Sample records for environmentally assisted cracking

  1. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys

    NASA Astrophysics Data System (ADS)

    Ashida, Yugo; Daigo, Yuzo; Sugahara, Katsuo

    2017-08-01

    Commercial metals and alloys like carbon steels, stainless steels, and nickel-based super alloys frequently encounter the problem of environmentally assisted cracking (EAC) and resulting failure in engineering components. This article aims to provide a perspective on three critical industrial applications having EAC issues: (1) corrosion and cracking of carbon steels in automotive applications, (2) EAC of iron- and nickel-based alloys in salt production and processing, and (3) EAC of iron- and nickel-based alloys in supercritical water. The review focuses on current industrial-level understanding with respect to corrosion fatigue, hydrogen-assisted cracking, or stress corrosion cracking, as well as the dominant factors affecting crack initiation and propagation. Furthermore, some ongoing industrial studies and directions of future research are also discussed.

  2. Test methods for environment-assisted cracking

    NASA Astrophysics Data System (ADS)

    Turnbull, A.

    1992-03-01

    The test methods for assessing environment assisted cracking of metals in aqueous solution are described. The advantages and disadvantages are examined and the interrelationship between results from different test methods is discussed. The source of differences in susceptibility to cracking occasionally observed from the varied mechanical test methods arises often from the variation between environmental parameters in the different test conditions and the lack of adequate specification, monitoring, and control of environmental variables. Time is also a significant factor when comparing results from short term tests with long exposure tests. In addition to these factors, the intrinsic difference in the important mechanical variables, such as strain rate, associated with the various mechanical tests methods can change the apparent sensitivity of the material to stress corrosion cracking. The increasing economic pressure for more accelerated testing is in conflict with the characteristic time dependence of corrosion processes. Unreliable results may be inevitable in some cases but improved understanding of mechanisms and the development of mechanistically based models of environment assisted cracking which incorporate the key mechanical, material, and environmental variables can provide the framework for a more realistic interpretation of short term data.

  3. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vesselmore » and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.« less

  4. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.

    1995-01-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  5. A demonstration of mitigation of environmentally-assisted cracking by the application of a tensile overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, L.A.

    1997-02-01

    Environmentally-assisted cracking (EAC) of low-alloy steels in high-temperature aqueous environments typical of those employed in light-water reactor (LWR) systems has been a subject of considerable interest since the pioneering work of Kondo et al demonstrated significantly higher fatigue crack propagation (FCP) rates in water than would be expected in an air environment under similar conditions. Here, environmentally-assisted cracking (EAC) of low-alloy steels in elevated temperature aqueous environments is readily observed in many laboratory experiments conducted in autoclaves, yet the observation of EAC in actual components operating in the same environments is quite rare. Mass transport of sulfides from the crackmore » enclave by diffusion and convection occurring in operating components provides one plausible explanation to this apparent paradox. Another contribution to EAC mitigation may also arise from the non-constant stress amplitudes typical for many operating components. This paper provides a demonstration of how a single tensile overload to 40% above a steady-state maximum fatigue stress can retard subsequent crack growth at the steady-state level for a sufficient period of time that diffusion mass transport can reduce the crack-tip sulfide concentration to a level below that necessary to sustain EAC.« less

  6. Fracture mechanics and surface chemistry investigations of environment-assisted crack growth

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chou, Y. T.

    1984-01-01

    It is pointed out that environment-assisted subcritical crack growth in high-strength steels and other high-strength alloys (particularly in hydrogen and in hydrogenous environments) is an important technological problem of long standing. This problem is directly related to issues of structural integrity, durability, and reliability. The terms 'hydrogen embrittlement' and 'stress corrosion cracking' have been employed to describe the considered phenomenon. This paper provides a summary of contributions made during the past ten years toward the understanding of environmentally assisted crack growth. The processes involved in crack growth are examined, and details regarding crack growth and chemical reactions are discussed, taking into account crack growth in steels exposed to water/water vapor, the effect of hydrogen, reactions involving hydrogen sulfide, and aspects of fracture surface morphology and composition. Attention is also given to the modeling of crack growth response, crack growth in gas mixtures, and the interaction of solute atoms with the crack-tip stress field.

  7. Use of Slow Strain Rate Tensile Testing to Assess the Ability of Several Superalloys to Resist Environmentally-Assisted Intergranular Cracking

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin

    2014-01-01

    Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720(TradeMark) ATI 718Plus(Registered TradeMark) alloy, Haynes 282(Trademark), and Inconel 740(TradeMark) Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.

  8. Environmentally assisted cracking in light water reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.

    2007-11-06

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the currentmore » choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature indicate that IASCC in 289 C water is dominated by a crack-tip grain-boundary process that involves S. An initial IASCC model has been proposed. A crack growth test was completed on mill annealed Alloy 600 in high-purity water at 289 C and 320 C under various environmental and loading conditions. The results from this test are compared with data obtained earlier on several other heats of Alloy 600.« less

  9. On the Influence of Nb/Ti Ratio on Environmentally-Assisted Crack Growth in High-Strength Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Németh, A. A. N.; Crudden, D. J.; Collins, D. M.; Kuksenko, V.; Liebscher, C. H.; Armstrong, D. E. J.; Wilkinson, A. J.; Reed, R. C.

    2018-05-01

    The effect of Nb/Ti ratio on environmentally-assisted crack growth of three prototype Ni-based superalloys is studied. For these alloys, the yield strength is unaltered with increasing Nb/Ti ratio due to an increase in grain size. This situation has allowed the rationalization of the factors influencing damage tolerance at 700 °C. Primary intergranular cracks have been investigated using energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope and the analysis of electron back-scatter diffraction patterns. Any possible detrimental effect of Nb on the observed crack tip damage due to Nb-rich oxide formation is not observed. Instead, evidence is presented to indicate that the tertiary γ'-precipitates are dissolving ahead of the crack consistent with the formation of oxides such as alumina and rutile. Our results have implications for alloy design efforts; at any given strength level, both more and less damage-tolerant variants of these alloys can be designed.

  10. Characterization of Environmentally Assisted Cracking for Design: State of the Art.

    DTIC Science & Technology

    1982-01-01

    Barsom, J.M., Effect of cyclic stress form on corrosion fatigue crack propagation below Kiscc in a high yield strength steel , in Corrosion Fatigue... Effect of Prestressing on the Stress Corrosion Resistance of Two High Strength Steels , Boeing Document D6-25275, Boeing Company, Seattle, Washington...sT’e Residual stress Crack growth High strength steel Seawater Crack initiation Hydrogen embrittlement Stress corrosion Design Linear elastic fracture

  11. A Contribution to Proof the Component Integrity Taking Into Account the Corrosion-Assisted Crack Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, Eberhard; Otremba, Frank; Huttner, Frank

    2002-07-01

    The proof of the component integrity is fundamental for a safe and reliable operation of Nuclear Power Plants (NPP). The concept of the Material Testing Institute (MPA) for integrity assessment is based on fracture mechanic analysis which results in detailed regulations for nondestructive examination. This approach has to account for the main damage mechanisms as fatigue and corrosion. This paper focuses on the influence of corrosion-assisted crack growth which strongly depends on corrosion and environmental conditions (e.g. coolant purity). Up to stress intensity of approximately 60 MPam for ferritic low-alloy steels in high-purity water (acc. to specification) under constant loadmore » conditions the analysis can be based on a crack extension of max. 70 for each load cycle. Related to a test duration of 1000 hours this is equivalent to a formally calculated crack growth rate (CGR) of = 2 10{sup -8} mm/s. For austenitic stainless steels more complex dependences on material, environmental and mechanical parameters exist. Particularly, for stabilized austenitic steels the crack growth rate data base is relatively weak. Under unfavourable environmental conditions in single cases crack growth rates up to 6 mm/a have been measured. Based on experimental results an arithmetic mean value of 0.95 mm/a and a median value of 0.6 mm/a have been determined. A further improvement of data base is desirable. (authors)« less

  12. Evaluation of Environmentally Assisted Cracking of Armour Wires in Flexible Pipes, Power Cables and Umbilicals

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying

    Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.

  13. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on themore » mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity range on crack growth rates in air.« less

  14. Fatigue crack propagation of nickel-base superalloys at 650 deg C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1988-01-01

    The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interaction are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size.

  15. Fatigue crack propagation of nickel-base superalloys at 650 deg C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1985-01-01

    The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interactions are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size.

  16. Fractography and mechanisms of environmentally enhanced fatigue crack propagation of a reactor pressure vessel steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torronen, K.; Kemppainen, M.

    1981-10-01

    This paper describes the findings and interpretations of the fractographic survey conducted for the International Cyclic Crack Growth Rate (ICCGR) cooperative group round-robin specimens. Specimens of A533B pressure vessel steel were tested at several laboratories in the United States and elsewhere with the same nominal test parameters. A rather wide scatter of the results was found. A fractographic and metallographic survey was carried out in order to clarify the scatter and to evaluate the micromechanism of the crack growth. The fractographic findings are reported in detail and correlated to the crack growth behavior. A hydrogen-assisted crack propagation mechanism based onmore » the fractography is proposed and applied to the observed crack growth behavior.« less

  17. Thermal-Mechanical Stress Analysis of PWR Pressure Vessel and Nozzles under Grid Load-Following Mode: Interim Report on the Effect of Cyclic Hardening Material Properties and Pre-existing Cracks on Stress Analysis Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results frommore » thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.« less

  18. Development of an expert system for fractography of environmentally assisted cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minoshima, Kohji; Komai, Kenjiro; Yamasaki, Norimasa

    1997-12-31

    An expert system that diagnoses the causes of failure of environmentally assisted cracking (EAC) based upon fractography has been developed. The system uses the OPS83 programming language, expressing rules in the manner of production rules, and is composed of three independent subsystems, which respectively deal with EACs of high-strength or high-tensile-strength steel, aluminum alloy, and stainless steel in dry and humidified air, water, and aqueous solutions containing Cl, Br, or I ions. The concerned EAC issues cover stress corrosion cracking (SCC), hydrogen embrittlement, cyclic SCC, dynamic SCC, and corrosion fatigue as well as fatigue and overload fracture. The knowledge basemore » covers the rules relating to not only environments, materials, and loading conditions, but also macroscopic and microscopic fracture surface morphology. In order to deal with vague expressions of fracture surface morphology, fuzzy set theory is used in the system, and the description of rules about vague fracture surface appearance is thereby possible. Applying the developed expert system to case histories, accurate diagnoses were made. The authors discuss the related diagnosis results and usefulness of the developed system.« less

  19. Environmental Effect on Evolutionary Cyclic Plasticity Material Parameters of 316 Stainless Steel: An Experimental & Material Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin

    2014-09-20

    This report provides an update on an earlier assessment of environmentally assisted fatigue for light water reactor (LWR) materials under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue in the Light Water Reactor Sustainability (LWRS) program. The overall objective of this LWRS project is to assess the degradation by environmentally assisted cracking/fatigue of LWR materials such as various alloy base metals and their welds used in reactor coolant system piping. This effort is to support the Department of Energy LWRS program for developing tools to understand the aging/failure mechanism and to predictmore » the remaining life of LWR components for anticipated 60-80 year operation.« less

  20. Corrosion pitting and environmentally assisted small crack growth

    PubMed Central

    Turnbull, Alan

    2014-01-01

    In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249

  1. Fracture Characteristics of Monolayer CVD-Graphene

    PubMed Central

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized. PMID:24657996

  2. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    NASA Astrophysics Data System (ADS)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  3. Fracture Toughness of Advanced Ceramics at Room Temperature

    PubMed Central

    Quinn, George D.; Salem, Jonathan; Bar-on, Isa; Cho, Kyu; Foley, Michael; Fang, Ho

    1992-01-01

    This report presents the results obtained by the five U.S. participating laboratories in the Versailles Advanced Materials and Standards (VAMAS) round-robin for fracture toughness of advanced ceramics. Three test methods were used: indentation fracture, indentation strength, and single-edge pre-cracked beam. Two materials were tested: a gas-pressure sintered silicon nitride and a zirconia toughened alumina. Consistent results were obtained with the latter two test methods. Interpretation of fracture toughness in the zirconia alumina composite was complicated by R-curve and environmentally-assisted crack growth phenomena. PMID:28053447

  4. European Scientific Notes. Volume 38, Number 8.

    DTIC Science & Technology

    1984-08-01

    is done mechanics, environmentally assisted using a Dugdale-Bilby strip yielding fracture, and oxidation in CO2. model (see Dowling and Townley , 1975...larger than the load ture, ASTM-STP668 (1979), 581. required to initiate cracking (this is Dowling, A.R., and C.H.A. Townley , why most of the failure

  5. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  6. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360{degree}C water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-09-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhancesmore » IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less

  7. Creep and intergranular cracking behavior of nickel-chromium-iron-carbon alloys in 360 C water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-11-01

    Mechanical testing of controlled-purity Ni-x% Cr-9% Fe-y% C alloys at 360 C revealed an environmental enhancement in intergranular (IG) cracking and time-dependent deformation in high-purity (HP) and primary water (PW) over that exhibited in argon. Dimples on the IG facets indicated a creep void nucleation and growth failure mode. IG cracking was located primarily in the interior of the specimen and was not necessarily linked to the environment. Controlled-potential constant extension rate tensile (CERT) experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen was detrimental to the mechanical properties. It was proposed that the environment,more » through the presence of hydrogen, enhanced IG cracking by enhancing the matrix dislocation mobility. This conclusion was based on observations that dislocation creep controlled IG cracking of controlled-purity Ni-x% Cr-9% Fe-y% C in argon at 360 C. Grain-boundary cavitation (GBC) and sliding (GBS) results showed environmental enhancement of the creep rate primarily resulted from an increase in matrix plastic deformation. However, controlled-potential constant load tensile (CLT) experiments did not indicate a change in the creep rate as the applied potential decreased. While this result did not support hydrogen-assisted creep, the material already may have been saturated with hydrogen at these applied potentials, and thus, no effect was realized. Chromium and carbon decreased IG cracking in HP and PW by increasing the creep resistance. The surface film did not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less

  8. Effect of precrack halos on kic determined by the surface crack in flexure method. Final report, August 1995-May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swab, J.J.; Quinn, G.D.

    1997-12-01

    The surface crack in flexure (SCF) method, which is used to determine the fracture toughness of dense ceramics necessitates the measurement of precrack sizes by fractographic examination. Stable crack extension may occur from flaws under ambient room-temperature conditions, even in the relatively short time under load during fast fracture strength or fracture toughness testing. In this paper, fractographic techniques are used to characterize evidence of stable crack extension, a halo, around Knoop indentation surface cracks. Optical examination of the fracture surfaces of a high-purity Al2O3, an AlN, a glass-ceramic, and a MgF2 revealed the presence of a halo around themore » periphery of each precrack. The halo in the AlN was merely an optical effect due to crack reorientation, while the halo in the MgF2 was due to indentation-induced residual stresses initiating crack growth. However, for the Al2O3 and the glass-ceramic, environmentally assisted slow crack growth (SCG) was the cause of the halo. In the latter two materials, this stable crack extension must be included as part of the critical crack size in order to determine the appropriate fracture toughness.« less

  9. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  10. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE PAGES

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  11. Corrosion fatigue characterization of reactor pressure vessel steels. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.

    1982-12-01

    During routine operation, light water reactor (LWR) pressure vessels are subjected to a variety of transients that result in time-varying stresses. Consequently, fatigue and environmentally-assisted fatigue are mechanisms of growth relevant to flaws in these pressure vessels. To provide a better understanding of the resistance of nuclear pressure vessel steels to these flaw growth processes, fracture mechanics data were generated on the rates of fatigue crack growth for SA508-2 and SA533B-1 steels in both room temperature air and 288/sup 0/C water. Areas investigated were: the relationship of crack growth rate to prior loading history; the effects of loading frequency andmore » R ratio (K/sub min//K/sub max/) on crack growth rate as a function of the stress intensity factor range (..delta..K); transient aspects of the fatigue crack growth behavior; the effect of material chemistry (sulphur content) on fatigue crack; and growth rate; water chemistry effects (high-purity water versus simulated pressurized water reactotr (PWR) primary coolant).« less

  12. The role of grain boundary chemistry and structure in the environmentally-assisted intergranular cracking of nickel-base alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, G.S.

    1992-07-01

    Stress corrosion cracking tests in constant extension rate tensile (CERT) and constant load tensile (CLT) tests were conducted on Ni-xCr- 9Fe-yC in Ar, water, and a LiOH-boric acid solution. Cr and C improve the resistance of Ni-base alloys to IG cracking in both Ar and water at 360C. Since creep plays a role in IG cracking, one possible explanation for the role of the environment involves its effect on the creep. Experiments were conducted on the role of C in the deformation behavior and failure mode of Ni-16Cr-9Fe. Constant load experiments were conducted on Ni-16Cr-9Fe to determine if the CLTmore » test is more aggressive than CERT. The electron backscattering technique in a SEM is being developed in order to extend the IG cracking studies to grain sizes typical of commercial alloys, 20-30 microns.« less

  13. The role of grain boundary chemistry and structure in the environmentally-assisted intergranular cracking of nickel-base alloys. Progress report, August 1, 1991--July 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, G.S.

    1992-07-01

    Stress corrosion cracking tests in constant extension rate tensile (CERT) and constant load tensile (CLT) tests were conducted on Ni-xCr- 9Fe-yC in Ar, water, and a LiOH-boric acid solution. Cr and C improve the resistance of Ni-base alloys to IG cracking in both Ar and water at 360C. Since creep plays a role in IG cracking, one possible explanation for the role of the environment involves its effect on the creep. Experiments were conducted on the role of C in the deformation behavior and failure mode of Ni-16Cr-9Fe. Constant load experiments were conducted on Ni-16Cr-9Fe to determine if the CLTmore » test is more aggressive than CERT. The electron backscattering technique in a SEM is being developed in order to extend the IG cracking studies to grain sizes typical of commercial alloys, 20-30 microns.« less

  14. Mechanism-Based Modeling of Hydrogen Environment Assisted Cracking (HEAC) in High Strength Alloys for Marine Applications: Prediction of Monel K-500 HEAC for Select Environmental and Mechanical Conditions

    DTIC Science & Technology

    2012-10-15

    0.45 .015 .0005 Si = 0.08, Cr = 0.04, Zr = 0.03, Nb , Ta, W, V < 0.01, Bi, Pb, Ag, Sn< 0.0005 wt pet Page | 7 Table 2. Mechanical Properties...analysis and contribute to dcPD increase due to plasticity-based resistivity increase. Additionally, crack surface electrical contact which changes during...STTR-II sponsored). Task 2-3 Produce laboratory measurements of HEAC resistance (KIH, da/dtn, and da/dt vs. stress intensity factor) for a single

  15. Phase transformation and sustained load crack growth in ZrO[sub 2] + 3 mol% Y[sub 2]O[sub 3]: Experiments and kinetic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, H.; Gao, M.; Wei, R.P.

    1995-01-01

    To better understand environmentally assisted crack growth (SCG) in yttria stabilized zirconia, experimental studies were undertaken to characterize the kinetics of crack growth and the associated stress/moisture induced phase transformation in ZrO[sub 2] + 3 mol% Y[sub 2]O[sub 3] (3Y-TZP) in water, dry nitrogen and toluene from 3 to 70 C. The results showed that crack growth in water depended strongly on stress intensity factor (K[sub 1]) and temperature (T) and involved the transformation of a thin layer of material near the crack tip from the tetragonal (t) to the monoclinic (m) phase. These results, combined with literature data onmore » moisture-induced phase transformation, suggested that crack growth enhancement by water is controlled by the rate of this transformation and reflects the environmental cracking susceptibility of the transformed m-phase. A model was developed to link subcritical crack growth (SCG) rate to the kinetics of t [yields] m phase transformation. The SCG rate is expressed as an exponential function of stress-free activation energy, a stress-dependent contribution in terms of the mode 1 stress intensity factor K[sub I] and actuation volume, and temperature. The stress-free activation energies for water and the inert environments were determined to be 82 [+-] 3 and 169 [+-] 4 kJ/mol, respectively, at the 95% confidence level, and the corresponding activation volumes were 14 and 35 unit cells. The decreases in activation energy and activation volume may be attributed to a change in surface energy by water.« less

  16. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  17. Critical Issues in Hydrogen Assisted Cracking of Structural Alloys

    DTIC Science & Technology

    2006-01-01

    does not precipitate ? Does the HEAC mechanism explain environment-assisted (stress corrosion ) crack growth in high strength alloys stressed in moist...superalloys were cracked in high pressure (100-200 M~a) H2, while maraging and tempered-martensitic steels were cracked in low pressure (-100 kPa) H2...of IRAC in ultra-high strength AerMet®l00 steel demonstrates the role of crack tip stress in promoting H accumulation and embrittlement. The cracking

  18. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties andmore » susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.« less

  19. Hydrogen Assisted Cracking of High Strength Steel Welds

    DTIC Science & Technology

    1988-05-01

    cracking of high strength steel welds. The microplasticity theory originally proposed by M Beachem is used to explain the effect of hydrogen on the var... microplasticity mechanism rather than embrittlement (B7). He suggests that the hydrogen in the lattice ahead of the crack tip assists whatever...intensity level on the observed fracture mode. This theory postu- lates that hydrogen will promote cracking by a microplasticity mechanism rather than

  20. Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, M.; Coupeau, C.; Colin, J.

    2005-01-10

    The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.

  1. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  2. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of phases on the crack path.« less

  3. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    NASA Astrophysics Data System (ADS)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  4. Fracture toughness of advanced ceramics at room temperature

    NASA Technical Reports Server (NTRS)

    Quinn, George D.; Salem, Jonathan; Bar-On, Isa; Cho, Kyu; Foley, Michael; Fang, HO

    1992-01-01

    Results of round-robin fracture toughness tests on advanced ceramics are reported. A gas-pressure silicon nitride and a zirconia-toughened alumina were tested using three test methods: indentation fracture, indentation strength, and single-edge precracked beam. The latter two methods have produced consistent results. The interpretation of fracture toughness test results for the zirconia alumina composite is shown to be complicated by R-curve and environmentally assisted crack growth phenomena.

  5. Environmental Assisted Cracking in High Hardness Armor Steel

    DTIC Science & Technology

    1985-09-01

    Longitudinal and transverse tension tests (ASTM E8-81) utilizing flat dogbane specimens, and subsize Charpy impact tests (ASTM 23-81) were performed on part...had been obtained. Longitudinal and transverse tension tests (ASTM E8-81) utilizing flat dogbane specimens, and subsize Charpy impact tests (ASTM 23... Charpy and tensile bar surfaces. All of the optical metallography samples were prepared using standard metallographic practices. The optical specimens

  6. Physical Metallurgy, Weldability, and in-Service Performance of Nickel-Chromium Filler Metals Used in Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Young, George A.; Etien, Robert A.; Hackett, Micah J.; Tucker, Julie D.; Capobianco, Thomas E.

    Wrought Alloy 690 is well established for corrosion resistant nuclear applications but development continues to improve the weldability of a filler metal that retains the corrosion resistance and phase stability of the base metal. High alloy Ni-Cr filler metals are prone to several types of welding defects and new alloys are emerging for commercial use. This paper uses experimental and computational methods to illustrate key differences among welding consumables. Results show that solidification segregation is critical to understanding the weldability and environmentally-assisted cracking resistance of these alloys. Primary water stress corrosion cracking tests show a marked decrease in crack growth rates near 21 wt. % Cr at the grain boundary. While filler metals with 21-29 wt.% grain boundary Cr show similar PWSCC resistance, the higher alloyed grades are more prone to solidification cracking. Modeling and aging studies indicate that in some filler metals minor phase formation (e.g., Laves and σ) and long range order (LRO) must be assessed to ensure adequate weldability and inservice performance.

  7. Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.

    2003-01-01

    Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.

  8. Study of the Effect of Swelling on Irradiation Assisted Stress Corrosion Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teysseyre, Sebastien Paul

    2016-09-01

    This report describes the methodology used to study the effect of swelling on the crack growth rate of an irradiation-assisted stress corrosion crack that is propagating in highly irradiated stainless steel 304 material irradiated to 33 dpa in the Experimental Breeder Reactor-II. The material selection, specimens design, experimental apparatus and processes are described. The results of the current test are presented.

  9. Assessing Hydrogen Assisted Cracking Modes in High Strength Steel Welds

    DTIC Science & Technology

    1988-12-01

    posed theoretical hydrogen assisted cracking mechanisms. It was found that the microplasticity theory of Beachem can best describe how the stress...precludes an internal pressure gradient as the driv- ing force for crack growth. The adsorption theory of Petch and Stables3 and further modifications4...the adsorption theory. In addition, fracture surfaces indicate rapid void formation and coales- cence at low temperatures where the rate of surface

  10. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  11. Corrosion fatigue of alloys 600 and 690 in simulated LWR environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruther, W.E.; Soppett, W.K.; Kassner, T.F.

    1996-04-01

    Crack growth data were obtained on fracture-mechanics specimens of Alloys 600 and 690 to investigate environmentally assisted cracking (EAC) in simulated boiling water reactor and pressurized water reactor environments at 289 and 320 C. Preliminary information was obtained on the effect of temperature, load ratio, stress intensity (K), and the dissolved-oxygen and -hydrogen concentrations of the water on EAC. Specimens of Type 316NG and sensitized Type 304 stainless steel (SS) were included in several of the experiments to assess the behavior of these materials and Alloy 600 under the same water chemistry and loading conditions. The experimental data are comparedmore » with predictions from an Argonne National Laboratory (ANL) model for crack growth rates (CGRs) of SSs in water and the ASME Code Section 11 correlation for CGRs in air at the K{sub max} and load-ratio values in the various tests. The data for all of the materials were bounded by ANL model predictions and the ASME Section 11 ``air line.``« less

  12. Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1989-01-01

    Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.

  13. Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localised-Slip Process,

    DTIC Science & Technology

    1986-12-01

    Prior to examination of LME fractures, liquid or solid metals were removed from fracture surfaces as follows: Mercury was evaporated from fractures in a...1 mm/s. Under these conditions, the appearance of fracture surfaces was identical to that produced by rapid fracture (-1 mm/s) in liquid mercury ...Furthermore, the appearance of fractures depended somewhat on the orientation of crystals but was the same in hydrogen and mercury environments for each

  14. Cracking-assisted fabrication of nanoscale patterns for micro/nanotechnological applications

    NASA Astrophysics Data System (ADS)

    Kim, Minseok; Kim, Dong-Joo; Ha, Dogyeong; Kim, Taesung

    2016-05-01

    Cracks are frequently observed in daily life, but they are rarely welcome and are considered as a material failure mode. Interestingly, cracks cause critical problems in various micro/nanofabrication processes such as colloidal assembly, thin film deposition, and even standard photolithography because they are hard to avoid or control. However, increasing attention has been given recently to control and use cracks as a facile, low-cost strategy for producing highly ordered nanopatterns. Specifically, cracking is the breakage of molecular bonds and occurs simultaneously over a large area, enabling fabrication of nanoscale patterns at both high resolution and high throughput, which are difficult to obtain simultaneously using conventional nanofabrication techniques. In this review, we discuss various cracking-assisted nanofabrication techniques, referred to as crack lithography, and summarize the fabrication principles, procedures, and characteristics of the crack patterns such as their position, direction, and dimensions. First, we categorize crack lithography techniques into three technical development levels according to the directional freedom of the crack patterns: randomly oriented, unidirectional, or multidirectional. Then, we describe a wide range of novel practical devices fabricated by crack lithography, including bioassay platforms, nanofluidic devices, nanowire sensors, and even biomimetic mechanosensors.

  15. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking

    PubMed Central

    Toribio, Jesús; Aguado, Leticia; Lorenzo, Miguel; Kharin, Viktor

    2017-01-01

    Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample’s posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress. PMID:28772845

  16. Cyclic crack growth behavior of reactor pressure vessel steels in light water reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.; Emanuelson, R.H.

