures (4°C and 17°C). Biological processes control the calcium carbonate saturation state (Ω) in these and similar systems and are able to maintain Ω at approximately constant levels over relatively wide environmental fluctuations. Temperature did, however, have an effect on calcification rate. Calcium flux in this system is limited by its diffusion coefficient, resulting in a higher calcium flux (calcification and dissolution) at higher temperatures, despite the constant, biologically mediated pH. The ability of biological systems to mitigate the effects of environmental perturbation is an important factor that must be considered when attempting to predict the effects of increased atmospheric partial CO2 pressure on processes such as calcification and in interpreting microfossils in the fossil record. PMID:18689512

  4. The impact of egg incubation temperature on the personality of oviparous reptiles.

    PubMed

    Siviter, Harry; Charles Deeming, D; Rosenberger, Joanna; Burman, Oliver H P; Moszuti, Sophie A; Wilkinson, Anna

    2017-01-01

    Personality traits, defined as differences in the behavior of individual animals of the same species that are consistent over time and context, such as 'boldness,' have been shown to be both heritable and be influenced by external factors, such as predation pressure. Currently, we know very little about the role that early environmental factors have upon personality. Thus, we investigated the impact of incubation temperature upon the boldness on an oviparous reptile, the bearded dragon (Pogona vitticeps). Eggs, from one clutch, were incubated at two different average temperatures within the normal range. After hatching the lizards were raised under the same environmental conditions. Novel object and novel environment tests were used to assess personality. Each test was repeated in both the short term and the long term. The results revealed that incubation temperature did impact upon 'boldness' but only in the short term and suggests that, rather than influencing personality, incubation temperature may have an effect on the development of behavioral of oviparous reptiles at different stages across ontogeny.

  5. Experimental and Theoretical Investigations on the Nanoscale Kinetic Friction in Ambient Environmental Conditions.

    PubMed

    Gueye, Birahima; Zhang, Yan; Wang, Yujuan; Chen, Yunfei

    2015-07-08

    The liquid lubrication, thermolubricity and dynamic lubricity due to mechanical oscillations are investigated with an atomic force microscope in ambient environmental conditions with different relative humidity (RH) levels. Experimental results demonstrate that high humidity at low-temperature regime enhances the liquid lubricity while at high-temperature regime it hinders the effect of the thermolubricity due to the formation of liquid bridges. Friction response to the dynamic lubricity in both high- and low-temperature regimes keeps the same trends, namely the friction force decreases with increasing the amplitude of the applied vibration on the tip regardless of the RH levels. An interesting finding is that for the dynamic lubricity at high temperature, high-humidity condition leads to the friction forces higher than that at low-humidity condition while at low temperature the opposite trend is observed. An extended two-dimensional dynamic model accounting for the RH is proposed to interpret the frictional mechanism in ambient conditions.

  6. Modification of thermoregulatory responses in rabbits reared at elevated environmental temperatures.

    PubMed Central

    Cooper, K E; Ferguson, A V; Veale, W L

    1980-01-01

    1. Pregnant New Zealand white rabbits were kept from 14 days pre-partum at an environmental temperature of 33 degrees C, and their offspring were reared at this temperature. 2. In response to a 4 hr cold exposure, animals (aged 90-180 days) raised in this way showed significant drops in colonic temperature (-2.7 +/- 0.5 degrees C) while control animals reared at 20 degrees C did not (+0.05 +/- 0.1 degrees C). 3. A reduced, monophasic endotoxin fever was observed in animals reared at 33 degrees C, while a normal biphasic fever was seen in rabbits originally reared at 20 degrees C and subsequently acclimated to 33 degrees C. 4. A greatly reduced temperature response to intravenous infusion of noradrenaline was also found in animals raised at 33 degrees C. 5. It is proposed that thermal afferent input during early life may play an important role in the development of the thermoregulatory system. PMID:7431230

  7. 78 FR 8705 - Approval and Promulgation of Air Quality Implementation Plans; States of Minnesota and Michigan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... pollutants can lead to secondary environmental problems, as well as increased energy consumption. The Band... companies had demonstrated that burner designs that lower flame temperature can reduce NO X formation in... temperature, which is the opposite strategy needed for minimizing PIC (i.e., increasing combustion temperature...

  8. Influence of ambient temperatures on the production of restraint ulcers in the rat

    NASA Technical Reports Server (NTRS)

    Buchel, L.; Gallaire, D.

    1980-01-01

    A study of the influence of ambient temperature on the production of restraint ulcers in the rat is described. It concludes that the production of restrain ulcers, is favored by the reduction of the environmental temperature, whether the rat has been subjected to a fast or not.

  9. Nutrient losses from Fall and Winter-applied manure: Effects of timing and soil temperature

    USDA-ARS?s Scientific Manuscript database

    Soil temperature is a major environmental factor that affects both the infiltration of meltwater and precipitation, and nutrient cycling. The objectives of this study were to determine nutrient losses in runoff and leachate from fall and winter-applied dairy manure based on the soil temperature at t...

  10. Nutrient losses from fall- and winter-applied manure: effects of timing and soil temperature

    USDA-ARS?s Scientific Manuscript database

    Soil temperature is a major environmental factor that affects meltwater and precipitation infiltration and nutrient cycling. The objective of this study was to determine nutrient losses in runoff and leachate from fall- and winter-applied dairy manure as affected by soil temperature at the time of a...

  11. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    Treesearch

    Melissa L. Snover; Michael J. Adams; Donald T. Ashton; Jamie B. Bettaso; Hartwell H. Welsh

    2015-01-01

    Summary1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing...

  12. Stabilizing Crystal Oscillators With Melting Metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1984-01-01

    Heat of fusion provides extended period of constant temperature and frequency. Crystal surrounded by metal in spherical container. As outside temperature rises to melting point of metal, metal starts to liquefy; but temperature stays at melting point until no solid metal remains. Potential terrestrial applications include low-power environmental telemetering transmitters and instrumentation transmitters for industrial processes.

  13. Northern Russian chironomid-based modern summer temperature data set and inference models

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Self, Angela E.; Brooks, Stephen J.; van Hardenbroek, Maarten; Herzschuh, Ulrike; Diekmann, Bernhard

    2015-11-01

    West and East Siberian data sets and 55 new sites were merged based on the high taxonomic similarity, and the strong relationship between mean July air temperature and the distribution of chironomid taxa in both data sets compared with other environmental parameters. Multivariate statistical analysis of chironomid and environmental data from the combined data set consisting of 268 lakes, located in northern Russia, suggests that mean July air temperature explains the greatest amount of variance in chironomid distribution compared with other measured variables (latitude, longitude, altitude, water depth, lake surface area, pH, conductivity, mean January air temperature, mean July air temperature, and continentality). We established two robust inference models to reconstruct mean summer air temperatures from subfossil chironomids based on ecological and geographical approaches. The North Russian 2-component WA-PLS model (RMSEPJack = 1.35 °C, rJack2 = 0.87) can be recommended for application in palaeoclimatic studies in northern Russia. Based on distinctive chironomid fauna and climatic regimes of Kamchatka the Far East 2-component WAPLS model (RMSEPJack = 1.3 °C, rJack2 = 0.81) has potentially better applicability in Kamchatka.

  14. Pressure and temperature interactions on aerobic metabolism of migrating European silver eel.

    PubMed

    Scaion, D; Belhomme, M; Sébert, P

    2008-12-31

    During their migration for reproduction, European eels have to cope with many environmental factors changes. The main changes concern hydrostatic pressure and temperature that are important environmental and physiological factors when considering life in the deep sea. We focus on the consequences of pressure (from 0.1 to 12.1MPa by 1MPa steps) and temperature (9, 15, 22 degrees C) shifts on the oxygen consumption (MO(2)) at the whole animal level. Because of their morphological differences, we are also interested in males and females to evaluate the best conditions for migration. Firstly, whatever temperature, males present higher aerobic capacities than females at atmospheric pressure. Secondly, an increase in temperature increases the pressure effects in males (synergy) but decreases them in females (opposite effects). We raise the hypothesis that two different migration strategies could be used in the water column in order to reach the breeding area: males could tend to privilege pressure and cold waters (deep water) and females, on the other hand, could opt for warmer temperature surface waters.

  15. Effects of environmental temperature change on mercury absorption in aquatic organisms with respect to climate warming.

    PubMed

    Pack, Eun Chul; Lee, Seung Ha; Kim, Chun Huem; Lim, Chae Hee; Sung, Dea Gwan; Kim, Mee Hye; Park, Ki Hwan; Lim, Kyung Min; Choi, Dal Woong; Kim, Suhng Wook

    2014-01-01

    Because of global warming, the quantity of naturally generated mercury (Hg) will increase, subsequently methylation of Hg existing in seawater may be enhanced, and the content of metal in marine products rise which consequently results in harm to human health. Studies of the effects of temperatures on Hg absorption have not been adequate. In this study, in order to observe the effects of temperature changes on Hg absorption, inorganic Hg or methylmercury (MeHg) was added to water tanks containing loaches. Loach survival rates decreased with rising temperatures, duration, and exposure concentrations in individuals exposed to inorganic Hg and MeHg. The MeHg-treated group died sooner than the inorganic Hg-exposed group. The total Hg and MeHg content significantly increased with temperature and time in both metal-exposed groups. The MeHg-treated group had higher metal absorption rates than inorganic Hg-treated loaches. The correlation coefficients for temperature elevation and absorption were significant in both groups. The results of this study may be used as basic data for assessing in vivo hazards from environmental changes such as climate warming.

  16. FDR Soil Moisture Sensor for Environmental Testing and Evaluation

    NASA Astrophysics Data System (ADS)

    Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin

    To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.

  17. Effects of environmental conditions on the ultrafast carrier dynamics in graphene revealed by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Hafez, H. A.; Chai, X.; Sekine, Y.; Takamura, M.; Oguri, K.; Al-Naib, I.; Dignam, M. M.; Hibino, H.; Ozaki, T.

    2017-04-01

    A thorough understanding of the stability of graphene under ambient environmental conditions is essential for future graphene-based applications. In this paper, we study the effects of ambient temperature on the properties of monolayer graphene using terahertz time-domain spectroscopy as well as time-resolved terahertz spectroscopy enabled by an optical-pump/terahertz-probe technique. The observations show that graphene is extremely sensitive to the ambient environmental conditions and behaves differently depending on the sample preparation technique and the initial Fermi level. The analysis of the spectroscopic data is supported by van der Pauw and Hall effect measurements of the carrier mobility and carrier density at temperatures comparable to those tested in our THz spectroscopic experiments.

  18. Environmental Studies on Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Bartolotta, Paul A.; Smialek, James L.; Brady, Michael P.

    2005-01-01

    Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.

  19. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows.

    PubMed

    West, J W; Mullinix, B G; Bernard, J K

    2003-01-01

    Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.

  20. Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s.

    PubMed

    Christiansen-Jucht, Céline D; Parham, Paul E; Saddler, Adam; Koella, Jacob C; Basáñez, María-Gloria

    2015-09-17

    Anopheles mosquito life-history parameters and population dynamics strongly influence malaria transmission, and environmental factors, particularly temperature, strongly affect these parameters. There are currently some studies on how temperature affects Anopheles gambiae s.s. survival but very few exist examining other life-history traits. We investigate here the effect of temperature on population dynamics parameters. Anopheles gambiae s.s. immatures were reared individually at 23 ± 1 °C, 27 ± 1 °C, 31 ± 1 °C, and 35 ± 1 °C, and adults were held at their larval temperature or at one of the other temperatures. Larvae were checked every 24 h for development to the next stage and measured for size; wing length was measured as a proxy for adult size. Females were blood fed three times, and the number of females feeding and laying eggs was counted. The numbers of eggs and percentage of eggs hatched were recorded. Increasing temperatures during the larval stages resulted in significantly smaller larvae (p = 0.005) and smaller adults (p < 0.001). Adult temperature had no effect on the time to egg laying, and the larval temperature of adults only affected the incubation period of the first egg batch. Temperature influenced the time to hatching of eggs, as well as the time to development at every stage. The number of eggs laid was highest when adults were kept at 27 °C, and lowest at 31 °C, and higher adult temperatures decreased the proportion of eggs hatching after the second and third blood meal. Higher adult temperatures significantly decreased the probability of blood feeding, but the larval temperature of adults had no influence on the probability of taking a blood meal. Differences were observed between the first, second, and third blood meal in the times to egg laying and hatching, number of eggs laid, and probabilities of feeding and laying eggs. Our study shows that environmental temperature during the larval stages as well as during the adult stages affects Anopheles life-history parameters. Data on how temperature and other climatic factors affect vector life-history parameters are necessary to parameterise more reliably models predicting how global warming may influence malaria transmission.

