Palmer, C.A.; Lyons, P.C.
1996-01-01
The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.
NASA Technical Reports Server (NTRS)
Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.
2001-01-01
A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.
Biomonitor of Environmental Stress: Coral Trace Metal Analysis
NASA Astrophysics Data System (ADS)
Grumet, N.; Hughen, K.
2006-12-01
Tropical reef corals are extremely sensitive to changes in environmental conditions and, as a result of environmental degradation and global climate change, coral reefs around the globe are severely threatened. Increased human population and development in tropical regions is leading to higher turbidity and silt loading from terrestrial runoff, increased pesticides and nutrients from agricultural land-use and sewage, and the release of toxic trace metals to coastal waters from industrial pollution. The uptake of these metals and nutrients within the coral skeletal aragonite is a sensitive biomonitor of environmental stresses on coral health. We analyzed 18 trace metals from the surface of coral skeletons collected in Bermuda, Indonesia and Belize to assess a range of threats to coral reef health - including climate change, agricultural runoff and pesticides, and coastal development and tourism. This surface sample network also includes samples representing 4 different coral species. Trace metal analysis was performed on an inductively coupled plasma mass spectrometer (ICP-MS) to a high degree of accuracy and precision at extremely low (ppb) concentrations using a protocol we developed for samples less than 2 mg. Proper cleaning techniques were employed to minimize blank level concentrations for ultra-trace metal ICP-MS solution analysis. However, Zn/Ca and Ni/Ca concentrations remain below analytical detection limits. Initial results indicate that sea surface temperature proxies (e.g., Sr/Ca, B/Ca and Mg/Ca) display similar ratios between the different sites, whereas those metals associated with anthropogenic activities, such as Co, Pb and Cu, are site-specific and are linked to individual environmental stressors. Results from this study will be applied to down core trace metal records in the future. In doing so, we aim to understand the impacts of compounding environmental stresses on coral health, and to identify regional threshold values beyond which corals become susceptible to disease, bleaching and death.
Enabling chip-scale trace gas sensing systems with silicon photonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William
Tunable laser trace-gas spectroscopy has been effectively used in both environmental and medical applications, for its sensitivity and specificity. We’ll describe how contemporary silicon photonics manufacturing and assembly are leveraged for a cost-effective miniaturized spectroscopic sensor platform, and outline uses in fugitive methane emissions monitoring.
Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.
2011-01-01
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.
Trace elements at the intersection of marine biological and geochemical evolution
Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.
2016-01-01
Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.
Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection
Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano
2006-01-01
Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.
Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei
2014-02-01
A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix. © 2013 Elsevier B.V. All rights reserved.
McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.
2014-01-01
With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136
Collip, Dina; Myin-Germeys, Inez; Van Os, Jim
2008-01-01
Previous evidence reviewed in Schizophrenia Bulletin suggests the importance of a range of different environmental factors in the development of psychotic illness. It is unlikely, however, that the diversity of environmental influences associated with schizophrenia can be linked to as many different underlying mechanisms. There is evidence that environmental exposures may induce, in interaction with (epi)genetic factors, psychological or physiological alterations that can be traced to a final common pathway of cognitive biases and/or altered dopamine neurotransmission, broadly referred to as “sensitization,” facilitating the onset and persistence of psychotic symptoms. At the population level, the behavioral phenotype for sensitization may be examined by quantifying, in populations exposed to environmental risk factors associated with stress or dopamine-agonist drugs, (1) the increased rate of persistence (indicating lasting sensitization) of normally transient developmental expressions of subclinical psychotic experiences and (2) the subsequent increased rate of transition to clinical psychotic disorder. PMID:18203757
Wang, Zonghua; Han, Qiang; Xia, Jianfei; Xia, Linhua; Ding, Mingyu; Tang, Jie
2013-06-01
Graphene has great potentials for the use in sample preparation due to its ultra high specific surface area, superior chemical stability, and excellent thermal stability. In our work, a novel graphene-based SPE disk was developed for separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Based on the strong π-π stacking interaction between the analytes and graphene, the analytes extracted by graphene were eluted by cyclohexane and then determined by GC-MS. Under the optimized conditions, high flow rate (30 mL/min) and sensitivity (0.84-13 ng/L) were achieved. The proposed method was successfully applied to the analysis of real environmental water samples with recoveries ranging from 72.8 to 106.2%. Furthermore, the property of anticlogging and reusability was also improved. This work reveals great potentials of graphene-based SPE disk in environmental analytical. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement techniques for trace metals in coal-plant effluents: A brief review
NASA Technical Reports Server (NTRS)
Singh, J. J.
1979-01-01
The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.
Method and apparatus for phase for and amplitude detection
Cernosek, Richard W.; Frye, Gregory C.; Martin, Stephen J.
1998-06-09
A new class of techniques been developed which allow inexpensive application of SAW-type chemical sensor devices while retaining high sensitivity (ppm) to chemical detection. The new techniques do not require that the sensor be part of an oscillatory circuit, allowing large concentrations of, e.g., chemical vapors in air, to be accurately measured without compromising the capacity to measure trace concentrations. Such devices have numerous potential applications in environmental monitoring, from manufacturing environments to environmental restoration.
Ren, Ji-Yun; Wang, Xiao-Li; Li, Xiao-Li; Wang, Ming-Lin; Zhao, Ru-Song; Lin, Jin-Ming
2018-02-01
Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted great interest because of their large surface area and high chemical and thermal stability. However, to the best of our knowledge, no work has reported the use of magnetic COFs as adsorbents for magnetic solid-phase extraction (MSPE) to enrich and determine environmental pollutants. This work aims to investigate the feasibility of using covalent triazine-based framework (CTF)/Fe 2 O 3 composites as MSPE adsorbents to enrich and analyze perfluorinated compounds (PFCs) at trace levels in water samples. Under the optimal conditions, the method developed exhibited low limits of detection (0.62-1.39 ng·L -1 ), a wide linear range (5-4000 ng L -1 ), good repeatability (1.12-9.71%), and good reproducibility (2.45-7.74%). The new method was successfully used to determine PFCs in actual environmental water samples. MSPE based on CTF/Fe 2 O 3 composites exhibits potential for analysis of PFCs at trace levels in environmental water samples. Graphical abstract Magnetic covalent triazine-based frameworks (CTFs) were used as magnetic solid-phase extraction adsorbents for the sensitive determination of perfluorinated compounds in environmental water samples. PFBA perfluorobutyric acid, PFBS perfluorobutane sulfonate, PFDA perfluorodecanoic acid, PFDoA perfluorododecanoic acid, PFHpA perfluoroheptanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonate, PFNA perfluorononanoic acid, PFOA perfluorooctanoic acid, PFPeA perfluoropentanoic acid, PFUdA Perfluoroundecanoic acid.
Afkhami, Abbas; Khoshsafar, Hosein; Bagheri, Hasan; Madrakian, Tayyebeh
2014-02-01
A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of cadmium. This sensor was designed by incorporation of multi-walled carbon nanotubes (MWCNTs) and a new synthesized Schiff base into the carbon paste ionic liquid electrode (CPE(IL)) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Cd(II). The detection limit of the method was found to be 0.08 μg L(-1) (S/N=3) that is lower than the maximum contaminant level of Cd(II) allowed by the Environmental Protection Agency (EPA) in standard drinking waters. The proposed electrode exhibits good applicability for monitoring Cd(II) in various real samples. © 2013.
Trace element study in scallop shells by laser ablation ICP-MS: the example of Ba/Ca ratios
NASA Astrophysics Data System (ADS)
Lorrain, A.; Pécheyran, C.; Paulet, Y.-M.; Chauvaud, L.; Amouroux, D.; Krupp, E.; Donard, O.
2003-04-01
As scallop shells grow incrementally at a rate of one line per day, environmental changes could then be evidenced on a daily basis. As an example for trace element incorporation studies, barium is a geochemical tracer that can be directly related to oceanic primary productivity. Hence, monitoring Ba/Ca variations in a scallop shell should give information about phytoplanktonic events encountered day by day during its life. The very high spatial resolution (typically 40 - 200 µm) and the high elemental sensitivity required can only be achieved by the combination of laser ablation coupled to inductively coupled plasma mass spectrometry. This study demonstrates that Laser ablation coupled to ICP-MS determination is a relevant tool for high resolution distribution measurement of trace elements in calcite matrix. The ablation strategy related to single line rastering and calcium normalisation were found to be the best analytical conditions in terms of reproducibility and sensitivity. The knowledge of P. maximus growth rings periodicity (daily), combined with LA-ICP-MS micro analysis allows the acquisition of time dated profiles with high spatial and thus temporal resolution. This resolution makes P. maximus a potential tool for environmental reconstruction and especially for accurate calibration of proxies. However, the relations among Ba/Ca peaks and phytoplanktonic events differed according to the animals and some inter-annual discrepancies complexify the interpretation.
Method and apparatus for phase and amplitude detection
Cernosek, R.W.; Frye, G.C.; Martin, S.J.
1998-06-09
A new class of techniques has been developed which allow inexpensive application of SAW-type chemical sensor devices while retaining high sensitivity (ppm) to chemical detection. The new techniques do not require that the sensor be part of an oscillatory circuit, allowing large concentrations of, e.g., chemical vapors in air, to be accurately measured without compromising the capacity to measure trace concentrations. Such devices have numerous potential applications in environmental monitoring, from manufacturing environments to environmental restoration. 12 figs.
Latest developments for low-power infrared laser-based trace gas sensors for sensor networks
NASA Astrophysics Data System (ADS)
So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard
2011-09-01
Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.
In epidemiological research, it has become increasingly important to assess subjects' exposure to different classes of chemicals in multiple environmental media. It is a common practice to aliquot limited volumes of samples into smaller quantities for specific trace level chemi...
A DNA Tracer System for Hydrological Environment Investigations.
Liao, Renkuan; Yang, Peiling; Wu, Wenyong; Luo, Dan; Yang, Dayong
2018-02-20
To monitor and manage hydrological pollution effectively, tracing sources of pollutants is of great importance and also is in urgent need. A variety of tracers have been developed such as isotopes, silica, bromide, and dyes; however, practical limitations of these traditional tracers still exist such as lack of multiplexed, multipoint tracing and interference of background noise. To overcome these limitations, a new tracing system based on DNA nanomaterials, namely DNA tracer, has already been developed. DNA tracers possess remarkable advantages including sufficient species, specificity, environmental friendly, stable migration, and high sensitivity as well as allowing for multipoints tracing. In this review article, we introduce the molecular design, synthesis, protection and signal readout strategies of DNA tracers, compare the advantages and disadvantages of DNA tracer with traditional tracers, and summarize the-state-of-art applications in hydrological environment investigations. In the end, we provide our perspective on the future development of DNA tracers.
Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes
NASA Astrophysics Data System (ADS)
Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.
2016-06-01
A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.
Zhu, Nuanfei; Zou, Yanmin; Huang, Menglu; Dong, Shuaibing; Wu, Xiangyang; Liang, Guoxi; Han, Zhixiang; Zhang, Zhen
2018-08-15
A sensitive and artful colorimetric immunosensor based on horseradish peroxidase (HRP) was designed by labelling metal-organic frameworks (Cu-MOFs) on the second antibody (Cu-MOFs@Ab 2 ) as signal amplification for the detection of trace dibutyl phthalate (DBP). In this system, when Cu-MOFs@Ab 2 was captured by antigen- primary antibody (Ab 1 ) complex, tremendous Cu(II) will be released from Cu-MOFs in the presence of nitric acid (HNO 3 ), and Cu(II) will be further reduced to Cu(I) after the addition of sodium ascorbate (SA), consequently, inhibiting the HRP to catalyse the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (ox TMB). Under the optimized conditions, the limit of detection (LOD) was 1 μg L -1 , which was almost 60 times lower than that using a conventional ELISA with the same antibody. In addition, our method showed good accuracy and reproducibility (recoveries of 87.73-103.4%; CV values of 1.46-5.95%) through a spike-recovery analysis. The proposed immunosensor indicated great potential for trace DBP determination from environmental and food samples. Copyright © 2018. Published by Elsevier B.V.
Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G
2007-10-01
A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.
Mass and abundance 236U sensitivities at CIRCE
NASA Astrophysics Data System (ADS)
De Cesare, M.; De Cesare, N.; D'Onofrio, A.; Fifield, L. K.; Gialanella, L.; Terrasi, F.
2015-10-01
The actinides (e.g. 236U and xPu isotopes) are present in environmental samples at the ultra trace level since atmospheric tests of NWs (Nuclear Weapons) performed in the past, deliberate dumping of nuclear waste, nuclear fuel reprocessing, on a large scale and operation of NPPs (Nuclear Power Plants) on a small scale have led to the release of a wide range of radioactive nuclides in the environment. Their detection requires the most sensitive AMS (Accelerator Mass Spectrometry) techniques and at the Center for Isotopic Research on Cultural and Environmental heritage (CIRCE) in Caserta, Italy, an upgraded actinide AMS system, based on a 3-MV pelletron tandem accelerator, has been operated. In this paper the progress made in order to push the 236U mass sensitivity and 236U/238U isotopic ratio down to the natural levels is reported. A uranium contamination mass of about 0.05 μg and a 236U/238U isotopic ratio sensitivities at the level of 3.2 × 10-13 are presently achievable.
He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J
2010-09-13
The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.
Methane Trace-Gas Sensing Enabled by Silicon Photonic Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William
Fugitive methane leaks occurring during extraction at typical natural gas wells have an adverse environmental impact due to the methane’s large radiative forcing, in addition to reducing the producer’s overall efficiency and cost. Mitigation of these concerns can benefit from cost-effective sensor nodes, performing reliable, rapid and continuous tracking of methane emissions. The efficacy of laser spectroscopy has been widely demonstrated in both environmental and medical applications due to its sensitivity and specificity to the target analyte. However, the present cost and lack of manufacturing scalability of traditional free-space optical systems can limit their viability for deployment in economical wide-areamore » sensor networks. This presentation will review the development and performance of a cost-effective silicon photonic trace gas sensing platform that leverages silicon photonic waveguide and packaging technologies to perform on-chip evanescent field spectroscopy of methane.« less
Inorganic trace analysis by mass spectrometry
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine; Dietze, Hans-Joachim
1998-10-01
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.
Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal
2009-10-15
Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.
NASA Astrophysics Data System (ADS)
Balin Talamba, D.; Higy, C.; Joerin, C.; Musy, A.
The paper presents an application concerning the hydrological modelling for the Haute-Mentue catchment, located in western Switzerland. A simplified version of Topmodel, developed in a Labview programming environment, was applied in the aim of modelling the hydrological processes on this catchment. Previous researches car- ried out in this region outlined the importance of the environmental tracers in studying the hydrological behaviour and an important knowledge has been accumulated dur- ing this period concerning the mechanisms responsible for runoff generation. In con- formity with the theoretical constraints, Topmodel was applied for an Haute-Mentue sub-catchment where tracing experiments showed constantly low contributions of the soil water during the flood events. The model was applied for two humid periods in 1998. First, the model calibration was done in order to provide the best estimations for the total runoff. Instead, the simulated components (groundwater and rapid flow) showed far deviations from the reality indicated by the tracing experiments. Thus, a new calibration was performed including additional information given by the environ- mental tracing. The calibration of the model was done by using simulated annealing (SA) techniques, which are easy to implement and statistically allow for converging to a global minimum. The only problem is that the method is time and computer consum- ing. To improve this, a version of SA was used which is known as very fast-simulated annealing (VFSA). The principles are the same as for the SA technique. The random search is guided by certain probability distribution and the acceptance criterion is the same as for SA but the VFSA allows for better taking into account the ranges of vari- ation of each parameter. Practice with Topmodel showed that the energy function has different sensitivities along different dimensions of the parameter space. The VFSA algorithm allows differentiated search in relation with the sensitivity of the param- eters. The environmental tracing was used in the aim of constraining the parameter space in order to better simulate the hydrological behaviour of the catchment. VFSA outlined issues for characterising the significance of Topmodel input parameters as well as their uncertainty for the hydrological modelling.
Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B
2008-02-28
A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.
Bu, Wenting; Zheng, Jian; Ketterer, Michael E; Hu, Sheng; Uchida, Shigeo; Wang, Xiaolin
2017-12-01
Measurements of the long-lived radionuclide 236 U are an important endeavor, not only in nuclear safeguards work, but also in terms of using this emerging nuclide as a tracer in chemical oceanography, hydrology, and actinide sourcing. Depending on the properties of a sample and its neutron irradiation history, 236 U/ 238 U ratios from different sources vary significantly. Therefore, this ratio can be treated as an important fingerprint for radioactive source identification, and in particular, affords a definitive means of discriminating between naturally occurring U and specific types of anthropogenic U. The development of mass spectrometric techniques makes it possible to determine ultra-trace levels of 236 U in environmental samples. In this paper, we review the current status of mass spectrometric approaches for determination of 236 U in environmental samples. Various sample preparation methods are summarized and compared. The mass spectrometric techniques emphasized herein are thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS). The strategies or principles used by each technique for the analysis of 236 U are described. The performances of these techniques in terms of abundance sensitivity and detection limit are discussed in detail. To date, AMS exhibits the best capability for ultra-trace determinations of 236 U. The levels and behaviors of 236 U in various environmental media are summarized and discussed as well. Results suggest that 236 U has an important, emerging role as a tracer for geochemical studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Dial, Angela R; Misra, Sambuddha; Landing, William M
2015-04-30
Accurate determination of trace metals has many applications in environmental and life sciences, such as constraining the cycling of essential micronutrients in biological production and employing trace metals as tracers for anthropogenic pollution. Analysis of elements such as Fe, As, Se, and Cd is challenged by the formation of polyatomic mass spectrometric interferences, which are overcome in this study. We utilized an Octopole Collision/Reaction Cell (CRC)-equipped Quadrupole-Inductively Coupled Plasma Mass Spectrometer for the rapid analysis of small volume samples (~250 μL) in a variety of matrices containing HNO3 and/or HCl. Efficient elimination of polyatomic interferences was demonstrated by the use of the CRC in Reaction Mode (RM; H2 gas) and in Collision-Reaction Mode (CRM; H2 and He gas), in addition to hot plasma (RF power 1500 W) and cool plasma (600 W) conditions. It was found that cool plasma conditions with RM achieved the greatest signal sensitivity while maintaining low detection limits (i.e. (56) Fe in 0.44 M HNO3 has a sensitivity of 160,000 counts per second (cps)-per-1 µg L(-1) and a limit of detection (LoD) of 0.86 ng L(-1) ). The average external precision was ≤ ~10% for minor (≤10 µg L(-1) ) elements measured in a 1:100 dilution of NIST 1643e and for iron in rainwater samples under all instrumental operating conditions. An improved method has been demonstrated for the rapid multi-element analysis of trace metals that are challenged by polyatomic mass spectrometric interferences, with a focus on (56) Fe, (75) As, (78) Se and (111) Cd. This method can contribute to aqueous environmental geochemistry and chemical oceanography, as well as other fields such as forensic chemistry, agriculture, food chemistry, and pharmaceutical sciences. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Betti, Maria; Aldave de las Heras, Laura
2004-09-01
Glow discharge (GD) spectrometry as applied to characterize nuclear samples as well as for the determination of radionuclides in environmental samples is reviewed. The use of instrumentation for direct current (d.c.) glow discharge mass spectrometry (GDMS) and radio frequency glow discharge optical emission spectrometry (rf GDOES), installed inside a glove-box for the handling of radioactive samples as well as the two installations and their analytical possibilities, is described in detail. The applications of GD techniques for the characterization of samples of nuclear concern both with respect to their major and trace elements, as well as to the matrix isotopic composition are presented. Procedures for quantitative determination of major, minor, and trace elements in conductive samples are reported. As for non-conductive samples three different approaches for their measurement can be followed. Namely, the use of rf sources, the mixing of the sample with a binder conducting host matrix, and the use of a secondary cathode. In the case of oxide-based samples, the employment of a tantalum secondary cathode, acting as an oxygen getter, reduces the availability of oxygen to form polyatomic species and to produce quenching. Considerations on the use of the relative sensitivity factors (RSFs) in different matrices are reported. The analytical capabilities of GDMS are compared with ICP-MS in terms of accuracy, precision, and detection limit for the determination of trace elements in uranium oxide specimens. As for the determination of isotopic composition, GDMS was found to be competitive with thermal ionisation mass spectrometry (TIMS) as well as for bulk determinations of major elements with titration methods. Applications of GDMS to the determination of radioisotopes in environmental samples, as well for depth profiling of trace elements in oxide layers, are discussed.
Interaction of acidic trace gases with ice from a surface science perspective
NASA Astrophysics Data System (ADS)
Waldner, A.; Kong, X.; Ammann, M.; Orlando, F.; Birrer, M.; Artiglia, L.; Bartels-Rausch, T.
2016-12-01
Acidic trace gases, such as HCOOH, HCl and HONO, play important roles in atmospheric chemistry. The presence of ice is known to have the capability to modify this chemistry (Neu et al. 2012). The molecular level processes of the interaction of acidic trace gases with ice are still a matter of debate and a quantification of the uptake is difficult (Dash et al. 2006, Bartels-Rausch et al. 2014, Huthwelker et al. 2006). This hampers a proper inclusion of ice as a substrate in models of various scales as for example in global chemistry climate models that would among others allow predicting large-scale effects of ice clouds. So far, direct observations of the ice surface and of the interaction with trace gases at temperatures and concentrations relevant to the environment are very limited. In this study, we take advantage of the surface and analytical sensitivity as well as the chemical selectivity of photoemission and absorption spectroscopy performed at ambient pressure using the near ambient pressure photoemission endstation (NAPP) at Swiss Light Source to overcome this limitation in environmental science (Orlando et al. 2016). Specifically, ambient pressure X-ray Photoelectron Spectroscopy (XPS) allows us to get information about chemical state and concentration depth profiles of dopants. The combination of XPS with auger electron yield Near-Edge X-ray Absorption Fine Structure (NEXAFS) enables us to locate the dopant and analyse wheather the interaction leads to enhanced surface disorder and to what extent different disorders influences the uptake of the trace gas. For the first time, this study looks directly at the interaction of HCOOH, the strongest organic acid, with ice at 2 different temperatures (233 and 253 K) relevant for environmental science by means of electron spectroscopy. XPS depth profiles indicate that the HCOOH basically remains within the topmost ice layers and O K-edge NEXAFS analysis show that the interaction ice-HCOOH does not lead to enhanced surface disorder at environmentally relevant conditions.
Zou, Xue; Kang, Meng; Li, Aiyue; Shen, Chengyin; Chu, Yannan
2016-03-15
Rapid and sensitive monitoring of benzene in water is very important to the health of people and for environmental protection. A novel and online detection method of spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS) was introduced for rapid and sensitive monitoring of trace benzene in water. A spraying extraction system was coupled with the self-developed PTR-MS. The benzene was extracted from the water sample in the spraying extraction system and continuously detected with PTR-MS. The flow of carrier gas and salt concentration in water were optimized to be 50 sccm and 20% (w/v), respectively. The response time and the limit of detection of the SI-PTR-MS for detection of benzene in water were 55 s and 0.14 μg/L at 10 s integration time, respectively. The repeatability of the SI-PTR-MS was evaluated, and the relative standard deviation of five replicate determinations was 4.3%. The SI-PTR-MS system was employed for monitoring benzene in different water matrices, such as tap water, lake water, and wastewater. The results indicated that the online SI-PTR-MS can be used for rapid and sensitive monitoring of trace benzene in water.
Biogeochemistry of carbonates: recorders of past oceans and climate.
Rickaby, Rosalind E M; Schrag, Daniel P
2005-01-01
Trace metal proxies bound within the calcium carbonate tests of oceanic organisms provide a unique insight into how the climate system works on timescales which span eight orders of magnitude, from annual to hundreds of millions of years. Whilst the motivation for developing these proxies was the idea that thermodynamic equilibria control the chemistry during precipitation, in reality the application of trace metal proxies relies upon empirical calibration. Such calibration can be applied to a wide range of environmental reconstructions, but more accurate application of proxies requires a mechanistic understanding of the biomineralization process. The partitioning of trace metals into biogenic carbonates reflects to some extent the same pattern as an inorganic crystal, but there is an additional selectivity and differing environmental sensitivity to, e.g., temperature, which confirms that biochemical processes also play a role in the uptake and assembly of ions into a crystal. Different organisms display differing degrees of biological control on their carbonate chemistry. Aragonitic coral chemistry is most similar to inorganic precipitation from seawater whilst coccolithophores are most different, and these contrasts correlate with the degree of control of the organism over its biomineralization. Selectivity between Ca and trace metals during biomineralization arises during transport by pumps, channels, or nucleation upon an organic matrix. The biological selectivity of the transporters and matrix is strikingly similar in its base chemistry to the selective assembly of ions into a crystal. In each case, the selectivity between Ca2+ and trace metals derives from the balance between the energy required for dehydration of the hexaaqua complex of the cation, and the energy released from the new coordination geometry of binding with either carbonyl oxygen from polysaccharides or amino acids, or carbonate oxygen in the crystal. This is a speculative idea, but with some careful chemical calculations based on the energy of binding of Ca2+ or the trace metal ions to these macromolecular structures, it provides an alternative thermodynamic framework within which to consider the application of trace metal proxies.
Deshmukh, Megha A; Shirsat, Mahendra D; Ramanaviciene, Almira; Ramanavicius, Arunas
2018-07-04
Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.
Recent advances and remaining challenges for the spectroscopic detection of explosive threats.
Fountain, Augustus W; Christesen, Steven D; Moon, Raphael P; Guicheteau, Jason A; Emmons, Erik D
2014-01-01
In 2010, the U.S. Army initiated a program through the Edgewood Chemical Biological Center to identify viable spectroscopic signatures of explosives and initiate environmental persistence, fate, and transport studies for trace residues. These studies were ultimately designed to integrate these signatures into algorithms and experimentally evaluate sensor performance for explosives and precursor materials in existing chemical point and standoff detection systems. Accurate and validated optical cross sections and signatures are critical in benchmarking spectroscopic-based sensors. This program has provided important information for the scientists and engineers currently developing trace-detection solutions to the homemade explosive problem. With this information, the sensitivity of spectroscopic methods for explosives detection can now be quantitatively evaluated before the sensor is deployed and tested.
Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHELAN, JAMES M.
2002-05-01
Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include:more » landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.« less
Mars Spark Source Prototype Developed
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.
2000-01-01
The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.
NASA Astrophysics Data System (ADS)
Rinna, J.; Warning, B.; Meyers, P. A.; Brumsack, H.-J.; Rullkötter, J.
2002-06-01
Layers of organic-carbon-rich sapropels in the sediment record of the Mediterranean Sea give evidence of repetitive changes in regional Plio-Pleistocene climate. Results from biomarker molecule and major and trace element analyses of closely spaced samples are used to reconstruct the conditions leading to deposition of a Pliocene sapropel at Ocean Drilling Program (ODP) Site 969 on the Mediterranean Ridge. Organic carbon concentrations increase from 0.2% outside the sapropel and peak to more than 30% within it. Major and trace elemental composition and biomarker-derived parameters indicate elevated productivity, depletion of water-column dissolved-oxygen content, and changes in sediment provenance in response to climatic changes. Budgets of rhenium, thallium, and other trace metals indicate that deep-water exchange between the Mediterranean subbasins and the Atlantic Ocean was not completely interrupted during sapropel formation. Enrichment factors of redox-sensitive and sulfide-forming trace metals as well as the presence of isorenieratene derivatives and high stanol/sterol ratios point to an extended zone of anoxic water masses. Depth profiles of biomarker compositions (sterols, long-chain alkenones, alkandiols and -ketols, fatty acids) indicate great floral diversity during deposition of a single sapropel and highlight the sensitive response of the marine community to variable environmental conditions. Changes in water mass circulation and eolian transport can be reconstructed by use of both lithogenic elements and average chain lengths of n-alkanes (ACL index).
Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra; Dambiec, Małgorzata
2017-02-01
The temporal variations in plant chemistry connected with its life cycle may affect the cycling of elements in an ecosystem as well as determine the usefulness of the species in phytoremediation and bioindication. In this context, there is a gap in knowledge on the role of floating plants for elements cycling in aquatic reservoirs. The aim of the study was to determine if there are variations in Hydrocharis morsus-ranae (European frog-bit) bioaccumulation capacity and the growth rate of its population during the growing season and to test the impact of environmental pollution on these features. The content of macroelements (Ca, K, Mg, N, Na, P, S) and trace metals (Cd, Co, Cu, Cr, Hg, Fe, Mn, Ni, Pb, Zn) was determined in H. morsus-ranae collected monthly from June to October from habitats differing in environmental contamination. The results showed that the highest content of most trace metals (Co, Cr, Cu, Hg, Mn, Ni, Zn) and some nutrients (N, P) in plants as well as the greatest bioaccumulation efficiency occurred simultaneously in the beginning of the growing season. In the following months, a dilution effect (manifested by a decrease in content) related to the rapid growth was observed. Co, Mn, and Ni content in plant tissues reflected the level of environmental contamination throughout the growing season which makes H. morsus-ranae a potential biomonitor of pollution for these metals. Considering the great bioaccumulation ability, high sensitivity to contamination, and low biomass of European frog-bit in polluted systems, further investigation is required to assess the real phytoremediation capability of the species.
Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.
2013-12-01
Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net ecosystem fluxes of many climate-relevant trace gases, insight into the use of certain trace gases to estimate rates of more general biogeochemical processes is useful.
External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.
Rao, Gottipaty N; Karpf, Andreas
2011-02-01
Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.
Stockwell, P. B.; Corns, W. T.
1993-01-01
Considerable attention has been drawn to the environmental levels of mercury, arsenic, selenium and antimony in the last decade. Legislative and environmental pressure has forced levels to be lowered and this has created an additional burden for analytical chemists. Not only does an analysis have to reach lower detection levels, but it also has to be seen to be correct. Atomic fluorescence detection, especially when coupled to vapour generation techniques, offers both sensitivity and specificity. Developments in the design of specified atomic fluorescence detectors for mercury, for the hydride-forming elements and also for cadmium, are described in this paper. Each of these systems is capable of analysing samples in the part per trillion (ppt) range reliably and economically. Several analytical applications are described. PMID:18924964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegan, J.R.; Curran, H.A.
Small-scale fluctuations in sea level were revealed by detailed analysis of trace fossil assemblages formed by infaunal organisms within the Lowville (Black River Grp.), Napanee, and Kings Falls limestones (Trenton Grp.) at Ingham Mills. The paleodepositional environment of the Lowville Limestone (LL) is interpreted as peritidal, representing the high intertidal to shallow subtidal zones. The trace fossil assemblages define clearly several fluctuations within this environment. Large, well-formed specimens of the trace fossil Beaconites barretti occur within tidal channel and levee beds of the LL. In other regions this trace fossil has consistently been associated with channel and levee beds, mostmore » commonly in fluvial settings. The occurrence of Beaconites in the LL extends the age range of this ichnogenus to Ordovician time (oldest previous record is Silurian) and broadens its paleoenvironment range. The Napanee (Np) and lower Kings Falls (KF), limestones have most commonly been described as being deposited in a lagoonal setting. Both formations contain well-preserved trace fossils; the primary difference being that the Np exhibits much lower trace and body fossil diversities than the KF. The low diversity of trace fossils in the Np was most likely the result of limiting environmental conditions such as low oxygen and/or hypersalinity. The higher diversity of trace fossils in the KF indicates that the ancient lagoon became increasingly controlled by normal marine conditions, and, therefore, hospitable to a more diverse group of organisms. The trace fossil assemblages of the Black River and Trenton Group limestones indicate that the infaunal organisms of these Ordovician communities were highly sensitive to small-scale sea-level fluctuations.« less
Speleothem records of acid sulphate deposition and organic carbon mobilisation
NASA Astrophysics Data System (ADS)
Wynn, Peter; Fairchild, Ian; Bourdin, Clement; Baldini, James; Muller, Wolfgang; Hartland, Adam; Bartlett, Rebecca
2017-04-01
Dramatic increases in measured surface water DOC in recent decades have been variously attributed to either temperature rise, or destabilisation of long-term soil carbon pools following sulphur peak emissions status. However, whilst both drivers of DOC dynamics are plausible, they remain difficult to test due to the restricted nature of the available records of riverine DOC flux (1978 to present), and the limited availability of SO2 emissions inventory data at the regional scale. Speleothems offer long term records of both sulphur and carbon. New techniques to extract sulphur concentrations and isotopes from speleothem calcite have enabled archives of pollution history and environmental acidification to be reconstructed. Due to the large dynamic range in sulphur isotopic values from end member sources (marine aerosol +21 ‰ to continental biogenic emissions -30 ‰) and limited environmental fractionation under oxidising conditions, sulphur isotopes form an ideal tracer of industrial pollution and environmental acidification in the palaeo-record. We couple this acidification history to the carbon record, using organic matter fluorescence and trace metals. Trace metal ratios and abundance can be used to infer the type and size of organic ligand and are therefore sensitive to changes in temperature as a driver of organic carbon processing and biodegradation. This allows fluorescent properties and ratios of trace metals in speleothem carbonate to be used to represent both the flux of organic carbon into the cave as well as the degradation pathway. Here we present some of the first results of this work, exploring sulphur acidification as a mechanistic control on carbon solubility and export throughout the twentieth century.
Li, Chongning; Ouyang, Huixiang; Tang, Xueping; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang
2017-01-15
With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu 2+ pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu 2+ in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO 2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu 2+ -ascorbic acid (H 2 A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu 2+ catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu 2+ in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25μmol/L Cu 2+ , and with a detection limit of 0.008μmol/L. In addition, the SERS method demonstrated good specificity for Cu 2+ , which can determined accurately trace Cu 2+ in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.
Dasary, Samuel S R; Senapati, Dulal; Singh, Anant Kumar; Anjaneyulu, Yerramilli; Yu, Hongtao; Ray, Paresh Chandra
2010-12-01
TNT is one of the most commonly used nitro aromatic explosives for landmines of military and terrorist activities. As a result, there is an urgent need for rapid and reliable methods for the detection of trace amount of TNT for screenings in airport, analysis of forensic samples, and environmental analysis. Driven by the need to detect trace amounts of TNT from environmental samples, this article demonstrates a label-free, highly selective, and ultrasensitive para-aminothiophenol (p-ATP) modified gold nanoparticle based dynamic light scattering (DLS) probe for TNT recognition in 100 pico molar (pM) level from ethanol:acetonitile mixture solution. Because of the formation of strong π-donor-acceptor interaction between TNT and p-ATP, para-aminothiophenol attached gold nanoparticles undergo aggregation in the presence of TNT, which changes the DLS intensity tremendously. A detailed mechanism for significant DLS intensity change has been discussed. Our experimental results show that TNT can be detected quickly and accurately without any dye tagging in 100 pM level with excellent discrimination against other nitro compounds.
Status of essential elements in autism spectrum disorder: systematic review and meta-analysis.
Saghazadeh, Amene; Ahangari, Narges; Hendi, Kasra; Saleh, Fatemeh; Rezaei, Nima
2017-10-26
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder that imposes heavy financial burden on governments and families of affected children. It is considered a multifactorial condition, where trace elements are among environmental factors that may contribute to ASD. Meanwhile, the between-study variance is high. The present systematic review was designed to investigate the difference in trace element measures between patients with ASD and control subjects. Meta-analyses showed that the hair concentrations of chromium (p=0.024), cobalt (p=0.012), iodine (p=0.000), iron (p=0.017), and magnesium (p=0.007) in ASD patients were significantly lower than those of control subjects, while there were higher magnesium levels in the hair of ASD patients compared to that of controls (p=0.010). Patients with ASD had higher blood levels of copper (p=0.000) and lower levels of zinc compared to controls (p=0.021). Further urinary iodine levels in patients with ASD were decreased in comparison with controls (p=0.026). Sensitivity analyses showed that ASD patients in non-Asian but not in Asian countries had lower hair concentrations of chromium compared to controls. Also, such analyses indicated that ASD patients in Asian countries had lower hair zinc concentrations, whereas ASD patients in non-Asian countries had higher hair zinc concentrations in comparison with control subjects. This study found significant differences in the content of trace elements between patients with ASD compared to controls. The findings help highlighting the role of trace elements as environmental factors in the etiology of ASD.
Environmental influence on trace element levels in human hair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limic, N.; Valkovic, V.
1986-12-01
Trace element content of human hair depends on many factors. It has been shown by a large number of investigators that environmental factors play an important role. Elements from air particulates, water, shampoo or other media get incorporated into the hair structure. Here a model is proposed in which different contributions to trace element levels in human hair are factorized and the environmental contribution to the radial and longitudinal concentration profiles can be calculated. With the proper understanding of environmental contamination, hair analysis has better chances of being used as a diagnostic tool.
Silva, Ana Rita M; Nogueira, J M F
2008-02-15
Stir bar sorptive extraction and liquid desorption followed by high performance liquid chromatography with diode array detection (SBSE-LD-LC-DAD) is proposed for the determination of triclosan in personal care products, biological and environmental matrices, which is included in the priority lists, set by several international regulatory organizations. Instrumental conditions and experimental parameters that affecting SBSE-LD efficiency are fully discussed. Throughout systematic assays on 25 mL water samples spiked at the 10.0 microg L(-1) level, it had been established that stir bars coated with 126 microL of polydimethylsiloxane, an equilibrium time of 1h (1000 rpm) and acetonitrile under sonification (60 min) as back-extraction solvent, allowed the best analytical performance to determine triclosan in water matrices. From the data obtained, good recovery and remarkable repeatability were attained, providing experimental average yields (78.5+/-2.2%), although slightly lower than the theoretical equilibrium (99.7%) described by the octanol-water partition coefficients (K(PDMS/W)
Chen, Guang; Liu, Jianjun; Liu, Mengge; Li, Guoliang; Sun, Zhiwei; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao
2014-07-25
A new fluorescent reagent, 1-(1H-imidazol-1-yl)-2-(2-phenyl-1H-phenanthro[9,10-d]imidazol-1-yl)ethanone (IPPIE), is synthesized, and a simple pretreatment based on ultrasonic-assisted derivatization microextraction (UDME) with IPPIE is proposed for the selective derivatization of 12 aliphatic amines (C1: methylamine-C12: dodecylamine) in complex matrix samples (irrigation water, river water, waste water, cultivated soil, riverbank soil and riverbed soil). Under the optimal experimental conditions (solvent: ACN-HCl, catalyst: none, molar ratio: 4.3, time: 8 min and temperature: 80°C), micro amount of sample (40 μL; 5mg) can be pretreated in only 10 min, with no preconcentration, evaporation or other additional manual operations required. The interfering substances (aromatic amines, aliphatic alcohols and phenols) get the derivatization yields of <5%, causing insignificant matrix effects (<4%). IPPIE-analyte derivatives are separated by high performance liquid chromatography (HPLC) and quantified by fluorescence detection (FD). The very low instrumental detection limits (IDL: 0.66-4.02 ng/L) and method detection limits (MDL: 0.04-0.33 ng/g; 5.96-45.61 ng/L) are achieved. Analytes are further identified from adjacent peaks by on-line ion trap mass spectrometry (MS), thereby avoiding additional operations for impurities. With this UDME-HPLC-FD-MS method, the accuracy (-0.73-2.12%), precision (intra-day: 0.87-3.39%; inter-day: 0.16-4.12%), recovery (97.01-104.10%) and sensitivity were significantly improved. Successful applications in environmental samples demonstrate the superiority of this method in the sensitive, accurate and rapid determination of trace aliphatic amines in micro amount of complex samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Batchu, Sudha Rani; Ramirez, Cesar E; Gardinali, Piero R
2015-05-01
Because of its widespread consumption and its persistence during wastewater treatment, the artificial sweetener sucralose has gained considerable interest as a proxy to detect wastewater intrusion into usable water resources. The molecular resilience of this compound dictates that coastal and oceanic waters are the final recipient of this compound with unknown effects on ecosystems. Furthermore, no suitable methodologies have been reported for routine, ultra-trace detection of sucralose in seawater as the sensitivity of traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis is limited by a low yield of product ions upon collision-induced dissociation (CID). In this work, we report the development and field test of an alternative analysis tool for sucralose in environmental waters, with enough sensitivity for the proper quantitation and confirmation of this analyte in seawater. The methodology is based on automated online solid-phase extraction (SPE) and high-resolving-power orbitrap MS detection. Operating in full scan (no CID), detection of the unique isotopic pattern (100:96:31 for [M-H](-), [M-H+2](-), and [M-H+4](-), respectively) was used for ultra-trace quantitation and analyte identification. The method offers fast analysis (14 min per run) and low sample consumption (10 mL per sample) with method detection and confirmation limits (MDLs and MCLs) of 1.4 and 5.7 ng/L in seawater, respectively. The methodology involves low operating costs due to virtually no sample preparation steps or consumables. As an application example, samples were collected from 17 oceanic and estuarine sites in Broward County, FL, with varying salinity (6-40 PSU). Samples included the ocean outfall of the Southern Regional Wastewater Treatment Plant (WWTP) that serves Hollywood, FL. Sucralose was detected above MCL in 78% of the samples at concentrations ranging from 8 to 148 ng/L, with the exception of the WWTP ocean outfall (at pipe end, 28 m below the surface) where the measured concentration was 8418 ± 3813 ng/L. These results demonstrate the applicability of this monitoring tool for the trace-level detection of this wastewater marker in very dilute environmental waters.
Letarov, A V; Krisch, H M
2013-01-01
The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4-like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes. PMID:24223296
Fu, Jiaqi; Zhang, Xu; Qian, Shahua; Zhang, Lin
2012-05-30
A united method for speciation analysis of Se (IV) and Se (VI) in environmental water samples was developed using nano-sized TiO(2) colloid as adsorbent and hydride generation atomic fluorescence spectrometry (HG-AFS) as determination means. When the pH values of bulk solution were between 6.0 and 7.0, successful adsorption onto 1 mL nano-sized TiO(2) colloid (0.2%) was achieved for more than 97.0% of Se (IV) while Se (VI) barely got adsorbed. Therefore, the method made it possible to preconcentrate and determine Se (IV) and Se (VI) separately. The precipitated TiO(2) with concentrated selenium was directly converted to colloid without desorption. Selenium in the resulting colloid was then determined by HG-AFS. The detection limits (3σ) and relative standard deviations (R.S.D) of this method were 24 ng/L and 42 ng/L, 7.8% (n=6) and 7.0% (n=6) for Se (IV) and Se (VI), respectively. This simple, sensitive, and united method was successfully applied to the separation and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
ICP-MS measurement of natural radioactivity at LNGS
NASA Astrophysics Data System (ADS)
Nisi, S.; Copia, L.; Dafinei, I.; di Vacri, M. L.
2017-10-01
Rare events search experiments, like those dedicated to the direct evidence of dark matter or neutrinoless double beta decay, are among the most exciting challenges of modern physics. The sensitivity of such experiments is driven by the background, which depends substantially on the radiopurity of the materials used for the experimental apparatus. Cutting edge measurement techniques are needed for a fast, sensitive and efficient screening of these materials and the certification of their production. Trace element measurements of high sensitivity and quick execution are mandatory also in other fields like tracing the geographical origin of food, temporal and geographical assignment of cultural heritage or monitoring environmental radioactivity. This work is an overview of the inorganic mass spectrometry facility available at Gran Sasso National Laboratory (LNGS) for radiopure material screening and is especially focused on its ICP-MS instrumentation. Analytical methods developed to achieve lowest detection limits in different types of matrix, like metals, polymers, crystals and composite materials, are also indicated. Detection limits of 10-18gg-1 for 226Ra, 10-14gg-1 for U and Th and 10-12gg-1 for K are attained through dedicated operation conditions of the instrumentation. Details are given on the results obtained for different experiments ongoing or under construction at LNGS.
Talio, María C; Zambrano, Karen; Kaplan, Marcos; Acosta, Mariano; Gil, Raúl A; Luconi, Marta O; Fernández, Liliana P
2015-10-01
A new environmental friendly methodology based on fluorescent signal enhancement of rhodamine B dye is proposed for Pb(II) traces quantification using a preconcentration step based on the coacervation phenomenon. A cationic surfactant (cetyltrimethylammonium bromide, CTAB) and potassium iodine were chosen for this aim. The coacervate phase was collected on a filter paper disk and the solid surface fluorescence signal was determined in a spectrofluorometer. Experimental variables that influence on preconcentration step and fluorimetric sensitivity have been optimized using uni-variation assays. The calibration graph using zero th order regression was linear from 7.4×10(-4) to 3.4 μg L(-1) with a correlation coefficient of 0.999. Under the optimal conditions, a limit of detection of 2.2×10(-4) μg L(-1) and a limit of quantification of 7.4×10(-4) μg L(-1) were obtained. The method showed good sensitivity, adequate selectivity with good tolerance to foreign ions, and was applied to the determination of trace amounts of Pb(II) in refill solutions for e-cigarettes with satisfactory results validated by ICP-MS. The proposed method represents an innovative application of coacervation processes and of paper filters to solid surface fluorescence methodology. Copyright © 2015 Elsevier B.V. All rights reserved.
Stable isotopes of transition and post-transition metals as tracers in environmental studies
Bullen, Thomas D.; Baskaran, Mark
2011-01-01
The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.
Management and utilization of poultry wastes.