    1986-01-01

    During normal operation light water reactor (LWR) pressure vessels are subjected to a variety of transients resulting in time varying stresses. Consequently, fatigue and environmentally assisted fatigue are growth mechanisms relevant to flaws in these pressure vessels. In order to provide a better understanding of the resistance of nuclear pressure vessel steels to flaw growth process, a series of fracture mechanics experiments were conducted to generate data on the rate of cyclic crack growth in SA508-2 and SA533b-1 steels in simulated 550/sup 0/F boiling water reactor (BWR) and 550/sup 0/F pressurized water reactor (PWR) environments. Areas investigated over the coursemore » of the test program included the effects of loading frequency and r ratio (Kmin-Kmax) on crack growth rate as a function of the stress intensity factor (deltaK) range. In addition, the effect of sulfur content of the test material on the cyclic crack growth rate was studied. Cyclic crack growth rates were found to be controlled by deltaK, R ratio, and loading frequency. The sulfur impurity content of the reactor pressure vessel steels studied had a significant effect on the cyclic crack growth rates. The higher growth rates were always associated with materials of higher sulfur content. For a given level of sulfur, growth rates were in a 550/sup 0/F simulated BWR environment than in a 550/sup 0/F simulated PWR environment. In both environments cyclic crack growth rates were a strong function of the loading frequency.« less

  17. Fracture Growth Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey W.; Martinez, Jonathan; McLean, Christopher

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant in orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent flaws will not cause failure during the design life. Material property inputs for this analysis require testing to determine the stress intensity factor for environmentally-assisted cracking (K (sub EAC)) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched specimens SE(B) representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to the monopropellant at 50 degrees Centigrade for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor of the Ti 6Al-4V forged tank material when exposed to AF-M315E monopropellant was found to be at least 22.0 kilopounds per square inch. The stress intensity factor of the weld material was at least 31.3 kilopounds per square inch.

  18. Environmentally Assisted Cracking of High Strength Beta Titanium Alloys

    DTIC Science & Technology

    1993-11-01

    financially supported by the Virginia Center for Innovative Technology TDC on Electrochemical Science and Engineering (Grant CIT- TDC -88-01) and by the Office...Material Behayir, N.R. Moody and A.W. Thompson, eds., TMS -AIME, Warrendale, PA, p. 891(1990). 18. 0. Vosikovsky, J.Tt. EyaL, Vol. 6, p. 175 (1978). 19...acknowledged. 3 23 REFERENCES 1. Beta Titanium Alloys in the 80’s R.R. Boyer and H.W. Rosenberg, eds., TMS -AIME,3 Warrendale, PA. pp. 209-229, 1983. 2

  19. Fatigue Crack Propagation from Notched Specimens of 304 SS in elevated Temperature Aqueous Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wire, G. L.; Mills, W. J.

    2002-08-01

    Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventionalmore » deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.« less

  20. Assessment Criteria for Environmental Cracking of High-Strength Steels in Seawater.

    DTIC Science & Technology

    1983-03-18

    OF HIGH-STRENGTH STEELS IN SEAWATER T. W. Crooker and J. A. Hauser II Material Science and Technology Division Naval Research Laboratory Washington, DC...AGSTPACT (Continued) environmental cracking. This report provides a summary of state-of-theart technology for assessing environmental cracking of high...This report will address this issue, both in terms of existing technology and needs for further

  1. Isothermal Damage and Fatigue Behavior of SCS-6/Timetal 21S [0/90](Sub S) Composite at 650 Deg C

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    The isothermal fatigue damage and life behaviors of SCS-6/Timetal 21S (0/90)s were investigated at 650 C. Strain ratcheting and degradation of the composite's static elastic modulus were carefully monitored as functions of cycles to indicate damage progression. Extensive fractographic and metallographic analyses were conducted to determine damage/failure mechanisms. Resulting fatigue lives show considerable reductions in comparison to (0) reinforced titanium matrix composites subjected to comparable conditions. Notable stiffness degradations were found to occur after the first cycle of loading, even at relatively low maximum stress levels, where cyclic lives are greater than 25,000 cycles. This was attributed to the extremely weak fiber/matrix bond which fails under relatively low transverse loads. Stiffness degradations incurred on first cycle loadings and degradations thereafter were found to increase with increasing maximum stress. Environmental effects associated with oxidation of the (90) fiber interfaces clearly played a role in the damage mechanisms as fracture surfaces revealed environment assisted matrix cracking along the (90) fibers. Metallographic analysis indicated that all observable matrix fatigue cracks initiated at the (90) fiber/matrix interfaces. Global de-bonding in the loading direction was found along the (90) fibers. No surface initiated cracks were evident and minimal if any (0) fiber cracking was visible.

  2. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  3. Inspecting cracks in foam insulation

    NASA Technical Reports Server (NTRS)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  4. Corrosion Fatigue and Environmentally Assisted Cracking in Aging Military Vehicles (La fatigue-corrosion et la fissuration en milieu ambiant des vehicules militaires vieillissants)

    DTIC Science & Technology

    2011-03-01

    deposition temperature is above 260°C (500°F), CVD Al cannot be applied to many structural alloys used in aerospace [12]. 23.3.4 Spray Deposited Cadmium...Alternatives There are several different aluminum-based coatings that can be deposited by spraying : aluminum and Al alloys , metallic-ceramic coatings...and Al - and Zn-filled polymers [12]. Thermal spray (flame or arc) is a very flexible and cost-effective process for deposition of pure

  5. Corrosion Fatigue and Environmentally Assisted Cracking in Aging Military Vehicles (le fatigue-corrosion et la fissuration en milieu ambiant des vehicules militaires vieillissants)

    DTIC Science & Technology

    2011-03-01

    deposition temperature is above 260°C (500°F), CVD Al cannot be applied to many structural alloys used in aerospace [12]. 23.3.4 Spray Deposited Cadmium...Alternatives There are several different aluminum-based coatings that can be deposited by spraying : aluminum and Al alloys , metallic-ceramic coatings...and Al - and Zn-filled polymers [12]. Thermal spray (flame or arc) is a very flexible and cost-effective process for deposition of pure

  6. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  7. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  8. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    NASA Astrophysics Data System (ADS)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  9. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Vipul K.

    The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the role of inter-subgranular cracking, which had previously been advanced based upon fracture surface observations alone.

  10. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  11. Cracking characteristics of alloy 690 in thiosulfate containing chloride solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.H.; Tsai, W.T.

    1999-07-01

    The cracking characteristics of Alloy 690 in deaerated 1wt% NaCl solution with different Na{sub 2}S{sub 2}O{sub 2} concentrations, namely 0.01, 0.1, 0.2 and 0.5 M, at controlled anodic potentials was investigated by using slow strain rate testing (SSRT) with a strain rate of 1 x 10{sup {minus}6} s{sup {minus}1}. The results showed that the ultimate tensile strength and the ductility increased with increasing the concentration of Na{sub 2}S{sub 2}O{sub 3} at the same anodic potential, but decreased with increasing potential at a fixed concentration of Na{sub 2}S{sub 2}O{sub 3}. Pitting corrosion could occur on Alloy 690 in 1wt% NaCl solutionmore » with the concentration of Na{sub 2}S{sub 2}O{sub 3} {le} 0.1 M, depending on the potential. The susceptibilities of Alloy 690 to pitting corrosion and environmentally-assisted cracking in 1wt% NaCl solution were inhibited with the concentration of Na{sub 2}S{sub 2}O{sub 3} {ge} 0.2M, regardless of the potential.« less

  12. Matrix Fatigue Cracking Mechanisms of Alpha(2) TMC for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John

    1994-01-01

    The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha(sub 2) TMC in possible hypersonic applications. A (0)(sub 8) SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

  13. Environmental fatigue of an Al-Li-Cu alloy. Part 1: Intrinsic crack propagation kinetics in hydrogenous environments

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1991-01-01

    Deleterious environmental effects on steady-state, intrinsic fatigue crack propagation (FCP) rates (da/dN) in peak aged Al-Li-Cu alloy 2090 are established by electrical potential monitoring of short cracks with programmed constant delta K and K(sub max) loading. The da/dN are equally unaffected by vacuum, purified helium, and oxygen but are accelerated in order of decreasing effectiveness by aqueous 1 percent NaCl with anodic polarization, pure water vapor, moist air, and NaCl with cathodic polarization. While da/dN depends on delta K(sup 4.0) for the inert gases, water vapor and chloride induced multiple power-laws, and a transition growth rate 'plateau'. Environmental effects are strongest at low delta K. Crack tip damage is ascribed to hydrogen embrittlement because of the following: (1) accelerated da/dN due to part-per-million levels of H2O without condensation; (2) impeded molecular flow model predictions of the measured water vapor pressure dependence of da/dN as affected by mean crack opening; (3) the lack of an effect of film-forming O2; (4) the likelihood for crack tip hydrogen production in NaCl, and (5) the environmental and delta K-process zone volume dependencies of the microscopic cracking modes. For NaCl, growth rates decrease with decreasing loading frequency, with the addition of passivating Li2CO3, and upon cathodic polarization. These variables increase crack surface film stability to reduce hydrogen entry efficiency. The hydrogen environmental FCP resistance of 2090 is similar to other 2000 series alloys and is better than 7075.

  14. Use of lightweight concrete for reducing cracks in bridge decks.

    DOT National Transportation Integrated Search

    2016-04-01

    Cracks in bridge decks can be due to many factors related to environmental effects, chemical reactions, and structural : loads. Careful selection of materials and mixture proportions can minimize cracking to some degree. To reduce cracking, : shrinka...

  15. A Predictive Model for Chemically-Induced Fracture

    NASA Astrophysics Data System (ADS)

    Carter, Emily

    2004-03-01

    Mechanical properties of bulk solids are affected not only by macroscopic external loads, but also by chemical reactions, typically at surfaces and interfaces. For example, impurities in metals often coalesce at grain boundaries, leading to weakening of the sample under stress. Atmospheric corrosion is another example that, when combined with external loads, leads to stress-corrosion cracking. These are inherently multiscale phenomena, where the chemistry occurring at the atomic scale profoundly affects the mechanical properties at the micron to millimeter scale. Here we discuss a multiscale model of environmentally-assisted fracture. This involves coupling periodic density functional theory (DFT) at the atomic scale to a finite element continuum mechanics description of the coarser scale. A key component is the cohesive law, which we have shown takes on a universal form distinct from the generally used UBER model. Further, we propose a scheme to calculate physically realistic cohesive laws in the presence of mobile impurities. This cohesive law is then used to in a continuum model that couples stress-assisted diffusion with cohesive zone models of fracture to describe hydrogen embrittlement in metals. We show that this model, with a first principles-based cohesive law, provides insight into the observed intermittent cracking in steel, as well as good quantitative agreement with experiment.

  16. Quantification of the Service Life Extension and Environmental Benefit of Chloride Exposed Self-Healing Concrete.

    PubMed

    Van Belleghem, Bjorn; Van den Heede, Philip; Van Tittelboom, Kim; De Belie, Nele

    2016-12-23

    Formation of cracks impairs the durability of concrete elements. Corrosion inducing substances, such as chlorides, can enter the matrix through these cracks and cause steel reinforcement corrosion and concrete degradation. Self-repair of concrete cracks is an innovative technique which has been studied extensively during the past decade and which may help to increase the sustainability of concrete. However, the experiments conducted until now did not allow for an assessment of the service life extension possible with self-healing concrete in comparison with traditional (cracked) concrete. In this research, a service life prediction of self-healing concrete was done based on input from chloride diffusion tests. Self-healing of cracks with encapsulated polyurethane precursor formed a partial barrier against immediate ingress of chlorides through the cracks. Application of self-healing concrete was able to reduce the chloride concentration in a cracked zone by 75% or more. As a result, service life of steel reinforced self-healing concrete slabs in marine environments could amount to 60-94 years as opposed to only seven years for ordinary (cracked) concrete. Subsequent life cycle assessment calculations indicated important environmental benefits (56%-75%) for the ten CML-IA (Center of Environmental Science of Leiden University-Impact Assessment) baseline impact indicators which are mainly induced by the achievable service life extension.

  17. Fault feature analysis of cracked gear based on LOD and analytical-FE method

    NASA Astrophysics Data System (ADS)

    Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng

    2018-01-01

    At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.

  18. 40 CFR 419.20 - Applicability; description of the cracking subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cracking subcategory. 419.20 Section 419.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.20 Applicability; description of the cracking subcategory. The provisions of this subpart are...

  19. 40 CFR 419.20 - Applicability; description of the cracking subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cracking subcategory. 419.20 Section 419.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.20 Applicability; description of the cracking subcategory. The provisions of this subpart are...

  20. Cohesive zone model for intergranular slow crack growth in ceramics: influence of the process and the microstructure

    NASA Astrophysics Data System (ADS)

    Romero de la Osa, M.; Estevez, R.; Olagnon, C.; Chevalier, J.; Tallaron, C.

    2011-10-01

    Ceramic polycrystals are prone to slow crack growth (SCG) which is stress and environmentally assisted, similarly to observations reported for silica glasses. The kinetics of fracture are known to be dependent on the load level, the temperature and the relative humidity. In addition, evidence is available on the influence of the microstructure on the SCG rate with an increase in the crack velocity with decreasing the grain size. Crack propagation takes place beyond a load threshold, which is grain size dependent. We present a cohesive zone model for the intergranular failure process. The methodology accounts for an intrinsic opening that governs the length of the cohesive zone and allows the investigation of grain size effects. A rate and temperature-dependent cohesive model is proposed (Romero de la Osa M, Estevez R et al 2009 J. Mech. Adv. Mater. Struct. 16 623-31) to mimic the reaction-rupture mechanism. The formulation is inspired by Michalske and Freiman's picture (Michalske and Freiman 1983 J. Am. Ceram. Soc. 66 284-8) together with a recent study by Zhu et al (2005 J. Mech. Phys. Solids 53 1597-623) of the reaction-rupture mechanism. The present investigation extends a previous work (Romero de la Osa et al 2009 Int. J. Fracture 158 157-67) in which the problem is formulated. Here, we explore the influence of the microstructure in terms of grain size, their elastic properties and residual thermal stresses originating from the cooling from the sintering temperature down to ambient conditions. Their influence on SCG for static loadings is reported and the predictions compared with experimental trends. We show that the initial stress state is responsible for the grain size dependence reported experimentally for SCG. Furthermore, the account for the initial stresses enables the prediction of a load threshold below which no crack growth is observed: a crack arrest takes place when the crack path meets a region in compression.

  1. Time-Dependent Fatigue Crack Propagation Behavior of Two Solid-Solution-Strengthened Ni-Based Superalloys—INCONEL 617 and HAYNES 230

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.; Hasan, Muhammad H.; Pal, Joydeep; Chatterjee, Sudin

    2012-02-01

    The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity-factor ( K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1/3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor ( K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 °C to 800 °C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time-dependent FCP rates of INCONEL 617 and HAYNES 230.

  2. Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds

    NASA Astrophysics Data System (ADS)

    Lafata, M. A.; Rettberg, L. H.; He, M. Y.; Pollock, T. M.

    2018-01-01

    The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress-strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of γ ^' } denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.

  3. Hydrogen effects on materials for CNG/H2 blends.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farese, David; Keller, Jay O.; Somerday, Brian P.

    2010-09-01

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  4. Bioconcrete: next generation of self-healing concrete.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-03-01

    Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research.

  5. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  6. Fracture Kinetics of Hydrogen Embrittled Niobium.

    DTIC Science & Technology

    1981-03-01

    Effects on Hydride Solvus 4...........4 2.3 Subcritical Crack Growth Behavior and Mechanism . . 6 2.4 Crack Propagation Measurements and Techniques... maraging steels in gaseous hydrogen, Hudak and Wei (18) ei has suggested that the KI independence of Stage II velocities is due to a rate limited...lattice decohesion model for hydrogen assisted cracking in steels . The occurrence of three stage behavior in hydrogen embrittled refractory alloys has

  7. Quantification of the Service Life Extension and Environmental Benefit of Chloride Exposed Self-Healing Concrete

    PubMed Central

    Van Belleghem, Bjorn; Van den Heede, Philip; Van Tittelboom, Kim; De Belie, Nele

    2016-01-01

    Formation of cracks impairs the durability of concrete elements. Corrosion inducing substances, such as chlorides, can enter the matrix through these cracks and cause steel reinforcement corrosion and concrete degradation. Self-repair of concrete cracks is an innovative technique which has been studied extensively during the past decade and which may help to increase the sustainability of concrete. However, the experiments conducted until now did not allow for an assessment of the service life extension possible with self-healing concrete in comparison with traditional (cracked) concrete. In this research, a service life prediction of self-healing concrete was done based on input from chloride diffusion tests. Self-healing of cracks with encapsulated polyurethane precursor formed a partial barrier against immediate ingress of chlorides through the cracks. Application of self-healing concrete was able to reduce the chloride concentration in a cracked zone by 75% or more. As a result, service life of steel reinforced self-healing concrete slabs in marine environments could amount to 60–94 years as opposed to only seven years for ordinary (cracked) concrete. Subsequent life cycle assessment calculations indicated important environmental benefits (56%–75%) for the ten CML-IA (Center of Environmental Science of Leiden University–Impact Assessment) baseline impact indicators which are mainly induced by the achievable service life extension. PMID:28772363

  8. International Conference/Workshop on Small Fatigue Cracks (2nd) Held in Santa Barbara, California on 5-10 January 1986.

    DTIC Science & Technology

    1986-03-31

    critical issues thus pertain to the determination of crack tip conditions, as a function of crack length, in terms of the coupled processes of fluid...transport and chemical/electrochemical reactions within the crack, and the determination of the origin of the environmentally-enhanced cracking rates in...Depth in Determining Crack Electrochemistry and Crack Growth" A. Turnbull, National Physical Laboratory, U.K., and R. C. Newmann, UMIST, U.K. 7:30 p.m.-7

  9. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  10. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  11. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    NASA Astrophysics Data System (ADS)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  12. Application of computer assisted moire to the study of a crack tip

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.; Albertazzi, A., Jr.; Mourikes, J.

    The basic principles of computer assisted moire are discussed. The influence of the image sensor and its finite dimensions on the sampling theorem requirements is discussed. Criteria for the selection of grating pitch on the basis of the spatial bandwidth of the pattern to be observed and the requirements arising from sensitivity considerations are given. The method is used to analyze the strain field in the neighborhood of the crack tip of a standard ASTM compact tension specimen. From the displacements the strains are computed, and from the strains the stresses are obtained using the generalized Ramberg-Osgood stress strain relationship. The stresses are used to compute the values for the J-integral in several circuits surrounding the crack. Good agreement is obtained between the values of the stress intensity factors obtained by different methods. The plastic region surrounding the crack does not show a HRR field and thus the usual rationale to justify the J-integral methods must be re-evaluated.

  13. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure

    NASA Astrophysics Data System (ADS)

    Xie, Siyao; Li, Ruidi; Yuan, Tiechui; Chen, Chao; Zhou, Kechao; Song, Bo; Shi, Yusheng

    2018-02-01

    Although laser cladding has find its widespread application in surface hardening, this technology has been significantly limited by the solidification crack, which usually initiates along grain boundary due to the brittle precipitation in grain boundary and networks formation during the laser rapid melting/solidification process. This paper proposed a novel laser cladding technology assisted by friction stir processing (FSP) to eliminate the usual metallurgical defects by the thermomechanical coupling effect of FSP with the Ni-Cr-Fe as representative coating material. By the FSP assisted laser cladding, the crack in laser cladding Ni-Cr-Fe coating was eliminated and the coarse networks of laser cladding coating was transformed into dispersed nanoparticles. Moreover, the plastic layers with thicknesses 47-140 μm can be observed, with gradient grain refinement from substrate to the top surface in which grain size reached 300 nm and laser photocoagulation net second phase crushed in the layer. In addition, cracks closed in the plastic zone. The refinement of grain resulted the hardness increased to over 400 HV, much higher than the 300 HV of the laser cladding structure. After FSP, the friction coefficient decreased from 0.6167 to 0.5645 which promoted the wear resistance.

  14. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking Units As...

  15. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking Units As...

  16. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  17. Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.

    2017-01-01

    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.

  18. Stress intensity factors for surface and corner cracks emanating from a wedge-loaded hole

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Sutton, M. A.; Shivakumar, K. N.; Newman, J. C., Jr.

    1994-01-01

    To assist analysis of riveted lap joints, stress intensity factors are determined for surface and corner cracks emanating from a wedge-loaded hole by using a 3-D weight function method in conjunction with a 3-D finite element method. A stress intensity factor equation for surface cracks is also developed to provide a closed-form solution. The equation covers commonly-encountered geometrical ranges and retains high accuracy over the entire range.

  19. Effects of Residual Impurities on Hydrogen Assisted Cracking in High Strength Steels. Part II.

    DTIC Science & Technology

    1982-06-01

    source of hydrogen is the corrosion reaction of steel with aqueous hydrogen sulfide solutions encountered either in the production of crude oil and...autoradiography technique, it has been shown that in Armco iron and in maraging steel of hydrogen is trapped at prior austenite grain boundaries. Tritium...also play a deleterious role in hydrogen-induced cracking. In these ultra-high strength steels , the crack-tip stress level and the concomitant stress

  20. Experimental Study of Oxygen-Assisted Crack Growth in Alloy 718 and Alloy TI-1100

    DTIC Science & Technology

    1993-02-01

    Ghonem et al [21 proposed that the crack growth rate increases as the grain boundary area exposed to oxygen penetration increases Consequently, the grain...recent work by Chang and al is worthwhile to be mentioned to this respect [3]. These authors used a modified heat treatment to produce a coarser grain...interesting experiment was carried out in the work of Ghonem et al [8] on a fine grain size (20-50jurm) Alloy 718. They carried out crack growth

  1. A ’Hydrogen Partitioning’ Model for Hydrogen Assisted Crack Growth.

    DTIC Science & Technology

    1984-09-01

    the change in Stage II crack growth rate from Region A to Region C in the 18NI maraging steels . It cannot, however, explain the sudden drop off in...Neither partitioning of hydrogen nor adsorption equilibrium can account for the observed "high" temperature response of l8Ni maraging steel in hydrogen...ment and Stress Corrosion Cracking, American Society for Metals, Metals Park, OH, 1984, p. 103 (in press). 11. R. P. Wei: in Hydrogen Effects in

  2. Block 2 solar cell module environmental test program

    NASA Technical Reports Server (NTRS)

    Holloway, K. L.

    1978-01-01

    Environmental tests were performed of on 76 solar cell modules produced by four different manufacturers. The following tests were performed: (1) 28 day temperature and humidity; (2) rain and icing; (3) salt fog; (4) sand and dust; (5) vacuum/steam/pressure; (6) fungus; (7) temperature/altitude; and (8) thermal shock. Environmental testing of the solar cell modules produced cracked cells, cracked encapsulant and encapsulant delaminations on various modules. In addition, there was some minor cell and frame corrosion.

  3. Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanto, B., E-mail: b.suryanto@hw.ac.uk; Buckman

    Environmental Scanning Electron Microscopy (ESEM) is used to study the origin of micro-crack healing in an Engineered Cementitious Composite (ECC). ESEM images were acquired from ECC specimens cut from pre-cracked, dog-bone samples which then subjected to submerged curing followed by exposure to the natural environment. The mineralogical and chemical compositions of the healing products were determined using the EDX facility in the ESEM. It is shown that the precipitation of calcium carbonate is the main contributor to micro-crack healing at the crack mouth. The healing products initially appeared in an angular rhombohedral morphology which then underwent a discernable transformation inmore » size, shape and surface texture, from relatively flat and smooth to irregular and rough, resembling the texture of the original surface areas surrounding the micro-cracks. It is also shown that exposure to the natural environment, involving intermittent wetting/drying cycles, promotes additional crystal growth, which indicates enhanced self-healing capability in this environment. - Highlights: •ESEM with EDX used to characterize the origin of micro-crack healing in an ECC •Evolution of healing precipitates studied at three specific locations over four weeks •Specimens exposed to laboratory environment, followed by the natural environment •Calcium carbonate is the main contributor to crack healing at the crack mouth. •Outdoor exposure involving intermittent rain promotes additional crystal growth.« less

  4. Subcritical growth of natural hydraulic fractures

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2014-12-01

    Joints are the most common example of brittle tensile failure in the crust. Their genesis at depth is linked to the natural hydraulic fracturing, which requires pore fluid pressure in excess of the minimum in situ stress [Pollard and Aidyn, JSG1988]. Depending on the geological setting, high pore pressure can result form burial compaction of interbedded strata, diagenesis, or tectonics. Common to these loading scenarios is slow build-up of pore pressure over a geological timescale, until conditions for initiation of crack growth are met on favorably oriented/sized flaws. The flaws can vary in size from grain-size cracks in igneous rocks to a fossil-size flaws in clastic rock, and once activated, are inferred to propagate mostly subcritically [Segall JGR 1984; Olson JGR 1993]. Despite many observational studies of natural hydraulic fractures, the modeling attempts appear to be few [Renshaw and Harvey JGR 1994]. Here, we use boundary integral formulation for the pore fluid inflow from the permeable rock into a propagating joint [Berchenko et al. IJRMMS 1997] coupled with the criteria for subcritical propagation assisted by the environmental effects of pore fluid at the crack tip to solve for the evolution of a penny-shape joint, which, in interbedded rock, may eventually evolve to short-blade geometry (propagation confined to a bed). Initial growth is exceedingly slow, paced by the stress corrosion reaction kinetics at the crack tip. During this stage the crack is fully-drained (i.e. the fluid pressure in the crack is equilibrated with the ambient pore pressure). This "slow" stage is followed by a rapid acceleration, driven by the increase of the mechanical stress intensity factor with the crack length, towards the terminal joint velocity. We provide an analytical expression for the latter as a function of the rock diffusivity, net pressure loading at the initiation (or flaw lengthscale), and parameters describing resistance to fracture growth. Due to a much slower rate of the crack volume expansion of short-blade joints compared to that of penny-shape joints, the former would propagate much faster than the latter under otherwise identical conditions. Finally, we speculate about possible relation of the predicted patterns of joint development with morphology of joint fracture surfaces observed in sedimentary rock.

  5. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    PubMed Central

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-01-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121

  6. Hydrogen-assisted stable crack growth in iron-3 wt% silicon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrow, T.J.; Prangnell, P.; Aindow, M.

    1996-08-01

    Observations of internal hydrogen cleavage in Fe-3Si are reported. Hydrogen-assisted stable crack growth (H-SCG) is associated with cleavage striations of a 300 nm spacing, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). High resolution SEM revealed finer striations, previously undetected, with a spacing of approximately 30 nm. These were parallel to the coarser striations. Scanning tunneling microscopy (STM) also showed the fine striation spacing, and gave a striation height of approximately 15 nm. The crack front was not parallel to the striations. Transmission electron microscopy (TEM) of crack tip plastic zones showed {l_brace}112{r_brace} and {l_brace}110{r_brace} slip, withmore » a high dislocation density (around 10{sup 14}m{sup {minus}2}). The slip plane spacing was approximately 15--30 nm. Parallel arrays of high dislocation density were observed in the wake of the hydrogen cleavage crack. It is concluded that H-ScG in Fe-3Si occurs by periodic brittle cleavage on the {l_brace}001{r_brace} planes. This is preceded by dislocation emission. The coarse striations are produced by crack tip blunting and the fine striations by dislocations attracted by image forces to the fracture surface after cleavage. The effects of temperature, pressure and yield strength on the kinetics of H-SCG can be predicted using a model for diffusion of hydrogen through the plastic zone.« less

  7. Dislocation mechanism based model for stage II fatigue crack propagation rate

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.

    1986-01-01

    Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.

  8. Fractographic analysis of gaseous hydrogen induced cracking in 18Ni maraging steel

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1978-01-01

    Electron microscope fractographic analysis supplemented an extensive study of the kinetics of gaseous hydrogen assisted cracking in 18Ni maraging steel. Temperature determined the crack path morphology in each steel which, in turn, was directly related to the temperature dependence of the crack growth rate. Crack growth in the low temperature regime proceeded along prior austenite grain boundaries. Increasing the temperature above a critical value produced a continuously increasing proportion of transgranular quasi-cleavage associated with lath martensite boundaries. The amount of transgranular cracking was qualitatively correlated with the degree of temperature-induced deviation from Arrhenius behavior. Fractographic observations are interpreted in terms of hypothesized mechanisms for gaseous hydrogen embrittlement. It is concluded that hydrogen segregation to prior austenite and lath martensite boundaries must be considered as a significant factor in developing mechanisms for gaseous embrittlement of high strength steels.

  9. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  10. The Interferometric Measurement of Near Crack Tip Displacements in a Nickel Base Superalloy at Ambient and Elevated Temperatures.