  1. Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2-xTiCoO6 double perovskites

    NASA Astrophysics Data System (ADS)

    Saxena, Mandvi; Roy, Pinku; Acharya, Megha; Bose, Imon; Tanwar, Khagesh; Maiti, Tanmoy

    2016-12-01

    Environmental friendly, non-toxic double perovskite BaxSr2-xTiCoO6 compositions with 0 ≤ x ≤ 0.2 were synthesized using solid-state reaction route for high temperature thermoelectric (TE) applications. XRD and SEM studies confirmed the presence of single-phase solid solution with highly dense microstructure for all the oxide compositions. Temperature dependent electrical conductivity measurement showed semiconductor to metal (M-S) transition in these double perovskites. Incorporation of barium in Sr2TiCoO6 pushed M-S transition to higher temperature making it a potential candidate for high temperature TE applications. Conductivity behaviors of these oxides were explained by small polaron model. Furthermore, these oxides exhibit a glass like behavior resulting in low thermal conductivity. Low temperature dielectric measurement revealed relaxor ferroelectric behavior in these oxides below room temperature. Transition of these relaxors into a glassy state beyond Burns temperature (TD) was found responsible for having low thermal conductivity in these oxides. Maximum dimensionless TE figure-of-merit ZT = 0.29 at 1223 K was achieved for BaxSr2-xTiCoO6 composition with x = 0.2.

  2. Impacts of temperature and lunar day on gene expression profiles during a monthly reproductive cycle in the brooding coral Pocillopora damicornis.

    PubMed

    Crowder, Camerron M; Meyer, Eli; Fan, Tung-Yung; Weis, Virginia M

    2017-08-01

    Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways. © 2017 John Wiley & Sons Ltd.

  3. Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae.

    PubMed

    Seal, Charlotte E; Daws, Matthew I; Flores, Joel; Ortega-Baes, Pablo; Galíndez, Guadalupe; León-Lobos, Pedro; Sandoval, Ana; Ceroni Stuva, Aldo; Ramírez Bullón, Natali; Dávila-Aranda, Patricia; Ordoñez-Salanueva, Cesar A; Yáñez-Espinosa, Laura; Ulian, Tiziana; Amosso, Cecilia; Zubani, Lino; Torres Bilbao, Alberto; Pritchard, Hugh W

    2017-12-01

    Recruitment from seeds is among the most vulnerable stage for plants as global temperatures change. While germination is the means by which the vast majority of the world's flora regenerate naturally, a framework for accurately predicting which species are at greatest risk of germination failure during environmental perturbation is lacking. Taking a physiological approach, we assess how one family, the Cactaceae, may respond to global temperature change based on the thermal buffering capacity of the germination phenotype. We selected 55 cactus species from the Americas, all geo-referenced seed collections, reflecting the broad environmental envelope of the family across 70° of latitude and 3700 m of altitude. We then generated empirical data of the thermal germination response from which we estimated the minimum (T b ), optimum (T o ) and ceiling (T c ) temperature for germination and the thermal time (θ 50 ) for each species based on the linearity of germination rate with temperature. Species with the highest T b and lowest T c germinated fastest, and the interspecific sensitivity of the germination rate to temperature, as assessed through θ 50 , varied tenfold. A left-skewed asymmetry in the germination rate with temperature was relatively common but the unimodal pattern typical of crop species failed for nearly half of the species due to insensitivity to temperature change at T o . For 32 fully characterized species, seed thermal parameters correlated strongly with the mean temperature of the wettest quarter of the seed collection sites. By projecting the mean temperature of the wettest quarter under two climate change scenarios, we predict under the least conservative scenario (+3.7°C) that 25% of cactus species will have reduced germination performance, whilst the remainder will have an efficiency gain, by the end of the 21st century. © 2017 John Wiley & Sons Ltd.

  4. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth

    NASA Astrophysics Data System (ADS)

    Brand, David; Wijewardana, Chathurika; Gao, Wei; Reddy, K. Raja

    2016-12-01

    Interactive effects of multiple environmental stresses are predicted to have a negative effect on cotton growth and development and these effects will be exacerbated in the future climate. The objectives of this study were to test the hypothesis that cotton cultivars differ in their responses to multiple environmental factors of (CO2) [400 and 750 µmol·mol-1 (+(CO2)], temperature [28/20 and 20/12°C (-T)], and UV-B radiation [0 and 10 kJ·m-2·d-1 (+ UV-B)]. A genetic and molecular standard (TM-1) and three modern cotton cultivars (DP1522B2XF, PHY496W3R, and ST4747GLB2) were grown in eight sunlit, controlled environment chambers with control treatment 400 µmol·mol-1 [CO2], 28/21°C temperature, and 0 kJ UV-B. The results showed significant differences among the cultivars for most of the shoot and root parameters. Plants grown under low temperature alone or as a combination with + UV-B treatment caused more detrimental effects on root and shoot vigor. Although the elevated CO2 treatments weakened the damaging effects of higher UV-B levels on cotton growth on all cultivars, increased CO2 could not mask the negative effects of low temperature. When comparing all cultivars, genetic standard TM-1 produced the smallest values for the majority of traits under CO2, UV-B, and low temperature either alone or in combination with other treatments. Based on principal component analysis, the four cultivars were classified as tolerant (DP1522B2XF), intermediate (PHY496W3R and ST4747GLB2) and sensitive (TM-1) to multiple environmental stresses.Low temperature was identified as the most damaging treatment to cotton early seedling vigor while elevated CO2 caused the least. Existing variability of cotton cultivars in response to multiple environmental stresses could allow for selection of cultivars with the best coping ability and higher lint yield for future climate change environments.

  5. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca).

    PubMed

    Hamilton, Jill A; El Kayal, Walid; Hart, Ashley T; Runcie, Daniel E; Arango-Velez, Adriana; Cooke, Janice E K

    2016-11-01

    Timely responses to environmental cues enable the synchronization of phenological life-history transitions essential for the health and survival of north-temperate and boreal tree species. While photoperiodic cues will remain persistent under climate change, temperature cues may vary, contributing to possible asynchrony in signals influencing developmental and physiological transitions essential to forest health. Understanding the relative contribution of photoperiod and temperature as determinants of the transition from active growth to dormancy is important for informing adaptive forest management decisions that consider future climates. Using a combination of photoperiod (long = 20 h or short = 8 h day lengths) and temperature (warm = 22 °C/16 °C and cool = 8 °C/4 °C day/night, respectively) treatments, we used microscopy, physiology and modeling to comprehensively examine hallmark traits of the growth-dormancy transition-including bud formation, growth cessation, cold hardiness and gas exchange-within two provenances of white spruce [Picea glauca (Moench) Voss] spanning a broad latitude in Alberta, Canada. Following exposure to experimental treatments, seedlings were transferred to favorable conditions, and the depth of dormancy was assessed by determining the timing and ability of spruce seedlings to resume growth. Short photoperiods promoted bud development and growth cessation, whereas longer photoperiods extended the growing season through the induction of lammas growth. In contrast, cool temperatures under both photoperiodic conditions delayed bud development. Photoperiod strongly predicted the development of cold hardiness, whereas temperature predicted photosynthetic rates associated with active growth. White spruce was capable of attaining endodormancy, but its release was environmentally determined. Dormancy depth varied substantially across experimental treatments suggesting that environmental cues experienced within one season could affect growth in the following season, which is particularly important for a determinate species such as white spruce. The joint influence of these environmental cues points toward the importance of including local constant photoperiod and shifting temperature cues into predictive models that consider how climate change may affect northern forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  7. Novel Effect of Berberine on Thermoregulation in Mice Model Induced by Hot and Cold Environmental Stimulation

    PubMed Central

    Lei, Fan; Kheir, Michael M.; Wang, Xin-Pei; Chai, Yu-Shuang; Yuan, Zhi-Yi; Lu, Xi; Xing, Dong-Ming; Du, Feng; Du, Li-Jun

    2013-01-01

    The purpose of this study was to assess the effects of berberine (BBR) on thermoregulation in mice exposed to hot (40°C) and cold (4°C) environmental conditions. Four groups of mice were assembled with three different dosages of BBR (0.2, 0.4, and 0.8 mg/kg) and normal saline (control). In room temperature, our largest dosage of BBR (0.8 mg/kg) can reduce rectal temperatures (Tc) of normal mice. In hot conditions, BBR can antagonize the increasing core body temperature and inhibit the expression of HSP70 and TNFα in mice; conversely, in cold conditions, BBR can antagonize the decreasing core body temperature and enhance the expression of TRPM8. This study demonstrates the dual ability of BBR in maintaining thermal balance, which is of great relevance to the regulation of HSP70, TNFα and TRPM8. PMID:23335996

  8. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  9. The integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in Schizaphis graminum.

    PubMed

    An, Chunju; Fei, Xiaodong; Chen, Wenfeng; Zhao, Zhangwu

    2012-04-01

    The wheat aphid Schizaphis graminum (Rondani) displays wing dimorphism with both winged and wingless adult morphs. The winged morph is an adaptive microevolutionary response to undesirable environmental conditions, including undesirable population density, photoperiod, temperature, and host plant. Here we studied the integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in S. graminum. The present results show that these four factors all play roles in inducing alate aphids in S. graminum but population density is the most important under almost all circumstances. In importance, population density is followed by photoperiod, host plant, and temperature, in that order. These results indicate that ambient environmental factors are highly important to stimulation of alate aphids in S. graminum, especially when population density reaches 64 individuals per leaf. © 2012 Wiley Periodicals, Inc.

  10. A thermosensory pathway that controls body temperature

    PubMed Central

    Nakamura, Kazuhiro; Morrison, Shaun F.

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions governed by the nervous system. Here we show a novel somatosensory pathway, which essentially constitutes the afferent arm of the thermoregulatory reflex triggered by cutaneous sensation of environmental temperature changes. Using rat in vivo electrophysiological and anatomical approaches, we revealed that lateral parabrachial neurons play a pivotal role in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this ‘thermoregulatory afferent’ pathway exists in parallel with the spinothalamocortical somatosensory pathway mediating temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis—two mechanisms fundamental to the nervous system and to our survival. PMID:18084288

  11. Development of an analytical environmental TEM system and its application.

    PubMed

    Kishita, Keisuke; Sakai, Hisashi; Tanaka, Hiromochi; Saka, Hiroyasu; Kuroda, Kotaro; Sakamoto, Masayuki; Watabe, Akira; Kamino, Takeo

    2009-12-01

    Many automotive materials, such as catalysts and fuel cell materials, undergo significant changes in structure or properties when subjected to temperature change or the addition of a gas. For this reason, in the development of these materials, it is important to study the behavior of the material under controlled temperatures and gaseous atmospheres. Recently, a new environmental transmission electron microscope (TEM) has been developed for observation with a high resolution at high temperatures and under gaseous atmospheres, thus making it possible to analyze reaction processes in details. Also, the new TEM provides a high degree of reproducibility of observation conditions, thus making it possible to compare and validate observation of various specimens under a given set of conditions. Furthermore, easiness of gas condition and temperature control can provide a powerful tool for the studying of the mechanism of material change, such as oxidation and reduction reactions.

  12. Climate and sex ratio variation in a viviparous lizard.

    PubMed

    Cunningham, George D; While, Geoffrey M; Wapstra, Erik

    2017-05-01

    The extent to which key biological processes, such as sex determination, respond to environmental fluctuations is fundamental for assessing species' susceptibility to ongoing climate change. Few studies, however, address how climate affects offspring sex in the wild. We monitored two climatically distinct populations of the viviparous skink Niveoscincus ocellatus for 16 years, recording environmental temperatures, offspring sex and date of birth. We found strong population-specific effects of temperature on offspring sex, with female offspring more common in warm years at the lowland site but no effect at the highland site. In contrast, date of birth advanced similarly in response to temperature at both sites. These results suggest strong population-specific effects of temperature on offspring sex that are independent of climatic effects on other physiological processes. These results have significant implications for our understanding of the ecological and evolutionary consequences of variation in sex ratios under climate change. © 2017 The Author(s).

  13. A thermosensory pathway that controls body temperature.

    PubMed

    Nakamura, Kazuhiro; Morrison, Shaun F

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

  14. Physiology of temperature regulation: comparative aspects.

    PubMed

    Bicego, Kênia C; Barros, Renata C H; Branco, Luiz G S

    2007-07-01

    Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia.

  15. Light and temperature shape nuclear architecture and gene expression.

    PubMed

    Kaiserli, Eirini; Perrella, Giorgio; Davidson, Mhairi Lh

    2018-06-14

    Environmental stimuli play a major role in modulating growth and development throughout the life-cycle of a plant. Quantitative and qualitative variations in light and temperature trigger changes in gene expression that ultimately shape plant morphology for adaptation and survival. Although the phenotypic and transcriptomic basis of plant responses to the constantly changing environment have been examined for decades, the relationship between global changes in nuclear architecture and adaption to environmental stimuli is just being uncovered. This review presents recent discoveries investigating how changes in light and temperature trigger changes in chromatin structure and nuclear organization with a focus on the role of gene repositioning and chromatin accessibility in regulating gene expression. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  16. Thermoregulation is impaired in an environment without circadian time cues

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.

    1978-01-01

    Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.