Williams, C M; Barker, J C; Sims, J T
1999-01-01
Waste by-products such as excreta or bedding material that are generated by the worldwide annual production of more than 40 million metric tons (t) of poultry meat and 600 billion eggs are generally land applied as the final step of a producer's waste management strategy. Under proper land application conditions, the nutrients and organisms in poultry wastes pose little environmental threat. Environmental contamination occurs when land application of poultry wastes is in excess of crop utilization potential, or is done under poor management conditions causing nutrient loss from environmental factors such as soil erosion or surface runoff during rainfall. Environmental parameters of concern are N, P, and certain metals (Cu and Zn in particular), as well as pathogenic microorganisms that may be contained in poultry waste. The biochemical cycle of N is very dynamic, and N contained in poultry waste may either be removed by crop harvest, leave the animal production facility, waste treatment lagoon, or application field as a gas (NH3, NO, NO2, N2O, or N2), or, due to its mobility in soil, be transported in organic or inorganic N forms in the liquid state via surface runoff or leaching into groundwater. Elevated concentrations of NO3-N in groundwater used for human consumption is a health risk to infants that are susceptible to methemoglobinemia. An environmental impact resulting from elevated NO3-N is eutrophication of surface waters. Ammonia loss from poultry waste is an environmental concern because of volatilized wet and dry deposits of NH3 into nitrogen-sensitive ecosystems. Phosphorus in poultry wastes may contribute to environmental degradation by accelerating the process of eutrophication. Unlike N, P is very immobile in soil and must first be transported to a surface water environment to have an environmental impact. It is generally accepted, however, that this nutrient affects receiving waters via transport in eroding soil as sediment-bound P or in surface runoff as soluble inorganic or organic P. Numerous studies have reported that excess P contained in land-applied manures may contribute to eutrophication. Soils containing P concentrations that greatly exceed the agronomic potential of crops may require years or even decades to return to levels that are crop limiting for this nutrient. Environmental concerns include the capacity of such soils to adsorb new P and the amount of P loss from these soils from erosion, runoff, drainage, or leaching to groundwater. Although much information is available regarding the loss of P from agricultural fields from erosion and runoff, less information is available regarding P losses from fields receiving poultry wastes. However, studies have shown that there are many challenges to controlling P losses from fields receiving manures. In addition, subsurface transport of P resulting from repeated application of poultry manure onto soils that are artificially drained is an environmental concern where drainage waters enter or interact with water bodies sensitive to eutrophication. Trace elements such as As, Co, Cu, Fe, Mn, Se, and Zn are often added in excess to poultry feed to increase the animal's rate of weight gain, feed efficiency, and egg production and to prevent diseases. Because most of the excess trace elements are not absorbed by the bird, the concentration of elements excreted in the manure will reflect dietary overformulation. Because trace elements are generally required in very small quantities for crop growth and, like P, are immobile in most soil types, their concentrations will increase with repeated land application of poultry wastes. Of particular concern are accumulations of Cu and Zn in certain soil types utilized for certain crops. Copper and Zn toxicity for some crops have been documented in some areas receiving repeated land-applied poultry wastes. A potential environmental concern relative to poultry litter and trace elements in receiving soils involves the transpor
DNA-labeled clay: A sensitive new method for tracing particle transport
Mahler, B.J.; Winkler, M.; Bennett, P.; Hillis, D.M.
1998-01-01
The behavior of mobile colloids and sediment in most natural environments remains poorly understood, in part because characteristics of existing sediment tracers limit their wide-spread use. Here we describe the development of a new approach that uses a DNA-labeled montmorillonite clay as a highly sensitive and selective sediment tracer that can potentially characterize sediment and colloid transport in a wide variety of environments, including marine, wetland, ground-water, and atmospheric systems. Characteristics of DNA in natural systems render it unsuitable as an aqueous tracer but admirably suited as a label for tracing particulates. The DNA-labeled-clay approach, using techniques developed from molecular biology, has extremely low detection limits, very specific detection, and a virtually infinite number of tracer signatures. Furthermore, DNA-labeled clay has the same physical characteristics as the particles it is designed to trace, it is environmentally benign, and it can be relatively inexpensively produced and detected. Our initial results show that short (500 base pair) strands of synthetically produced DNA reversibly adsorb to both Na-montmorillonite and powdered silica surfaces via a magnesium bridge. The DNA-montmorillonite surface complexes are stable in calcium-bicarbonate spring waters for periods of up to 18 days and only slowly desorb to the aqueous phase, whereas the silica surface complex is stable only in distilled water. Both materials readily release the adsorbed DNA in dilute EDTA solutions for amplification by the polymerase chain reaction (PCR) and quantification. The stability of the DNA-labeled clay complex suggests that this material would be appropriate for use as an extremely sensitive sediment tracer for flow periods of as long as 2 weeks, and possibly longer.
Beylot, Antoine; Villeneuve, Jacques; Bellenfant, Gaël
2013-02-01
GOAL AND SCOPE: The life cycle inventory of landfill emissions is a key point in Life Cycle Assessment (LCA) of waste management options and is highly subject to discussion. Result sensitivity to data inventory is accounted for through the implementation of scenarios that help examine how waste landfilling should be modeled in LCA. Four landfill biogas management options are environmentally evaluated in a Life Cycle Assessment perspective: (1) no biogas management (open dump), conventional landfill with (2) flaring, (3) combined heat and power (CHP) production in an internal combustion engine and (4) biogas upgrading for use as a fuel in buses. Average, maximum and minimum literature values are considered both for combustion emission factors in flares and engines and for trace pollutant concentrations in biogas. Biogas upgrading for use as a fuel in buses appears as the most relevant option with respect to most non-toxic impact categories and ecotoxicity, when considering average values for trace gas concentrations and combustion emission factors. Biogas combustion in an engine for CHP production shows the best performances in terms of climate change, but generates significantly higher photochemical oxidant formation and marine eutrophication impact potentials than flaring or biogas upgrading for use as a fuel in buses. However the calculated environmental impact potentials of landfill biogas management options depend largely on the trace gas concentrations implemented in the model. The use of average or extreme values reported in the literature significantly modifies the impact potential of a given scenario (up to two orders of magnitude for open dumps with respect to human toxicity). This should be taken into account when comparing landfilling with other waste management options. Also, the actual performances of a landfill top cover (in terms of oxidation rates) and combustion technology (in terms of emission factors) appear as key parameters affecting the ranking of biogas management options. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Danling; Chen, Antao; Jen, Alex K-Y
2013-04-14
Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.
Neng, N R; Mestre, A S; Carvalho, A P; Nogueira, J M F
2011-09-16
In this contribution, powdered activated carbons (ACs) from cork waste were supported for bar adsorptive micro-extraction (BAμE), as novel adsorbent phases for the analysis of polar compounds. By combining this approach with liquid desorption followed by high performance liquid chromatography with diode array detection (BAμE(AC)-LD/HPLC-DAD), good analytical performance was achieved using clofibric acid (CLOF) and ibuprofen (IBU) model compounds in environmental and biological matrices. Assays performed on 30 mL water samples spiked at the 25.0 μg L(-1) level yielded recoveries around 80% for CLOF and 95% for IBU, under optimized experimental conditions. The ACs textural and surface chemistry properties were correlated with the results obtained. The analytical performance showed good precision (<15%), suitable detection limits (0.24 and 0.78 μg L(-1) for CLOF and IBU, respectively) and good linear dynamic ranges (r(2)>0.9922) from 1.0 to 600.0 μg L(-1). By using the standard addition methodology, the application of the present approach to environmental water and urine matrices allowed remarkable performance at the trace level. The proposed methodology proved to be a viable alternative for acidic pharmaceuticals analysis, showing to be easy to implement, reliable, sensitive and requiring low sample volume to monitor these priority compounds in environmental and biological matrices. Copyright © 2011 Elsevier B.V. All rights reserved.
Sample preparation techniques for the determination of trace residues and contaminants in foods.
Ridgway, Kathy; Lalljie, Sam P D; Smith, Roger M
2007-06-15
The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.
Gas Chromatic Mass Spectrometer
NASA Technical Reports Server (NTRS)
Wey, Chowen
1995-01-01
Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.
Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants
Krystofova, Olga; Trnkova, Libuse; Adam, Vojtech; Zehnalek, Josef; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2010-01-01
Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic. PMID:22219663
Clements, Michelle N; Donnelly, Christl A; Fenwick, Alan; Kabatereine, Narcis B; Knowles, Sarah C L; Meité, Aboulaye; N'Goran, Eliézer K; Nalule, Yolisa; Nogaro, Sarah; Phillips, Anna E; Tukahebwa, Edridah Muheki; Fleming, Fiona M
2017-12-01
The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous 'trace' result between 'positive' and 'negative', and much debate has focused on interpretation of traces results. We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d'Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence.
Environmental applications of single collector high resolution ICP-MS.
Krachler, Michael
2007-08-01
The number of environmental applications of single collector high resolution ICP-MS (HR-ICP-MS) has increased rapidly in recent years. There are many factors that contribute to make HR-ICP-MS a very powerful tool in environmental analysis. They include the extremely low detection limits achievable, tremendously high sensitivity, the ability to separate ICP-MS signals of the analyte from spectral interferences, enabling the reliable determination of many trace elements, and the reasonable precision of isotope ratio measurements. These assets are improved even further using high efficiency sample introduction systems. Therefore, external factors such as the stability of laboratory blanks are frequently the limiting factor in HR-ICP-MS analysis rather than the detection power. This review aims to highlight the most recent applications of HR-ICP-MS in this sector, focusing on matrices and applications where the superior capabilities of the instrumental technique are most useful and often ultimately required.
Detection and Monitoring of Toxic Chemical at Ultra Trace Level by Utilizing Doped Nanomaterial
Khan, Sher Bahadar; Rahman, Mohammed M.; Akhtar, Kalsoom; Asiri, Abdullah M.
2014-01-01
Composite nanoparticles were synthesized by eco-friendly hydrothermal process and characterized by different spectroscopic techniques. All the spectroscopic techniques suggested the synthesis of well crystalline optically active composite nanoparticles with average diameter of ∼30 nm. The synthesized nanoparticles were applied for the development of chemical sensor which was fabricated by coating the nanoparticles on silver electrode for the recognition of phthalimide using simple I–V technique. The developed sensor exhibited high sensitivity (1.7361 µA.mM−1.cm−2), lower detection limit (8.0 µM) and long range of detection (77.0 µM to 0.38 M). Further the resistances of composite nanoparticles based sensor was found to be 2.7 MΩ which change from 2.7 to 1.7 with change in phthalimide concentration. The major advantages of the designed sensor over existing sensors are its simple technique, low cost, lower detection limit, high sensitivity and long range of detection. It can detect phthalimide even at trace level and sense over wide range of concentrations. Therefore the composite nanoparticals would be a better choice for the fabrication of phthalimide chemical sensor and would be time and cost substituted implement for environmental safety. PMID:25329666
Tsutsumi, T; Nagata, S; Hasegawa, A; Ueno, Y
2000-07-01
Trace amounts of microcystins (MCs) in drinking water should be monitored because of their potential hazard for human health as an environmental tumor promoter. We describe here a new clean-up tool with immunoaffinity column (IAC) for determination of trace amounts of MCs (from pg to microg/litre) in tap water. The water samples were concentrated with IAC clean-up and MCs levels were determined by HPLC with UV detection or enzyme-linked immunosorbent assay (ELISA). In the combination with HPLC analysis, mean recovery of microcystin-LR (MCLR),-RR and-YR spiked to tap water were 91.8%, 77.3% and 86.4%, respectively, in the range 2.5-100 microg/litre. The chromatogram of MCs-spiked tap water sample cleaned up with IAC showed effective elimination of the impurities compared to that with octadecyl silanized cartridge, which had been cleaned up with a conventional method. Also, in the combination with highly sensitive ELISA, mean recovery of MCLR spiked to tap water was 80% in the range 0.1-1000 ng/litre. The combined methods developed here can detect pg to microg/litre of MCs in tap water. The overall results indicated that IAC will be suitable as a clean-up tool for trace amounts of MCs in tap water.
2008-09-01
the Origen Analyzer (BioVeris), the DELFIA (Wallac/PE) and the MPD ELISA ( BioTraces ). BioTraces had the most sensitive assay in which 125I was used...investigations we decided to abandon the BioTraces assay and focused on a more practical and also sensitive assay provided by the Origen Analyzer
NASA Astrophysics Data System (ADS)
Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin
2018-05-01
In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.
Mashhadizadeh, Mohammad Hossein; Karami, Zahra
2011-06-15
A fast, sensitive, and simple method using magnetic nanoparticles (MNPs) coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole, as an adsorbent has been successfully developed for extraction, preconcentration, and determination of trace amounts of Ag, Cd, Cu, and Zn from environmental samples. The prepared nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). These magnetic nanoparticles can be easily dispersed in aqueous samples and retrieved by the application of external magnetic field via a piece of permanent magnet. The main factors affecting the extraction efficiency such as pH value, sample volume, eluent concentration and volume, ultrasonication time, and coexisting ions have been investigated and established. Under the optimal conditions, high concentration factors (194, 190, 170, and 182) were achieved for Ag, Cd, Cu, and Zn with relative standard deviations of 5.31%, 4.03%, 3.62%, and 4.20%, respectively. The limits of detection for Ag, Cd, Cu, and Zn were as low as 0.12, 0.12, 0.13 and 0.11 ng mL(-1). The prepared sorbent was applied for preconcentration of trace amounts of Ag, Cd, Cu, and Zn in the various water samples with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-08-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-01-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring. PMID:23982222
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-01-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.
Co-Ordination Compounds as Sensitizers for Percussion Cap Compositions
1949-01-01
table. TABLE III Time elapsed (hours) Mixture Sensitivity* (inches/ £ lb.) Ballistic Pendulum » Power coefficient C. of V. of trace lengths...dimension C = 50-52. The power co-efficient is obtained by dividing the average trace length for 10 of the caps under trial by the average trace ...resulting in a high C. of V. The trace lengths as measured were as follows: 8.25, 8.30, 4.55, 10.65, 9.55, 9.0C, 8.46, 8.42, 8.21, 8.34 inches. The
Method for remote detection of trace contaminants
Simonson, Robert J.; Hance, Bradley G.
2003-09-09
A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.
NASA Astrophysics Data System (ADS)
Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan
2013-10-01
The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, S.S.; Attari, A.
1995-01-01
The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less
NASA Astrophysics Data System (ADS)
Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.
2017-12-01
Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.
Chen, Lei; Mei, Meng; Huang, Xiaojia; Yuan, Dongxing
2016-05-15
A simple, sensitive and environmentally friendly method using polymeric ionic liquid-based stir cake sorptive extraction followed by high performance liquid chromatography with diode array detection (HPLC/DAD) has been developed for efficient quantification of six selected estrogens in environmental waters. To extract trace estrogens effectively, a poly (1-ally-3-vinylimidazolium chloride-co-ethylene dimethacrylate) monolithic cake was prepared and used as the sorbent of stir cake sorptive extraction (SCSE). The effects of preparation conditions of sorbent and extraction parameters of SCSE for estrogens were investigated and optimized. Under optimal conditions, the developed method showed satisfactory analytical performance for targeted analytes. Low limits of detection (S/N=3) and quantification limits (S/N=10) were achieved within the range of 0.024-0.057 µg/L and 0.08-0.19 µg/L, respectively. Good linearity of method was obtained for analytes with the correlation coefficients (R(2)) above 0.99. At the same time, satisfactory method repeatability and reproducibility was achieved in terms of intra- and inter-day precisions, respectively. Finally, the established SCSE-HPLC/DAD method was successfully applied for the determination of estrogens in different environmental water samples. Recoveries obtained for the determination of estrogens in spiked samples ranged from 71.2% to 108%, with RSDs below 10% in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana
2014-02-01
The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian
2016-09-01
The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.
A brief review of other notable protein detection methods on acrylamide gels.
Kurien, Biji T; Scofield, R Hal
2012-01-01
Several methods have been described to stain proteins analyzed on acrylamide gels. These include ultrasensitive protein detection in one-dimensional and two-dimensional gel electrophoresis using a fluorescent product from the fungus Epicoccum nigrum; a fluorescence-based Coomassie Blue protein staining; visualization of proteins in acrylamide gels using ultraviolet illumination; fluorescence visualization of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution; and increasing the sensitivity four- to sixfold for detecting trace proteins in dye or silver stained polyacrylamide gels using polyethylene glycol 6000. All these methods are reviewed briefly in this chapter.
Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.
2016-01-01
The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397
Loess as an environmental archive of atmospheric trace element deposition
NASA Astrophysics Data System (ADS)
Blazina, T.; Winkel, L. H.
2013-12-01
Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.
Soomro, Rubina; Ahmed, M. Jamaluddin; Memon, Najma; Khan, Humaira
2008-01-01
A simple high sensitive, selective, and rapid spectrophotometric method for the determination of trace gold based on the rapid reaction of gold(III) with bis(salicylaldehyde)orthophenylenediamine (BSOPD) in aqueous and micellar media has been developed. BSOPD reacts with gold(III) in slightly acidic solution to form a 1:1 brownish-yellow complex, which has an maximum absorption peak at 490 nm in both aqueous and micellar media. The most remarkable point of this method is that the molar absorptivities of the gold-BSOPD complex form in the presence of the nonionic TritonX-100 surfactant are almost a 10 times higher than the value observed in the aqueous solution, resulting in an increase in the sensitivity and selectivity of the method. The apparent molar absorptivities were found to be 2.3 × 104 L mol−1 cm−1 and 2.5 × 105 L mol−1 cm−1 in aqueous and micellar media, respectively. The reaction is instantaneous and the maximum absorbance was obtained after 10 min at 490 nm and remains constant for over 24 h at room temperature. The linear calibration graphs were obtained for 0.1–30 mg L−1 and 0.01–30 mg L−1 of gold(III) in aqueous and surfactant media, respectively. The interference from over 50 cations, anions and complexing agents has been studied at 1 mg L−1 of Au(III); most metal ions can be tolerated in considerable amounts in aqueous micellar solutions. The Sandell’s sensitivity, the limit of detection and relative standard deviation (n = 9) were found to be 5 ng cm−2, 1 ng mL−1 and 2%, respectively in aqueous micellar solutions. Its sensitivity and selectivity are remarkably higher than that of other reagents in the literature. The proposed method was successfully used in the determination of gold in several standard reference materials (alloys and steels), environmental water samples (potable and polluted), and biological samples (blood and urine), geological, soil and complex synthetic mixtures. The results obtained agree well with those samples analyzed by atomic absorption spectrophotometry (AAS). PMID:19609392
2014-07-09
Rivera. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection , International Journal of Spectroscopy, (09 2012): 0. doi: 10.1155...Highly Sensitive Filter Paper Substrate for SERS Field Detection of Trace Threat Chemicals”, PITTCON-2013: Forensic Analysis in the Lab and Crime Scene...the surface. In addition, built-in algorithms were used for nearly real-time sample detection . Trace and bulk concentrations of the other substances
Toxic effects of trace elements on newborns and their birth outcomes.
Tang, Mengling; Xu, Chenye; Lin, Nan; Yin, Shanshan; Zhang, Yongli; Yu, Xinwei; Liu, Weiping
2016-04-15
Some trace elements are essential for newborns, their deficiency may cause abnormal biological functions, whereas excessive intakes due to environmental contamination may create adverse health effects. This study was conducted to measure the levels of selected trace elements in Chinese fish consumers by assessing their essentiality and toxicity via colostrum intake in newborns, and evaluated the effects of these trace elements on birth outcomes. Trace elements in umbilical cord serum and colostrum of the studied population were relatively high compared with other populations. The geometric means (GM) of estimated daily intake (EDI, mgday(-1)) of the trace elements were in the safe ranges for infant Dietary Reference Intakes (DRIs) recommended by the United States Food and Drug Administration (FDA). When using total dietary intake (TDI, mgkg(-1)bwday(-1)), zinc (Zn) (0.880mgkg(-1)bwday(-1)) and selenium (Se) (6.39×10(-3)mgkg(-1)bwday(-1)) were above the Reference Doses (RfD), set by the United States Environmental Protection Agency (EPA). Multivariable linear regression analyses showed that Se was negatively correlated with birth outcomes. Our findings suggested that overloading of trace elements due to environmental contamination may contribute to negative birth outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.
[A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 microm].
Chen, Chen; Dang, Jing-Min; Huang, Jian-Qiang; Yang, Yue; Wang, Yi-Ding
2012-11-01
Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration accurate, real-time and in-situ. This instrument takes advantage of recent technology in thermoelectrically cooling (TEC) pulsed Fabry-Perot (FP) quantum cascaded laser (QCL) driving in a pulse mode operating at 7.5 microm ambient temperature to cover a fundamental spectral absorption band near v4 of CH4. A high quality Liquid Nitrogen (LN) cooled Mercury Cadmium Telluride (HgCdTe) mid-infrared (MIR) detector is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 x 10(-3) under experimental condition of 200 micromol x mol(-1) measured ambient CH4. The instrument integrated software via time discriminating electronics technology to control QCL provides continuous quantitative trace gas measurements without calibration. The results show that the instrument can be applied to field measurements of gases of environmental concern. Additional, operator could substitute a QCL operating at a different wavelength to measure other gases.
Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing
NASA Astrophysics Data System (ADS)
Lin, Psang Dain; Lu, Chia-Hung
2004-02-01
Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat's eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.
Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing
NASA Astrophysics Data System (ADS)
Dain Lin, Psang; Lu, Chia-Hung
2004-02-01
Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat ?s eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.
NASA Astrophysics Data System (ADS)
Spicer, James B.; Dagdigian, Paul; Osiander, Robert; Miragliotta, Joseph A.; Zhang, Xi-Cheng; Kersting, Roland; Crosley, David R.; Hanson, Ronald K.; Jeffries, Jay
2003-09-01
The research center established by Army Research Office under the Multidisciplinary University Research Initiative program pursues a multidisciplinary approach to investigate and advance the use of complementary analytical techniques for sensing of explosives and/or explosive-related compounds as they occur in the environment. The techniques being investigated include Terahertz (THz) imaging and spectroscopy, Laser-Induced Breakdown Spectroscopy (LIBS), Cavity Ring Down Spectroscopy (CRDS) and Resonance Enhanced Multiphoton Ionization (REMPI). This suite of techniques encompasses a diversity of sensing approaches that can be applied to detection of explosives in condensed phases such as adsorbed species in soil or can be used for vapor phase detection above the source. Some techniques allow for remote detection while others have highly specific and sensitive analysis capabilities. This program is addressing a range of fundamental, technical issues associated with trace detection of explosive related compounds using these techniques. For example, while both LIBS and THz can be used to carry-out remote analysis of condensed phase analyte from a distance in excess several meters, the sensitivities of these techniques to surface adsorbed explosive-related compounds are not currently known. In current implementations, both CRDS and REMPI require sample collection techniques that have not been optimized for environmental applications. Early program elements will pursue the fundamental advances required for these techniques including signature identification for explosive-related compounds/interferents and trace analyte extraction. Later program tasks will explore simultaneous application of two or more techniques to assess the benefits of sensor fusion.
Cause and Effects of Fluorocarbon Degradation in Electronics and Opto-Electronic Systems
NASA Technical Reports Server (NTRS)
Predmore, Roamer E.; Canham, John S.
2002-01-01
Trace degradation of fluorocarbon or halocarbon materials must be addressed in their application in sensitive systems. As the dimensions and/or tolerances of components in a system decrease, the sensitivity of the system to trace fluorocarbon or halocarbon degradation products increases. Trace quantities of highly reactive degradation products from fluorocarbons have caused a number of failures of flight hardware. It is of utmost importance that the risk of system failure, resulting from trace amounts of reactive fluorocarbon degradation products be addressed in designs containing fluorocarbon or halocarbon materials. Thermal, electrical, and mechanical energy input into the system can multiply the risk of failure.
NASA Technical Reports Server (NTRS)
Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia
2005-01-01
Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.
Wang, Lingling; Zhang, Zhenzhen; Xu, Xu; Zhang, Danfeng; Wang, Fang; Zhang, Lei
2015-09-01
A simple, rapid, sensitive and effective method for the simultaneous determination of four endocrine disrupting compounds (EDCs) (bisphenol A (BPA), bisphenol F (BPF), bisphenol AF (BPAF) and bisphenol AP (BPAP)) in environment water samples based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography (HPLC) was developed. Multi-wall carbon nanotubes (MWCNTs) adsorbents showed a good affinity to the target analytes. These compounds were rapidly extracted within 10 min. Various experimental parameters that could affect the extraction efficiencies had been investigated in detail. Under the optimum conditions, the enrichment factors of the method for the target EDCs were found to be 500. Satisfactory precision and accuracy of the method were obtained in a low concentration range of 2.0-500.0 ng mL(-1). The method detection limits were in the range of 0.10-0.30 ng mL(-1). The high pre-concentration rate and efficiency of the method ensure its successful application in extraction of trace EDCs from large volumes of environmental water samples. The extraction recoveries in real samples ranged from 85.3% to 102.5% with the relative standard deviations (n=5) less than 3.74%. Copyright © 2015 Elsevier B.V. All rights reserved.
Bailón-Pérez, M I; García-Campaña, A M; del Olmo-Iruela, M; Gámiz-Gracia, L; Cruces-Blanco, C
2009-11-20
A sensitive and reliable method using capillary HPLC with UV-diode array detection (DAD) has been developed and validated for the trace determination of residues of 10 beta-lactam antibiotics of human and veterinary use, in milk, chicken meat and environmental water samples. The analytes included ampicillin, amoxicillin, penicillin V, penicillin G, cloxacillin, oxacillin, dicloxacillin, nafcillin, piperacillin and clavulanic acid. Legal levels are regulated by the EU Council regulation 2377/90 in animal edible tissues for these compounds. For food analysis, a solid-phase extraction (SPE) procedure consisting in a tandem of Oasis HLB and Alumina N cartridges was applied for off-line preconcentration and cleanup. For water analysis, the first step was only necessary. The limits of detection for the studied compounds were between 0.04-0.06 microg l(-1) for water samples and 0.80-1.40 microg l(-1) (or microg kg(-1)) in the case of foods derived from animals. Average recoveries for fortified samples at different concentration levels ranged between 82.9% and 98.2%, with relative standard deviations (RSDs) lower than 9%. The method showed the advantages of capillary HPLC for the detection of these widely applied antibiotics in different samples at very low concentration levels.
Green aspects, developments and perspectives of liquid phase microextraction techniques.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2014-02-01
Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.
Zhou, Xianjing; Nie, Jingjing; Du, Binyang
2015-10-07
4-(2-Pyridylazo)-resorcinol (PAR) functionalized thermosensitive ionic microgels (PAR-MG) were synthesized by a one-pot quaternization method. The PAR-MG microgels were spherical in shape with radius of ca. 166.0 nm and narrow size distribution and exhibited thermo-sensitivity in aqueous solution. The PAR-MG microgels could optically detect trace heavy metal ions, such as Cu(2+), Mn(2+), Pb(2+), Zn(2+), and Ni(2+), in aqueous solutions with high selectivity and sensitivity. The PAR-MG microgel suspensions exhibited characteristic color with the presence of various trace heavy metal ions, which could be visually distinguished by naked eyes. The limit of colorimetric detection (DL) was determined to be 38 nM for Cu(2+) at pH 3, 12 nM for Cu(2+) at pH 7, and 14, 79, 20, and 21 nM for Mn(2+), Pb(2+), Zn(2+), and Ni(2+), respectively, at pH 11, which was lower than (or close to) the United States Environmental Protection Agency standard for the safety limit of these heavy metal ions in drinking water. The mechanism of detection was attributed to the chelation between the nitrogen atoms and o-hydroxyl groups of PAR within the microgels and heavy metal ions.
Trace elements in agroecosystems and impacts on the environment.
He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J
2005-01-01
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.
Serra, H; Nogueira, J M F
2005-11-11
In the present contribution, a new automated on-line hydride generation methodology was developed for dibutyltin and tributyltin speciation at the trace level, using a programmable temperature-vaporizing inlet followed by capillary gas chromatography coupled to mass spectrometry in the selected ion-monitoring mode acquisition (PTV-GC/MS(SIM)). The methodology involves a sequence defined by two running methods, the first one configured for hydride generation with sodium tetrahydroborate as derivatising agent and the second configured for speciation purposes, using a conventional autosampler and data acquisition controlled by the instrument's software. From the method-development experiments, it had been established that injector configuration has a great effect on the speciation of the actual methodology, particularly, the initial inlet temperature (-20 degrees C; He: 150 ml/min), injection volume (2 microl) and solvent characteristics using the solvent venting mode. Under optimized conditions, a remarkable instrumental performance including very good precision (RSD < 4%), excellent linear dynamic range (up to 50 microg/ml) and limits of detection of 0.12 microg/ml and 9 ng/ml, were obtained for dibutyltin and tributyltin, respectively. The feasibility of the present methodology was validated through assays upon in-house spiked water (2 ng/ml) and a certified reference sediment matrix (Community Bureau of Reference, CRM 462, Nr. 330 dibutyltin: 68+/-12 ng/g; tributyltin: 54+/-15 ng/g on dry mass basis), using liquid-liquid extraction (LLE) and solid-phase extraction (SPE) sample enrichment and multiple injections (2 x 5 microl) for sensitivity enhancement. The methodology evidenced high reproducibility, is easy to work-up, sensitive and showed to be a suitable alternative to replace the currently dedicated analytical systems for organotin speciation in environmental matrices at the trace level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, N.W.T.
2009-10-15
Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulationmore » of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning process and offers suggestions as to how the technical and institutional issues could have been resolved faster through early adoption of some of the core principles of sound EDSS design.« less
NASA Astrophysics Data System (ADS)
Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum
2017-04-01
We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.
Mrdakovic Popic, Jelena; Meland, Sondre; Salbu, Brit; Skipperud, Lindis
2014-05-01
Investigation of radionuclides (232Th and 238U) and trace elements (Cr, As and Pb) in soil from two legacy NORM (former mining sites) and one undisturbed naturally 232Th-rich site was conducted as a part of the ongoing environmental impact assessment in the Fen Complex area (Norway). The major objectives were to determine the radionuclide and trace element distribution and mobility in soils as well as to analyze possible differences between legacy NORM and surrounding undisturbed naturally 232Th-rich soils. Inhomogeneous soil distribution of radionuclides and trace elements was observed for each of the investigated sites. The concentration of 232Th was high (up to 1685 mg kg(-1), i.e., ∼7000 Bq kg(-1)) and exceeded the screening value for the radioactive waste material in Norway (1 Bq g(-1)). Based on the sequential extraction results, the majority of 232Th and trace elements were rather inert, irreversibly bound to soil. Uranium was found to be potentially more mobile, as it was associated with pH-sensitive soil phases, redox-sensitive amorphous soil phases and soil organic compounds. Comparison of the sequential extraction datasets from the three investigated sites revealed increased mobility of all analyzed elements at the legacy NORM sites in comparison with the undisturbed 232Th-rich site. Similarly, the distribution coefficients Kd (232Th) and Kd (238U) suggested elevated dissolution, mobility and transportation at the legacy NORM sites, especially at the decommissioned Nb-mining site (346 and 100 L kg(-1) for 232Th and 238U, respectively), while the higher sorption of radionuclides was demonstrated at the undisturbed 232Th-rich site (10,672 and 506 L kg(-1) for 232Th and 238U, respectively). In general, although the concentration ranges of radionuclides and trace elements were similarly wide both at the legacy NORM and at the undisturbed 232Th-rich sites, the results of soil sequential extractions together with Kd values supported the expected differences between sites as the consequences of previous mining operations. Hence, mobility and possible elevated bioavailability at the legacy NORM site could be expected and further risk assessment should take this into account when decisions about the possible intervention measures are made.
Tracing Anthropogenic Pollution Through Dendrochemistry
NASA Astrophysics Data System (ADS)
Rocha, E.; Gunnarson, B. E.; Holzkaemper, S.
2017-12-01
The growing concern regarding pollution effects on the environment and human health demands new control strategies and monitoring tools. In this study we assess the potential of using dendrochemistry as a forensic tool to investigate chemical contamination patterns in the surroundings of a former glass factory in Southern Sweden. Tree-ring width chronologies were produced from exposed and non-exposed sites. Using energy disperse X-ray fluorescence (EDXRF) technique, tree cores of Scots Pine (Pinus sylvestris), Norway spruce (Picea Abies) and Populus tremula (European Aspen) were analysed for their elemental composition in accordance with previous soil analysis done in the area. Traces of barium and considerable alteration of the chlorine profiles were successfully detected confirming the potential of the method to record environmental releases. The dendrochemical analysis also highlighted the differences in the response of tree species to elements uptake (root sensitivity) and the importance of metals bioavailability. Finally, the adopted sampling strategy is of outmost importance to the success of the method.
Presence and risk assessment of pharmaceuticals in surface water and drinking water.
Sanderson, Hans
2011-01-01
Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low--but the public and decision-makers are concerned and would like the matter investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water. The aim of this paper is to summarize the state-of-the-science and the ongoing international debate on the topic.
Donnelly, Christl A.; Fenwick, Alan; Kabatereine, Narcis B.; Knowles, Sarah C. L.; Meité, Aboulaye; N'Goran, Eliézer K.; Nalule, Yolisa; Nogaro, Sarah; Phillips, Anna E.; Tukahebwa, Edridah Muheki; Fleming, Fiona M.
2017-01-01
Background The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous ‘trace’ result between ‘positive’ and ‘negative’, and much debate has focused on interpretation of traces results. Methodology/Principle findings We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d’Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Conclusions Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence. PMID:29220354
Jungers, R H; Lee, R E; von Lehmden, D J
1975-01-01
A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783
Zhang, Nan; Suleiman, Jibrin Sabo; He, Man; Hu, Bin
2008-04-15
A new chromium(III)-imprinted 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS)-functionalized silica gel sorbent was synthesized by a surface imprinting technique and was employed as a selective solid-phase extraction material for speciation analysis of chromium in environmental water samples prior to its determination by inductively coupled plasma mass spectrometry (ICP-MS). The prepared Cr(III)-imprinted silica gel shows the selectivity coefficient of more than 700 for Cr(III) in the presence of Mn(II). The static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cr(III) were 30.5 mg g(-1) and 13.4 mg g(-1). It was also found that Cr(VI) could be adsorbed at low pH by the prepared imprinted silica gel, and this finding makes it feasible to enrich and determine Cr(VI) at low pH without adding reducing reagents. The imprinted silica gel sorbent offered a fast kinetics for the adsorption and desorption of both chromium species. Under the optimized conditions, the detection limits of 4.43 pg mL(-1) and 8.30 pg mL(-1) with the relative standard deviations (R.S.D.s) of 4.44% and 4.41% (C=0.5 ng mL(-1), n=7) for Cr(III) and Cr(VI) were obtained, respectively. The proposed method was successfully applied to the speciation of trace chromium in environmental water samples. To validate the proposed method, two certified reference materials were analyzed and the determined values were in a good agreement with the certified values. The developed method is rapid, selective, sensitive and applicable for the speciation of trace chromium in environmental water samples.
Peng, Xiaojun; Pang, Jinshan; Deng, Aihua
2011-12-01
A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.
Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.
2002-01-01
Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.
Van Hook, R I
1979-01-01
This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619
ERIC Educational Resources Information Center
McMurray, Bob; Tanenhaus, Michael K.; Aslin, Richard N.
2009-01-01
Spoken word recognition shows gradient sensitivity to within-category voice onset time (VOT), as predicted by several current models of spoken word recognition, including TRACE (McClelland, J., & Elman, J. (1986). The TRACE model of speech perception. "Cognitive Psychology," 18, 1-86). It remains unclear, however, whether this sensitivity is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steill, Jeffrey D.; Huang, Haifeng; Hoops, Alexandra A.
This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to thesemore » species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.« less
Infant word recognition: Insights from TRACE simulations☆
Mayor, Julien; Plunkett, Kim
2014-01-01
The TRACE model of speech perception (McClelland & Elman, 1986) is used to simulate results from the infant word recognition literature, to provide a unified, theoretical framework for interpreting these findings. In a first set of simulations, we demonstrate how TRACE can reconcile apparently conflicting findings suggesting, on the one hand, that consonants play a pre-eminent role in lexical acquisition (Nespor, Peña & Mehler, 2003; Nazzi, 2005), and on the other, that there is a symmetry in infant sensitivity to vowel and consonant mispronunciations of familiar words (Mani & Plunkett, 2007). In a second series of simulations, we use TRACE to simulate infants’ graded sensitivity to mispronunciations of familiar words as reported by White and Morgan (2008). An unexpected outcome is that TRACE fails to demonstrate graded sensitivity for White and Morgan’s stimuli unless the inhibitory parameters in TRACE are substantially reduced. We explore the ramifications of this finding for theories of lexical development. Finally, TRACE mimics the impact of phonological neighbourhoods on early word learning reported by Swingley and Aslin (2007). TRACE offers an alternative explanation of these findings in terms of mispronunciations of lexical items rather than imputing word learning to infants. Together these simulations provide an evaluation of Developmental (Jusczyk, 1993) and Familiarity (Metsala, 1999) accounts of word recognition by infants and young children. The findings point to a role for both theoretical approaches whereby vocabulary structure and content constrain infant word recognition in an experience-dependent fashion, and highlight the continuity in the processes and representations involved in lexical development during the second year of life. PMID:24493907
Infant word recognition: Insights from TRACE simulations.
Mayor, Julien; Plunkett, Kim
2014-02-01
The TRACE model of speech perception (McClelland & Elman, 1986) is used to simulate results from the infant word recognition literature, to provide a unified, theoretical framework for interpreting these findings. In a first set of simulations, we demonstrate how TRACE can reconcile apparently conflicting findings suggesting, on the one hand, that consonants play a pre-eminent role in lexical acquisition (Nespor, Peña & Mehler, 2003; Nazzi, 2005), and on the other, that there is a symmetry in infant sensitivity to vowel and consonant mispronunciations of familiar words (Mani & Plunkett, 2007). In a second series of simulations, we use TRACE to simulate infants' graded sensitivity to mispronunciations of familiar words as reported by White and Morgan (2008). An unexpected outcome is that TRACE fails to demonstrate graded sensitivity for White and Morgan's stimuli unless the inhibitory parameters in TRACE are substantially reduced. We explore the ramifications of this finding for theories of lexical development. Finally, TRACE mimics the impact of phonological neighbourhoods on early word learning reported by Swingley and Aslin (2007). TRACE offers an alternative explanation of these findings in terms of mispronunciations of lexical items rather than imputing word learning to infants. Together these simulations provide an evaluation of Developmental (Jusczyk, 1993) and Familiarity (Metsala, 1999) accounts of word recognition by infants and young children. The findings point to a role for both theoretical approaches whereby vocabulary structure and content constrain infant word recognition in an experience-dependent fashion, and highlight the continuity in the processes and representations involved in lexical development during the second year of life.
Shoults-Wilson, W. A.; Peterson, J.T.; Unrine, J.M.; Rickard, J.; Black, M.C.
2009-01-01
In the present study, specimens of the invasive clam, Corbicula fluminea, were collected above and below possible sources of potentially toxic trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the Altamaha River system (Georgia, USA). Bioaccumulation of these elements was quantified, along with environmental (water and sediment) concentrations. Hierarchical linear models were used to account for variability in tissue concentrations related to environmental (site water chemistry and sediment characteristics) and individual (growth metrics) variables while identifying the strongest relations between these variables and trace element accumulation. The present study found significantly elevated concentrations of Cd, Cu, and Hg downstream of the outfall of kaolin-processing facilities, Zn downstream of a tire cording facility, and Cr downstream of both a nuclear power plant and a paper pulp mill. Models of the present study indicated that variation in trace element accumulation was linked to distance upstream from the estuary, dissolved oxygen, percentage of silt and clay in the sediment, elemental concentrations in sediment, shell length, and bivalve condition index. By explicitly modeling environmental variability, the Hierarchical linear modeling procedure allowed the identification of sites showing increased accumulation of trace elements that may have been caused by human activity. Hierarchical linear modeling is a useful tool for accounting for environmental and individual sources of variation in bioaccumulation studies. ?? 2009 SETAC.
NASA Astrophysics Data System (ADS)
Fernández Ferrari, M. Celeste; Schausberger, Peter
2013-06-01
Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.
Fernández Ferrari, M Celeste; Schausberger, Peter
2013-06-01
Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.
Pan, Sheng-Dong; Chen, Xiao-Hong; Li, Xiao-Ping; Cai, Mei-Qiang; Shen, Hao-Yu; Zhao, Yong-Gang; Jin, Mi-Cong
2015-11-27
Microcystins (MCs), a group of cyclic heptapeptide heaptoxins and tumor promoters, are generated by cyanobacteria occurring in surface waters, such as eutrophic lakes, rivers, and reservoirs. In this present study, a novel double-sided magnetic molecularly imprinted polymer modified graphene oxide (DS-MMIP@GO) based magnetic solid-phase extraction (MSPE) method was developed for fast, effective and selective enrichment, and recognition of trace MCs in environmental water samples combined with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The synthesized novel DS-MMIP@GO was used as the adsorbents in this work and was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. The adsorption and desorption conditions of DS-MMIP@GO toward MCs were optimized in detail to obtain the highest binding capacity, selectivity, and release efficiency. Under the optimum conditions, the enrichment factors of the method for eight target MCs were found to be 2000. The limits of quantitation (LOQs) of the method for eight MCs were in range of 0.1-2.0ngL(-1). The double-sided MMIP modified structure provided DS-MMIP@GO with abundant adsorption sites and permitted it to exhibit excellent enrichment and selectivity toward trace-level MCs. The proposed method was successfully applied for the analysis of environmental water samples with recoveries ranging from 84.1 to 98.2%. Compared to conventional methods for MCs detection reported in literatures, the one developed in this work based on DS-MMIP@GO and LC-MS/MS showed much faster, more sensitive, and more convenient. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Zhu, Dan; Chen, Hui; Zhang, Yizhi; Wu, Lei; Cui, Yiping
2016-01-15
We fabricate a multifunctional nanocarrier based on multi-walled carbon nanotubes (MWCNTs) decorated with gold/silver core-shell nanoparticles (Au@Ag NPs) and fluorescein isothiocyanate (FITC) for tracking the intracellular drug release process. In the demonstrated nanocarrier, the Au@Ag NPs adsorbed on the surface of MWCNTs were labeled with the pH-dependent SERS reporter 4-Mercaptobenzoic acid (4MBA) for SERS based pH sensing. FITC was conjugated on MWCNTs to provide fluorescence signal for tracing the MWCNTs. Fluorescent doxorubicin (DOX) was used as the model drug which can be loaded onto MWCNTs via π-π stacking and released from the MWCNTs under acidic condition. By detecting the SERS spectrum of 4MBA, the pH value around the nanocarrier could be monitored. Besides, by tracing the fluorescence of FITC and DOX, we can also investigate the drug release process in cells. Experimental results show that the proposed nanocarrier retained a well pH-sensitive performance in living cells, and the DOX detached from MWCNTs inside the lysosomes and entered into the cytoplasm with the MWCNTs being left in lysosomes. To further investigate the drug release dynamics, 2-D color-gradient pH mapping were plotted, which were calculated from the SERS spectra of 4MBA. The detailed release process and carrier distribution have been recorded as environmental pH changes during cell endocytosis. Furthermore, we also confirmed that the proposed nanocarrier has a good biocompatibility. It indicates that the designed nanocarrier have a great potential in intraceable drug delivery, cancer cells imaging and pH monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice
NASA Astrophysics Data System (ADS)
Sun, Hongbao; Liu, Hai; Wu, Yiyong
2017-09-01
We report a green and reusable surface-enhanced Raman scattering (SERS) film based on PMMA/Ag NPs/graphene. By using this Raman substrate, the SERS signals of R6G were significantly enhanced reaching a minimum detectable concentration of 5 × 10-8 M, due to having lots of hot spots adhered backside to the exposed graphene. The SERS film can be used for in-situ monitoring of trace thiram in apple juice with a detection limit of 1 × 10-6 M (0.24 ppm), which is below the maximal residue limit (MRL) of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency (EPA). Furthermore, reusability studies show that the SERS film can be used repeatedly. In addition, the graphene-enhanced SERS technique shows great potential applications for the in-situ detection and identification of pesticide residues in environmental water, fruits and vegetables.
A signal processing framework for simultaneous detection of multiple environmental contaminants
NASA Astrophysics Data System (ADS)
Chakraborty, Subhadeep; Manahan, Michael P.; Mench, Matthew M.
2013-11-01
The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the critical need for fundamental research enabling the reliable, unambiguous and early detection of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the identification and classification of simultaneously present multiple environmental contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the extraction of statistically rich information from the current response. The dynamic response, being a function of the degree and mechanism of contamination, is then processed with a symbolic dynamic filter for the extraction of representative patterns, which are then classified using a trained neural network. The approach presented in this paper promises to extend the sensing power and sensitivity of these EC sensors by augmenting and complementing sensor technology with state-of-the-art embedded real-time signal processing capabilities.
Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan
2015-07-07
The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants.
NASA Astrophysics Data System (ADS)
Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik
2018-04-01
We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.
Sosa-Ferrera, Zoraida; Mahugo-Santana, Cristina; Santana-Rodríguez, José Juan
2013-01-01
Endocrine-disruptor compounds (EDCs) can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented. PMID:23738329
Advanced selective non-invasive ketone body detection sensors based on new ionophores
NASA Astrophysics Data System (ADS)
Sathyapalan, A.; Sarswat, P. K.; Zhu, Y.; Free, M. L.
2014-12-01
New molecules and methods were examined that can be used to detect trace level ketone bodies. Diseases such as type 1 diabetes, childhood hypo-glycaemia-growth hormone deficiency, toxic inhalation, and body metabolism changes are linked with ketone bodies concentration. Here we introduce, selective ketone body detection sensors based on small, environmentally friendly organic molecules with Lewis acid additives. Density functional theory (DFT) simulation of the sensor molecules (Bromo-acetonaphthone tungstate (BANT) and acetonaphthophenyl ether propiono hydroxyl tungstate (APPHT)), indicated a fully relaxed geometry without symmetry attributes and specific coordination which enhances ketone bodies sensitivity. A portable sensing unit was made in which detection media containing ketone bodies at low concentration and new molecules show color change in visible light as well as unique irradiance during UV illumination. RGB analysis, electrochemical tests, SEM characterization, FTIR, absorbance and emission spectroscopy were also performed in order to validate the ketone sensitivity of these new molecules.