    DTIC Science & Technology

    1979-03-01

    0. E. Macha contributed greatly as co— researchers and their efforts are sincerely appreciated . The abl e laboratory assistance of Mr. Charl es Bel l...the author ’s colleagues at the AIr Force Materials Laboratory . P0~ values were determined along the crack line behind the crack tip by D. E. Macha ...m t . J. of Fracture Mech., 7 (1971), 487-490. 31. W. El ber, Engineering Fracture Mechanics , 2 (1970), 37-45. ¶ 32. 3. W. Jones , 0. E. Macha

  11. Control Al/Mg intermetallic compound formation during ultrasonic-assisted soldering Mg to Al.

    PubMed

    Xu, Zhiwu; Li, Zhengwei; Li, Jiaqi; Ma, Zhipeng; Yan, Jiuchun

    2018-09-01

    To prevent the formation of Al/Mg intermetallic compounds (IMCs) of Al 3 Mg 2 and Al 12 Mg 17 , dissimilar Al/Mg were ultrasonic-assisted soldered using Sn-based filler metals. A new IMC of Mg 2 Sn formed in the soldered joints during this process and it was prone to crack at large thickness. The thickness of Mg 2 Sn was reduced to 22 μm at 285 °C when using Sn-3Cu as the filler metal. Cracks were still observed inside the blocky Mg 2 Sn. The thickness of Mg 2 Sn was significantly reduced when using Sn-9Zn as the filler metal. A 17 μm Mg 2 Sn layer without crack was obtained at a temperature of 200 °C, ultrasonic power of Mode I, and ultrasonic time of 2 s. The shear strengths of the joints using Sn-9Zn was much higher than those using Sn-3Cu because of the thinner Mg 2 Sn layer in the former joints. Sn whiskers were prevented by using Sn-9Zn. A cavitation model during ultrasonic assisted soldering was proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Commercialization of Measurement Technologies

    DOT National Transportation Integrated Search

    2012-10-20

    Miniaturized, wireless instrumentation is now a reality and this thesis describes : development of such a system to monitor crack response. Comparison of environmental : (long-term) and blast-induced (dynamic) crack width changes in residential struc...

  13. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  14. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Organic HAP Emission Limits for Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking...

  15. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Organic HAP Emission Limits for Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking...

  16. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Organic HAP Emission Limits for Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 8 Table 8 to Subpart UUU of Part 63—Organic HAP Emission Limits for Catalytic Cracking...

  17. Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: linking the chemical composition to structural, physical and fracture properties

    NASA Astrophysics Data System (ADS)

    Rountree, Cindy L.

    2017-08-01

    This topical review is dedicated to understanding stress corrosion cracking in oxide glasses and specifically the SiO_2{\\text-B_2O_3{\\text-}Na_2O} (SBN) ternary glass systems. Many review papers already exist on the topic of stress corrosion cracking in complex oxide glasses or overly simplified glasses (pure silica). These papers look at how systematically controlling environmental factors (pH, temperature...) alter stress corrosion cracking, while maintaining the same type of glass sample. Many questions still exist, including: What sets the environmental limit? What sets the velocity versus stress intensity factor in the slow stress corrosion regime (Region I)? Can researchers optimize these two effects to enhance a glass’ resistance to failure? To help answer these questions, this review takes a different approach. It looks at how systemically controlling the glass’ chemical composition alters the structure and physical properties. These changes are then compared and contrasted to the fracture toughness and the stress corrosion cracking properties. By taking this holistic approach, researchers can begin to understand the controlling factors in stress corrosion cracking and how to optimize glasses via the initial chemical composition.

  18. Influence and Modeling of Residual Stresses in Thick Walled Pressure Vessels with Through Holes

    DTIC Science & Technology

    2012-02-28

    9 FIGURE 4 ENVIRONMENTAL CRACKING OBSERVED IN EVACUATOR HOLE .......... 9 FIGURE 5 STRESSES PRESENT IN STRAIGHT EVACUATOR... ASSESMENT OF INITIAL DAMAGE Through investigation was undertaken on vessels similar in size and strength level to pressure vessels 85A and 85B...suggesting that the source of the residual stresses required to initiate and propagate these environmental cracks is not a resultant of the typical

  19. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  20. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  1. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, X. Q.; Takahashi, T.; Matsuhata, H.

    2013-12-02

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayersmore » grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.« less

  2. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shen, X. Q.; Takahashi, T.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.; Matsuhata, H.; Ide, T.; Shimizu, M.

    2013-12-01

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  3. Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary

    This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.

  4. Fractography of modern engineering materials: composites and metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, J.E.; Au, J.J.

    1987-01-01

    The fractographic analysis of fracture surfaces in composites and metals is discussed in reviews and reports of recent theoretical and experimental investigations. Topics addressed include fracture-surface micromorphology in engineering solids, SEM fractography of pure and mixed-mode interlaminar fractures in graphite/epoxy composites, determination of crack propagation directions in graphite/epoxy structures, and the fracture surfaces of irradiated composites. Consideration is given to fractographic feature identification and characterization by digital imaging analysis, fractography of pressure-vessel steel weldments, the micromechanisms of major/minor cycle fatigue crack growth in Inconel 718, and fractographic analysis of hydrogen-assisted cracking in alpha-beta Ti alloys.

  5. Corrosion Mitigation Strategies - an Introduction

    DTIC Science & Technology

    2009-02-05

    formed • Stress corrosion cracking Leaders in Corrosion Control Technology • Overpressure • Pressure of a gas over a liquid- solubility of gases in...Power surges • Crack protective films, fretting, fatique Design – Chemistry • Used to eliminate candidate materials • pH acidic (H+) basic (OH...Technology • Laboratory tests • Published data Mechanical Properties • Strength • Ductility • Environmental cracking Methods of Corrosion Control–Materials

  6. Elasticity-Driven Backflow of Fluid-Driven Cracks

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert; Stone, Howard A.

    2016-11-01

    Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.

  7. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    NASA Astrophysics Data System (ADS)

    Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália

    2017-09-01

    This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  8. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  9. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less

  10. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less

  11. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    NASA Astrophysics Data System (ADS)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  12. Environmental fatigue of an Al-Li-Cu alloy. Part 2: Microscopic hydrogen cracking processes

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Based on a fractographic analysis of fatigue crack propagation (FCP) in Al-Li-Cu alloy 2090 stressed in a variety of inert and embrittling environments, microscopic crack paths are identified and correlated with intrinsic da/dN-delta K kinetics. FCP rates in 2090 are accelerated by hydrogen producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part 1. For these cases, subgrain boundary fatigue cracking (SGC) dominates for delta K values where the crack tip process zone, a significant fraction of the cyclic plastic zone, is sufficiently large to envelop 5 micron subgrains in the unrecrystallized microstructure. SGC may be due to strong hydrogen trapping at T1 precipitates concentrated at sub-boundaries. At low delta K, the plastic zone diameter is smaller than the subgrain size and FCP progresses along (100) planes due to either local lattice decohesion or aluminum-lithium hydride cracking. For inert environments (vacuum, helium, and oxygen), or at high delta K where the hydrogen effect on da/dN is small, FCP is along (111) slip planes; this mode does not transition with increasing delta K and plastic zone size. The SGC and (100) crystallographic cracking modes, and the governing influence of the crack tip process zone volume (delta K), support hydrogen embrittlement rather than a surface film rupture and anodic dissolution mechanism for environmental FCP. Multi-sloped log da/dN-log delta K behavior is produced by changes in process zone hydrogen-microstructure interactions, and not by purely micromechanical-microstructure interactions, in contradiction to microstructural distance-based fatigue models.

  13. Design and performance of crack-free environmentally friendly concrete "crack-free eco-crete".

    DOT National Transportation Integrated Search

    2014-08-01

    High-performance concrete (HPC) is characterized by high content of cement and supplementary cementitious materials (SCMs). : Using high binder content, low water-to-cementitious material ratio (w/cm), and various chemical admixtures in the HPC can r...

  14. Fracture Behavior of Ceramics Under Displacement Controlled Loading

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Brewer, David; Ghosn, Louis

    1994-01-01

    A Mode I fracture specimen and loading method has been developed which permits the observation of stable crack extension in monolithic and in situ toughened ceramics. The developed technique was used to conduct room temperature tests on commercial grade alumina (Coors' AD-995) and silicon nitride (Norton NC-132). The results of these tests are reported. Crack growth for the alumina remained subcritical throughout testing revealing possible effects of environmental stress corrosion. The crack growth resistance curve for the alumina is presented. The silicon nitride tests displayed a series of stable (slow) crack growth segments interrupted by dynamic (rapid) crack extension. Crack initiation and arrest stress intensity factors, K(sub Ic) and K(sub Ia), for silicon nitride are reported. The evolution of the specimen design through testing is briefly discussed.

  15. Tufted capuchin monkeys (Sapajus sp) learning how to crack nuts: does variability decline throughout development?

    PubMed

    Resende, Briseida Dogo; Nagy-Reis, Mariana Baldy; Lacerda, Fernanda Neves; Pagnotta, Murillo; Savalli, Carine

    2014-11-01

    We investigated the process of nut-cracking acquisition in a semi-free population of tufted capuchin monkeys (Sapajus sp) in São Paulo, Brazil. We analyzed the cracking episodes from monkeys of different ages and found that variability of actions related to cracking declined. Inept movements were more frequent in juveniles, which also showed an improvement on efficient striking. The most effective behavioral sequence for cracking was more frequently used by the most experienced monkeys, which also used non-optimal sequences. Variability in behavior sequences and actions may allow adaptive changes to behavior under changing environmental conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Getting up at the Crack of Noon: Children on Public Assistance.

    ERIC Educational Resources Information Center

    Bruckerhoff, Charles E.

    This study presents findings from an ongoing study of urban childhood on public assistance. The study used interviews with aldermen, social workers, police, public housing and ghetto neighborhood residents, and medical personnel as well as the collection of field study data from local institutions and their representatives. The results appear in…

  17. Guided cracking of electrodes by stretching prism-patterned membrane electrode assemblies for high-performance fuel cells.

    PubMed

    Ahn, Chi-Yeong; Jang, Segeun; Cho, Yong-Hun; Choi, Jiwoo; Kim, Sungjun; Kim, Sang Moon; Sung, Yung-Eun; Choi, Mansoo

    2018-01-19

    Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 μm and 50 μm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport.

  18. Differentiation of South American crack and domestic (US) crack cocaine via headspace-gas chromatography/mass spectrometry.

    PubMed

    Colley, Valerie L; Casale, John F

    2015-03-01

    South American 'crack' cocaine, produced directly from coca leaf, can be distinguished from US domestically produced crack on the basis of occluded solvent profiles. In addition, analysis of domestically produced crack indicates the solvents that were used for cocaine hydrochloride (HCl) processing in South America. Samples of cocaine base (N=3) from South America and cocaine from the USA (N=157 base, N=88 HCl) were analyzed by headspace-gas chromatography-mass spectrometry (HS-GC-MS) to determine their solvent profiles. Each cocaine HCl sample was then converted to crack cocaine using the traditional crack production method and re-examined by HS-GC-MS. The resulting occluded solvent profiles were then compared to their original HCl solvent profiles. Analysis of the corresponding crack samples confirmed the same primary processing solvents found in the original HCl samples, but at reduced levels. Domestically seized crack samples also contained reduced levels of base-to-HCl conversion solvents. In contrast, analysis of South American crack samples confirmed the presence of low to high boiling hydrocarbons and no base-to-HCl conversion solvents. The presented study showed analysis of crack cocaine samples provides data on which processing solvents were originally utilized in the production of cocaine HCl in South America, prior to conversion to crack cocaine. Determination of processing solvents provides valuable information to the counter-drug intelligence community and assists the law enforcement community in determining cocaine distribution and trafficking routes throughout the world. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. Real time monitoring of environmental crack growth in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, D.; Diehl, C.G.

    1988-01-01

    A comprehensive field test program was recently completed at several Boiling Water Reactors (BWR) to quantify the effect of coolant impurities on the initiation and growth of stress corrosion cracks. A new technology was utilized which allows for real time monitoring of stress corrosion crack growth rates. The BWR environments were characterized using Ion Chromatography and Electro Chemical Potential (ECP) measurements. The effects of typical water chemistry transients and startups were quantified.

  20. Hydrogen adsorption and diffusion, and subcritical-crack growth in high-strength steels and nickel base alloys

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.

    1974-01-01

    Coordinated studies of the kinetics of crack growth and of hydrogen adsorption and diffusion were initiated to develop information that is needed for a clearer determination of the rate controlling process and possible mechanism for hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Inconel 718 alloy and 18Ni(200) maraging steel were selected for these studies. 18Ni(250) maraging steel, 316 stainless steel, and iron single crystal of (111) orientation were also included in the chemistry studies. Crack growth data on 18Ni(250) maraging steel from another program are included for comparison. No sustained-load crack growth was observed for the Inconel 718 alloy in gaseous hydrogen. Gaseous hydrogen assisted crack growth in the 18Ni maraging steels were characterized by K-independent (Stage 2) extension over a wide range of hydrogen pressures (86 to 2000 torr or 12 kN/m2 to 266 kN/m2) and test temperatures (-60 C to +100 C). The higher strength 18Ni(250) maraging steel was more susceptible than the lower strength 200 grade. A transition temperature was observed, above which crack growth rates became diminishingly small.

  1. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  2. Hydrogen Assisted Cracking of High Strength Alloys

    DTIC Science & Technology

    2003-08-01

    maraging steels (Dautovich and Floreen, 1973, 1977; Gerberich et al., 1988; Yamaguchi, et al., 1997). This behavior is typically described by a...transgranular. A similar maximum in IG cracking susceptibility near the free corrosion potential was reported for 18Ni Maraging steel in neutral NaCl... steel in 133 kPa pure H2 parallels the behavior of AISI 4340 and the 18 Ni maraging steels , particularly in terms of a low temperature activation

  3. Hygrothermal effects on the mechanical behaviour of graphite fibre-reinforced epoxy laminates beyond initial failure

    NASA Technical Reports Server (NTRS)

    Ishai, O.; Garg, A.; Nelson, H. G.

    1986-01-01

    The critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed has been determined by loading graphite fiber-reinforced epoxy laminates to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. The residual stiffness and strength parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Within the range of experimental conditions studied, it is concluded that the transverse cracking process does not have a crucial effect on the structural performance of multidirectional composite laminates.

  4. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials

    PubMed Central

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.

    2013-01-01

    An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors. PMID:27175036

  5. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials.

    PubMed

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I; Seghi, Robert R

    2013-08-15

    An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors.

  6. Environmental Barrier Coating (EBC) Durability Modeling; An Overview and Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; Bhatt, R. T.; Grady, J. E.; Zhu, D.

    2012-01-01

    A study outlining a fracture mechanics based model that is being developed to investigate crack growth and spallation of environmental barrier coating (EBC) under thermal cycling conditions is presented. A description of the current plan and a model to estimate thermal residual stresses in the coating and preliminary fracture mechanics concepts for studying crack growth in the coating are also discussed. A road map for modeling life and durability of the EBC and the results of FEA model(s) developed for predicting thermal residual stresses and the cracking behavior of the coating are generated and described. Further initial assessment and preliminary results showed that developing a comprehensive EBC life prediction model incorporating EBC cracking, degradation and spalling mechanism under stress and temperature gradients typically seen in turbine components is difficult. This is basically due to mismatch in thermal expansion difference between sub-layers of EBC as well as between EBC and substrate, diffusion of moisture and oxygen though the coating, and densification of the coating during operating conditions as well as due to foreign object damage, the EBC can also crack and spall from the substrate causing oxidation and recession and reducing the design life of the EBC coated substrate.

  7. Geotechnical engineering for ocean waste disposal. An introduction

    USGS Publications Warehouse

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  8. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.

    PubMed

    Jafari, Sajjad; Singh Raman, R K

    2017-09-01

    A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Pioszak, Greger L.; Gangloff, Richard P.

    2017-09-01

    Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.

  10. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  11. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  12. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerday, Brian P.; Barney, Monica

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m 1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lowermore » frequencies relevant to PSA vessel operation.« less

  13. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE PAGES

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m 1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lowermore » frequencies relevant to PSA vessel operation.« less

  14. Quantitative image analysis of WE43-T6 cracking behavior

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Yahya, Z.

    2013-06-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.

  15. Crack detection and leakage monitoring on reinforced concrete pipe

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Kong, Qingzhao; Huo, Linsheng; Song, Gangbing

    2015-11-01

    Reinforced concrete underground pipelines are some of the most widely used types of structures in water transportation systems. Cracks and leakage are the leading causes of pipeline structural failures which directly results in economic losses and environmental hazards. In this paper, the authors propose a piezoceramic based active sensing approach to detect the cracks and the further leakage of concrete pipelines. Due to the piezoelectric properties, piezoceramic material can be utilized as both the actuator and the sensor in the active sensing approach. The piezoceramic patch, which is sandwiched between protective materials called ‘smart aggregates,’ can be safely embedded into concrete structures. Circumferential and axial cracks were investigated. A wavelet packet-based energy analysis was developed to distinguish the type of crack and determine the further leakage based on different stress wave energy attenuation propagated through the cracks.

  16. Solvent Assisted Delamination Crack Growth Behavior of Amorphous Thermoplastic Materials

    DTIC Science & Technology

    1989-02-01

    72CRD285. October 1972. 4. Standard Method of Test for Plane- Strain Fracture Toughness of Metallic Materials. 1988 Annual Book of ASTM Standards, Technical...intensity factor K I or the associated strain energy release rate, G I . ASTM compact tension test yields stress intensity factor, KI, via Equation 1...are such that a constant deadweight load results in increasing strain energy release rate with increasing crack length. Figure 3 shows the neat resin

  17. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions from sulfur recovery units? 63.1568 Section 63.1568 Protection of Environment ENVIRONMENTAL... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1568 What...

  18. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  19. Salinity effects on the dynamics and patterns of desiccation cracks

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to drying. At the end of each round of the experiment, a detailed visualization was conducted using Scanning Electron Microscopy to investigate the patterns and morphology of cracks at micro-scale as influenced by the salt concentration. Our results provide new insights and finding about the effects of salt concentrations on desiccation cracks at different scales ranging from a few mm to few microns.

  20. Bone-like crack resistance in hierarchical metastable nanolaminate steels

    NASA Astrophysics Data System (ADS)

    Koyama, Motomichi; Zhang, Zhao; Wang, Meimei; Ponge, Dirk; Raabe, Dierk; Tsuzaki, Kaneaki; Noguchi, Hiroshi; Tasan, Cemal Cem

    2017-03-01

    Fatigue failures create enormous risks for all engineered structures, as well as for human lives, motivating large safety factors in design and, thus, inefficient use of resources. Inspired by the excellent fracture toughness of bone, we explored the fatigue resistance in metastability-assisted multiphase steels. We show here that when steel microstructures are hierarchical and laminated, similar to the substructure of bone, superior crack resistance can be realized. Our results reveal that tuning the interface structure, distribution, and phase stability to simultaneously activate multiple micromechanisms that resist crack propagation is key for the observed leap in mechanical response. The exceptional properties enabled by this strategy provide guidance for all fatigue-resistant alloy design efforts.

  1. Self-Repairing Fatigue Damage in Metallic Structures for Aerospace Vehicles Using Shape Memory Alloy Self-healing (SMASH) Technology

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate

    2015-01-01

    This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.

  2. Uncertainty quantification methodologies development for stress corrosion cracking of canister welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingreville, Remi Philippe Michel; Bryan, Charles R.

    2016-09-30

    This letter report presents a probabilistic performance assessment model to evaluate the probability of canister failure (through-wall penetration) by SCC. The model first assesses whether environmental conditions for SCC – the presence of an aqueous film – are present at canister weld locations (where tensile stresses are likely to occur) on the canister surface. Geometry-specific storage system thermal models and weather data sets representative of U.S. spent nuclear fuel (SNF) storage sites are implemented to evaluate location-specific canister surface temperature and relative humidity (RH). As the canister cools and aqueous conditions become possible, the occurrence of corrosion is evaluated. Corrosionmore » is modeled as a two-step process: first, pitting is initiated, and the extent and depth of pitting is a function of the chloride surface load and the environmental conditions (temperature and RH). Second, as corrosion penetration increases, the pit eventually transitions to a SCC crack, with crack initiation becoming more likely with increasing pit depth. Once pits convert to cracks, a crack growth model is implemented. The SCC growth model includes rate dependencies on both temperature and crack tip stress intensity factor, and crack growth only occurs in time steps when aqueous conditions are predicted. The model suggests that SCC is likely to occur over potential SNF interim storage intervals; however, this result is based on many modeling assumptions. Sensitivity analyses provide information on the model assumptions and parameter values that have the greatest impact on predicted storage canister performance, and provide guidance for further research to reduce uncertainties.« less

  3. Reaction Control System Thruster Cracking Consultation: NASA Engineering and Safety Center (NESC) Materials Super Problem Resolution Team (SPRT) Findings

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.

    2005-01-01

    The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.

  4. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  5. Quality of life, social functioning, family structure, and treatment history associated with crack cocaine use in youth from the general population.

    PubMed

    Narvaez, Joana C M; Pechansky, Flávio; Jansen, Karen; Pinheiro, Ricardo T; Silva, Ricardo A; Kapczinski, Flávio; Magalhães, Pedro V

    2015-01-01

    To assess the relationship between crack cocaine use and dimensions of quality of life and social functioning in young adults. This was a cross-sectional, population-based study involving 1,560 participants in Pelotas, Brazil. Crack cocaine use and abuse were investigated using the Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) inventory. Outcomes of interest were quality of life, religiosity, and social functioning in terms of education, occupational status, family structure, and medical treatment history. Lifetime crack cocaine use was associated with poor quality of life, worse functioning, impaired academic performance, and lower religious involvement. A greater maternal presence and higher paternal absence were more also more pronounced in crack cocaine users, who were also more likely to seek psychological and psychiatric treatment than the general population. Quality of life was severely impacted by crack cocaine use, especially in terms of general and physical health. Social functioning also differed between the general population and crack users, who had lower educational attainment and religious involvement. Maternal presence, paternal absence, and mental health-seeking behaviors were also more frequent among crack cocaine users, although these individuals reported lower rates of treatment satisfaction. Crack cocaine users also had significant social impairment, so that interventions involving family management and a greater focus on general health, quality of life, and functioning may make crucial contributions to the recovery of this group.

  6. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developingmore » the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.« less

  7. Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Ziomek-Moroz; J.A. Hawk; R. Thodla

    2012-05-06

    The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -},more » HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.« less

  8. Phacoemulsification using a chisel-shaped illuminator: enhanced depth trench, one-shot crack, and phaco cut.

    PubMed

    Wi, Jaemin; Seo, Hyejin; Lee, Jong Yeon; Nam, Dong Heun

    2016-01-01

    To evaluate the efficacy and outcomes of intracameral illuminator-assisted nucleofractis technique in cataract surgery. Since June 2012, this novel technique has been performed in all cataract cases by one surgeon (approximately 300 cases of various densities). Trenching continues until the posterior plate white reflex between an endonucleus and an epinucleus is identified (enhanced depth trench). After trenching, cracking is initiated with minimal separation force, and completion of cracking is confirmed by posterior capsule reflex (one-shot crack). With followability enhanced by an elliptical phaco mode, the divided nucleus is efficiently cut into small fragments by a chisel-shaped illuminator (phaco cut). We have not experienced any capsular bag or zonular complications, and the effective phacoemulsification time seemed to be shorter than that with the conventional technique. This technique simplifies the complete division of the nucleus, which is the most challenging step in safe and efficient phacoemulsification.

  9. Catalyst Residence Time Distributions in Riser Reactors for Catalytic Fast Pyrolysis. Part 2: Pilot-Scale Simulations and Operational Parameter Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, Thomas D.; Ziegler, Jack L.; Pannala, Sreekanth

    2017-02-21

    Here, wsing the validated simulation model developed in part one of this study for biomass catalytic fast pyrolysis (CFP), we assess the functional utility of using this validated model to assist in the development of CFP processes in fluidized catalytic cracking (FCC) reactors to a commercially viable state. Specifically, we examine the effects of mass flow rates, boundary conditions (BCs), pyrolysis vapor molecular weight variation, and the impact of the chemical cracking kinetics on the catalyst residence times. The factors that had the largest impact on the catalyst residence time included the feed stock molecular weight and the degree ofmore » chemical cracking as controlled by the catalyst activity. Lastly, because FCC reactors have primarily been developed and utilized for petroleum cracking, we perform a comparison analysis of CFP with petroleum and show the operating regimes are fundamentally different.« less

  10. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  11. Hydrogen Environment Assisted Cracking of Ultra-High Strength AetMet(Trademark) 100 Steel

    DTIC Science & Technology

    2006-01-01

    landing gear. LV.B. Effect of Steel Composition on Intergranular HEAC Instances of intergranular HEAC and IiHAC in AerMetTm 100 were rarely observed in the...fit the H concentration effect with that of the other elements. While the Maraging and Custom 465TM steels are relatively pure, the H concentration...to -0.9 VsCE and increased cracking at more anodic and more cathodic potentials 471 . Similar effects were noted for HEAC of 18Ni Maraging steel , with

  12. Lamb wave line sensing for crack detection in a welded stiffener.

    PubMed

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-07-18

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  13. Effect of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1984-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  14. The effect of water vapor on fatigue crack Growth in 7475-t651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1982-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  15. Microstructural studies on failure mechanisms in thermo-mechanical fatigue of repaired DS R80 and IN 738 Superalloys

    NASA Astrophysics Data System (ADS)

    Abrokwah, Emmanuel Otchere

    Directionally solidified Rene 80 (DS R80) and polycrystalline Inconel 738(IN 738) Superalloys were tested in thermo-mechanical fatigue (TMF) over the temperature range of 500-900°C and plastic strain range from 0.1 to 0.8% using a DSI Gleeble thermal simulator. Thermo-mechanical testing was carried out on the parent material (baseline) in the conventional solution treated and aged condition (STA), as well as gas tungsten arc welded (GTAW) with an IN-738 filler, followed by solution treatment and ageing. Comparison of the baseline alloy microstructure with that of the welded and heat treated alloy showed that varying crack initiation mechanisms, notably oxidation by stress assisted grain boundary oxidation, grain boundary MC carbides fatigue crack initiation, fatigue crack initiation from sample surfaces, crack initiation from weld defects and creep deformation were operating, leading to different “weakest link” and failure initiation points. The observations from this study show that the repaired samples had extra crack initiation sites not present in the baseline, which accounted for their occasional poor fatigue life. These defects include lack of fusion between the weld and the base metal, fusion zone cracking, and heat affected zone microfissures.

  16. Space Shuttle Main Engine High Pressure Fuel Turbopump Turbine Blade Cracking

    NASA Technical Reports Server (NTRS)

    Lee, Henry

    1988-01-01

    The analytical results from two-dimensional (2D) and three-dimensional (3D) finite element model investigations into the cracking of Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) first- and second-stage turbine blades are presented. Specifically, the initiation causes for transverse cracks on the pressure side of the firststage blade fir tree lobes and face/corner cracks on the downstream fir tree face of the second-state blade are evaluated. Because the blade material, MAR-M-246 Hf (DS), is highly susceptible to hydrogen embrittlement in the -100 F to 400 F thermal environment, a steady-state condition (full power level = 109 percent) rather than a start-up or shut-down transient was considered to be the most likely candidate for generating a high-strain state in the fir tree areas. Results of the analyses yielded strain levels on both first- and second-stage blade fir tree regions that are of a magnitude to cause hydrogen assisted low cycle fatigue cracking. Also evident from the analysis is that a positive margin against fir tree cracking exists for the planned design modifications, which include shot peening for both first- and second-stage blade fir tree areas.

  17. Stress Corrosion Cracking of Pipeline Steels in Fuel Grade Ethanol and Blends - Study to Evaluate Alternate Standard Tests and Phenomenological Understanding of SCC

    DOT National Transportation Integrated Search

    2011-10-30

    Main aim of this project was to evaluate alternate standard test methods for stress corrosion cracking (SCC) and compare them with the results from slow strain rate test (SSRT) results under equivalent environmental conditions. Other important aim of...

  18. Expansive Soil Crack Depth under Cumulative Damage

    PubMed Central

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  19. Environmental controls on micro fracture processes in shelf ice

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  20. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  1. Environmental crack-growth behavior of high strength pressure vessel alloys

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1975-01-01

    Results of sustained-load environmental crack growth threshold tests performed on six spacecraft pressure vessel alloys are presented. The alloys were Inconel 718, 6Al-4V titanium, A-286 steel, AM-350 stainless steel, cryoformed AISI 301 stainless steel; and cryoformed AISI 304L steel. The test environments for the program were air, pressurized gases of hydrogen, oxygen, nitrogen, and carbon dioxide, and liquid environments of distilled water, sea water, nitrogen tetroxide, hydrazine, aerozine 50, monomethyl hydrazine, and hydrogen peroxide. Surface flaw type specimens were used with flaws located in both base metal and weld metal.