  17. Environmental and economic benefits of preserving forests within urban areas: air and water quality. Chapter 4.

    Treesearch

    David J. Nowak; Jun Wang; Ted Endreny

    2007-01-01

    Forests and trees in urban areas provide many environmental and economic benefits that can lead to improved environmental quality and human health. These benefits include improvements in air and water quality, richer terrestrial and aquatic habitat, cooler air temperatures, and reductions in building energy use, ultraviolet radiation levels, and noise. As urbanization...

  18. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation

    PubMed Central

    MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE

    2014-01-01

    Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783

  19. A Novel Cloud-Based Service Robotics Application to Data Center Environmental Monitoring

    PubMed Central

    Russo, Ludovico Orlando; Rosa, Stefano; Maggiora, Marcello; Bona, Basilio

    2016-01-01

    This work presents a robotic application aimed at performing environmental monitoring in data centers. Due to the high energy density managed in data centers, environmental monitoring is crucial for controlling air temperature and humidity throughout the whole environment, in order to improve power efficiency, avoid hardware failures and maximize the life cycle of IT devices. State of the art solutions for data center monitoring are nowadays based on environmental sensor networks, which continuously collect temperature and humidity data. These solutions are still expensive and do not scale well in large environments. This paper presents an alternative to environmental sensor networks that relies on autonomous mobile robots equipped with environmental sensors. The robots are controlled by a centralized cloud robotics platform that enables autonomous navigation and provides a remote client user interface for system management. From the user point of view, our solution simulates an environmental sensor network. The system can easily be reconfigured in order to adapt to management requirements and changes in the layout of the data center. For this reason, it is called the virtual sensor network. This paper discusses the implementation choices with regards to the particular requirements of the application and presents and discusses data collected during a long-term experiment in a real scenario. PMID:27509505

  20. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  1. Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl₃/EMIMCl Electrolyte.

    PubMed

    Ellingsen, Linda Ager-Wick; Holland, Alex; Drillet, Jean-Francois; Peters, Willi; Eckert, Martin; Concepcion, Carlos; Ruiz, Oscar; Colin, Jean-François; Knipping, Etienne; Pan, Qiaoyan; Wills, Richard G A; Majeau-Bettez, Guillaume

    2018-06-01

    Recently, rechargeable aluminum batteries have received much attention due to their low cost, easy operation, and high safety. As the research into rechargeable aluminum batteries with a room-temperature ionic liquid electrolyte is relatively new, research efforts have focused on finding suitable electrode materials. An understanding of the environmental aspects of electrode materials is essential to make informed and conscious decisions in aluminum battery development. The purpose of this study was to evaluate and compare the relative environmental performance of electrode material candidates for rechargeable aluminum batteries with an AlCl₃/EMIMCl (1-ethyl-3-methylimidazolium chloride) room-temperature ionic liquid electrolyte. To this end, we used a lifecycle environmental screening framework to evaluate 12 candidate electrode materials. We found that all of the studied materials are associated with one or more drawbacks and therefore do not represent a "silver bullet" for the aluminum battery. Even so, some materials appeared more promising than others did. We also found that aluminum battery technology is likely to face some of the same environmental challenges as Li-ion technology but also offers an opportunity to avoid others. The insights provided here can aid aluminum battery development in an environmentally sustainable direction.

  2. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  3. Life on the boundary: Environmental factors as drivers of habitat distribution in the littoral zone

    NASA Astrophysics Data System (ADS)

    Cefalì, Maria Elena; Cebrian, Emma; Chappuis, Eglantine; Pinedo, Susana; Terradas, Marc; Mariani, Simone; Ballesteros, Enric

    2016-04-01

    The boundary between land and sea, i.e. the littoral zone, is home to a large number of habitats whose distribution is primarily driven by the distance to the sea level but also by other environmental factors such as littoral's geomorphological features, wave exposure, water temperature or orientation. Here we explore the relative importance of those major environmental factors that drive the presence of littoral rocky habitats along 1100 Km of Catalonia's shoreline (Spain, NW Mediterranean) by using Geographic Information Systems and Generalized Linear Models. The distribution of mediolittoral and upper infralittoral habitats responded to different environmental factors. Mediolittoral habitats showed regional differences drawn by sea-water temperature and substrate type. Wave exposure (hydrodynamism), slope and geological features were only relevant to those mediolittoral habitats with specific environmental needs. We did not find any regional pattern of distribution in upper infralittoral habitats, and selected factors only played a moderate role in habitat distribution at the local scale. This study shows for the first time that environmental factors determining habitat distribution differ within the mediolittoral and the upper infralittoral zones and provides the basis for further development of models oriented at predicting the distribution of littoral marine habitats.

  4. Daily rhythmicity of the thermoregulatory responses of locally adapted Brazilian sheep in a semiarid environment.

    PubMed

    da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista

    2017-07-01

    The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m 2  h -1 ). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at approximately 5:00 p.m.; however, these findings confirm the importance of providing environmental protection during critical periods of the day, even for locally adapted breeds. These responses suggest that the use of thermal storage allowed the animals to achieve equilibrium with the environment and maintain a stable body temperature.

  5. Daily rhythmicity of the thermoregulatory responses of locally adapted Brazilian sheep in a semiarid environment

    NASA Astrophysics Data System (ADS)

    da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista

    2017-07-01

    The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m2 h-1). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at approximately 5:00 p.m.; however, these findings confirm the importance of providing environmental protection during critical periods of the day, even for locally adapted breeds. These responses suggest that the use of thermal storage allowed the animals to achieve equilibrium with the environment and maintain a stable body temperature.

  6. Monitoring the Environment: The Use of Electronic Meters and Chemical or Bacteriological Tests.

    ERIC Educational Resources Information Center

    Crellin, J. R.; Tranter, J.

    1978-01-01

    A review is given of electronic environmental meters available for use in schools. Included are conductivity, oxygen, pH, and temperature meters. Chemical test papers and kits for use in environmental studies are included. (BB)

  7. Monitoring loading and environmental effects on bridge performance : research brief.

    DOT National Transportation Integrated Search

    2011-03-01

    A pilot project was initiated to assess the performance of the HPS bridge members as well as to evaluate : the response of the structure to actual traffic and environmental loads under in-service conditions : through monitoring of strain, temperature...

  8. Elevated temperature alters proteomic responses of individual organisms within a biofilm community

    DOE PAGES

    Mosier, Annika C.; Li, Zhou; Thomas, Brian C.; ...

    2014-07-22

    Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. In this paper, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entiremore » community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Finally, overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.« less

  9. Thermal tolerance in the keystone species Daphnia magna-a candidate gene and an outlier analysis approach.

    PubMed

    Jansen, M; Geerts, A N; Rago, A; Spanier, K I; Denis, C; De Meester, L; Orsini, L

    2017-04-01

    Changes in temperature have occurred throughout Earth's history. However, current warming trends exacerbated by human activities impose severe and rapid loss of biodiversity. Although understanding the mechanisms orchestrating organismal response to climate change is important, remarkably few studies document their role in nature. This is because only few systems enable the combined analysis of genetic and plastic responses to environmental change over long time spans. Here, we characterize genetic and plastic responses to temperature increase in the aquatic keystone grazer Daphnia magna combining a candidate gene and an outlier analysis approach. We capitalize on the short generation time of our species, facilitating experimental evolution, and the production of dormant eggs enabling the analysis of long-term response to environmental change through a resurrection ecology approach. We quantify plasticity in the expression of 35 candidate genes in D. magna populations resurrected from a lake that experienced changes in average temperature over the past century and from experimental populations differing in thermal tolerance isolated from a selection experiment. By measuring expression in multiple genotypes from each of these populations in control and heat treatments, we assess plastic responses to extreme temperature events. By measuring evolutionary changes in gene expression between warm- and cold-adapted populations, we assess evolutionary response to temperature changes. Evolutionary response to temperature increase is also assessed via an outlier analysis using EST-linked microsatellite loci. This study provides the first insights into the role of plasticity and genetic adaptation in orchestrating adaptive responses to environmental change in D. magna. © 2017 John Wiley & Sons Ltd.

  10. Multicenter Study on Incubation Conditions for Environmental Monitoring and Aseptic Process Simulation.

    PubMed

    Guinet, Roland; Berthoumieu, Nicole; Dutot, Philippe; Triquet, Julien; Ratajczak, Medhi; Thibaudon, Michel; Bechaud, Philippe; Arliaud, Christophe; Miclet, Edith; Giordano, Florine; Larcon, Marjorie; Arthaud, Catherine

    Environmental monitoring and aseptic process simulations represent an integral part of the microbiological quality control system of sterile pharmaceutical products manufacturing operations. However, guidance documents and manufacturers practices differ regarding recommendations for incubation time and incubation temperature, and, consequently, the environmental monitoring and aseptic process simulation incubation strategy should be supported by validation data. To avoid any bias coming from in vitro studies or from single-site manufacturing in situ studies, we performed a collaborative study at four manufacturing sites with four samples at each location. The environmental monitoring study was performed with tryptic soy agar settle plates and contact plates, and the aseptic process simulation study was performed with tryptic soy broth and thioglycolate broth. The highest recovery rate was obtained with settle plates (97.7%) followed by contact plates (65.4%) and was less than 20% for liquid media (tryptic soy broth 19% and thioglycolate broth 17%). Gram-positive cocci and non-spore-forming Gram-positive rods were largely predominant with more than 95% of growth and recovered best at 32.5 °C. The highest recovery of molds was obtained at 22.5 °C alone or as the first incubation temperature. Strict anaerobes were not recovered. At the end of the five days of incubation no significant statistical difference was obtained between the four conditions. Based on these data a single incubation temperature at 32.5 °C could be recommended for these four manufacturing sites for both environmental monitoring and aseptic process simulation, and a second plate could be used, periodically incubated at 22.5 °C. Similar studies should be considered for all manufacturing facilities in order to determine the optimal incubation temperature regime for both viable environmental monitoring and aseptic process simulation. Microbiological environmental monitoring and aseptic process simulation confirm that pharmaceutical cleanrooms are in an appropriate hygienic condition for manufacturing of sterile drug products. Guidance documents from different health authorities or expert groups differ regarding recommendation of the applied incubation time and incubation temperature, leading to variable manufacturers practices. Some recent publications have demonstrated that laboratory studies are not relevant to determine the best incubation regime and that in situ manufacturing site studies should be used. To solve any possible bias coming from laboratory studies or single-site in situ studies, we conducted a multicenter study at four manufacturing sites with a significant amount of real environmental monitoring samples collected directly from the environment in pharmaceutical production during manufacturing operations with four solid and liquid nutrient media. These samples were then incubated under four different conditions suggested in the guidance documents. We believe that the results of our multicenter study confirming recent other single-site in situ studies could be the basis of the strategy to determine the best incubation regime for both viable environmental monitoring and aseptic process simulation in any manufacturing facility. © PDA, Inc. 2017.

  11. Environmental Effects on Hysteresis of Transfer Characteristics in Molybdenum Disulfide Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Shimazu, Yoshihiro; Tashiro, Mitsuki; Sonobe, Satoshi; Takahashi, Masaki

    2016-07-01

    Molybdenum disulfide (MoS2) has recently received much attention for nanoscale electronic and photonic applications. To explore the intrinsic properties and enhance the performance of MoS2-based field-effect transistors, thorough understanding of extrinsic effects such as environmental gas and contact resistance of the electrodes is required. Here, we report the effects of environmental gases on the transport properties of back-gated multilayered MoS2 field-effect transistors. Comparisons between different gases (oxygen, nitrogen, and air and nitrogen with varying relative humidities) revealed that water molecules acting as charge-trapping centers are the main cause of hysteresis in the transfer characteristics. While the hysteresis persisted even after pumping out the environmental gas for longer than 10 h at room temperature, it disappeared when the device was cooled to 240 K, suggesting a considerable increase in the time constant of the charge trapping/detrapping at these modestly low temperatures. The suppression of the hysteresis or instability in the easily attainable temperature range without surface passivation is highly advantageous for the device application of this system. The humidity dependence of the threshold voltages in the transfer curves indicates that the water molecules dominantly act as hole-trapping centers. A strong dependence of the on-state current on oxygen pressure was also observed.