New Trends in Food Allergens Detection: Toward Biosensing Strategies.
Alves, Rita C; Barroso, M Fátima; González-García, María Begoña; Oliveira, M Beatriz P P; Delerue-Matos, Cristina
2016-10-25
Food allergens are a real threat to sensitized individuals. Although food labeling is crucial to provide information to consumers with food allergies, accidental exposure to allergenic proteins may result from undeclared allergenic substances by means of food adulteration, fraud or uncontrolled cross-contamination. Allergens detection in foodstuffs can be a very hard task, due to their presence usually in trace amounts, together with the natural interference of the matrix. Methods for allergens analysis can be mainly divided in two large groups: the immunological assays and the DNA-based ones. Mass spectrometry has also been used as a confirmatory tool. Recently, biosensors appeared as innovative, sensitive, selective, environmentally friendly, cheaper and fast techniques (especially when automated and/or miniaturized), able to effectively replace the classical methodologies. In this review, we present the advances in the field of food allergens detection toward the biosensing strategies and discuss the challenges and future perspectives of this technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favorite, Jeffrey A.
The Second-Level Adjoint Sensitivity System (2nd-LASS) that yields the second-order sensitivities of a response of uncollided particles with respect to isotope densities, cross sections, and source emission rates is derived in Refs. 1 and 2. In Ref. 2, we solved problems for the uncollided leakage from a homogeneous sphere and a multiregion cylinder using the PARTISN multigroup discrete-ordinates code. In this memo, we derive solutions of the 2nd-LASS for the particular case when the response is a flux or partial current density computed at a single point on the boundary, and the inner products are computed using ray-tracing. Both themore » PARTISN approach and the ray-tracing approach are implemented in a computer code, SENSPG. The next section of this report presents the equations of the 1st- and 2nd-LASS for uncollided particles and the first- and second-order sensitivities that use the solutions of the 1st- and 2nd-LASS. Section III presents solutions of the 1st- and 2nd-LASS equations for the case of ray-tracing from a detector point. Section IV presents specific solutions of the 2nd-LASS and derives the ray-trace form of the inner products needed for second-order sensitivities. Numerical results for the total leakage from a homogeneous sphere are presented in Sec. V and for the leakage from one side of a two-region slab in Sec. VI. Section VII is a summary and conclusions.« less
A single mini-barcode test to screen for Australian mammalian predators from environmental samples
MacDonald, Anna J; Sarre, Stephen D
2017-01-01
Abstract Identification of species from trace samples is now possible through the comparison of diagnostic DNA fragments against reference DNA sequence databases. DNA detection of animals from non-invasive samples, such as predator faeces (scats) that contain traces of DNA from their species of origin, has proved to be a valuable tool for the management of elusive wildlife. However, application of this approach can be limited by the availability of appropriate genetic markers. Scat DNA is often degraded, meaning that longer DNA sequences, including standard DNA barcoding markers, are difficult to recover. Instead, targeted short diagnostic markers are required to serve as diagnostic mini-barcodes. The mitochondrial genome is a useful source of such trace DNA markers because it provides good resolution at the species level and occurs in high copy numbers per cell. We developed a mini-barcode based on a short (178 bp) fragment of the conserved 12S ribosomal ribonucleic acid mitochondrial gene sequence, with the goal of discriminating amongst the scats of large mammalian predators of Australia. We tested the sensitivity and specificity of our primers and can accurately detect and discriminate amongst quolls, cats, dogs, foxes, and devils from trace DNA samples. Our approach provides a cost-effective, time-efficient, and non-invasive tool that enables identification of all 8 medium-large mammal predators in Australia, including native and introduced species, using a single test. With modification, this approach is likely to be of broad applicability elsewhere. PMID:28810700
Neng, N R; Cordeiro, C A A; Freire, A P; Nogueira, J M F
2007-10-26
Stir bar sorptive extraction with in-situ derivatization using 2,3-diaminonaphthalene (DAN) followed by liquid desorption and high performance liquid chromatography with diode array detection (SBSE(DAN)in-situ-LD-HPLC-DAD) was developed for the determination of glyoxal (Gly) and methylglyoxal (MGly) in environmental and biological matrices. DAN proved very good specificity as in-situ derivatising agent for Gly and MGly in aqueous media, allowing the formation of adducts with remarkable sensitivity, selectivity and the absence of photodegradation. Assays performed on spiked (1.0 microg L(-1)) water samples, under convenient experimental conditions, yielded recoveries of 96.2+/-7.9% for Gly and 96.1+/-6.4% for MGly. The analytical performance showed good accuracy, suitable precision (<12.0%), low detection limits (15 ng L(-1) for Gly and 25 ng L(-1) for MGly adducts) and excellent linear dynamic ranges (r2>0.99) from 0.1 to 120.0 microg L(-1). By using the standard addition method, the application of the present method to tap and swimming-pool water, beer, yeast cells suspension and urine samples allowed very good performance at the trace level. The proposed methodology proved to be a feasible alternative for routine quality control analysis, showing to be easy to implement, reliable, sensitive and with a low sample volume requirement to monitor Gly and MGly in environmental and biological matrices.
Wang, Shu; Li, Yun; Wu, Xiaoli; Ding, Meijuan; Yuan, Lihua; Wang, Ruoyu; Wen, Tingting; Zhang, Jun; Chen, Lina; Zhou, Xuemin; Li, Fei
2011-02-28
To assess the potential risks associated with the environmental exposure of steroid estrogens, a novel highly efficient and selective estrogen enrichment procedure based on the use of molecularly imprinted polymer has been developed and evaluated. Herein, analogue of estrogens, namely 17-ethyl estradiol (EE(2)) was used as the pseudo template, to avoid the leakage of a trace amount of the target analytes. The resulting pseudo molecularly imprinted polymers (PMIPs) showed large sorption capacity, high recognition ability and fast binding kinetics for estrogens. Moreover, using these imprinted particles as dispersive solid-phase extraction (DSPE) materials, the amounts of three estrogens (E(1), E(2) and E(3)) which were detected by HPLC-UV from the chicken tissue samples were 0.28, 0.31 and 0.17 μg g(-1), and the recoveries were 72.5-78.7%, 90.3-95.2% and 80.5-83.6% in spiked chicken tissue samples with RSD <7%, respectively. All these results reveal that EE(2)-PMIPs as DSPE materials coupled with HPLC-UV could be applied to the highly selective separation and sensitive determination of trace estrogens in chicken tissue samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Zhang, Li; Li, Zhenhua; Hu, Zheng; Chang, Xijun
2011-09-01
The first study on the high efficiency of triocarbohydrazide modified attapulgite as solid-phase extractant for preconcentration of trace Au(III) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES) has been reported. Experimental conditions for effective adsorption of trace levels of Au(III) were optimized with respect to different experimental parameters using batch and column procedures in detail. At pH 3, Au(III) could be quantitatively adsorbed on the new sorbent, and the adsorbed Au(III) could be completely eluted from the sorbent surface by 2.0mL 1.0molL(-1) of HCl+2% CS(NH(2))(2) solution. An enrichment factor of 150 was accomplished. Moreover, common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the sorbent for Au(III) was found to be 66.7mgg(-1). The detection limit (3σ) of this method was 0.32μgL(-1) and the relative standard deviation (RSD) was 3.3% (n=8). The method, with high selectivity, sensitivity and reproducibility, was validated using certified reference materials, and had been applied for the determination of trace Au(III) with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.
Sisco, Edward; Najarro, Marcela; Samarov, Daniel; Lawrence, Jeffrey
2017-04-01
This work investigates the stability of trace (tens of nanograms) deposits of six explosives: erythritol tetranitrate (ETN), pentaerythritol tetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), cyclotetramethylenetetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), and 2,4,6-trinitrophenylmethylnitramine (tetryl) to determine environmental stabilities and lifetimes of trace level materials. Explosives were inkjet printed directly onto substrates and exposed to one of seven environmental conditions (Laboratory, -4°C, 30°C, 47°C, 90% relative humidity, UV light, and ozone) up to 42 days. Throughout the study, samples were extracted and quantified using electrospray ionization mass spectrometry (ESI-MS) to determine the stability of the explosive as a function of time and environmental exposure. Statistical models were then fit to the data and used for pairwise comparisons of the environments. Stability was found to be exposure and compound dependent with minimal sample losses observed for HMX, RDX, and PETN while substantial and rapid losses were observed in all conditions except -4°C for ETN and TNT and in all conditions for tetryl. The results of this work highlight the potential fate of explosive traces when exposed to various environments. Published by Elsevier B.V.
Sisco, Edward; Najarro, Marcela; Samarov, Daniel; Lawrence, Jeffrey
2017-01-01
This work investigates the stability of trace (tens of nanograms) deposits of six explosives: erythritol tetranitrate (ETN), pentaerythritol tetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), cyclotetramethylenetetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), and 2,4,6-trinitrophenylmethylnitramine (tetryl) to determine environmental stabilities and lifetimes of trace level materials. Explosives were inkjet printed directly onto substrates and exposed to one of seven environmental conditions (Laboratory, −4 °C, 30 °C, 47 °C, 90 % relative humidity, UV light, and ozone) up to 42 days. Throughout the study, samples were extracted and quantified using electrospray ionization mass spectrometry (ESI-MS) to determine the stability of the explosive as a function of time and environmental exposure. Statistical models were then fit to the data and used for pairwise comparisons of the environments. Stability was found to be exposure and compound dependent with minimal sample losses observed for HMX, RDX, and PETN while substantial and rapid losses were observed in all conditions except −4 °C for ETN and TNT and in all conditions for tetryl. The results of this work highlight the potential fate of explosive traces when exposed to various environments. PMID:28153227
Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour.
Herbert, Lucila T; Vázquez, Diego E; Arenas, Andrés; Farina, Walter M
2014-10-01
Glyphosate (GLY) is a broad-spectrum herbicide used for weed control. The sub-lethal impact of GLY on non-target organisms such as insect pollinators has not yet been evaluated. Apis mellifera is the main pollinator in agricultural environments and is a well-known model for behavioural research. Honeybees are also accurate biosensors of environmental pollutants and their appetitive behavioural response is a suitable tool with which to test sub-lethal effects of agrochemicals. We studied the effects of field-realistic doses of GLY on honeybees exposed chronically or acutely to the herbicide. We focused on sucrose sensitivity, elemental and non-elemental associative olfactory conditioning of the proboscis extension response (PER), and foraging-related behaviour. We found a reduced sensitivity to sucrose and learning performance for the groups chronically exposed to GLY concentrations within the range of recommended doses. When olfactory PER conditioning was performed with sucrose reward with the same GLY concentrations (acute exposure), elemental learning and short-term memory retention decreased significantly compared with controls. Non-elemental associative learning was also impaired by an acute exposure to GLY traces. Altogether, these results imply that GLY at concentrations found in agro-ecosystems as a result of standard spraying can reduce sensitivity to nectar reward and impair associative learning in honeybees. However, no effect on foraging-related behaviour was found. Therefore, we speculate that successful forager bees could become a source of constant inflow of nectar with GLY traces that could then be distributed among nestmates, stored in the hive and have long-term negative consequences on colony performance. © 2014. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias
2013-04-01
Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation. The method was developed for the multi-element isotope analysis (carbon and hydrogen) of priority volatile organic groundwater pollutants (methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene and o-xylene (BTEX)), and for carbon isotope analysis of chlorinated benzenes and ethenes. The extraction and injection conditions were optimized in terms of maximum sensitivity and minimum isotope effects. During the injection of the headspace sample, the liner is maintained at a low temperature, such that the compounds are retained in a hydrophobic insert packing while the water vapor is eliminated through the split line. With the optimized conditions, it was possible to inject up to 5mL headspace sample with no significant carbon or hydrogen isotopic effects except for the most hydrophobic substance (MTBE), which was subject to a small and reproducible isotope fractionation for hydrogen. The increment on method sensitivity was at least 20 fold in comparison with conventional static headspace analysis. The environmental applicability of the HS-PTV-GC-IRMS method was evaluated by the analysis of groundwater samples from different contaminated field sites, containing BTEX and chlorinated volatile organic contaminants in the low µg/L range. The results obtained demonstrate that this pre-concentration technique is highly promising to enhance the limits of detection of current CSIA methods and broaden its possibilities.
Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D
2017-02-01
This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental Communications Today: An Educator's Perspective.
ERIC Educational Resources Information Center
Schoenfeld, Clay
1979-01-01
The article traces the origins of environmental communications and focuses on several categories of environmental communication. It specifies the common denominators of the various forms of environmental communications. An appendix of journals that accept freelance environmental articles is included. (RE)
Locating trace plutonium in contaminated soil using micro-XRF imaging
Worley, Christopher G.; Spencer, Khalil J.; Boukhalfa, Hakim; ...
2014-06-01
Micro-X-ray fluorescence (MXRF) was used to locate minute quantities of plutonium in contaminated soil. Because the specimen had previously been prepared for analysis by scanning electron microscopy, it was coated with gold to eliminate electron beam charging. However, this significantly hindered efforts to detect plutonium by MXRF. The gold L peak series present in all spectra increased background counts. Plutonium signal attenuation by the gold coating and severe peak overlap from potassium in the soil prevented detection of trace plutonium using the Pu Mα peak. However, the 14.3 keV Pu Lα peak sensitivity was not optimal due to poor transmissionmore » efficiency through the source polycapillary optic, and the instrument silicon drift detector sensitivity quickly declines for peaks with energies above ~10 keV. Instrumental parameters were optimized (eg. using appropriate source filters) in order to detect plutonium. An X-ray beam aperture was initially used to image a majority of the specimen with low spatial resolution. A small region that appeared to contain plutonium was then imaged at high spatial resolution using a polycapillary optic. Small areas containing plutonium were observed on a soil particle, and iron was co-located with the plutonium. Zinc and titanium also appeared to be correlated with the plutonium, and these elemental correlations provided useful plutonium chemical state information that helped to better understand its environmental transport properties.« less
Reeves, Mari Kathryn; Perdue, Margaret; Munk, Lee Ann; Hagedorn, Birgit
2018-07-15
Studies of environmental processes exhibit spatial variation within data sets. The ability to derive predictions of risk from field data is a critical path forward in understanding the data and applying the information to land and resource management. Thanks to recent advances in predictive modeling, open source software, and computing, the power to do this is within grasp. This article provides an example of how we predicted relative trace element pollution risk from roads across a region by combining site specific trace element data in soils with regional land cover and planning information in a predictive model framework. In the Kenai Peninsula of Alaska, we sampled 36 sites (191 soil samples) adjacent to roads for trace elements. We then combined this site specific data with freely-available land cover and urban planning data to derive a predictive model of landscape scale environmental risk. We used six different model algorithms to analyze the dataset, comparing these in terms of their predictive abilities and the variables identified as important. Based on comparable predictive abilities (mean R 2 from 30 to 35% and mean root mean square error from 65 to 68%), we averaged all six model outputs to predict relative levels of trace element deposition in soils-given the road surface, traffic volume, sample distance from the road, land cover category, and impervious surface percentage. Mapped predictions of environmental risk from toxic trace element pollution can show land managers and transportation planners where to prioritize road renewal or maintenance by each road segment's relative environmental and human health risk. Published by Elsevier B.V.
Sensitive method to monitor trace quantities of benzanthrone in workers of dyestuff industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, A.; Khanna, S.K.; Singh, G.B.
1986-03-01
Dyestuff workers coming in contact with benzanthrone (an intermediate used for the synthesis of a variety of dyes) develop skin lesions, gastritis, liver malfunctions, and sexual disturbances. A highly sensitive fluorometric method to monitor trace quantities of benzanthrone in urine, serum, and biological tissues for experimental studies, has been developed. Coupled with simple extraction and resolution, optimum fluorescence is obtained in an equal mixture of chloroform:methanol, detecting as low as 2 ng benzanthrone. This method is approximately 250 times more sensitive than currently available colorimetric assay.
Some thoughts on problems associated with various sampling media used for environmental monitoring
Horowitz, A.J.
1997-01-01
Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.
Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2014-11-01
Vortex-assisted dispersive liquid-liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high-performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5-39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01-0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4-110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Previous studies have revealed that hair trace element concentrations can reflect exposure in cases of frank poisoning and deficiency. Correlations have been found also in some populations living in regions where metallurgic processes are conducted. This study reports significant...
Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...
Service Delivery and Related Issues at the Trace Research and Development Center.
ERIC Educational Resources Information Center
Smith, R. O.
The environmental context of the Trace Center is first briefly described as background for a more detailed description of the center's service delivery activities in the field of rehabilitation/education technology. Trace serves four major functions in rehabilitation/education technology. As a nationally funded rehabilitation engineering center,…
Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S
2018-01-01
The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huerta, B; Rodríguez-Mozaz, S; Barceló, D
2012-11-01
The presence of pharmaceuticals in the aquatic environment is an ever-increasing issue of concern as they are specifically designed to target specific metabolic and molecular pathways in organisms, and they may have the potential for unintended effects on nontarget species. Information on the presence of pharmaceuticals in biota is still scarce, but the scientific literature on the subject has established the possibility of bioaccumulation in exposed aquatic organisms through other environmental compartments. However, few studies have correlated both bioaccumulation of pharmaceutical compounds and the consequent effects. Analytical methodology to detect pharmaceuticals at trace quantities in biota has advanced significantly in the last few years. Nonetheless, there are still unresolved analytical challenges associated with the complexity of biological matrices, which require exhaustive extraction and purification steps, and highly sensitive and selective detection techniques. This review presents the trends in the analysis of pharmaceuticals in aquatic organisms in the last decade, recent data about the occurrence of these compounds in natural biota, and the environmental implications that chronic exposure could have on aquatic wildlife.
Nakamura, Tomofumi; Hamasaki, Mitsuhiro; Yoshitomi, Hideaki; Ishibashi, Tetsuya; Yoshiyama, Chiharu; Maeda, Eriko; Yoshida, Hiromu
2015-01-01
Environmental virus surveillance was conducted at two independent sewage plants from urban and rural areas in the northern prefecture of the Kyushu district, Japan, to trace polioviruses (PVs) within communities. Consequently, 83 PVs were isolated over a 34-month period from April 2010 to January 2013. The frequency of PV isolation at the urban plant was 1.5 times higher than that at the rural plant. Molecular sequence analysis of the viral VP1 gene identified all three serotypes among the PV isolates, with the most prevalent serotype being type 2 (46%). Nearly all poliovirus isolates exhibited more than one nucleotide mutation from the Sabin vaccine strains. During this study, inactivated poliovirus vaccine (IPV) was introduced for routine immunization on 1 September 2012, replacing the live oral poliovirus vaccine (OPV). Interestingly, the frequency of PV isolation from sewage waters declined before OPV cessation at both sites. Our study highlights the importance of environmental surveillance for the detection of the excretion of PVs from an OPV-immunized population in a highly sensitive manner, during the OPV-to-IPV transition period. PMID:25556189
Ternengo, S; Marengo, M; El Idrissi, O; Yepka, J; Pasqualini, V; Gobert, S
2018-04-01
A study on Trace Elements (TE) from sea urchin gonads has been conducted in the western Mediterranean Sea. Contamination data were used to determine a Trace Method Pollution Index (TEPI). TE concentrations varied considerably depending on the location of the sampling stations. The results showed that five trace elements (Zn, Fe, As, Al, Cu) are ubiquitous. The geographical area considered (Corsica) represents an important range of environmental conditions and types of pressure that can be found in the western Mediterranean Sea. TEPI was used to classify the studied sites according to their degree of contamination and allowed reliable comparison of TE contamination between local and international sites. TE contamination of the western Mediterranean Sea displayed a north-to-south gradient, from the Italian coasts down through the insular Corsican coasts to the north African littoral. Due to the increasing environmental pressure on the Mediterranean Sea, a regular monitoring of TE levels in marine organisms is necessary to prevent any further environmental deterioration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue.
Geng, Fei; Zhao, Huaping; Fu, Qun; Mi, Yan; Miao, Likun; Li, Wei; Dong, Yulian; Wu, Minghong; Lei, Yong
2018-07-20
In comparison to conventional spectroscopic techniques based on chromatography, surface-enhanced Raman spectroscopy (SERS) enables the rapid identification and detection of trace pesticide residues present in trace amounts in the environment and foods. Herein, a facile approach to fabricate unique gold nanochestnuts (GNCs) as an ultra-sensitive SERS substrate for detecting trace pesticide residues has been developed based on anodic aluminum oxide (AAO) templates. The GNCs are synthesized through the galvanic replacement of Ag on the top of Ni nanorod arrays. The as-prepared GNCs have well-controlled structural parameters, and importantly have unique anisotropic morphologies that benefit the enhancement in SERS performance. As a result, rhodamine 6 G (R6G) can be efficiently detected with GNCs as the SERS substrate even with a concentration of only 10 -12 M, and the Raman enhancement factor reaches up to 5.4 × 10 9 at this concentration. Further SERS measurement of thiram indicates a remarkable SERS-active sensitivity of the as-prepared GNCs with a detection limit of thiram up to 10 -14 M. The GNCs also exhibit a high signal-to-noise ratio.
Quantum cascade laser-based sensor system for nitric oxide detection
NASA Astrophysics Data System (ADS)
Tittel, Frank K.; Allred, James J.; Cao, Yingchun; Sanchez, Nancy P.; Ren, Wei; Jiang, Wenzhe; Jiang, Dongfang; Griffin, Robert J.
2015-01-01
Sensitive detection of nitric oxide (NO) at ppbv concentration levels has an important impact in diverse fields of applications including environmental monitoring, industrial process control and medical diagnostics. For example, NO can be used as a biomarker of asthma and inflammatory lung diseases such as chronic obstructive pulmonary disease. Trace gas sensor systems capable of high sensitivity require the targeting of strong rotational-vibrational bands in the mid-IR spectral range. These bands are accessible using state-of-the-art high heat load (HHL) packaged, continuous wave (CW), distributed feedback (DFB) quantum cascade lasers (QCLs). Quartz-enhanced photoacoustic spectroscopy (QEPAS) permits the design of fast, sensitive, selective, and compact sensor systems. A QEPAS sensor was developed employing a room-temperature CW DFB-QCL emitting at 5.26 μm with an optical excitation power of 60 mW. High sensitivity is achieved by targeting a NO absorption line at 1900.08 cm-1 free of interference by H2O and CO2. The minimum detection limit of the sensor is 7.5 and 1 ppbv of NO with 1and 100 second averaging time respectively . The sensitivity of the sensor system is sufficient for detecting NO in exhaled human breath, with typical concentration levels ranging from 24.0 ppbv to 54.0 ppbv.
Overview of the International Space Station System Level Trace Contaminant Injection Test
NASA Technical Reports Server (NTRS)
Tatara, James D.; Perry, Jay L.; Franks, Gerald D.
1997-01-01
Trace contaminant control onboard the International Space Station will be accomplished not only by the Trace Contaminant Control Subassembly but also by other Environmental Control and Life Support System subassemblies. These additional removal routes include absorption by humidity condensate in the Temperature and Humidity Control Condensing Heat Exchanger and adsorption by the Carbon Dioxide Removal Assembly. The Trace Contaminant Injection Test, which was performed at NASA's Marshall Space Flight Center, investigated the system-level removal of trace contaminants by the International Space Station Atmosphere Revitalization, and Temperature/Humidity Control Subsystems, (November-December 1997). It is a follow-on to the Integrated Atmosphere Revitalization Test conducted in 1996. An estimate for the magnitude of the assisting role provided by the Carbon Dioxide Removal Assembly and the Temperature and Humidity Control unit was obtained. In addition, data on the purity of Carbon Dioxide Removal Assembly carbon dioxide product were obtained to support Environmental Control and Life Support System Air Revitalization Subsystem loop closure.
Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.
2017-01-01
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065
Veh, R W
1991-01-02
For double tracing experiments, wheat germ agglutinin (WGA) molecules labeled with two different haptens are desirable. In the present report the suitability of digoxigenylated WGA (DIG-WGA) for retrograde tracing was investigated. For this purpose the new tracer was pressure injected into rat brains and the transported DIG-WGA visualized via its digoxigenyl group with an alkaline phosphatase linked anti DIG antibody in permanently stained sections of high quality. With fixatives containing 2.5% glutaraldehyde only few positive cells were found. However, at milder fixation conditions (4% paraformaldehyde, 0.05% glutaraldehyde 0.2% picric acid, 30 min) retrogradely labeled cells were detected with a sensitivity comparable to tetramethylbenzidine protocols for conventional WGA-HRP (horseradish peroxidase) tracing. Preliminary experiments suggest excellent suitability for double labeling.
Alvarez, David A.; Huckins, James N.; Petty, Jimmie D.; Jones-Lepp, Tammy L.; Stuer-Lauridsen, Frank; Getting, Dominic T.; Goddard, Jon P.; Gravell, Anthony
2007-01-01
The development of the polar organic chemical integrative sampler (POCIS) provides environmental scientists and policy makers a tool for assessing the presence and potential impacts of the hydrophilic component of these organic contaminants. The POCIS provides a means for determining the time-weighted average (TWA) concentrations of targeted chemicals that can be used in risk assessments to determine the biological impact of hydrophilic organic compounds (HpOCs) on the health of the impacted ecosystem. Field studies have shown that the POCIS has advantages over traditional sampling methods in sequestering and concentrating ultra-trace to trace levels of chemicals over time resulting in increased method sensitivity, ability to detect chemicals with a relatively short residence time or variable concentrations in the water, and simplicity in use. POCIS extracts can be tested using bioassays and can be used in organism dosing experiments for determining toxicological significance of the complex mixture of chemicals sampled. The POCIS has been successfully used worldwide under various field conditions ranging from stagnant ponds to shallow creeks to major river systems in both fresh and brackish water.
Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...
Environmental control of U concentration and 234U/238U in speleothems at subannual resolution
NASA Astrophysics Data System (ADS)
Hu, C.; Henderson, G. M.
2003-12-01
Trace element and isotope variability in speleothems encodes a range of information about the past environment, although its interpretation is often problematic. U concentration and isotopes have frequently been analysed in speleothems in order to provide chronology, but their use as environmental proxies in their own right has not been comprehensively investigated. In this study, we have investigated the environmental controls of U in a stalagmite from the Central Yangtze Valley in China. This stalagmite grew rapidly throughout the Holocone and contains visible annual layers about 300microns thick. Analysis of a portion of the stalagmite corresponding to the 1970s by electron probe, LA-ICP-MS, and by physical subsampling indicate clear annual cycles in Sr/Ca, Mg/Ca, and Ba/Ca. The reasonably open cave structure and the correlation of Sr/Ca with Mg/Ca suggest that temperature exerts considerable control over these trace element variations. U/Ca also varies seasonally by up to 42 % and shows a clear anti-correlation with Mg/Ca (correlation coefficient -0.64). Based on the inverse relationship between U/Ca and temperature exhibited in other carbonates (e.g. corals) the speleothem U/Ca is suggested to be controlled primarily by temperature and may provide a paleo cave thermometer with less rainfall influence than Mg/Ca. Ongoing monitoring of the cave temperature and humidity will assess the robustness of this conclusion and the sensitivity of speleothem U/Ca to temperature. (234U/238U) in this stalagmite range from 1.733 to 1.872 during the Holocene. The U concentration is high enough (typically 0.48 ppm) and growth rate fast enough, that (234U/238U) can also be measured at a subannual resolution. The expected alpha-recoil control of excess 234U supply suggests that these measurements may provide a measure of the transit time of recharge waters to the stalagmite during the seasonal cycle. Such a proxy would enable deconvolution of temperature and recharge-rate control in trace element records from speleothems.
Context-sensitive trace inlining for Java.
Häubl, Christian; Wimmer, Christian; Mössenböck, Hanspeter
2013-12-01
Method inlining is one of the most important optimizations in method-based just-in-time (JIT) compilers. It widens the compilation scope and therefore allows optimizing multiple methods as a whole, which increases the performance. However, if method inlining is used too frequently, the compilation time increases and too much machine code is generated. This has negative effects on the performance. Trace-based JIT compilers only compile frequently executed paths, so-called traces, instead of whole methods. This may result in faster compilation, less generated machine code, and better optimized machine code. In the previous work, we implemented a trace recording infrastructure and a trace-based compiler for [Formula: see text], by modifying the Java HotSpot VM. Based on this work, we evaluate the effect of trace inlining on the performance and the amount of generated machine code. Trace inlining has several major advantages when compared to method inlining. First, trace inlining is more selective than method inlining, because only frequently executed paths are inlined. Second, the recorded traces may capture information about virtual calls, which simplify inlining. A third advantage is that trace information is context sensitive so that different method parts can be inlined depending on the specific call site. These advantages allow more aggressive inlining while the amount of generated machine code is still reasonable. We evaluate several inlining heuristics on the benchmark suites DaCapo 9.12 Bach, SPECjbb2005, and SPECjvm2008 and show that our trace-based compiler achieves an up to 51% higher peak performance than the method-based Java HotSpot client compiler. Furthermore, we show that the large compilation scope of our trace-based compiler has a positive effect on other compiler optimizations such as constant folding or null check elimination.
Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R
2014-01-01
Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions of sediment at the sites differed spatially, indicating that the Pb (and other trace elements by association) originated from different natural sources at the two locations.
Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N
2016-07-01
The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Hongyan; Lin, Ling; Zeng, Xiaoxue; Ruan, Yajuan; Wu, Yongning; Lin, Minggui; He, Ye; Fu, FengFu
2016-04-15
We herein developed a novel biosensor for the visual detection of trace uranyl ion (UO2(2+)) in aqueous environment with high sensitivity and specificity by using DNAzyme-functionalized magnetic beads (MBs) for UO2(2+) recognition and gold nano-particles (AuNPs)-based enzymatic catalysis oxidation of TMB (3,3',5,5'-tetramethylbenzidine sulfate) for signal generation. The utilization of MBs facilitates the magnetic separation and collection of sensing system from complex sample solution, which leads to more convenient experimental operation and more strong resistibility of the biosensor to the matrix of sample, and the utilization of AuNPs-based enzymatic catalysis amplification greatly improved the sensitivity of the biosensor. Compared with the previous DNAzyme-based UO2(2+) sensors, the proposed biosensor has outstanding advantages such as relative high sensitivity and specificity, operation convenience, low cost and more strong resistibility to the matrix of sample. It can be used to detect as low as 0.02 ppb (74 pM) of UO2(2+) in aqueous environment by only naked-eye observation and 1.89 ppt (7.0 pM) of UO2(2+) by UV-visible spectrophotometer with a recovery of 93-99% and a RSD ≤ 5.0% (n=6) within 3h. Especially, the visual detection limit of 0.02 ppb (74 pM) is much lower than the maximum allowable level of UO2(2+) (130 nM) in the drinking water defined by the U.S. Environmental Protection Agency (EPA), indicating that our method meets the requirement of rapid and on-site detection of UO2(2+) in the aqueous environment by only naked-eye observation. Copyright © 2015 Elsevier B.V. All rights reserved.
Feasibility study of mid-infrared absorption spectroscopy using electrospray ionization
NASA Astrophysics Data System (ADS)
Ahmed, Tahsin; Foster, Erick; Bohn, Paul; Howard, Scott
2016-09-01
Precise detection of trace amount of molecules, such as the disease biomarkers present in biofluids or explosive residues, requires high sensitivity detection. electrospray ionization-mass spectrometry (ESI-MS) is a common and effective technique for sensitive trace molecular detection in small-volume liquid samples. In ESI-MS, nano-liter volume samples are ionized and aerosolized by ESI, and fed into MS for mass analysis. ESI-MS has proven to be a reliable ionization technique for coupling liquid phase separations like liquid chromatography (LC) and capillary zone electrophoresis (CE) with the highly specific resolving power of MS. While CE and ESI can be performed on a microfluidic chip having a footprint of a few cm2, MS is typically at least 100 times bigger in size than a micro-chip. A reduced size, weight, and power profile would enable semi-portable applications in forensics, environmental monitoring, defense, and biological/pharmaceutical applications. To achieve this goal, we present an initial study evaluating the use of mid-infrared absorption spectroscopy (MIRAS) in place of MS to create a ESI-MIRAS system. To establish feasibility, we perform ESI-MIRAS on phospholipid samples, which have been previously demonstrated to be separable by CE. Phospholipids are biomarkers of degenerative neurological, kidney, and bone diseases and can be found in biofluids such as blood, urine and cerebrospinal fluid. To establish sensitivity limits, calibration samples of 100 μM concentration are electrospray deposited on to a grounded Si wafer for different times (1 minutes to 4 minutes with a 1 minute step). The minimum detectable concentration-time product, where a FTIR globar is used as the MIR source, is found 200 μM·s.
Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng
2014-08-01
Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.
NASA Astrophysics Data System (ADS)
Dasher, D. H.; Lomax, T. J.; Bethe, A.; Jewett, S.; Hoberg, M.
2016-02-01
A regional probabilistic survey of 20 randomly selected stations, where water and sediments were sampled, was conducted over an area of Simpson Lagoon and Gwydyr Bay in the Beaufort Sea adjacent Prudhoe Bay, Alaska, in 2014. Sampling parameters included water column for temperature, salinity, dissolved oxygen, chlorophyll a, nutrients and sediments for macroinvertebrates, chemistry, i.e., trace metals and hydrocarbons, and grain size. The 2014 probabilistic survey design allows for inferences to be made of environmental status, for instance the spatial or aerial distribution of sediment trace metals within the design area sampled. Historically, since the 1970's a number of monitoring studies have been conducted in this estuary area using a targeted rather than regional probabilistic design. Targeted non-random designs were utilized to assess specific points of interest and cannot be used to make inferences to distributions of environmental parameters. Due to differences in the environmental monitoring objectives between probabilistic and targeted designs there has been limited assessment see if benefits exist to combining the two approaches. This study evaluates if a combined approach using the 2014 probabilistic survey sediment trace metal and macroinvertebrate results and historical targeted monitoring data can provide a new perspective on better understanding the environmental status of these estuaries.
NASA Astrophysics Data System (ADS)
Wang, Shaofei; Jiang, Jiaolai; Wu, Haoxi; Jia, Jianping; Shao, Lang; Tang, Hao; Ren, Yiming; Chu, Mingfu; Wang, Xiaolin
2017-06-01
A facile surface-enhanced Raman scattering (SERS) substrate based on the self-assembly of silver nanoparticles on the modified silicon wafer was obtained, and for the first time, an advanced SERS analysis method basing on this as-prepared substrate was established for high sensitive and rapid detection of uranyl ions. Due to the weakened bond strength of Odbnd Udbnd O resulting from two kinds of adsorption of uranyl species (;strong; and ;weak; adsorption) on the substrate, the ν1 symmetric stretch vibration frequency of Odbnd Udbnd O shifted from 871 cm- 1 (normal Raman) to 720 cm- 1 and 826 cm- 1 (SERS) along with significant Raman enhancement. Effects of the hydrolysis of uranyl ions on SERS were also investigated, and the SERS band at 826 cm- 1 was first used to approximately define the constitution of uranyl species at trace quantity level. Besides, the SERS intensity was proportional to the variable concentrations of uranyl nitrate ranging from 10- 7 to 10- 3 mol L- 1 with an excellent linear relation (R2 = 0.998), and the detection limit was 10- 7 mol L- 1. Furthermore, the related SERS approach involves low-cost substrate fabrication, rapid and trace analysis simultaneously, and shows great potential applications for the field assays of uranyl ions in the nuclear fuel cycle and environmental monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skelly, E.M.
A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine,more » blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.« less
Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program
NASA Astrophysics Data System (ADS)
Anderson, Robert F.; Hayes, Christopher T.
2015-04-01
Trace elements and their isotopes (TEIs) are of priority interest in several subdisciplines of oceanography. For example, the vital role of trace element micronutrients in regulating the growth of marine organisms, which, in turn, may influence the structure and composition of marine ecosystems, is now well established (Morel and Price, 2003; Twining and Baines, 2013). Natural distributions of some TEIs have been severely impacted by anthropogenic emissions, leading to substantial perturbations of natural ocean inventories. Pb and Hg, for example, (Lamborg et al., 2002; Schaule and Patterson, 1981), may represent a significant threat to human food supply. Furthermore, much of our knowledge of past variability in the ocean environment, including the ocean's role in climate change, has been developed using TEI proxies archived in marine substrates such as sediments, corals and microfossils. Research in each of these areas relies on a comprehensive knowledge of the distributions of TEIs in the ocean, and on the sensitivity of these distributions to changing environmental conditions. With numerous processes affecting the regional supply and removal of TEIs in the ocean, a comprehensive understanding of the marine biogeochemical cycles of TEIs can be attained only by a global, coordinated, international effort. GEOTRACES, an international program designed to study the marine biogeochemical cycles of trace elements and their isotopes (Anderson et al., 2014; Henderson et al., 2007), aims to achieve these goals.
Huang, Ke-Jing; Li, Jing; Liu, Yan-Ming; Wang, Lan
2013-02-01
The graphene functionalized with (3-aminopropyl) triethoxysilane was synthesized by a simple hydrothermal reaction and applied as SPE sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. These sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large specific surface area of nanoparticles, and only 10 mg of sorbents are required to extract PAHs from 100 mL water samples. Several condition parameters, such as eluent and its volume, adsorbent amount, sample volume, sample pH, and sample flow rate, were optimized to achieve good sensitivity and precision. Under the optimized extraction conditions, the method showed good linearity in the range of 1-100 μg/L, repeatability of the extraction (the RSDs were between 1.8 and 2.9%, n = 6), and satisfactory detection limits of 0.029-0.1 μg/L. The recoveries of PAHs spiked in environmental water samples ranged from 84.6 to 109.5%. All these results demonstrated that this new SPE technique was a viable alternative to conventional enrichment techniques for the extraction and analysis of PAHs in complex samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Goudie, Andrew
1990-01-01
Traces the history of futuristic predictions of environmental changes. Focuses on particular documents published on environmental change predictions. Identifies particular instances of environmental change, such as the rate of species loss and the greenhouse effect. Maintains that predictions of future environmental changes are fraught with…
Why Environmental Education? It Is Critical to Maintaining Our Quality of Life.
ERIC Educational Resources Information Center
Browner, Carol M.
1995-01-01
Traces the progress of environmental education and discusses its role in enhancing the quality of life on our planet. Describes several initiatives aimed at deepening environmental awareness among all Americans and enhancing participation in solving environmental problems. (JRH)
NASA Astrophysics Data System (ADS)
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-01
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02878k
Atmosphere Resource Recovery and Environmental Monitoring Trace Contaminant Control Through FY 2012
NASA Technical Reports Server (NTRS)
Perry, J. L.; Pruitt, M. W.; Wheeler, R. M.; Monje, O.
2013-01-01
Trace contaminant control has been a concern of spacecraft designers and operators from early in the progression of manned spaceflight. Significant technological advancement has occurred since the first designs were implemented in the 1960s, culminating in the trace contaminant control system currently in use aboard the International Space Station as part of the atmosphere revitalization system.
CO2 lidar for measurements of trace gases and wind velocities
NASA Technical Reports Server (NTRS)
Hess, R. V.
1982-01-01
CO2 lidar systems technology and signal processing requirements relevant to measurement needs and sensitivity are discussed. Doppler processing is similar to microwave radar, with signal reception controlled by a computer capable of both direct and heterodyne operations. Trace gas concentrations have been obtained with the NASA DIAL system, and trace gas transport has been determined with Doppler lidar measurements for wind velocity and turbulence. High vertical resolution measurement of trace gases, wind velocity, and turbulence are most important in the planetary boundary layer and in regions between the PBL and the lower stratosphere. Shear measurements are critical for airport operational safety. A sensitivity analysis for heterodyne detection with the DIAL system and for short pulses using a Doppler lidar system is presented. The development of transient injection locking techniques, as well as frequency stability by reducing chirp and catalytic control of closed cycle CO2 laser chemistry, is described.
Lambropoulou, Dimitra A; Albanis, Triantafyllos A
2004-12-17
The presence of vinclozolin in the environment as far as the endocrine disruption effects in biota are concerned has raised interest in the environmental fate of this compound. In this respect, the present study attempts to investigate the feasibility of applying a novel quantitative method, liquid-phase microextraction (LPME), so as to determine this environmental andiandrogen in environmental samples such as water and sediment samples. The technique involved the use of a small amount (3 microL) of organic solvent impregnated in a hollow fiber membrane, which was attached to the needle of a conventional GC syringe. The extracted samples were analyzed by gas chromatography coupled with electron-capture detection. Experimental LPME conditions such as extraction solvent, stirring rate, content of NaCl and pH were tested. Once LPME was optimized, the performance of the proposed technique was evaluated for the determination of vinclozolin in different types of natural water samples. The recovery of spiked water samples was from 80 to 99%. The procedure was adequate for quantification of vinclozolin in waters at levels of 0.010 to 50 microg/L (r> 0.994) with a detection limit of 0.001 microg/L (S/N= 3). Natural sediment samples from the Aliakmonas River area (Macedonia, Greece) spiked with the target andiandrogen compound were liquid-liquid extracted and analyzed by the methodology developed in this work. No significant interferences from the samples matrix were noticed, indicating that the reported methodology is an innovative tactic for sample preparation in sediment analysis, with a considerable improvement in the achieved detection limits. The results demonstrated that apart from analyte enrichment, the proposed LPME procedure also serves as clean-up method and could be successfully performed to determine trace amounts of vinclozolin in water and sediment samples.
Cullinan, David B; Hondrogiannis, George; Henderson, Terry J
2008-04-15
Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.
Sensitivity of trace element pyritization to pyrite oxidation processes
NASA Astrophysics Data System (ADS)
Moreira, Manuel; Díaz, Rut; Mendoza, Ursula; Capilla, Ramses; Böttcher, Michael; Luiza Albuquerque, Ana; Machado, Wilson
2014-05-01
Total trace elements concentration variability in marine sediments has been widely used as a proxy for redox conditions and marine paleoprodutivity. However, partial extraction procedures reduce influences of detrital sedimentary fractions, and information on trace element geochemical partitioning can contribute to provide comprehensive evidences on elemental sensitivity to particular processes. The potential effect of sedimentary pyrite re-oxidative cycling on the degree of trace metal pyritization (DTMP) has not been previously evaluated. This study investigates this effect in 4 sediment cores from the continental shelf under the influence of a tropical upwelling system (Cabo Frio, Brazil). The relation of DTMP with stable isotope signals (δ34SCRS) of chromium reducible sulfur, which becomes lighter in response to intense pyrite re-oxidative cycling in the study area, suggests high (As, Cd and Mn), low (Cu and Zn) or negligible (Cr and Ni) re-oxidation influences. The oldest, pyrite-richer sediments provide an apparent threshold for intense pyrite re-oxidation, after which most trace elements (As, Cd, Zn and Mn) presented more accentuated pyritization. A middle shelf core presented negative correlations of reactive (HCl-soluble) Mn, Cu and Ni with pyrite iron, suggesting Mn oxide (and associated metals) depletion in reaction with pyrite. Results provided evidences for coupled influences from both aerobic and anaerobic oxidative processes on trace elements incorporation into pyrite. Pyrite δ34S signatures under the oxic bottom water from the study area were similar to those from euxinic sedimentary environments, suggesting that pyrite re-oxidative cycling can affect trace element susceptibility to be incorporated and preserved into pyrite in a wide range of sedimentary conditions. The evaluation of trace elements sensitivity to these processes can contribute to improve the use of multiple DTMP data (e.g., as paleoredox proxies). Considering that S re-oxidative cycling is ubiquitous in many sedimentary conditions, such coupled use of DTMP and δ34SCRS proxies can be possibly applied to a large variety of sedimentary environments.
High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers
NASA Technical Reports Server (NTRS)
Reid, J.; Sinclair, R. L.; Grant, W. B.; Menzies, R. T.
1985-01-01
A detailed study of the detection of trace gases at atmospheric pressure using tunable diode lasers is described. The influence of multipass cells, retroreflectors and topographical targets is examined. The minimum detectable infrared absorption ranges from 0.1 percent for a pathlength of 1.2 km to 0.01 percent over short pathlengths. The factors which limit this sensitivity are discussed, and the techniques are illustrated by monitoring atmospehric CO2 and CH4.
Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu
2016-04-01
A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) < 6% and a recovery of 92-108%. Ultra-high sensitivity, as well as much less sample and reagent consumption and low operating cost, make our method a valuable technique to the speciation analysis of ultra-trace mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ray-trace analysis of glancing-incidence X-ray optical systems
NASA Technical Reports Server (NTRS)
Foreman, J. W., Jr.; Cardone, J. M.
1976-01-01
The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.
Measurement of curium in marine samples
NASA Astrophysics Data System (ADS)
Schneider, D. L.; Livingston, H. D.
1984-06-01
Measurement of environmentally small but detectable amounts of curium requires reliable, accureate, and sensitive analytical methods. The radiochemical separation developed at Woods Hole is briefly reviewed with specific reference to radiochemical interferences in the alpha spectrometric measurement of curium nuclides and to the relative amounts of interferences expected in different oceanic regimes and sample types. Detection limits for 242 Cm and 244 Cm are ultimately limited by their presence in the 243Am used as curium yield monitor. Environmental standard reference materials are evaluated with regard to curium. The marine literature is reviewed and curium measurements are discussed in relation to their source of introduction to the environment. Sources include ocean dumping of low-level radioactive wastes and discharges from nuclear fuel reporcessing activities, In particular, the question of a detectable presence of 244Cm in global fallout from nuclear weapons testing is addressed and shown to be essentially negligible. Analyses of Scottish coastal sedimantes show traces of 242Cm and 244Cm activity which are believed to originate from transport from sources in the Irish Sea.