  2. Current NRC Perspectives Concerning Primary Water Stress Corrosion Cracking

    NASA Astrophysics Data System (ADS)

    Alley, David; Dunn, Darrell

    Materials currently used in nuclear power plants are reliable and are generally resistant to environmental degradation. However, occurrences of environmental degradation have been observed as the current fleet of reactors ages. Primary water stress corrosion cracking (PWSCC) is of particular interest to the US Nuclear Regulatory Commission (NRC). This paper provides a historical assessment of operating experience associated with PWSCC and welding issues associated with PWSCC resistant materials. The paper also considers the regulatory issues associated with PWSCC, especially those associated with gaps in the understanding of the behavior of PWSCC resistant material under actual reactor conditions.

  3. Laser gas assisted texturing and formation of nitride and oxynitride compounds on alumina surface: Surface response to environmental dust

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.

    2018-03-01

    Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.

  4. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Logsdon, W. A.; Begley, J. A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.

  5. Spatially resolved, in-situ monitoring of crack growth via the coupling current in aluminum alloy 5083

    NASA Astrophysics Data System (ADS)

    Williams, Krystaufeux D.

    The work discussed in this dissertation is an experimental validation of a body of research that was created to model stress corrosion cracking phenomenon for 304 stainless steels in boiling water reactors. This coupled environment fracture model (CEFM) incorporates the natural laws of the conservation of charge and the differential aeration hypothesis to predict the amount of stress corrosion crack growth as a function of many external environmental variables, including potential, stress intensity, solution conductivity, oxidizer concentrations, and various other environmental parameters. Out of this approach came the concept of the coupling current; a local corrosion current that flows from within cracks, crevices, pits, etc... of a metal or alloy to the external surface. Because of the deterministic approach taken in the mentioned research, the coupling current analysis and CEFM model can be applied to the specific problem of SCC in aluminum alloy 5083 (the alloy of interest for this dissertation that is highly sought after today because of its corrosion resistance and high strength to weight ratio). This dissertation research is specifically devoted to the experimental verification of the coupling current, which results from a coupling between the crack's internal and external environments, by spatially resolving them using the scanning vibrating probe (SVP) as a tool. Hence, through the use of a unique fracture mechanics setup, simultaneous mechanical and local electrochemical data may be obtained, in situ..

  6. Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product.

    PubMed

    Ledbetter, C A

    2008-09-01

    Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.

  7. Lattice Modeling of Early-Age Behavior of Structural Concrete.

    PubMed

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M; Bolander, John E

    2017-02-25

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential.

  8. Quantification of water penetration into concrete through cracks by neutron radiography

    NASA Astrophysics Data System (ADS)

    Kanematsu, M.; Maruyama, I.; Noguchi, T.; Iikura, H.; Tsuchiya, N.

    2009-06-01

    Improving the durability of concrete structures is one of the ways to contribute to the sustainable development of society, and it has also become a crucial issue from an environmental viewpoint. It is well known that moisture behavior in reinforced concrete is linked to phenomena such as cement hydration, volume change and cracking caused by drying shrinkage, rebar corrosion and water leakage that affect the durability of concrete. In this research, neutron radiography was applied for visualization and quantification of water penetration into concrete through cracks. It is clearly confirmed that TNR can make visible the water behavior in/near horizontal/vertical cracks and can quantify the rate of diffusion and concentration distribution of moisture with high spatial and time resolution. On detailed analysis, it is observed that water penetrates through the crack immediately after pouring and its migration speed and distribution depend on the moisture condition in the concrete.

  9. Lattice Modeling of Early-Age Behavior of Structural Concrete

    PubMed Central

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M.; Bolander, John E.

    2017-01-01

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential. PMID:28772590

  10. 40 CFR Table 10 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  11. 40 CFR Table 10 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  12. 40 CFR Table 10 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  13. 40 CFR Table 10 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  14. 40 CFR Table 10 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  15. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen

    PubMed Central

    Nanninga, N.; Slifka, A.; Levy, Y.; White, C.

    2010-01-01

    Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications. PMID:27134796

  16. Quantitative methods in fractography; Proceedings of the Symposium on Evaluation and Techniques in Fractography, Atlanta, GA, Nov. 10, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, B.M.; Putatunda, S.K.

    1990-01-01

    Papers are presented on the application of quantitative fractography and computed tomography to fracture processes in materials, the relationships between fractographic features and material toughness, the quantitative analysis of fracture surfaces using fractals, and the analysis and interpretation of aircraft component defects by means of quantitative fractography. Also discussed are the characteristics of hydrogen-assisted cracking measured by the holding-load and fractographic method, a fractographic study of isolated cleavage regions in nuclear pressure vessel steels and their weld metals, a fractographic and metallographic study of the initiation of brittle fracture in weldments, cracking mechanisms for mean stress/strain low-cycle multiaxial fatigue loadings,more » and corrosion fatigue crack arrest in Al alloys.« less

  17. Environmental Barrier Coating Fracture, Fatigue and High-Heat-Flux Durability Modeling and Stochastic Progressive Damage Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nemeth, Noel N.

    2017-01-01

    Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.

  18. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  19. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-06-01

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10-4 Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  20. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC susceptibility. Annealed and water quenched specimens were found to be immune to SCC in caustic environment. Aging treatment at 800°C gave rise to sigma and chi precipitates in the DSS. However, these sigma and chi precipitates, known to initiate cracking in DSS in chloride environment did not cause any cracking of DSS in caustic solutions. Aging of DSS at 475°C had resulted in '475°C embrittlement' and caused cracks to initiate in the ferrite phase. This was in contrast to the cracks initiating in the austenite phase in the as-received DSS. Alloy composition and microstructure of DSS as well as solution composition (dissolved ionic species) was also found to affect the electrochemical behavior and passivation of DSS which in turn plays a major role in stress corrosion crack initiation and propagation. Corrosion rates and SCC susceptibility of DSS was found to increase with addition of sulfide to caustic solutions. Corrosion films on DSS, characterized using XRD and X-ray photoelectron spectroscopy, indicated that the metal sulfide compounds were formed along with oxides at the metal surface in the presence of sulfide containing caustic environments. These metal sulfide containing passive films are unstable and hence breaks down under mechanical straining, leading to SCC initiations. The overall results from this study helped in understanding the mechanism of SCC in caustic solutions. Favorable slip systems in the austenite phase of DSS favors slip-induced local film damage thereby initiating a stress corrosion crack. Repeated film repassivation and breaking, followed by crack tip dissolution results in crack propagation in the austenite phase of DSS alloys. Result from this study will have a significant impact in terms of identifying the alloy compositions, fabrication processes, microstructures, and environmental conditions that may be avoided to mitigate corrosion and stress corrosion cracking of DSS in caustic solutions.

  1. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties.

    PubMed

    He, Yuxin; Yang, Song; Liu, Hu; Shao, Qian; Chen, Qiuyu; Lu, Chang; Jiang, Yuanli; Liu, Chuntai; Guo, Zhanhu

    2018-05-01

    The epoxy nanocomposites with ordered multi-walled carbon nanotubes (MWCNTs) were used to influence the micro-cracks resistance of carbon fiber reinforced epoxy (CF/EP) laminate at 77 K, Oxidized MWCNTs functionalized with Fe 3 O 4 (Fe 3 O 4 /O-MWCNTs) with good magnetic properties were prepared by co-precipitation method and used to modify epoxy (EP) for cryogenic applications. Fe 3 O 4 /O-MWCNTs reinforced carbon fiber epoxy composites were also prepared through vacuum-assisted resin transfer molding (VARTM). The ordered Fe 3 O 4 /O-MWCNTs were observed to have effectively improved the mechanical properties of epoxy (EP) matrix at 77 K and reduce the coefficient of thermal expansion (CTE) of EP matrix. The ordered Fe 3 O 4 /O-MWCNTs also obviously improved the micro-cracks resistance of CF/EP composites at 77 K. Compared to neat EP, the CTE of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites was decreased 37.6%. Compared to CF/EP composites, the micro-cracks density of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites at 77 K was decreased 37.2%. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The effect of cathodic polarization on the corrosion fatigue behavior of a precipitation hardened aluminum alloy

    NASA Astrophysics Data System (ADS)

    Smith, E. F.; Duquette, D. J.

    1986-02-01

    Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5 N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.

  3. Effects of Aging and Environmental Conditions on Ammunition/Explosives Storage Magazines - Paper 2

    DTIC Science & Technology

    2010-07-01

    characterized as destructive. The destructive category is apparently limited to reactions with impure dolomitic aggregates and are a result of either...extreme pressures that eventually overcome the tensile strength of the structure. These pressures will cause spalling, map cracking, discoloration, or...fill with this gel and expand to create extreme tensile pressures . These pressures cause micro-scale cracking and eventually develop into

  4. 40 CFR Table 11 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic HAP Emissions...

  5. 40 CFR Table 11 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic HAP Emissions...

  6. Enhancement of crack healing efficiency and performance of SAP in biocrete

    NASA Astrophysics Data System (ADS)

    Giriselvam, M. G.; Poornima, V.; Venkatasubramani, R.; Sreevidya, V.

    2018-02-01

    Concrete usage in Construction becomes more common in this speedy world. Despite its benefits, concrete often exhibits crack which appear due to stresses. Larger cracks cause Structural integrity problems and smaller cracks may result in durability issues. A novel environmental friendly strategy to restore or remediate cracks formed in the structures is bio-mineralization of calcium carbonate using microbes such as Bacillus Subtilis (used in this study), as manual repair and maintenance is costly. In this Paper, an idea of using Super Absorbent Polymer in Bacterial Concrete was analysed which increases the strength and durability properties of concrete and also which acts as a protection to bacteria, where Self-Healing nature is viewed. In the span of 90 days, the results of Bacterial concrete cured under normal water providing nutrients inside with SAP shows healing up to 74 % and without SAP displays 49 % and when it is cured under nutrient medium, Bacterial Concrete having SAP displays healing up to 66 %, whereas without SAP it displays 57.4% of healing. During the observation it is discernible that the crack width ranging from 0.10 mm near 0.45 mm show better self-healing capacity. XRD analysis displays the presence of Calcium carbonate precipitation in cracks.

  7. ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE

    EPA Science Inventory

    The contributions of three major gasoline blending components (reformate, alkylate and cracked gasoline) to potential environmental impacts are assessed. This study estimates losses of the gasoline blending components due to evaporation and leaks through their life cycle, from pe...

  8. The static breaking technique for sustainable and eco-environmental coal mining.

    PubMed

    Bing-yuan, Hao; Hui, Huang; Zi-jun, Feng; Kai, Wang

    2014-01-01

    The initiating explosive devices are prohibited in rock breaking near the goaf of the highly gassy mine. It is effective and applicable to cracking the hard roof with static cracking agent. By testing the static cracking of cubic limestone (size: 200 × 200 × 200 mm) with true triaxial rock mechanics testing machine under the effect of bidirectional stress and by monitoring the evolution process of the cracks generated during the acoustic emission experiment of static cracking, we conclude the following: the experiment results of the acoustic emission show that the cracks start from the lower part of the hole wall until they spread all over the sample. The crack growth rate follows a trend of "from rapidness to slowness." The expansion time is different for the two bunches of cracks. The growth rates can be divided into the rapid increasing period and the rapid declining period, of which the growth rate in declining period is less than that in the increasing period. Also, the growth rate along the vertical direction is greater than that of the horizontal direction. Then the extended model for the static cracking is built according to the theories of elastic mechanics and fracture mechanics. Thus the relation formula between the applied forces of cracks and crack expansion radius is obtained. By comparison with the test results, the model proves to be applicable. In accordance with the actual geological situation of Yangquan No. 3 Mine, the basic parameters of manpower manipulated caving breaking with static crushing are settled, which reaps bumper industrial effects.

  9. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on themore » fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 degrees C.« less

  10. Self-Healing of biocompatible polymeric nanocomposities

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  11. Environmental aging and degradation of multiwalled carbon nanotube reinforced polypropylene

    EPA Science Inventory

    The degradation of polypropylene (PP) and PP-multiwalled carbon nanotube (PP-MWCNT) panels during environmental weathering resulted in an increased degree of crystallinity, making them brittle, and creating surface cracks. The degradation led to a breakdown of the panels and incr...

  12. Comparative study of conventional and ultrasonically-assisted bone drilling.

    PubMed

    Alam, K; Ahmed, Naseer; Silberschmidt, V V

    2014-01-01

    Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.

  13. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.

  14. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  15. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener.

    PubMed

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-09-16

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.

  16. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener

    PubMed Central

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-01-01

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ. PMID:27649200

  17. Neural-Fuzzy model Based Steel Pipeline Multiple Cracks Classification

    NASA Astrophysics Data System (ADS)

    Elwalwal, Hatem Mostafa; Mahzan, Shahruddin Bin Hj.; Abdalla, Ahmed N.

    2017-10-01

    While pipes are cheaper than other means of transportation, this cost saving comes with a major price: pipes are subject to cracks, corrosion etc., which in turn can cause leakage and environmental damage. In this paper, Neural-Fuzzy model for multiple cracks classification based on Lamb Guide Wave. Simulation results for 42 sample were collected using ANSYS software. The current research object to carry on the numerical simulation and experimental study, aiming at finding an effective way to detection and the localization of cracks and holes defects in the main body of pipeline. Considering the damage form of multiple cracks and holes which may exist in pipeline, to determine the respective position in the steel pipe. In addition, the technique used in this research a guided lamb wave based structural health monitoring method whereas piezoelectric transducers will use as exciting and receiving sensors by Pitch-Catch method. Implementation of simple learning mechanism has been developed specially for the ANN for fuzzy the system represented.

  18. ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE

    EPA Science Inventory

    The purpose of this study is to access the contribution of the three major gasoline blending components to the potential environmental impacts (PEI), which are the reformate, alkylate and cracked gasoline. This study accounts for losses of the gasoline blending components due to...

  19. ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE

    EPA Science Inventory

    The purpose of this study is to assess the contribution of the three major gasoline blending components to the potential environmental impacts (PEI), which are the reformate, alkylate and cracked gasoline. This study accounts for losses of the gasoline blending components due to ...

  20. Psychological and environmental determinants of relapse in crack cocaine smokers.

    PubMed

    Wallace, B C

    1989-01-01

    The paper reviews approaches to relapse in the treatment of cocaine abusers. Approaches reveal a common mechanism underlying relapse that involves drug craving, recall of euphoria, environmental cues, denial, myths of being able to sell or use drugs, and painful affect states necessitating use of a multifaceted clinical technique. Empirical validation of a common mechanism underlying relapse establishes a typology of psychological and environmental determinants of relapse for crack cocaine smokers (N = 35) who relapse after hospital detoxification and return a second time. Major findings are that relapse follows a painful emotional state (40%), failure to enter arranged aftercare treatment (37%), or encounters with conditioned environmental stimuli (34%), and involves narcissistic psychopathology and denial (28.5%) and interpersonal stress (24%); 85.7% involve multideterminants. Case examples illustrate the role of multideterminants in relapse. The paper educates clinicians to the integrated theory and multifaceted clinical technique necessary for efficacious treatment of cocaine patients, while the typology predicts probable relapse situations.

  1. A methodology for the investigation of toughness and crack propagation in mouse bone.

    PubMed

    Carriero, Alessandra; Zimmermann, Elizabeth A; Shefelbine, Sandra J; Ritchie, Robert O

    2014-11-01

    Bone fracture is a health concern for those with aged bone and brittle bone diseases. Mouse bone is widely used as a model of human bone, especially to investigate preclinical treatment strategies. However, little is known about the mechanisms of mouse bone fracture and its similarities and differences from fracture in human bone. In this work we present a methodology to investigate the fracture toughness during crack initiation and crack propagation for mouse bone. Mouse femora were dissected, polished on their periosteal surface, notched on the posterior surface at their mid-diaphysis, and tested in three-point bending under displacement control at a rate of 0.1mm/min using an in situ loading stage within an environmental scanning electron microscope. We obtained high-resolution real-time imaging of the crack initiation and propagation in mouse bone. From the images we can measure the crack extension at each step of the crack growth and calculate the toughness of the bone (in terms of stress intensity factor (K) and work to fracture (Wf)) as a function of stable crack length (Δa), thus generating a resistance curve for the mouse bone. The technique presented here provides insight into the evolution of microdamage and the toughening mechanisms that resist crack propagation, which are essential for preclinical development of treatments to enhance bone quality and combat fracture risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effectiveness of secondary prevention and treatment interventions for crack-cocaine abuse: a comprehensive narrative overview of English-language studies.

    PubMed

    Fischer, Benedikt; Blanken, Peter; Da Silveira, Dartiu; Gallassi, Andrea; Goldner, Elliot M; Rehm, Jürgen; Tyndall, Mark; Wood, Evan

    2015-04-01

    There are an estimated several million crack-cocaine users globally; use is highest in the Americas. Most crack users are socio-economically marginalized (e.g., homeless), and feature elevated risks for morbidity (e.g., blood-borne viruses), mortality and crime/violence involvement, resulting in extensive burdens. No comprehensive reviews of evidence-based prevention and/or treatment interventions specifically for crack use exist. We conducted a comprehensive narrative overview of English-language studies on the efficacy of secondary prevention and treatment interventions for crack (cocaine) abuse/dependence. Literature searches (1990-2014) using pertinent keywords were conducted in main scientific databases. Titles/abstracts were reviewed for relevance, and full studies were included in the review if involving a primary prevention/treatment intervention study comprising a substantive crack user sample. Intervention outcomes considered included drug use, health risks/status (e.g., HIV or sexual risks) and select social outcome indicators. Targeted (e.g., behavioral/community-based) prevention measures show mixed and short-term effects on crack use/HIV risk outcomes. Material (e.g., safer crack use kit distribution) interventions also document modest efficacy in risk reduction; empirical assessments of environmental (e.g., drug consumption facilities) for crack smokers are not available. Diverse psycho-social treatment (including contingency management) interventions for crack abuse/dependence show some positive but also limited/short-term efficacy, yet likely constitute best currently available treatment options. Ancillary treatments show little effects but are understudied. Despite ample studies, pharmaco-therapeutic/immunotherapy treatment agents have not produced convincing evidence; select agents may hold potential combined with personalized approaches and/or psycho-social strategies. No comprehensively effective 'gold-standard' prevention/treatment interventions for crack abuse exist; concerted research towards improved interventions is urgently needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unneberg, L.

    The main features of the 16 core grids (top guides) designed by ABB ATOM AB are briefly described and the evolution of the design is discussed. One important characteristic of the first nine grids is the existence of bolts securing guide bars to the core grid plates. These bolts are made of precipitation hardened or solution annealed stainless steel. During operation, bolts in all none grids have cracked. The failure analyses indicate that intergranular stress corrosion cracking (IGSCC), possibly accelerated by crevice conditions and/or irradiation, was the cause of failure. Fast neutron fluences approaching or exceeding the levels considered asmore » critical for irradiation assisted stress corrosion cracking (IASCC) will be reached in a few cases only. Temporary measures were taken immediately after the discovery of the cracking. For five of the nine reactors affected, it was decided to replace the complete grids. Two of these replacements have been successfully carried out to date. IASCC as a potential future problem is discussed and it is pointed out that, during their life times, the ABB ATOM core grids will be exposed to sufficiently high fast neutron fluences to cause some concern.« less

  4. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope.

    PubMed

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-07-28

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10 -4  Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  5. Improvements on FEA with a two-step simulation of experimental procedures in turbine blade crack detection in sonic IR NDE

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2013-01-01

    We showed our work on modeling turbine blade crack detection in Sonic Infrared (IR) Imaging with a method of creating flat crack surface in finite element analysis (FEA) in last year's QNDE paper. This modeling has been carried out continuously as part of model-assisted study on crack detection in aircraft engine turbine blades. We have presented that Sonic IR Imaging NDE is a viable method to detect defects in various structures. It combines ultrasound excitation for frictional heating in defects and infrared imaging to sense this heating, and thus to identify the defects. It is a fast wide-area imaging technology. It only takes a second to image a large area of a target sample. When an aircraft is in flight, the turbine engine blades operate under high temperature and high cyclic stresses. Thus, fatigue cracks can form after many hours of operation. Sonic IR Imaging can be used to detect such cracks. However, we still need to better understand contributions of parameters/factors in the crack detection process with Sonic IR Imaging. FEA modeling can help us to reveal certain aspects through the data it produces where experimental work cannot achieve. Upon the model we presented last year, a two-step simulation process was designed to simulate the important aspects in our experiments. These include a newly designed model for the ultrasound transducer which delivers mechanical energy to the sample and the implementation of static force while engaging the transducer to the sample. In this paper, we present the ideas and the results from the new model.

  6. Fatigue crack growth in 7475-T651 aluminum alloy plate in hard vacuum and water vapor. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1981-01-01

    Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.

  7. Environmental testing of block 3 solar cell modules. Part 1: Qualification testing of standard production modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    Qualification tests of solar cell modules are described. These modules continue to show improvement over earlier type modules tested. Cell cracking and delamination are less prevalent, and interconnect problems and electrical degradation from environmental testing are now rare.

  8. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons

    NASA Astrophysics Data System (ADS)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2018-04-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.

  9. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  10. Environmentally induced crack propagation in Inconel alloys 600 and 690 under hydrogen supersaturated steam

    NASA Astrophysics Data System (ADS)

    Ali, Mehboob Muzzammil

    Intergranular stress corrosion cracking (IGSCC) of Inconel alloys 600 and 690 was investigated by exposing them to 300--400°C in deaerated hydrogen supersaturated steam. Crack growth rates were measured in-situ for the above alloys using modified wedge-opening-loaded (M-WOL) linear elastic fracture specimens under constant displacement conditions. The applied stress intensity factors (K) used varied from 29--90 MPam1/2. An activation energy of 120 kJ/mol was found for crack growth rates as a function of temperature. This activation energy is close to the one corresponding to grain boundary self diffusion of nickel. In addition, it was found that the apparent crack growth rates (da/dt) exhibited a linear dependence with KI, given by (da/dt) = A.KIn, where n = 1 in our case. Microstructurally, crack propagation in both the alloys was predominantly along the grain boundaries. It is suggested that high fugacity hydrogen was generated at the tip of the crack, as a result of the reaction of H2O with Cr2O3 on the fracture surface leading to IGSCC. It was found that the rates of crack propagation in both alloys 600 and 690 are very similar. Moreover, under the applied KIs, both alloys 600 and 690 show a similar tendency to crack intergranularly in a direction perpendicular to the applied stress. Crack branching was also exhibited by both the alloys 600 as well as 690. The difference in the crack growth rates of alloys 600 and 690 was found to be only about 2%, which indicates that the crack growth rates in these alloys is independent of the alloy chromium content and that, possibly very similar crack growth mechanisms are active in both the alloys 600 and 690 under similar conditions of KI and temperature. HREM images at the crack tip of alloy 690 exhibit two distinct regions---a crystalline region, and an adjacent amorphous region, which is likely to be either a hydroxide or an amorphous oxide layer. This layer is expected to result from passivation reactions as the crack surface is exposed to the corrosive environment.

  11. Surface aspects of pitting and stress corrosion cracking

    NASA Technical Reports Server (NTRS)

    Truhan, J. S., Jr.; Hehemann, R. F.

    1977-01-01

    The pitting and stress corrosion cracking of a stable austenitic stainless steel in aqueous chloride environments were investigated using a secondary ion mass spectrometer as the primary experimental technique. The surface concentration of hydrogen, oxygen, the hydroxide, and chloride ion, magnesium or sodium, chromium and nickel were measured as a function of potential in both aqueous sodium chloride and magnesium chloride environments at room temperature and boiling temperatures. It was found that, under anodic conditions, a sharp increase in the chloride concentration was observed to occur for all environmental conditions. The increase may be associated with the formation of an iron chloride complex. Higher localized chloride concentrations at pits and cracks were also detected with an electron microprobe.

  12. Improving Data Collection and Analysis Interface for the Data Acquisition Software of the Spin Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.

    2011-01-01

    In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported

  13. Insights Gained from Ultrasonic Testing of Piping Welds Subjected to the Mechanical Stress Improvement Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.

    2010-12-01

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. Thismore » compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.« less

  14. Multiaxial and thermomechanical fatigue considerations in damage tolerant design

    NASA Technical Reports Server (NTRS)

    Leese, G. E.; Bill, R. C.

    1985-01-01

    In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.

  15. Influence of precracked specimen configuration and starting stress intensity on the stress corrosion cracking of 4340 steel

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1984-01-01

    Since the pioneer work of Brown (1966), precracked specimens and related fracture mechanics analyses have been extensively used to study stress corrosion cracking. Certain questions arose in connection with initial attempts to prepare standardized recommended practices by ASTM Committee G-1 on Corrosion of Metals. These questions were related to adequacy of test control as it pertains to acceptable limits of variability, and to validity of expressions for stress intensity and crack-surface displacements for both specimen configurations. An interlaboratory test program, was, therefore, planned with the objective to examine the validity of KIscc testing for selected specimen configurations, materials,and environmental systems. The results reported in the present paper include details of a single laboratory test program. The program was conducted to determine if the threshold value of stress intensity for onset and arrest of stress corrosion cracking was independent for the two specimen configurations examined.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asamoto, Shingo, E-mail: asamoto@mail.saitama-u.ac.j; Ohtsuka, Ayumu; Kuwahara, Yuta

    In this paper, the effects of actual environmental actions on shrinkage, creep and shrinkage cracking of concrete are studied comprehensively. Prismatic specimens of plain concrete were exposed to three sets of artificial outdoor conditions with or without solar radiation and rain to examine the shrinkage. For the purpose of studying shrinkage cracking behavior, prismatic concrete specimens with reinforcing steel were also subjected to the above conditions at the same time. The shrinkage behavior is described focusing on the effects of solar radiation and rain based on the moisture loss. The significant environment actions to induce shrinkage cracks are investigated frommore » viewpoints of the amount of the shrinkage and the tensile strength. Finally, specific compressive creep behavior according to solar radiation and rainfall is discussed. It is found that rain can greatly inhibit the progresses of concrete shrinkage and creep while solar radiation is likely to promote shrinkage cracking and creep.« less

  17. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete.

    PubMed

    Wang, J Y; Belie, N De; Verstraete, W

    2012-04-01

    Crack repair is crucial since cracks are the main cause for the decreased service life of concrete structures. An original and promising way to repair cracks is to pre-incorporate healing agents inside the concrete matrix to heal cracks the moment they appear. Thus, the concrete obtains self-healing properties. The goal of our research is to apply bacterially precipitated CaCO₃ to heal cracks in concrete since the microbial calcium carbonate is more compatible with the concrete matrix and more environmentally friendly relative to the normally used polymeric materials. Diatomaceous earth (DE) was used in this study to protect bacteria from the high-pH environment of concrete. The experimental results showed that DE had a very good protective effect for bacteria. DE immobilized bacteria had much higher ureolytic activity (12-17 g/l urea was decomposed within 3 days) than that of un-immobilized bacteria (less than 1 g/l urea was decomposed within the same time span) in cement slurry. The optimal concentration of DE for immobilization was 60% (w/v, weight of DE/volume of bacterial suspension). Self-healing in cracked specimens was visualized under light microscopy. The images showed that cracks with a width ranging from 0.15 to 0.17 mm in the specimens containing DE immobilized bacteria were completely filled by the precipitation. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to characterize the precipitation around the crack wall, which was confirmed to be calcium carbonate. The result from a capillary water absorption test showed that the specimens with DE immobilized bacteria had the lowest water absorption (30% of the reference ones), which indicated that the precipitation inside the cracks increased the water penetration resistance of the cracked specimens.

  18. "We need somewhere to smoke crack": An ethnographic study of an unsanctioned safer smoking room in Vancouver, Canada.