  12. The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird.

    PubMed

    Amininasab, Seyed Mehdi; Kingma, Sjouke A; Birker, Martje; Hildenbrandt, Hanno; Komdeur, Jan

    Incubation is an important aspect of avian life history. The behaviour is energetically costly, and investment in incubation strategies within species, like female nest attentiveness and the feeding by the non-incubating partner during incubation, can therefore vary depending on environmental and individual characteristics. However, little is known about the combined effect of these characteristics. We investigated the importance of ambient temperature, habitat quality, and bird age on female incubation behaviour and male feeding of the incubating female (incubation feeding) in blue tits Cyanistes caeruleus , a socially monogamous songbird. An increase in ambient temperature resulted in a higher nest temperature, and this enabled females to increase the time off the nest for self-maintenance activities. Probably as a consequence of this, an increase in ambient temperature was associated with fewer incubation feedings by the male. Moreover, in areas with more food available (more deciduous trees), females had shorter incubation recesses and males fed females less often. Additionally, males fed young females more, presumably to increase such females' investment in their eggs, which were colder on average (despite the length of recesses and female nest attentiveness being independent of female age). Male age did not affect incubation feeding rate. In conclusion, the patterns of incubation behaviour were related to both environmental and individual characteristics, and male incubation feeding was adjusted to females' need for food according these characteristics, which can facilitate new insights to the study of avian incubation energetics. Parents often invest a substantial amount of energy in raising offspring. How much they do so depends on several environmental factors and on the extent they cooperate to raise the offspring. In birds, males can feed incubating females, which may allow females to stay longer on the nest, which, in turn, may ultimately improve reproductive success. The interplay between environmental factors and such incubation feeding on incubation attendance has, however, received little attention. Here, we show that favourable circumstances (higher ambient temperature and food availability) allowed incubating blue tit females to increase the time off the nest to improve self-maintenance and males to feed them less, whereas males also fed inexperienced partners more often. Thus, we show a concerted effect of several environmental and intrinsic factors on parental effort during incubation, which will help to improve the general understanding of avian incubation and parental care.

  13. Chlorophyll fluorescence analysis revealed essential roles of FtsH 11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature

    USDA-ARS?s Scientific Manuscript database

    Background: Photosynthetic systems are known to be sensitive to high temperature stress. To maintain a relatively “normal” level of photosynthetic activities, plants employ a variety of adaptive mechanisms in response to environmental temperature fluctuations. Previously, we reported that the chloro...

  14. Boundaries for biofilm formation: humidity and temperature.

    PubMed

    Else, Terry Ann; Pantle, Curtis R; Amy, Penny S

    2003-08-01

    Environmental conditions which define boundaries for biofilm production could provide useful ecological information for biofilm models. A practical use of defined conditions could be applied to the high-level nuclear waste repository at Yucca Mountain. Data for temperature and humidity conditions indicate that decreases in relative humidity or increased temperature severely affect biofilm formation on three candidate canister metals.

  15. Environmental effects on germination of Carex utriculata and Carex nebrascensis relative to riparian restoration

    Treesearch

    Kimberly L. Jones; Bruce A. Roundy; Nancy L. Shaw; Jeffrey R. Taylor

    2004-01-01

    Seasonal riparian seedbed temperatures were measured and germination of Carex utriculata and C. nebrascensis seeds was tested in relation to chilling, perigynia removal, incubation temperature, and light to help guide propagation and direct seeding of these species for riparian restoration. Diurnal temperatures of riparian seedbeds at two sites in Strawberry Valley,...

  16. Increasing synchrony of high temperature and low flow in western North American streams: Double trouble for coldwater biota?

    Treesearch

    Ivan Arismendi; Mohammad Safeeq; Sherri L. Johnson; Jason B Dunham; Roy Haggerty

    2013-01-01

    Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and...

  17. Soil temperature and precipitation affect the rooting ability of dormant hardwood cuttings of Populus

    Treesearch

    R.S., Jr. Zalesny; R.B. Hall; E.O. Bauer; D.E. Riemenschneider

    2005-01-01

    In addition to genetic control, responses to environmental stimuli affect the success of rooting. Our objectives were to: 1) assess the variation in rooting ability among 21 Populus clones grown under varying soil temperatures and amounts of precipitation and 2) identify combinations of soil temperature and precipitation that promote rooting. The...

  18. Relative humidity from psychrometric data

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.

    1976-01-01

    Analytical equation for computing relative humidity as function of wet bulb temperature, dry bulb temperature, and atmospheric pressure is suitable for use with calculator or computer. Analytical expressions may be useful for chemical process control systems and building environmental control systems.

  19. Effect of farm and simulated laboratory cold environmental conditions on the performance and physiological responses of lactating dairy cows supplemented with bovine somatotropin (BST)

    NASA Astrophysics Data System (ADS)

    Becker, B. A.; Johnson, H. D.; Li, R.; Collier, R. J.

    1990-09-01

    A study was conducted to evaluate the effect of bovine somatotropin (BST) supplementation in twelve lactating dairy cows maintained in cold environmental conditions. Six cows were injected daily with 25 mg of BST; the other six were injected with a control vehicle. Cows were maintained under standard dairy management during mid-winter for 30 days. Milk production was recorded twice daily, and blood samples were taken weekly. Animals were then transferred to environmentally controlled chambers and exposed to cycling thermoneutral (15° to 20° C) and cycling cold (-5° to +5° C) temperatures for 10 days in a split-reversal design. Milk production, feed and water intake, body weights and rectal temperatures were monitored. Blood samples were taken on days 1, 3, 5, 8 and 10 of each period and analyzed for plasma triiodothyronine (T3), thyroxine (T4), cortisol, insulin and prolactin. Under farm conditions, BST-treated cows produced 11% more milk than control-treated cows and in environmentally controlled chambers produced 17.4% more milk. No differences due to BST in feed or water intake, body weights or rectal temperatures were found under laboratory conditions. Plasma T3 and insulin increased due to BST treatment while no effect was found on cortisol, prolactin or T4. The results showed that the benefits of BST supplementation in lactating dairy cows were achieved under cold environmental conditions.

  20. Thermal and hydric aspects of environmental heterogeneity in the pitcher plant mosquito

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsolver, J.G.

    1979-12-01

    In an attempt to define environmental heteogeneity and uncertainty in a meaningful manner, thermal and hydric aspects of the microenvironment of the pitcher plant mosquito (Wyeomyia smithii) were studied. Mechanistic mass and energy balance models were developed to predict surface temperatures in a Sphagnum bog and temperatures and water losses in Sarracenia purpurea pitchers. Field tests indicate that the models predicted surface and pitcher temperatures within 2 to 3/sup 0/C, and hourly and daily water losses from pitchers to within 30%, using only basic meteorological data as inputs. Experiments and observations in a natural population of W. smithii in northernmore » Michigan, USA revealed significant differences in larval developmental rate, voltinism, and larval mortality due to microclimatic effects. The model predicts larval developmental rates and voltinism for each micmicroclimate within 10%. Water loss smulations predict, and field observations confirm, that pitcher desiccation is a function of microclimate and pitcher size, and that rainfall patterns on the order of 5 to 30 d determine desiccation patterns. Identification of the spatial and temporal scale of both the environment and the organismic (population) phenomena in question is crucial to constructing a meaningful definition of environmental heterogeneity. Thermal and hydric components of environmental variation may plan an important role in the maintenance of fitness variation in W. smithii. These results support the hypothesis of Istock (1978) that environmental uncertainty favors mixed life history strategies in Wyeomyia.« less

  1. Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae.

    PubMed

    Schuhmacher, D A; Klose, K E

    1999-03-01

    The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.

  2. Plant-Pathogen Warfare under Changing Climate Conditions.

    PubMed

    Velásquez, André C; Castroverde, Christian Danve M; He, Sheng Yang

    2018-05-21

    Global environmental changes caused by natural and human activities have accelerated in the past 200 years. The increase in greenhouse gases is predicted to continue to raise global temperature and change water availability in the 21 st century. In this Review, we explore the profound effect the environment has on plant diseases - a susceptible host will not be infected by a virulent pathogen if the environmental conditions are not conducive for disease. The change in CO 2 concentrations, temperature, and water availability can have positive, neutral, or negative effects on disease development, as each disease may respond differently to these variations. However, the concept of disease optima could potentially apply to all pathosystems. Plant resistance pathways, including pattern-triggered immunity to effector-triggered immunity, RNA interference, and defense hormone networks, are all affected by environmental factors. On the pathogen side, virulence mechanisms, such as the production of toxins and virulence proteins, as well as pathogen reproduction and survival are influenced by temperature and humidity. For practical reasons, most laboratory investigations into plant-pathogen interactions at the molecular level focus on well-established pathosystems and use a few static environmental conditions that capture only a fraction of the dynamic plant-pathogen-environment interactions that occur in nature. There is great need for future research to increasingly use dynamic environmental conditions in order to fully understand the multidimensional nature of plant-pathogen interactions and produce disease-resistant crop plants that are resilient to climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Lactating performance, water and feed consumption of rabbit does reared under a Mediterranean summer circadian cycle of temperature v. comfort temperature conditions.

    PubMed

    Bakr, M H; Tusell, L; Rafel, O; Terré, M; Sánchez, J P; Piles, M

    2015-07-01

    The general aim of this research was to study the effect of high ambient temperature on the performance of does during lactation, specifically the following factors: average daily feed (ADFI) and water (ADWI) intakes, daily milk yield (DMY); milk composition: dry matter (DM), CP and gross energy (GE); doe BW (DW); individual kit weaning weight (IWW) and litter survival rate during lactation (SR). The study was undertaken comparing the performance of two groups of contemporary does reared under the same management, feeding regime and environmental conditions, except the environmental temperature and humidity. A total of 80 females were randomly allocated, at 60 days of age, into two identical and continuous rooms. In one room, the temperature was maintained permanently within the thermo-neutral zone (between 18°C to 22°C); thus, environmental conditions in this room were considered as comfort conditions. In the second room, the environmental temperature pattern simulated the daily temperature cycles that were characteristic of the summer in Mediterranean countries (24°C at 0800 h, increasing up to 29°C until 1100 h; maintenance at 29°C to 31°C for 4 h and decreasing to about 24°C to 26°C around 1700 h until 0800 h of the following day), which were considered as thermal stress conditions. Females followed a semi-intensive reproductive rhythm, first artificial insemination at 4.5 months of age, with subsequent 42-day reproductive cycles. Traits were recorded from a total of 138 lactations. Does were controlled up to the 5th lactation. Data were analyzed using linear and linear mixed models. High ambient temperature led to a lower ADFI (-9.4%), DW (-6.2%) and IWW (-8%), but it did not affect ADWI. No significant difference was found either for DMY, milk composition (DM, CP and GE) and SR during the lactation period. Heat stress was moderate, and does were able to adapt to it behaviorally by decreasing feed intake (to reduce heat production), but also live weight, allowing them to preserve milk yield and composition for assuring litter survival. On the other hand, water consumption could not be the main animal mechanism to overcome heat stress.

  4. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    NASA Astrophysics Data System (ADS)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  5. Prediction of human core body temperature using non-invasive measurement methods.

    PubMed

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  6. An algorithm for temperature correcting substrate moisture measurements: aligning substrate moisture responses with environmental drivers in polytunnel-grown strawberry plants

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl

    2015-04-01

    The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of

  7. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna)

    PubMed Central

    Peck, Lloyd S.

    2009-01-01

    The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (−1.9°C and −1.6°C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species. PMID:19404777

  8. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna).

    PubMed

    Clark, Melody S; Peck, Lloyd S

    2009-11-01

    The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (-1.9 degrees C and -1.6 degrees C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species.

  9. Long-term stability of amorphous-silicon modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1986-01-01

    The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.

  10. Antioxidant systems in supporting environmental and programmed adaptations to low temperatures.

    PubMed

    Blagojević, Dusko P

    2007-01-01

    Hetero and endothermic adaptive responses arising as a result of natural responses to environmental cues include antioxidant systems that support adaptations to environmental low temperatures in the broadest sense. These temperatures induce phase changes in energy production and consequently changes in the concentration of reactive oxygen species (ROS). The latter may lead to oxidative stress and the impairment of cellular homeostasis and antioxidant defence systems (ADS) scavenge the ROS so generated. In endotherms the ADS responds to oxidative pressure during acute cold stress conditions, this response is tissue specific and does not extend to prevent other oxidative damage. The early acute phase of cold exposure is accompanied by a significant depletion in redox equivalents. Under such conditions it is questionable if ADS has the capacity to neutralize elevated levels of ROS since there is also an increased energy demand and enhanced ATP consumption. Prolonged exposure to cold leads to ADS adaptation. Hibernators and freeze-tolerant species elevate their ADS before hibernation or freezing in order to prepare for and cope with re-awakening. The involvement of ROS and the role of the ADS in organisms subjected to low temperatures are features intercalated into physiological mechanisms of homestasis. The exact mechanisms for ADS regulation have not been fully defined and are the subject of many ongoing intriguing scientific investigations.

  11. [Electromechanical registration of the resting behavior of fattening pigs].

    PubMed

    Heuser, H; Plonait, H

    1977-10-05

    The resting behaviour of four weanling pigs has been continuously recorded by an electromechanical apparatus for 8 weeks. The duration of different postures: standing, ventral recumbency, lateral recumbency and frequency of standing periods were recorded as influenced by different environmental factors. 1. Floor with and without bedding at 21 degrees C. 2. Floor without bedding at 27 degrees C environmental temperature. 3. Feeding once daily versus twice. Duration of recumbency periods was increases at 21 degrees C if bedding was provided. This also improved daily gain. At elevated environmental temperatures the animals preferred the lying posture on concrete floor. Feeding twice increased the duration of recumbency. The same was the case as the animals grew older. Disturbance by caretaking activities in neighbouring dens increased the duration of standing.