Musco, Marianna; Cuttitta, Angela; Bicchi, Erica; Quinci, Enza Maria; Sprovieri, Mario; Tranchida, Giorgio; Giaramita, Luigi; Traina, Anna; Salvagio Manta, Daniela; Gherardi, Serena; Mercurio, Pietro; Siragusa, Angelo; Mazzola, Salvatore
2017-04-15
This study investigates living benthic foraminiferal assemblages as bio-indicators of anthropogenic activities in a coastal area within the Gulf of Palermo (Sicily, Italy), affected by industrial and urban activities, and evaluates the environmental quality through the calibration of a Tolerant Species index (%TS std ). Sediments from 6 stations were sampled along a bathymetric transect from the coast to offshore. Sediment grain size, TOC, major, minor and trace elements and polycyclic aromatic hydrocarbons (PAHs) were compared to benthic foraminiferal assemblages and species at each station. Diversity and density of benthic foraminiferal assemblages were not affected by the presence of pollutants, while tolerant species increased with organic (TOC and PAHs) or chemical (As and Pb) concentrations. Moreover, the calibration of the %TS std formula to >125μm foraminiferal assemblage, gives a detailed description of environmental quality along the transect, representing a good and sensitive tool to evaluate marine coastal environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
The use of mosses as environmental metal pollution indicators.
Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado
2003-01-01
The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.
Spacelab baseline ECS trace contaminant removal test program
NASA Technical Reports Server (NTRS)
Ray, C. D.; Stanley, J. B.
1977-01-01
An estimate of the Spacelab Baseline Environmental Control System's contaminated removal capability was required to allow determination of the need for a supplemental trace contaminant removal system. Results from a test program to determine this removal capability are presented.
Werner, Jeffrey J; Ptak, A Celeste; Rahm, Brian G; Zhang, Sheng; Richardson, Ruth E
2009-10-01
The quantification of trace proteins in complex environmental samples and mixed microbial communities would be a valuable monitoring tool in countless applications, including the bioremediation of groundwater contaminated with chlorinated solvents. Measuring the concentrations of specific proteins provides unique information about the activity and physiological state of organisms in a sample. We developed sensitive (< 5 fmol), selective bioindicator assays for the absolute quantification of select proteins used by Dehalococcoides spp. when reducing carbon atoms in the common pollutants trichloroethene (TCE) and tetrachloroethene (PCE). From complex whole-sample digests of two different dechlorinating mixed communities, we monitored the chromatographic peaks of selected tryptic peptides chosen to represent 19 specific Dehalococcoides proteins. This was accomplished using multiple-reaction monitoring (MRM) assays using nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), which provided the selectivity, sensitivity and reproducibility required to quantify Dehalococcoides proteins in complex samples. We observed reproducible peak areas (average CV = 0.14 over 4 days, n = 3) and linear responses in standard curves (n = 5, R(2) > 0.98) using synthetic peptide standards spiked into a background matrix of sediment peptides. We detected and quantified TCE reductive dehalogenase (TceA) at 7.6 +/- 1.7 x 10(3) proteins cell(-1) in the KB1 bioaugmentation culture, previously thought to be lacking TceA. Fragmentation data from MS/MS shotgun proteomics experiments were helpful in developing the MRM targets. Similar shotgun proteomics data are emerging in labs around the world for many environmentally relevant microbial proteins, and these data are a valuable resource for the future development of MRM assays. We expect targeted peptide quantification in environmental samples to be a useful tool in environmental monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, J.L.; Tyler, M.J.
1994-07-01
Frogs are more susceptible than most vertebrates to environmental contaminants. Unlike amniotes, the frog egg is not protected by a semi-impervious shell, and hence is readily exposed to pollutants. In addition, tadpoles develop in wetlands to which many noxious substances drain from the surrounding landscape. Coupled with this high exposure rate, frogs are also very sensitive to trace elements, some pesticides, heavy metals especially when coupled with exposure to low pH and ionizing radiation. Frogs commonly exhibit discernible deformities following exposure to teratogenic contaminants, and therefore are valuable indicators of the existence of noxious substances in the environment. The abundancemore » and ease of sampling of frogs, along with their sensitivity to environmental contaminants, makes them ideal organisms for environmental monitoring in the Australian arid zone. The study of abnormalities in frogs has become an integral part of the Environmental Management Programme of the Olympic Dam Operations (ODO) copper-uranium-gold-silver mine in northern South Australia. The Trilling Frog (Neobatrachus centralis) is the only frog species which has been recorded at Olympic Dam. It is likely that these frogs, are relatively sedentary, thus enhancing their value as indicator organisms. A pilot survey in 1989 documented frog deformity levels comparable to those found at undisturbed sites in Australia and in other countries. This paper reports on larger study conducted in February and March 1992 when heavy rains provided another opportunity to survey the frog population. The low levels of abnormalities support the conclusion that N. centralis at Olympic Dam does not appear to be accumulating or being influenced by the very low levels of radionuclides present here.« less
Buhl, Kevin J.; Hamilton, Steven J.
1990-01-01
The acute toxicities of four trace inorganics associated with placer mining were determined, individually and in environmentally relevant mixtures, to early life stages of Arctic grayling (Thymallus arcticus) from Alaska and Montana, coho salmon (Oncorhynchus kitsutch) from Alaska and Washington, and rainbow trout (Oncorhynchus mykiss) from Montana. The descending rank order of toxicity to all species and life stages was copper > zinc > lead > arsenic. For each of the three species, sensitivity to the inorganics was greater in juveniles than in alvenins or in swim-up fry. Arctic grayling from Alaska were more sensitive than the other species tested, including Arctic grayling from Montana. For Arctic grayling, sensitivity to all four inorganics was significantly greater in swim-up fry from Alaska than in alevins from Montana, and sensitivity to arsenic and copper was significantly greater in juveniles from Alaska than in juveniles from Montana. In tests with environmentally relevant mixtures (based on ratios of concentrations measured in streams with placer mining) of these four inorganics, copper was identified as the major toxic component because it accounted for ⩾97% of the summed toxic units of the mixture, and an equitoxic mixture of these inorganics showed less-than-additive toxicity. Total and total recoverable copper concentrations reported in five Alaskan streams with active placer mines were higher than the acutely toxic concentrations, either individually or in mixtures, that the authors found to be acutely toxic to Arctic grayling and coho salmon from Alaska. However, caution should be used when comparing our results obtained in “clear” water to field situations, because speciation and toxicity of these inorganics may be altered in the presence of sediments suspended by placer mining activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Xin; Wang, Qiang; Chen, Xiangnan
2014-11-17
A core-shell structured hybrid of polyaniline at helical carbon nanotubes was synthesized using in situ polymerization, which the helical carbon nanotubes were uniformly surrounded by a layer of polyaniline nanorods array. More interestingly, repeatable responses were experimentally observed that the sensitivity to ammonia gas of the as-prepared helical shaped core-shell hybrid displays an enhancement of more than two times compared to those of only polyaniline or helical carbon nanotubes sensors because of the peculiar structures with high surface area. This kind of hybrid comprising nanorod arrays of conductive polymers covering carbon nanotubes and related structures provide a potential in sensorsmore » of trace gas detection for environmental monitoring and safety forecasting.« less
Martí Gamboa, Sabina; Giménez, Olga Redrado; Mancho, Jara Pascual; Moros, María Lapresta; Sada, Julia Ruiz; Mateo, Sergio Castan
2017-04-01
Objective The objective of this study was to determine ability to detect neonatal acidemia and interobserver agreement with the FIGO 3-tier and 5-tier fetal heart rate (FHR) classification systems. Design This was a case-control study. Setting This study was set at the University Medical Center. Population A total of 202 FHR tracings of 102 women who delivered an acidemic fetus (umbilical arterial cord gas pH ≤ 7.10 and BE < - 8) and 100 who delivered a nonacidemic fetus (umbilical arterial cord gas pH > 7.10) were assessed. A subanalysis was performed for those fetuses who suffered severe metabolic acidemia (pH ≤ 7.0 and BE < - 12). Methods Two reviewers blind to clinical and outcome data classified tracings according to the new 3-tier system proposed by the FIGO and the 5-tier system proposed by Parer and Ikeda. Main Outcome Measures Sensitivity and specificity for detecting neonatal acidemia and interobserver agreement in classifying FHR tracings into categories of both systems were studied. Results The 3-tier system showed a greater sensitivity and lower specificity to detect neonatal acidemia (43.6% sensitivity, 82.5% specificity) and severe metabolic acidemia (71.4% sensitivity, 74.0% specificity) compared with the 5-tier system (36.3% sensitivity, 88% specificity and 61.9% sensitivity, 80.1% specificity, respectively). Both systems were compared by area under the receiver-operating characteristic curve, with comparable predictive ability for detecting neonatal acidemia (FIGO-area under the curve [AUC]: 0.63 [95% confidence interval [CI]: 0.57-0.68] and Parer-AUC: 0.62 [95% CI: 0.56-0.67]). Interobserver agreement was moderate for both systems, but performance at each specific category showed a better agreement for the 5-tier system identifying a pathological tracing (orange or red, κ: 0.625 vs. pathological category, κ: 0.538). Conclusion Both systems presented a comparable ability to predict neonatal acidemia, although the 5-tier system showed a better interobserver agreement identifying pathological tracings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment
NASA Technical Reports Server (NTRS)
Allario, F.; Katzberg, S. J.; Larsen, J. C.
1980-01-01
Several experiments involving spectral scanning interferometers and gas filter correlation radiometers (ref. 2) using limb scanning solar occultation techniques under development for measurements of stratospheric trace gases from Spacelab and satellite platforms are described. An experiment to measure stratospheric trace constituents by Laser Heterodyne Spectroscopy, a summary of sensitivity analyses, and supporting laboratory measurements are presented for O3, ClO, and H2O2 in which the instrument transfer function is modeled using a detailed optical receiver design.
Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael
2016-11-01
Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.
COMBUSTION CONTROL OF TRACE ORGANIC AIR POLLUTANTS FROM MUNICIPAL WASTE COMBUSTORS
The US Environmental Protection Agency (EPA) is considering the use of combustion techniques for controlling air emissions of chlorinated dioxins, chlorinated furans, and other trace organics from municipal waste combustion (MWC) facilities. Recommendations for good combustion pr...
Disentangling controls on element impurities of bivalve shells
NASA Astrophysics Data System (ADS)
Zhao, Liqiang; Schöne, Bernd R.; Mertz-Kraus, Regina
2017-04-01
Trace and minor elements of bivalve shells can potentially serve as proxies of past environmental change. However, retrieving environmental information from element impurities of bivalve shells remains an extremely challenging task. A central difficulty concerns the fact that extrinsic and intrinsic factors governing the element incorporation are poorly constrained. Within the framework of the ARAMACC project, we aim to decipher the complexity of the incorporation of trace and minor elements into bivalve shells and explore their full potential as proxies of environmental change. More specifically, the following questions were tackled. (1) How are trace and minor elements transported from the ambient environment to the calcifying front? (2) How is their incorporation into the shells affected by environmental and physiological variables? Our findings lend support to the general assumption that divalent ions (e.g., Cu2+, Mn2+, Zn2+ and Pb2+) share the same transport pathways as Ca2+ because of similar ionic radii and electrochemical properties. However, results obtained for Mg2+, Sr2+ and Ba2+ are particularly interesting as they are at odds with existing hypotheses on the incorporation of these three elements, i.e., intracellular Ca2+ pathways (via Ca2+ channels and Ca2+-ATPase) are likely not responsible for their incorporation. Despite the existence of strong physiological interference, some encouraging results were found, in particular (1) strong, positive relationships between the Sr, Ba and Mn contents of the shells and concentrations in the ambient water, (2) only minor effects of growth rate (which is closely linked to the rate of crystal growth and hence, kinetics) on the amounts of Na, Sr, Ba and Mn incorporation into the shells. Overall, our findings demonstrate that environmental and physiological controls on the element incorporation do not have to be mutually exclusive, i.e., if environmental changes outweigh physiological influences, one could still expect that trace and minor elements of bivalve shells serve as promising environmental proxies.
Shell architecture: a novel proxy for paleotemperature reconstructions?
NASA Astrophysics Data System (ADS)
Milano, Stefania; Nehrke, Gernot; Wanamaker, Alan D., Jr.; Witbaard, Rob; Schöne, Bernd R.
2017-04-01
Mollusk shells are unique high-resolution paleoenvironmental archives. Their geochemical properties, such as oxygen isotope composition (δ18Oshell) and element-to-calcium ratios, are routinely used to estimate past environmental conditions. However, the existing proxies have certain drawbacks that can affect paleoreconstruction robustness. For instance, the estimation of water temperature of brackish and near-shore environments can be biased by the interdependency of δ18Oshell from multiple environmental variables (water temperature and δ18Owater). Likely, the environmental signature can be masked by physiological processes responsible for the incorporation of trace elements into the shell. The present study evaluated the use of shell structural properties as alternative environmental proxies. The sensitivity of shell architecture at µm and nm-scale to the environment was tested. In particular, the relationship between water temperature and microstructure formation was investigated. To enable the detection of potential structural changes, the shells of the marine bivalves Cerastoderma edule and Arctica islandica were analyzed with Scanning Electron Microscopy (SEM), nanoindentation and Confocal Raman Microscopy (CRM). These techniques allow a quantitative approach to the microstructural analysis. Our results show that water temperature induces a clear response in shell microstructure. A significant alteration in the morphometric characteristics and crystallographic orientation of the structural units was observed. Our pilot study suggests that shell architecture records environmental information and it has potential to be used as novel temperature proxy in near-shore and open ocean habitats.
Lessons learned from more than two decades of research on emerging contaminants in the environment.
Noguera-Oviedo, Katia; Aga, Diana S
2016-10-05
In the last twenty years, thousands of research papers covering different aspects of emerging contaminants have been published, ranging from environmental occurrence to treatment and ecological effects. Emerging contaminants are environmental pollutants that have been investigated widely only in the last two decades and include anthropogenic and naturally occurring chemicals such as pharmaceuticals and personal care products and their metabolites, illicit drugs, engineered nanomaterials, and antibiotic resistance genes. The advancement in our knowledge on emerging contaminants has been the result of the appearance of highly sensitive and powerful analytical instrumentation that rapidly developed, allowing identification and trace quantification of unknown contaminants in complex environmental matrices. High efficiency chromatographic separations coupled to high-resolution mass spectrometers have become more common in environmental laboratories and are the pillars of environmental research, increasing our awareness and understanding of the presence of emerging contaminants in the environment, their transformation and fate, and the complex ecological consequences that they pose on exposed biological systems. This introductory paper for the Virtual Thematic Issue on Emerging Contaminants presents a brief literature overview on key research milestones in the area of emerging contaminants, focusing on pharmaceuticals and personal care products and endocrine disrupting compounds, and highlighting selected research papers previously published in the Journal of Hazardous Materials during the period of January 2012 to December 2015. Copyright © 2016 Elsevier B.V. All rights reserved.
Rader, B.R.; Nimmo, D.W.R.; Chapman, P.L.
1997-01-01
Concentrations of metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA, have exceeded maximum background concentrations in the United States for most metals tested. As a result of mining and smelting activities, portions of the Deer Lodge Valley, including the Grant-Kohrs Ranch, have received National Priority List Designation under the Comprehensive Environmental Response, Compensation and Liability Act. Using a series of plant germination tests, pH measurements, and metal analyses, this study investigated the toxicity of soils from floodplain 'slicken' areas, bare spots devoid of vegetation, along the Clark Fork River. The slicken soils collected from the Grant-Kohrs Ranch were toxic to all four plant species tested. The most sensitive endpoint in the germination tests was root length and the least sensitive was emergence. Considering emergence, the most sensitive species was the resident grass species Agrostis gigantea. The sensitivities were reversed when root lengths were examined, with Echinochloa crusgalli showing the greatest sensitivity. Both elevated concentrations of metals and low pH were necessary to produce an acutely phytotoxic response in laboratory seed germination tests using slicken soils. Moreover, pH values on the Grant-Kohrs Ranch appear to be a better predictor of acutely phytotoxic conditions than total metal levels.
Canadian Environmental Issues in Perspective.
ERIC Educational Resources Information Center
Jaakson, Reiner, Ed.
1984-01-01
Traces Canada's conservation practices and environmental concerns from settlement to the present. The relationship between Canada and the United States on several issues is discussed. Acid rain, water resources, toxic substances, natural resource management, energy consciousness, environmental impact statements, and increased public awareness are…
Sluchyk, Victor; Sluchyk, Iryna; Shyichuk, Alexander
2014-10-01
The level of environmental pollution in the city of Ivano-Frankivsk (Western Ukraine) has been assessed by means of roadside poplar trees as bioindicators. Dividable apical meristem cells of rudimentary leaves were quantitatively analysed for mitotic activity and distribution. Anaphases were further examined for chromosomal aberrations. Male catkins were also examined for sterile pollens. Accumulation of trace elements in vegetative buds was also evaluated in order to reveal source(s) of environmental pollution. Poplar trees growing in the urban environment proved to have increased chromosomal aberrations (up to 4-fold) and increased pollen sterility (up to 4-fold) as well as decreased mitotic activity (by factor 1.5) as compared to control sampling site. The biomarker data correlate moderately with increased (up to 4-fold) concentrations of Ni, Zn, Pb, Cd and Cu in vegetative tissues suggesting that probable cause of the environmental cytotoxicity may be vehicle emissions. The maximum increase in chromosomal aberrations (7-fold) and the minimum mitotic activity (half of the control one) were recorded in poplar trees growing in industrial suburb in vicinity of large cement production plant. Taking in mind insignificant bioaccumulation of trace elements in the industrial suburb, the high environmental toxicity has been ascribed to contamination in cement and asbestos particulates.
Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.
1999-01-01
The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.
Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee
2007-05-08
A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.
Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection
NASA Astrophysics Data System (ADS)
Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu
2018-01-01
We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.
Chen, Na; Ding, Pan; Shi, Yu; Jin, Tengyu; Su, Yuanyuan; Wang, Houyu; He, Yao
2017-05-02
There is an increasing interest in the development of surface-enhanced Raman scattering (SERS) sensors for rapid and accurate on-site detection of hidden explosives. However, portable SERS methods for trace explosive detection in real systems remain scarce, mainly due to their relatively poor reliability and portability. Herein, we present the first demonstration of a portable silicon-based SERS analytical platform for signal-on detection of trace trinitrotoluene (TNT) explosives, which is made of silver nanoparticle (AgNP)-decorated silicon wafer chip (0.5 cm × 0.5 cm). In principle, under 514 nm excitation, the Raman signals of p-aminobenzenethiol (PABT) modified on the AgNP surface could be largely lit up due to the formation of electronic resonance-active TNT-PABT complex. In addition, the surface of AgNPs and silicon substrate-induced plasmon resonances also contribute the total SERS enhancement. For quantitative evaluation, the as-prepared chip features ultrahigh sensitivity [limit of detection is down to ∼1 pM (∼45.4 fg/cm 2 )] and adaptable reproducibility (relative standard deviation is less than 15%) in the detection of TNT standard solutions. More importantly, the developed chip can couple well with a hand-held Raman spectroscopic device using 785 nm excitation, suitable for qualitative analysis of trace TNT even at ∼10 -8 M level from environmental samples including lake water, soil, envelope, and liquor with a short data acquisition time (∼1 min). Furthermore, TNT vapors diffusing from TNT residues (∼10 -6 M) can be detected by using such a portable device, indicating its feasibility in determination of hidden samples.
SHOULD LATITUDINAL ATMOSPHERIC TRACE VAPOR CONCENTRATIONS BE REPORTED ON A MASS DENSITY BASIS?
For the past several decades the issue of global atmospheric trace vapor migration has been of concern to environmental professionals concerned with global distillation/cold condensation of toxic compounds, contamination of remote ecosystems, global climate change and stratospher...
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Paris (France). Div. of Science, Technical and Vocational Education.
A series of experimental modules for teachers has been developed under the direction of the International Environmental Education Programme (IEEP) of UNESCO. This particular module focuses on the pre-service training of elementary school teachers and supervisors in environmental education. Section 1, Content for Environmental Education, traces the…
Fate of Trace Metals in Anaerobic Digestion.
Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L
2015-01-01
A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.
Stravs, Michael A; Mechelke, Jonas; Ferguson, P Lee; Singer, Heinz; Hollender, Juliane
2016-03-01
Online solid-phase extraction was combined with nano-liquid chromatography coupled to high-resolution mass spectrometry (HRMS) for the analysis of micropollutants in environmental samples from small volumes. The method was validated in surface water, Microcystis aeruginosa cell lysate, and spent Microcystis growth medium. For 41 analytes, quantification limits of 0.1-28 ng/L (surface water) and 0.1-32 ng/L (growth medium) were obtained from only 88 μL of sample. In cell lysate, quantification limits ranged from 0.1-143 ng/L or 0.33-476 ng/g dry weight from a sample of 88 μL, or 26 μg dry weight, respectively. The method matches the sensitivity of established online and offline solid-phase extraction-liquid chromatography-mass spectrometry methods but requires only a fraction of the sample used by those techniques, and is among the first applications of nano-LC-MS for environmental analysis. The method was applied to the determination of bioconcentration in Microcystis aeruginosa in a laboratory experiment, and the benefit of coupling to HRMS was demonstrated in a transformation product screening.
Bergamo, Paolo; Volpe, Maria Grazia; Lorenzetti, Stefano; Mantovani, Alberto; Notari, Tiziana; Cocca, Ennio; Cerullo, Stefano; Di Stasio, Michele; Cerino, Pellegrino; Montano, Luigi
2016-12-01
The Campania region in Italy is facing an environmental crisis due to the illegal disposal of toxic waste. Herein, a pilot study (EcoFoodFertility initiative) was conducted to investigate the use of human semen as an early biomarker of pollution on 110 healthy males living in various areas of Campania with either high or low environmental impact. The semen from the "high impact" group showed higher zinc, copper, chromium and reduced iron levels, as well as reduced sperm motility and higher sperm DNA Fragmentation Index (DFI). Redox biomarkers (total antioxidant capacity, TAC, and glutathione, GSH) and the activity of antioxidant enzymes in semen were lower in the "high impact" group. The percentage of immotile spermatozoa showed a significant inverse correlation with TAC and GSH. Overall, several semen parameters (reduced sperm quality and antioxidant defenses, altered chemical element pattern), which were associated with residence in a high polluted environment, could be used in a further larger scale study, as early biomarkers of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.
Nakamura, Tomofumi; Hamasaki, Mitsuhiro; Yoshitomi, Hideaki; Ishibashi, Tetsuya; Yoshiyama, Chiharu; Maeda, Eriko; Sera, Nobuyuki; Yoshida, Hiromu
2015-03-01
Environmental virus surveillance was conducted at two independent sewage plants from urban and rural areas in the northern prefecture of the Kyushu district, Japan, to trace polioviruses (PVs) within communities. Consequently, 83 PVs were isolated over a 34-month period from April 2010 to January 2013. The frequency of PV isolation at the urban plant was 1.5 times higher than that at the rural plant. Molecular sequence analysis of the viral VP1 gene identified all three serotypes among the PV isolates, with the most prevalent serotype being type 2 (46%). Nearly all poliovirus isolates exhibited more than one nucleotide mutation from the Sabin vaccine strains. During this study, inactivated poliovirus vaccine (IPV) was introduced for routine immunization on 1 September 2012, replacing the live oral poliovirus vaccine (OPV). Interestingly, the frequency of PV isolation from sewage waters declined before OPV cessation at both sites. Our study highlights the importance of environmental surveillance for the detection of the excretion of PVs from an OPV-immunized population in a highly sensitive manner, during the OPV-to-IPV transition period. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
The dorsal raphe modulates sensory responsiveness during arousal in zebrafish
Yokogawa, Tohei; Hannan, Markus C.; Burgess, Harold A.
2012-01-01
During waking behavior animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. Following a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context. PMID:23100441
NASA Astrophysics Data System (ADS)
Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin
2015-05-01
Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.
Universal trace pollutant detector for aircraft monitoring of the ozone layer and industrial areas
NASA Technical Reports Server (NTRS)
Filiouguine, I. V.; Kostiouchenko, S. V.; Koudriavtsev, N. N.
1994-01-01
A method of monitoring the trace impurities of nitrogen oxides based on controlling of luminescence of NO molecules excited by nanosecond gas discharge have been developed having pptv-ppbv sensitivity and temporal resolution less than 0.01 s.
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
Deng, Junjing; Vine, David J.; Chen, Si; ...
2015-02-24
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less
Electrostatic Discharge Effects on Thin Film Resistors
NASA Technical Reports Server (NTRS)
Sampson, Michael J.; Hull, Scott M.
1999-01-01
Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.
Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.
2014-01-01
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416
Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L
2014-07-25
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.
NASA Astrophysics Data System (ADS)
Caton, R. G.; Colman, J. J.; Parris, R. T.; Nickish, L.; Bullock, G.
2017-12-01
The Air Force Research Laboratory, in collaboration with NorthWest Research Associates, is developing advanced software capabilities for high fidelity simulations of high frequency (HF) sky wave propagation and performance analysis of HF systems. Based on the HiCIRF (High-frequency Channel Impulse Response Function) platform [Nickisch et. al, doi:10.1029/2011RS004928], the new Air Force Coverage Analysis Program (AFCAP) provides the modular capabilities necessary for a comprehensive sensitivity study of the large number of variables which define simulations of HF propagation modes. In this paper, we report on an initial exercise of AFCAP to analyze the sensitivities of the tool to various environmental and geophysical parameters. Through examination of the channel scattering function and amplitude-range-Doppler output on two-way propagation paths with injected target signals, we will compare simulated returns over a range of geophysical conditions as well as varying definitions for environmental noise, meteor clutter, and sea state models for Bragg backscatter. We also investigate the impacts of including clutter effects due to field-aligned backscatter from small scale ionization structures at varied levels of severity as defined by the climatologically WideBand Model (WBMOD). In the absence of additional user provided information, AFCAP relies on International Reference Ionosphere (IRI) model to define the ionospheric state for use in 2D ray tracing algorithms. Because the AFCAP architecture includes the option for insertion of a user defined gridded ionospheric representation, we compare output from the tool using the IRI and ionospheric definitions from assimilative models such as GPSII (GPS Ionospheric Inversion).
Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza
2016-04-01
A simple and sensitive flow injection chemiluminescence (CL) method in which CdS quantum dots (QDs) enhanced the CL intensity of a KMnO4-formaldehyde (HCHO) reaction was offered for the determination of HCHO. This CL system was based on the catalytic activity of CdS QDs and their participation in the CL resonance energy transfer (CRET) phenomenon. A possible mechanism for the supplied CL system was proposed using the kinetic curves of the CL systems and the spectra of CL, photoluminescence (PL) and ultraviolet-visible (UV-Vis). The emanated CL intensity of the KMnO4-CdS QDs system was amplified in the presence of a trace level of HCHO. Based on this enhancement effect, a simple and sensitive flow injection CL method was suggested for the determination of HCHO concentration in environmental water and wastewater samples. Under selected optimized experimental conditions, the increased CL intensity was proportional to the HCHO concentration in the range of 0.03-4.5 μg L(-1) and 4.5-10.0 μg L(-1). The detection limits (3σ) were 0.0003 μg L(-1) and 1.2 μg L(-1). The relative standard deviations (RSD%) for eleven replicate determinations of 4.0 μg L(-1) HCHO were 2.2%. Furthermore, the feasibility of the developed method was investigated via the determination of HCHO concentration in environmental water and wastewater samples.
NASA Technical Reports Server (NTRS)
Burrows, W. H.; Burrows, W. H.
1971-01-01
A leak detection system has been developed, consisting of a tape that can be wrapped around possible leak sites on a system pressurized with air or gaseous nitrogen. Carbon monoxide, at a level of 100 to 1000 parts per million is used as a trace gas in the pressurized system. The sensitive element of the tape is palladium chloride supported on specially prepared silica gel and specially dried. At a CO level of 100 ppm and a leak rate of 10-20 ml/hr, discoloration of the sensitive element is observed in 1.5 to 3 min. The tape and trace gas are compatible with aerospace hardware, safe to handle, and economically reasonable to produce and handle.
ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS.
Baars, Oliver; Morel, François M M; Perlman, David H
2014-11-18
Chelating agents can control the speciation and reactivity of trace metals in biological, environmental, and laboratory-derived media. A large number of trace metals (including Fe, Cu, Zn, Hg, and others) show characteristic isotopic fingerprints that can be exploited for the discovery of known and unknown organic metal complexes and related chelating ligands in very complex sample matrices using high-resolution liquid chromatography mass spectrometry (LC-MS). However, there is currently no free open-source software available for this purpose. We present a novel software tool, ChelomEx, which identifies isotope pattern-matched chromatographic features associated with metal complexes along with free ligands and other related adducts in high-resolution LC-MS data. High sensitivity and exclusion of false positives are achieved by evaluation of the chromatographic coherence of the isotope pattern within chromatographic features, which we demonstrate through the analysis of bacterial culture media. A built-in graphical user interface and compound library aid in identification and efficient evaluation of results. ChelomEx is implemented in MatLab. The source code, binaries for MS Windows and MAC OS X as well as test LC-MS data are available for download at SourceForge ( http://sourceforge.net/projects/chelomex ).
Faustorilla, Maria Vilma; Chen, Zuliang; Dharmarajan, Rajarathnam; Naidu, Ravendra
2017-09-01
Assessment of total petroleum hydrocarbons (TPHs) from contaminated sites demands routine and reliable measurement at trace levels. However, the detection limits of these methods need to be improved. This study developed the programmable temperature vaporization-large volume injection (PTV-LVI) method to quantify TPHs through gas chromatography-flame ionization detection. This configuration enhances the method sensitivity for trace level detections through large volume injections and pre-concentration of analytes along the injection liner. The method was evaluated for the three commonly observed hydrocarbon fractions: C10-C14, C15-C28 and C29-C36. In comparison with conventional injection methods (splitless and pulsed splitless), PTV-LVI showed R2 values > 0.999 with enhanced limits of detection and limits of quantification values. The method was applied to real samples for routine environmental monitoring of TPHs in an Australian contaminated site characterized by refueling station. Analysis of groundwater samples in the area showed a wide range of TPH concentrations as follows: 66-1,546,000 (C10-C14), 216-22,762 (C15-C28) and 105-2,103 (C29-C36) μg/L. This method has detected trace levels, thereby measuring a wider concentration range of TPHs. These more accurate measurements can lead to the appropriate application of risk assessments and remediation techniques. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Electron-rich triphenylamine-based sensors for picric acid detection.
Chowdhury, Aniket; Mukherjee, Partha Sarathi
2015-04-17
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
Microlith Based Sorber for Removal of Environmental Contaminants
NASA Technical Reports Server (NTRS)
Roychoudhury, S.; Perry, J.
2004-01-01
The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI); thesemeshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated. Thus, the need for a separate trace contaminant unit is eliminated resulting in an opportunity for significant weight savings. Unlike the charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration. This paper describes the design and performance of a prototype sorber device for simultaneous CO2 and trace contarninant removal and its attendant weight and energy savings.
Wang, Jun; Du, Huihong; Xu, Ye; Chen, Kai; Liang, Junhua; Ke, Hongwei; Cheng, Sha-Yen; Liu, Mengyang; Deng, Hengxiang; He, Tong; Wang, Wenqing
2016-01-01
Zhangjiangkou Mangrove National Nature Reserve is a subtropical wetland ecosystem in southeast coast of China, which is of dense population and rapid development. The concentrations, sources, and pollution assessment of trace metals (Cu, Cd, Pb, Cr, Zn, As, and Hg) in surface sediment from 29 sites and the biota specimen were investigated for better ecological risk assessment and environmental management. The ranges of trace metals in mg/kg sediment were as follows: Cu (10.79–26.66), Cd (0.03–0.19), Pb (36.71–59.86), Cr (9.67–134.51), Zn (119.69–157.84), As (15.65–31.60), and Hg (0.00–0.08). The sequences of the bioaccumulation of studied metals are Zn > Cu > As > Cr > Pb > Cd > Hg with few exceptions. Cluster analysis and principal component analysis revealed that the trace metals in the studied area mainly derived from anthropogenic activities, such as industrial effluents, agricultural waste, and domestic sewage. Pollution load index and geoaccumulation index were calculated for trace metals in surface sediments, which indicated unpolluted status in general except Pb, Cr, and As. PMID:27795956
Wang, Saihua; Niu, Hongyun; Cai, Yaqi; Cao, Dong
2018-05-01
High-throughput and rapid detection of hazardous compounds in complicated samples is essential for the solution of environmental problems. We have prepared a "pH-paper-like" chip which can rapidly "indicate" the occurrence of organic contaminants just through dipping the chip in water samples for short time followed by fast analysis with surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). The chips are composed of polyvinylidene fluoride membrane (PVDFM), polydopamine (PDA) film and Au nanoparticles (Au NPs), which are layer-by-layer assembled according to the adhesion, self-polymerization and reduction property of dopamine. In the Au NPs loaded polydopamine-polyvinylidene fluoride membrane (Au NPs-PDA-PVDFM) chips, PVDFM combined with PDA film are responsible for the enrichment of organic analyte through hydrophobic interactions and π-π stacking; Au NPs serve as effective SALDI matrix for the rapid detection of target analyte. After dipping into water solution for minutes, the Au-PDA-PVDFM chips with enriched organic analytes can be detected directly with SALDI-TOF MS. The good solid-phase extraction performance of the PDA-PVDFM components, remarkable matrix effect of the loaded AuNPs, and sensitivity of the SALDI-TOF MS technique ensure excellent sensitivity and reproducibility for the quantification of trace levels of organic contaminants in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... regarding trace organics and environmental monitoring; statistics, particularly regarding experimental design of field studies; human health effects and risk assessment; civil and environmental engineering...
Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15
Hermosillo, Edyth; Coes, Alissa L.
2017-03-01
Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.
A new method for automated discontinuity trace mapping on rock mass 3D surface model
NASA Astrophysics Data System (ADS)
Li, Xiaojun; Chen, Jianqin; Zhu, Hehua
2016-04-01
This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.
Surface-enhanced Raman sensor for trace chemical detection in water
NASA Astrophysics Data System (ADS)
Lee, Vincent Y.; Farquharson, Stuart; Rainey, Petrie M.
1999-11-01
Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection and in recent years SERS has been used for chemical, biochemical, environmental, and physiological applications. A variety of methods using various media (electrodes, colloids, and substrates) have been successfully developed to enhance Raman signals by six orders of magnitude and more. However, SERS has not become a routine analytical technique because these methods are unable to provide quantitative measurements. This is largely due to the inability to fabricate a sampling medium that provides reversible chemical adsorption, analysis-to-analysis reproducibility, unrestricted solution requirements (reagent concentration and pH) or sample phase (liquid or solid). In an effort to overcome these restrictions, we have developed metal-doped sol-gels to provide surface-enhancement of Raman scattering.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences
NASA Astrophysics Data System (ADS)
Xu, Gu-feng; Wang, Hong-mei
2001-08-01
Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.
Zhang, Wenmin; Lin, Mingxia; Wang, Meili; Tong, Ping; Lu, Qiaomei; Zhang, Lan
2017-06-23
Microcystins (MCs) are cyclic heptapeptide toxins and tumor promoters produced by cyanobacteria, which threaten the health of humans. In this study, magnetic porous β-cyclodextrin polymer (Fe 3 O 4 @SiO 2 @P-CDP) was synthesized and characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectrometry, X-ray diffraction, nitrogen adsorption porosimetry and vibrating sample magnetometer. The synthesized Fe 3 O 4 @SiO 2 @P-CDP particles were then used for magnetic solid-phase extraction (MSPE) of MCs from environmental water samples, and exhibited excellent extraction performance, especially for MC-RR. Coupled with high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS), a simple, efficient and sensitive method for determination of trace levels of MCs was established. After the optimization of conditions, wide linear ranges (2.0-1000pgmL -1 ), good linearity (r 2 ≥0.9996) and acceptable repeatability (RSD≤9.4%, n=5) were obtained. The limits of detection (LODs, S/N=3) and limits of quantification (LOQs, S/N=10) for three MCs (MC-LR, MC-RR and MC-YR) were in the range of 1.0-2.0pgmL -1 and 2.0-5.0pgmL -1 , respectively. Typical water samples were analyzed by the developed method, and trace levels of MC-LR and MC-RR were detected. The results demonstrate that the developed method has great potential for the determination of MCs in complicated matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Cheng-Yong; Sun, Shi-Hao; Zhang, Qi-Dong; Liu, Jun-Hui; Zhang, Jian-Xun; Zong, Yong-Li; Xie, Jian-Ping
2013-03-01
A method with atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) was developed and applied to direct analysis of Environmental Tobacco Smoke (ETS), using 3-ethenylpyridine (3-EP) as a vapour-phase marker. In this study, the ion source of APCI-MS/MS was modified and direct analysis of gas sample was achieved by the modified instrument. ETS samples were directly introduced, via an atmospheric pressure inlet, into the APCI source. Ionization was carried out in positive-ion APCI mode and 3-EP was identified by both full scan mode and daughter scan mode. Quantification of 3-EP was performed by multiple reaction monitoring (MRM) mode. The calibration curve was obtained in the range of 1-250 ng L-1 with a satisfactory regression coefficient of 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.5 ng L-1 and 1.6 ng L-1, respectively. The precision of the method, calculated as relative standard deviation (RSD), was characterized by repeatability (RSD 3.92%) and reproducibility (RSD 4.81%), respectively. In real-world ETS samples analysis, compared with the conventional GC-MS method, the direct APCI-MS/MS has shown better reliability and practicability in the determination of 3-EP at trace level. The developed method is simple, fast, sensitive and repeatable; furthermore, it could provide an alternative way for the determination of other volatile pollutants in ambient air at low levels.
Lead and other trace metals in preeclampsia: A case-control study in Tehran, Iran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigeh, Mohsen; Yokoyama, Kazuhito; Ramezanzadeh, Fateme
2006-02-15
To assess the effects of environmental exposures to trace metals on the incidence of preeclampsia, concentrations of lead (Pb), antimony (Sb), manganese (Mn), mercury, cadmium, cobalt and zinc in umbilical cord blood (UCB) and mother whole blood (MWB) were measured in 396 postpartum women without occupational exposure to metals in Tehran, Iran, using inductively coupled plasma mass spectrometry. Mother's ages ranged from 15 to 49 (mean 27) years. Preeclampsia was diagnosed in 31 subjects (7.8%). Levels of Pb, Sb and Mn in UCB were significantly higher in preeclampsia cases [mean+/-SD of 4.30+/-2.49{mu}g/dl, 4.16+/-2.73 and 46.87+/-15.03{mu}g/l, respectively] than in controls [3.52+/-2.09{mu}g/dl,more » 3.17+/-2.68 and 40.32+/-15.19{mu}g/l, respectively] (P<0.05). The logistic regression analysis revealed that one unit increase in the common logarithms of UCB concentration of Pb, Sb or Mn led to increase in the risk of preeclampsia several-fold; unit risks (95% CI) were 12.96 (1.57-107.03), 6.11 (1.11-33.53) and 34.2 (1.81-648.04) for Pb, Sb and Mn, respectively (P<0.05). These findings suggest that environmental exposure to Pb, Sb and Mn may increase the risk of preeclampsia in women without occupational exposure; levels of metals in UCB to be sensitive indicators of female reproductive toxicity as compared with those in mother MWB. Further studies are necessary to confirm these findings, especially on Sb and Mn.« less
NASA Astrophysics Data System (ADS)
Telfeyan, K.; Breaux, A.; Kim, J.; Johannesson, K. H.; Kolker, A.; Cable, J. E.
2015-12-01
Telfeyan, K.1, Johannesson, K.H.1, Breaux, A.M.2,1, Kim, J.3, Kolker, A.S.2,1, Cable, J.E.31 Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA 2 Louisiana Universities Marine Consortium, Cocoderie, LA, USA 3 Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA The Mississippi River drains 40% of the continental United States and discharges 0.1 Pg sediment and an average of 18,400 m3 s-1 water annually to the Gulf of Mexico1. The flow of groundwater through the Mississippi River Delta (MRD) to the Gulf, however, has been largely understudied and is typically overlooked in MRD biogeochemical studies. Previous work demonstrated that sand-rich paleochannels that maintain a hydrologic connection to the Mississippi River could transport riverine water to the MRD2. We present data from biogeochemical surveys at 2 sites in the lower MRD to explore the effects of river-derived submarine groundwater discharge on the biogeochemistry of MRD wetlands. Lac des Allemands is a fresh water lake and Myrtle Grove is a brackish canal with variable salinities. Both are surrounded by extensive wetlands. Over the course of a year, surface water, shallow pore water, and deeper groundwaters were sampled to understand the cycling of redox-sensitive trace elements (Fe, Mn, V, As) and the potential supply from groundwater to surface water bodies. Major ion chemistry suggests that both Lac des Allemands and Myrtle Grove Canal receive river-derived terrestrial water at their heads, the flux of which varies as a function of river stage. However, the lateral flow through adjacent wetlands is altered as a function of sediment heterogeneity. Evidence for sulfate reduction exists in the near-surface sediment and at depth where a continuous vertical organic matter layer exists. In sand-rich layers, iron reduction buffers redox conditions, and V varies inversely with dissolved Fe. Concentrations of V and As are much greater in near-surface pore waters than in deeper groundwaters and in surface waters, suggesting that the subterranean estuary serves as a sink of these redox-sensitive trace elements. [1] Bianchi and Allison (2009) PNAS 1068085-8092. [2] Kolker et al. (2013) Journal of Hydrology 498 319-334.
Trace-fossil and storm-deposit relationships of San Carlos formation, west Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, C.L.; Bednarski, S.P.
1986-05-01
Two distinct assemblages of trace fossils are preserved in the storm deposits in delta-front facies of the Upper Cretaceous San Carlos Formation, west Texas. The assemblages represent two widely differing responses to storm deposition and sediment-trace-fossil relationships, indicating that other environmental parameters, probably water depth and oxygen levels, influenced trace-fossil distribution within the San Carlos delta front. Evidence of the storm-deposited nature of the sandstones includes a scoured basal contact, planar to hummocky cross-stratification, and a upper contact that is either ripple marked or is gradational with overlying shales.
Remediation using trace element humate surfactant
Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox
2016-08-30
A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.
Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.
Kassaye, Yetneberk A; Skipperud, Lindis; Meland, Sondre; Dadebo, Elias; Einset, John; Salbu, Brit
2012-10-26
To evaluate critical trace element loads in native vegetation and calculate soil-to-plant transfer factors (TFs), 11 trace elements (Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb and Mn) have been determined in leaves of 9 taxonomically verified naturally growing terrestrial plant species as well as in soil samples collected around 3 Ethiopian Rift Valley lakes (Koka, Ziway and Awassa). The Cr concentration in leaves of all the plant species was higher than the "normal" range, with the highest level (8.4 mg per kg dw) being observed in Acacia tortilis from the Lake Koka area. Caper species (Capparis fascicularis) and Ethiopian dogstooth grass (Cynodon aethiopicus) from Koka also contained exceptionally high levels of Cd (1 mg per kg dw) and Mo (32.8 mg per kg dw), respectively. Pb, As and Cu concentrations were low in the plant leaves from all sites. The low Cu level in important fodder plant species (Cynodon aethiopicus, Acacia tortilis and Opuntia ficus-indicus) implies potential deficiency in grazing and browsing animals. Compared to the Canadian environmental quality guideline and maximum allowable concentration in agricultural soils, the total soil trace element concentrations at the studied sites are safe for agricultural crop production. Enrichment factor was high for Zn in soils around Lakes Ziway and Awassa, resulting in moderate to high transfer of Zn to the studied plants. A six step sequential extraction procedure on the soils revealed a relatively high mobility of Cd, Se and Mn. Strong association of most trace elements with the redox sensitive fraction and mineral lattice was also confirmed by partial redundancy analysis. TF (mg per kg dw plants/mg per kg dw soil) values based on the total (TF(total)) and mobile fractions (TF(mobile)) of soil trace element concentrations varied widely among elements and plant species, with the averaged TF(total) and TF(mobile) values ranging from 0.01-2 and 1-60, respectively. Considering the mobile fraction in soils should be available to plants, TF(mobile) values could reflect trace elements transfer to plants in the most realistic way. However, the present study indicates that TF(total) values also reflect the transfer of elements such as Mn, Cd and Se to plants more realistically than TF(mobile) values did.
A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 200...