    PubMed

    McNeil, Ryan; Kerr, Thomas; Lampkin, Hugh; Small, Will

    2015-07-01

    Many cities around the globe have experienced substantial increases in crack cocaine use. Public health programmes have begun to address crack smoking, primarily through the distribution of safer crack use equipment, but their impacts have been limited. More comprehensive safer environmental interventions, specifically safer smoking rooms (SSR), have been implemented only in select European cities. However, none have been subjected to rigorous evaluation. This ethnographic study was undertaken at an 'unsanctioned' SSR operated by a drug user-led organization in Vancouver, Canada, to explore how this intervention shaped crack smoking practices, public crack smoking, and related harms. Ethnographic fieldwork was undertaken at this SSR from September to December 2011, and included approximately 50 hours of ethnographic observation and 23 in-depth interviews with people who smoke crack. Data were analyzed by drawing on the 'Risk Environment' framework and concepts of 'symbolic', 'everyday', and 'structural' violence. Our findings illustrate how a high demand for SSRs was driven by the need to minimize exposure to policing (structural violence), drug scene violence (everyday violence), and stigma (symbolic violence) that characterized unregulated drug use settings (e.g., public spaces). Although resource scarcity and social norms operating within the local drug scene (e.g., gendered power relations) perpetuated crack pipe-sharing within unregulated drug use settings, the SSR fostered harm reduction practices by reshaping the social-structural context of crack smoking and reduced the potential for health harms. Given the significant potential of SSRs in reducing health and social harms, there is an urgent need to scale up these interventions. Integrating SSRs into public health systems, and supplementing these interventions with health and social supports, has potential to improve the health and safety of crack-smoking populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of Thermomechanical Treatment on the Environmentally Induced Cracking Behavior of AA7075 Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Venugopal, A.; Sankaravelayudham, P.; Panda, Rajiv; Sharma, S. C.; George, Koshy M.; Raja, V. S.

    2015-02-01

    The influence of thermomechanical treatment on the stress corrosion cracking behavior of AA7075 aluminum alloy forgings was examined in 3.5% NaCl solution by varying the extent of thermomechanical working imparted to each of the conditions. The results show that inadequate working during billet processing resulted in inferior corrosion and mechanical properties. However, more working with intermediate pre-heating stages also led to precipitation of coarse particles resulting in lowering of mechanical properties marginally and a significant reduction in the general/pitting corrosion resistance. The results obtained in the present study indicate that optimum working with controlled pre-heating levels is needed during forging to achieve the desired properties. It is also demonstrated that AA7075 in the over aged condition does not show any environmental cracking susceptibility in spite of the microstructural variations in terms of size and volume fraction of the precipitates. However, the above microstructural variations definitely affected the pitting corrosion and mechanical properties significantly and hence a strict control over the working and pre-heating stages during billet processing is suggested.

  20. Effective Crack Control of Concrete by Self-Healing of Cementitious Composites Using Synthetic Fiber

    PubMed Central

    Choi, Heesup; Inoue, Masumi; Kwon, Sukmin; Choi, Hyeonggil; Lim, Myungkwan

    2016-01-01

    Although concrete is one of the most widely used construction materials, it is characterized by substantially low tensile strength in comparison to its compression strength, and the occurrence of cracks is unavoidable. In addition, cracks progress due to environmental conditions including damage by freezing, neutralization, and salt, etc. Moreover, detrimental damage can occur in concrete structures due to the permeation of deteriorating elements such as Cl− and CO2. Meanwhile, under an environment in which moisture is being supplied and if the width of the crack is small, a phenomenon of self-healing, in which a portion of the crack is filled in due to the rehydration of the cement particles and precipitation of CaCO3, is been confirmed. In this study, cracks in cementitious composite materials are effectively dispersed using synthetic fibers, and for cracks with a width of more than 0.1 mm, a review of the optimal self-healing conditions is conducted along with the review of a diverse range of self-healing performance factors. As a result, it was confirmed that the effective restoration of watertightness through the production of the majority of self-healing products was achieved by CaCO3 and the use of synthetic fibers with polarity, along with the effect of inducing a multiple number of hairline cracks. In addition, it was confirmed that the self-healing conditions of saturated Ca(OH)2 solution, which supplied CO2 micro-bubbles, displayed the most effective self-healing performance in the surface and internal sections of the cracks. PMID:28773372

  1. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.

  2. Environmental Assessment for Installation of a New Jet Engine Test Cell, Edwards Air Force Base, California

    DTIC Science & Technology

    2012-09-01

    suspended in the runoff waters around the lakebeds, sealing lakebed surface cracks and filling fissures. Shallow flooding along with consistent winds are...of the recorded specimens consist of isolated fragments of tooth enamel or bone that are not securely dated. Irvingtonian fossil localities have...require frequent repair as well. Concrete floors are cracking throughout all four test cells. Entry doors sag and drag on buckled floors. One-half

  3. Early detection of materials degradation

    NASA Astrophysics Data System (ADS)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  4. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristinemore » and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.« less

  5. The fracture behaviour of dental enamel.

    PubMed

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A

    2010-01-01

    Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).

  6. Evaluation of Stress Corrosion Resistance Properties of 15CrMoR(H) in H2S Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Yiliang; Wang, Jing; Wu, Mingyao; Li, Shurui; Liu, Wenbin

    To evaluate the hydrogen resistant properties of the 15CrMoR(H) with new smelting process, according to NACE and National Standards, three tests including NACE standard tensile test, NACE standard bent-beam test and hydrogen induced cracking test are executed in saturated hydrogen sulfide(H2S) environment. Stress-life mathematical model of this material is given by analyzing and fitting the results of tensile test. Test results show that the threshold sth of tensile test is 0.7R eL(252MPa); the threshold nominal stress SC of bent-beam is higher than 4.5 R eL (1620MPa); for HIC test, the crack length rate CLR is 4.40%, the crack thickness rate CTR is 0.87% and the crack sensitive rate CSR is 0.04%. Compare with EFC standard, the safety margin of HIC test is 3.4, 3.4 and 37.5 times respectively. All the experimental results show that the new 15CrMoR(H) material has excellent H2S environmental cracking resistance properties.

  7. Female Administrators: A Crack in the Glass Ceiling.

    ERIC Educational Resources Information Center

    Reis, Susan Bon; Young, I. Phillip; Jury, James C.

    1999-01-01

    Studied the effects of evaluator gender, applicant gender, and gender of the reference source on the screening of applicants for assistant-principal positions. Responses of 150 high school principals suggest that hypothetical female candidates were evaluated more highly than male applicants and were more likely to be interviewed. (SLD)

  8. Changing the Environmental Behaviour of Small Business Owners: The Business Case

    ERIC Educational Resources Information Center

    Walker, Beth; Redmond, Janice

    2014-01-01

    The importance of the environment is something of a cracked record to many small business owners, as historically any calls to business to change or improve their practices or behaviours were from the "environmental" or "green" perspective, rather than from a business perspective. As a consequence, many small businesses have…

  9. Near-threshold fatigue behavior of copper alloys in air and aqueous environments: A high cyclic frequency study

    NASA Astrophysics Data System (ADS)

    Ahmed, Tawfik M.

    The near-threshold fatigue crack propagation behavior of alpha-phase copper alloys in desiccated air and several aqueous environments has been investigated. Three commercial alloys of nominal composition Cu-30Ni (Cu-Ni), Cu-30Zn (Cu-Zn) and 90Cu-7Al-3Fe (Cu-Al) were tested. Fatigue tests were conducted using standard prefatigued single edged notched (SEN) specimens loaded in tension at a high frequency of ˜100 Hz. Different R-ratios were employed, mostly at R-ratios of 0.5. Low loading levels were used that corresponded to the threshold and near-threshold regions where Delta Kth ≤ DeltaK ≤ 11 MPa√m. Fatigue tests in the aqueous solutions showed that the effect of different corrosive environments during high frequency testing (˜100 Hz) was not as pronounced as was expected when compared relative to air. Further testing revealed that environmental effects were present and fatigue crack growth rates were influenced by the fluid-induced closure effects which are generally reported in the fatigue literature to be operative only in viscous liquids, not in aqueous solutions. It was concluded that high frequency testing in aqueous environments consistently decreased crack growth rates in a manner similar to crack retardation effects in viscous fluids. Several theoretical models reported in the literature have underestimated, if not failed, to adequately predict the fluid induced closure in aqueous solutions. Results from the desiccated air tests confirmed that, under closure-free conditions (high R-ratios), both threshold values and fatigue crack growth rate of stage II can be related to Young's modulus, in agreement with results from the literature. The role of different mechanical and environmental variables on fatigue behavior becomes most visible in the low R -ratio regime, and contribute to various closure processes.

  10. A Survey of Corrosion and Conditions of Corrosion Protection Systems in Civil Works Structures of the U.S. Army Corps of Engineers

    DTIC Science & Technology

    2014-09-01

    corrosion: coatings and cathodic protection (CP). Coatings consist of paints, epoxies, enamels , metalizing, and other coatings. CP is a chem- ical means...environmental factors such as water quality and resistivity. One of the major problems associated with lock gates is structural cracking in the...One of the problems described by Mr. Davis is fatigue crack growth resulting from the poor welding usually associated with stress risers and

  11. Environmental Effects on the Incubation Time Characteristics in Stress-Corrosion Cracking

    DTIC Science & Technology

    2011-04-01

    Corrosion Experimental Data for Specimen SL51 143 Table B2. Stress Corrosion Experimental Data for Specimen SL76 (3.5% NaCI, K , =6.8M/Wm) 144 Table B3...of action of the external load; - 143 - K =applied stress intensity factor; da/dt=crack growth rate. Table B2. Stress Corrosion Experimental Data for...Submitted to Dr. Asuri K . Vasudevan Scientific Officer Office of Naval Research, Code-332 875 North Randolph Street, Suite 1425, Room- 629

  12. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatiguemore » tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.« less

  13. Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications

    NASA Astrophysics Data System (ADS)

    Cox, Brian; Treyer, Karin

    2015-02-01

    Global mobile telecommunication is possible due to millions of Base Transceiver Stations (BTS). Nearly 1 million of these are operating off-grid, typically powered by diesel generators and therefore leading to significant CO2 emissions and other environmental burdens. A novel type of Alkaline Fuel Cell (AFC) powered by cracked ammonia is being developed for replacement of these generators. This study compares the environmental and economic performance of the two systems by means of Life Cycle Assessment (LCA) and Levelised Cost of Electricity (LCOE), respectively. Results show that the production of ammonia dominates the LCA results, and that renewable ammonia production pathways greatly improve environmental performance. Sensitivity analyses reveal that the fuel cell parameters that most affect system cost and environmental burdens are cell power density and lifetime and system efficiency. Recycling of anode catalyst and electrode substrate materials is found to have large impacts on environmental performance, though without large cost incentives. For a set of target parameter values and fossil sourced ammonia, the AFC is calculated to produce electricity with life cycle CO2 eq emissions of 1.08 kg kWh-1, which is 23% lower than a diesel generator with electricity costs that are 14% higher in the same application.

  14. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    NASA Astrophysics Data System (ADS)

    Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.

    2013-08-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.

  15. Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment

    NASA Astrophysics Data System (ADS)

    Hicks, P. D.; Robinson, F. P. A.

    1986-10-01

    Corrosion fatigue (CF) tests have been carried out on SA508 Cl 3 pressure vessel steel, in simulated P.W.R. environments. The test variables investigated included air and P.W.R. water environments, frequency variation over the range 1 Hz to 10 Hz, transverse and longitudinal crack growth directions, temperatures of 20 °C and 50 °C, and R-ratios of 0.2 and 0.7. It was found that decreasing the test frequency increased fatigue crack growth rates (FCGR) in P.W.R. environments, P.W.R. environment testing gave enhanced crack growth (vs air tests), FCGRs were greater for cracks growing in the longitudinal direction, slight increases in temperature gave noticeable accelerations in FCGR, and several air tests gave FCGR greater than those predicted by the existing ASME codes. Fractographic evidence indicates that FCGRs were accelerated by a hydrogen embrittlement mechanism. The presence of elongated MnS inclusions aided both mechanical fatigue and hydrogen embrittlement processes, thus producing synergistically fast FCGRs. Both anodic dissolution and hydrogen embrittlement mechanisms have been proposed for the environmental enhancement of crack growth rates. Electrochemical potential measurements and potentiostatic tests have shown that sample isolation of the test specimens from the clevises in the apparatus is not essential during low temperature corrosion fatigue testing.

  16. Environmental stress cracking of polymers

    NASA Technical Reports Server (NTRS)

    Mahan, K. I.

    1980-01-01

    A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.

  17. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.

    2017-01-01

    The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.

  18. A continuum model for damage evolution in laminated composites

    NASA Technical Reports Server (NTRS)

    Lo, D. C.; Allen, D. H.; Harris, C. E.

    1991-01-01

    The accumulation of matrix cracking is examined using continuum damage mechanics lamination theory. A phenomenologically based damage evolutionary relationship is proposed for matrix cracking in continuous fiber reinforced laminated composites. The use of material dependent properties and damage dependent laminate averaged ply stresses in this evolutionary relationship permits its application independently of the laminate stacking sequence. Several load histories are applied to crossply laminates using this model, and the results are compared to published experimental data. The stress redistribution among the plies during the accumulation of matrix damage is also examined. It is concluded that characteristics of the stress redistribution process could assist in the analysis of the progressive failure process in laminated composites.

  19. High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.

    2007-01-01

    Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.

  20. Women and Substance Abuse. Technical Assistance Packet.

    ERIC Educational Resources Information Center

    Join Together, Boston, MA.

    There are many issues concerning women of all ages and substance abuse. Women who abuse alcohol or other drugs are particularly at risk for sexual assault; unprotected sex; unwanted pregnancies; and sexually transmitted diseases. Females between the ages of 12 and 17 surpass males in their use of cigarettes; cocaine; crack; inhalants; and…

  1. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  2. InSitu SEM Investigation of Microstructural Damage Evolution and Strain Relaxation in a Melt Infiltrated SiC/SiC Composite

    NASA Technical Reports Server (NTRS)

    Sevener, Kathy; Chen, Zhe; Daly, Sam; Tracy, Jared; Kiser, Doug

    2016-01-01

    With CMC components poised to complete flight certification in turbine engines on commercial aircraft within the near future, there are many efforts within the aerospace community to model the mechanical and environmental degradation of CMCs. Direct observations of damage evolution are needed to support these modeling efforts and provide quantitative measures of damage parameters used in the various models. This study was performed to characterize the damage evolution during tensile loading of a melt infiltrated (MI) silicon carbide reinforced silicon carbide (SiC/SiC) composite. A SiC/SiC tensile coupon was loaded to a maximum global stress of 30 ksi in a tensile fixture within an SEM while observations were made at 5 ksi increments. Both traditional image analysis and DIC (digital image correlation) were used to quantify damage evolution. With the DIC analysis, microscale damage was observed at the fiber-matrix interfaces at stresses as low as 5 ksi. First matrix cracking took place between 20 and 25 ksi, accompanied by an observable relaxation in strain near matrix cracks. Matrix crack opening measurements at the maximum load ranged from 200 nm to 1.5 m. Crack opening along the fiber-matrix interface was also characterized as a function of load and angular position relative to the loading axis. This characterization was funded by NASA GRC and was performed to support NASA GRC modeling of SiC/SiC environmental degradation

  3. Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions.

    PubMed

    Patterson, Bradley M; Davis, Greg B

    2009-02-01

    Potential hydrocarbon-vapor intrusion pathways into a building through a concrete slab-on-ground were investigated and quantified under a variety of environmental conditions to elucidate the potential mechanisms for indoor air contamination. Vapor discharge from the uncovered open ground soil adjacent to the building and subsequent advection into the building was unlikely due to the low soil-gas concentrations at the edge of the building as a result of aerobic biodegradation of hydrocarbon vapors. When the building's interior was under ambient pressure, a flux of vapors into the building due to molecular diffusion of vapors through the building's concrete slab (cyclohexane 11 and methylcyclohexane 31 mg m(-2) concrete slab day(-1)) and short-term (up to 8 h) cyclical pressure-driven advection of vapors through an artificial crack (cyclohexane 4.2 x 10(3) and methylcyclohexane 1.2 x 10(4) mg m(-2) cracks day(-1)) was observed. The average subslab vapor concentration under the center of the building was 25,000 microg L(-1). Based on the measured building's interiorvapor concentrations and the building's air exchange rate of 0.66 h(-1), diffusion of vapors through the concrete slab was the dominantvapor intrusion pathway and cyclical pressure exchanges resulted in a near zero advective flux. When the building's interior was under a reduced pressure (-12 Pa), advective transport through cracks or gaps in the concrete slab (cyclohexane 340 and methylcyclohexane 1100 mg m(-2) cracks day(-1)) was the dominant vapor intrusion pathway.

  4. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288{degrees} C (550{degrees} F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288{degrees} C (550{degrees} F) base line air environment. Themore » growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology.« less

  5. Aqueous chloride stress corrosion cracking of titanium - A comparison with environmental hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1974-01-01

    The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sq m) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment.

  6. Cyclic stress effect on stress corrosion cracking of duplex stainless steel in chloride and caustic solutions

    NASA Astrophysics Data System (ADS)

    Yang, Di

    Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.

  7. The global mechanical properties and multi-scale failure mechanics of heterogeneous human stratum corneum.

    PubMed

    Liu, X; Cleary, J; German, G K

    2016-10-01

    The outermost layer of skin, or stratum corneum, regulates water loss and protects underlying living tissue from environmental pathogens and insults. With cracking, chapping or the formation of exudative lesions, this functionality is lost. While stratum corneum exhibits well defined global mechanical properties, macroscopic mechanical testing techniques used to measure them ignore the structural heterogeneity of the tissue and cannot provide any mechanistic insight into tissue fracture. As such, a mechanistic understanding of failure in this soft tissue is lacking. This insight is critical to predicting fracture risk associated with age or disease. In this study, we first quantify previously unreported global mechanical properties of isolated stratum corneum including the Poisson's ratio and mechanical toughness. African American breast stratum corneum is used for all assessments. We show these parameters are highly dependent on the ambient humidity to which samples are equilibrated. A multi-scale investigation assessing the influence of structural heterogeneities on the microscale nucleation and propagation of cracks is then performed. At the mesoscale, spatially resolved equivalent strain fields within uniaxially stretched stratum corneum samples exhibit a striking heterogeneity, with localized peaks correlating closely with crack nucleation sites. Subsequent crack propagation pathways follow inherent topographical features in the tissue and lengthen with increased tissue hydration. At the microscale, intact corneocytes and polygonal shaped voids at crack interfaces highlight that cracks propagate in superficial cell layers primarily along intercellular junctions. Cellular fracture does occur however, but is uncommon. Human stratum corneum protects the body against harmful environmental pathogens and insults. Upon mechanical failure, this barrier function is lost. Previous studies characterizing the mechanics of stratum corneum have used macroscopic testing equipment designed for homogenous materials. Such measurements ignore the tissue's rich topography and heterogeneous structure, and cannot describe the underlying mechanistic process of tissue failure. For the first time, we establish a mechanistic insight into the failure mechanics of soft heterogeneous tissues by investigating how cracks nucleate and propagate in stratum corneum. We further quantify previously unreported values of the tissue's Poisson's ratio and toughness, and their dramatic variation with ambient humidity. To date, skin models examining drug delivery, wound healing, and ageing continue to estimate these parameters. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Chemical Degradation and Stress Cracking of Polycarbonate in DS2.

    DTIC Science & Technology

    1987-09-01

    materials are used. For instance, polycarbonate, used widely for air- craft windows, helicopter canopies and transparent armor because of its good impact ...predicting environmental stress cracking of the polymer from solubility con- siderations. The concept has been extended to include a hydrogen bonding...IML Authors . 04 * ! 9 00 9 A S . - . . . q w * . - .* *,.*A CC AX -4-’-~~~~ U--’- ; IO i- A - -C4 = tO -~’ 1 .’ . M0 C , W V E WE1 C ~ 0.0.’un WEC

  9. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  10. Fused Silica and Other Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    Several transparent ceramics, such as spinel and AlONs are now being produced in sufficient large areas to be used in space craft window applications. The work horse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits anomalies in its crack growth behavior, depending on environmental preconditioning and surface damage. This presentation will compare recent optical ceramics to fused silica and discuss sources of variation in slow crack growth behavior.

  11. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  12. Results of the Boulder Consultation: The Beginnings of a Technical Assistance Program for the Office of Environmental Education/USOE/HEW.

    ERIC Educational Resources Information Center

    Office of Education (DHEW), Washington, DC. Office of Environmental Education.

    In December 1977, the Office of Environmental Education (OEE) brought its fiscal year '77 grant recipients together in Boulder, Colorado, for a technical assistance consultation. The technical assistance responsibilities of OEE are mandated by the Environmental Education Act. Until this consultation, OEE had been giving its technical assistance on…

  13. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    NASA Astrophysics Data System (ADS)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  14. A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion.

    PubMed

    Luo, Xiaofan; Ou, Runqing; Eberly, Daniel E; Singhal, Amit; Viratyaporn, Wantinee; Mather, Patrick T

    2009-03-01

    In this paper, we report on the development of a new and broadly applicable strategy to produce thermally mendable polymeric materials, demonstrated with an epoxy/poly(-caprolactone) (PCL) phase-separated blend. The initially miscible blend composed of 15.5 wt % PCL undergoes polymerization-induced phase separation during cross-linking of the epoxy, yielding a "bricks and mortar" morphology wherein the epoxy phase exists as interconnected spheres (bricks) interpenetrated with a percolating PCL matrix (mortar). The fully cured material is stiff, strong, and durable. A heating-induced "bleeding" behavior was witnessed in the form of spontaneous wetting of all free surfaces by the molten PCL phase, and this bleeding is capable of repairing damage by crack-wicking and subsequent recrystallization with only minor concomitant softening during that process. The observed bleeding is attributed to volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). In controlled thermal-mending experiments, heating of a cracked specimen led to PCL extrusion from the bulk to yield a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals formed at the site of the crack, restoring a significant portion of the mechanical strength. When a moderate force was applied to assist crack closure, thermal-mending efficiencies exceeded 100%. We further observed that the DEB phenomenon enables strong and facile adhesion of the same material to itself and to a variety of materials, without any requirement for macroscopic softening or flow.

  15. Searching for a Crack to Let Environment Light In: Ecological Biopolitics and Education for Sustainable Development Discourses

    ERIC Educational Resources Information Center

    Gough, Annette

    2017-01-01

    This article traces the shifts in environmental education discourses from the 1972 UN Conference on the Human Environment, to the 2012 UN Rio+20 Conference on Sustainable Development, and beyond through a biopolitical lens. Each of the earlier shifts is reflected in environmental, sustainability and science education policies and curricula--but…

  16. Against Their Wills: Children Born Affected by Drugs.

    ERIC Educational Resources Information Center

    Hodgkinson, Harold L.; Outtz, Janice Hamilton

    There is no national policy on assisting drug-using pregnant mothers nor on the children they produce. This paper looks at the issue of "crack-cocaine" and mothers who give birth to children after using drugs during pregnancy. It attempts to lay out what is known, and it puts forth "best guesses" regarding helping children born…

  17. 24 CFR 58.23 - Financial assistance for environmental review.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... environmental review. 58.23 Section 58.23 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development ENVIRONMENTAL REVIEW PROCEDURES FOR ENTITIES ASSUMING HUD ENVIRONMENTAL RESPONSIBILITIES General Policy: Environmental Review Procedures § 58.23 Financial assistance for environmental...

  18. Effect of system compliance on crack nucleation in soft materials

    NASA Astrophysics Data System (ADS)

    Rattan, Shruti; Crosby, Alfred

    Puncture mechanics in soft materials is critical for the development of new surgical instruments, robot assisted-surgery as well as new materials used in personal protective equipment. However, analytical techniques to study this important deformation process are limited. We have previously described a simple experimental method to study the resistive forces and failure of a soft gel being indented with a small tip needle. We showed that puncture stresses can reach two orders of magnitude greater than the material modulus and that the force response is insensitive to the geometry of the indenter at large indentation depths. Currently, we are examining the influence of system compliance on crack nucleation (e.g. puncture) in soft gels. It is well known that system compliance influences the peak force in adhesion and traditional fracture experiments; however, its influence on crack nucleation is unresolved. We find that as the system becomes more compliant, lower peak forces required to puncture a gel of certain stiffness with the same indenter were measured. We are developing scaling relationships to relate the peak puncture force and system compliance. Our findings introduce new questions with regard to the possibility of intrinsic materials properties related to the critical stress and energy for crack nucleation in soft materials.

  19. Assessment of solvent capsule-based healing for woven E-glass fibre-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Manfredi, Erica; Cohades, Amaël; Richard, Inès; Michaud, Véronique

    2015-01-01

    Vacuum Assisted Resin Infusion Molding (VARIM) with low vacuum pressure difference was used to manufacture woven glass fibre-reinforced epoxy resin plates, with a fibre volume fraction of approx. 50 vol% and containing ethyl phenylacetate (EPA)-filled capsules for self-healing purposes. Capsules were introduced by functionalising the fabrics through manual dispersion. We investigated the capability of autonomously healing delaminations induced by static loading in Mode I and II. Healing did not take place for composite samples; this was attributed to the presence of bare fibres on the crack plane and to the reduction of EPA diffusion into the matrix in the presence of fibres both of which hinder the swelling mechanism responsible for healing the cracks.

  20. Stress intensities for cracks emanating from pin-loaded holes

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Jolles, M.; Peters, W. H.

    1977-01-01

    A series of stress freezing photoelastic experiments were conducted on large plates containing central holes with cracks emanating from the edge formed by the intersection of the hole with the plate surface. Loads were applied through rigid pins with neat fits in the holes. Stress-intensity factors (SIF) were estimated by a computer assisted least squares analysis of the photoelastic data taken from slices near the points of intersection of the flaw border with the hole boundary and the plate surface. Results indicate that the local mode of loading changes from Mode 1 near the hole boundary to mixed mode near the plate surface. The analysis is extended to include mixed mode loading, and results are compared with an existing approximate theory.

  1. Identification of corrosion and damage mechanisms by using scanning electron microscopy and energy-dispersive X-ray microanalysis: contribution to failure analysis case histories

    NASA Astrophysics Data System (ADS)

    Pantazopoulos, G.; Vazdirvanidis, A.

    2014-03-01

    Emphasis is placed on the evaluation of corrosion failures of copper and machineable brass alloys during service. Typical corrosion failures of the presented case histories mainly focussed on stress corrosion cracking and dezincification that acted as the major degradation mechanisms in components used in piping and water supply systems. SEM assessment, coupled with EDS spectroscopy, revealed the main cracking modes together with the root-source(s) that are responsible for the damage initiation and evolution. In addition, fracture surface observations contributed to the identification of the incurred fracture mechanisms and potential environmental issues that stimulated crack initiation and propagation. Very frequently, the detection of chlorides among the corrosion products served as a suggestive evidence of the influence of working environment on passive layer destabilisation and metal dissolution.

  2. 40 CFR 52.1690 - Small business technical and environmental compliance assistance program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) New York § 52.1690 Small business technical and environmental compliance assistance program. On January 11, 1993, the New York State Department of Environmental Conservation submitted a plan for the... Assistance Program for incorporation in the New York state implementation plan. This plan meets the...

  3. 40 CFR 52.2732 - Small business technical and environmental compliance assistance program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) Puerto Rico § 52.2732 Small business technical and environmental compliance assistance program. On November 16, 1992, the Puerto Rico Environmental Quality Board submitted a plan for the... Assistance Program for incorporation in the Puerto Rico state implementation plan. This plan meets the...

  4. 40 CFR 52.2732 - Small business technical and environmental compliance assistance program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) Puerto Rico § 52.2732 Small business technical and environmental compliance assistance program. On November 16, 1992, the Puerto Rico Environmental Quality Board submitted a plan for the... Assistance Program for incorporation in the Puerto Rico state implementation plan. This plan meets the...

  5. 40 CFR 52.2732 - Small business technical and environmental compliance assistance program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) Puerto Rico § 52.2732 Small business technical and environmental compliance assistance program. On November 16, 1992, the Puerto Rico Environmental Quality Board submitted a plan for the... Assistance Program for incorporation in the Puerto Rico state implementation plan. This plan meets the...

  6. EPA Order 5700.7A1: EPA's Policy for Environmental Results under EPA Assistance Agreements

    EPA Pesticide Factsheets

    This order establishes Environmental Protection Agency (EPA) policy for addressing environmental results under EPA assistance agreements, including results that advance EPA’s environmental and human health mission.

  7. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program continues a high level of activity. Progress achieved between 1 Jan. and 30 Jun. 1993 is reported. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The following projects are addressed: environmental fatigue of Al-Li-Cu alloys; mechanisms of localized corrosion and environmental fracture in Al-Cu-Li-Mg-Ag alloy X2095 and compositional variations; the effect of zinc additions on the precipitation and stress corrosion cracking behavior of alloy 8090; hydrogen interactions with Al-Li-Cu alloy 2090 and model alloys; metastable pitting of aluminum alloys; cryogenic fracture toughness of Al-Cu-Li + In alloys; the fracture toughness of Weldalite (TM); elevated temperature cracking of advanced I/M aluminum alloys; response of Ti-1100/SCS-6 composites to thermal exposure; superplastic forming of Weldalite (TM); research to incorporate environmental effects into fracture mechanics fatigue life prediction codes such as NASA FLAGRO; and thermoviscoplastic behavior.