  12. The effect of temperature on size and development in three species of benthic copepod.

    PubMed

    Abdullahi, B A; Laybourn-Parry, Johanna

    1985-09-01

    The effect of temperature on the size and development times of three benthic cyclopoid copepods, Acanthocyclops viridis, A. vernalis and Macrocyclops albidus were investigated within the normal environmental temperature range (5°C-20°C). Adult weight decreased as temperature increased. All three species complete their development at 5°C and development times at all temperatures are presented as curvilinear logarithmic temperature functions. The duration of development decreases as temperature rises. The results are compared with those reported else-where for benthic and planktonic species and the ecological implications are discussed.

  13. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA

    USGS Publications Warehouse

    Muths, E.; Pilliod, D.S.; Livo, L.J.

    2008-01-01

    Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and surrogates) at 261 boreal toad (Bufo boreas) breeding sites (97 clusters) along an 11?? latitudinal gradient in the Rocky Mountains to determine the distribution of B. dendrobatidis and examine environmental factors, such as temperature and elevation, that might affect its distribution. The fungus was detected at 64% of all clusters and occurred across a range of elevations (1030-3550 m) and latitudes (37.6-48.6??) but we detected it in only 42% of clusters in the south (site elevations higher), compared to 84% of clusters in the north (site elevations lower). Maximum ambient temperature (daily high) explained much of the variation in Bd occurrence in boreal toad populations and thus perhaps limits the occurrence of the pathogen in the Rocky Mountains to areas where climatic conditions facilitate optimal growth of the fungus. This information has implications in global climate change scenarios where warming temperatures may facilitate the spread of disease into previously un- or little-affected areas (i.e., higher elevations). This study provides the first regional-level, field-based effort to examine the relationship of environmental and geographic factors to the distribution of B. dendrobatidis in North America and will assist managers to focus on at-risk populations as determined by the local temperature regimes, latitude and elevation.

  14. An Alexandrium Spp. Cyst Record from Sequim Bay, Washington State, USA, and its Relation to Past Climate Variability(1).

    PubMed

    Feifel, Kirsten M; Moore, Stephanie K; Horner, Rita A

    2012-06-01

    Since the 1970s, Puget Sound, Washington State, USA, has experienced an increase in detections of paralytic shellfish toxins (PSTs) in shellfish due to blooms of the harmful dinoflagellate Alexandrium. Natural patterns of climate variability, such as the Pacific Decadal Oscillation (PDO), and changes in local environmental factors, such as sea surface temperature (SST) and air temperature, have been linked to the observed increase in PSTs. However, the lack of observations of PSTs in shellfish prior to the 1950s has inhibited statistical assessments of longer-term trends in climate and environmental conditions on Alexandrium blooms. After a bloom, Alexandrium cells can enter a dormant cyst stage, which settles on the seafloor and then becomes entrained into the sedimentary record. In this study, we created a record of Alexandrium spp. cysts from a sediment core obtained from Sequim Bay, Puget Sound. Cyst abundances ranged from 0 to 400 cysts · cm(-3) and were detected down-core to a depth of 100 cm, indicating that Alexandrium has been present in Sequim Bay since at least the late 1800s. The cyst record allowed us to statistically examine relationships with available environmental parameters over the past century. Local air temperature and sea surface temperature were positively and significantly correlated with cyst abundances from the late 1800s to 2005; no significant relationship was found between PDO and cyst abundances. This finding suggests that local environmental variations more strongly influence Alexandrium population dynamics in Puget Sound when compared to large-scale changes. © 2012 Phycological Society of America.

  15. Identifying environmental variables explaining genotype-by-environment interaction for body weight of rainbow trout (Onchorynchus mykiss): reaction norm and factor analytic models.

    PubMed

    Sae-Lim, Panya; Komen, Hans; Kause, Antti; Mulder, Han A

    2014-02-26

    Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available.

  16. Identifying environmental variables explaining genotype-by-environment interaction for body weight of rainbow trout (Onchorynchus mykiss): reaction norm and factor analytic models

    PubMed Central

    2014-01-01

    Background Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Methods Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. Results The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Conclusions Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available. PMID:24571451

  17. Introducing a sensor to measure budburst and its environmental drivers

    PubMed Central

    Kleinknecht, George J.; Lintz, Heather E.; Kruger, Anton; Niemeier, James J.; Salino-Hugg, Michael J.; Thomas, Christoph K.; Still, Christopher J.; Kim, Youngil

    2015-01-01

    Budburst is a key adaptive trait that can help us understand how plants respond to a changing climate from the molecular to landscape scale. Despite this, acquisition of budburst data is constrained by a lack of information at the plant scale on the environmental stimuli associated with the release of bud dormancy. Additionally, to date, little effort has been devoted to phenotyping plants in natural populations due to the challenge of accounting for the effect of environmental variation. Nonetheless, natural selection operates on natural populations, and investigation of adaptive phenotypes in situ is warranted and can validate results from controlled laboratory experiments. To identify genomic effects on individual plant phenotypes in nature, environmental drivers must be concurrently measured, and characterized. Here, we designed and evaluated a sensor to meet these requirements for temperate woody plants. It was designed for use on a tree branch to measure the timing of budburst together with its key environmental drivers; temperature, and photoperiod. Specifically, we evaluated the sensor through independent corroboration with time-lapse photography and a suite of environmental sampling instruments. We also tested whether the presence of the device on a branch influenced the timing of budburst. Our results indicated the following: the temperatures measured by the budburst sensor’s digital thermometer closely approximated the temperatures measured using a thermocouple touching plant tissue; the photoperiod detector measured ambient light with the same accuracy as did time lapse photography; the budburst sensor accurately detected the timing of budburst; and the sensor itself did not influence the budburst timing of Populus clones. Among other potential applications, future use of the sensor may provide plant phenotyping at the landscape level for integration with landscape genomics. PMID:25806035

  18. Stimuli-Responsive/Rheoreversible Hydraulic Fracturing Fluids as a Greener Alternative to Support Geothermal and Fossil Energy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Carroll, KC; Kabilan, Senthil

    2015-01-01

    Cost-effective yet safe creation of high-permeability reservoirs within deep bedrock is the primary challenge for the viability of enhanced geothermal systems (EGS) and unconventional oil/gas recovery. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To enable EGS feasibility and lessen environmental impact of reservoir stimulation, an environmentally benign, CO2-activated, rheoreversible fracturing fluidmore » that enhances permeability through fracturing (at significantly lower effective stress than standard fracturing fluids) due to in situ volume expansion and gel formation is investigated herein. The chemical mechanism, stability, phase-change behavior, and rheology for a novel polyallylamine (PAA)-CO2 fracturing fluid was characterized at EGS temperatures and pressures. Hydrogel is formed upon reaction with CO2 and this process is reversible (via CO2 depressurization or solubilizing with a mild acid) allowing removal from the formation and recycling, decreasing environmental impact. Rock obtained from the Coso geothermal field was fractured in laboratory experiments under various EGS temperatures and pressures with comparison to standard fracturing fluids, and the fractures were characterized with imaging, permeability measurement, and flow modeling. This novel fracturing fluid and process may vastly reduce water usage and the environmental impact of fracturing practices and effectively make EGS production and unconventional oil/gas exploitation cost-effective and cleaner.« less

  19. Environmental Assessment Addressing the Defense Language Institute English Language Center (DLIELC), and the Inter-American Air Forces Academy (IAAFA) Area Development Plan at Lackland Air Force Base, Texas

    DTIC Science & Technology

    2012-01-01

    Heat island” refers to built up areas that have hotter surface and air temperatures than nearby rural areas. Heat island effect occurs when...Summary of Environmental Effects The public and regulatory agency scoping process focused the analysis on the following environmental resources... effects of implementing the DLIELC and IAAFA ADP are not significant, that preparation of an Environmental Impact Statement is unnecessary, and that a

  20. STS-1 environmental control and life support system. Consumables and thermal analysis

    NASA Technical Reports Server (NTRS)

    Steines, G.

    1980-01-01

    The Environmental Control and Life Support Systems (ECLSS)/thermal systems analysis for the Space Transportation System 1 Flight (STS-1) was performed using the shuttle environmental consumables usage requirements evaluation (SECURE) computer program. This program employs a nodal technique utilizing the Fortran Environmental Analysis Routines (FEAR). The output parameters evaluated were consumable quantities, fluid temperatures, heat transfer and rejection, and cabin atmospheric pressure. Analysis of these indicated that adequate margins exist for the nonpropulsive consumables and related thermal environment.

  1. Influence of environmental temperature and light intensity on growth performance and blood physiological parameters of broilers grown to heavy weight

    USDA-ARS?s Scientific Manuscript database

    In a study of temperature and light intensity, 9 treatments consisted of 3 levels (Low=15.6, Moderate=21.1, High=26.7 °C) of temperatures and 3 levels (0.5, 3.0, 20 lx) of light intensities from d 8 to 56 d of age. Across all light levels at d 56, broilers subjected to high temperature significantly...

  2. High-temperature durability considerations for HSCT combustor

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1992-01-01

    The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics.

  3. Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures

    EPA Pesticide Factsheets

    This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics

  4. Effects of chilling temperatures on photosynthesis

    USDA-ARS?s Scientific Manuscript database

    Environmental stress is an inescapable reality for most plants growing in natural settings. Conditions of sub or supra-optimal temperatures, water deficit, water logging, salinity, and pollution can have dramatic effects on plant growth and development, and in agricultural settings, yield. In cotton...

  5. Research on the River.

    ERIC Educational Resources Information Center

    Steckelberg, Marie L.; Hoadley, Michael R.; Thompson, Ray; Martin, Patricia; Bormann, Gene

    2000-01-01

    Introduces a research project on water quality in which students from two different high schools collaborate with university science methods students. Includes the analyses of air temperature, water temperature, fecal coliform, dissolved oxygen, phosphate level, turbidity, and pH level. Integrates biology, environmental sciences, physical…

  6. The range of thermal insulation in the tissues of the new-born baby

    PubMed Central

    Hey, E. N.; Katz, G.

    1970-01-01

    1. Rectal temperature and skin temperatures were measured in twenty-eight naked babies weighing 1·1-4·5 kg, lying supine in environments of 25-31 °C when air speed was 4-7 cm/sec. The ratio of external insulation to internal or tissue insulation for the whole body averaged 2·7 but varied inversely with body weight; the ratio was higher than this on the trunk, and five times lower than this on the hand and foot. The mean ratio rose threefold when environmental temperature was increased to 34-35° C. 2. Direct measurements of heat flow from the back of a hand placed in a water jacket maintained at 32° C were made in thirty-three babies. Heat loss averaged 3 kcal/m2.hr.° C at low environmental temperature, but the loss was often rather less than this in the first 24 hr of life. Heat loss from the hand increased three- to fourfold, during exposure to an environment of 35° C. 3. When babies more than 48 hr old were exposed to an environment of 34-35° C, heat loss from the hand only increased when rectal temperature reached between 36·6 and 37·3° C; a slightly higher rectal temperature was usually reached before heat loss rose in babies less than 24 hr old. 4. Similar methods were used to study specific tissue insulation in three babies with congenital defects of the brain who lacked evidence of temperature control. No changes in insulation were detected in these three babies following changes in environmental temperature. 5. It is concluded that the range and pattern of control that can be exerted over the specific thermal insulation of the tissues is essentially the same in babies 2-20 days old as it is in adult life. PMID:5499741

  7. Sustainable remediation of mercury contaminated soils by thermal desorption.

    PubMed

    Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada

    2016-03-01

    Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.

  8. Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid.

    PubMed

    Hao, Tianwei; Mackey, Hamish R; Guo, Gang; Liu, Rulong; Chen, Guanghao

    2016-10-01

    Sulfate-reducing granular sludge has recently been developed and characterized in detail as part of the development of the sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process. However, information regarding temperature of granules to environmental fluctuation is lacking, an aspect that is important in dealing with real wastewater. A comprehensive assessment of sulfate-reducing granular sludge performance under various environmental conditions was thus conducted in this study, including temperature, pH, oxygen, nitrite, and free nitrous acid (FNA) as possible encountering conditions in the removal of organics and/or nitrate. Specific chemical oxygen demand removal rate of the granules was determined to be reduced by 65 % when the temperature varied between 10-15 °C, reduced by 70 % when dissolved oxygen (DO) was 0.5 mg/L or greater, and at least, reduced by 75 % when nitrite was 30 mg N/L or above. Nevertheless, the sludge activity recovered by 82, 100, and 86 % from exposure to high oxygen and nitrite and low temperature levels, respectively. Combined inhibition of nitrite and FNA on the sludge is strong and complex, while FNA alone reduced cell viability from 60 to 40 % when its concentration increased to 2.3 mg N/L. The present study demonstrates that sulfate-reducing bacteria (SRB) granules possess high resilience against varying environmental conditions, showing the high application potential of sulfate-reducing granular sludge in dealing with brackish and saline industrial or domestic wastewaters.

  9. Ecosystem approach to fisheries: Exploring environmental and trophic effects on Maximum Sustainable Yield (MSY) reference point estimates

    PubMed Central

    Kumar, Rajeev; Pitcher, Tony J.; Varkey, Divya A.