Physiological Effects of Trace Elements and Chemicals in Water
ERIC Educational Resources Information Center
Varma, M. M.; And Others
1976-01-01
The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…
Vezzosi, T; Buralli, C; Marchesotti, F; Porporato, F; Tognetti, R; Zini, E; Domenech, O
2016-10-01
The diagnostic accuracy of a smartphone electrocardiograph (ECG) in evaluating heart rhythm and ECG measurements was evaluated in 166 dogs. A standard 6-lead ECG was acquired for 1 min in each dog. A smartphone ECG tracing was simultaneously recorded using a single-lead bipolar ECG recorder. All ECGs were reviewed by one blinded operator, who judged if tracings were acceptable for interpretation and assigned an electrocardiographic diagnosis. Agreement between smartphone and standard ECG in the interpretation of tracings was evaluated. Sensitivity and specificity for the detection of arrhythmia were calculated for the smartphone ECG. Smartphone ECG tracings were interpretable in 162/166 (97.6%) tracings. A perfect agreement between the smartphone and standard ECG was found in detecting bradycardia, tachycardia, ectopic beats and atrioventricular blocks. A very good agreement was found in detecting sinus rhythm versus non-sinus rhythm (100% sensitivity and 97.9% specificity). The smartphone ECG provided tracings that were adequate for analysis in most dogs, with an accurate assessment of heart rate, rhythm and common arrhythmias. The smartphone ECG represents an additional tool in the diagnosis of arrhythmias in dogs, but is not a substitute for a 6-lead ECG. Arrhythmias identified by the smartphone ECG should be followed up with a standard ECG before making clinical decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of Laboratory Model Ecosystems as Early Warning Elements of Environmental Pollution
1974-12-01
AD-AOll 851 DEVELOPMENT OF LABORATORY MODEL ECOSYSTEMS AS EARLY WARNING ELEMENTS OF ENVIRONMENTAL POLLUTION Robert L. Metcalf... ENVIRONMENTAL POLLUTION Robert L. Metcalf, Ph. D. University of Illinois Urbana-Champaign, Illinois INTRODUCTION Problems of environmental pollution with...house dust is unsafe to breathe (Ewing and Pearson, 1974). Most of the source of our concern about environmental pollution by trace substances relates
Yang, Jinghui; Chen, Jianjun; Young, James S; Wang, Qiang; Yin, Dengping; Sciammas, Roger; Chong, Anita S
2016-08-01
The dual role of B cells as drivers and suppressors of the immune responses have underscored the need to trace the fate of B cells recognizing donor major histocompatibility complex class I and class II after allograft transplantation. In this study, we used donor class II tetramers to trace the fate of I-E-specific B cells after immunization with BALB/c spleen cells or cardiac transplantation, in naive or sensitized C57BL/6 recipients. We combined this approach with genetic lineage tracing of memory B cells in activation-induced cytidine deaminase regulated Cre transgenic mice crossed to the ROSA26-enhanced yellow fluorescent protein reporter mice to track endogenous I-E-specific memory B cell generation. Immunization with BALB/c splenocytes or heart transplantation induced an expansion and differentiation of I-E-specific B cells into germinal center B cells, whereas BALB/c heart transplantation into sensitized recipients induced the preferential differentiation into antibody-secreting cells. A 10.8-fold increase in the frequency of I-E-specific memory B cells was observed by day 42 postimmunization. Treatment with CTLA4-Ig starting on day 0 or day 7 postimmunization abrogated I-E-specific memory B cell generation and sensitized humoral responses, but not if treatment commenced on day 14. The majority of donor-specific memory B cells are generated between days 7 and 14 postimmunization, thus revealing a flexible timeframe whereby delayed CTLA4-Ig administration can inhibit sensitization and the generation of memory graft-reactive B cells.
Urbanization and Environmental Quality. Resource Papers for College Geography.
ERIC Educational Resources Information Center
Lakshmanan, T. R.; And Others
The resource paper examines urban problems related to the environment. It is suitable for use in undergraduate or graduate courses in urban geography, economic development and environment, urban environment, and environmental policy analysis. The paper is organized in five chapters. The introduction traces the concern with environmental quality…
Reflecting on the 5th World Environmental Education Congress, Montreal, 2009
ERIC Educational Resources Information Center
Jickling, Bob
2010-01-01
This article traces the development of the World Environmental Congress movement and its establishment as an important international forum. Reflecting on the 5th Congress, it notes the particular contribution of the Congress theme, "Our Common Home". Finally, it considers environmental education's place alongside other parallel transformative…
Microbial bioreporters of trace explosives.
Shemer, Benjamin; Koshet, Ori; Yagur-Kroll, Sharon; Belkin, Shimshon
2017-06-01
Since its introduction as an explosive in the late 19th century, 2,4,6-trinitrotoluene (TNT), along with other explosive compounds, has left numerous environmental marks. One of these is widespread soil and water pollution by trace explosives in military proving grounds, manufacturing facilities, or actual battlefields. Another dramatic impact is that exerted by the millions of landmines and other explosive devices buried in large parts of the world, causing extensive loss of life, injuries, and economical damage. In this review we highlight recent advances in the design and construction of microbial bioreporters, molecularly engineered to generate a quantifiable dose-dependent signal in the presence of trace amounts of explosives. Such sensor strains may be employed for monitoring environmental pollution as well as for the remote detection of buried landmines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A
2018-10-15
The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.
Maret, Terry R.; Skinner, K.D.
2000-01-01
Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rader, B.R.; Nimmo, D.W.R.; Chapman, P.L.
1997-07-01
Concentrations of metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA, have exceeded maximum background concentrations in the United States for most metals tested. As a result of mining and smelting activities, portions of the Deer Lodge Valley, including the Grant-Kohrs Ranch, have received National Priority List Designation under the Comprehensive Environmental Response, Compensation and Liability Act. Using a series of plant germination tests, pH measurements, and metal analyses, this study investigated the toxicity of soils from floodplain slicken areas, bare spots devoid ofmore » vegetation, along the Clark Fork River. The slicken soils collected from the Grant-Kohrs Ranch were toxic to all four plant species tested. The most sensitive endpoint in the germination tests was root length and the least sensitive was emergence. Considering emergence, the most sensitive species was the resident grass species Agrostis gigantea. The sensitivities were reversed when root lengths were examined, with Echinochloa crusgalli showing the greatest sensitivity. Both elevated concentrations of metals and low pH were necessary to produce an acutely phytotoxic response in laboratory seed germination tests using slicken soils. Moreover, pH values on the Grant-Kohrs Ranch appear to be a better predictor of acutely phytotoxic conditions than total metal levels.« less
NASA Astrophysics Data System (ADS)
Gregory, Daniel D.; Lyons, Timothy W.; Large, Ross R.; Jiang, Ganqing; Stepanov, Aleksandr S.; Diamond, Charles W.; Figueroa, Maria C.; Olin, Paul
2017-11-01
The trace element content of pyrite is a recently developed proxy for metal abundance in paleo-oceans. Previous studies have shown that the results broadly match those of whole rock studies through geologic time. However, no detailed study has evaluated the more traditional proxies for ocean chemistry for comparison to pyrite trace element data from the same samples. In this study we compare pyrite trace element data from 14 samples from the Wuhe section of the Ediacaran-age Doushantuo Formation, south China, measured by laser ablation inductively coupled plasma mass spectrometry with new and existing whole rock trace element concentrations; total organic carbon; Fe mineral speciation; S isotope ratios; and pyrite textural relationships. This approach allows for comparison of data for individual trace elements within the broader environmental context defined by the other chemical parameters. The results for discrete pyrite analyses show that several chalcophile and siderophile elements (Ag, Sb, Se, Pb, Cd, Te, Bi, Mo, Ni, and Au) vary among the samples with patterns that mirror those of the independent whole rock data. A comparison with existing databases for sedimentary and hydrothermal pyrite allows us to discriminate between signatures of changing ocean conditions and those of known hydrothermal sources. In the case of the Wuhe samples, the observed patterns for trace element variation point to primary marine controls rather than higher temperature processes. Specifically, our new data are consistent with previous arguments for pulses of redox sensitive trace elements interpreted to be due to marine oxygenation against a backdrop of mostly O2-poor conditions in the Ediacaran ocean-with important implications for the availability of bioessential elements. The agreement between the pyrite and whole rock data supports the use of trace element content of pyrite as a tracer of ocean chemistry in ways that complement existing approaches, while also opening additional windows of opportunity. For example, unlike the potential vulnerability of whole rock data to secondary alteration, the pyrite record may survive greenschist facies metamorphism. Furthermore, early-formed pyrite can be identified through textural relationships as a proxy of primary marine chemistry even in the presence of hydrothermal overprints on whole rock chemistry via secondary fluids. Finally, pyrite analyses may allow for the possibility of more quantitative interpretations of the ancient ocean once the elemental partitioning between the mineral and host fluids are better constrained. Collectively, these advances can greatly increase the number of basins that may be investigated for early ocean chemistry, especially those of Precambrian age.
Huang, Biao; Zhao, Yongcun
2014-01-01
Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km2 area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs. PMID:24672364
Predicting the synergy of multiple stress effects
NASA Astrophysics Data System (ADS)
Liess, Matthias; Foit, Kaarina; Knillmann, Saskia; Schäfer, Ralf B.; Liess, Hans-Dieter
2016-09-01
Toxicants and other, non-chemical environmental stressors contribute to the global biodiversity crisis. Examples include the loss of bees and the reduction of aquatic biodiversity. Although non-compliance with regulations might be contributing, the widespread existence of these impacts suggests that for example the current approach of pesticide risk assessment fails to protect biodiversity when multiple stressors concurrently affect organisms. To quantify such multiple stress effects, we analysed all applicable aquatic studies and found that the presence of environmental stressors increases individual sensitivity to toxicants (pesticides, trace metals) by a factor of up to 100. To predict this dependence, we developed the “Stress Addition Model” (SAM). With the SAM, we assume that each individual has a general stress capacity towards all types of specific stress that should not be exhausted. Experimental stress levels are transferred into general stress levels of the SAM using the stress-related mortality as a common link. These general stress levels of independent stressors are additive, with the sum determining the total stress exerted on a population. With this approach, we provide a tool that quantitatively predicts the highly synergistic direct effects of independent stressor combinations.
Parnikoza, I Yu; Loro, P; Miryuta, N Yu; Kunakh, V A; Kozeretska, I A
2011-01-01
Under the environmental conditions of the Point Thomas Oasis (King George Island, the South Shetland Islands), we studied the influence of month-long artificial treatment with fresh water, salt water, and guano solution on the biometric characteristics, chlorophyll content, as well as the nuclear area of leaf parenchymal cells and nuclear DNA content, in a maritime Antarctic aboriginal plant Deschampsia antarctica. The modeled factors induced an increase in the generative shoot height and the length of the largest leaf, but did not influence the number of flowers. Treatment with guano caused an increase in the chlorophyll a and b contents, while fresh water treatment only led to some increase in chlorophyll a. Fluctuations of physiologically significant traits, such as the nuclear area and DNA content in the leaf parenchyma cells of D. antarctica, have been traced under the influence of the studied factors. Understanding of the hierarchy of influence of these factors as well as and sensitivity of plants of this species to external agents require further investigation.
Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring
Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell
2010-01-01
Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672
Grabarczyk, Malgorzata; Wardak, Cecylia
2014-01-01
This article describes a differential pulse adsorptive stripping voltammetric method for the trace determination of gallium in environmental water samples. It is based on the adsorptive deposition of the complex Ga(III)-cupferron at the hanging mercury drop electrode (HMDE) at -0.4 V (versus Ag/AgCl) and its cathodic stripping during the potential scan. The method was optimized as concerns the main electrochemical parameters that affect the voltammetric determination (supporting electrolyte, pH, cupferron concentration, deposition potential and time). The calibration graph is linear from 5 × 10(-10) to 5 × 10(-7) mol L(-1) with a detection limit calculated as 1.3 × 10(-10) mol L(-1) for deposition time of 30 s. The influence of interfering substances such as surfactants and humic substances present in the matrices of natural water samples on the Ga(III) signal was examined and a satisfying minimization of these interferences was proposed. The procedure was applied to direct determination of gallium in environmental water samples.
Zhou, Qingxiang; Fang, Zhi; Liao, Xiangkun
2015-07-01
We describe a highly sensitive micro-solid-phase extraction method for the pre-concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high-performance liquid chromatography with a variable-wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2-ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting-out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3-200 μg/L. The limits of detection were 0.04-0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion spectrometric detection technologies for ultra-traces of explosives: a review.
Mäkinen, Marko; Nousiainen, Marjaana; Sillanpää, Mika
2011-01-01
In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods. Copyright © 2011 Wiley Periodicals, Inc.
Development of an Early Warning Fire Detection System using Correlation Spectroscopy
NASA Technical Reports Server (NTRS)
Goswami, K.; Voevodkin, G.; Rubstov, V.; Lieberman, R.; Piltch, N.
2001-01-01
Combustion byproducts are numerous. A few examples of the gaseous byproducts include carbon dioxide, carbon monoxide, hydrogen chloride, hydrogen cyanide and ammonia. For detecting these chemical species, classic absorption spectroscopy has been used for many decades, but the sensitivity of steady-state methods is often unsuitable for the detection of trace compounds at the low levels (parts per million to parts per billion) appropriate for scientific purposes. This is particularly so for monitoring equipment, which must be compact and cost-effective, and which is often subjected to shock, vibration, and other environmental effects that can severely degrade the performance of high-sensitivity spectrometers in an aircraft. Steady-state techniques also suffer from a lack of specificity; the deconvolution of the spectra of complex mixtures is a laborious and error prone process. These problems are exacerbated in remote fiber-optic monitoring where, for practical reasons, the fundamental absorbance region of the spectrum (often between 3 and 8 microns) is inaccessible, and the low-strength, closely spaced, near-infrared overtone absorbance bands must be used. We circumvented these challenges by employing correlation spectroscopy, a variation of modulation spectroscopy.
Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool.
Ammann, Adrian A
2007-04-01
Inductively coupled plasma (ICP) mass spectrometry (MS) is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and matrices introduced by a variety of specialized devices. Outstanding properties such as high sensitivity (ppt-ppq), relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICP MS in efficiently detecting, identifying and reliably quantifying trace elements. The increasing availability of relevant reference compounds and high separation selectivity extend the molecular identification capability of ICP MS hyphenated to species-specific separation techniques. While molecular ion source MS is specialized in determining the structure of unknown molecules, ICP MS is an efficient and highly sensitive tool for target-element orientated discoveries of relevant and unknown compounds. This special-feature, tutorial article presents the principle and advantages of ICP MS, highlighting these using examples from recently published investigations. Copyright 2007 John Wiley & Sons, Ltd.
Ostrinskaya, Alla; Kunz, Roderick R; Clark, Michelle; Kingsborough, Richard P; Ong, Ta-Hsuan; Deneault, Sandra
2018-05-24
A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to detect urea nitrate, potassium chlorate, 2,4,6-trinitrotoluene, 2,4,6-trinitrophenylmethylnitramine, triacetone triperoxide, hexamethylene triperoxide diamine, pentaerythritol tetranitrate, 1,3,5-trinitroperhydro-1,3,5-triazine, nitroglycerin, and octohy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with sensitivities all in the picogram per milliliter range. In conclusion, FIA APCI/ESI MSMS is a fast (<1 min/sample), sensitive (~pg/mL LOQ), and precise (intraday RSD < 10%) method for trace explosive detection that can play an important role in criminal and attributional forensics, counterterrorism, and environmental protection areas, and has the potential to augment or replace several of the existing explosive detection methods. © 2018 American Academy of Forensic Sciences.
NASA Technical Reports Server (NTRS)
Perry, J. L.
1990-01-01
Space Station Freedom environmental control and life support system testing has been conducted at Marshall Space Flight Center since 1986. The phase 3 simplified integrated test (SIT) conducted from July 30, 1989, through August 11, 1989, tested an integrated air revitalization system. During this test, the trace contaminant control subsystem (TCCS) was directly integrated with the bleed stream from the carbon dioxide reduction subsystem. The TCCS performed as expected with minor anomalies. The test set the basis for further characterizing the TCCS performance as part of advance air revitalization system configurations.
Lu, Nan; Wang, Ting; Zhao, Pan; Zhang, Lianjun; Lun, Xiaowen; Zhang, Xueli; Hou, Xiaohong
2016-11-01
In the presented work, metal-organic framework (MOF) material MIL-101(Cr) (MIL, Matérial Institute Lavoisier) was used as a sorbent for vortex assisted dispersive micro-solid-phase extraction (VA-D-μ-SPE) of trace amount of metronidazole (MNZ), ronidazole (RNZ), secnidazole (SNZ), dimetridazole (DMZ), tinidazole (TNZ), and ornidazole (ONZ) in different environmental water samples. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was used to quantify the target analytes. The extraction conditions, including type of sorbents, amount of MIL-101(Cr), solution pH, extraction method, extraction time, effect of salt, and elution conditions were investigated. Upon the optimal conditions, the developed method showed an excellent extraction performance with the average recovery ranging from 75.2 to 98.8 %. Good sensitivity levels were achieved with the detection limits of 0.03∼0.06 μg/L and the quantitation limits of 0.09∼0.20 μg/L. The linear ranges were varied from 0.1 to 20 for SNZ and ONZ and from 0.2 to 40 μg/L for MNZ, RNZ, DMZ, and TNZ (r 2 > 0.992), and repeatability of the method was satisfactory with the relative standard deviations (RSD) <8 %. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of 5-nitroimidazoles (5-NDZs) in 12 real water samples, showing the positive findings of MNZ and TNZ ranging from 0.3 to 1.0 μg/L. Furthermore, molecular docking was applied to explain the molecular interactions and free binding energies between MIL-101(Cr) and 5-NDZs, providing a deep insight into the adsorption mechanism. The proposed method exhibited the advantages of simplicity, rapidly, less solvent consumption, ease of operation, higher sensitivity, and lower matrix effect. Graphical abstract Schematic diagram of the extraction process and molecular docking investigation.
Almeida, C; Strzelczyk, Rafał; Nogueira, J M F
2014-03-01
Bar adsorptive microextraction combined with micro-liquid desorption followed by large volume injection-gas chromatography-mass spectrometry operating in the selected-ion monitoring acquisition mode (BAµE-µLD/LVI-GC-MS(SIM)), is proposed for the determination of trace levels of three insecticide repellents (N,N-diethyl-meta-toluamide (DEET), cis and trans permethrin (PERM)) in environmental water matrices. By comparing different sorbent coatings (five activated carbons and six polymers) through BAµE, an activated carbon (AC2) proved to be the best compromise between selectivity and efficiency, even against polydimethylsiloxane through stir bar sorptive extraction. The novel improvement proposed on the back-extraction stage performed in a single step, by reducing the desorption solvent volume at the microliter level, demonstrated remarkable performance turning possible to save time, making easier the practical manipulation and more environmentally friendly. Assays performed by BAµE(AC2)-µLD/LVI-GC-MS(SIM) on 25 mL of ultrapure water samples spiked at the 1.0 μg/L level, yielded recoveries ranging from 73.8±8.8% (trans-PERM) to 96.4±9.9% (DEET), under optimised experimental conditions. The analytical performance showed convenient detection limits (8-20 ng/L) and good linear dynamic ranges (0.04-4.0 µg/L) with suitable determination coefficients (r(2)>0.9963, DEET). Excellent repeatability were also achieved through intraday (RSD<14.9%) and interday (RSD<11.9%) experiments. The novel improvement on downsizing the BAµE device to half-size proved to be either a promising option in forthcoming to reduce still more the desorption solvent volume without losing microextraction efficiency. By using the standard addition methodology, the application of the present analytical approach on tap, ground, river, swimming-pool and estuary water samples revealed good sensitivity at trace level and absence of matrix effects. © 2013 Elsevier B.V. All rights reserved.
Xu, Fangjian; Liu, Zhaoqing; Yuan, Shengqiang; Zhang, Xilin; Sun, Zhilei; Xu, Feng; Jiang, Zuzhou; Li, Anchun; Yin, Xuebo
2017-08-15
Selected trace elements (As, Cr, Zn, Cu, Cd, Co, Pb and Ni) in 76 surface sediment samples collected from the rivers and the intertidal zone of Jiaozhou Bay (JZB) were evaluated to assess their environmental background values in the JZB catchment. Overall, the sediment quality in the area meets the China Marine Sediment Quality criteria. The background values (ranges) of the elements As, Cr, Zn, Cu, Cd, Co, Pb and Ni were, respectively, 8.28 (4.10-12.46), 67.96 (38.40-97.52), 56.80 (16.42-196.51), 19.13 (5.71-64.06), 0.10 (0.02-0.42), 6.51 (2.08-20.40), 17.97 (12.26-55.84) and 20.69 (10.43-30.95)mg/kg. The background values of most of the trace elements were lower than those in Chinese soil, the upper continental crust, global shales and global preindustrial sediments. The results may assist in defining future coastal and river management measures specifically targeted at monitoring trace element contamination in the JZB catchment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hayes, M A
1988-04-01
Gas chromatography (GC) is the most widely used analytical technique in the food and beverage industry. This paper addresses the problems of sample preparation and system maintenance to ensure the most sensitive, durable, and efficient results for trace analysis by GC in this industry.
Rapid Analysis of Trace Drugs and Metabolites Using a Thermal Desorption DART-MS Configuration.
Sisco, Edward; Forbes, Thomas P; Staymates, Matthew E; Gillen, Greg
2016-01-01
The need to analyze trace narcotic samples rapidly for screening or confirmatory purposes is of increasing interest to the forensic, homeland security, and criminal justice sectors. This work presents a novel method for the detection and quantification of trace drugs and metabolites off of a swipe material using a thermal desorption direct analysis in real time mass spectrometry (TD-DART-MS) configuration. A variation on traditional DART, this configuration allows for desorption of the sample into a confined tube, completely independent of the DART source, allowing for more efficient and thermally precise analysis of material present on a swipe. Over thirty trace samples of narcotics, metabolites, and cutting agents deposited onto swipes were rapidly differentiated using this methodology. The non-optimized method led to sensitivities ranging from single nanograms to hundreds of picograms. Direct comparison to traditional DART with a subset of the samples highlighted an improvement in sensitivity by a factor of twenty to thirty and an increase in reproducibility sample to sample from approximately 45 % RSD to less than 15 % RSD. Rapid extraction-less quantification was also possible.
A simplified form of cardiotocography for antenatal fetal assessment.
Mahomed, K; Gupta, B K; Matikiti, L; Murape, T S
1992-12-01
Antenatal cardiotocography has become the primary method of evaluation of fetal wellbeing, and the relationship between the presence of fetal heart rate accelerations in response to fetal movement and subsequent good fetal outcome has been demonstrated. However, in areas where electronic monitors are few or not available it would be useful if such accelerations could be demonstrated using the Pinard stethoscope. A prospective study involving 200 women with a singleton pregnancy of more than 34 weeks gestation was performed at Harare Maternity Hospital, Harare, Zimbabwe, when a 6 min electronic trace using an external transducer was compared with simultaneously performed 6 min manual record using the Pinard stethoscope. The findings showed that the manual record has a sensitivity of 75% and although traces with excessive base line variability would show an acceleration on the manual record, in no case with a flat trace was an acceleration noted on the manual record. This acceptable degree of sensitivity would allow for a significant decrease in the number of women being referred for electronic tracing and would be a more appropriate use of limited resources in terms of manpower and equipment.
Trace analysis of high-purity graphite by LA-ICP-MS.
Pickhardt, C; Becker, J S
2001-07-01
Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.
Analysis of Asian Outflow over the Western Pacific using Observations from Trace-P
NASA Technical Reports Server (NTRS)
Jacob, Daniel J.
2004-01-01
Our analysis of the TRACE-P data focused on answering the following questions: 1) How do anthropogenic sources in Asia contribute to chemical outflow over the western Pacific in spring? 2) How does biomass burning in southeast Asia contribute to this outflow? 3) How can the TRACE-P observations be used to better quantify the sources of environmentally important gases in eastern Asia? Our strategy drew on a combination of data analysis and global 3-D modeling, as described below. We also contributed to the planning and execution of TRACE-P through service as mission scientist and by providing chemical model forecasts in the field.
ERIC Educational Resources Information Center
Morgan, Jeff
2011-01-01
Cultural sensitivity theory is the study of how individuals relate to cultural difference. Using literature to help students prepare for study abroad, instructors could analyze character and trace behavior through a model of cultural sensitivity. Milton J. Bennett has developed such an instrument, The Developmental Model of Intercultural…
Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis
Wang, W.-X.; Fisher, N.S.; Luoma, S.N.
1996-01-01
Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.
ENVIRONMENTAL STEWARDSHIP OF PHARMACEUTICALS - THE GREEN PHARMACY
The occurrence of pharmaceuticals and personal care products (PPCPS) as environmental pollutants is a multifaceted issue whose scope continues to become better delineated since the escalation of conceited attention beginning in the 1980s. PPCPs typically occur as trace environme...
Environmental Ethics and Civil Engineering.
ERIC Educational Resources Information Center
Vesilind, P. Aarne
1987-01-01
Traces the development of the civil engineering code of ethics. Points out that the code does have an enforceable provision that addresses the engineer's responsibility toward the environment. Suggests revisions to the code to accommodate the environmental impacts of civil engineering. (TW)
PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCPS) AS ENVIRONMENTAL POLLUTANTS
The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typical...
Ma, Wanli; Kannan, Kurunthachalam; Wu, Qian; Bell, Erin M; Druschel, Charlotte M; Caggana, Michele; Aldous, Kenneth M
2013-05-01
Dried blood spots (DBS), collected as part of the newborn screening program (NSP) in the USA, is a valuable resource for studies on environmental chemical exposures and associated health outcomes in newborns. Nevertheless, determination of concentrations of environmental chemicals in DBS requires assays with great sensitivity, as the typical volume of blood available on a DBS with 16-mm diameter disc is approximately 50 μL. In this study, we developed a liquid-liquid extraction and high-performance liquid chromatography/tandem mass spectrometry method for the detection of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and bisphenol A (BPA) in DBS. The method was validated for accuracy, precision, and sensitivity, by spiking of target chemicals at different levels on Whatman 903 filter cards, which is used in the collection of DBS by the NSP. Contamination arising from collection, storage, and handling of DBS is an important issue to be considered in the analysis of trace levels of environmental chemicals in DBS. For the evaluation of the magnitude of background contamination, field blanks were prepared from unspotted portions of DBS filter cards collected by the NSP. The method was applied for the measurement of PFOS, PFOA, and BPA in 192 DBS specimens provided by NSP of New York State. PFOS and PFOA were detected in 100 % of the specimens analyzed. The concentrations of PFOS and PFOA measured in DBS were similar to those reported earlier in the whole blood samples of newborns. BPA was also found in 86 % of the specimens at concentrations ranging from 0.2 to 36 ng/mL (excluding two outliers). Further studies are needed to evaluate the sources of BPA exposures and health outcomes in newborns.
NASA Astrophysics Data System (ADS)
Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine
2005-04-01
Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.
Gopalapillai, Yamini; Vigneault, Bernard; Hale, Beverley A
2014-10-01
Lemna minor, a free-floating macrophyte, is used for biomonitoring of mine effluent quality under the Metal Mining Effluent Regulations (MMER) of the Environmental Effects Monitoring (EEM) program in Canada and is known to be sensitive to trace metals commonly discharged in mine effluents such as Ni. Environment Canada's standard toxicity testing protocol recommends frond count (FC) and dry weight (DW) as the 2 required toxicity endpoints-this is similar to other major protocols such as those by the US Environmental Protection Agency (USEPA) and the Organisation for Economic Co-operation and Development (OECD)-that both require frond growth or biomass endpoints. However, we suggest that similar to terrestrial plants, average root length (RL) of aquatic plants will be an optimal and relevant endpoint. As expected, results demonstrate that RL is the ideal endpoint based on the 3 criteria: accuracy (i.e., toxicological sensitivity to contaminant), precision (i.e., lowest variance), and ecological relevance (metal mining effluents). Roots are known to play a major role in nutrient uptake in conditions of low nutrient conditions-thus having ecological relevance to freshwater from mining regions. Root length was the most sensitive and precise endpoint in this study where water chemistry varied greatly (pH and varying concentrations of Ca, Mg, Na, K, dissolved organic carbon, and an anthropogenic organic contaminant, sodium isopropyl xanthates) to match mining effluent ranges. Although frond count was a close second, dry weight proved to be an unreliable endpoint. We conclude that toxicity testing for the floating macrophyte should require average RL measurement as a primary endpoint. © 2014 SETAC.
Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2016-04-01
To promote the utilization of waste material as alternative fuel, the mono- and co-combustion characteristics of sewage sludge (SS) and coal gangue (CG) were systematically investigated, with emphasis on environmental influences. The emission of SO2, NOx as well as the trace elements during combustion of SS and CG were studied with regard to the effects of their chemistries, structures and interactions. Results showed that co-combustion can be beneficial for ignition performance. A synergic effect on both desulfurization and denitrification can be expected at ca. 800°C. Further, an enhanced retention of trace elements during co-combustion was also observed, especially for Pb and Zn. On the basis of the results, it can be expected that, with proper operation, co-combustion of SS and CG can be a promising method for the disposal of these two wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.
2015-01-01
In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.
Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua
2011-11-01
A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.
Wickramarathna, Sudeera; Balasooriya, Shyamalie; Diyabalanage, Saranga; Chandrajith, Rohana
2017-12-01
Chronic kidney disease of unknown aetiologies (CKDu) is increasingly recognized in tropical regions and is now considered a global health problem. A detailed hydrogeochemical investigation has been performed in three CKDu hotspots in Sri Lanka to assess the geo-environmental aetiological factors influencing this disease. A total of 71 ground- and 26 surface water samples were collected from Girandurukotte, Wilgamuwa and Nikawewa regions and analysed for major constituents and trace elements. The affected regions are dominated by Ca-Mg-HCO 3 facies groundwater that is mainly controlled by silicate weathering. Higher levels of fluoride associated with higher hardness is the main feature of groundwater from CKDu regions compared to non-CKDu regions. Results showed that 65% of the wells in the affected regions exceeded the fluoride concentration of 0.5mg/L. Environmental isotopes of groundwater in the CKDu regions are represented by the regression line of δ 2 H=5.42δ 18 O-3.59 (r 2 =0.916) with a clear isotopic differentiation between local precipitation and groundwater. None of the trace elements exceeded the recommended scales and in most cases levels are negligible in both surface and groundwater in study areas. Therefore, the involvement of trace elements such as Cd, As and Pb can be ignored as causative factors for CKDu. This study highlights the synergistic influence of fluoride and hardness that could enhance the disease, and thereby refute earlier theories that attribute trace elements as causative factors for CKDu. Higher hardness in drinking water also restricts sufficient water uptake, particularly by farmers and which affects the physiological, biochemical and nutritional requirements. Copyright © 2017 Elsevier GmbH. All rights reserved.
Neng, N R; Santalla, R P; Nogueira, J M F
2014-08-01
Stir bar sorptive extraction with in-situ derivatization using sodium tetrahydridoborate (NaBH4) followed by liquid desorption and large volume injection-gas chromatography-mass spectrometry detection under the selected ion monitoring mode (SBSE(NaBH4)in-situ-LD/LVI-GC-MS(SIM)) was successfully developed for the determination of tributyltin (TBT) in environmental water matrices. NaBH4 proved to be an effective and easy in-situ speciation agent for TBT in aqueous media, allowing the formation of adducts with enough stability and suitable polarity for SBSE analysis. Assays performed on water samples spiked at the 10.0μg/L, yielded convenient recoveries (68.2±3.0%), showed good accuracy, suitable precision (RSD<9.0%), low detection limits (23ng/L) and excellent linear dynamic range (r(2)=0.9999) from 0.1 to 170.0µg/L, under optimized experimental conditions. By using the standard addition method, the application of the present methodology to real surface water samples allowed very good performance at the trace level. The proposed methodology proved to be a feasible alternative for routine quality control analysis, easy to implement, reliable and sensitive to monitor TBT in environmental water matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M
2013-09-15
Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in hypercapnia (1.52 and 3.01 kPa). Overall, our data reveal complex and metal-specific interactions between the cellular effects of trace metals and [Formula: see text] in clams and indicate that variations in environmental [Formula: see text] may modulate the biological effects of trace metals in marine organisms. Copyright © 2013 Elsevier B.V. All rights reserved.
Ohira, Shin-Ichi; Nakamura, Nao; Endo, Masaaki; Miki, Yusuke; Hirose, Yasuo; Toda, Kei
2018-01-01
Monitoring of trace water in industrial gases is strongly recommended because contaminants cause serious problems during use, especially in the semiconductor industry. An ultra-sensitive trace-water sensor was developed with an in situ-synthesized metal-organic framework as the sensing material. The sample gas is passed through the sensing membrane and efficiently and rapidly collected by the sensing material in the newly designed gas collection/detection cell. The sensing membrane, glass paper impregnated with copper 1,3,5-benzenetricarboxylate (Cu-BTC), is also newly developed. The amount and density of the sensing material in the sensing membrane must be well balanced to achieve rapid and sensitive responses. In the present study, Cu-BTC was synthesized in situ in glass paper. The developed system gave high sensing performances with a limit of detection (signal/noise ratio = 3) of 9 parts per billion by volume (ppbv) H 2 O and a 90% response time of 86 s for 200 ppbv H 2 O. The reproducibility of the responses within and between lots had relative standard deviations for 500 ppbv H 2 O of 0.8% (n = 10) and 1.5% (n = 3), respectively. The long-term (2 weeks) stability was 7.3% for 400 ppbv H 2 O and one-year continuous monitoring test showed the sensitivity change of <∼3% before and after the study. Furthermore, the system response was in good agreement with the response achieved in cavity ring-down spectroscopy. These performances are sufficient for monitoring trace water in industrial gases. The integrated system with light and gas transparent structure for gas collection/absorbance detection can also be used for other target gases, using specific metal-organic frameworks.
Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Gasik, Zuzanna; Frankowski, Marcin; Dąbrowski, Mikołaj; Molisak, Bartłomiej; Kaczmarczyk, Jacek; Gasik, Robert
2017-12-23
The work is designed to uncover the pattern of mutual relation among trace elements and epidemiological data in the degenerated intervertebral disk tissue in humans. Hitherto the reason of the degenerative process is not fully understood. Trace elements are the basic components of the biological compound related both its metabolism as well as environmental exposure. The relation pattern among elements occurs gives new perspective in solving the cause of the disease. We have analysed trace elements content in the 30 intervertebral disc from 22 patients with degenerative disc disease. The concentrations of Al, Cu, Cd, Mo, Ni and Pb were determined with Atomic Absorption Spectrometry. To analyse the multidimentional relation between trace element concentration and epidemiological data the chemometric analysis was applied. The similarity have been shown in occurrence of following pairs: Cd-Mo as well as Mg-Zn. The second pair was correlated with Pb concentration. Pb levels are observed to be competitive to Cu concentration. Cd concentration was related to Zn and Mg deficiency. No single but rather cluster of epidemiological data show observable influence on the TE tissue variance. Zn and Cu was related to the male sex. Operation with orthopedic implants were related to combined Al, Mo and Zn concentration. This is the first chemometric analysis of trace elements in disk tissue. It shows multidimentional relations that are missed by the classical statistic. The analysis shows significant relation. The nature of the relations is the basis for further metabolic and environmental research.
A five week series of pilot-scale incineration tests, using a synthetic waste feed, was performed at the Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator. Eight tests studied the fate of five ha...
A 5-week series of pilot-scale incineration tests, employing a synthetic waste feed, was performed at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a venturi scrubber/p...
PERSONAL-PRACTICES POLLUTANTS: UBIETY, UBIQUITY, SIGNIFICANCE, SOLUTIONS, STEWARDSHIP
The occurrence of pharmaceuticals and personal care products (PPCPS) as environmental pollutants is a multifaceted issue whose scope continues to become better delineated with the escalation of attention that began in the 1980s. PPCPs typically occur as trace environmental pollut...
Humans and the Environment in America's Past.
ERIC Educational Resources Information Center
Harvey, Mark W. T.
1996-01-01
Presents a concise and interesting overview of U.S. attitudes towards nature, conservation, and environmental issues. Traces the constantly shifting relationship between these issues and social and commercial interests. Follows this relationship from the early colonists to the current environmental movement. (MJP)
PHARMACEUTICALS AND PERSONAL CARE PRODUCTS: DIVERSE GALAXY OF ENVIRONMENTAL POLLUTANTS
The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typical...
Surface-enhanced Raman for monitoring toxins in water
NASA Astrophysics Data System (ADS)
Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.
2004-02-01
Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.
Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique
NASA Astrophysics Data System (ADS)
Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir
2018-03-01
The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.
Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration
NASA Astrophysics Data System (ADS)
Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-09-01
In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.
Environmental Degradation in a Dependent Region: The Rio Grande Valley of Mexico and Texas.
ERIC Educational Resources Information Center
Jones, Richard C.
1999-01-01
Traces the interrelationships among dependence, environmental degradation, and human health in the Rio Grande Valley of Mexico and Texas. Presents a case study on environmental factors threatening family health in households located on both sides of the border; the health problems can be overcome by addressing restrictive zoning, health services,…
ERIC Educational Resources Information Center
Onianwa, P. C.
1993-01-01
Reviews research studies related to the monitoring of trace heavy metals in environmental samples such as plants, water, soils, and other natural resources in the city of Ibadan, Nigeria. Research results indicate a significant increase in toxic heavy metal levels has occurred, implying the need for environmental education. (Contains 31…
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-14
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.
Trace Gas Quantification with Small Unmanned Aerial Systems
NASA Astrophysics Data System (ADS)
Schuyler, T. J.; Guzman, M. I.; Bailey, S.; Jacob, J.
2017-12-01
Measurements of atmospheric composition are generally performed with advanced instrumentation from ground stations using tall towers and weather balloons or with manned aircraft. Unmanned aerial systems (UAS) are a promising technology for atmospheric monitoring of trace atmospheric gases as they can bridge the gap between the regions of the atmospheric boundary layer measured by ground stations and aircraft. However, in general, the sophisticated instrumentation required for these measurements are heavy, preventing its deployment with small UAS. In order to successfully detect and quantify these gases, sensor packages aboard UAS must be lightweight, have low-power consumption, and possess limits of detection on the ppm scale or below with reasonably fast response times. Thus, a new generation of portable instrument is being developed in this work to meet these requirements employing new sensing packages. The cross sensitivity of these sensors to several gases is examined through laboratory testing of the instrument under variable environmental conditions prior to performing field measurements. Datasets include timestamps with position, temperature, relative humidity, pressure, along with variable mixing ratio values of important greenhouse gases. The work will present an analysis of the results gathered during authorized flights performed during the second CLOUD-MAP§ field campaign held in June 2017. §CLOUD-MAP: Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics, a 4-year NSF funded effort.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
A primer on trace metal-sediment chemistry
Horowitz, Arthur J.
1985-01-01
In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic matter) and ways in which the metals are entrained by the sediments (such as adsorption, complexation, and within mineral lattices).
Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils
NASA Astrophysics Data System (ADS)
Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.
2009-12-01
Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.
2013-01-01
Background Anthropogenic activities introduce materials increasing levels of many dangerous substances for the environmental quality and being hazardous to human health. Major attention has been given to those elements able to alter the environment and endanger human health. The airborne particulate matter pollutant is considered one of the most difficult task in environmental chemistry for its complex composition and implications complicating notably the behavior comprehension. So, for investigating deeply the elemental composition we used two nuclear techniques, Neutron Activation Analysis and Photon Activation Analysis, characterized by high sensitivity, precision and accuracy. An important task has been devoted to the investigation of Quality Control (QC) and Quality Assurance (QA) of the methodology used in this study. This study was therefore extended as far back as possible in time (from 1965 until 2000) in order to analyze the trend of airborne concentration of pollutant elements in connection with the industrial and lifestyle growth during the entire period. Results Almost all the elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources: this behavior is common to all the periods studied even if a very light decreasing trend can be evidenced from 1970 to 2002. Finally, in order to investigate a retrospective study of elements in PM10 and their evolution in relationship with the natural or anthropogenic origins, we have investigated the Enrichment Factors. The study shows the EF trends for some elements in PM10 during four decades. Conclusions The two nuclear techniques have allowed to reach elevated sensibility/accuracy levels for determining elements at very low concentrations (trace and ultra-trace levels). The element concentrations determined in this study do not basically show a significant level of attention from a toxicological point of view. PMID:24196275
Whale baleen trace element signatures: a predictor of environmental life history?
NASA Astrophysics Data System (ADS)
Wilcox Freeburg, E.; Brault, S.; Mayo, C.; Oktay, S.; Hannigan, R.
2009-12-01
The analysis of trace element composition of biogenic structures (e.g., otoliths, feathers) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides unique insights into the environmental life history of individuals. We studied the trace element chemistry of right whale baleens in an attempt to reconstruct migration patterns. Though much is known about the feeding and breeding habitats of these whales, little is known about the location in which they spend most of their adult years. Baleens, made of keratin, grow continuously and are metabolically inactive. Previous work showed that the stable isotope chemistry along the length of a baleen records changes in diet, such as weaning. Baleen chemistry should, therefore, also record the environmental life history of the individual. Trace metal chemistry along a single baleen plate from a right whale were analyzed by LA-ICP-MS. Semi-quantitative elemental signatures were obtained using NIST 612 (glass standard) and MACS-3 (calcium carbonate standard). These concentrations were then compared for accuracy to acid digested baleen laterally adjacent to the laser ablation site via aqueous ICP-MS. Elemental chemistry was compared to known feeding/breeding locations of the individual (water chemistry). Using these comparisons as well as principal components analysis, life history of the individual was reconstructed. Development of an in-house keratin standard is in progress and is expected to strengthen the confidence in results. Future work is expected to bring a more complete knowledge of right whale wintering habits.
Pérez-Rodríguez, Michael; Pellerano, Roberto Gerardo; Pezza, Leonardo; Pezza, Helena Redigolo
2018-05-15
Tetracyclines are widely used for both the treatment and prevention of diseases in animals as well as for the promotion of rapid animal growth and weight gain. This practice may result in trace amounts of these drugs in products of animal origin, such as milk and eggs, posing serious risks to human health. The presence of tetracycline residues in foods can lead to the transmission of antibiotic-resistant pathogenic bacteria through the food chain. In order to ensure food safety and avoid exposure to these substances, national and international regulatory agencies have established tolerance levels for authorized veterinary drugs, including tetracycline antimicrobials. In view of that, numerous sensitive and specific methods have been developed for the quantification of these compounds in different food matrices. One will note, however, that the determination of trace residues in foods such as milk and eggs often requires extensive sample extraction and preparation prior to conducting instrumental analysis. Sample pretreatment is usually the most complicated step in the analytical process and covers both cleaning and pre-concentration. Optimal sample preparation can reduce analysis time and sources of error, enhance sensitivity, apart from enabling unequivocal identification, confirmation and quantification of target analytes. The development and implementation of more environmentally friendly analytical procedures, which involve the use of less hazardous solvents and smaller sample sizes compared to traditional methods, is a rapidly increasing trend in analytical chemistry. This review seeks to provide an updated overview of the main trends in sample preparation for the determination of tetracycline residues in foodstuffs. The applicability of several extraction and clean-up techniques employed in the analysis of foodstuffs, especially milk and egg samples, is also thoroughly discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Tabassum, Arshia; Zaidi, Syeda Nuzhat Fatima; Yasmeen, Kausar; Mahboob, Tabassum
2018-07-15
Electrolytes and trace elements dysregulation play an important role in the progression of obesity and diabetes complications. The present study was designed to evaluate the insulin sensitizing effects of peroxisomes proliferators activated receptor gamma (PPAR-γ) agonist on trace elements in obesity induced type 2 diabetes mellitus and correlate with serum visfatin. Wistar rats were categorized into five groups. Group I served as control; Group II fed on high fat diet (HFD); Group III fed on HFD and treated with rosiglitazone (3 mg/kg) for 7 days; Group IV were T2DM rats induce by HFD and low dose of streptozotocin (i.p. 35 mg/kg); Group V was T2DM rats treated with rosiglitazone (3 mg/kg) for 7 days. Serum and tissues electrolytes levels and renal, hepatic and cardiac tissues trace elements were estimated by flame photometer and atomic absorption spectroscopy. Serum visfatin was estimated by ELISA. Pearson correlations were analyzed among fasting blood glucose (FBG), serum visfatin and tissues trace elements. Results of the current study showed hyponatremia, hyperkalemia, hypomagnesemia and hypercalcemia in HFD and T2DM groups. HFD and T2DM also showed elevated copper and iron levels; however, zinc and selenium levels were decreased. Rosiglitazone treatment increased the insulin sensitization and altered these changes. A Strong association was observed among FBG, serum visfatin and trace elements levels of HFD and T2DM. Obesity and diabetes mellitus disturbed visfatin, electrolytes and trace elements homeostasis. Rosiglitazone treatment restored these changes. The results of the study could serve as a basis for further studies for the prevention of diabetic complications. Copyright © 2018 Elsevier Inc. All rights reserved.
The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typical...
The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typicall...
Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.
Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less
Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone
Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...
2015-10-07
Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less
Karpf, Andreas; Rao, Gottipaty N
2015-07-01
We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400 mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.
Development of a primary diffusion source of organic vapors for gas analyzer calibration
NASA Astrophysics Data System (ADS)
Lecuna, M.; Demichelis, A.; Sassi, G.; Sassi, M. P.
2018-03-01
The generation of reference mixtures of volatile organic compounds (VOCs) at trace levels (10 ppt-10 ppb) is a challenge for both environmental and clinical measurements. The calibration of gas analyzers for trace VOC measurements requires a stable and accurate source of the compound of interest. The dynamic preparation of gas mixtures by diffusion is a suitable method for fulfilling these requirements. The estimation of the uncertainty of the molar fraction of the VOC in the mixture is a key step in the metrological characterization of a dynamic generator. The performance of a dynamic generator was monitored over a wide range of operating conditions. The generation system was simulated by a model developed with computational fluid dynamics and validated against experimental data. The vapor pressure of the VOC was found to be one of the main contributors to the uncertainty of the diffusion rate and its influence at 10-70 kPa was analyzed and discussed. The air buoyancy effect and perturbations due to the weighing duration were studied. The gas carrier flow rate and the amount of liquid in the vial were found to play a role in limiting the diffusion rate. The results of sensitivity analyses were reported through an uncertainty budget for the diffusion rate. The roles of each influence quantity were discussed. A set of criteria to minimize the uncertainty contribution to the primary diffusion source (25 µg min-1) were estimated: carrier gas flow rate higher than 37.7 sml min-1, a maximum VOC liquid mass decrease in the vial of 4.8 g, a minimum residual mass of 1 g and vial weighing times of 1-3 min. With this procedure a limit uncertainty of 0.5% in the diffusion rate can be obtained for VOC mixtures at trace levels (10 ppt-10 ppb), making the developed diffusion vials a primary diffusion source with potential to become a new reference material for trace VOC analysis.
Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury
Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M.; Grafman, Jordan
2016-01-01
Background Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). Objective We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. Methods We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice’s similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist’s and medical students’ anatomic region reports were similar (Kappa 0.8, t-test p < 0.001). Region of probable injury modeling of involved brain structures was sensitive (0.7) and specific (0.9) compared with manually traced structures. Semiautomated analysis was 9-fold faster than manual tracings. Conclusion Our region of probable injury spatial model approximates anatomical regions of encephalomalacia from ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. PMID:23707123
Broadband infrared imaging spectroscopy for standoff detection of trace explosives
NASA Astrophysics Data System (ADS)
Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; McGill, R. Andrew
2016-05-01
This manuscript describes advancements toward a mobile platform for standoff detection of trace explosives on relevant substrates using broadband infrared spectroscopic imaging. In conjunction with this, we are developing a technology for detection based on photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). PT-IRIS leverages one or more IR quantum cascade lasers (QCL), tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. Here we describe methods to increase both sensitivity to trace explosives and selectivity between different analyte types by exploiting a broader spectral range than in previous configurations. Previously we demonstrated PT-IRIS at several meters of standoff distance indoors and in field tests, while operating the lasers below the infrared eye-safe intensity limit (100 mW/cm2). Sensitivity to explosive traces as small as a single 10 μm diameter particle (~1 ng) has been demonstrated.
Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport
NASA Technical Reports Server (NTRS)
Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.
2004-01-01
The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.
Dieltjes, Patrick; Mieremet, René; Zuniga, Sofia; Kraaijenbrink, Thirsa; Pijpe, Jeroen; de Knijff, Peter
2011-07-01
Exploring technological limits is a common practice in forensic DNA research. Reliable genetic profiling based on only a few cells isolated from trace material retrieved from a crime scene is nowadays more and more the rule rather than the exception. On many crime scenes, cartridges, bullets, and casings (jointly abbreviated as CBCs) are regularly found, and even after firing, these potentially carry trace amounts of biological material. Since 2003, the Forensic Laboratory for DNA Research is routinely involved in the forensic investigation of CBCs in the Netherlands. Reliable DNA profiles were frequently obtained from CBCs and used to match suspects, victims, or other crime scene-related DNA traces. In this paper, we describe the sensitive method developed by us to extract DNA from CBCs. Using PCR-based genotyping of autosomal short tandem repeats, we were able to obtain reliable and reproducible DNA profiles in 163 out of 616 criminal cases (26.5%) and in 283 out of 4,085 individual CBC items (6.9%) during the period January 2003-December 2009. We discuss practical aspects of the method and the sometimes unexpected effects of using cell lysis buffer on the subsequent investigation of striation patterns on CBCs.
DOT National Transportation Integrated Search
2011-04-01
Leaching of trace elements may raise environmental concerns when using coal fly ash in road construction. US EPA is in the process : of creating the first national rule on coal ash management, including beneficial use. Meanwhile, driven by the tighte...
Consecutive salmonella outbreaks traced to the same bakery.
Evans, M. R.; Tromans, J. P.; Dexter, E. L.; Ribeiro, C. D.; Gardner, D.
1996-01-01
Two consecutive community outbreaks of Salmonella enteritidis phage type 4 (PT4) traced to the same bakery occurred in Cardiff, Wales during August-September 1992. In the first outbreak, illness was associated with eating custard slices (odds ratio 23.8, 95% confidence interval 6.5-94.4, P < 0.0001), and in the second, with eating fresh cream cakes (odds ratio 15.8, 95% confidence interval 1.6-374, P = 0.004). Environmental investigations implicated cross-contamination during preparation of the cold-custard mix as the cause of the first outbreak, and inadequate cleaning and disinfection of nozzles used for piping cream in the second outbreak. S. enteritidis PT4 was isolated from fresh cream sponge cake retained by a case and from two fresh cream cakes and four environmental swabs obtained at the bakery. This incident illustrates the hazard of widespread environmental contamination with salmonella and the need for thorough environmental cleansing for any premises implicated in an outbreak of food poisoning. PMID:8620907
Limited by the lack of a sensitive, universal detector, many capillary-based liquid-phase separation techniques might benefit from techniques that overcome modest concentration sensitivity by preconcentrating large injection volumes. The work presented employs selective solid-ph...
Lanthanide-labeled clay: A new method for tracing sediment transport in Karst
Mahler, B.J.; Bennett, P.C.; Zimmerman, M.
1998-01-01
Mobile sediment is a fundamental yet poorly characterized aspect of mass transport through karst aquifers. Here the development and field testing of an extremely sensitive particle tracer that may be used to characterize sediment transport in karst aquifers is described. The tracer consists of micron-size montmorillonite particles homoionized to the lanthanide form; after injection and retrieval from a ground water system, the lanthanide ions are chemically stripped from the clay and quantified by high performance liquid chromatography. The tracer meets the following desired criteria: low detection limit; a number of differentiable signatures; inexpensive production and quantification using standard methods; no environmental risks; and hydrodynamic properties similar to the in situ sediment it is designed to trace. The tracer was tested in laboratory batch experiments and field tested in both surface water and ground water systems. In surface water, arrival times of the tracer were similar to those of a conservative water tracer, although a significant amount of material was lost due to settling. Two tracer tests were undertaken in a karst aquifer under different flow conditions. Under normal flow conditions, the time of arrival and peak concentration of the tracer were similar to or preceded that of a conservative water tracer. Under low flow conditions, the particle tracer was not detected, suggesting that in low flow the sediment settles out of suspension and goes into storage.Mobile sediment is a fundamental yet poorly characterized aspect of mass transport through karst aquifers. Here the development and field testing of an extremely sensitive particle tracer that may be used to characterize sediment transport in karst aquifers is described. The tracer consists of micron-size montmorillonite particles homoionized to the lanthanide form; after injection and retrieval from a ground water system, the lanthanide ions are chemically stripped from the clay and quantified by high performance liquid chromatography. The tracer meets the following desired criteria: low detection limit; a number of differentiable signatures; inexpensive production and quantification using standard methods; no environmental risks; and hydrodynamic properties similar to the in situ sediment it is designed to trace. The tracer was tested in laboratory batch experiments and field tested in both surface water and ground water systems. In surface water, arrival times of the tracer were similar to those of a conservative water tracer, although a significant amount of material was lost due to settling. Two tracer tests were undertaken in a karst aquifer under different flow conditions. Under normal flow conditions, the time of arrival and peak concentration of the tracer were similar to or preceded that of a conservative water tracer. Under low flow conditions, the particle tracer was not detected, suggesting that in low flow the sediment settles out of suspension and goes into storage.
Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen
2014-09-01
A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Wey, Thomas
2001-01-01
Many of the engine exhaust species resulting in significant environmental impact exist in trace amounts. Recent research, e.g., conducted at MIT-AM, has pointed to the intra-engine environment as a possible site for important trace chemistry activity. In addition, the key processes affecting the trace species activity occurring downstream in the air passages of the turbine and exhaust nozzle are not well understood. Most recently, an effort has been initiated at NASA Glenn Research Center under the UEET Program to evaluate and further develop CFD-based technology for modeling and simulation of intra-engine trace chemical changes relevant to atmospheric effects of pollutant emissions from aircraft engines. This presentation will describe the current effort conducted at Glenn; some preliminary results relevant to the trace species chemistry in a turbine passage will also be presented to indicate the progress to date.
Charting environmental pollution. [by noise measurements
NASA Technical Reports Server (NTRS)
Halpert, E.; Bizo, F.; Karacsonyi, Z.
1974-01-01
It is found that areas affected by different noxious agents are within the limits traced for high noise level areas; consequently, it is suggested that high noise pressure levels should be used as the primary indication of environmental pollution. A complex methodology is reported for charting environmental pollution due to physical, chemical and biological noxious agents on the scale of an industrial district.
Environmental assessment of incinerator residue utilisation.
Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y
2009-07-01
Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.
NASA Astrophysics Data System (ADS)
White, Ian M.; Oveys, Hesam; Fan, Xudong
2006-02-01
Optical microsphere resonators can function as highly sensitive bio/chemical sensors due to the large Q-factor, which leads to high light-matter interaction. The whispering gallery modes (WGM) arise at the surface of the microsphere, creating a highly enhanced optical field that interacts with matter on or near the microsphere surface. As a result, the spectral position of the WGM is extremely sensitive to refractive index changes near the surface, such as when bio/chemical molecules bind to the sphere. We show the potential feasibility of a microsphere ring resonator as a sensor for small molecules by demonstrating detection of sub-femtomole changes in SiO II molecules at the surface of the microsphere. In this experiment, the silica molecules act as an excellent model for small molecule analytes because of their 60 Dalton molecular weight, and because we know nearly the exact quantity of molecules at the surface, which enables a sensitivity characterization. We measure the spectral shifts in the WGMs when low concentrations of hydrofluoric acid (HF) are added to a solution that is being probed by the microsphere. As the HF molecules break apart the SiO II molecules at the sphere surface, the WGMs shift due to the sub-nano-scale decrease in the size of the microsphere. These calculations show that the sensitivity of this microsphere resonator is on the order of 500 attomoles. Our results will lead to the utilization of optical microspheres for detection of trace quantities of small molecules for such applications as drug discovery, environmental monitoring, and enzyme detection using peptide cleavage.
Pharmaceutical metabolites in the environment: analytical challenges and ecological risks.
Celiz, Mary D; Tso, Jerry; Aga, Diana S
2009-12-01
The occurrence of human and veterinary pharmaceuticals in the environment has been a subject of concern for the past decade because many of these emerging contaminants have been shown to persist in soil and water. Although recent studies indicate that pharmaceutical contaminants can pose long-term ecological risks, many of the investigations regarding risk assessment have only considered the ecotoxicity of the parent drug, with very little attention given to the potential contributions that metabolites may have. The scarcity of available environmental data on the human metabolites excreted into the environment or the microbial metabolites formed during environmental biodegradation of pharmaceutical residues can be attributed to the difficulty in analyzing trace amounts of previously unknown compounds in complex sample matrices. However, with the advent of highly sensitive and powerful analytical instrumentations that have become available commercially, it is likely that an increased number of pharmaceutical metabolites will be identified and included in environmental risk assessment. The present study will present a critical review of available literature on pharmaceutical metabolites, primarily focusing on their analysis and toxicological significance. It is also intended to provide an overview on the recent advances in analytical tools and strategies to facilitate metabolite identification in environmental samples. This review aims to provide insight on what future directions might be taken to help scientists in this challenging task of enhancing the available data on the fate, behavior, and ecotoxicity of pharmaceutical metabolites in the environment.
Clements, Michelle N; Corstjens, Paul L A M; Binder, Sue; Campbell, Carl H; de Dood, Claudia J; Fenwick, Alan; Harrison, Wendy; Kayugi, Donatien; King, Charles H; Kornelis, Dieuwke; Ndayishimiye, Onesime; Ortu, Giuseppina; Lamine, Mariama Sani; Zivieri, Antonio; Colley, Daniel G; van Dam, Govert J
2018-02-23
Kato-Katz examination of stool smears is the field-standard method for detecting Schistosoma mansoni infection. However, Kato-Katz misses many active infections, especially of light intensity. Point-of-care circulating cathodic antigen (CCA) is an alternative field diagnostic that is more sensitive than Kato-Katz when intensity is low, but interpretation of CCA-trace results is unclear. To evaluate trace results, we tested urine and stool specimens from 398 pupils from eight schools in Burundi using four approaches: two in Burundi and two in a laboratory in Leiden, the Netherlands. In Burundi, we used Kato-Katz and point-of-care CCA (CCAB). In Leiden, we repeated the CCA (CCAL) and also used Up-Converting Phosphor Circulating Anodic Antigen (CAA). We applied Bayesian latent class analyses (LCA), first considering CCA traces as negative and then as positive. We used the LCA output to estimate validity of the prevalence estimates of each test in comparison to the population-level infection prevalence and estimated the proportion of trace results that were likely true positives. Kato-Katz yielded the lowest prevalence (6.8%), and CCAB with trace considered positive yielded the highest (53.5%). There were many more trace results recorded by CCA in Burundi (32.4%) than in Leiden (2.3%). Estimated prevalence with CAA was 46.5%. LCA indicated that Kato-Katz had the lowest sensitivity: 15.9% [Bayesian Credible Interval (BCI): 9.2-23.5%] with CCA-trace considered negative and 15.0% with trace as positive (BCI: 9.6-21.4%), implying that Kato-Katz missed approximately 85% of infections. CCAB underestimated disease prevalence when trace was considered negative and overestimated disease prevalence when trace was considered positive, by approximately 12 percentage points each way, and CAA overestimated prevalence in both models. Our results suggest that approximately 52.2% (BCI: 37.8-5.8%) of the CCAB trace readings were true infections. Whether measured in the laboratory or the field, CCA outperformed Kato-Katz at the low infection intensities in Burundi. CCA with trace as negative likely missed many infections, whereas CCA with trace as positive overestimated prevalence. In the absence of a field-friendly gold standard diagnostic, the use of a variety of diagnostics with differing properties will become increasingly important as programs move towards elimination of schistosomiasis. It is clear that CCA is a valuable tool for the detection and mapping of S. mansoni infection in the field and CAA may be a valuable field tool in the future.
Environmental Problems and the Scientist
ERIC Educational Resources Information Center
Batisse, Michel
1973-01-01
Suggests that any environmental problem can be traced at biosphere, technosphere, sociosphere, and noosphere level. Scientists have generally ignored the latter two spheres in making scientific discoveries. New social ethics need to be recognized that are based on progress, and scientists must consider how these ethics are influenced by their…
Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N
2003-02-01
An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.
A soil sampling reference site: the challenge in defining reference material for sampling.
de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; van der Perk, Marcel
2008-11-01
In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.
NASA Astrophysics Data System (ADS)
Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua
2016-12-01
Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.
NASA Astrophysics Data System (ADS)
Fu, Yu; Liu, Huan; Hu, Qi; Xie, Jiecheng
2017-05-01
Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. Normally high-sensitive microphone or PZT sensor is used to detect the signal in photoacoustic cell. In recent years, laser Doppler vibrometer (LDV) is proposed to remote-sense photoacoustic signal on various substrates. It is a highsensitivity sensor with a displacement resolution of <10pm. In this research, the photoacoustic effect of various chemicals and explosives is excited by a quantum cascade laser (QCL) at their absorbance peak. A home-developed differential LDV at 1550nm wavelength is applied to detect the vibration signal at 100m. A differential configuration is applied to minimize the environment factors, such as environment noise and vibration, air turbulence, etc. and increase the detection sensitivity. The photo-vibrational signal of chemicals and explosives on different substrates are detected. The results show the potential of the proposed technique on detection of trace chemicals and explosives at long standoff distance.
A Photoluminescence-Based Field Method for Detection of Traces of Explosives
Menzel, E. Roland; Menzel, Laird W.; Schwierking, Jake R.
2004-01-01
We report a photoluminescence-based field method for detecting traces of explosives. In its standard version, the method utilizes a commercially available color spot test kit for treating explosive traces on filter paper after swabbing. The colored products are fluorescent under illumination with a laser that operates on three C-size flashlight batteries and delivers light at 532 nm. In the fluorescence detection mode, by visual inspection, the typical sensitivity gain is a factor of 100. The method is applicable to a wide variety of explosives. In its time-resolved version, intended for in situ work, explosives are tagged with europium complexes. Instrumentation-wise, the time-resolved detection, again visual, can be accomplished in facile fashion. The europium luminescence excitation utilizes a laser operating at 355 nm. We demonstrate the feasibility of CdSe quantum dot sensitization of europium luminescence for time-resolved purposes. This would allow the use of the above 532 nm laser. PMID:15349512
ERIC Educational Resources Information Center
Giachero, Marcelo; Bustos, Silvia G.; Calfa, Gaston; Molina, Victor A.
2013-01-01
The present study investigates the fear memory resulting from the interaction of a stressful experience and the retrieval of an established fear memory trace. Such a combination enhanced both fear expression and fear retention in adult Wistar rats. Likewise, midazolam intra-basolateral amygdala (BLA) infusion prior to stress attenuated the…
Trace metal mapping by laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaiser, Jozef; Novotny, Dr. Karel; Hrdlicka, A
2012-01-01
Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.
Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China.
Zhang, Li; Zhang, Dawen; Wei, Yihua; Luo, Linguan; Dai, Tingcan
2014-04-01
The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.
Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter; Rella, Chris W; Scheutz, Charlotte
2014-08-01
Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision instrument can measure methane plumes more than 1.2 km away from small sources (about 5 kg h(-1)) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1 kg per hour and can be used to quantify individual sources with the right choice of wind direction and road distance. The placement of the trace gas is important for obtaining correct quantification and uncertainty of up to 36% can be incurred when the trace gas is not co-located with the methane source. Measurements made at greater distances are less sensitive to errors in trace gas placement and model calculations showed an uncertainty of less than 5% in both urban and open-country for placing the trace gas 100 m from the source, when measurements were done more than 3 km away. Using the ratio of the integrated plume concentrations of tracer gas and methane gives the most reliable results for measurements at various distances to the source, compared to the ratio of the highest concentration in the plume, the direct concentration ratio and using a Gaussian plume model. Under suitable weather and road conditions, the CRDS system can quantify the emission from different sources located close to each other using only one kind of trace gas due to the high time resolution, while the FTIR system can measure multiple trace gasses but with a lower time resolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.
2018-04-01
The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.
NASA Astrophysics Data System (ADS)
Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Cheng, Ying; Wang, Junzhuan; Shi, Yi; Xu, Dongsheng; Xin, Yu
2015-01-01
Wafer-scale three-dimensional (3D) surface enhancement Raman scattering (SERS) substrates were prepared using the plasma etching and ion sputtering methods that are completely compatible with well-established silicon device technologies. The substrates are highly sensitive with excellent uniformity and reproducibility, exhibiting an enhancement factor up to 1012 with a very low relative standard deviation (RSD) around 5%. These are attributed mainly to the uniform-distributed, multiple-type high-density hot spots originating from the structural characteristics of Ag nanoparticles (NPs) decorated Si nanocone (NC) arrays. We demonstrate that the trace dimethyl phthalate (DMP) at a concentration of 10-7 M can be well detected using this SERS substrate, showing that the AgNPs-decorated SiNC arrays can serve as efficient SERS substrates for phthalate acid esters (PAEs) detection with high sensitivity.
Leeth, David C.; Holloway, Owen G.
2000-01-01
In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).
ERIC Educational Resources Information Center
Pluess, Michael; Assary, Elham; Lionetti, Francesca; Lester, Kathryn J.; Krapohl, Eva; Aron, Elaine N.; Aron, Arthur
2018-01-01
A large number of studies document that children differ in the degree they are shaped by their developmental context with some being more sensitive to environmental influences than others. Multiple theories suggest that "Environmental Sensitivity" is a common trait predicting the response to negative as well as positive exposures.…
Molecularly Imprinted Nanomaterials for Sensor Applications
Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof
2013-01-01
Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356
The Race To X-ray Microbeam and Nanobeam Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ice, Gene E; Budai, John D; Pang, Judy
2011-01-01
X-ray microbeams are an emerging characterization tool with transformational implications for broad areas of science ranging from materials structure and dynamics, geophysics and environmental science to biophysics and protein crystallography. In this review, we discuss the race toward sub-10 nm- x-ray beams with the ability to penetrate tens to hundreds of microns into most materials and with the ability to determine local (crystal) structure. Examples of science enabled by current micro/nanobeam technologies are presented and we provide a perspective on future directions. Applications highlighted are chosen to illustrate the important features of various submicron beam strategies and to highlight themore » directions of current and future research. While it is clear that x-ray microprobes will impact science broadly, the practical limit for hard x-ray beam size, the limit to trace element sensitivity, and the ultimate limitations associated with near-atomic structure determinations are the subject of ongoing research.« less
Biosensor for the detection of Listeria monocytogenes: emerging trends.
Soni, Dharmendra Kumar; Ahmad, Rafiq; Dubey, Suresh Kumar
2018-05-23
The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.
Forensic collection of trace chemicals from diverse surfaces with strippable coatings.
Jakubowski, Michael J; Beltis, Kevin J; Drennan, Paul M; Pindzola, Bradford A
2013-11-07
Surface sampling for chemical analysis plays a vital role in environmental monitoring, industrial hygiene, homeland security and forensics. The standard surface sampling tool, a simple cotton gauze pad, is failing to meet the needs of the community as analytical techniques become more sensitive and the variety of analytes increases. In previous work, we demonstrated the efficacy of non-destructive, conformal, spray-on strippable coatings for chemical collection from simple glass surfaces. Here we expand that work by presenting chemical collection at a low spiking level (0.1 g m(-2)) from a diverse array of common surfaces - painted metal, engineering plastics, painted wallboard and concrete - using strippable coatings. The collection efficiency of the strippable coatings is compared to and far exceeds gauze pads. Collection from concrete, a particular challenge for wipes like gauze, averaged 73% over eight chemically diverse compounds for the strippable coatings whereas gauze averaged 10%.
Recent progress on gas sensor based on quantum cascade lasers and hollow fiber waveguides
NASA Astrophysics Data System (ADS)
Liu, Ningwu; Sun, Juan; Deng, Hao; Ding, Junya; Zhang, Lei; Li, Jingsong
2017-02-01
Mid-infrared laser spectroscopy provides an ideal platform for trace gas sensing applications. Despite this potential, early MIR sensing applications were limited due to the size of the involved optical components, e.g. light sources and sample cells. A potential solution to this demand is the integration of hollow fiber waveguide with novelty quantum cascade lasers.Recently QCLs had great improvements in power, efficiency and wavelength range, which made the miniaturized platforms for gas sensing maintaining or even enhancing the achievable sensitivity conceivable. So that the miniaturization of QCLs and HWGs can be evolved into a mini sensor, which may be tailored to a variety of real-time and in situ applications ranging from environmental monitoring to workplace safety surveillance. In this article, we introduce QCLs and HWGs, display the applications of HWG based on QCL gas sensing and discuss future strategies for hollow fiber coupled quantum cascade laser gas sensor technology.
A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High Humidity.
Guo, Kaimeng; Zhao, Lili; Yu, Shihang; Zhou, Wenyan; Li, Zifeng; Li, Gang
2018-06-07
In view of environmental protection and the need for early prediction of major diseases, it is necessary to accurately monitor the change of trace ammonia concentration in air or in exhaled breath. However, the adoption of proton-conductive metal-organic frameworks (MOFs) as smart sensors in this field is limited by a lack of ultrasensitive gas-detecting performance at high relative humidity (RH). Here, the pellet fabrication of a water-stable proton-conductive MOF, Ba( o-CbPhH 2 IDC)(H 2 O) 4 ] n (1) ( o-CbPhH 4 IDC = 2-(2-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid) is reported. The MOF 1 displays enhanced sensitivity and selectivity to NH 3 gas at high RHs (>85%) and 30 °C, and the sensing mechanism is suggested. The electrochemical impedance gas sensor fabricated by MOF 1 is a promising sensor for ammonia at mild temperature and high RHs.
NASA Astrophysics Data System (ADS)
He, Hong-Zhang; Leung, Ka-Ho; Fu, Wai-Chung; Shiu-Hin Chan, Daniel; Leung, Chung-Hang; Ma, Dik-Lung
2012-12-01
Mercury is a highly toxic environmental contaminant that damages the endocrine and central nervous systems. In view of the contamination of Hong Kong territorial waters with anthropogenic pollutants such as trace heavy metals, we have investigated the application of our recently developed DNA-based luminescence methodology for the rapid and sensitive detection of mercury(II) ions in real water samples. The assay was applied to water samples from Shing Mun River, Nam Sang Wai and Lamma Island sea water, representing natural river, wetland and sea water media, respectively. The results showed that the system could function effectively in real water samples under conditions of low turbidity and low metal ion concentrations. However, high turbidity and high metal ion concentrations increased the background signal and reduced the performance of this assay.
NASA Astrophysics Data System (ADS)
Pořízka, P.; Prochazka, D.; Pilát, Z.; Krajcarová, L.; Kaiser, J.; Malina, R.; Novotný, J.; Zemánek, P.; Ježek, J.; Šerý, M.; Bernatová, S.; Krzyžánek, V.; Dobranská, K.; Novotný, K.; Trtílek, M.; Samek, O.
2012-08-01
We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters.
The American Indian and Environmental Issues.
ERIC Educational Resources Information Center
Costo, Rupert
1980-01-01
Traces the development of federal-Indian relations as a prelude to current Indian environmental issues. Illustrates the exploitation of reservation economies by energy corporations and the federal government, especially in the area of water rights. Notes problems within tribal governments as they attempt to coexist with the 20th century. (SB)
Scientists, especially environmental scientists often encounter trace level concentrations that are typically reported as less than a certain limit of detection, L. Type 1, left-censored data arise when certain low values lying below L are ignored or unknown as they cannot be mea...
Dredging-related mobilisation of trace metals: a case study in The Netherlands.
van den Berg, G A; Meijers, G G; van der Heijdt, L M; Zwolsman, J J
2001-06-01
Mobilisation of contaminants is an important issue in environmental risk assessment of dredging projects. This study has aimed at identifying the effects of dredging on mobilisation of trace metals (Zn, Cu, Cd and Pb). The intensities and time scales of trace metal mobilisation were investigated during an experimental dredging project conducted under field conditions. The loss of contaminated dredge spoil is mainly reflected by increasing levels of trace metals in the suspended matter, dissolved trace metal concentrations in the water column are not significantly influenced by the dredging activities. This indicates a strong binding mechanism of trace metals to the solid phase or a fast redistribution over sorptive phases in response to oxidation of e.g. trace metal sulphides. Given the differences in levels of reactive phases (Mn, Fe, sulphides and organic matter) between the riverine suspended matter and the sediments, changes in the levels of these parameters in the suspended matter upon dredging may give information on the processes influencing the behaviour of trace metals and on the potential loss of sediment during dredging operations. Therefore, we recommend to routinely measure these parameters in studies on contaminant behaviour related to dredging activities.
Ultrasensitive sliver nanorods array SERS sensor for mercury ions.
Song, Chunyuan; Yang, Boyue; Zhu, Yu; Yang, Yanjun; Wang, Lianhui
2017-01-15
With years of outrageous mercury emissions, there is an urgent need to develop convenient and sensitive methods for detecting mercury ions in response to increasingly serious mercury pollution in water. In the present work, a portable, ultrasensitive SERS sensor is proposed and utilized for detecting trace mercury ions in water. The SERS sensor is prepared on an excellent sliver nanorods array SERS substrate by immobilizing T-component oligonucleotide probes labeled with dye on the 3'-end and -SH on the 5'-end. The SERS sensor responses to the specific chemical bonding between thymine and mercury ions, which causes the previous flexible single strand of oligonucleotide probe changing into rigid and upright double chain structure. Such change in the structure drives the dyes far away from the excellent SERS substrate and results in a SERS signal attenuation of the dye. Therefore, by monitoring the decay of SERS signal of the dye, mercury ions in water can be detected qualitatively and quantitatively. The experimental results indicate that the proposed optimal SERS sensor owns a linear response with wide detecting range from 1pM to 1μM, and a detection limit of 0.16pM is obtained. In addition, the SERS sensor demonstrates good specificity for Hg 2+ , which can accurately identify trace mercury ions from a mixture of ten kinds of other ions. The SERS sensor has been further executed to analyze the trace mercury ions in tap water and lake water respectively, and good recovery rates are obtained for sensing both kinds of water. With its high selectivity and good portability, the ultrasensitive SERS sensor is expected to be a promising candidate for discriminating mercury ions in the fields of environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xing; Zhu, Zhenli; Bao, Zhengyu; Zheng, Hongtao; Hu, Shenghong
2018-03-01
Cadmium contamination in rice has become an increasing concern in many countries including China. A simple, cost-effective, and highly sensitive method was developed for the determination of trace cadmium in rice samples based on a new high-efficient liquid spray dielectric barrier discharge induced plasma (LSDBD) vapor generation coupled with atomic fluorescence spectrometry (AFS). The analytical procedure involves the efficient formation of Cd volatile species by LSDBD plasma induced chemical processes without the use of any reducing reagents (Na/KBH4 in conventional hydride generation). The effects of the addition of organic substances, different discharge parameters such as discharge voltage and discharge gap, as well as the foreign ion interferences were investigated. Under optimized conditions, a detection limit of 0.01 μg L- 1 and a precision of 0.8% (RSD, n = 5, 1 μg L- 1 Cd) was readily achieved. The calibration curve was linear in the range between 0.1 and 10 μg L- 1, with a correlation coefficient of R2 = 0.9995. Compared with the conventional acid-BH4- vapor generation, the proposed method not only eliminates the use of unstable and expensive reagents, but also offers high tolerance for coexisting ions, which is well suited to the direct analysis of environmental samples. The validation of the proposed method was demonstrated by the analysis of Cd in reference material of rice (GBW080684). It was also successfully applied to the determination of trace cadmium in locally collected 11 rice samples, and the obtained Cd concentrations are ranged from 7.2 to 517.7 μg kg- 1.
Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo
2015-11-01
In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.
Walzer, Andreas; Schausberger, Peter
2013-01-01
Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040
Zaijun, Li; Jiaomai, Pan; Jian, Tang
2003-02-01
A excellent sensitive and selective method for spectrophotometric determination of trace gold has been developed, the method is based on the color reaction of gold(III) with new reagent 5-(2-hydroxy-5-nitrophenylazo)rhodanine (HNAR). Under optimal conditions, HNAR reacts with gold(III) to form a 1:5 orange complex, which has an maximum absorption peak at 480 nm. Maximum enhancement of the absorbance of the complex was obtained in the presence of the mixed surfactant of Triton X-100 and CTMAB; the reaction completed rapidly and the absorbance is stable for 5 h at least at 20 degrees C; 0-48 microg L(-1) Au(III) obeyed Beer's law. The apparent molar absorptivity of the complex, Sandell's sensitivity, the limit of quantification, the limit of detection and relative standard deviation were found to be 2.0x10(6) L mol(-1) cm(-1), 0.000,098,483 micro g cm(-2), 1.02 ng mL(-1), 0.35 ng mL(-1) and 1.09%, respectively. The effect of co-existing ions was studied seriously; most metal ions can be tolerated in considerable amounts. Its sensitivity and selectivity are remarkably superior to other reagents in the literature. The proposed method was used successfully to determine trace gold in geological samples. Moreover, the synthesis, characteristics and analytical reaction of HNAR with gold are also described in detail.
NASA Astrophysics Data System (ADS)
Nowak-Lovato, K.
2014-12-01
Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.
NASA Astrophysics Data System (ADS)
Lindinger, W.; Hansel, A.; Jordan, A.
1998-02-01
A proton transfer reaction mass spectrometer (PTR-MS) system has been developed which allows for on-line measurements of trace components with concentrations as low as a few pptv. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common volatile organic compounds (VOCs) but do not react with any of the components present in clean air. Medical applications by means of breath analysis allow for monitoring of metabolic processes in the human body, and examples of food research are discussed on the basis of VOC emissions from fruit, coffee and meat. Environmental applications include investigations of VOC emissions from decaying biomatter which have been found to be an important source for tropospheric acetone, methanol and ethanol. On-line monitoring of the diurnal variations of VOCs in the troposphere yield data demonstrating the present sensitivity of PTR-MS to be in the range of a few pptv. Finally, PTR-MS has proven to be an ideal tool to measure Henry's law constants and their dependencies on temperature as well as on the salt content of water.
Xu, Yan; Wang, Weilong; Li, Sam Fong Yau
2007-05-01
This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.
Nanomaterials for Electrochemical Immunosensing
Pan, Mingfei; Gu, Ying; Yun, Yaguang; Li, Min; Jin, Xincui; Wang, Shuo
2017-01-01
Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors. PMID:28475158
Vinayaka, A C; Thakur, M S
2010-06-01
Water-soluble quantum dots (QDs) are fluorescent semiconductor nanoparticles with narrow, very specific, stable emission spectra. Therefore, the bioconjugation of these QDs for biological fluorescent labeling may be of interest due to their unique physical and optical properties as compared to organic fluorescent dyes. These intrinsic properties of QDs have been used for the sensitive detection of target analytes. From the viewpoint of ensuring food safety, there is a need to develop rapid, sensitive and specific detection techniques to monitor food toxicants in food and environmental samples. Even trace levels of these toxicants can inadvertently enter the food chain, creating severe health hazards. The present review emphasizes the application of water-soluble bioconjugated QDs for the detection of food contaminants such as pesticides, pathogenic bacterial toxins such as botulinum toxin, enterotoxins produced by Staphylococcus aureus, Escherichia coli, and for the development of oligonucleotide-based microarrays. This review also emphasizes the application of a possible resonance energy transfer phenomenon resulting from nanobiomolecular interactions obtained through the bioconjugation of QDs with biomolecules. Furthermore, the utilization of significant changes in the spectral behavior of QDs (attributed to resonance energy transfer in the bioconjugate) in future nanobiosensor development is also emphasized.
PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ...
The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typically occur as trace environmental pollutants (primarily in surface but also in ground waters) as a result of their widespread, continuous, combined usage in a broad range of human and veterinary therapeutic activities and practices. With respect to the risk-assessment paradigm, the growing body of published work has focused primarily on the origin and occurrence of these substances. Comparatively less is known about human and ecological exposure, and even less about the documented or potential hazards associated with trace exposure to these anthropogenic substances, many of which are highly bioactive and perpetually present in many aquatic locales. The continually growing, worldwide importance of freshwater resources underscores the need for ensuring that any aggregate or cumulative impacts on water supplies and resultant potential for human or ecological exposure be minimized.Of the many facets involved in this complex issue, that of sources/origins and environmental occurrence is the better understood end of the larger spectrum. The potential for adverse ecological or human health effects (especially from long-term, combined exposure to multiple xenobiotics at low concentrations) is the
POLLUTION FROM PERSONAL ACTIONS AND ACTIVITIES ...
The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typically occur as trace environmental pollutants (primarily in surface but also in ground waters) as a result of their widespread, continuous, combined usage in a broad range of human and veterinary therapeutic activities and practices. With respect to the risk-assessment paradigm, the growing body of published work has focused primarily on the origin and occurrence of these substances. Comparatively less is known about human and ecological exposure, and even less about the documented or potential hazards associated with trace exposure to these anthropogenic substances, many of which are highly bioactive and perpetually present in many aquatic locales. The continually growing, worldwide importance of freshwater resources underscores the need for ensuring that any aggregate or cumulative impacts on water supplies and resultant potential for human or ecological exposure be minimized.Of the many facets involved in this complex issue, that of sources/origins and environmental occurrence is the better understood end of the larger spectrum. The potential for adverse ecological or human health effects (especially from long-term, combined exposure to multiple xenobiotics at low concentrations) is the
PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ...
The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typically occur as trace environmental pollutants (primarily in surface but also in ground waters) as a result of their widespread, continuous, combined usage in a broad range of human and veterinary therapeutic activities and practices. With respect to the risk-assessment paradigm, the growing body of published work has focused primarily on the origin and occurrence of these substances. Comparatively less is known about human and ecological exposure, and even less about the documented or potential hazards associated with trace exposure to these anthropogenic substances, many of which are highly bioactive and perpetually present in many aquatic locales. The continually growing, worldwide importance of freshwater resources underscores the need for ensuring that any aggregate or cumulative impacts on water supplies and resultant potential for human or ecological exposure be minimized.Of the many facets involved in this complex issue, that of sources/origins and environmental occurrence is the better understood end of the larger spectrum. The potential for adverse ecological or human health effects (especially from long-term, combined exposure to multiple xenobiotics at low concentrations) is the l
Flow immune photoacoustic sensor for real-time and fast sampling of trace gases
NASA Astrophysics Data System (ADS)
Petersen, Jan C.; Balslev-Harder, David; Pelevic, Nikola; Brusch, Anders; Persijn, Stefan; Lassen, Mikael
2018-02-01
A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 +/-0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.
NASA Astrophysics Data System (ADS)
Guan, Rui
The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.
Gallagher, M; Turner, E C; Kamber, B S
2015-07-01
Pre-Cambrian atmospheric and oceanic redox evolutions are expressed in the inventory of redox-sensitive trace metals in marine sedimentary rocks. Most of the currently available information was derived from deep-water sedimentary rocks (black shale/banded iron formation). Many of the studied trace metals (e.g. Mo, U, Ni and Co) are sensitive to the composition of the exposed land surface and prevailing weathering style, and their oceanic inventory ultimately depends on the terrestrial flux. The validity of claims for increased/decreased terrestrial fluxes has remained untested as far as the shallow-marine environment is concerned. Here, the first systematic study of trace metal inventories of the shallow-marine environment by analysis of microbial carbonate-hosted pyrite, from ca. 2.65-0.52 Ga, is presented. A petrographic survey revealed a first-order difference in preservation of early diagenetic pyrite. Microbial carbonates formed before the 2.4 Ga great oxygenation event (GOE) are much richer in pyrite and contain pyrite grains of greater morphological variability but lesser chemical substitution than samples deposited after the GOE. This disparity in pyrite abundance and morphology is mirrored by the qualitative degree of preservation of organic matter (largely as kerogen). Thus, it seems that in microbial carbonates, pyrite formation and preservation were related to presence and preservation of organic C. Several redox-sensitive trace metals show interpretable temporal trends supporting earlier proposals derived from deep-water sedimentary rocks. Most notably, the shallow-water pyrite confirms a rise in the oceanic Mo inventory across the pre-Cambrian-Cambrian boundary, implying the establishment of efficient deep-ocean ventilation. The carbonate-hosted pyrite also confirms the Neoarchaean and early Palaeoproterozoic ocean had higher Ni concentration, which can now more firmly be attributed to a greater proportion of magnesian volcanic rock on land rather than a stronger hydrothermal flux of Ni. Additionally, systematic trends are reported for Co, As, and Zn, relating to terrestrial flux and oceanic productivity. © 2015 John Wiley & Sons Ltd.
Guo, Zongrang; Niu, Qingfen; Li, Tianduo
2018-07-05
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al 3+ and Fe 3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al 3+ and Fe 3+ ions with low detection limits (0.177μM for Al 3+ and 0.172μM for Fe 3+ ) and wide pH response range (4.0-12.0). The Al 3+ /Fe 3+ sensing mechanisms were investigated by fluorescence experiments, 1 H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe 3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al 3+ and Fe 3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al 3+ and Fe 3+ analysis in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Application of stable‐isotope labelling techniques for the detection of active diazotrophs
Angel, Roey; Panhölzl, Christopher; Gabriel, Raphael; Herbold, Craig; Wanek, Wolfgang; Richter, Andreas; Eichorst, Stephanie A.
2017-01-01
Summary Investigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free‐living or symbionts. Free‐living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15N‐based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15N‐RNA‐SIP approach optimized for environmental samples and benchmarked to 15N‐DNA‐SIP. Lastly, we investigated the feasibility of using SIP‐Raman microspectroscopy for detecting 15N‐labelled cells. Taken together, these tools allow identifying and investigating active free‐living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single‐cell level. PMID:29027346
NASA Astrophysics Data System (ADS)
Guo, Zongrang; Niu, Qingfen; Li, Tianduo
2018-07-01
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al3+ and Fe3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al3+ and Fe3+ ions with low detection limits (0.177 μM for Al3+ and 0.172 μM for Fe3+) and wide pH response range (4.0-12.0). The Al3+/Fe3+ sensing mechanisms were investigated by fluorescence experiments, 1H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al3+ and Fe3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al3+ and Fe3+ analysis in real samples.
Internal complexity and environmental sensitivity in hospitals.
Ashmos, D P; Duchon, D; Hauge, F E; McDaniel, R R
1996-01-01
Theory suggests that organizations should respond to external complexity with internal complexity. We examine whether "environmentally sensitive" hospitals are more internally complex than "environmentally insensitive" hospitals. Results show that environmentally sensitive and insensitive hospitals differed on three of the measures of internal complexity: goal complexity, strategic complexity, and relational complexity.
Pourmohammadbagher, Amin; Shaw, John M
2015-09-15
Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.
Mesías Monsalve, Stephanie; Martínez, Leonardo; Yohannessen Vásquez, Karla; Alvarado Orellana, Sergio; Klarián Vergara, José; Martín Mateo, Miguel; Costilla Salazar, Rogelio; Fuentes Alburquenque, Mauricio; Cáceres Lillo, Dante D
2018-06-01
Air quality in schools is an important public health issue because children spend a considerable part of their daily life in classrooms. Particulate size and chemical composition has been associated with negative health effects. We studied levels of trace element concentrations in fine particulate matter (PM 2.5 ) in indoor versus outdoor school settings from six schools in Chañaral, a coastal city with a beach severely polluted with mine tailings. Concentrations of trace elements were measured on two consecutive days during the summer and winter of 2012 and 2013 and determined using X-ray fluorescence. Source apportionment and element enrichment were measured using principal components analysis and enrichment factors. Trace elements were higher in indoor school spaces, especially in classrooms compared with outdoor environments. The most abundant elements were Na, Cl, S, Ca, Fe, K, Mn, Ti, and Si, associated with earth's crust. Conversely, an extremely high enrichment factor was determined for Cu, Zn, Ni and Cr; heavy metals associated with systemic and carcinogenic risk effects, whose probably origin sources are industrial and mining activities. These results suggest that the main source of trace elements in PM 2.5 from these school microenvironments is a mixture of dust contaminated with mine tailings and marine aerosols. Policymakers should prioritize environmental management changes to minimize further environmental damage and its direct impact on the health of children exposed.
Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores).
Wisshak, M; Tribollet, A; Golubic, S; Jakobsen, J; Freiwald, A
2011-11-01
In the temperate Azores carbonate factory, a substantial fraction of the calcareous skeletal components is recycled by a remarkable biodiversity of biota producing bioerosion traces (incipient trace fossils). To study this biodiversity, experimental carbonate substrates were exposed to colonisation by epilithic and endolithic organisms along a bathymetrical gradient from 0 to 500 m depth, during 1 and 2 years of exposure. The overall bioerosion ichnodiversity is very high and comprises 56 ichnotaxa and ichnoforms attributed to cyanobacteria, chlorophytes, fungi, other micro-chemotrophs, macroborers, grazers and epilithic attachment scars. In the intertidal, hydrodynamic force, partial emersion and strong temperature fluctuations lead to the lowest ichnospecies richness. This contrasts with the highest ichnodiversity found at 15 m under the most favourable environmental conditions. Towards aphotic depths, a gradual depletion in ichnodiversity is observed, most probably because of the restricted light availability and a slowdown in ichnocoenosis development. Analysis of similarity (ANOSIM), in combination with non-metrical multidimensional scaling (NMDS), was used to highlight variability in the relative abundance of traces among depths, substrate orientations and exposure times. Ichnodiversity and abundance of traces decrease significantly with depth and are higher on up-facing versus down-facing substrates, whereas differences between years were not as pronounced. This study demonstrates that statistical methods of biodiversity analysis are not per se restricted to biotaxa but may well be applied also to ichnotaxa. In the analysis of trace fossil assemblages, this approach supports the recognition of diversity patterns and their relation to environmental gradients. © 2011 Blackwell Publishing Ltd.
Fish scales in sediments from off Callao, central Peru
NASA Astrophysics Data System (ADS)
Díaz-Ochoa, J. A.; Lange, C. B.; Pantoja, S.; De Lange, G. J.; Gutiérrez, D.; Muñoz, P.; Salamanca, M.
2009-07-01
We study fish scales as a proxy of fish abundance and preservation biases together with phosphorus from fish remains (P fish) in a sediment core retrieved off Callao, Peru (12°1'S, 77°42'W; water depth=179 m; core length=52 cm). We interpret our results as a function of changing redox conditions based on ratios of redox-sensitive trace elements (Cu/Al, Mo/Al, Ni/Al, Zn/Al, V/Al), terrigenous indicators (Fe in clays, Ti, Al), and biogenic proxies (CaCO 3, biogenic opal, total nitrogen, organic carbon, barite Ba). The core covers roughly 700 years of deposition, based on 210Pb activities extrapolated downcore and 14C dating at selected intervals. Our fish-scale record is dominated by anchovy ( Engraulis ringens) scales followed by hake ( Merluccius gayii) scales. The core presented an abrupt lithological change at 17 cm (corresponding to the early 19th century). Above that depth, it was laminated and was more organic-rich (10-15% organic carbon) than below, where the core was partly laminated and less organic-rich (<10%). The lithological shift coincides with abrupt changes in dry bulk density and in the contents of terrigenous and redox-sensitive trace elements, biogenic proxies, and fish scales. The remarkable increase in redox-sensitive trace elements in the upper 17 cm of the core suggests more reducing conditions when compared with deeper and older horizons, and is interpreted as an intensification of the oxygen minimum zone off Peru beginning in the early 19th century. Higher fish-scale contents and higher P fish/P total ratios were also observed within the upper 17 cm of the core. The behavior of biogenic proxies and redox-sensitive trace elements was similar; more reduced conditions corresponded to higher contents of CaCO 3, C org, total nitrogen and fish scales, suggesting that these proxies might convey an important preservation signal.
da Silva, Yuri Jacques Agra Bezerra; Cantalice, José Ramon Barros; Singh, Vijay P; do Nascimento, Clístenes Williams Araújo; Piscoya, Victor Casimiro; Guerra, Sérgio M S
2015-10-01
Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.
Trace element contamination in feather and tissue samples from Anna’s hummingbirds
Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.
2017-01-01
Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.
Jia-En Zhang; Jiayu Yu; Ying Ouyang; Huaqin Xu
2014-01-01
Acid rain is one of the most serious ecological and environmental problems worldwide. This study investigated the impacts of simulated acid rain (SAR) upon leaching of trace metals and aluminum (Al) from a soil. Soil pot leaching experiments were performed to investigate the impacts of SAR at five different pH levels (or treatments) over a 34-day period upon the...
NASA Technical Reports Server (NTRS)
Keitz, E. L.