  8. Development of an eco-friendly, cost-effective biogrout for concrete crack repair : tech transfer summary.

    DOT National Transportation Integrated Search

    2016-09-01

    Due to the environmental and economic benefits, biocementation resulting from a microbiologically induced calcium carbonate precipitation process is being increasingly used to enhance civil infrastructurethrough stone surface protection, sand ceme...

  9. Cold Regions Environmental Considerations

    DTIC Science & Technology

    2009-02-03

    braided streams, variable discharge, seasonal breakup) limited seasonally limited abundant Hydrology (frozen lakes and bogs) not present seasonally...fuel hoses may crack increasing the potential for fuel spills. Extreme care must be used when handling cables at cold temperatures, protecting the

  10. Empirical modeling of environment-enhanced fatigue crack propagation in structural alloys for component life prediction

    NASA Technical Reports Server (NTRS)

    Richey, Edward, III

    1995-01-01

    This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).

  11. Environmental Impact Analysis Process. Environmental Assessment Proposed SMC Military Family Housing, San Pedro, California

    DTIC Science & Technology

    1998-12-01

    paint conditions to be 98 percent intact, with cracking, flaking, and peeling noted on various exterior components of the units tested. The survey...paradisiaca var. seminifera Musa spp. banana bananas MYOPORACEAE Myoporum laetum Myoporum spp. myoporum myoporums MYRICACEAE Myrica...Chinese banyan common fig rubber plant Indian laurel fig rustyleaf fig white mulberry MUSACEAE Musa paradisiaca var. seminifera Musa spp. banana

  12. Review of Corrosion Fatigue.

    DTIC Science & Technology

    1981-11-16

    other is not always well defined. 3.0 CORROSIM FATIGUE VARIABLES AND THEIR EFFECTS Corrosion fatigue behavior is pverned, y Ir of variables- environmental...on near threshold fatigue crack growth behavior is primarily a function of environmental reaction in this steel . 3.2 Mechanical Effects Among the...Gallagher""’ and Pao studied the corrosion fatigue behavior of 4340 steel at various * Ifrequencies in distilled water and water vapor, respectively

  13. On-line prognosis of fatigue crack propagation based on Gaussian weight-mixture proposal particle filter.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Wang, Hui; Yang, Weibo

    2018-01-01

    Accurate on-line prognosis of fatigue crack propagation is of great meaning for prognostics and health management (PHM) technologies to ensure structural integrity, which is a challenging task because of uncertainties which arise from sources such as intrinsic material properties, loading, and environmental factors. The particle filter algorithm has been proved to be a powerful tool to deal with prognostic problems those are affected by uncertainties. However, most studies adopted the basic particle filter algorithm, which uses the transition probability density function as the importance density and may suffer from serious particle degeneracy problem. This paper proposes an on-line fatigue crack propagation prognosis method based on a novel Gaussian weight-mixture proposal particle filter and the active guided wave based on-line crack monitoring. Based on the on-line crack measurement, the mixture of the measurement probability density function and the transition probability density function is proposed to be the importance density. In addition, an on-line dynamic update procedure is proposed to adjust the parameter of the state equation. The proposed method is verified on the fatigue test of attachment lugs which are a kind of important joint components in aircraft structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. PFC2D simulation of thermally induced cracks in concrete specimens

    NASA Astrophysics Data System (ADS)

    Liu, Xinghong; Chang, Xiaolin; Zhou, Wei; Li, Shuirong

    2013-06-01

    The appearance of cracks exposed to severe environmental conditions can be critical for concrete structures. The research is to validate Particle Flow Code(PFC2D) method in the context of concrete thermally-induced cracking simulations. First, concrete was discreted as meso-level units of aggregate, cement mortar and the interfaces between them. Parallel bonded-particle model in PFC2D was adapted to describe the constitutive relation of the cementing material. Then, the concrete mechanics meso-parameters were obtained through several groups of biaxial tests, in order to make the numerical results comply with the law of the indoor test. The concrete thermal meso-parameters were determined by compared with the parameters in the empirical formula through the simulations imposing a constant heat flow to the left margin of concrete specimens. At last, a case of 1000mm×500mm concrete specimen model was analyzed. It simulated the formation and development process of the thermally-induced cracks under the cold waves of different durations and temperature decline. Good agreements in fracture morphology and process were observed between the simulations, previous studies and laboratory data. The temperature decline limits during cold waves were obtained when its tensile strength was given as 3MPa. And it showed the feasibility of using PFC2D to simulate concrete thermally-induced cracking.

  15. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    NASA Astrophysics Data System (ADS)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  16. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  17. The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2012-05-01

    We report proton transmission images obtained subsequent to the laser assisted thermal ignition of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)). We describe the laser assisted thermal ignition technique as a means to synchronize a non-linear thermal ignition event while preserving the subsequent post-ignition behavior. We have obtained dynamic proton transmission images at two spatial magnifications and viewed both the radial and transverse axis of a solid cylindrical sample encased in aluminum. Images have been obtained with 3 to 15 μs temporal resolution and approximately 100 μm spatial resolution at the higher magnification. We observe case expansion from very early in the experiment, until case fragmentation. We observe spatially anisotropic features in the transmission which we attribute to cracking in the solid explosive, in agreement with previous measurements conducted on two dimensional samples with optical viewing. Digital analysis of the images also reveals spatially isotropic features which we attribute to the evolution of the loss of density by burning subsequent to thermal ignition.

  18. Oxidation of UC: An in situ high temperature environmental scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Gasparrini, Claudia; Podor, Renaud; Horlait, Denis; Rushton, Michael J. D.; Fiquet, Olivier; Lee, William Edward

    2017-10-01

    In situ HT-ESEM oxidation of sintered UC fragments revealed the morphological changes occurring during the transformation between UC to UO2 and UO2 to U3O8 at 723-848 K and in an atmosphere of 10-100 Pa O2. Two main oxidation pathways were revealed. Oxidation at 723 K in atmospheres ≤25 Pa O2 showed the transformation from UC to UO2+x, as confirmed by post mortem HRTEM analysis. This oxidation pathway was comprised of three steps: (i) an induction period, where only surface UC particles oxidised, (ii) a sample area expansion accompanied by crack formation and propagation, (iii) a stabilisation of the total crack length inferring that crack propagation had stopped. Samples oxidised under 50 Pa O2 at 723 K and at 773-848 K for 10-100 Pa O2 showed an "explosive" oxidation pathway: (i) sample area expansion occurred as soon as oxygen was inserted into the chamber and crack propagation and crack length followed an exponential law; (ii) cracks propagated as a network and the oxide layer fragmented, (iii) an "explosion" occurred causing a popcorn-like transformation, typical for oxidation from UO2 to U3O8. HRTEM characterisation revealed U3O8 preferentially grow in the [001] direction. The explosive growth, triggered by ignition of UC, proceeded as a self-propagating high-temperature synthesis reaction, with a propagation speed of 150-500 ± 50 μm/s.

  19. Demystifying "oxi" cocaine: Chemical profiling analysis of a "new Brazilian drug" from Acre State.

    PubMed

    da Silva Junior, Ronaldo C; Gomes, Cezar S; Goulart Júnior, Saulo S; Almeida, Fernanda V; Grobério, Tatiane S; Braga, Jez W B; Zacca, Jorge J; Vieira, Maurício L; Botelho, Elvio D; Maldaner, Adriano O

    2012-09-10

    Recent information from various sources suggests that a new illicit drug, called "oxi", is being spread across Brazil. It would be used in the smoked form and it would look like to crack cocaine: usually small yellowish or light brown stones. As fully released in the media, "oxi" would differ from crack cocaine in the sense that crack would contain carbonate or bicarbonate salts whereas "oxi" would include the addition of calcium oxide and kerosene (or gasoline). In this context, this work presents a chemical profiling comparative study between "oxi" street samples seized by the Civil Police of the State of Acre (CP/AC) and samples associated with both international and interstate drug trafficking seized by the Brazilian Federal Police in Acre (FP/AC). The outcome of this work assisted Brazilian authorities to stop inaccurate and alarmist releases on this issue. It may be of good use by the forensic community in order to better understand matters in their efforts to guide local law enforcement agencies in case such claims reach the international illicit market. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.

    2017-12-01

    In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.

  1. Coated article and method of making

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Lee, Kang Neung (Inventor)

    2003-01-01

    An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.

  2. Coated article and method of making

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Lee, Kang Neung (Inventor)

    2002-01-01

    An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.

  3. 49 CFR 1105.3 - Information and assistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Information and assistance. 1105.3 Section 1105.3... Information and assistance. Information and assistance regarding the rules and the Board's environmental and historic review process is available by writing or calling the Section of Environmental Analysis, Surface...

  4. 49 CFR 1105.3 - Information and assistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Information and assistance. 1105.3 Section 1105.3... Information and assistance. Information and assistance regarding the rules and the Board's environmental and historic review process is available by writing or calling the Section of Environmental Analysis, Surface...

  5. 49 CFR 1105.3 - Information and assistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Information and assistance. 1105.3 Section 1105.3... Information and assistance. Information and assistance regarding the rules and the Board's environmental and historic review process is available by writing or calling the Section of Environmental Analysis, Surface...

  6. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapour pressure specifications. The main blending components of alkylate, cracked gasoline and reformate have different octane and vapour pressure...

  7. Continued monitoring of instrumented pavement in Ohio

    DOT National Transportation Integrated Search

    2003-12-01

    Performance and environmental data continued to be monitored throughout this study on the Ohio SHRP Test Road. : Response testing included three new series of controlled vehicle tests and two sets of nondestructive tests. Cracking in two : SPS-2 sect...

  8. Continued monitoring of instrumented pavement in Ohio.

    DOT National Transportation Integrated Search

    2002-12-01

    Performance and environmental data continued to be monitored throughout this study on the Ohio SHRP Test Road. Response testing included three new series of controlled vehicle tests and two sets of nondestructive tests. Cracking in two SPS-2 sections...

  9. Accelerated characterization of full-scale flexible pavements using a vibroseis.

    DOT National Transportation Integrated Search

    2010-03-01

    Geosynthetic basal reinforcement has been used in flexible pavements and unbound roads to limit the occurrence of rutting, fatigue, and environmental-related cracking, and to permit reduction in base course thickness. However, the lack of a represent...

  10. Frequently Asked Questions about the Indian Environmental General Assistance Program (GAP)

    EPA Pesticide Factsheets

    Answers to frequently asked questions about the Indian Environmental General Assistance Program (GAP) Guidance on the Award and Management of General Assistance Agreements for Tribes and Intertribal Consortia (Guidance)

  11. Further Development of Crack Growth Detection Techniques for US Test and Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohse, Gordon; Carpenter, David M.; Ostrovsky, Yakov

    One of the key issues facing Light Water Reactors (LWRs) in extending lifetimes beyond 60 years is characterizing the combined effect of irradiation and water chemistry on material degradation and failure. Irradiation Assisted Stress Corrosion Cracking (IASCC), in which a crack propagates in a susceptible material under stress in an aggressive environment, is a mechanism of particular concern. Full understanding of IASCC depends on real time crack growth data acquired under relevant irradiation conditions. Techniques to measure crack growth in actively loaded samples under irradiation have been developed outside the US - at the Halden Boiling Water Reactor, for example.more » Several types of IASCC tests have also been deployed at the MITR, including passively loaded crack growth measurements and actively loaded slow strain rate tests. However, there is not currently a facility available in the US to measure crack growth on actively loaded, pre-cracked specimens in LWR irradiation environments. A joint program between the Idaho National Laboratory (INL) and the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) is currently underway to develop and demonstrate such a capability for US test and research reactors. Based on the Halden design, the samples will be loaded using miniature high pressure bellows and a compact loading mechanism, with crack length measured in real time using the switched Direct Current Potential Drop (DCPD) method. The basic design and initial mechanical testing of the load system and implementation of the DCPD method have been previously reported. This paper presents the results of initial autoclave testing at INL and the adaptation of the design for use in the high pressure, high temperature water loop at the MITR 6 MW research reactor, where an initial demonstration is planned in mid-2015. Materials considerations for the high pressure bellows are addressed. Design modifications to the loading mechanism required by the size constraints of the MITR water loop are described. The safety case for operation of the high pressure gas-driven bellows mechanism is also presented. Key issues are the design and response of systems to limit gas flow in the event of a high pressure gas leak in the in-core autoclave. Integrity of the autoclave must be maintained and reactivity effects due to voiding of the loop coolant must be shown to be within the reactor technical specifications. The technical development of the crack growth monitor for application in the INL Advanced Test Reactor or the MITR can act as a template for adaptation of this technology in other reactors. (authors)« less

  12. Use of Strain Measurements from Acoustic Bench Tests of the Battleship Flowliner Test Articles To Link Analytical Model Results to In-Service Resonant Response

    NASA Technical Reports Server (NTRS)

    Frady, Greg; Smaolloey, Kurt; LaVerde, Bruce; Bishop, Jim

    2004-01-01

    The paper will discuss practical and analytical findings of a test program conducted to assist engineers in determining which analytical strain fields are most appropriate to describe the crack initiating and crack propagating stresses in thin walled cylindrical hardware that serves as part of the Space Shuttle Main Engine's fuel system. In service the hardware is excited by fluctuating dynamic pressures in a cryogenic fuel that arise from turbulent flow/pump cavitation. A bench test using a simplified system was conducted using acoustic energy in air to excite the test articles. Strain measurements were used to reveal response characteristics of two Flowliner test articles that are assembled as a pair when installed in the engine feed system.

  13. Effect of water addition in a microwave assisted thermal cracking of biomass tar gasification

    NASA Astrophysics Data System (ADS)

    Warsita, A.; Surya, I.

    2018-02-01

    Producer gas from biomass gasification is plagued by the presence of tar which causes pipe blockages. Thermal and catalytic treatments in a microwave reactor have been shown to be effective methods for removing tar from producer gas. A question arises as to the possibility of enhancing the removal mechanism by adding water into the reactor. Thermal treatment with a various amount of water was added at temperatures in the range of 800-1200°C. The tar removal efficiency obtained 96.32% at the optimum temperature of 1200°C at the water to tar ratio (W/T) of 0.3. This study shows that the removal of tar by microwave irradiation with water addition is a significant and effective method in tar cracking.

  14. Strain corrosion cracking in rpm sewer piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, S.W.; Wachob, H.F.; Duffner, D.H.

    1993-12-31

    Long term, aggressive environmental exposure can result in localized failure of large diameter, glass reinforced plastic mortar (RPM) piping. In order to evaluate the performance of the liner and glass reinforced matrix polyester resin, accelerated strain corrosion tests were performed on samples of RPM piping that had already experienced almost 15 years of service. To assess the sensitivity of RPM pipe to acidic environments and to correlate the fractography of the laboratory produced failures with the excavated crack, short segments of 8-inch and 48-inch diameter piping were statically loaded to produce various known surface strains. After preloading the specimens tomore » fixed strain levels, these samples were then exposed to sulfuric acid solutions having pH values of 2.7 and 4.7 and monitored as a function of time until failure. The resulting lifetimes were related to initial surface strains and showed a decreasing logarithmic relationship. Fractographic examination of the excavated crack revealed the typical strain corrosion fractography of glass fibers after almost a 1000 hour exposure at 1.3 % strain; similar fractographic observations were obtained from failed laboratory samples. At shorter times, failure appeared to be overload in nature and exhibited little, if any, timedependent fracture features. Fractographic examination of the excavated crack strongly indicated that the crack had been present for a significant time. The extremely aggressive environment had totally dissolved the exposed glass reinforcement. Based on the laboratory strain corrosion performance, the nature of the contained cracking, and fractography of the failed surface, cracking of the excavated RPM pipe was believed to be the result of an early overload failure that subsequently propagated slowly via strain corrosion in an extremely aggressive environment.« less

  15. Effects of High-Temperature Exposures on the Fatigue Life of Superalloy Udimet(Registered Trademark) 720

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Sweeney, Joseph W.; Browning, Paul F.

    2002-01-01

    The purpose of this study was to examine the effects of extended exposures on the near-surface fatigue resistance of a disk superalloy. Powder metallurgy processed, supersolvus heat-treated Udimet 720 (U720) fatigue specimens were exposed in air at temperatures from 650 to 705 C for 100 hr to over 1000 hr. They were then tested using conventional fatigue tests at 650 C to determine the effects of exposure on fatigue resistance. The exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Fractographic evaluations indicated the failure mode was shifted by the exposures from internal to surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.

  16. Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.

    2012-01-01

    Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.

  17. Alternative Fuels Data Center

    Science.gov Websites

    Specialist Pennsylvania Department of Environmental Protection, Pollution Prevention & Energy Assistance Prevention and Energy Assistance Manager Pennsylvania Department of Environmental Protection, Pollution Prevention & Energy Assistance Office Phone: (717) 705-4797 mhand@pa.gov

  18. 40 CFR 52.2586 - Small business stationary source technical and environmental compliance assistance program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PLANS (CONTINUED) Wisconsin § 52.2586 Small business stationary source technical and environmental compliance assistance program. The Wisconsin small business stationary source technical and environmental...

  19. 40 CFR 52.2586 - Small business stationary source technical and environmental compliance assistance program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PLANS (CONTINUED) Wisconsin § 52.2586 Small business stationary source technical and environmental compliance assistance program. The Wisconsin small business stationary source technical and environmental...

  20. 40 CFR 52.2586 - Small business stationary source technical and environmental compliance assistance program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PLANS (CONTINUED) Wisconsin § 52.2586 Small business stationary source technical and environmental compliance assistance program. The Wisconsin small business stationary source technical and environmental...

  1. 40 CFR 52.2586 - Small business stationary source technical and environmental compliance assistance program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PLANS (CONTINUED) Wisconsin § 52.2586 Small business stationary source technical and environmental compliance assistance program. The Wisconsin small business stationary source technical and environmental...

  2. 40 CFR 52.2586 - Small business stationary source technical and environmental compliance assistance program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PLANS (CONTINUED) Wisconsin § 52.2586 Small business stationary source technical and environmental compliance assistance program. The Wisconsin small business stationary source technical and environmental...

  3. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. 40 CFR 419.21 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Specialized definitions. 419.21 Section 419.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.21 Specialized definitions...

  5. 40 CFR 419.21 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 419.21 Section 419.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.21 Specialized definitions...

  6. Accelerated Characterization of Full-Scale Reinforced Flexible Pavement Models Using Vibroseis

    DOT National Transportation Integrated Search

    2010-03-01

    Geosynthetic basal reinforcement has been used in flexible pavements and unbound roads to limit the occurrence of rutting, fatigue, and environmental-related cracking, and to permit reduction in base course thickness. However, the lack of a represent...

  7. Views of Pre-Service Primary School Teachers Regarding Computer Assisted Environmental Education

    ERIC Educational Resources Information Center

    Turan, Ilhan

    2014-01-01

    The main aim of this study is to highlight the importance of computer assisted instruction in environmental education. Recently, the importance of environmental education in many countries has begun to increase in parallel with environmental problems. This has led to increased interest in environmental education. The fact that computers were the…

  8. Europa's Habitability follows from Classical Dynamical Astronomy

    NASA Astrophysics Data System (ADS)

    Greenberg, R.

    2001-11-01

    Celestial mechanics is responsible for Jupiter's satellite Europa being a possible site for life in the solar system. The Laplace orbital resonance drives a substantial eccentricity. The mutually dependent relationship between orbital and rotational evolution and tidal processes in turn controls Europa's heating and stress. Heat is likely adequate to maintain a liquid water ocean, and to keep the surface ice thin. Tidal stress can explain characteristic and ubiquitous crack patterns (global and cycloidal), as well as drive observed shear displacement features. The characteristic ridge sets that cover tectonic terrain are likely built by tidal pumping of oceanic fluid and slush through cracks to the surface on a daily basis. Nearly half the surface is chaotic terrain, with morphology and other characteristics indicative of melt-through from below. Formation of both chaotic and tectonic terrains has continually resurfaced the satellite, while connecting the ocean to the surface and providing a variety of evolving environmental niches. As a result of tides, liquid water would daily bathe crustal cracks and surfaces with heat, transporting and mixing substances vertically. Thus a variety of habitable environments likely exist in the crust. Moreover, exposure of the ocean to the surface in the ways described here satisfies a necessary condition for life in the ocean as well, by providing access to oxidants which are available near the surface. These processes were recent, and thus most likely continue today. Longer term changes in environmental conditions in the crust, such as deactivation of individual cracks after thousands of years (due to non-synchronous rotation) and later crustal thawing (releasing any trapped organisms), provided drivers for adaptation, as well as opportunity for evolution. This work is supported by the NASA Planetary Geology and Geophysics Program and the NSF Life in Extreme Environments Program.

  9. Environment-Assisted Cracking in Custom 465 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lee, E. U.; Goswami, R.; Jones, M.; Vasudevan, A. K.

    2011-02-01

    The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.

  10. Nanoscale Stress-Corrosion of Geomaterials in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Criscenti, L. J.; Rimsza, J. M.; Matteo, E. N.; Jones, R. E.

    2017-12-01

    Predicting subcritical crack propagation in low-permeability geo-materials is an unsolved problem crucial to assessing shale caprocks at CO2 sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-material interfaces play a major role in subcritical crack growth by weakening the material and altering crack nucleation and growth rates. However, understanding subsurface fracture has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We are using both molecular simulation and experiment to develop an atomistic-level understanding of the chemical-mechanical coupling that controls subcritical crack propagation. We are investigating fracture of isotropic silica glass in different environments (air, distilled water, and Na+-rich solutions) and will extend our research to include clay minerals in shales. Molecular simulations are performed with ReaxFF, a reactive force field that allows for explicit modeling of bond breaking and formation processes during crack propagation. A coarse-graining method produces calculated fracture toughness values from the atomistic data. We are performing double cleavage drilled compression (DCDC) experiments in aqueous environmental chambers and monitoring crack propagation with either a confocal or atomic force microscope. Our results show that silica fracture toughness decreases as the environment changes from air to distilled water to Na+-rich solutions. These results suggest that our newly developed computational and experimental techniques can be used to investigate the impact of fluid composition on crack growth in geo-materials and that we will be able to use these methods to understand coupled chemo-mechanical processes and predict crack propagation in shale minerals. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  11. 40 CFR 35.2113 - Environmental review.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Environmental review. 35.2113 Section 35.2113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2113 Environmental review. (a...

  12. 40 CFR 35.2113 - Environmental review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Environmental review. 35.2113 Section 35.2113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2113 Environmental review. (a...

  13. 40 CFR 52.1110 - Small business stationary source technical and environmental compliance assistance program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technical and environmental compliance assistance program. 52.1110 Section 52.1110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Maryland § 52.1110 Small business stationary source technical and environmental...

  14. Making the Merida Initiative Work

    DTIC Science & Technology

    2012-03-14

    crack down on Mexican drug cartels through enhanced border security. The plan calls for additional personnel, increased intelligence capability and...Pentagon official.35 William Wechsler , Deputy Assistant Secretary of Defense for Counter-narcotics and Global Threats, testified to the Senate Armed...indirect support to units of the Mexican armed forces with counter-narco terrorism missions‖.36 Wechsler also stated, this is an emerging issue for DoD

  15. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    NASA Astrophysics Data System (ADS)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  16. MOVEMENT AND DEPOSITION OF PESTICIDES WITHIN RESIDENCES AFTER INTERIOR AND EXTERIOR APPLICATIONS

    EPA Science Inventory

    In a study begun in 1999, the Environmental Protection Agency (EPA) investigated the temporal and spatial distributions of pesticides applied by homeowners and commercial applicators for indoor crack and crevice and exterior perimeter treatments. In each participating househol...

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT-A AND A ENVIRONMENTAL SEALS, INC., SEAL ASSIST SYSTEM (SAS) PHASE II REPORT

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of Seal Assist System (SAS) for natural gas reciprocating compressor rod packing manufactured by A&A Environmental Seals, Inc. The SAS uses a secondary containment gland to collect natural g...

  18. Solar Cell Modules with Parallel Oriented Interconnections

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.

  19. Creating an Environmental Justice Framework for Policy Change in Childhood Asthma: A Grassroots to Treetops Approach

    PubMed Central

    Sargent, Katherine; Arons, Abigail; Standish, Marion; Brindis, Claire D.

    2011-01-01

    Objectives. The Community Action to Fight Asthma Initiative, a network of coalitions and technical assistance providers in California, employed an environmental justice approach to reduce risk factors for asthma in school-aged children. Policy advocacy focused on housing, schools, and outdoor air quality. Technical assistance partners from environmental science, policy advocacy, asthma prevention, and media assisted in advocacy. An evaluation team assessed progress and outcomes. Methods. A theory of change and corresponding logic model were used to document coalition development and successes. Site visits, surveys, policymaker interviews, and participation in meetings documented the processes and outcomes. Quantitative and qualitative data were analyzed to assess strategies, successes, and challenges. Results. Coalitions, working with community residents and technical assistance experts, successfully advocated for policies to reduce children's exposures to environmental triggers, particularly in low-income communities and communities of color. Policies were implemented at various levels. Conclusions. Environmental justice approaches to policy advocacy could be an effective strategy to address inequities across communities. Strong technical assistance, close community involvement, and multilevel strategies were all essential to effective policies to reduce environmental inequities. PMID:21836108

  20. Environmental stress cracking in gamma-irradiated polycarbonate - A diffusion approach

    NASA Astrophysics Data System (ADS)

    Silva, Pietro Paolo J. C. de O.; Araújo, Patricia L. B.; da Silveira, Leopoldo B. B.; Araújo, Elmo S.

    2017-01-01

    Polycarbonate (PC) is an engineering polymer which presents interesting properties. This material has been also used in medical devices, which is frequently exposed to gamma radiosterilization and to chemical agents. This may produce significant changes in polymer structure, leading to failure in service. The present work brings about a new approach on environmental stress cracking (ESC) processes elucidation in 100 kGy gamma-irradiated PC, by evaluating the diffusion process of methanol or 2-propanol in test specimens and determining the diffusion parameters on solvent-irradiated polymer systems. A comparison of diffusion parameters for both solvents indicated that methanol has a considerable ESC action on PC, with diffusion parameter of 7.5×10-14±1% m2 s-1 for non-irradiated PC and 7.8×10-14±2.8% m2 s-1 for PC irradiated at 100 kGy. In contrast, 2-propanol did not act as an ESC agent, as it did promote neither swelling nor cracks in the test specimens. These results were confirmed by visual analysis and optical microscopy. Unexpectedly, structural damages evidenced in tensile strength tests suggested that 2-propanol is as aggressive as methanol chemical for PC. Moreover, although some manufacturers indicate the use of 2-propanol as a cleaning product for PC artifacts, such use should be avoided in parts under mechanical stress.

  1. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  2. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete.

    PubMed

    Zhang, Jiaguang; Zhou, Aijuan; Liu, Yuanzhen; Zhao, Bowei; Luan, Yunbo; Wang, Sufang; Yue, Xiuping; Li, Zhu

    2017-11-06

    Current studies have employed various pure-cultures for improving concrete durability based on microbially induced carbonate precipitation (MICP). However, there have been very few reports concerned with microbial consortia, which could perform more complex tasks and be more robust in their resistance to environmental fluctuations. In this study, we constructed three microbial consortia that are capable of MICP under aerobic (AE), anaerobic (AN) and facultative anaerobic (FA) conditions. The results showed that AE consortia showed more positive effects on inorganic carbon conversion than AN and FA consortia. Pyrosequencing analysis showed that clear distinctions appeared in the community structure between different microbial consortia systems. Further investigation on microbial community networks revealed that the species in the three microbial consortia built thorough energetic and metabolic interaction networks regarding MICP, nitrate-reduction, bacterial endospores and fermentation communities. Crack-healing experiments showed that the selected cracks of the three consortia-based concrete specimens were almost completely healed in 28 days, which was consistent with the studies using pure cultures. Although the economic advantage might not be clear yet, this study highlights the potential implementation of microbial consortia on crack healing in concrete.