    2017-01-01

    We present a comprehensive analysis of estimation of fisheries Maximum Sustainable Yield (MSY) reference points using an ecosystem model built for Mille Lacs Lake, the second largest lake within Minnesota, USA. Data from single-species modelling output, extensive annual sampling for species abundances, annual catch-survey, stomach-content analysis for predatory-prey interactions, and expert opinions were brought together within the framework of an Ecopath with Ecosim (EwE) ecosystem model. An increase in the lake water temperature was observed in the last few decades; therefore, we also incorporated a temperature forcing function in the EwE model to capture the influences of changing temperature on the species composition and food web. The EwE model was fitted to abundance and catch time-series for the period 1985 to 2006. Using the ecosystem model, we estimated reference points for most of the fished species in the lake at single-species as well as ecosystem levels with and without considering the influence of temperature change; therefore, our analysis investigated the trophic and temperature effects on the reference points. The paper concludes that reference points such as MSY are not stationary, but change when (1) environmental conditions alter species productivity and (2) fishing on predators alters the compensatory response of their prey. Thus, it is necessary for the management to re-estimate or re-evaluate the reference points when changes in environmental conditions and/or major shifts in species abundance or community structure are observed. PMID:28957387

  10. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    NASA Astrophysics Data System (ADS)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  11. INEL Geothermal Environmental Program. Final environmental report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Cahn, L.S.

    1982-09-01

    An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs aremore » summarized.« less

  12. Controlled generation of large volumes of atmospheric clouds in a ground-based environmental chamber

    NASA Technical Reports Server (NTRS)

    Hettel, H. J.; Depena, R. G.; Pena, J. A.

    1975-01-01

    Atmospheric clouds were generated in a 23,000 cubic meter environmental chamber as the first step in a two part study on the effects of contaminants on cloud formation. The generation procedure was modeled on the terrestrial generation mechanism so that naturally occurring microphysics mechanisms were operative in the cloud generation process. Temperature, altitude, liquid water content, and convective updraft velocity could be selected independently over the range of terrestrially realizable clouds. To provide cloud stability, a cotton muslin cylinder 29.3 meters in diameter and 24.2 meters high was erected within the chamber and continuously wetted with water at precisely the same temperature as the cloud. The improved instrumentation which permitted fast, precise, and continual measurements of cloud temperature and liquid water content is described.

  13. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  14. The Green Pages: Environmental Education Activities K-12.

    ERIC Educational Resources Information Center

    Clearing, 1991

    1991-01-01

    Presented are 38 environmental education activities for grades K-12. Topics include seed dispersal, food chains, plant identification, sizes and shapes, trees, common names, air pollution, recycling, temperature, litter, water conservation, photography, insects, urban areas, diversity, natural cycles, rain, erosion, phosphates, human population,…

  15. Environmental Topics for Introductory Physics Courses

    ERIC Educational Resources Information Center

    Hodges, Laurent

    1974-01-01

    Presents selected environmental references with comparatively detailed descriptions for the purpose of helping high school and college physics teachers in selecting materials for their course. The topics include thermal pollution, space heating and cooling, atmospheric temperature distribution, radiation balance of the earth, sound and noises, and…

  16. 42 CFR 84.307 - Environmental treatments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... environmental treatments simulating extreme storage temperatures, shock, and vibration. (b) The units will be...) The units will be subjected to vibration according to the following procedure: (1) The unit will be...; and (3) The vibration frequency regimen applied to each axis will be cyclical, repeating the sequence...

  17. 42 CFR 84.307 - Environmental treatments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... environmental treatments simulating extreme storage temperatures, shock, and vibration. (b) The units will be...) The units will be subjected to vibration according to the following procedure: (1) The unit will be...; and (3) The vibration frequency regimen applied to each axis will be cyclical, repeating the sequence...

  18. 42 CFR 84.307 - Environmental treatments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... environmental treatments simulating extreme storage temperatures, shock, and vibration. (b) The units will be...) The units will be subjected to vibration according to the following procedure: (1) The unit will be...; and (3) The vibration frequency regimen applied to each axis will be cyclical, repeating the sequence...

  19. Meteorological measurements. Chapter 3

    Treesearch

    David Y. Hollinger

    2008-01-01

    Environmental measurements are useful for detecting climatic trends, understanding how the environment influences biological processes, and as input to ecosystem models. Landscape-scale monitoring requires a suite of environmental measures for all of these purposes, including air and soil temperature, humidity, wind speed, precipitation and soil moisture, and different...

  20. Boundaries for Biofilm Formation: Humidity and Temperature

    PubMed Central

    Else, Terry Ann; Pantle, Curtis R.; Amy, Penny S.

    2003-01-01

    Environmental conditions which define boundaries for biofilm production could provide useful ecological information for biofilm models. A practical use of defined conditions could be applied to the high-level nuclear waste repository at Yucca Mountain. Data for temperature and humidity conditions indicate that decreases in relative humidity or increased temperature severely affect biofilm formation on three candidate canister metals. PMID:12902302

  1. Large Cargo Containers

    DTIC Science & Technology

    1974-09-20

    shipping and handling; environmental performance tests including high and low temperatures , DO,: FORM(1473 EDITION OF I MOW SS IS OBSO>.ETE I...maintaining Internal temperature . e. Refrigerated Container. An Insulated container that uses either mechanical or other means to lower and...maintain cold internal temperature . Refrigeration equipment may be either fixed or removable. f. Open Top Container. With bottom, side, and end walls, but

  2. Review and environmental impact assessment of green technologies for base courses in bituminous pavements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthonissen, Joke, E-mail: joke.anthonissen@uantwerpen.be; Van den bergh, Wim, E-mail: wim.vandenbergh@uantwerpen.be; Braet, Johan, E-mail: johan.braet@uantwerpen.be

    This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages,more » e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.« less

  3. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study

    PubMed Central

    2014-01-01

    Background Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Methods Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. Results During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. Conclusions In this study, the fit of ARIMAX models improves when environmental variables are included. There is a significant association of remotely-sensed nocturnal dew point with malaria transmission. Interestingly, dew point might be one of the factors sustaining malaria transmission in areas of general aridity during the dry season. PMID:24927747

  4. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study.

    PubMed

    Nygren, David; Stoyanov, Cristina; Lewold, Clemens; Månsson, Fredrik; Miller, John; Kamanga, Aniset; Shiff, Clive J

    2014-06-13

    Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. In this study, the fit of ARIMAX models improves when environmental variables are included. There is a significant association of remotely-sensed nocturnal dew point with malaria transmission. Interestingly, dew point might be one of the factors sustaining malaria transmission in areas of general aridity during the dry season.

  5. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars," Sensors, vol. 10(10), pp. 9211-9231. [5] Martínez, G. M. et al. (2014), Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements, J.Geophys. Res. Planets, 119.

  6. Factors Controlling Superelastic Damping Capacity of SMAs

    NASA Astrophysics Data System (ADS)

    Heller, L.; Šittner, P.; Pilch, J.; Landa, M.

    2009-08-01

    In this paper, questions linked to the practical use of superelastic damping exploiting stress-induced martensitic transformation for vibration damping are addressed. Four parameters, particularly vibration amplitude, prestrain, temperature of surroundings, and frequency, are identified as having the most pronounced influence on the superelastic damping. Their influence on superelastic damping of a commercially available superelastic NiTi wire was experimentally investigated using a self-developed dedicated vibrational equipment. Experimental results show how the vibration amplitude, frequency, prestrain, and temperature affect the capacity of a superelastic NiTi wire to dissipate energy of vibrations through the superelastic damping. A special attention is paid to the frequency dependence (i.e., rate dependence) of the superelastic damping. It is shown that this is nearly negligible in case the wire is in the thermal chamber controlling actively the environmental temperature. In case of wire exposed to free environmental temperature in actual damping applications, however, the superelastic damping capacity significantly decreases with increasing frequency. This was explained to be a combined effect of the heat effects affecting the mean wire temperature and material properties with the help of simulations using the heat equation coupled phenomenological SMA model.

  7. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes

    PubMed Central

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335

  8. Listeria monocytogenes differential transcriptome analysis reveals temperature-dependent Agr regulation and suggests overlaps with other regulons.

    PubMed

    Garmyn, Dominique; Augagneur, Yoann; Gal, Laurent; Vivant, Anne-Laure; Piveteau, Pascal

    2012-01-01

    Listeria monocytogenes is a ubiquitous, opportunistic pathogenic organism. Environmental adaptation requires constant regulation of gene expression. Among transcriptional regulators, AgrA is part of an auto-induction system. Temperature is an environmental cue critical for in vivo adaptation. In order to investigate how temperature may affect AgrA-dependent transcription, we compared the transcriptomes of the parental strain L. monocytogenes EGD-e and its ΔagrA mutant at the saprophytic temperature of 25°C and in vivo temperature of 37°C. Variations of transcriptome were higher at 37°C than at 25°C. Results suggested that AgrA may be involved in the regulation of nitrogen transport, amino acids, purine and pyrimidine biosynthetic pathways and phage-related functions. Deregulations resulted in a growth advantage at 37°C, but affected salt tolerance. Finally, our results suggest overlaps with PrfA, σB, σH and CodY regulons. These overlaps may suggest that through AgrA, Listeria monocytogenes integrates information on its biotic environment.

  9. Listeria monocytogenes Differential Transcriptome Analysis Reveals Temperature-Dependent Agr Regulation and Suggests Overlaps with Other Regulons

    PubMed Central

    Garmyn, Dominique; Augagneur, Yoann; Gal, Laurent; Vivant, Anne-Laure; Piveteau, Pascal

    2012-01-01

    Listeria monocytogenes is a ubiquitous, opportunistic pathogenic organism. Environmental adaptation requires constant regulation of gene expression. Among transcriptional regulators, AgrA is part of an auto-induction system. Temperature is an environmental cue critical for in vivo adaptation. In order to investigate how temperature may affect AgrA-dependent transcription, we compared the transcriptomes of the parental strain L. monocytogenes EGD-e and its ΔagrA mutant at the saprophytic temperature of 25°C and in vivo temperature of 37°C. Variations of transcriptome were higher at 37°C than at 25°C. Results suggested that AgrA may be involved in the regulation of nitrogen transport, amino acids, purine and pyrimidine biosynthetic pathways and phage-related functions. Deregulations resulted in a growth advantage at 37°C, but affected salt tolerance. Finally, our results suggest overlaps with PrfA, σB, σH and CodY regulons. These overlaps may suggest that through AgrA, Listeria monocytogenes integrates information on its biotic environment. PMID:23024744

  10. Temperature performance of portable radiation survey instruments used for environmental monitoring and clean-up activities in Fukushima

    NASA Astrophysics Data System (ADS)

    Saegusa, Jun; Yanagisawa, Kayo; Hasumi, Atsushi; Shimizu, Takenori; Uchita, Yoshiaki

    2017-08-01

    Following the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, extensive radiation monitoring and environmental clean-up activities have been conducted throughout the Fukushima region. Outside air temperatures there reach 40 °C in summer and -20 °C in winter, which are beyond the quoted operational range of many radiation survey instruments. Herein, temperature performance of four types of portable Japanese radiation survey instruments widely used in Fukushima was experimentally investigated using a temperature-controlled chamber. They included two ionization chamber type instruments, Fuji NHA1 and Aloka ICS-323C, and two NaI(Tl) scintillation type ones, Fuji NHC7 and Aloka TCS-172B. Experimental results showed significantly diverse characteristics on the temperature dependences from one type of instrument to another. For example, NHA1 overestimated the ambient dose-equivalent rate by as much as 17% at -30 °C and 10% at 40 °C, whereas the TCS-172B readings underestimated the rate by 30% at -30 °C and 7% at 40 °C.

  11. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH.

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; Leguérinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-05-01

    Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature.

    PubMed

    Roessingh, Sanne; Stanewsky, Ralf

    2017-10-03

    trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel) that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster . Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network) in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour.

  13. Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions.

    PubMed

    Ju, Xiao-Jie; Zhang, Shi-Bo; Zhou, Ming-Yu; Xie, Rui; Yang, Lihua; Chu, Liang-Yin

    2009-08-15

    A novel polymeric lead(II) adsorbent is prepared by incorporating benzo-18-crown-6-acrylamide (BCAm) as metal ion receptor into the thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel. Both stimuli-sensitive properties and the Pb(2+)-adsorption capabilities of the prepared P(NIPAM-co-BCAm) hydrogels are investigated. The prepared P(NIPAM-co-BCAm) hydrogels exhibit good ion-recognition and Pb(2+)-adsorption characteristics. When crown ether units capture Pb(2+) and form BCAm/Pb(2+) host-guest complexes, the lower critical solution temperature (LCST) of the hydrogel shifts to a higher temperature due to both the repulsion among charged BCAm/Pb(2+) groups and the osmotic pressure within the hydrogel. The adsorption results at different temperatures show that P(NIPAM-co-BCAm) hydrogels adsorb Pb(2+) ions at temperature lower than the LCST, but undergo desorption at temperature higher than the LCST due to the "stretch-to-shrink" configuration change of copolymer networks which is triggered by the change in environmental temperature. This kind of ion-recognition hydrogel is promising as a novel adsorption material for adsorption and separation of Pb(2+) ions. The adsorption and desorption of Pb(2+) could be rationally achieved by simply changing the environmental temperature.