1978-01-01
Stratospheric trace constituent measurement requirements are separated into two somewhat overlapping areas. In the first area, it is assumed that the only problem of interest is ozone; its chemistry chain, environmental effects and measurement requirements. In like manner, in the second area it is assumed that the only problem of interest is stratospheric aerosols; their chemistry, effects and measurement requirements.
Zhang, Lin; Chen, Beibei; He, Man; Hu, Bin
2013-07-01
A rapid and sensitive method based on polymer monolithic capillary microextraction combined on-line with microconcentric nebulization inductively coupled plasma MS has been developed for the determination of trace/ultratrace rare earth elements in biological samples. For this purpose, the iminodiacetic acid modified poly(glycidyl methacrylate-trimethylolpropane trimethacrylate) monolithic capillary was prepared and characterized by SEM and FTIR spectroscopy. Factors affecting the extraction efficiency, such as sample pH, sample flow rate, sample/eluent volume, and coexisting ions were investigated in detail. Under the optimal conditions, the LODs for rare earth elements were in the range of 0.08 (Er) to 0.97 ng/L (Nd) with a sampling frequency of 8.5 h(-1), and the RSDs were between 1.5% (Sm) and 7.4% (Nd) (c = 20 ng/L, n = 7). The proposed method was successfully applied to the analysis of trace/ultratrace rare earth elements in human urine and serum samples, and the recoveries for the spiked samples were in the range of 82-105%. The developed method was simple, rapid, sensitive, and favorable for the analysis of trace/ultratrace rare earth elements in biological samples with limited sample volume. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monochromatic Measurements of the JPSS-1 VIIRS Polarization Sensitivity
NASA Technical Reports Server (NTRS)
McIntire, Jeff; Moyer, David; Brown, Steven W.; Lykke, Keith R.; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong
2016-01-01
Polarization sensitivity is a critical property that must be characterized for spaceborne remote sensing instruments designed to measure reflected solar radiation. Broadband testing of the first Joint Polar-orbiting Satellite System (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS) showed unexpectedly large polarization sensitivities for the bluest bands on VIIRS (centered between 400 and 600 nm). Subsequent ray trace modeling indicated that large diattenuation on the edges of the bandpass for these spectral bands was the driver behind these large sensitivities. Additional testing using the National Institute of Standards and Technologies Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources was added to the test program to verify and enhance the model. The testing was limited in scope to two spectral bands at two scan angles; nonetheless, this additional testing provided valuable insight into the polarization sensitivity. Analysis has shown that the derived diattenuation agreed with the broadband measurements to within an absolute difference of about0.4 and that the ray trace model reproduced the general features of the measured data. Additionally, by deriving the spectral responsivity, the linear diattenuation is shown to be explicitly dependent on the changes in bandwidth with polarization state.
Ramamurthy, N; Thillaivelavan, K
2005-01-01
In the present study the environmental effects on herbivores mammals in and around Coal-fired power plant were studied by collecting the various milk samples of Cow and Buffalo in clean polyethylene bottles. Milk samples collected at five different locations along the banks of the Paravanaru river in and around Neyveli area. These samples were prepared for trace metal determination. The concentration of trace metals (Cu, Zn, Ni, Cd, Cr, Mn, Co and Hg) were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Cold Vapour Atomic Absorption Spectrometry (CVAAS). It is observed that the samples contain greater amounts of trace metals than that in the unexposed areas. Obviously the milk samples are contaminated with these metals due to fly ash released in such environment.
Investigation of ecosystems impacts from geothermal development in Imperial Valley, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinn, J.H.; Ireland, R.R.; Kercher, J.R.
1979-07-13
A summary of three years of field ecological investigation in Imperial Valley Environmental Program is presented. The potential terrestrial habitat impacts of geothermal development are discussed for shorebirds and waterfowl habitat, the endangered clapper rail, powerline corridors, noise effects, animal trace element burdens, and the desert community. Aquatic habitats are discussed in terms of Salton Sea salinity, effects of geothermal brine discharges to the Salton Sea, trace element baselines, and potential toxicity of brine spills in freshwater. Studies of impacts on agriculture involved brine movement in soil, release of trace metals, trace element baselines in soil and plants, water requirementsmore » of crops, and H{sub 2}S effects on crop production in the presence of CO{sub 2} and ozone.« less
Chiral pharmaceuticals: A review on their environmental occurrence and fate processes.
Sanganyado, Edmond; Lu, Zhijiang; Fu, Qiuguo; Schlenk, Daniel; Gan, Jay
2017-11-01
More than 50% of pharmaceuticals in current use are chiral compounds. Enantiomers of the same pharmaceutical have identical physicochemical properties, but may exhibit differences in pharmacokinetics, pharmacodynamics and toxicity. The advancement in separation and detection methods has made it possible to analyze trace amounts of chiral compounds in environmental media. As a result, interest on chiral analysis and evaluation of stereoselectivity in environmental occurrence, phase distribution and degradation of chiral pharmaceuticals has grown substantially in recent years. Here we review recent studies on the analysis, occurrence, and fate of chiral pharmaceuticals in engineered and natural environments. Monitoring studies have shown ubiquitous presence of chiral pharmaceuticals in wastewater, surface waters, sediments, and sludge, particularly β-receptor antagonists, analgesics, antifungals, and antidepressants. Selective sorption and microbial degradation have been demonstrated to result in enrichment of one enantiomer over the other. The changes in enantiomer composition may also be caused by biologically catalyzed chiral inversion. However, accurate evaluation of chiral pharmaceuticals as trace environmental pollutants is often hampered by the lack of identification of the stereoconfiguration of enantiomers. Furthermore, a systematic approach including occurrence, fate and transport in various environmental matrices is needed to minimize uncertainties in risk assessment of chiral pharmaceuticals as emerging environmental contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). I. Introduction to the survey
NASA Astrophysics Data System (ADS)
Boselli, A.; Fossati, M.; Ferrarese, L.; Boissier, S.; Consolandi, G.; Longobardi, A.; Amram, P.; Balogh, M.; Barmby, P.; Boquien, M.; Boulanger, F.; Braine, J.; Buat, V.; Burgarella, D.; Combes, F.; Contini, T.; Cortese, L.; Côté, P.; Côté, S.; Cuillandre, J. C.; Drissen, L.; Epinat, B.; Fumagalli, M.; Gallagher, S.; Gavazzi, G.; Gomez-Lopez, J.; Gwyn, S.; Harris, W.; Hensler, G.; Koribalski, B.; Marcelin, M.; McConnachie, A.; Miville-Deschenes, M. A.; Navarro, J.; Patton, D.; Peng, E. W.; Plana, H.; Prantzos, N.; Robert, C.; Roediger, J.; Roehlly, Y.; Russeil, D.; Salome, P.; Sanchez-Janssen, R.; Serra, P.; Spekkens, K.; Sun, M.; Taylor, J.; Tonnesen, S.; Vollmer, B.; Willis, J.; Wozniak, H.; Burdullis, T.; Devost, D.; Mahoney, B.; Manset, N.; Petric, A.; Prunet, S.; Withington, K.
2018-06-01
The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band (NB) Hα+[NII] imaging survey carried out with MegaCam at the Canada-France-Hawaii Telescope. The survey covers the whole Virgo cluster region from its core to one virial radius (104 deg2). The sensitivity of the survey is of f(Hα) 4 × 10-17 erg s-1 cm-2 (5σ detection limit) for point sources and Σ(Hα) 2 × 10-18 erg s-1 cm-2 arcsec-2 (1σ detection limit at 3 arcsec resolution) for extended sources, making VESTIGE the deepest and largest blind NB survey of a nearby cluster. This paper presents the survey in all its technical aspects, including the survey design, the observing strategy, the achieved sensitivity in both the NB Hα+[NII] and in the broad-band r filter used for the stellar continuum subtraction, the data reduction, calibration, and products, as well as its status after the first observing semester. We briefly describe the Hα properties of galaxies located in a 4 × 1 deg2 strip in the core of the cluster north of M87, where several extended tails of ionised gas are detected. This paper also lists the main scientific motivations for VESTIGE, which include the study of the effects of the environment on galaxy evolution, the fate of the stripped gas in cluster objects, the star formation process in nearby galaxies of different type and stellar mass, the determination of the Hα luminosity function and of the Hα scaling relations down to 106 M⊙ stellar mass objects, and the reconstruction of the dynamical structure of the Virgo cluster. This unique set of data will also be used to study the HII luminosity function in hundreds of galaxies, the diffuse Hα+[NII] emission of the Milky Way at high Galactic latitude, and the properties of emission line galaxies at high redshift. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France and the University of Hawaii.
Heat as a tool for studying the movement of ground water near streams
Stonestrom, David A.; Constantz, Jim
2003-01-01
Stream temperature has long been recognized as an important water quality parameter. Temperature plays a key role in the health of a stream?s aquatic life, both in the water column and in the benthic habitat of streambed sediments. Many fish are sensitive to temperature. For example, anadromous salmon require specific temperature ranges to successfully develop, migrate, and spawn [see Halupka and others, 2000]. Metabolic rates, oxygen requirements and availability, predation patterns, and susceptibility of organisms to contaminants are but a few of the many environmental responses regulated by temperature. Hydrologists traditionally treated streams and ground water as distinct, independent resources to be utilized and managed separately. With increasing demands on water supplies, however, hydrologists realized that streams and ground water are parts of a single, interconnected resource [see Winter and others, 1998]. Attempts to distinguish these resources for analytical or regulatory purposes are fraught with difficulty because each domain can supply (or drain) the other, with attendant possibilities for contamination exchange. Sustained depletion of one resource usually results in depletion of the other, propagating adverse effects within the watershed. An understanding of the interconnections between surface water and ground water is therefore essential. This understanding is still incomplete, but receiving growing attention from the research community. Exchanges between streams and shallow ground-water systems play a key role in controlling temperatures not only in streams, but also in their underlying sediments. As a result, analyses of subsurface temperature patterns provide information about surface-water/ground-water interactions. Chemical tracers are commonly used for tracing flow between streams and ground water. Introduction of chemical tracers in near-stream environments is, however, limited by real and perceived issues regarding introduced contamination and practical constraints. As an alternative, naturally occurring variations in temperature can be used to track (or trace) the heat carried by flowing water. The hydraulic transport of heat enables its use as a tracer. Differences between temperatures in the stream and surrounding sediments are now being analyzed to trace the movement of ground water to and from streams. As shown in the subsequent chapters of this circular, tracing the transport of heat leads to a better understanding of the magnitudes and mechanisms of stream/ground-water exchanges, and helps quantify the resulting effects on stream and streambed temperatures. Chapter 1 describes the general principals and procedures by which the natural transport of heat can be utilized to infer the movement of subsurface water near streams. This information sets the foundation for understanding the advanced applications in chapters 2 through 8. Each of these chapters provides a case study, using heat tracing as a tool, of interactions between surface water and ground water for a different location in the western United States. Technical details of the use of heat as an environmental tracer appear in appendices.
Investigation of the Preservation Method within Environmental Protection Agency Method 200.8
Lead (Pb) is a trace metal that is closely regulated in drinking water systems because of its harmful toxicity. The U.S. Environmental Protection Agency (USEPA) issued the Lead and Copper Rule (LCR), which defines the action level for Lead as 0.015 mg/L. Researchers and drinking ...
Wisdom in the Open Air: The Norwegian Roots of Deep Ecology.
ERIC Educational Resources Information Center
Reed, Peter, Ed.; Rothenberg, David, Ed.
This book traces the Norwegian roots of "deep ecology": the search for solutions to environmental problems by examining fundamental tenets of culture. Deep ecology contributes to the philosophical foundations of environmental education and outdoor education, and much writing in this area has focused on promoting awareness of the human…
The Nature of the Beast and the Beast in Nature: Broadening the Perspective of Technology
ERIC Educational Resources Information Center
Ruth, Matthias
2009-01-01
This article traces conceptualizations of technology from narrow definitions to a broader understanding that encompasses the larger social and environmental context within which technology operates. In doing so, the associated social and environmental drivers and impacts of technology are identified and conclusions are drawn for the roles of…
ERIC Educational Resources Information Center
Maienthal, E. J.; Becker, D. A.
This report presents the results of an extensive literature survey undertaken to establish optimum sampling, sample handling and long-term storage techniques for a wide variety of environmental samples to retain sample integrity. The components of interest are trace elements, organics, pesticides, radionuclides and microbiologicals. A bibliography…
Following Carbon Isotopes from Methane to Molecules
NASA Astrophysics Data System (ADS)
Freeman, K. H.
2017-12-01
Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.
Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications
Pimentel, Ana; Samouco, Ana; Araújo, Andreia; Martins, Rodrigo; Fortunato, Elvira
2017-01-01
In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV)/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces. PMID:29140304
Dermatitis in a rubber tyre factory.
Zina, A M; Bedello, P G; Cane, D; Bundino, S; Benedetto, A
1987-07-01
An outbreak of occupational dermatitis in a rubber tyre factory is reported. An unusual clinical picture was recognized. Patch tests revealed a high sensitization rate to the MBT derivative used: 2-(2'-4'dinitrophenylthio)benzothiazole. Since tests with MBT mix and dinitrophenol were negative; sensitization to a contaminant was suspected. DNCB was traced as the substance responsible.
Methane uptake in urban forests and lawns
Peter M. Groffman; Richard V. Pouyat
2009-01-01
The largest natural biological sink for the radiatively active trace gas methane (CH4) is bacteria in soils that consume CH4 as an energy and carbon source. This sink has been shown to be sensitive to nitrogen (N) inputs and alterations of soil physical conditions. Given this sensitivity, conversion of native ecosystems to...
Plant compounds enhance assay sensitivity for detection of active bacillus cereus toxin
USDA-ARS?s Scientific Manuscript database
Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. It has been estimated that there are 84,000 cases of B. cereus food poisoning in the US each year, with an annual cost of USD 36 million. The ability to sensitively trace and...
A ppb level sensitive sensor for atmospheric methane detection
NASA Astrophysics Data System (ADS)
Xia, Jinbao; Zhu, Feng; Zhang, Sasa; Kolomenskii, Alexandre; Schuessler, Hans
2017-11-01
A high sensitivity sensor, combining a multipass cell and wavelength modulation spectroscopy in the near infrared spectral region was designed and implemented for trace gas detection. The effective length of the multipass cell was about 290 meters. The developed spectroscopic technique demonstrates an improved sensitivity of methane in ambient air and a relatively short detection time compared to previously reported sensors. Home-built electronics and software were employed for diode laser frequency modulation, signal lock-in detection and processing. A dual beam scheme and a balanced photo-detector were implemented to suppress the intensity modulation and noise for better detection sensitivity. The performance of the sensor was evaluated in a series of measurements ranging from three hours to two days. The average methane concentration measured in ambient air was 2.01 ppm with a relative error of ± 2.5%. With Allan deviation analysis, it was found that the methane detection limit of 1.2 ppb was achieved in 650 s. The developed sensor is compact and portable, and thus it is well suited for field measurements of methane and other trace gases.
Glenn, Rachel; Dantus, Marcos
2016-01-07
Recent success with trace explosives detection based on the single ultrafast pulse excitation for remote stimulated Raman scattering (SUPER-SRS) prompts us to provide new results and a Perspective that describes the theoretical foundation of the strategy used for achieving the desired sensitivity and selectivity. SUPER-SRS provides fast and selective imaging while being blind to optical properties of the substrate such as color, texture, or laser speckle. We describe the strategy of combining coherent vibrational excitation with a reference pulse in order to detect stimulated Raman gain or loss. A theoretical model is used to reproduce experimental spectra and to determine the ideal pulse parameters for best sensitivity, selectivity, and resolution when detecting one or more compounds simultaneously.
Mulder, Han A; Rönnegård, Lars; Fikse, W Freddy; Veerkamp, Roel F; Strandberg, Erling
2013-07-04
Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.
Biological forcing controls the chemistry of reef-building coral skeleton
NASA Astrophysics Data System (ADS)
Meibom, Anders; Mostefaoui, Smail; Cuif, Jean-Pierre; Dauphin, Yannicke; Houlbreque, Fanny; Dunbar, Robert; Constantz, Brent
2007-01-01
We present analyses of major elements C and Ca and trace elements N, S, Mg and Sr in a Porites sp. exoskeleton with a spatial resolution better than ˜150 nm. Trace element variations are evaluated directly against the ultra-structure of the skeleton and are ascribed to dynamic biological forcing. Individual growth layers in the bulk fibrous aragonite skeleton form on sub-daily timescales. Magnesium concentration variations are dramatically correlated with the growth layers, but are uncorrelated with Sr concentration variations. Observed (sub)seasonal relationships between water temperature and skeletal trace-element chemistry are secondary, mediated by sensitive biological processes to which classical thermodynamic formalism does not apply.
NASA Astrophysics Data System (ADS)
Merkel, Ronny; Breuhan, Andy; Hildebrandt, Mario; Vielhauer, Claus; Bräutigam, Anja
2012-06-01
In the field of crime scene forensics, current methods of evidence collection, such as the acquisition of shoe-marks, tireimpressions, palm-prints or fingerprints are in most cases still performed in an analogue way. For example, fingerprints are captured by powdering and sticky tape lifting, ninhydrine bathing or cyanoacrylate fuming and subsequent photographing. Images of the evidence are then further processed by forensic experts. With the upcoming use of new multimedia systems for the digital capturing and processing of crime scene traces in forensics, higher resolutions can be achieved, leading to a much better quality of forensic images. Furthermore, the fast and mostly automated preprocessing of such data using digital signal processing techniques is an emerging field. Also, by the optical and non-destructive lifting of forensic evidence, traces are not destroyed and therefore can be re-captured, e.g. by creating time series of a trace, to extract its aging behavior and maybe determine the time the trace was left. However, such new methods and tools face different challenges, which need to be addressed before a practical application in the field. Based on the example of fingerprint age determination, which is an unresolved research challenge to forensic experts since decades, we evaluate the influences of different environmental conditions as well as different types of sweating and their implications to the capturing sensory, preprocessing methods and feature extraction. We use a Chromatic White Light (CWL) sensor to exemplary represent such a new optical and contactless measurement device and investigate the influence of 16 different environmental conditions, 8 different sweat types and 11 different preprocessing methods on the aging behavior of 48 fingerprint time series (2592 fingerprint scans in total). We show the challenges that arise for such new multimedia systems capturing and processing forensic evidence
Malandrino, Pasqualino; Russo, Marco; Ronchi, Anna; Minoia, Claudio; Cataldo, Daniela; Regalbuto, Concetto; Giordano, Carla; Attard, Marco; Squatrito, Sebastiano; Trimarchi, Francesco; Vigneri, Riccardo
2016-08-01
The increased thyroid cancer incidence in volcanic areas suggests an environmental effect of volcanic-originated carcinogens. To address this problem, we evaluated environmental pollution and biocontamination in a volcanic area of Sicily with increased thyroid cancer incidence. Thyroid cancer epidemiology was obtained from the Sicilian Regional Registry for Thyroid Cancer. Twenty-seven trace elements were measured by quadrupole mass spectrometry in the drinking water and lichens (to characterize environmental pollution) and in the urine of residents (to identify biocontamination) in the Mt. Etna volcanic area and in adjacent control areas. Thyroid cancer incidence was 18.5 and 9.6/10(5) inhabitants in the volcanic and the control areas, respectively. The increase was exclusively due to the papillary histotype. Compared with control areas, in the volcanic area many trace elements were increased in both drinking water and lichens, indicating both water and atmospheric pollution. Differences were greater for water. Additionally, in the urine of the residents of the volcanic area, the average levels of many trace elements were significantly increased, with values higher two-fold or more than in residents of the control area: cadmium (×2.1), mercury (×2.6), manganese (×3.0), palladium (×9.0), thallium (×2.0), uranium (×2.0), vanadium (×8.0), and tungsten (×2.4). Urine concentrations were significantly correlated with values in water but not in lichens. Our findings reveal a complex non-anthropogenic biocontamination with many trace elements in residents of an active volcanic area where thyroid cancer incidence is increased. The possible carcinogenic effect of these chemicals on the thyroid and other tissues cannot be excluded and should be investigated.
Horsfall, M; Spiff, A I
2002-09-01
The distribution of trace metals in sediments of the lower reaches of the New Calabar River, Nigeria was evaluated together with the partitioning of their chemical species between five geochemical phases. Samplings were made in five zones at the lower reaches of the New Calaber River. All the trace metals were determined by AAS after selective chemical extractions and concentrations given in microg gm(-1) (dry weight basis). The average total concentrations found for trace metals in the sediment were ( mean +/- rsd.) Pb: 41.6 +/- 0.29, Zn: 31.60 +/- 0.42, Cd: 12.80 +/- 0.92, Co: 92 +/- 0.25, Cu: 25.5 +/- 0.65 and Ni: 3.2 +/- 0.25. Maxima and minima concentrations are inconsistent with previous studies in other rivers of this region. Spatial distribution revealed that the sources of trace metals into the river appeared to be of non-point. Five contamination indices were applied in studying the partitioning of the trace metals in the sediment. These indices provided bases for ascertaining the potential environmental risk of trace metals in the river system. The results denote high partition levels in the more mobile and more dangerous phases.
Environmental Mycobiome Modifiers of Inflammation and Fibrosis in Systemic Sclerosis
2016-09-01
TUBB), and ribosomal proteins), while others are considered specific to SSc despite trace level detection in controls. For ex- ample, multiple SSc...Strong re- activity was seen against all five proteins in SSc with only trace levels detected in controls (Fig. 3a), indicating widespread immune...sequences in SSc RNA-seq data was used to detect microbial sequences in human tissues in an unbiased, quantitative manner. Our studies suggest that
Mid-Frequency Reverberation Measurements with Full Companion Environmental Support
2014-12-30
acoustic modeling is based on measured stratification and observed wave amplitudes on the New Jersey shelf during the SWARM experiment.3 Ray tracing is...wave model then gives quantitative results for the clutter. 2. Swarm NLIW model and ray tracing Nonlinear internal waves are very common on the...receiver in order to give quantitative clutter to reverberation. To picture the mechanism, a set of rays was launched from a source at range zero and
Fear Conditioning Effects on Sensitivity to Drug Reward
2010-06-01
lasting potentiation of cocaine seeking after withdrawal. J Neurosci. 24(7): 1604-11. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G...the CS has activated the memory trace. At this time point, the treatment can potentially modify the memory trace directly and alter the CS-CR bond...organism to anticipate and prepare for potentially dangerous conditions (Maren, 2005). Fear conditioning is one of the central features of
Distinct molecular underpinnings of Drosophila olfactory trace conditioning
Shuai, Yichun; Hu, Ying; Qin, Hongtao; Campbell, Robert A. A.; Zhong, Yi
2011-01-01
Trace conditioning is valued as a simple experimental model to assess how the brain associates events that are discrete in time. Here, we adapted an olfactory trace conditioning procedure in Drosophila melanogaster by training fruit flies to avoid an odor that is followed by foot shock many seconds later. The molecular underpinnings of the learning are distinct from the well-characterized simultaneous conditioning, where odor and punishment temporally overlap. First, Rutabaga adenylyl cyclase (Rut-AC), a putative molecular coincidence detector vital for simultaneous conditioning, is dispensable in trace conditioning. Second, dominant-negative Rac expression, thought to sustain early labile memory, significantly enhances learning of trace conditioning, but leaves simultaneous conditioning unaffected. We further show that targeting Rac inhibition to the mushroom body (MB) but not the antennal lobe (AL) suffices to achieve the enhancement effect. Moreover, the absence of trace conditioning learning in D1 dopamine receptor mutants is rescued by restoration of expression specifically in the adult MB. These results suggest the MB as a crucial neuroanatomical locus for trace conditioning, which may harbor a Rac activity-sensitive olfactory “sensory buffer” that later converges with the punishment signal carried by dopamine signaling. The distinct molecular signature of trace conditioning revealed here shall contribute to the understanding of how the brain overcomes a temporal gap in potentially related events. PMID:22123966
Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes
Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.
2008-01-01
Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.
NASA Astrophysics Data System (ADS)
Winebrenner, D. P.; Kirby, J. P.; Marquardt, B.
2013-12-01
Trace constituents in (predominantly) water ice are key to understanding planetary and astrobiological processes on a wide variety of solar system bodies, including Europa, Enceladus, Titan, Ceres, Mars, and comets. Organic traces are of particular interest not only for astrobiology but also, for example, for understanding the fates of abiotic organics delivered by meteorites. Raman scattering is known for specificity in identifying bonds and compounds, but has generally been considered relatively insensitive to concentrations characteristic of trace constituents. Here we test in doped water ice a Raman probe system that was developed for industrial and environmental applications and that has characterized select traces at ppm-levels near a deep-sea hydrothermal vent. We report in particular results for 17 amino acids and for aromatic hydrocarbons. Finally, based on physically robust Raman optics developed for industrial environments, we proposal a concept for subsurface investigation of traces in terrestrial analog environments such as glaciers and ice sheets, by means of integrating a Raman probe with a thermal ice melt probe recently field-tested in Greenland.
Zhu, Zhiqiang; Han, Jing; Zhang, Yan; Zhou, Yafei; Xu, Ning; Zhang, Bo; Gu, Haiwei; Chen, Huanwen
2012-12-15
Desorption electrospray ionization (DESI) is the most popular ambient ionization technique for direct analysis of complex samples without sample pretreatment. However, for many applications, especially for trace analysis, it is of interest to improve the sensitivity of DESI-mass spectrometry (MS). In traditional DESI-MS, a mixture of methanol/water/acetic acid is usually used to generate the primary ions. In this article, dilute protein solutions were electrosprayed in the DESI method to create multiply charged primary ions for the desorption ionization of trace analytes on various surfaces (e.g., filter paper, glass, Al-foil) without any sample pretreatment. The analyte ions were then detected and structurally characterized using a LTQ XL mass spectrometer. Compared with the methanol/water/acetic acid (49:49:2, v/v/v) solution, protein solutions significantly increased the signal levels of non-volatile compounds such as benzoic acid, TNT, o-toluidine, peptide and insulin in either positive or negative ion detection mode. For all the analytes tested, the limits of detection (LODs) were reduced to about half of the original values which were obtained using traditional DESI. The results showed that the signal enhancement is highly correlated with the molecular weight of the proteins and the selected solid surfaces. The proposed DESI method is a universal strategy for rapid and sensitive detection of trace amounts of strongly bound and/or non-volatile analytes, including explosives, peptides, and proteins. The results indicate that the sensitivity of DESI can be further improved by selecting larger proteins and appropriate solid surfaces. Copyright © 2012 John Wiley & Sons, Ltd.
Poland: An energy and environmental overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szpunar, C.B.; Bhatti, N.; Buehring, W.A.
1990-10-01
Poland's reliance on coal as its primary source of energy imposes heavy environmental costs on its economy and population. Specifically, many of Poland's air and water pollution problems can be traced to the high energy intensity of Polish industrial production. This overview presents environment and energy information for Poland. Topics discussed include: energy resources, production and use; energy production, trade and use; environmental quality and impacts; and control strategies. 109 refs., 25 figs., 40 tabs.
Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua
2016-01-01
Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples. PMID:27924944
Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane.
Wang, Meiling; Meng, Guowen; Huang, Qing; Li, Mingtao; Li, Zhongbo; Tang, Chaolong
2011-01-21
A sensitive and selective fluorescent membrane for rapid detection of trace 2,2',4,5,5'-pentachlorinated biphenyl (PCB101) has been achieved by immobilizing the fluorophore phenyl isothiocyanate (PITC) onto porous anodic aluminium oxide (AAO) membrane (denoted as PITC@AAO). The fluorescence of the PITC@AAO membrane is obviously enhanced after titrating the analyte PCB101 into the membrane, being ascribed to the halogen-bonding interaction between the fluorophore PITC and the analyte PCB101. The fluorescence intensity increases with the PCB101 concentration in the low range below 1 ppm, and there exists an approximate linear relationship between the relative fluorescence intensity and the PCB101 concentration in the low range of 1-6 ppb. Moreover, the PITC@AAO membrane shows good selectivity; for example, it is insensitive to common structural analogs (polychlorinated aromatics). The mechanisms of the fluorescence enhancement and the better sensitivity and selectivity of the PITC@AAO membrane to PCB101 than that of PITC/n-hexane solution are also discussed. This work demonstrates that trace (in ppb range) PCBs can be detected by simple fluorescence measurement.
NASA Astrophysics Data System (ADS)
Muraviev, A. V.; Smolski, V. O.; Loparo, Z. E.; Vodopyanov, K. L.
2018-04-01
Mid-infrared spectroscopy offers supreme sensitivity for the detection of trace gases, solids and liquids based on tell-tale vibrational bands specific to this spectral region. Here, we present a new platform for mid-infrared dual-comb Fourier-transform spectroscopy based on a pair of ultra-broadband subharmonic optical parametric oscillators pumped by two phase-locked thulium-fibre combs. Our system provides fast (7 ms for a single interferogram), moving-parts-free, simultaneous acquisition of 350,000 spectral data points, spaced by a 115 MHz intermodal interval over the 3.1-5.5 µm spectral range. Parallel detection of 22 trace molecular species in a gas mixture, including isotopologues containing isotopes such as 13C, 18O, 17O, 15N, 34S, 33S and deuterium, with part-per-billion sensitivity and sub-Doppler resolution is demonstrated. The technique also features absolute optical frequency referencing to an atomic clock, a high degree of mutual coherence between the two mid-infrared combs with a relative comb-tooth linewidth of 25 mHz, coherent averaging and feasibility for kilohertz-scale spectral resolution.
NASA Astrophysics Data System (ADS)
Vankhade, Dhaval; Chaudhuri, Tapas K.
2018-04-01
Paper-based PbS photodetector sensitive in the visible spectrum is reported. Nanocrystalline PbS-on-paper devices are fabricated by a spin coating method on white paper (300 GSM) from a methanolic precursor solution. Photodetector cells of gap 0.2 cm and length 0.5 cm are prepared by drawing contacts by monolithic cretacolor 8B pencil. X-ray diffractometer confirmed the deposition of nanocrystalline PbS films with 14 nm crystallites. The SEM illustrated the uniform coating of nanocrystalline PbS thin films on cellulose fibres of papers having an average thickness of fibres are 10 µm. The linear J-V characteristics in dark and under illumination of light using graphite trace on nanocrystalline PbS-on-paper shows good ohmic contact. The resistivity of pencil trace is 30 Ω.cm. Spectral response measurements of photodetector reveal the excellent sensitivity from 400 to 700 nm with a peak at 550 nm. The best responsivity anddetectivity are 0.7 A/W and 1.4 × 1012 Jones respectively. These paper-based low-cost photodetectors devices have fast photoresponse and recovery without baseline deviation.
Investigating the Microscopic Location of Trace Elements in High-Alpine Glacier Ice
NASA Astrophysics Data System (ADS)
Avak, Sven Erik; Birrer, Mario; Laurent, Oscar; Guillong, Marcel; Wälle, Markus; Jenk, Theo Manuel; Bartels-Rausch, Thorsten; Schwikowski, Margit; Eichler, Anja
2017-04-01
Past changes in atmospheric pollution can be reconstructed from high-alpine ice core trace element records (Schwikowski et al., 2004). Percolation of meltwater alters the information originally stored in these environmental archives. Eichler et al. (2001) suggested that the preservation of major ions with respect to meltwater percolation depends on their location in the crystal ice lattice, i.e. grain boundaries versus grain interiors. Other studies have also focused on the effect of meltwater on organic pollutant concentrations as well as on stable isotope profiles in ice cores, whereas no information exists about trace elements. Here, we investigate for the first time the effect of the microscopic location of anthropogenic, dust and volcanic related trace elements on the behavior during meltwater percolation by using two different approaches. On the one hand we assess the microscopic location of trace elements indirectly by analyzing trace element concentrations in a high-alpine ice core, which has been shown to be affected by an inflow of meltwater, using discrete inductively coupled plasma mass spectrometry (ICP-MS). Impurities located at grain boundaries are prone to be removed by meltwater and tend to be depleted in the affected section of the record whereas those incorporated into the ice interior are preserved and not disturbed in the record. In the second approach we work towards a direct quantification of differences in concentrations of trace elements between ice grain boundaries and grain interiors in samples both from unaffected and affected sections of this ice core. Therefore we use cryocell laser ablation (LA) ICP-MS, which is the method of choice for the direct in situ chemical analysis of trace elements at a sub-millimeter resolution in glacier ice (Reinhardt et al., 2001, Della Lunga et al., 2014, Sneed et al., 2015). We will present first results of both approaches with regard to the evaluation of the potential of trace elements as environmental proxies in glaciers partially affected by melting. References Della Lunga, D., Müller, W., Rasmussen, S. O. & Svensson, A. 2014: Location of cation impurities in NGRIP deep ice revealed by cryo-cell UV-laser-ablation ICPMS, Journal of Glaciology, 60, 970-988. Eichler, A., Schwikowski, M., Gäggeler, H. W. 2001: Meltwater-induced relocation of chemical species in Alpine firn, Tellus B, 53, 192-203. Reinhardt, H., Kriews, M., Miller, H., Schrems, O., Lüdke, C., Hoffmann, E. & Skole, J. 2001: Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores, Fresenius' Journal of Analytical Chemistry, 370, 629-636. Schwikowski, M., Barbante, C., Doering, T., Gäggeler, H. W., Boutron, C., Schotterer, U., Tobler, L., van de Velde, K., Ferrari, C., Cozzi, G., Rosman, K., Cescon, P. 2004: Post-17th-Century Changes of European Lead Emissions Recorded in High-Altitude Alpine Snow and Ice, Environmental Science & Technology, 38, 957-964. Sneed, S. B., Mayewski, P. A., Sayre, W. G., Handley, M. J., Kurbatov, A. V., Taylor, K. C., Bohleber, P., Wagenbach, D., Erhardt, T. & Spaulding, N. E. 2015: New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores, Journal of Glaciology, 61, 233-242.
Tracking a Heavy Pollution Process in Beijing in Winter 2016 Using GRAPES-CUACE Adjoint Model
NASA Astrophysics Data System (ADS)
Wang, C.; An, X.; Zhai, S.; Zhaobin, S.
2017-12-01
By using the GRAPES-CUACE (Global-Regional Assimilation and Prediction System coupled with the CMA Unified Atmospheric Chemistry Environmental Forecasting System) adjoint model, the adjoint sensitivity of the heavy pollution process in the winter of 2016 in Beijing is traced, and the key emission sources and periods that impacted this heavy pollution process most seriously are analyzed. The research findings suggest that the peak concentration of PM2.5 has a rapid response to the local emission, and the local hourly sensitivity coefficient, which is 9.31 μg m-3, reaches the peak at the moment 1h before the objective time. From the cumulative sensitivity coefficient, the local emission plays the main theme within 20h before the objective time. The contribution of the surrounding emission is the accumulation of the neighboring sources of Beijing, Tianjin, Hebei and Shanxi, whose cumulative contribution ratios are 34.2%, 3.0%, 49.4% and 13.4% respectively within 72h before the objective time. From the hourly sensitivity coefficient, the major contribution period of Tianjin source is 1-26h before the objective time and its hourly contribution peak value is 0.59 μg m-3, appearing at the moment 4h before the objective time. The main contribution periods of Hebei and Shanxi emission sources are respectively 1-54h and 14-53h before the objective time and their hourly sensitivity coefficients both show periodic fluctuations. The Hebei source shows three peaks of sensitivity coefficients, which are 3.45 μg m-3, 4.27 μg m-3 and 0.71 μg m-3, respectively appearing at the time of 4h, 16h and 38h before the objective time. For the Shanxi source, sensitivity coefficient peaks twice with the values of 1.41 μg m-3 and 0.64 μg m-3, which are seen at the time 24h and 45h before the objective time, respectively.
Gilbert, Beric Michael; Avenant-Oldewage, Annemariè
2017-08-01
The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host-parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in the extinction of the parasite from a site below the Vaal River Barrage. Laboratory exposures have further indicated that oncomiracidia of Paradiplozoon ichthyoxanthon are sensitive to exposure to dissolved aluminium. Overall, parasites from African freshwater and marine ecosystems have merit as effect and accumulation indicators; however, more research is required to detail the effects of exposure on sensitive biological processes within these organisms.
Merrill, Peter D; Ampah, Steve B; He, Ka; Rembert, Nicole J; Brockman, John; Kleindorfer, Dawn; McClure, Leslie A
2017-07-01
The disparities in stroke mortality between blacks and whites, as well as the increased stroke mortality in the "stroke belt" have long been noted. The reasons for these disparities have yet to be fully explained. The association between trace element status and cardiovascular diseases, including stroke, has been suggested as a possible contributor to the disparities in stroke mortality but has not been fully explored. The purpose of this study is to investigate distributions of four trace elements (arsenic, mercury, magnesium, and selenium) in the environment in relation to stroke risk. The study population (N=27,770) is drawn from the Reasons for Geographic and Racial Disparities in Stroke (REGARDS) cohort. Environmental distribution of each trace element was determined using data from the United States Geological Survey (USGS) and was categorized in quartiles. A proportional hazards model, adjusted for demographic data and stroke risk factors, was used to examine the association of interest. The results showed that higher selenium levels in the environment were associated with increased stroke risk, and the hazard ratio for the 4th quartile compared to the 1st quartile was 1.33 (95% CI: 1.09, 1.62). However, there was no statistically significant relationship between environmental arsenic, mercury or magnesium and the risk of stroke. Because of dietary and non-dietary exposure as well as bioavailability, further research using biomarkers is warranted to examine the association between these trace elements and the risk of stroke. Copyright © 2017 Elsevier GmbH. All rights reserved.
Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech
2016-09-01
Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric
2016-10-01
In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.
[Distribution iodine deficiency diseases in coastal areas depending on geochemical conditions].
Kiku, P F; Andryukov, B G
2014-01-01
In the Primorsky Krai there was performed a population ecological and hygienic analysis of the relationship between the content of chemical elements in the soil and thyroid morbidity in the population of the region. The assessment of the prevalence of iodine deficiency and iodine deficiency diseases was carried out on the basis of the impact of the priority environmental toxic (strontium, nickel, cadmium, lead, arsenic, tin) and essential (nickel, iron, germanium, molybdenum, zinc, selenium) trace elements on the level of iodine deficiency diseases. The level of thyroid pathology in the territory of Primorye was established to be the highest one in areas characterized by the severe iodine deficiency (Northwest geochemical zones), where the structure of thyroid diseases is presented mainly by diffuse nontoxic goiter. Thyroid diseases associated with iodine deficiency in the population of different age groups are the result of multiple and combined imbalance of trace elements, which causes a relative (secondary) iodine deficiency. Thyroid disease in Primorye are environmentally caused diseases of technogenic origin, they are a consequence of the relative iodine deficiency, when on the background of normal iodine supply an imbalance of zinc, iron, cobalt, manganese with excess of such toxic trace elements as lead, strontium, nickel and chromium takes place. Thyroid pathology associated with iodine deficiency, along with other environmentally dependent diseases can be considered as a marker of ecological environment trouble.
Detection of Bovine and Porcine Adenoviruses for Tracing the Source of Fecal Contamination
Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina
2004-01-01
In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies. PMID:15006765
NASA Astrophysics Data System (ADS)
Chang, L.; Harrison, R. J.; Heslop, D.; Roberts, A. P.
2017-12-01
We present a novel multiscale approach to environmental magnetic analysis of geological samples, where combined use of direct nanoscale observations of magnetic mineral particles, rock magnetism and micromagnetic simulation enable production of robust magnetic proxies for tracing important paleoenvironmental change. We have applied such an analysis to the Paleocene-Eocene Thermal Maximum (PETM; 56 Ma), which was the most pronounced Cenozoic global warming event that has been cited as the best analog for understanding present-day warming. Investigating environmental changes across the PETM and associated biological turnovers in marine environments are crucially important because the ocean is a major reservoir for absorbed atmospheric CO2. Nevertheless, knowledge of marine productivity and deep sea oxygenation across the PETM is controversial. We present a new high-resolution PETM record from the South Atlantic Ocean using exceptionally preserved magnetofossils - the inorganic magnetite crystals produced by magnetotactic bacteria. Using rock magnetic properties, statistical analysis of magnetofossil morphologies, and micromagnetic simulation, we demonstrate consistent microfossil signatures for tracing paleoenvironmental changes across the PETM. Our data suggest a transient productivity rise in the pelagic South Atlantic Ocean. The bottom oxygenation decreased gradually from the PETM onset to its peak, and remained low during the early recovery stage of the PETM. Our microbial records provide new insights into the origin and environmental turnovers across the PETM.
Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination.
Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina
2004-03-01
In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies.
Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays
NASA Astrophysics Data System (ADS)
Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.
2011-08-01
This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.
Li, Guoliang; Cui, Yanyan; You, Jinmao; Zhao, Xianen; Sun, Zhiwei; Xia, Lian; Suo, Yourui; Wang, Xiao
2011-04-01
Analysis of trace amino acids (AA) in physiological fluids has received more attention, because the analysis of these compounds could provide fundamental and important information for medical, biological, and clinical researches. More accurate method for the determination of those compounds is highly desirable and valuable. In the present study, we developed a selective and sensitive method for trace AA determination in biological samples using 2-[2-(7H-dibenzo [a,g]carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC) as labeling reagent by HPLC-FLD-MS/MS. Response surface methodology (RSM) was first employed to optimize the derivatization reaction between DBCEC and AA. Compared with traditional single-factor design, RSM was capable of lessening laborious, time and reagents consumption. The complete derivatization can be achieved within 6.3 min at room temperature. In conjunction with a gradient elution, a baseline resolution of 20 AA containing acidic, neutral, and basic AA was achieved on a reversed-phase Hypersil BDS C(18) column. This method showed excellent reproducibility and correlation coefficient, and offered the exciting detection limits of 0.19-1.17 fmol/μL. The developed method was successfully applied to determinate AA in human serum. The sensitive and prognostic index of serum AA for liver diseases has also been discussed.
A Service-Learning Project in Chemistry: Environmental Monitoring of a Nature Preserve
ERIC Educational Resources Information Center
Kammler, David C.; Truong, Triet M.; VanNess, Garrett; McGowin, Audrey E.
2012-01-01
A collaborative environmental service-learning project was implemented between upper-level undergraduate science majors and graduate chemistry students at a large state school and first-year students at a small private liberal arts college. Students analyzed the water quality in a nature preserve by determining the quantities of 12 trace metals,…
2007-09-01
practically have dropped the collaboration with Biotraces as the company was not able to provide us with an improved version of their instrument...Although the claimed sensitivity was reproduced in studies conducted at BioTraces with recombinant PrP. The question was whether the same sensitivity
A sensitive procedure is described for trace analysis of hydrogen peroxide in water. The process involves the peroxide-catalyzed oxidation of the leuco forms of two dyes, crystal violet and malachite green. The sensitivity of this procedure, as well as of another procedure based ...
NASA Astrophysics Data System (ADS)
Xia, Xiaohong; Qin, Yong; Yang, Weifeng
2013-03-01
Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.
Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.
1991-01-01
Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.
Trace metals in upland headwater lakes in Ireland.
Burton, Andrew; Aherne, Julian; Hassan, Nouri
2013-10-01
Trace elements (n = 23) in Irish headwater lakes (n = 126) were investigated to determine their ambient concentrations, fractionation (total, dissolved, and non-labile), and geochemical controls. Lakes were generally located in remote upland, acid-sensitive regions along the coastal margins of the country. Total trace metal concentrations were low, within the range of natural pristine surface waters; however, some lakes (~20 %) had inorganic labile aluminum and manganese at levels potentially harmful to aquatic organisms. Redundancy analysis indicated that geochemical weathering was the dominant controlling factor for total metals, compared with acidity for dissolved metals. In addition, many metals were positively correlated with dissolved organic carbon indicating their affinity (or complexation) with humic substances (e.g., aluminum, iron, mercury, lead). However, a number of trace metals (e.g., aluminum, mercury, zinc) were correlated with anthropogenic acidic deposition (i.e., non-marine sulfate), suggesting atmospheric sources or elevated leaching owing to acidic deposition. As transboundary air pollution continues to decline, significant changes in the cycling of trace metals is anticipated.
Lin, Shuo; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Liu, Zhuang; Yu, Hai-Rong; Zhang, Chuan; Chu, Liang-Yin
2016-02-23
Real-time online detection of trace threat analytes is critical for global sustainability, whereas the key challenge is how to efficiently convert and amplify analyte signals into simple readouts. Here we report an ultrasensitive microfluidic platform incorporated with smart microgel for real-time online detection of trace threat analytes. The microgel can swell responding to specific stimulus in flowing solution, resulting in efficient conversion of the stimulus signal into significantly amplified signal of flow-rate change; thus highly sensitive, fast, and selective detection can be achieved. We demonstrate this by incorporating ion-recognizable microgel for detecting trace Pb(2+), and connecting our platform with pipelines of tap water and wastewater for real-time online Pb(2+) detection to achieve timely pollution warning and terminating. This work provides a generalizable platform for incorporating myriad stimuli-responsive microgels to achieve ever-better performance for real-time online detection of various trace threat molecules, and may expand the scope of applications of detection techniques.
The role of birth cohorts in studies of adult health: the New York women's birth cohort.