  3. Health monitoring of reinforced concrete structures based on PZT admittance signal

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Zhu, Hongping; Shen, Danyan; Ge, Dongdong

    2009-07-01

    Reinforced concrete (RC) structure is one of most familiar engineering structure styles in the civil engineering community, which often suffer crack damage during their service life because of some factors such as overloading, excessive use, and bad environmental conditions. Thus early detection of crack damage is of special concern for RC structures. Piezoelectric materials have direct and converse piezoelectric effects and can serve as actuators or sensors. A health monitoring method based on PZT admittance signals is addressed in this paper, which use the electromechanical coupling property of piezoelectric materials. An experimental study on health monitoring of a RC beam is implemented based on the PZT admittance signals. In this experiment, the electrical admittances of distributed PZT sheets are measured when the host beams are suffering from variable loads. From the obtained PZT admittance curves one can find that the presence of incipient crack can be captured and the cracking load of the RC beam can also generally determined. By the experimental study it is concluded that the health monitoring technique is quite effective and sensitive for RC structures, which indicates its favorable application foreground in civil engineering field.

  4. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  5. 32 CFR 202.10 - RAB adjournment and dissolution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... supporting documentation via the chain-of-command to the Military Component's Environmental Deputy Assistant Secretary (or equivalent) for approval or disapproval. The Military Component's Environmental Deputy... opportunities that are available, once the Military Component's Environmental Deputy Assistant Secretary (or...

  6. 40 CFR 35.572 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Air Pollution Control (section 105) § 35.572 Definitions... of a continuing environmental program. All expenditures are considered recurrent unless justified by...

  7. 40 CFR 35.572 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Air Pollution Control (section 105) § 35.572 Definitions... of a continuing environmental program. All expenditures are considered recurrent unless justified by...

  8. EPA Partners with Maine DEP to Provide Technical Assistance Support, Improve Environmental and Public Health in Maine

    EPA Pesticide Factsheets

    The US Environmental Protection Agency (EPA) Region 1 is collaborating with the Maine Department of Environmental Protection (ME DEP) to provide free technical assistance for municipalities and businesses in Maine.

  9. Double torsion fracture mechanics testing of shales under chemically reactive conditions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.

    2015-12-01

    Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to faster stress corrosion rate in water than in ambient air. The experimental results are applicable for the prediction of fracture initiation based on KIC, modeling fracture pattern based on SCI, and the estimation of dynamic fracture propagation such as crack growth velocity and crack re-initiation.

  10. Economical and crack-free high-performance concrete for pavement and transportation infrastructure construction.

    DOT National Transportation Integrated Search

    2017-05-01

    The main objective of this research is to develop and validate the behavior of a new class of environmentally friendly and costeffective : high-performance concrete (HPC) referred to herein as Eco-HPC. The proposed project aimed at developing two cla...

  11. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    1999-01-01

    Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  12. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  13. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    1990-01-01

    Advanced ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  14. Chock Full of Data: How School Districts Are Building Leader Tracking Systems to Support Principal Pipelines. Stories from the Field

    ERIC Educational Resources Information Center

    Gill, Jennifer

    2016-01-01

    At one time, finding an assistant principal for a public school in Denver entailed a search through "a gajillion résumés," in the words of one local school district administrator. Even then, some ideal candidates likely fell through the cracks. Those days are over, owing to the development by Denver Public Schools of a "leader…

  15. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    Reliability : Weld Metal Hydrogen Trapping submitted to : United States Army Research Office Materials Science Division P.O. Box 12211 Research Triangle...Conf. Proc. of Welding and Related Technologies for the XXIth Century, November 1998, Kiev, Ukraine : "Hydrogen Assisted Cracking in...appendices (see appendix IV). Next TTCP workshop will be held from 6th to 8th October 1998, at CANMET , Ottawa, Ontario, Canada. 20 III. Figures 18

  16. Fluid Structure Interaction Effects on Composites Under Low Velocity Impact

    DTIC Science & Technology

    2012-06-01

    Nanotubes ( MWCNTs ) and the second had no reinforcements at the interface layer in front of the pre-cracks. Output from both tests was recorded using...these samples were tested. The first was reinforced with Multi-Walled Carbon Nanotubes ( MWCNTs ) and the second had no reinforcements at the interface...Ethyl Ketone Peroxide MWCNT Multi-Walled Carbon Nanotube VARTM Vacuum-Assisted Resin Transfer Molding xiv THIS PAGE INTENTIONALLY LEFT BLANK

  17. 40 CFR 35.502 - Definitions of terms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes General-All Grants § 35.502.... A single grant made to a recipient consolidating funds from more than one environmental grant...

  18. Determining host suitability of pecan for stored-product insects.

    PubMed

    Shufran, A A; Mulder, P G; Payton, M E; Shufran, K A

    2013-04-01

    A no-choice test was performed to determine survival and reproductive capacity of stored-product insect pests on pecan, Carya illinoensis (Wangenheim) Koch. Insects used were Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae); sawtoothed grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera: Cucujidae); red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae); lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae); and rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Fifty adults of each beetle species or 10 reproductive pairs of P. interpunctella adults were placed in 0.5-liter containers with either whole-shell pecans, cracked-shell pecans, randomly selected in-shell pecans, pecan nutmeats, cracked wheat, or glass beads and held at 28 degrees C, 60-70% relative humidity, and 16:8 (L:D) photoperiod for 2, 4, 6, and 8 wk. Four replications of each insect-diet-interval combination were performed. Larvae of P. interpunctella, O. surinamensis, T. castaneum, C. ferrugineus, and adult P. interpunctella and O. surinamensis developed on cracked and nutmeat pecan diets. R. dominica did not complete reproduction on pecans. Knowledge that these pests can reproduce on stored pecan will assist pecan growers, accumulators, and storage facilities in preventing insect outbreaks on their product.

  19. 40 CFR 35.1620-3 - Environmental evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Environmental evaluation. 35.1620-3 Section 35.1620-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned...

  20. 40 CFR 35.1620-3 - Environmental evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Environmental evaluation. 35.1620-3 Section 35.1620-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements for Protecting and Restoring Publicly Owned...

  1. 32 CFR 203.12 - Technical assistance for public participation provider qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in a relevant discipline (e.g., biochemistry, toxicology, environmental sciences, engineering). (3...) IN DEFENSE ENVIRONMENTAL RESTORATION ACTIVITIES § 203.12 Technical assistance for public... such criteria could include prior work in the area, knowledge of local environmental conditions or laws...

  2. 32 CFR 203.12 - Technical assistance for public participation provider qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in a relevant discipline (e.g., biochemistry, toxicology, environmental sciences, engineering). (3...) IN DEFENSE ENVIRONMENTAL RESTORATION ACTIVITIES § 203.12 Technical assistance for public... such criteria could include prior work in the area, knowledge of local environmental conditions or laws...

  3. 32 CFR 203.12 - Technical assistance for public participation provider qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in a relevant discipline (e.g., biochemistry, toxicology, environmental sciences, engineering). (3...) IN DEFENSE ENVIRONMENTAL RESTORATION ACTIVITIES § 203.12 Technical assistance for public... such criteria could include prior work in the area, knowledge of local environmental conditions or laws...

  4. 32 CFR 203.12 - Technical assistance for public participation provider qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in a relevant discipline (e.g., biochemistry, toxicology, environmental sciences, engineering). (3...) IN DEFENSE ENVIRONMENTAL RESTORATION ACTIVITIES § 203.12 Technical assistance for public... such criteria could include prior work in the area, knowledge of local environmental conditions or laws...

  5. 40 CFR 419.25 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources (PSES). 419.25 Section 419.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.25...

  6. 40 CFR 419.27 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for new sources (PSNS). 419.27 Section 419.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.27...

  7. 40 CFR 419.27 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources (PSNS). 419.27 Section 419.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.27...

  8. 40 CFR 419.25 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for existing sources (PSES). 419.25 Section 419.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.25...

  9. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite

    NASA Astrophysics Data System (ADS)

    Teomete, Egemen

    2016-07-01

    Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.

  10. Low cycle fatigue of PM/HIP astroloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, S.J.; Stoloff, N.S.; Duquette, D.J.

    Low cycle fatigue and creep-fatigue-environment interactions of PM/HIP Astrology were studied at 650 C and 725 C. Total strain range was varied from 1.5% to 2.7% at a frequency of 0.3Hz. Creep-fatigue tests were performed with 2 min. or 5 min. tensile hold times. All tests were run in high purity argon in an attempt to minimize environmental effects. Employing a tensile hold was more damaging than raising temperature by 75 C. Slopes of Coffin-Manson plots were nearly independent of temperature and hold time. Raising temperature from 650 C to 725 C did not change the transgranular (TG) crack propagationmore » mode, whereas employing hold times caused TG+IG propagation. All samples displayed multiple fracture origins associated with inclusions located at the specimen surface; pre-existing pores did not affect fatigue crack initiation. Examination of secondary cracks showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold times.« less

  11. Environmental Degradation of Materials: Surface Chemistry Related to Stress Corrosion Cracking

    NASA Technical Reports Server (NTRS)

    Schwarz, J. A.

    1985-01-01

    Parallel experiments have been performed in order to develop a comprehensive model for stress cracking (SCC) in structural materials. The central objective is to determine the relationship between the activity and selectivity of the microstructure of structural materials to their dissolution kinetics and experimentally measured SCC kinetics. Zinc was chosen as a prototype metal system. The SCC behavior of two oriented single-crystal disks of zinc in a chromic oxide/sodium sulfate solution (Palmerton solution) were determined. It was found that: (1) the dissolution rate is strongly (hkil)-dependent and proportional to the exposure time in the aggressive environment; and (2) a specific slip system is selectively active to dissolution under applied stress and this slip line controls crack initiation and propagation. As a precursor to potential microgrvity experiments, electrophoretic mobility measurements of zinc particles were obtained in solutions of sodium sulfate (0.0033 M) with concentrations of dissolved oxygen from 2 to 8 ppm. The equilibrium distribution of exposed oriented planes as well as their correlation will determine the particle mobility.

  12. Susceptibility to Cracking of Different Lots of CDR35 Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2017-01-01

    On-orbit flight anomalies that occurred after several months of operation were attributed to excessive leakage currents in CDR35 style 0.47 microF 50 V capacitors operating at 10 V. In this work, a lot of capacitors similar to the lot that caused the anomaly have been evaluated in parallel with another lot of similar parts to assess their susceptibility to cracking under manual soldering conditions and get insight into a possible mechanism of failure. Leakage currents in capacitors were monitored at different voltages and environmental conditions before and after terminal solder dip testing that was used to simulate thermal shock during manual soldering. Results of cross-sectioning, acoustic microscopy, and measurements of electrical and mechanical characteristics of the parts have been analyzed, and possible mechanisms of failures considered. It is shown that the susceptibility to cracking and failures caused by manual soldering is lot-related. Recommendations for testing that would help to select lots that are more robust against manual soldering stresses and mitigate the risk of failures suggested.

  13. Aqueous chloride stress corrosion cracking of titanium: A comparison with environmental hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1973-01-01

    The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sqm) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment. Further, it is shown that if hydrogen is the causal species, the effective hydrogen fugacity at the surface of titanium exposed to an aqueous chloride environment is equivalent to a molecular hydrogen pressure of approximately 10 N/sqm.

  14. Effect of support on catalytic cracking of bio-oil over Ni/silica-alumina

    NASA Astrophysics Data System (ADS)

    Sunarno, Herman, Syamsu; Rochmadi, Mulyono, Panut; Budiman, Arief

    2017-03-01

    Depletion of petroleum and environmental problem have led to look for an alternative fuel sources In many ways, biomass is a potential renewable source. Among the many forms of biomass, oil palm empty fruit bunch (EFB) is a very attractive feedstock due to its abudance, low price and non-competitiveness with the food chain. EFB can be converted bio-oil by pyrolysis process. but this product can not be used directly as a transportation fuel, so it needs upgrading bio-oil through a catalytic cracking process. The catalyst plays an important role in the catalytic cracking process. The objective of this research is to study the effect of Ni concentrations (1,3,5 and 7 wt.%) on the characteristics of the catalyst Ni / Silica-Alumina and the performance test for the catalytic cracking of bio-oil. Preparation of the catalyst Ni / Silica-Alumina was done by impregnation at 80°C for 3 hours, then done to calcination and reduction at 500°C for 2 hours. The performance test was conducted on catalytic cracking temperature of 500°C. Results show that increasing concentration of Ni from 1 to 7 %, the pore diameter of the catalyst decreased from 35.71 to 32.70 A and surface area decreased from 209.78 to 188.53 m2/gram. With the increase of Ni concentration, the yield of oil reduced from 22.5 to 11.25 %, while the heating value of oil increased from 34.4 to 36.41MJ/kg.

  15. 32 CFR 202.13 - Technical assistance for public participation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRC may request technical assistance for interpreting scientific and engineering issues with regard to the nature of environmental hazards at the installation and environmental restoration activities...

  16. 76 FR 21405 - Notice of Lodging of Consent Decree Under the Comprehensive Environmental Response, Compensation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... E. Maher, Jr., Assistant Section Chief, Environmental Enforcement Section, Environment and Natural... should be addressed to the Assistant Attorney General, Environment and Natural Resources Division, and... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Comprehensive Environmental...

  17. 44 CFR 10.10 - Preparation of environmental impact statements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Preparation of environmental impact statements. 10.10 Section 10.10 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT... Procedures § 10.10 Preparation of environmental impact statements. (a) Scoping. After determination that an...

  18. 44 CFR 10.10 - Preparation of environmental impact statements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Preparation of environmental impact statements. 10.10 Section 10.10 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT... Procedures § 10.10 Preparation of environmental impact statements. (a) Scoping. After determination that an...

  19. 44 CFR 10.10 - Preparation of environmental impact statements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Preparation of environmental impact statements. 10.10 Section 10.10 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT... Procedures § 10.10 Preparation of environmental impact statements. (a) Scoping. After determination that an...

  20. The effect of microstructure on the tensile and fatigue behavior of Ti-22Al-23Nb in air and vacuum

    NASA Astrophysics Data System (ADS)

    Luetjering, Stephanie

    Titanium aluminide alloys containing the ordered orthorhombic (O) phase, based on Ti2AlNb, exhibit high specific strengths at elevated temperature along with good room temperature tensile ductility and fracture toughness values. They are thus considered as potential materials for aerospace applications both in their monolithic form and as matrices in metal matrix composites. Microstructure/property relationships have been studied to a great extend with regard to tensile and creep properties. However, only little is known in the key areas of fatigue crack initiation, fatigue crack propagation and fatigue life. The main objective of this work therefore is to get a comprehensive understanding of the effects of microstructural parameters (such as volume fraction of the individual phases, their size and distribution) on the cyclic properties of O-based titanium aluminides. Furthermore, the performance of these alloys in aggressive environments, a critical issue for this alloy class, is being addressed. Tensile, isothermal fatigue, and fatigue crack growth (FCG) tests were conducted at 20°C and 540°C both in lab air and vacuum (pressure ≤ 1 x 10-6 torr) on three microstructural conditions of a representative O-based titanium alloy, Ti-22Al-23Nb. Results indicate a strong effect of microstructure on tensile and FCG properties, whereas only a slight influence of microstructure on the fatigue life is evident. The O phase contributes mainly to the material's yield stress. The tensile elongation is predominantly influenced by the beta phase volume fraction. The observed effect of microstructure on the FCG behavior is attributed to crack closure, crack front geometry and crystallographic texture. Environmental effects on the fatigue life are pronounced at elevated temperature and high applied stress amplitudes only. These conditions lead to premature crack initiation at the specimen's surface for testing in air, whereas testing in vacuum results in subsurface crack nucleation and an extended fatigue life of about two orders of magnitude. The FCG behavior is influenced by the environment at both 20°C and 540°C, proposing fatigue crack growth mechanisms enhanced by hydrogen embrittlement.

  1. Enhancing Environmental Educators' Evaluation Competencies: Insights from an Examination of the Effectiveness of the "My Environmental Education Evaluation Resource Assistant" (MEERA) Website

    ERIC Educational Resources Information Center

    Zint, Michaela T.; Dowd, Patrick F.; Covitt, Beth A.

    2011-01-01

    To conduct evaluations that can benefit individual programs as well as the field as a whole, environmental educators must have the necessary evaluation competencies. This exploratory study was conducted to determine to what extent a self-directed learning resource entitled "My Environmental Education Evaluation Resource Assistant" (MEERA) can…

  2. 78 FR 9793 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ...-numbered main rotor hub inboard strap fittings (fittings). This AD requires magnetic particle inspecting..., data, or views. We also invite comments relating to the economic, environmental, energy, or federalism..., perform a magnetic particle inspection (MPI) of each fitting for a crack. If an MPI was already performed...

  3. 40 CFR 419.26 - Standards of performance for new sources (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Standards of performance for new sources (NSPS). 419.26 Section 419.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.26...

  4. 40 CFR 419.26 - Standards of performance for new sources (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Standards of performance for new sources (NSPS). 419.26 Section 419.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Cracking Subcategory § 419.26...

  5. Environmental and functional benefits and trade-offs of hot in-place recycling treatment techniques : final project report.

    DOT National Transportation Integrated Search

    2016-12-01

    Surface recycling is suitable for pavements with minor cracks limited to 25-50 mm in depth. Hot-in-place recycling (HIR) process includes drying and heating the upper layers, scarifying the soft asphalt, mixing the scarified material with a rejuvenat...

  6. On Campus Activity Guide. Environmental Education.

    ERIC Educational Resources Information Center

    Pinellas County School Board, Clearwater, FL.

    Descriptions of about 100 secondary-level activities that can be done on the school grounds are presented. Among the lessons included are a study of life in sidewalk cracks, methods of estimating animal populations, soil testing, constructing and using triangulation instruments to map the school area, and creative writing exercises. Although most…

  7. Changes in Structural Health Monitoring System Capability Due to Aircraft Environmental Factors

    DTIC Science & Technology

    2009-09-01

    and R. Ikegami . “Hot-Spot Fatigue Crack Monitoring of Inaccessible Structural Regions in Air- craft Subsystems Using Structural Health Monitoring...national Society for Optical Engineering, volume 4702 of Smart Structures and Materials 2002, 29–40. Newport Beach, CA: SPIE, 2002. 54. Ikegami , R

  8. 40 CFR Table 11 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...

  9. 40 CFR Table 11 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...

  10. 40 CFR Table 11 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...

  11. Anti-Corrosion Coating

    NASA Technical Reports Server (NTRS)

    1986-01-01

    SuperSpan RM 8000 is an anti-corrosion coating which effectively counteracts acid degradation, abrasive wear, and cracking in power industry facilities. It was developed by RM Industrial Products Company, Inc. with NERAC assistance. It had previously been necessary to shut down plants to repair or replace corroded duct-work in coal burning utilities. NASA-developed technology was especially useful in areas relating to thermoconductivity of carbon steel and the bonding characteristics of polymers. The product has sold well.

  12. Dissolution-Assisted Pattern Formation During Olivine Carbonation

    NASA Astrophysics Data System (ADS)

    Lisabeth, Harrison; Zhu, Wenlu; Xing, Tiange; De Andrade, Vincent

    2017-10-01

    Olivine and pyroxene-bearing rocks in the oceanic crust react with hydrothermal fluids producing changes in the physical characteristics and behaviors of the altered rocks. Notably, these reactions tend to increase solid volume, reducing pore volume, permeability, and available reactive surface area, yet entirely hydrated and/or carbonated rocks are commonly observed in the field. We investigate the evolution of porosity and permeability of fractured dunites reacted with CO2-rich solutions in laboratory experiments. The alteration of crack surfaces changes the mechanical and transport properties of the bulk samples. Analysis of three-dimensional microstructural data shows that although precipitation of secondary minerals causes the total porosity of the sample to decrease, an interconnected network of porosity is maintained through channelized dissolution and coupled carbonate precipitation. The observed microstructure appears to be the result of chemo-mechanical coupling, which may provide a mechanism of porosity maintenance without the need to invoke reaction-driven cracking.

  13. Diffusion-coupled cohesive interface simulations of stress corrosion intergranular cracking in polycrystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Chao; Gao, Yanfei; Wang, Yanli

    To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points.more » Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.« less

  14. Processing of crack-free high density polycrystalline LiTaO3 ceramics

    DOE PAGES

    Chen, Ching-Fong; Brennecka, Geoff L.; King, Graham; ...

    2016-11-04

    Our work achieved high density (99.9%) polycrystalline LiTaO 3. The keys to the high density without cracking were the use of LiF-assisted densification to maintain fine grain size as well as the presence of secondary lithium aluminate phases as grain growth inhibitors. The average grain size of the hot pressed polycrystalline LiTaO 3 is less than 5 μm, limiting residual stresses caused by the anisotropic thermal expansion. Dilatometry results clearly indicate liquid phase sintering via the added LiF sintering aid. Efficient liquid phase sintering allows densification during low temperature hot pressing. Electron microscopy confirmed the high-density microstructure. Furthermore, Rietveld analysismore » of neutron diffraction data revealed the presence of LiAlO 2 and LiAl 5O 8 minority phases and negligible substitutional defect incorporation in LiTaO 3.« less

  15. Dissolution-Assisted Pattern Formation During Olivine Carbonation

    DOE PAGES

    Lisabeth, Harrison; Zhu, Wenlu; Xing, Tiange; ...

    2017-08-31

    Olivine and pyroxene bearing rocks in the oceanic crust react with hydrothermal fluids producing changes in the physical characteristics and behaviors of the altered rocks. Notably, these reactions tend to increase solid volume, reducing pore volume, permeability and available reactive surface area; yet, entirely hydrated and/or carbonated rocks are commonly observed in the field. We investigate the evolution of porosity and permeability of fractured dunites reacted with CO 2-rich solutions in laboratory experiments. The alteration of crack surfaces changes the mechanical and transport properties of the bulk samples. Analysis of three-dimensional microstructural data shows that although precipitation of secondary mineralsmore » causes the total porosity of the sample to decrease, an interconnected network of porosity is maintained through channelized dissolution and coupled carbonate precipitation. Lastly, the observed microstructure appears to be the result of chemo-mechanical coupling, which may provide a mechanism of porosity maintenance without the need to invoke reaction-driven cracking.« less

  16. 28 CFR Appendix D to Part 61 - Office of Justice Assistance, Research, and Statistics Procedures Relating to the Implementation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Statistics Procedures Relating to the Implementation of the National Environmental Policy Act D... Assistance, Research, and Statistics Procedures Relating to the Implementation of the National Environmental... Statistics (OJARS) assists State and local units of government in strengthening and improving law enforcement...

  17. 28 CFR Appendix D to Part 61 - Office of Justice Assistance, Research, and Statistics Procedures Relating to the Implementation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Statistics Procedures Relating to the Implementation of the National Environmental Policy Act D... Assistance, Research, and Statistics Procedures Relating to the Implementation of the National Environmental... Statistics (OJARS) assists State and local units of government in strengthening and improving law enforcement...

  18. Failures in Hybrid Microcircuits During Environmental Testing. History Cases

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    This purpose of this viewgraph presentation is to discuss failures in hermetic hybrids observed at the GSFC PA Lab during environmental stress testing. The cases discussed are: Case I. Substrate metallization failures during Thermal cycling (TC). Case II. Flex lid-induced failure. Case Ill. Hermeticity failures during TC. Case IV. Die metallization cracking during TC. and how many test cycles and parts is necessary? Case V. Wire Bond failures after life test. Case VI. Failures caused by Au/In IMC growth.

  19. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  20. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  1. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  2. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  3. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  4. 40 CFR 35.925-8 - Environmental review.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Environmental review. 35.925-8 Section 35.925-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-8...

  5. 40 CFR 35.925-8 - Environmental review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Environmental review. 35.925-8 Section 35.925-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-8...

  6. 40 CFR 35.925-8 - Environmental review.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Environmental review. 35.925-8 Section 35.925-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-8...

  7. 40 CFR Appendix A to Part 45 - Environmental Protection Agency Training Programs

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Radiation: Air Pollution Control Manpower Training Grants X Air Pollution Control—Technical Training X... Training Programs A Appendix A to Part 45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRAINING ASSISTANCE Pt. 45, App. A Appendix A to Part 45—Environmental...

  8. 78 FR 45970 - Notice of Lodging of Proposed Consent Decree Under the Comprehensive Environmental Response...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... addressed to the Assistant Attorney General, Environment and Natural Resources Division, and should refer to... States Treasury. Henry Friedman, Assistant Section Chief, Environmental Enforcement Section, Environment... Environmental Response, Compensation, and Liability Act and the Clean Water Act On July 19, 2013, the Department...

  9. 40 CFR 52.744 - Small business stationary source technical and environmental compliance assistance program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Small business stationary source technical and environmental compliance assistance program. 52.744 Section 52.744 Protection of Environment... PLANS Illinois> § 52.744 Small business stationary source technical and environmental compliance...

  10. 40 CFR 52.798 - Small business stationary source technical and environmental compliance assistance program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Small business stationary source technical and environmental compliance assistance program. 52.798 Section 52.798 Protection of Environment... PLANS Indiana § 52.798 Small business stationary source technical and environmental compliance...

  11. Theoretical prediction of energy release rate for interface crack initiation by thermal stress in environmental barrier coatings for ceramics

    NASA Astrophysics Data System (ADS)

    Kawai, E.; Umeno, Y.

    2017-05-01

    As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.

  12. Psychosocial assistance after environmental accidents: a policy perspective.

    PubMed Central

    Becker, S M

    1997-01-01

    There is a substantial body of literature on psychosocial impacts of chemical and nuclear accidents. Less attention, however, has been focused on the program and policy issues that are connected with efforts to provide psychosocial assistance to the victims of such accidents. Because psychosocial assistance efforts are certain to be an essential part of the response to future environmental emergencies, it is vital that relevant program and policy issues by more fully considered. This article discusses the highly complex nature of contamination situations and highlights some of the key policy issues that are associated with the provision of psychosocial services after environmental accidents. One issue concerns the potential for assistance efforts to become objects of conflict. In the context of the intense controversy typically associated with chemical or nuclear accidents, and with debates over the causation of illness usually at the center of environmental accidents, psychosocial assistance services may themselves become contested terrain. Other significant program and policy issues include determining how to interface with citizen self-help and other voluntary groups, addressing the problem of stigma, and deciding how to facilitate stakeholder participation in the shaping of service provision. This article offers a series of policy proposals that may help smooth the way for psychosocial assistance programs in future environmental emergencies. PMID:9467082

  13. Successful performance of a refinery with Eureka unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Y.; Takeuchi, T.; Miyabuchi, Y.

    1981-03-01

    Since starting in February, 1976, 3,400,000 Kl of vacuum residue (13,000,000 Kl of crude oil equivalent) has been successfully processed in the Eureka unit of Fuji Oil refinery complex and more than 2,500,000 Kl of cracked oil and 1,000,000 tons of pitch have been produced. The operation rate has been 94 to 98% except for the annual shutdown period for inspection. The cracked oil is easily desulfurized to make naphta, diesel oil and a large amount of gas oil (low sulfur fuel oil, 0.1 wt % sulfur). As for the desulfurization of cracked oil, the increase in H/sub 2/ consumptionmore » and the decline of catalyst life are observed. However, the operation conditions do not differ much from those for straight run fractions. Processing both hydrotreated and untreated cracked heavy oil (CHO) with FCC unit has proved to be possible. In case of untreated CHO, however, it causes a slight increase in make up catalyst and coke yield. It is demonstrated that heavy crude oils, such as Bachaquero, can effectively be processed in this system. No additional pollution problems have occurred by introducing an Eureka unit to the refinery, although it is located in the district where the most stringent environmental regulations are urged.« less

  14. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials.

    PubMed

    Maharaj, Rean; Ramjattan-Harry, Vitra; Mohamed, Nazim

    2015-01-01

    The influence of waste cooking oil (WCO) on the performance characteristics of asphaltic materials indigenous to Trinidad, namely, Trinidad Lake Asphalt (TLA), Trinidad Petroleum Bitumen (TPB), and TLA : TPB (50 : 50) blend, was investigated to deduce the applicability of the WCO as a performance enhancer for the base asphalt. The rheological properties of complex modulus (G (∗) ) and phase angle (δ) were measured for modified base asphalt blends containing up to 10% WCO. The results of rheology studies demonstrated that the incremental addition of WCO to the three parent binders resulted in incremental decreases in the rutting resistance (decrease in G (∗) /sinδ values) and increases in the fatigue cracking resistance (decrease in G (∗) sinδ value). The fatigue cracking resistance and rutting resistance for the TLA : TPB (50 : 50) blends were between those of the blends containing pure TLA and TPB. As operating temperature increased, an increase in the resistance to fatigue cracking and a decrease in the rutting resistance were observed for all of the WCO modified asphaltic blends. This study demonstrated the capability to create customized asphalt-WCO blends to suit special applications and highlights the potential for WCO to be used as an environmentally attractive option for improving the use of Trinidad asphaltic materials.