  14. Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm.

    PubMed

    Glanville, E J; Seebacher, F

    2006-12-01

    Thermoregulating animals are thought to have evolved a preferred body temperature at which thermally sensitive performance is optimised. Even during thermoregulation, however, many animals experience pronounced variability in body temperature, and may regulate to different body temperatures depending on environmental conditions. Here we test the hypothesis that there is a trade-off between regulating to lower body temperatures in cooler conditions and locomotory and metabolic performance. Animals (estuarine crocodiles, Crocodylus porosus) acclimated to cold (N=8) conditions had significantly lower maximum and mean daily body temperatures after 33 days than warm-acclimated animals (N=9), despite performing characteristic thermoregulatory behaviours. Concomitant with behavioural changes, maximum sustained swimming speed (U(crit)) shifted to the respective mean body temperatures during acclimation (cold=20 degrees C, warm=29 degrees C), but there was no difference in the maxima between acclimation groups. Mitochondrial oxygen consumption changed significantly during acclimation, and maximum respiratory control ratios coincided with mean body temperatures in liver, muscle and heart tissues. There were significant changes in the activities of regulatory metabolic enzymes (lactate dehydrogenase, citrate synthase, cytochrome c oxidase) and these were tissue specific. The extraordinary shift in behaviour and locomotory and metabolic performance shows that within individuals, behaviour and physiology covary to maximise performance in different environments.

  15. Temperature and Term Low Birth Weight in California.

    PubMed

    Basu, Rupa; Rau, Reina; Pearson, Dharshani; Malig, Brian

    2018-06-12

    Few investigations have explored temperature and birth outcomes. In a retrospective cohort study, we examined apparent temperature, a combination of temperature and relative humidity, and term low birth weight (LBW) among 43,629 full-term LBW infants and 2,032,601 normal weight infants in California from 1999 to 2013. The California Department of Public Health provided birth certificate data, while meteorologic data came from the California Irrigation Management Information System, US Environmental Protection Agency, and National Centers for Environmental Information. After considering several temperature metrics, we observed the best model fit for term LBW over the full gestation (13.0% change, 95% confidence interval: 4.1, 22.7 per 10 degrees Fahrenheit (°F) increase in apparent temperature) above 55°F and the greatest association for third trimester exposure above 60°F (15.8%, 95% confidence interval: 5.0, 27.6). Apparent temperature during the first month of pregnancy exhibited no significant risk, while the first trimester had a significantly negative association, and second trimester, last month and last two weeks had slightly increased risks. Mothers who were Black, older, delivered male infants, or gave birth during the warm season conferred the highest risks. This study provides further evidence for adverse birth outcomes from heat exposure for vulnerable subgroups of pregnant women.

  16. Sub-arctic Wetland Greenhouse Gases (CO2, CH4 & N2O) Emissions are Driven by Interactions of Environmental Controls and Herbivore Grazers

    NASA Astrophysics Data System (ADS)

    Kelsey, K.; Leffler, A. J.; Beard, K. H.; Choi, R. T.; Welker, J. M.

    2015-12-01

    Climate change is increasing temperatures, altering precipitation regimes and causing earlier growing seasons, particularly at northern latitudes. Such changes in local environmental conditions have the potential to affect biogeochemical cycling including the exchange of greenhouses gases between the atmosphere and the terrestrial biosphere. In addition to the effects of these environmental controls, animals such as migratory geese also influence biogeochemical cycles through grazing, trampling and delivering nutrient-rich fecal matter. In this work we aimed to quantify how local environmental conditions and the presence of grazing interact as drivers of emissions of three key greenhouse gases, CO2, CH4 and N2O, in coastal wetlands of the Yukon Kuskokwim Delta. We explored the magnitude of emissions across gradients of soil temperature and water table depth, and across vegetation types related to the presence of grazing, ranging from no vegetation through grazed and ungrazed vegetation. We also investigated emissions from grazed areas using experimental manipulations of the timing of grazing and advancement of the growing season. We found that local environmental conditions and use by grazers exert interacting controls on emissions of CO2, CH4 and N2O. Emissions of CO2 and CH4 were positively related to soil temperature and CH4 emissions were inversely related to water table depth, but the relationship varied by vegetation type. Net emissions of CO2 were greatest in ungrazed vegetation types (6.62 umols CO2 m-2 sec-1; p=0.0007) whereas CH4 emissions were greatest in the grazed vegetation (122.56 nmols CH4 m-2 sec-1; p=0.037). Flux of N2O was less than 1 nmol N2O m-2 sec-1 across all landscape positions under typical grazing and temperature conditions, but emissions were stimulated to over 10 nmols m-2 sec-1 when grazing occurred early relative to a typical season. Our results indicate that environmental conditions and the presence of migratory herbivores are both important controls on gas fluxes. Future climate change may alter regional gas flux and biosphere-atmosphere feedbacks both via direct environmental drivers and through climate-driven changes to populations or habits of grazers that also exert important controls on biogeochemical cycling in this region.

  17. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    EPA Science Inventory

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  18. Moderate-Resolution Sea Surface Temperature Data for the Nearshore North Pacific

    EPA Science Inventory

    Coastal sea surface temperature (SST) is an important environmental characteristic defining habitat suitability for nearshore marine and estuarine organisms. The purpose of this publication is to provide access to an easy-to-use coastal SST dataset for ecologists, biogeographers...

  19. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  20. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Matsuki, Yasuhiro; Koyama, Yusei; Nakagawa, Takao; Takita, Satoshi

    2017-04-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ˜ 0, using the AKARI Far-Infrared Surveyor all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 < z < 0.07 and the stellar mass range of 9.2 < log 10(M*/M⊙). We select SF galaxies based on their Hα equivalent width (EWHα > 4 Å) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific star formation rate (SSFRSDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 μm) and WIDE-L (140 μm) bands, and then compute infrared (IR)-based SFR (SFRIR) from LIR. We find a mild decrease of IR-based SSFR (SSFRIR) amongst SF galaxies with increasing local density (˜0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (Tdust) using the flux densities at 90 and 140 μm bands. We confirm a strong positive correlation between Tdust and SSFRIR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that Tdust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-Tdust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of Tdust holds down to relatively low-density environments.

  1. Fogging in Polyvinyl Toluene Scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, Richard J.; Fritz, Brad G.; Hurlbut, Charles

    It has been observed that large polyvinyl toluene (PVT)-based gamma ray detectors can suffer internal “fogging” when exposed to outdoor environmental conditions over long periods of time. When observed, this change results in reduced light collection by photomultiplier tubes connected to the PVT. Investigation of the physical cause of these changes has been explored, and a root cause identified. Water penetration into the PVT from hot, high-humidity conditions results in reversible internal water condensation at room temperature, and permanent micro-fracturing of the PVT at very low environmental temperatures. Mitigation procedures and methods are being investigated.

  2. Compact high reliability fiber coupled laser diodes for avionics and related applications

    NASA Astrophysics Data System (ADS)

    Daniel, David R.; Richards, Gordon S.; Janssen, Adrian P.; Turley, Stephen E. H.; Stockton, Thomas E.

    1993-04-01

    This paper describes a newly developed compact high reliability fiber coupled laser diode which is capable of providing enhanced performance under extreme environmental conditions including a very wide operating temperature range. Careful choice of package materials to minimize thermal and mechanical stress, used with proven manufacturing methods, has resulted in highly stable coupling of the optical fiber pigtail to a high performance MOCVD-grown Multi-Quantum Well laser chip. Electro-optical characteristics over temperature are described together with a demonstration of device stability over a range of environmental conditions. Real time device lifetime data is also presented.

  3. Environmental niche models for riverine desert fishes and their similarity according to phylogeny and functionality

    USGS Publications Warehouse

    Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.

    2017-01-01

    Environmental filtering and competitive exclusion are hypotheses frequently invoked in explaining species' environmental niches (i.e., geographic distributions). A key assumption in both hypotheses is that the functional niche (i.e., species traits) governs the environmental niche, but few studies have rigorously evaluated this assumption. Furthermore, phylogeny could be associated with these hypotheses if it is predictive of functional niche similarity via phylogenetic signal or convergent evolution, or of environmental niche similarity through phylogenetic attraction or repulsion. The objectives of this study were to investigate relationships between environmental niches, functional niches, and phylogenies of fishes of the Upper (UCRB) and Lower (LCRB) Colorado River Basins of southwestern North America. We predicted that functionally similar species would have similar environmental niches (i.e., environmental filtering) and that closely related species would be functionally similar (i.e., phylogenetic signal) and possess similar environmental niches (i.e., phylogenetic attraction). Environmental niches were quantified using environmental niche modeling, and functional similarity was determined using functional trait data. Nonnatives in the UCRB provided the only support for environmental filtering, which resulted from several warmwater nonnatives having dam number as a common predictor of their distributions, whereas several cool- and coldwater nonnatives shared mean annual air temperature as an important distributional predictor. Phylogenetic signal was supported for both natives and nonnatives in both basins. Lastly, phylogenetic attraction was only supported for native fishes in the LCRB and for nonnative fishes in the UCRB. Our results indicated that functional similarity was heavily influenced by evolutionary history, but that phylogenetic relationships and functional traits may not always predict the environmental distribution of species. However, the similarity of environmental niches among warmwater centrarchids, ictalurids, fundulids, and poeciliids in the UCRB indicated that dam removals could influence the distribution of these nonnatives simultaneously, thus providing greater conservation benefits. However, this same management strategy would have more limited effects on nonnative salmonids, catostomids, and percids with colder temperature preferences, thus necessitating other management strategies to control these species.

  4. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration

    USGS Publications Warehouse

    Petrie, Matthew; Wildeman, A.M.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.

    2016-01-01

    The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling emergence and/or establishment and one or more independent variables of air temperature, soil temperature, precipitation and moisture availability. Our review suggests that seedling emergence and establishment for both species is highest at intermediate temperatures (20 to 25 °C), and higher precipitation and higher moisture availability support a higher percentage of seedling emergence and establishment at daily, monthly and annual timescales. We found that ponderosa pine seedlings may be more sensitive to temperature fluctuations whereas lodgepole pine seedlings may be more sensitive to moisture fluctuations. In a changing climate, increasing temperatures and declining moisture availability may hinder forest persistence by limiting seedling processes. Yet, only 23 studies in our review investigated the effects of driving climate and environmental variables directly. Furthermore, 74 studies occurred in a laboratory or greenhouse, which do not often replicate the conditions experienced by tree seedlings in a field setting. It is therefore difficult to provide strong conclusions on how sensitive emergence and establishment in ponderosa and lodgepole pine are to these specific driving variables, or to investigate their potential aggregate effects. Thus, the effects of many driving variables on seedling processes remain largely inconclusive. Our review stresses the need for additional field and laboratory studies to better elucidate the effects of driving climate and environmental variables on seedling emergence and establishment for ponderosa and lodgepole pine.

  5. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic). Atlantic silverside

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fay, C.W.; Neves, R.J.; Pardue, G.B.

    1983-10-01

    Species profiles are literature summaries of the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. They are prepared to assist in environmental impact assessment. The Atlantic silverside (Menidia menidia) is an important link in estuarine food webs as an opportunistic omnivore and as forage for large piscivores such as striped bass (Morone saxatilis) and bluefish (Pomatomus saltatrix). Many times the Atlantic silverside is the most abundant fish species encountered in estuaries and tributaries. They mature at age 1 and spawn in the intertidal zone of estuaries from March to June in the mid-Atlantic region. Few 2-year-oldmore » fish are ever encountered, so the Atlantic silverside is basically a short-lived species. Most spawning occurs at high tide during new or full moon phases. Eggs are adhesive and are found attached to submerged vegetation. Larvae, juveniles, and adults generally inhabit similar areas. Sex is determined in larval development 32 to 46 days after hatching, and is a function of parental genotype and water temperature regime during the critical period. Fisheries for this species are not documented. Eggs can tolerate water temperatures between 15/sup 0/ and 30/sup 0/C, and larvae need temperatures above 15/sup 0/C for survival. Larvae tolerate relatively acute temperature increases. Upper lethal temperatures for juveniles and adults range from 30.5/sup 0/ to 33.8/sup 0/C, depending on acclimation temperature. Salinities of 20 ppt or lower significantly delay hatching and affect larval survival. Juveniles and adults tolerate the full range of naturally occurring salinities (i.e., freshwater to at least 37.8 ppt). 57 references, 2 figures.« less

  6. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Chunlan; Quan, Qing; Wu, Yongjie; Chen, Youhua; He, Peng; Qu, Yanhua; Lei, Fumin

    2017-04-01

    Large-scale patterns of species richness have gained much attention in recent years; however, the factors that drive high species richness are still controversial in local regions, especially in highly diversified montane regions. The Qinghai-Tibetan Plateau (QTP) and the surrounding mountains are biodiversity hot spots due to a high number of endemic montane species. Here, we explored the factors underlying this high level of diversity by studying the relationship between species richness and environmental variables. The richness patterns of 758 resident bird species were summarized at the scale of 1°×1° grid cell at different taxonomic levels (order, family, genus, and species) and in different taxonomic groups (Passeriformes, Galliformes, Falconiformes, and Columbiformes). These richness patterns were subsequently analyzed against habitat heterogeneity (topographical heterogeneity and land cover), temperature amplitude (annual temperature, annual precipitation, precipitation seasonality, and temperature seasonality) and a vegetation index (net primary productivity). Our results showed that the highest richness was found in the southeastern part of the QTP, the eastern Himalayas. The lowest richness was observed in the central plateau of the QTP. Topographical heterogeneity and temperature amplitude are the primary factors that explain overall patterns of species richness in the QTP, although the specific effect of each environmental variable varies between the different taxonomic groups depending on their own evolutionary histories and ecological requirements. High species richness in the southeastern QTP is mostly due to highly diversified habitat types and temperature zones along elevation gradients, whereas the low species richness in the central plateau of the QTP may be due to environmental and energetic constraints, as the central plateau is harsh environment.