Terry, Mary Beth; Flom, Julie; Tehranifar, Parisa; Susser, Ezra
2009-09-01
Epidemiological studies investigating associations between early life factors and adult health are often limited to studying exposures that can be reliably recalled in adulthood or obtained from existing medical records. There are few US studies with detailed data on the pre- and postnatal environment whose study populations are now in adulthood; one exception is the Collaborative Perinatal Project (CPP). We contacted former female participants of the New York site of the CPP who were born from 1959 to 1963 and were prospectively followed for 7 years to examine whether the pre- and postnatal environment is associated with adult health in women 40 years after birth. The New York CPP cohort is particularly diverse; at enrolment, the race/ethnicity distribution of mothers was approximately 30% White, 40% Black and 30% Puerto Rican. Of the 841 eligible women, we successfully traced 375 women (45%) and enrolled 262 women (70% of those traced). Baseline data were available for all eligible women, and we compared those who participated with the remaining cohort (n = 579). Higher family socio-economic status at age 7, availability of maternal social security number, and White race/ethnicity were statistically significantly associated with a higher probability of tracing. Of those traced, race/ethnicity was associated with participation, with Blacks and Puerto Ricans less likely to participate than Whites (OR = 0.5, 95% CI 0.3, 0.8, and OR = 0.5, 95% CI 0.3, 1.0, respectively). In addition, higher weight at 7 years was associated with lower participation (OR = 0.95, 95% CI 0.92, 0.99), but this association was observed only among the non-White participants. None of the other maternal characteristics, infant or early childhood growth measures was associated with participation or with tracing, either overall or within each racial/ethnic subgroup. Daughters' recall of early life factors such as pre-eclampsia (sensitivity = 24%) and birthweight were generally poor, with the latter varying by category of birthweight with the highest sensitivity for the largest babies (81%) and the lowest sensitivity for the smallest babies (54%). These data reinforce the need to rejuvenate existing birth cohorts with prospective data for life course studies of adult health. Understanding the factors that are associated with tracing and participation in these existing cohorts will help in interpreting the validity and generalisability of the findings from these invaluable cohorts.
Moreno, D A; Villora, M G; Hernández, J; Castilla, N; Romer, L
2001-01-01
In three consecutive years of field experiments (1994-96), three different environmental conditions for the growth of Chinese cabbage (Brassica pekinensis (Lour) Rupr. cv. Nagaoka 50) were established by using two cover treatments (T1 and T2) and a control uncovered cultivation (T0). The T1 [50 microm polyethylene cover; 20 degrees C air temperature; 61.9% relative moisture; 207 Wm(-2) irradiance] and T2 [a 17 gm(-2) non-woven fleece; 18 degrees C; 63.4%; 205 Wm(-2) gave rise to differences in environmental conditions with respect to T0 [14 degrees C; 57.5%; 237 Wm(-2)]. We analysed chloride (Cl), barium (Ba). rubidium (Rb) and tin (Sn) in the whole tops of experimental plants. Chloride removal was high for Brassica pekinensis but considerably lower for Rb, giving intermediate values for Ba and Sn. The influence of environmental factors under T1 increased trace-element removal and enhanced the usefulness for phytoremedation.
NASA Astrophysics Data System (ADS)
Araújo, Daniel Ferreira; Peres, Lucas G. M.; Yepez, Santiago; Mulholland, Daniel S.; Machado, Wilson; Tonhá, Myller; Garnier, Jérémie
2017-10-01
The Sepetiba Bay, Southeastern Brazil, has undergone intense environmental changes due to anthropogenic influence. This work aims to: (i) evaluate the changes in the drainage landscape use over the last decades, (ii) identify new and past punctual and diffuse anthropogenic sources and assess risks of man-induced disturbances of the coastal zones of Sepetiba. A multivariate statistics approach on the sediment's elemental geochemical dataset discriminated three groups: the electroplating waste-affected elements (As, Cd, Pb, Cu and Zn), terrigenous elements (Si, K, Ti, Al and Fe), and biogenic and carbonate-derived elements (Ca, Mg, Mn, P, Ni, and Cr). Sediment core profiles of trace elements evidence records of former environmental impacts from old metallurgical wastes. Analysis of two Landsat images from 30 years ago and 2015 reveals a decrease in the mangrove area of nearly 26%. The ongoing suppression of mangroves could enhance the release of trace elements into the Sepetiba Bay, increasing the risks to human and biota health.
NASA Astrophysics Data System (ADS)
Jiaming, Liu; Guohui, Zhu; Tianlong, Yang; Aihong, Wu; Yan, Fu; Longdi, Li
2003-07-01
The effects of different surfactants on solid substrate-room temperature phosphorescence (SS-RTP) properties of Sn4+-morin systems were investigated. It was found that the SS-RTP intensity of luminescence system was increased greatly in presence of sodium dodecyl sulfate (SDS). A new highly sensitive method for the determination of trace tin has been proposed based on sensitization of SDS on SS-RTP intensity of morin-tin system on the filter paper substrate. The linear dynamic range of this method is 8.0-112 ag per spot (with the volume of 0.4 μl per spot) with a detection limit of 4.0 ag per spot, and the regression equation is ΔIp=199.7+3.456mSn(IV) (ag per spot), with the correlation coefficient r=0.9998 (n=7). This simple, rapid and reproducible method has been applied to determine the amount of tin in real samples with satisfactory results.
Rapid and Highly Sensitive Detection of Lead Ions in Drinking Water Based on a Strip Immunosensor
Kuang, Hua; Xing, Changrui; Hao, Changlong; Liu, Liqiang; Wang, Libing; Xu, Chuanlai
2013-01-01
In this study, we have first developed a rapid and sensitive strip immunosensor based on two heterogeneously-sized gold nanoparticles (Au NPs) probes for the detection of trace lead ions in drinking water. The sensitivity was 4-fold higher than that of the conventional LFA under the optimized conditions. The visual limit of detection (LOD) of the amplified method for qualitative detection lead ions was 2 ng/mL and the LOD for semi-quantitative detection could go down to 0.19 ng/mL using a scanning reader. The method suffered from no interference from other metal ions and could be used to detect trace lead ions in drinking water without sample enrichment. The recovery of the test samples ranged from 96% to 103%. As the detection method could be accomplished within 15 min, this method could be used as a potential tool for preliminary monitoring of lead contamination in drinking water. PMID:23539028
NASA Astrophysics Data System (ADS)
Ghaedi, Mehrorang
2007-02-01
Highly sensitive and interference-free sensitized spectrophotometric method for the determination of Ni(II) ions is described. The method is based on the reaction between Ni(II) ion and benzyl dioxime in micellar media in the presence of sodium dodecyl sulfate (SDS). The absorbance is linear from 0.1 up to 25.0 μg mL -1 in aqueous solution with repeatability (RSD) of 1.0% at a concentration of 1 μg mL -1 and a detection limit of 0.12 ng mL -1 and molar absorption coefficient of 68,600 L mol -1 cm -1. The influence of reaction variables including type and amount of surfactant, pH, and amount of ligand and complexation time and the effect of interfering ions are investigated. The proposed procedure was applied to the determination of trace amounts of Ni(II) ion in tap water, river water, chocolate and vegetable without separation or organic solvent extraction.
Multi-capillary based optical sensors for highly sensitive protein detection
NASA Astrophysics Data System (ADS)
Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji
2017-04-01
A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.
Quillet, Edwige; Bégout, Marie-Laure; Aupérin, Benoit; Khaw, Hooi Ling; Millot, Sandie; Valotaire, Claudiane; Kernéis, Thierry; Labbé, Laurent; Prunet, Patrick; Dupont-Nivet, Mathilde
2017-01-01
Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight) and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months), the plasma cortisol response to confinement stress (3 challenges) and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV) for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol) was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity. PMID:29253015
Stable isotope and trace element studies of black bear hair, Big Bend ecosystem, Texas and Mexico
Shanks, W.C. Pat; Hellgren, Eric C.; Stricker, Craig A.; Gemery-Hill, Pamela A.; Onorato, David P.
2008-01-01
Hair from black bears (Ursus americanus), collected from four areas in the Big Bend ecosystem, has been analyzed for stable isotopes of carbon, nitrogen, and sulfur to determine major food sources and for trace metals to infer possible effects of environmental contaminants. Results indicate that black bears are largely vegetarian, feeding on desert plants, nuts, and berries. Mercury concentrations in bear hair are below safe level standards (
2013-01-01
Background Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring. PMID:23827014
NASA Astrophysics Data System (ADS)
Chen, Z.; Jones, C. M.
2002-05-01
Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.
El-Sharkawy, Yasser H; Elbasuney, Sherif
2017-08-01
Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique. Copyright © 2017 Elsevier B.V. All rights reserved.
Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.
Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming
2014-11-10
A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11 cm-1 Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12 cm-1 has been obtained by averaging about 100 spectra recorded in 2 h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.
1831: the map that launched the idea of global health.
Koch, Tom
2014-08-01
Today we take for granted the idea of global health, of disease as an international event. Increasingly, we assume as well that the international spread of disease can be traced to human travel patterns as well as to recurring environmental conditions. Perversely, the idea of ‘global health’ and its inverse, global disease, owes little to the three-dimensional imaging of the planet and almost everything to the two-dimensional plane of the map. Here the idea of global disease is traced from its beginnings in the 18th century to its 19th-century introduction in maps of the first cholera pandemic. This global perspective, and the responsibilities it promoted among civil officials, can be seen in modern studies of cancer, influenza and other conditions with both environmental foundations and international presence.
Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing
Nikodem, Michal; Wysocki, Gerard
2012-01-01
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389
Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.
Nikodem, Michal; Wysocki, Gerard
2012-11-28
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.
NARSTO EPA SS ST LOUIS AIR CHEM PM MET DATA
Atmospheric Science Data Center
2018-04-09
... Winds Precipitation Amount Surface Pressure Solar Radiation Surface Air Temperature Particulates Trace Metals ... Earth Related Data: Environmental Protection Agency Supersites St. Louis SCAR-B Block: ...
Klippel, Annelie; Reininghaus, Ulrich; Viechtbauer, Wolfgang; Decoster, Jeroen; Delespaul, Philippe; Derom, Cathérine; de Hert, Marc; Jacobs, Nele; Menne-Lothmann, Claudia; Rutten, Bart; Thiery, Evert; van Os, Jim; van Winkel, Ruud; Myin-Germeys, Inez; Wichers, Marieke
2018-02-23
Adolescents and young adults are highly focused on peer evaluation, but little is known about sources of their differential sensitivity. We examined to what extent sensitivity to peer evaluation is influenced by interacting environmental and genetic factors. A sample of 354 healthy adolescent twin pairs (n = 708) took part in a structured, laboratory task in which they were exposed to peer evaluation. The proportion of the variance in sensitivity to peer evaluation due to genetic and environmental factors was estimated, as was the association with specific a priori environmental risk factors. Differences in sensitivity to peer evaluation between adolescents were explained mainly by non-shared environmental influences. The results on shared environmental influences were not conclusive. No impact of latent genetic factors or gene-environment interactions was found. Adolescents with lower self-rated positions on the social ladder or who reported to have been bullied more severely showed significantly stronger responses to peer evaluation. Not genes, but subjective social status and past experience of being bullied seem to impact sensitivity to peer evaluation. This suggests that altered response to peer evaluation is the outcome of cumulative sensitization to social interactions.
ERIC Educational Resources Information Center
Okur-Berberoglu, Emel; Ozdilek, Hasan Göksel; Yalcin-Ozdilek, Sükran
2015-01-01
Outdoor education is mostly mentioned in terms of environmental education. The aim of this research is to determine the short term effectiveness of an outdoor environmental education program on biodiversity awareness, environmental awareness and sensitivity to natural environment. The data is collected from an outdoor environmental education…
Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun; Chang, Po-Ling
2017-09-01
The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target ( HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.
Ouyang, Hui; Lu, Qian; Wang, Wenwen; Song, Yang; Tu, Xinman; Zhu, Chengzhou; Smith, Jordan N; Du, Dan; Fu, Zhifeng; Lin, Yuehe
2018-04-17
Manganese dioxide nanoflowers (MnO 2 NFs) were synthesized and used as a dual readout probe to develop a novel immunochromatographic test strip (ITS) for detecting pesticide residues using chlorpyrifos as the model analyte. MnO 2 NFs-labeled antibody for chlorpyrifos was employed as the signal tracer for conducting the ITS. After 10 min competitive immunoreaction, the tracer antibody was captured by the immobilized immunogen in the test strip, resulting in the captured MnO 2 NFs on test line. The captured MnO 2 NFs led to the appearance of brown color on the test line, which could be easily observed by the naked eye as a qualitative readout. Due to the very slight colorimetric difference of chlorpyrifos at trace concentrations, the semiquantitative readout by naked eyes could not meet the demand of quantitative analysis. MnO 2 NFs showed a significant effect on the luminol-H 2 O 2 chemiluminescent (CL) system, and the CL signal driven by MnO 2 NFs were used to detect the trace concentration of chlorpyrifos quantitatively. 1,3-Diphenylisobenzofuran quenching studies and TMB-H 2 O 2 coloration assays were conducted for studying the enhancing mechanism of MnO 2 NFs, which was based on the oxidant activity to decompose H 2 O 2 for forming reactive oxygen species. Under optimal conditions, the linear range of chlorpyrifos was 0.1-50 ng/mL with a low detection limit of 0.033 ng/mL (S/N = 3). The reliability of the dual-readout ITS was successfully demonstrated by the application on traditional Chinese medicine and environmental water samples. Due to the simultaneous rapid-qualitative and sensitive-quantitative detection, the dual-readout protocol provides a promising strategy for rapid screening and field assay on various areas such as environmental monitoring and food safety.
Pei, Miao; Zhu, Xiangyu; Huang, Xiaojia
2018-01-05
Effective extraction is a key step in the determination of sulfonylurea herbicides (SUHs) in complicated samples. According to the chemical properties of SUHs, a new monolithic adsorbent utilizing acrylamidophenylboronic acid and vinylimidazole as mixed functional monomers was synthesized. The new adsorbent was employed as the extraction phase of multiple monolithic fiber solid-phase microextraction (MMF-SPME) of SUHs, and the extracted SUHs were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD). Results well evidence that the prepared adsorbent could extract SUHs in environmental waters and soil effectively through multiply interactions such as boronate affinity, dipole-dipole and π-π interactions. Under the optimized extraction conditions, the limits of detection for target SUHs in environmental water and soil samples were 0.018-0.17μg/L and 0.14-1.23μg/kg, respectively. At the same time, the developed method also displayed some analytical merits including wide linear dynamic ranges, good method reproducibility, satisfactory sensitivity and low consume of organic solvent. Finally, the developed were successfully applied to monitor trace SUHs in environmental water and soil samples. The recoveries at three fortified concentrations were in the range of 70.6-119% with RSD below 11% in all cases. The obtained results well demonstrate the excellent practical applicability of the developed MMF-SPME-HPLC-DAD method for the monitoring of SUHs in water and soil samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Masiri, Jongkit; Benoit, Lora; Meshgi, Mahzad; Day, Jeffrey; Nadala, Cesar; Samadpour, Mansour
2016-09-01
A growing number of plant-based milk substitutes have become commercially available, providing an array of options for consumers with dietary restrictions. Though several of these products rival cow's milk in terms of their nutritional profiles, beverages prepared with soy and tree nuts can be a significant concern to consumers because of potential contamination with food allergens. Adding to this concern is the fact that allergen residues from plant-based beverages are modified during manufacturing, thereby decreasing the sensitivity of antibody-based detection methods. Consequently, many commercially available allergen detection kits are less effective for allergens derived from nondairy milk substitutes. To address this limitation, we developed a panel of polyclonal antibodies directed against the modified proteins present in almond, cashew, coconut, hazelnut, and soy milks and incorporated them into rapid lateral flow immunoassay tests configured in both sandwich and competitive format. The tests had robust detection capabilities when used with a panel of various brand-name products, with a sensitivity of 1 ppm and selectivity values of 3 to 5 ppm in nondairy beverages. Minimal cross-reactivity to extracts prepared from common commodities was observed. The development of a highly sensitive and rapid test specifically designed to detect trace quantities of highly modified allergen residues in plant-based, dairy-free beverages will aid food manufacturers and regulatory agencies in monitoring products for these modified allergens when testing environmental and food samples.
Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo
2016-03-15
A sensitive, rapid and simple flow-injection chemiluminescence (CL) system based on the light emitted from KMnO4-cadmium sulfide quantum dots (CdS QDs) reaction in the presence of cetyltrimethylammonium bromide (CTAB) in acidic medium was developed as a CL probe for the sensitive determination of atenolol. Optical and structural features of CdS QDs capped with l-cysteine, which synthesized via hydrothermal approach, were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Vis spectroscopy. The CL intensity of KMnO4-CdS QDs-CTAB was remarkably enhanced in the presence of trace level of atenolol. Under optimum experimental conditions, there is a linear relationship between the increase in CL intensity of KMnO4-CdS QDs-CTAB system and atenolol concentration in a range of 0.001 to 4.0 mg L(-1) and 4.0 to 18.0 mg L(-1), with a detection limit (3σ) of 0.0010 mg L(-1). A possible mechanism for KMnO4-CdS QDs-CTAB-atenolol CL reaction is proposed. To prove the practical application of the KMnO4-CdS QDs-CTAB CL method, the method was applied for the determination of atenolol in spiked environmental water samples and commercial pharmaceutical formulation. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) technique was utilized for determination of atenolol. Copyright © 2015 Elsevier B.V. All rights reserved.
Babst, Benjamin A; Karve, Abhijit A; Judt, Tatjana
2013-06-01
Metabolism and phloem transport of carbohydrates are interactive processes, yet each is often studied in isolation from the other. Carbon-11 ((11)C) has been successfully used to study transport and allocation processes dynamically over time. There is a need for techniques to determine metabolic partitioning of newly fixed carbon that are compatible with existing non-invasive (11)C-based methodologies for the study of phloem transport. In this report, we present methods using (11)C-labeled CO2 to trace carbon partitioning to the major non-structural carbohydrates in leaves-sucrose, glucose, fructose and starch. High-performance thin-layer chromatography (HPTLC) was adapted to provide multisample throughput, raising the possibility of measuring different tissues of the same individual plant, or for screening multiple plants. An additional advantage of HPTLC was that phosphor plate imaging of radioactivity had a much higher sensitivity and broader range of sensitivity than radio-HPLC detection, allowing measurement of (11)C partitioning to starch, which was previously not possible. Because of the high specific activity of (11)C and high sensitivity of detection, our method may have additional applications in the study of rapid metabolic responses to environmental changes that occur on a time scale of minutes. The use of this method in tandem with other (11)C assays for transport dynamics and whole-plant partitioning makes a powerful combination of tools to study carbohydrate metabolism and whole-plant transport as integrated processes.
Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin
2016-12-01
The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.
ERIC Educational Resources Information Center
Gough, Annette
2017-01-01
This article traces the shifts in environmental education discourses from the 1972 UN Conference on the Human Environment, to the 2012 UN Rio+20 Conference on Sustainable Development, and beyond through a biopolitical lens. Each of the earlier shifts is reflected in environmental, sustainability and science education policies and curricula--but…
NASA Astrophysics Data System (ADS)
Forster, Martin; Hester, Ronald E.
1982-01-01
Reduced methylviologen (MV +) is detected by conventional resonance Raman spectroscopy in photoreactions of Ru(bpy) 2+3 or proflavine (PFH +) with MV 2+ Using apparatus for modulated excitation resonance Raman (MERR) spectroscopy, the irreversible MV + production with PFH + as sensitizer is traced back to triplet-triplet annihilation with simultaneous destruction of PFH +.
Greve, Andrea; Donaldson, David I; van Rossum, Mark C W
2010-02-01
Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.
Removal of trace organic chemical contaminants by a membrane bioreactor.
Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J
2012-01-01
Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.
Trace elements in coal. Environmental and health significance
Finkelman, R.B.
1999-01-01
Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.
Trace elements in raw milk of buffaloes (Bubalus bubalis) from Campania, Italy.
Esposito, Mauro; Miedico, Oto; Cavallo, Stefania; Pellicanò, Roberta; Rosato, Guido; Baldi, Loredana; Chiaravalle, A Eugenio
2017-10-15
The profile of 18 trace elements was traced in 68 milk samples collected from buffalo farms in the territory known as the "Land of Fires" in the Campania region (Italy). This area has been polluted by the illegal dumping in fields of industrial or domestic waste, wich is sometimes then burned spreading toxic contaminants. Milk from buffaloes raised on rural farms might be a good indicator of environmental contamination risk in the human food chain. Trace element analysis in milk was performed using mass spectrometry. One milk sample was found to be non-compliant due to high Pb concentration. In the absence of threshold values for the elements, established through legislation, the results were compared with similar studies from other countries, and in most cases the content determined in this study was in agreement with values reported elsewhere and do not represent a risk to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exposure assessment for trace elements from consumption of marine fish in Southeast Asia.
Agusa, Tetsuro; Kunito, Takashi; Sudaryanto, Agus; Monirith, In; Kan-Atireklap, Supawat; Iwata, Hisato; Ismail, Ahmad; Sanguansin, Joompol; Muchtar, Muswerry; Tana, Touch Seang; Tanabe, Shinsuke
2007-02-01
Concentrations of 20 trace elements were determined in muscle and liver of 34 species of marine fish collected from coastal areas of Cambodia, Indonesia, Malaysia and Thailand. Large regional difference was observed in the levels of trace elements in liver of one fish family (Carangidae): the highest mean concentration was observed in fish from the Malaysian coastal waters for V, Cr, Zn, Pb and Bi and those from the Java Sea side of Indonesia for Sn and Hg. To assess the health risk to the Southeast Asian populations from consumption of fish, intake rates of trace elements were estimated. Some marine fish showed Hg levels higher than the guideline values by U.S. Environmental Protection Agency and Joint FAO/WHO Expert Committee on Food Additives (JECFA). This suggests that consumption of these fish may be hazardous to the people.
A fully-automatic fast segmentation of the sub-basal layer nerves in corneal images.
Guimarães, Pedro; Wigdahl, Jeff; Poletti, Enea; Ruggeri, Alfredo
2014-01-01
Corneal nerves changes have been linked to damage caused by surgical interventions or prolonged contact lens wear. Furthermore nerve tortuosity has been shown to correlate with the severity of diabetic neuropathy. For these reasons there has been an increasing interest on the analysis of these structures. In this work we propose a novel, robust, and fast fully automatic algorithm capable of tracing the sub-basal plexus nerves from human corneal confocal images. We resort to logGabor filters and support vector machines to trace the corneal nerves. The proposed algorithm traced most of the corneal nerves correctly (sensitivity of 0.88 ± 0.06 and false discovery rate of 0.08 ± 0.06). The displayed performance is comparable to a human grader. We believe that the achieved processing time (0.661 ± 0.07 s) and tracing quality are major advantages for the daily clinical practice.
NASA Astrophysics Data System (ADS)
Moretto, P.; Ortega, R.; Llabador, Y.; Simonoff, M.; Bénard, J.; Moretto, Ph.
1995-09-01
Macro-and Micro-PIXE analysis were applied to study the mechanisms of cellular resistance to cisplatin, a chemotherapeutic agent, widely used nowadays for the treatment of ovarian cancer. Two cultured cell lines, a cisplatin-sensitive and a resistant one, were compared for their trace elements content and platinum accumulation following in vitro exposure to the drug. Bulk analysis revealed significant differences in copper and iron content between the two lines. Subsequent individual cell microanalysis permitted us to characterize the response of the different morphological cell types of the resistant line. This study showed that the metabolism of some trace metals in cisplatin-resistant cells could be affected but the exact relationship with the resistant phenotype remains to be determined. From a technical point of view, this experiment demonstrated that an accurate measurement of trace elements could be derived from nuclear microprobe analysis of individual cell.
Camilli, Richard; Duryea, Anthony N
2009-07-01
The TETHYS mass spectrometer is intended for long-term in situ observation of dissolved gases and volatile organic compounds in aquatic environments. Its design maintains excellent low mass range sensitivity and stability during long-term operations, enabling characterization of low-frequency variability in many trace dissolved gases. Results are presented from laboratory trials and a 300-h in situ trial in a shallow marine embayment in Massachusetts, U.S.A. This time series consists of over 15000 sample measurements and represents the longest continuous record made by an in situ mass spectrometer in an aquatic environment. These measurements possess sufficient sampling density and duration to apply frequency analysis techniques for study of temporal variability in dissolved gases. Results reveal correlations with specific environmental periodicities. Numerical methods are presented for converting mass spectrometer ion peak ratios to absolute-scale dissolved gas concentrations across wide temperature regimes irrespective of ambient pressure, during vertical water column profiles in a hypoxic deep marine basin off the coast of California, U.S.A. Dissolved oxygen concentration values obtained with the TETHYS instrument indicate close correlation with polarographic oxygen sensor data across the entire depth range. These methods and technology enable observation of aquatic environmental chemical distributions and dynamics at appropriate scales of resolution.
Environmental effects on fish neural plasticity and cognition.
Ebbesson, L O E; Braithwaite, V A
2012-12-01
Most fishes experiencing challenging environments are able to adjust and adapt their physiology and behaviour to help them cope more effectively. Much of this flexibility is supported and influenced by cognition and neural plasticity. The understanding of fish cognition and the role played by different regions of the brain has improved significantly in recent years. Techniques such as lesioning, tract tracing and quantifying changes in gene expression help in mapping specialized brain areas. It is now recognized that the fish brain remains plastic throughout a fish's life and that it continues to be sensitive to environmental challenges. The early development of fish brains is shaped by experiences with the environment and this can promote positive and negative effects on both neural plasticity and cognitive ability. This review focuses on what is known about the interactions between the environment, the telencephalon and cognition. Examples are used from a diverse array of fish species, but there could be a lot to be gained by focusing research on neural plasticity and cognition in fishes for which there is already a wealth of knowledge relating to their physiology, behaviour and natural history, e.g. the Salmonidae. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles.
Li, Xiaokun; Zhang, Youlin; Chang, Yulei; Xue, Bin; Kong, Xianggui; Chen, Wei
2017-06-15
In view of the high biotoxicity and trace concentration of mercury (Hg) in environmental water, developing simple, ultra-sensitive and highly selective method capable of simultaneous determination of various Hg species has attracted wide attention. Here, we present a novel catalysis-reduction strategy for sensing inorganic and organic mercury in aqueous solution through the cooperative effect of AuNP-catalyzed properties and the formation of gold amalgam. For the first time, a new AuNP-catalyzed-organic reaction has been discovered and directly used for sensing Hg 2+ , Hg 2 2+ and CH 3 Hg + according to the change of the amount of the catalytic product induced by the deposition of Hg atoms on the surface of AuNPs. The detection limit of Hg species is 5.0pM (1 ppt), which is 3 orders of magnitude lower than the U.S. Environmental Protection Agency (EPA) limit value of Hg for drinking water (2 ppb). The high selectivity can be exceptionally achieved by the specific formation of gold amalgam. Moreover, the application for detecting tap water samples further demonstrates that this AuNP-based assay can be an excellent method used for sensing mercury at very low content in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.
Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.
2011-01-01
The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).
Capacitive sensing of N-formylamphetamine based on immobilized molecular imprinted polymers.
Graniczkowska, Kinga; Pütz, Michael; Hauser, Frank M; De Saeger, Sarah; Beloglazova, Natalia V
2017-06-15
A highly sensitive, capacitive biosensor was developed to monitor trace amounts of an amphetamine precursor in aqueous samples. The sensing element is a gold electrode with molecular imprinted polymers (MIPs) immobilized on its surface. A continuous-flow system with timed injections was used to simulate flowing waterways, such as sewers, springs, rivers, etc., ensuring wide applicability of the developed product. MIPs, implemented as a recognition element due to their stability under harsh environmental conditions, were synthesized using thermo- and UV-initiated polymerization techniques. The obtained particles were compared against commercially available MIPs according to specificity and selectivity metrics; commercial MIPs were characterized by quite broad cross-reactivity to other structurally related amphetamine-type stimulants. After the best batch of MIPs was chosen, different strategies for immobilizing them on the gold electrode's surface were evaluated, and their stability was also verified. The complete, developed system was validated through analysis of spiked samples. The limit of detection (LOD) for N-formyl amphetamine was determined to be 10μM in this capacitive biosensor system. The obtained results indicate future possible applications of this MIPs-based capacitive biosensor for environmental and forensic analysis. To the best of our knowledge there are no existing MIPs-based sensors toward amphetamine-type stimulants (ATS). Copyright © 2016 Elsevier B.V. All rights reserved.
Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years
Obreht, Igor; Zeeden, Christian; Hambach, Ulrich; Veres, Daniel; Marković, Slobodan B.; Bösken, Janina; Svirčev, Zorica; Bačević, Nikola; Gavrilov, Milivoj B.; Lehmkuhl, Frank
2016-01-01
Loess-palaeosol sequences are valuable archives of past environmental changes. Although regional palaeoclimatic trends and conditions in Southeastern Europe have been inferred from loess sequences, large scale forcing mechanisms responsible for their formation have yet to be determined. Southeastern Europe is a climatically sensitive region, existing under the strong influence of both Mediterranean and continental climates. Establishment of the spatial and temporal evolution and interaction of these climatic areas is essential to understand the mechanisms of loess formation. Here we present high-resolution grain-size, environmental magnetic, spectrophotometric and geochemical data from the Stalać section in the Central Balkans (Serbia) for the past ~350,000 years. The goal of this study is to determine the influence of the Mediterranean climate during this period. Data show that the Central Balkans were under different atmospheric circulation regimes, especially during Marine Isotope Stages 9 and 7, while continental climate prevailed further north. We observe a general weakening of the Mediterranean climate influence with time. Our data suggest that Marine Isotope Stage 5 was the first interglacial in the Central Balkans that had continental climate characteristics. This prominent shift in climatic conditions resulted in unexpectedly warm and humid conditions during the last glacial. PMID:27824102
Nanoporous gold film based SPR sensors for trace chemical detection
NASA Astrophysics Data System (ADS)
Wang, Li; Gong, Xiaoqing; Wan, Xiumei; Lu, Dan-feng; Qi, Zhi-mei
2017-02-01
Thin films of nanoporous gold (NPG) have both localized and propagating surface plasmon resonance (SPR) effects. The propagating SPR effect of NPG film combined with its huge internal surface area makes it applicable as an evanescent wave sensor with high sensitivity. In this work, NPG films with controlled thicknesses were fabricated on glass substrates by sputtering deposition of AuAg films followed by dealloying in nitric acid. By using of the NPG films as the sensing layer, a broadband wavelength-interrogated SPR sensor was prepared for chemical and biological detection. The propagating SPR absorption band in the visible-near infrared region was clearly observed upon exposure of the NPG film to air, and this band was detected to move to longer wavelengths in response to adsorption of molecules within the NPG film. Simulations based on Fresnel equations combined with Bruggeman approximation were carried out for optimizing the propagating SPR property of NPG film. The sensor's performance was investigated using both bisphenol A (BPA) and lead (II) ions as analytes. According to the experimental results, the detection limits of the sensor are 5 nmol·L-1 for BPA and 1 nmol·L-1 for lead (II) ions. The work demonstrated the outstanding applicability of the NPG film based SPR sensor for sensitive environmental monitoring.
Khataee, Alireza; Hasanzadeh, Aliyeh; Lotfi, Roya; Joo, Sang Woo
2016-05-15
A novel chemiluminescence (CL) system is introduced based on the oxidation of carminic acid by KMnO4 in acidic conditions. CdS quantum dots (QDs) were synthesized using a facile hydrothermal method which efficiently enhanced the intensity of the CL system. A possible mechanism for the proposed system is presented using the kinetic curves, CL spectra, photoluminescence (PL), and ultraviolet-visible (UV-Vis) analysis. The emission intensity of the KMnO4-carminic acid-CdS QDs system was quenched in the presence of a trace level of cloxacillin. Based on this quenching effect, a novel and sensitive flow injection CL method was developed for determining cloxacillin concentrations. At optimal experimental conditions, the decreased CL intensity had a good linear relation with the cloxacillin concentration in the range of 0.008 to 22.0 mg L(-1). The detection limit (3σ) was 5.8 µg L(-1). The precision of the method was calculated by analyzing samples containing 4.0 mg L(-1) of cloxacillin (n=11), and the relative standard deviations (RSD%) were 2.08%. The feasibility of the method is also demonstrated for determining cloxacillin concentrations in environmental water samples and a pharmaceutical formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Chryseobacterium meningosepticum infections in a dialysis unit.
Perera, Shalinie; Palasuntheram, C
2004-06-01
Chryseobacterium species are Gram-negative bacteria with an unusual antibiotic profile. Chryseobacterium meningosepticum is the species most commonly encountered as a human pathogen. To study the microbiological, clinical and therapeutic features of C. meningosepticum infections in patients on dialysis, at Sri Jayewardenepura General Hospital (Teaching) (SJGH), and to trace the source of infections. A retrospective descriptive study. Dialysis unit of SJGH. population Patients who underwent long term haemodialysis (HD) and manual intermittent peritoneal dialysis (IPD) in the dialysis unit. Clinical and microbiological records of patients with C. meningosepticum infections over a period of 2 years were reviewed retrospectively. Environmental screening was carried out to detect a possible source of infection. Thirty five episodes of infection due to C. meningosepticum in 33 patients on HD and IPD were detected. There were 30 episodes of peritonitis, four of bacteraemia and one of asymptomatic colonization of a PD catheter. Isolates were resistant to aminoglycosides, chephalosporins and aztreonam, and sensitive to cotrimoxazole, vancomycin and rifampicin. They showed variable sensitivity to imipenem and ciprofloxacin. All except one patient had a favourable outcome. C. meningosepticum was cultured from a sink in the dialysis unit, but the original source of the organism was not known. C. meningosepticum could be an important pathogen in a dialysis unit, and fluoroquinolones and vancomycin are effective as empiric therapy.
Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju
2011-12-15
The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.
Li, Ruina; Wang, Lili; Gao, Xiaotong; Du, Gangfeng; Zhai, Honglin; Wang, Xiayan; Guo, Guangsheng; Pu, Qiaosheng
2013-03-15
Rapid analysis of trace amount of aromatic amines in environmental samples and daily necessities has attracted considerable attentions because some of them are strongly toxic and carcinogenic. In this study, fast and efficient electrophoretic separation and sensitive determination of 5 banned aromatic amines were explored for practical analysis using disposable plastic microchips combined with a low-cost laser-induced fluorescence detector. The effect of running buffer and its additive was systematically investigated. Under the selected condition, 5 fluorescein isothiocyanate labeled aromatic amines could be baseline separated within 90s by using a 10mmol/L borate buffer containing 2% (w/v) hydroxypropyl cellulose. Calibration curves of peak areas vs. concentrations were linear up to 40 or 120μmol/L for different analytes and limits of detection were in a range of 1-3nmol/L. Theoretical plate numbers of 6.8-8.5×10(5)/m were readily achieved. The method exhibited good repeatability, relative standard deviations (n=5) of peak areas and migration times were no more than 4.6% and 0.9%, respectively. The established method was successfully applied in the quantitative analysis of these banned aromatic amines in real samples of waste water and textile, recoveries of added standards were 85-110%. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1976-01-01
Consequences that might occur if certain technological developments take place in intercity transportation are described. These consequences are broad ranging, and include economic, environmental, social, institutional, energy-related, and transportation service implications. The possible consequences are traced through direct (primary) impacts to indirect (secondary, tertiary, etc.) impacts. Chains of consequences are traced, reaching as far beyond the original transportation cause as is necessary to identify all impacts felt to be influenced significantly by the technological development considered.
2014-08-01
Electrochemical Oxidation of Catechol and Para - Aminophenol Esters in the Presence of Hydrolases. Bioelectrochem. Bioenerg. 1980, 7, 11–24. 26. Evans-Nguyen, K. M...platform. Analytical HPLC (a) and MALDI-TOF (b) traces of biligand capture agentwithno thermal treatment, and after 5 days of storage as a powder at...sample of biligand was stored for 5 days at 65 C under nitrogen atmosphere. Analy- tical HPLC traces (Figure 4a) andMALDI-TOF (Figure 4b) reveal
NASA Technical Reports Server (NTRS)
Coleman, R. A.; Cofer, W. R., III; Edahl, R. A., Jr.
1985-01-01
An analytical technique for the determination of trace (sub-ppbv) quantities of volatile organic compounds in air was developed. A liquid nitrogen-cooled trap operated at reduced pressures in series with a Dupont Nafion-based drying tube and a gas chromatograph was utilized. The technique is capable of analyzing a variety of organic compounds, from simple alkanes to alcohols, while offering a high level of precision, peak sharpness, and sensitivity.
Uniyal, Shivani; Sharma, Rajesh Kumar
2018-09-30
Chlorpyrifos (CP), an organophosphate insecticide is broadly used in the agricultural and industrial sectors to control a broad-spectrum of insects of economically important crops. CP detection has been gaining prominence due to its widespread contamination in different environmental matrices, high acute toxicity, and potential to cause long-term environmental and ecological damage even at trace levels. Traditional chromatographic methods for CP detection are complex and require sample preparation and highly skilled personnel for their operation. Over the past decades, electrochemical biosensors have emerged as a promising technology for CP detection as these circumvent deficiencies associated with classical chromatographic techniques. The advantageous features such as appreciable detection limit, miniaturization, sensitivity, low-cost and onsite detection potential are the propulsive force towards sustainable growth of electrochemical biosensing platforms. Recent development in enzyme immobilization methods, novel surface modifications, nanotechnology and fabrication techniques signify a foremost possibility for the design of electrochemical biosensing platforms with improved sensitivity and selectivity. The prime objective of this review is to accentuate the recent advances in the design of biosensing platforms based on diverse biomolecules and biomimetic molecules with unique properties, which would potentially fascinate their applicability for detection of CP residues in real samples. The review also covers the sensing principle of the prime biomolecule and biomimetic molecule based electrochemical biosensors along with their analytical performance, advantages and shortcomings. Present challenges and future outlooks in the field of electrochemical biosensors based CP detection are also discussed. This deep analysis of electrochemical biosensors will provide research directions for further approaching towards commercial development of the broad range of organophosphorus compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang
2016-10-01
A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.
2015-09-16
Regarding highest concentrations and associated timing of exposure, trace metals analyzed in the sediment core seem to indicate three fairly distinct exposure patterns. For 11 trace metals that had the highest concentration measured in the shallowest and most recently deposited sediment, the most likely explanation is recent exposure by anthropogenic activities. Most of the 11 trace metals with highest concentrations in shallow sediment are relatively innocuous; however, arsenic, copper, selenium, and zinc are among the U.S. Environmental Protection Agency’s 126 priority pollutants. For three trace metals (cadmium, lead, and mercury), for which concentrations were highest in sediments that were 16–20 centimeters down the core, it is likely that a source associated with those contaminants during the period when those sediments were deposited, was reduced or eliminated. The eight remaining trace metals, for which concentrations were highest in sediments that were just below the prereservoir surface, likely had sources that were eliminated soon after lake construction or occurred at relatively high background concentrations in soils in the area around Little Rock Air Force Base.
Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro
2012-08-01
Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.
Use of a tracing task to assess visuomotor performance for evidence of concussion and recuperation.
Kelty-Stephen, Damian G; Qureshi Ahmad, Mona; Stirling, Leia
2015-12-01
The likelihood of suffering a concussion while playing a contact sport ranges from 15-45% per year of play. These rates are highly variable as athletes seldom report concussive symptoms, or do not recognize their symptoms. We performed a prospective cohort study (n = 206, aged 10-17) to examine visuomotor tracing to determine the sensitivity for detecting neuromotor components of concussion. Tracing variability measures were investigated for a mean shift with presentation of concussion-related symptoms and a linear return toward baseline over subsequent return visits. Furthermore, previous research relating brain injury to the dissociation of smooth movements into "submovements" led to the expectation that cumulative micropause duration, a measure of motion continuity, might detect likelihood of injury. Separate linear mixed effects regressions of tracing measures indicated that 4 of the 5 tracing measures captured both short-term effects of injury and longer-term effects of recovery with subsequent visits. Cumulative micropause duration has a positive relationship with likelihood of participants having had a concussion. The present results suggest that future research should evaluate how well the coefficients for the tracing parameter in the logistic regression help to detect concussion in novel cases. (c) 2015 APA, all rights reserved).
Medieval Students, too, Had Battles Against Pollution
ERIC Educational Resources Information Center
Overman, Steven J.
1973-01-01
Interest of students in ecology can be traced back to the Middle Ages. Despite their unhygienic habits, students organized resistance many times for improving sanitation, noise pollution and other environmental conditions. (PS)
ERIC Educational Resources Information Center
Graedel, Thomas E.; Crutzen, Paul J.
1989-01-01
Discusses air pollution occurring due to human activity. Describes which human activities generate which emissions, including acid rain, smog, ozone depletion, and change of trace gases. Suggests global effort to solve the earth's environmental problems. (YP)
Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E
2016-04-01
Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.
Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana.
Arhin, Emmanuel; Boansi, Apea Ohene; Zango, M S
2016-02-01
Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.
Hudspith, M; Reichelt-Brushett, Amanda; Harrison, Peter L
2017-03-01
Significant amounts of trace metals have been released into both nearshore and deep sea environments in recent years, resulting in increased concentrations that can be toxic to marine organisms. Trace metals can negatively affect external fertilization processes in marine broadcast spawners and may cause a reduction in fertilization success at elevated concentrations. Due to its sensitivity and ecological importance, fertilization success has been widely used as a toxicity endpoint in ecotoxicological testing, which is an important method of evaluating the toxicity of contaminants for management planning. Ecotoxicological data regarding fertilization success are available across the major marine phyla, but there remain uncertainties that impair our ability to confidently interpret and analyse these data. At present, the cellular and biochemical events underlying trace metal toxicity in external fertilization are not known. Metal behavior and speciation play an important role in bioavailability and toxicity but are often overlooked, and disparities in experimental designs between studies limit the degree to which results can be synthesised and compared to those of other relevant species. We reviewed all available literature covering cellular toxicity mechanisms, metal toxicities and speciation, and differences in methodologies between studies. We conclude that the concept of metal toxicity should be approached in a more holistic manner that involves elucidating toxicity mechanisms, improving the understanding of metal behavior and speciation on bioavailability and toxicity, and standardizing the fertilization assay methods among different groups of organisms. We identify opportunities to improve the fertilization assay that will allow robust critical and comparative analysis between species and their sensitivities to trace metals during external fertilization, and enable data to be more readily extrapolated to field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Applying geologic sensitivity analysis to environmental risk management: The financial implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, D.T.
The financial risks associated with environmental contamination can be staggering and are often difficult to identify and accurately assess. Geologic sensitivity analysis is gaining recognition as a significant and useful tool that can empower the user with crucial information concerning environmental risk management and brownfield redevelopment. It is particularly useful when (1) evaluating the potential risks associated with redevelopment of historical industrial facilities (brownfields) and (2) planning for future development, especially in areas of rapid development because the number of potential contaminating sources often increases with an increase in economic development. An examination of the financial implications relating to geologicmore » sensitivity analysis in southeastern Michigan from numerous case studies indicate that the environmental cost of contamination may be 100 to 1,000 times greater at a geologically sensitive location compared to the least sensitive location. Geologic sensitivity analysis has demonstrated that near-surface geology may influence the environmental impact of a contaminated site to a greater extent than the amount and type of industrial development.« less
Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models
NASA Technical Reports Server (NTRS)
Jones, William T.; Lazzara, David; Haimes, Robert
2010-01-01
The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.
Perry, Brea L.; Morris, Edward W.; Link, Tanja C.; Leukefeld, Carl
2017-01-01
This paper adds to research on girls’ growing educational advantage by examining gender differences in career paths. Using baseline data from an intervention study (TRY-IT!) targeting 265 sixth-graders in Title I schools, our research traces adolescent career aspirations by gender, race and class. Additionally, we investigate whether girls and boys exhibit differential sensitivity to environmental risk and protective factors that shape career and educational aspirations. We find that the career choices of boys vary more widely by social context, including socioeconomic status, race, and academic resources. Specifically, among youth with fewer social and academic advantages, girls aspire to more practical careers and careers which require higher levels of educational attainment relative to boys. The findings reveal how sources of inequality such as race and class shape gendered aspirations and complicate gender inequality. We reason that boys’ choices are more volatile and socially contingent because of the emphasis on high-status careers as a signifier of masculinity. PMID:28540079
Sol-Gel Synthesis of Carbon Xerogel-ZnO Composite for Detection of Catechol
Li, Dawei; Zang, Jun; Zhang, Jin; Ao, Kelong; Wang, Qingqing; Dong, Quanfeng; Wei, Qufu
2016-01-01
Carbon xerogel-zinc oxide (CXZnO) composites were synthesized by a simple method of sol-gel condensation polymerization of formaldehyde and resorcinol solution containing zinc salt followed by drying and thermal treatment. ZnO nanoparticles were observed to be evenly dispersed on the surfaces of the carbon xerogel microspheres. The as-prepared CXZnO composites were mixed with laccase (Lac) and Nafion to obtain a mixture solution, which was further modified on an electrode surface to construct a novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect the environmental pollutant, catechol. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards catechol with high sensitivity (31.2 µA·mM−1), a low detection limit (2.17 µM), and a wide linear range (6.91–453 µM). Moreover, the biosensor also displayed favorable repeatability, reproducibility, selectivity, and stability besides being successfully used in the trace detection of catechol existing in lake water environments. PMID:28773407
Amare, Meareg; Abicho, Samuel; Admassie, Shimelis
2014-01-01
A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.
NASA Astrophysics Data System (ADS)
Otz, M. H.; Otz, H. K.; Keller, P.
2002-05-01
Synthetic fluorescent dyes, applied below the visual detection limit (< 0.1 mg/L), have been used as tracers of ground water flow paths since the beginning of the 1950s. Since 1965, we have used spectro-fluorometers with photomultipliers to measure low concentrations of fluorescent dyes in ground water in Switzerland. In collaboration with the Engineering Geology Department of the ETH, we have separated uranine at 0.1 ng/L and Na-naphtionate at 1 ng/L from background fluorescence of spring water in the Finstersee region. These values are 10-100 times lower than postulated detection limits in the literature. The use of low dye concentrations prevents a study region from being contaminated by increased background levels due to remnant dye within the aquifer, thereby leaving the region available for future dye tracing studies. Lower detection limits also can solve particular hydraulic problems where conventional methods fail and enhance the possibility for using artificial dyes in environmentally sensitive aquifer settings.