  15. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials

    PubMed Central

    Maharaj, Rean; Ramjattan-Harry, Vitra; Mohamed, Nazim

    2015-01-01

    The influence of waste cooking oil (WCO) on the performance characteristics of asphaltic materials indigenous to Trinidad, namely, Trinidad Lake Asphalt (TLA), Trinidad Petroleum Bitumen (TPB), and TLA : TPB (50 : 50) blend, was investigated to deduce the applicability of the WCO as a performance enhancer for the base asphalt. The rheological properties of complex modulus (G ∗) and phase angle (δ) were measured for modified base asphalt blends containing up to 10% WCO. The results of rheology studies demonstrated that the incremental addition of WCO to the three parent binders resulted in incremental decreases in the rutting resistance (decrease in G ∗/sinδ values) and increases in the fatigue cracking resistance (decrease in G ∗sinδ value). The fatigue cracking resistance and rutting resistance for the TLA : TPB (50 : 50) blends were between those of the blends containing pure TLA and TPB. As operating temperature increased, an increase in the resistance to fatigue cracking and a decrease in the rutting resistance were observed for all of the WCO modified asphaltic blends. This study demonstrated the capability to create customized asphalt-WCO blends to suit special applications and highlights the potential for WCO to be used as an environmentally attractive option for improving the use of Trinidad asphaltic materials. PMID:26336652

  16. Linking Assistance Agreements to Environmental Results

    EPA Pesticide Factsheets

    The mission of EPA is to protect human health and the environment. It is EPA policy that work funded through assistance agreements further that mission by achieving environmental benefits for the taxpayer.

  17. 40 CFR 35.148 - Award limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....148 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.148.... Water Pollution Control (Section 106) ...

  18. 40 CFR 35.148 - Award limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....148 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.148.... Water Pollution Control (Section 106) ...

  19. 40 CFR 35.148 - Award limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....148 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.148.... Water Pollution Control (Section 106) ...

  20. Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, Raul B.; Lou, Xiaoyuan

    Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less

  1. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    NASA Astrophysics Data System (ADS)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin catalytic conversions respectively, are reported. Using these data, heterogeneous kinetic models accounting for intracrystallite molecular transport, adsorption and thermal and catalytic cracking of both cycloparaffin reactants are established. Results show that undesirable hydrogen transfer reactions are more pronounced and selectively favoured against other reactions at lower reaction temperatures, while the desirable ring-opening and cracking reactions predominate at the higher reaction temperatures. Moreover, results of the present work show that while crystallite size may have an effect on the overall conversion in some situations, there is a definite effect on the selectivity of products obtained during the cracking of MCH and decalin and the cracking of MCH in a mixture with co-reactants such as 1,3,5-triisopropylbenzene. Keywords. cycloparaffins, naphthenes, fluid catalytic cracking, kinetic modeling, Y-zeolites, diffusion, adsorption, ring-opening, hydrogen transfer, catalyst selectivity.

  2. An Introduction to "My Environmental Education Evaluation Resource Assistant" (MEERA), a Web-Based Resource for Self-Directed Learning about Environmental Education Program Evaluation

    ERIC Educational Resources Information Center

    Zint, Michaela

    2010-01-01

    My Environmental Education Evaluation Resource Assistant or "MEERA" is a web-site designed to support environmental educators' program evaluation activities. MEERA has several characteristics that set it apart from other self-directed learning evaluation resources. Readers are encouraged to explore the site and to reflect on the role that…

  3. Environmental stress cracking performance of polyether and PDMS-based polyurethanes in an in vitro oxidation model.

    PubMed

    Gallagher, Genevieve; Padsalgikar, Ajay; Tkatchouk, Ekaterina; Jenney, Chris; Iacob, Ciprian; Runt, James

    2017-08-01

    Environmental stress cracking (ESC) was replicated in vitro on Optim™ (OPT) insulation, a polydimethylsiloxane-based polyurethane utilized clinically in cardiac leads, using a Zhao-type oxidation model. OPT performance was compared to that of two industry standard polyether urethanes: Pellethane ® 80A (P80A), and Pellethane ® 55D (P55D). Clinically relevant specimen configurations and strain states were utilized: low-voltage cardiac lead segments were held in a U-shape by placing them inside of vials. To study whether aging conditions impacted ESC formation, half of the samples were subjected to a pretreatment in human plasma for 7 days at 37°C; all samples were then aged in oxidative solutions containing 0.9% NaCl, 20% H 2 O 2 , and either 0 or 0.1M CoCl 2 , with or without glass wool for 72 days at 37°C. Visual and SEM inspection revealed significant surface cracking consistent with ESC on all P80A and P55D samples. Sixteen of twenty P80A and 10/20 P55D samples also exhibited breaches. Seven of 20 OPT samples exhibited shallow surface cracking consistent with ESC. ATR-FTIR confirmed surface changes consistent with oxidation for all materials. The number average molecular weight decreased an average of 31% for OPT, 86% for P80A, and 56% for P55D samples. OPT outperformed P80A and P55D in this Zhao-type in vitro ESC model. An aging solution of 0.9% NaCl, 20% H 2 O 2 , and 0.1M CoCl 2 , with glass wool provided the best combination of ESC replication and ease of use. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1544-1558, 2017. © 2016 Wiley Periodicals, Inc.

  4. Ductile flow by water-assisted cataclasis

    NASA Astrophysics Data System (ADS)

    den Brok, Bas

    2003-04-01

    In the presence of water otherwise brittle materials may deform macroscopically ductile by water-assisted cataclastic creep. This is possible as long as (i) solubility is high enough, so that stress-corrosion can occur, and (ii) local stress is low enough, to that fracturing remains subcritical. Water-assisted cataclastic creep (WACC) may play an important role in the middle and lower continental crust where mineral solubilities are high and stresses low. WACC is a poorly understood deformation process. Experiments were performed on very soluble brittle salts (Na-chlorate; K-alum) to study microstructure development by WACC. The experiments were carried out at room temperature and atmospheric pressure in a small see-through vessel. In this way the cataclastic deformation process could be studied "in-situ" under the microscope. Crystals were loaded in the presence of saturated salt solution. It appeared that originally straight mineral surfaces were instable when kept under stress. Grooves (or channels) slowly developed in the surface by local dissolution. These grooves behave like so-called Grinfeld instabilities. They develop because the energy of a grooved surface under stress is lower than the energy of a straight surface under stress. The grooves may deepen and turn into subcritical cracks when local stress further increases. These cracks propagate slowly. They propagate parallel to sigma1 but also at an angle and even perpendicular to sigma1, often following crystallographically controlled directions. The fractures mostly change direction while propagating, locally making turns of more than 180 degrees. Irregular fracture fragments thus develop. The fractures may migrate sideways (as with grain bounday migration) probably by solution-redeposition driven by differences in stress between both sides of the fracture. Thus the shape of the fragments changes. The size of the fracture fragments seems to be controlled by the distance of the grooves, which decreases with increasing stress.

  5. Numerical Simulation of Hydrogen Assisted Cracking in Supermartensitic Stainless Steel Welds

    DTIC Science & Technology

    2005-01-27

    Arc efficiency dependent on welding process (for GTAW it is in the range of 0.45 - 0 .7 5)TrDw2] 0 ,,or Fraction of hydrogen concentration at the...8 Figure 2-4: Region of y-, 6- and a-phase in the iron- chromium ...improve corrosion resistance and mechanical properties of this steel[sPM3 7 ][SPM 47] Since chromium with a content in the range of 11 to 14 wt.-% and

  6. Fatigue Characterization of Fabricated Ship Details for Design.

    DTIC Science & Technology

    1982-08-01

    than the ques- tion of brittle fracture. Such cracking has been found in the forepeak region, bottom amidships, at the bulwark at both ends of the...results of the laboratory studies are presented in the Appendices. 1.3 References 1.1 Vedeler, G. "To What Extent Do Brittle Fracture and Fatigue...Civil Engineering. Appre- ciation is extended to Mr. John R. Williams who prepared the weldments, to Mr. Glen Lafenhagen who assisted in the fatigue

  7. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration.

    PubMed

    Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo

    2015-12-01

    Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Irradiation-assisted stress corrosion cracking of model austenitic stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.

    1999-10-26

    Slow-strain-rate tensile (SSRT) tests were conducted on model austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup 2} and {approx} 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. At {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, a high-purity heat of Type 316L SS that contains a very low concentration of Si exhibited the highest susceptibility to IGSCC. In unirradiated state, Types 304 andmore » 304L SS did not exhibit a systematic effect of Si content on alloy strength. However, at {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, yield and maximum strengths decreased significantly as Si content was increased to >0.9 wt.%. Among alloys that contain low concentrations of C and N, ductility and resistance to TGSCC and IGSCC were significantly greater for alloys with >0.9 wt.% Si than for alloys with <0.47 wt.% Si. Initial data at {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} were also consistent with the beneficial effect of high Si content. This indicates that to delay onset of and reduce susceptibility to irradiation-assisted stress corrosion cracking (IASCC), at least at low fluence levels, it is helpful to ensure a certain minimum concentration of Si. High concentrations of Cr were also beneficial; alloys that contain <15.5 wt.% Cr exhibited greater susceptibility to IASCC than alloys with {approx}18 wt.% Cr, whereas an alloy that contains >21 wt.% Cr exhibited less susceptibility than the lower-Cr alloys under similar conditions.« less

  9. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operate at all times according to the procedures in the plan. (4) The emission limitations and operating... compliance with the emission limitations and work practice standards? You must: (1) Install, operate, and... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...

  10. Refinery catalysts: Coping with performance anxiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelley, S.

    1994-04-01

    Petroleum refiners worldwide are struggling to comply with environmental mandates that tightly dictate the composition of gasoline and diesel fuel. At the same time, many are trying to capitalize on cost advantages offered by heavy, dirty feedstocks. This is stimulating development in catalysts for resid cracking, isomerization, alkylation and hydrotreating. The paper briefly describes development efforts.

  11. 40 CFR Table 43 to Subpart Uuu of... - Requirements for Reports

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 43 Table 43 to Subpart UUU of Part 63—Requirements for Reports As stated in § 63.1575(a), you shall meet each...

  12. 40 CFR Table 43 to Subpart Uuu of... - Requirements for Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 43 Table 43 to Subpart UUU of Part 63—Requirements for Reports As stated in § 63.1575(a), you shall meet each...

  13. Effect of environment on low-cycle fatigue of a nickel-titanium instrument.

    PubMed

    Cheung, Gary S P; Shen, Ya; Darvell, Brian W

    2007-12-01

    This study examined the low-cycle fatigue (LCF) behavior of a nickel-titanium (NiTi) engine-file under various environmental conditions. One brand of NiTi instrument was subjected to rotational-bending fatigue in air, deionized water, sodium hypochlorite, or silicone oil. The curvature of each instrument, diameter of the fracture cross-section, and the number of rotations to failure were determined. The strain-life relationship in the LCF region was examined by using one-way analysis of variance, and the number of crack origins with chi2, for differences between groups. The results showed a linear relationship, on logarithmic scales, between the LCF life and the surface strain amplitude; regression line slopes were significantly different between noncorrosive (air, silicone oil) and corrosive (water, hypochlorite) environments (P < .05), as well as number of crack origins (P < .05). Hypochlorite was more detrimental to fatigue life than water. In conclusion, environmental conditions significantly affect the LCF behavior of NiTi rotary instruments. Fatigue testing of NiTi engine-files should be in a service-like environment.

  14. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water

    NASA Astrophysics Data System (ADS)

    Fournier, L.; Savoie, M.; Delafosse, D.

    2007-06-01

    The low cycle fatigue (LCF) behaviour of precipitation-strengthened A-286 austenitic stainless steel was first investigated at room temperature under 0.2% plastic strain control. LCF led to hardening for the first 20 cycles and then to significant softening. LCF-induced dislocation microstructure was characterized using both bright and dark-field imaging techniques in transmission electron microscopy. Cycling softening was correlated with the formation of precipitate-free localized deformation bands. The effect of these precipitate-free localized deformation bands on A-286 stress corrosion cracking (SCC) behaviour in PWR primary water was then examined by means of constant extension rate tensile (CERT) tests at 320 °C and 360 °C. Comparative CERT tests were performed on companion specimens with similar yield stress but pre-fatigued to a few cycles (4-8) or between 125 and 200 cycles. Specimens pre-fatigued to a few cycles with no precipitate-free localized deformation bands exhibited little susceptibility to intergranular SCC (IGSCC). In contrast, the presence of precipitate-free localized deformation bands formed by pre-fatigue to between 125 and 200 cycles strongly promoted IGSCC. The interest of the approach used in this study is to provide insight into the role of localized deformation in irradiation assisted stress corrosion cracking.

  15. 24 CFR 1000.24 - If an Indian tribe assumes environmental review responsibility, how will HUD assist the Indian...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false If an Indian tribe assumes environmental review responsibility, how will HUD assist the Indian tribe in performing the environmental review... URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES General § 1000.24 If an Indian tribe assumes...

  16. 24 CFR 1000.24 - If an Indian tribe assumes environmental review responsibility, how will HUD assist the Indian...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false If an Indian tribe assumes environmental review responsibility, how will HUD assist the Indian tribe in performing the environmental review... URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES General § 1000.24 If an Indian tribe assumes...

  17. 24 CFR 1000.24 - If an Indian tribe assumes environmental review responsibility, how will HUD assist the Indian...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false If an Indian tribe assumes environmental review responsibility, how will HUD assist the Indian tribe in performing the environmental review... URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES General § 1000.24 If an Indian tribe assumes...

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, PERFORMANCE TEST RESULTS FOR THE A AND A ENVIRONMENTAL SEALS' SEAL ASSIST SYSTEM (SAS), PHASE I--TECHNOLOGY VERIFICATION REPORT

    EPA Science Inventory

    The report presents results of tests determining the efficacy of A&A Environmental Seals, Inc's Seal Assist System (SAS) in preventing natural gas compressor station's compressor rod packing leaks from escaping into the atmosphere. The SAS consists of an Emission Containment Glan...

  19. 40 CFR 35.345 - Eligible applicants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Pollution Prevention State Grants (section 6605) § 35.345 Eligible applicants. Applicants eligible for funding under the Pollution Prevention program...

  20. 40 CFR 35.345 - Eligible applicants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Pollution Prevention State Grants (section 6605) § 35.345 Eligible applicants. Applicants eligible for funding under the Pollution Prevention program...

  1. Fiber Grating Environmental Sensing System

    DOEpatents

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  2. Association Between State Assistance on the Topic of Indoor Air Quality and School District-Level Policies That Promote Indoor Air Quality in Schools.

    PubMed

    Everett Jones, Sherry; Doroski, Brenda; Glick, Sherry

    2015-12-01

    Nationally representative data from the 2012 School Health Policies and Practices Study examined whether state assistance on indoor air quality (IAQ) was associated with district-level policies and practices related to IAQ and integrated pest management (IPM). Districts in states that provided assistance on IAQ were more likely than districts not in such states to (1) have an IAQ management program (p < .001); (2) require schools to conduct periodic inspections of the heating, ventilation, and air conditioning system (p < .05); of the building for cracks, leaks, or past water damage (p < .01); for mold (p < .01); for clutter that prevents effective cleaning and maintenance (p < .05); of the plumbing system (p < .01); and for condensation in and around school facilities (p < .001); (3) have an engine idling reduction program ( < .001); (4) have a policy to purchase low-emitting products (p < .05); and (5) require IPM strategies (p < .05). Increasing the number of states that provide IAQ-related assistance to school districts and schools may improve school IAQ. © The Author(s) 2015.

  3. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  4. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  5. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  6. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  7. 40 CFR 35.9050 - Assistance amount.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Assistance amount. 35.9050 Section 35.9050 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9050 Assistance...

  8. 40 CFR 35.578 - Award limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Air Pollution Control (section 105) § 35.578 Award... areas within the jurisdiction Water Pollution Control (Sections 106 and 518) ...

  9. 40 CFR 35.578 - Award limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Air Pollution Control (section 105) § 35.578 Award... areas within the jurisdiction Water Pollution Control (Sections 106 and 518) ...

  10. 40 CFR 35.161 - Definition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Pollution Control (section 106) § 35.161 Definition. Recurrent expenditures are those expenditures associated with the activities of a continuing Water Pollution Control...

  11. 40 CFR 35.342 - Competitive process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....342 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Pollution Prevention State Grants (section 6605) § 35.342 Competitive process. EPA Regions award Pollution Prevention State Grants to State programs...

  12. 40 CFR 35.342 - Competitive process.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....342 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Pollution Prevention State Grants (section 6605) § 35.342 Competitive process. EPA Regions award Pollution Prevention State Grants to State programs...

  13. 40 CFR 35.161 - Definition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Pollution Control (section 106) § 35.161 Definition. Recurrent expenditures are those expenditures associated with the activities of a continuing Water Pollution Control...

  14. 40 CFR 35.661 - Competitive process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....661 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Pollution Prevention Grants (section 6605) § 35.661 Competitive process. EPA Regions award Pollution Prevention Grant funds to Tribes and...

  15. 40 CFR 35.661 - Competitive process.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....661 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Pollution Prevention Grants (section 6605) § 35.661 Competitive process. EPA Regions award Pollution Prevention Grant funds to Tribes and...

  16. 40 CFR 35.670 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Public Water System Supervision (section 1443(a) and... water system supervision grants to Tribes and Intertribal Consortia authorized under sections 1443(a...

  17. 40 CFR 35.646 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Pesticide Applicator Certification and Training (section... applicator certification and training grants to Tribes and Intertribal Consortia under section 23(a)(2) of...

  18. 40 CFR 35.670 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Public Water System Supervision (section 1443(a) and... water system supervision grants to Tribes and Intertribal Consortia authorized under sections 1443(a...

  19. 40 CFR 35.646 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Pesticide Applicator Certification and Training (section... applicator certification and training grants to Tribes and Intertribal Consortia under section 23(a)(2) of...

  20. SPATIAL ANALYSIS AND DECISION ASSISTANCE (SADA) TRAINING COURSE

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  1. Effect of Processing Conditions on Fracture Resistance and Cohesive Laws of Binderfree All-Cellulose Composites

    NASA Astrophysics Data System (ADS)

    Goutianos, S.; Arévalo, R.; Sørensen, B. F.; Peijs, T.

    2014-12-01

    The fracture properties of all-cellulose composites without matrix were studied using Double Cantilever Beam (DCB) sandwich specimens loaded with pure monotonically increasing bending moments, which give stable crack growth. The experiments were conducted in an environmental scanning electron microscope to a) perform accurate measurements of both the fracture energy for crack initiation and the fracture resistance and b) observe the microscale failure mechanisms especially in the the wake of the crack tip. Since the mechanical behaviour of the all-cellulose composites was non-linear, a general method was first developed to obtain fracture resistance values from the DCB specimens taking into account the non-linear material response. The binderfree all-cellulose composites were prepared by a mechanical refinement process that allows the formation of intramolecular bonds between the cellulose molecules during the drying process. Defibrilation of the raw cellulose material is done in wet medium in a paper-like process. Panels with different refining time were tested and it was found than an increase in fibre fibrillation results in a lower fracture resistance.

  2. Effects of High Temperature Exposures on Fatigue Life of Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Tim P.; Telesman, Jack; Kantzos, Pete T.; Smith, James W.; Browning, Paul F.

    2004-01-01

    The effects on fatigue life of high temperature exposures simulating service conditions were considered for two disk superalloys. Powder metallurgy processed, supersolvus heat treated Udimet (trademark) 720 and ME3 fatigue specimens were exposed in air at temperatures of 650 to 704 C, for times of 100 h to over 1000 h. They were then tested using conventional fatigue tests at 650 and 704 C, to determine the effects of exposure on fatigue resistance. Cyclic dwell verification tests were also performed to contrast the effects of intermixed exposures and fatigue cycles. The prior exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Cyclic dwell tests reduced lives even more. Fractographic evaluations indicated the failure mode was shifted by the exposures and cyclic dwells from predominantly internal to often surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.

  3. Fundamental considerations in dynamic fracture in nuclear materials

    NASA Astrophysics Data System (ADS)

    Cady, Carl; Eastwood, David; Bourne, Neil; Pei, Ruizhi; Mummery, Paul; Rau, Christoph

    2017-06-01

    The structural integrity of components used in nuclear power plants is the biggest concern of operators. A diverse range of materials, loading, prior histories and environmental conditions, leads to a complex operating environment. An experimental technique has been developed to characterize brittle materials and using linear elastic fracture mechanics, has given accurate measurements of the fracture toughness of materials. X-ray measurements were used to track the crack front as a function of loading parameters as well as determine the crack surface area as loads increased. This X-ray tomographic study of dynamic fracture in beryllium indicates the onset of damage within the target as load is increased. Similarly, measurements on nuclear graphite were conducted to evaluate the technique. This new, quantitative information obtained using the X-ray techniques has shown application in other materials. These materials exhibited a range of brittle and ductile responses that will test our modelling schemes for fracture. Further visualization of crack front advance and the correlated strain fields that are generated during the experiment for the two distinct deformation processes provide a vital step in validating new multiscale predicative modelling.

  4. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    NASA Technical Reports Server (NTRS)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  5. Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies.

    PubMed

    Shade, Ashley; Carey, Cayelan C; Kara, Emily; Bertilsson, Stefan; McMahon, Katherine D; Smith, Matthew C

    2009-08-01

    Automated sensing technologies, 'ASTs,' are tools that can monitor environmental or microbial-related variables at increasingly high temporal resolution. Microbial ecologists are poised to use AST data to couple microbial structure, function and associated environmental observations on temporal scales pertinent to microbial processes. In the context of aquatic microbiology, we discuss three applications of ASTs: windows on the microbial world, adaptive sampling and adaptive management. We challenge microbial ecologists to push AST potential in helping to reveal relationships between microbial structure and function.

  6. Evaluation of Thermo-Mechanical Stability of COTS Dual-Axis MEMS Accelerometers for Space Applications

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)

    2000-01-01

    Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.

  7. Hydrogen Assisted Cracking and Corrosion of Some Highly Corrosion Resistant Alloys

    DTIC Science & Technology

    1990-01-01

    Stainless Steel", June 1985, and "On the Roles of Corrosion Products in Local Cell Processes", January 1986. Research on the latter has occurred in the...concern. In closed systems. howevter, such as nuclear reactor cooling pipes. acid container systems, fuel cells, and so on. the production of ti, gas and...mernhra lie is also imiportant. fihe stirf.ice should he flat. m-e1I-polished and free of filims. (Whde or other corrosion product film-. :Are easil% formed

  8. 40 CFR 35.137 - Application requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Application requirements. 35.137 Section 35.137 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Performance Partnership Grants § 35.137...

  9. 40 CFR 35.145 - Maximum federal share.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 35.145 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.145 Maximum federal share. (a) The Regional Administrator may provide air pollution control agencies, as...

  10. 40 CFR 35.162 - Basis for allotment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....162 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Pollution Control (section 106) § 35.162 Basis for allotment. (a) Allotments. Each fiscal year funds appropriated for Water Pollution Control...

  11. 40 CFR 35.343 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Pollution Prevention State Grants (section 6605) § 35.343 Definitions. In addition to the definitions in § 35.102, the following definitions apply to the Pollution...

  12. 40 CFR 35.145 - Maximum federal share.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 35.145 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.145 Maximum federal share. (a) The Regional Administrator may provide air pollution control agencies, as...

  13. 40 CFR 35.141 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.141 Definitions. In addition...-out, improving, or maintaining programs for the prevention and control of air pollution or...

  14. 40 CFR 35.343 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Pollution Prevention State Grants (section 6605) § 35.343 Definitions. In addition to the definitions in § 35.102, the following definitions apply to the Pollution...

  15. 40 CFR 35.663 - Eligible recipients.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Pollution Prevention Grants (section... Consortium as eligible to apply for a Pollution Prevention Grant if the Tribe or each member of the...

  16. 40 CFR 35.663 - Eligible recipients.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Pollution Prevention Grants (section... Consortium as eligible to apply for a Pollution Prevention Grant if the Tribe or each member of the...

  17. 40 CFR 35.660 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Pollution Prevention Grants (section 6605) § 35.660... Consortia under section 6605 of the Pollution Prevention Act. (b) Purpose of program. Pollution Prevention...

  18. 40 CFR 35.168 - Award limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....168 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Pollution Control (section 106) § 35.168... current status of the State pollution control program, including the criteria used by the State in...

  19. 40 CFR 35.575 - Maximum federal share.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 35.575 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Air Pollution Control (section 105... approved costs of planning, developing, establishing, or improving an air pollution control program, and up...

  20. 40 CFR 35.575 - Maximum federal share.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 35.575 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Air Pollution Control (section 105... approved costs of planning, developing, establishing, or improving an air pollution control program, and up...

  1. 40 CFR 35.162 - Basis for allotment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....162 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Pollution Control (section 106) § 35.162 Basis for allotment. (a) Allotments. Each fiscal year funds appropriated for Water Pollution Control...

  2. 40 CFR 35.660 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Pollution Prevention Grants (section 6605) § 35.660... Consortia under section 6605 of the Pollution Prevention Act. (b) Purpose of program. Pollution Prevention...

  3. 40 CFR 35.141 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.141 Definitions. In addition...-out, improving, or maintaining programs for the prevention and control of air pollution or...

  4. 40 CFR 35.240 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Pesticide Applicator Certification and Training (section 23(a)(2... Certification and Training Grants to States (as defined in section 2 of Federal Insecticide, Fungicide, and...

  5. 40 CFR 35.240 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Pesticide Applicator Certification and Training (section 23(a)(2... Certification and Training Grants to States (as defined in section 2 of Federal Insecticide, Fungicide, and...

  6. 40 CFR 35.708 - Award limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....708 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Indoor Radon Grants (section 306...)(iv)) and demonstration of radon mitigation, methods, and technologies (see § 35.820(b)(1)(ix)) shall...

  7. 40 CFR 35.141 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.141 Definitions. In addition...-out, improving, or maintaining programs for the prevention and control of air pollution or...

  8. 40 CFR 35.145 - Maximum federal share.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 35.145 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Air Pollution Control (section 105) § 35.145 Maximum federal share. (a) The Regional Administrator may provide air pollution control agencies, as...

  9. Fractographic Investigation of Micromechanisms of Fracture in Alumina Ceramics

    DTIC Science & Technology

    1981-11-30

    mechanisms flaw linking work of fracture electron channeling crack branching environmental effects 20. A07 ACT (Continue an reverse side Of necessary and...CLASSIFICATION OF THIS PAGE(I hm Date "ftn.,a environments using multiple techniques such as SEM, TEM, selected area electron channeling , and...94 Selected area electron channeling (SAEC) .. .... ........ 99 V. CONCLUSIONS. .. ............................ 100 VI. REFERENCES

  10. 40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As...

  11. 40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As...

  12. 40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Recovery Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 29 Table 29 to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in...

  13. 40 CFR Table 42 to Subpart Uuu of... - Additional Information for Initial Notification of Compliance Status

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Notification of Compliance Status 42 Table 42 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 42 Table 42 to Subpart UUU of Part 63—Additional Information for Initial Notification of...

  14. 40 CFR Table 30 to Subpart Uuu of... - Operating Limits for HAP Emissions From Sulfur Recovery Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Sulfur Recovery Units 30 Table 30 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 30 Table 30 to Subpart UUU of Part 63—Operating Limits for HAP Emissions From Sulfur Recovery...

  15. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Catalytic Reforming Units 22 Table 22 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for Catalytic Reforming Units...

  16. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Catalytic Reforming Units 22 Table 22 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for Catalytic Reforming Units...

  17. 40 CFR Table 40 to Subpart Uuu of... - Requirements for Installation, Operation, and Maintenance of Continuous Opacity Monitoring...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...

  18. 40 CFR Table 40 to Subpart Uuu of... - Requirements for Installation, Operation, and Maintenance of Continuous Opacity Monitoring...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of Continuous...

  19. 40 CFR Table 40 to Subpart Uuu of... - Requirements for Installation, Operation, and Maintenance of Continuous Opacity Monitoring...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...

  20. 40 CFR Table 40 to Subpart Uuu of... - Requirements for Installation, Operation, and Maintenance of Continuous Opacity Monitoring...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...

Top