  7. Effects of inbreeding and temperature stress on life history and immune function in a butterfly.

    PubMed

    Franke, K; Fischer, K

    2013-03-01

    Theory predicts that inbreeding depression should be more pronounced under environmental stress due to an increase in the expression of recessive deleterious alleles. If so, inbred populations may be especially vulnerable to environmental change. Against this background, we here investigate effects of inbreeding, temperature stress and its interactions with inbreeding in the tropical butterfly Bicyclus anynana. We use a full-factorial design with three levels of inbreeding (F = 0/0.25/0.38) and three temperature treatments (2 h exposure to 1, 27 or 39 °C). Despite using relatively low levels of inbreeding significant inbreeding depression was found in pupal mass, pupal time, thorax mass, abdomen fat content, egg hatching success and fecundity. However, stress resistance traits (heat tolerance, immune function) were not affected by inbreeding and interactions with temperature treatments were virtually absent. We thus found no support for an increased sensitivity of inbred individuals to environmental stress, and suspect that such patterns are restricted to harsher conditions. Our temperature treatments evidently imposed stress, significantly reducing longevity, fecundity, egg hatching success and haemocyte numbers, while fat content, protein content and lysozyme activity remained unaffected. Males and females differed in all traits measured except pupal time, protein content and phenoloxidase (PO) activity. Correlation analyses revealed, among others, a trade-off between PO and lysozyme activity, and negative correlations between fat content and several other traits. We stress that more data are needed on the effects of inbreeding, temperature variation and sexual differences on insect immune function before more general conclusions can be drawn. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  8. Physical and biological factors influencing environmental sources of fecal indicator bacteria in surface water

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Przybyla-Kelly, Katarzyna; Byappanahalli, Muruleedhara N.; Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    This paper describes the environmental populations of faecal indicator bacteria, and the processes by which these populations become nonpoint sources and influence nearshore water quality. The different possible sources of these indicator bacteria are presented. These include groundwater, springs and seeps, aquatic sediments, beach sand, birds, Cladophora and plant wrack. Also discussed are the environmental factors (moisture, sunlight, temperature and salinity) influencing their survival.

  9. Environmental Control for Regional Library Facilities. RR-80-3.

    ERIC Educational Resources Information Center

    King, Richard G., Jr.

    This report presents an overview of the damage to library materials caused by uncontrollable environmental variables. The control of atmospheric pollutants, temperature, and humidity are discussed with regard to damage, standards, and the costs of deterioration due to these factors. Twelve references are listed. (FM)

  10. Effects of temporal variation in temperature and density dependence on insect population dynamics

    USDA-ARS?s Scientific Manuscript database

    Understanding effects of environmental variation on insect populations is important in light of predictions about increasing future climatic variability. In order to understand the effects of changing environmental variation on population dynamics and life history evolution in insects one would need...

  11. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization waste management

    USDA-ARS?s Scientific Manuscript database

    Hydrothermal carbonization (HTC) is a relatively low temperature thermal conversion process that is gaining significant attention as a sustainable and environmentally beneficial approach for the transformation of biomass and waste streams to value-added products. Although there are numerous studies ...

  12. Isoperms: An Environmental Management Tool.

    ERIC Educational Resources Information Center

    Sebera, Donald K.

    A quantitative tool, the isoperm method, is described; it quantifies the effect of environmental factors of temperature (T) and percent relative humidity (%RH) on the anticipated useful life expectancy of paper-based collections. The isoperm method provides answers to questions of the expected lifetime of the collection under various temperature…

  13. Evaluation of Contrail Reduction Strategies Based on Environmental and Operational Costs

    NASA Technical Reports Server (NTRS)

    Chen, Neil Y.; Sridhar, Banavar; Ng, Hok K.; Li, Jinhua

    2013-01-01

    This paper evaluates a set of contrail reduction strategies based on environmental and operational costs. A linear climate model was first used to convert climate effects of carbon dioxide emissions and aircraft contrails to changes in Absolute Global Temperature Potential, a metric that measures the mean surface temperature change due to aircraft emissions and persistent contrail formations. The concept of social cost of carbon and the carbon auction price from recent California's cap-and-trade system were then used to relate the carbon dioxide emissions and contrail formations to an environmental cost index. The strategy for contrail reduction is based on minimizing contrail formations by altering the aircraft's cruising altitude. The strategy uses a user-defined factor to trade off between contrail reduction and additional fuel burn and carbon dioxide emissions. A higher value of tradeoff factor results in more contrail reduction but also more fuel burn and carbon emissions. The strategy is considered favorable when the net environmental cost benefit exceeds the operational cost. The results show how the net environmental benefit varies with different decision-making time-horizon and different carbon cost. The cost models provide a guidance to select the trade-off factor that will result in the most net environmental benefit.

  14. Effects of Ambient Environmental Factors on the Stereotypic Behaviors of Giant Pandas (Ailuropoda melanoleuca).

    PubMed

    Liu, He; Duan, Hejun; Wang, Cheng

    2017-01-01

    Stereotypies are commonly observed in zoo animals, and it is necessary to better understand whether ambient environmental factors contribute to stereotypy and how to affect animal welfare in zoo settings. This study investigated the relationships between stereotypic behaviors and environmental factors including ambient temperatures, humidity, light intensity, sound intensity and number of visitors. Seven giant pandas were observed in three indoor enclosures and three outdoor enclosures. Environmental factors were measured for both indoor and outdoor enclosures and the effect they had on stereotypical behaviors was investigated. Our research found that light intensity significantly correlated with all stereotypies behaviors. Higher environmental temperature reduced the duration of pacing but increased the frequency of pacing, the duration and frequency of door-directed, meanwhile the duration of head-toss. However, we found no noticeable effect of humidity on stereotypic behaviors except for the frequency of head-toss. We also found that sound intensity was not correlated with stereotypies. Finally, the growth of visitors was negatively associated with the duration of door-directed. These results demonstrated that various environmental factors can have significant effects on stereotypic behaviors causing the expression of various stereotypies. Thus, stereotypies in zoo animals may not simply represent suboptimal welfare, but rather might be adopted as a means of coping with an aversive environment.

  15. Effects of Ambient Environmental Factors on the Stereotypic Behaviors of Giant Pandas (Ailuropoda melanoleuca)

    PubMed Central

    Liu, He; Duan, Hejun; Wang, Cheng

    2017-01-01

    Stereotypies are commonly observed in zoo animals, and it is necessary to better understand whether ambient environmental factors contribute to stereotypy and how to affect animal welfare in zoo settings. This study investigated the relationships between stereotypic behaviors and environmental factors including ambient temperatures, humidity, light intensity, sound intensity and number of visitors. Seven giant pandas were observed in three indoor enclosures and three outdoor enclosures. Environmental factors were measured for both indoor and outdoor enclosures and the effect they had on stereotypical behaviors was investigated. Our research found that light intensity significantly correlated with all stereotypies behaviors. Higher environmental temperature reduced the duration of pacing but increased the frequency of pacing, the duration and frequency of door-directed, meanwhile the duration of head-toss. However, we found no noticeable effect of humidity on stereotypic behaviors except for the frequency of head-toss. We also found that sound intensity was not correlated with stereotypies. Finally, the growth of visitors was negatively associated with the duration of door-directed. These results demonstrated that various environmental factors can have significant effects on stereotypic behaviors causing the expression of various stereotypies. Thus, stereotypies in zoo animals may not simply represent suboptimal welfare, but rather might be adopted as a means of coping with an aversive environment. PMID:28107477

  16. The effects of incubation temperature and experimental design on heart rates of lizard embryos.

    PubMed

    Hulbert, Austin C; Mitchell, Timothy S; Hall, Joshua M; Guiffre, Cassia M; Douglas, Danielle C; Warner, Daniel A

    2017-08-01

    Many studies of phenotypic plasticity alter environmental conditions during embryonic development, yet only measure phenotypes at the neonatal stage (after embryonic development). However, measuring aspects of embryo physiology enhances our understanding of how environmental factors immediately affect embryos, which aids our understanding of developmental plasticity. While current research on reptile developmental plasticity has demonstrated that fluctuating incubation temperatures affect development differently than constant temperatures, most research on embryo physiology is still performed with constant temperature experiments. In this study, we noninvasively measured embryonic heart rates of the brown anole (Anolis sagrei), across ecologically relevant fluctuating temperatures. We incubated eggs under temperatures measured from potential nests in the field and examined how heart rates change through a diel cycle and throughout embryonic development. We also evaluated how experimental design (e.g., repeated vs. single measures designs, constant vs. fluctuating temperatures) and different protocols (e.g., removing eggs from incubators) might influence heart rate. We found that heart rates were correlated with daily temperature and increased through development. Our findings suggest that experimenters have reasonable flexibility in choosing an experimental design to address their questions; however, some aspects of design and protocol can potentially influence estimations of heart rates. Overall, we present the first ecologically relevant measures of anole embryonic heart rates and provide recommendations for experimental designs for future experiments. © 2017 Wiley Periodicals, Inc.

  17. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off

    USGS Publications Warehouse

    Hall, Edward K.; Singer, Gabriel A.; Kainz, Martin J.; Lennon, Jay T.

    2010-01-01

    1. Shifts in bacterial community composition along temporal and spatial temperature gradients occur in a wide range of habitats and have potentially important implications for ecosystem functioning. However, it is often challenging to empirically link an adaptation or acclimation that defines environmental niche or biogeography with a quantifiable phenotype, especially in micro-organisms. 2. Here we evaluate a possible mechanistic explanation for shifts in bacterioplankton community composition in response to temperature by testing a previously hypothesized membrane mediated trade-off between resource acquisition and respiratory costs. 3. We isolated two strains of Flavobacterium sp. at two temperatures (cold isolate and warm isolate) from the epilimnion of a small temperate lake in North Central Minnesota. 4. Compared with the cold isolate the warm isolate had higher growth rate, higher carrying capacity, lower lag time and lower respiration at the high temperature and lower phosphorus uptake at the low temperature. We also observed significant differences in membrane lipid composition between isolates and between environments that were consistent with adjustments necessary to maintain membrane fluidity at different temperatures. 5. Our results suggest that temperature acclimation in planktonic bacteria is, in part, a resource-dependent membrane-facilitated phenomenon. This study provides an explicit example of how a quantifiable phenotype can be linked through physiology to competitive ability and environmental niche.

  18. Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves; Piessens, Kris; Welkenhuysen, Kris; Verheyden, Sophie

    2014-05-01

    A temperature logger, called 'Niphargus', was developed at the Geological Survey of Belgium to monitor temperature of local natural processes with sensitivity of the order of a few hundredths of degrees to monitor temperature variability in open air, caves, soils and rivers. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy depending on the sampling rate and environmental conditions. The Niphargus was evaluated in an ice point bath experiment in terms of temperature accuracy and thermal inertia. The small size and low power consumption of the logger allow its use in difficult accessible environments, e.g. caves and space-constrained applications, inside a rock in a water stream. In both cases, the loggers have proven to be reliable and accurate devices. For example, spectral analysis of the temperature signal in the Han caves (Belgium) allowed detection and isolation of a 0.005° C amplitude day-night periodic signal in the temperature curve. PIC Figure 1: a Niphargus logger in its standard size. SMD components side. Photo credit: W. Miseur

  19. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    PubMed

    Huber, John H; Childs, Marissa L; Caldwell, Jamie M; Mordecai, Erin A

    2018-05-01

    Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal variation in temperature, the model provides a baseline for mechanistically understanding environmental suitability for virus transmission by Aedes aegypti. Overlaying the impact of human activities and socioeconomic factors onto this mechanistic temperature-dependent framework is critical for understanding likelihood and magnitude of outbreaks.

  20. Low-Temperature Fabrication of Robust, Transparent, and Flexible Thin-Film Transistors with a Nanolaminated Insulator.

    PubMed

    Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol

    2018-05-09

    The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3 insulator.

Top