Sample records for environmentally stable polyimides

  1. Crosslinked polyimides prepared from N-(3-ethynylphenyl)maleimide

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K. (Inventor); St.clair, Terry L. (Inventor)

    1993-01-01

    The compound N-(3-ethynylphenyl)maleimide (NEPMI) was used to prepare thermally stable, glassy polyimides which did not exhibit glass transition temperatures below 500 C. NEPMI was blended with the maleimide of methylene dianiline (BMI) and heated to form the polyimide. NEPMI was also mixed with Thermid 600 R, a commercially available bisethynyl oligomeric material, and heated to form a thermally stable, glassy polyimide. Lastly, NEPMI was blended with both BMI and Thermid 600 R to form thermally stable, glassy polyimides.

  2. New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability

    NASA Technical Reports Server (NTRS)

    Burns, E. A.; Jones, J. F.; Kendrick, W. R.; Lubowitz, H. R.; Thorpe, R. S.; Wilson, E. R.

    1969-01-01

    Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights.

  3. Evaluation of high temperature structural adhesives for extended service

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.

    1984-01-01

    High temperature stable adhesive systems were evaluated for potential Supersonic Cruise Research (SCR) vehicle applications. The program was divided into two major phases: Phase I 'Adhesive Screening' evaluated eleven selected polyimide (PI) and polyphenylquinoxaline (PPQ) adhesive resins using eight different titanium (6Al-4V) adherend surface preparations; Phase II 'Adhesive Optimization and Characterization' extensively evaluated two adhesive systems, selected from Phase I studies, for chemical characterization and environmental durability. The adhesive systems which exhibited superior thermal and environmental bond properties were LARC-TPI polyimide and polyphenylquinoxaline both developed at NASA Langley. The latter adhesive system did develop bond failures at extended thermal aging due primarily to incompatibility between the surface preparation and the polymer. However, this study did demonstrate that suitable adhesive systems are available for extended supersonic cruise vehicle design applications.

  4. Polyimides: Thermally stable aerospace polymers

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.

    1980-01-01

    An up to date review of available commercial and experimental high temperature polyimide resins which show potential for aerospace applications is presented. Current government research trends involving the use of polyimides as matrix resins for structural composites are discussed. Both the development of polyimides as adhesives for bonding metals and composites, and as films and coatings for use in an aerospace environment are reviewed. In addition, future trends for polyimides are proposed.

  5. Polyimides containing amide and perfluoroisopropylidene connecting groups

    NASA Technical Reports Server (NTRS)

    Dezern, James F. (Inventor)

    1993-01-01

    New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.

  6. Polyimides prepared from 3,5-diamino benzo trifluoride

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); St.clair, Anne K. (Inventor)

    1993-01-01

    High performance, thermooxidatively stable polyimides are prepared by reacting aromatic diamines with pendant trifluoromethyl groups and dianhydrides in an amide solvent to form a poly(amic acid), followed by cyclizing the poly(amic acid) to form the corresponding polyimide.

  7. Fundamental Insight on Developing Low Dielectric Constant Polyimides

    NASA Technical Reports Server (NTRS)

    Simpson, J. O.; SaintClair, A. K.

    1997-01-01

    Thermally stable, durable, insulative polyimides are in great demand for the fabrication of microelectronic devices. In this investigation dielectric and optical properties have been studied for several series of aromatic polyimides. The effect of polarizability, fluorine content, and free volume on dielectric constant was examined. In general, minimizing polarizability, maximizing free volume and fluorination all lowered dielectric constants in the polyimides studied.

  8. Non-flammable polyimide materials for aircraft and spacecraft applications

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Supkis, D. E.

    1979-01-01

    Recent developments in polyimide chemistry show promise for producing materials with very low flammability and a wide range of mechanical properties. Polyimide foams can be synthesized to provide fire safety without detectable formation of smoke or toxic byproducts below 204 C (400 F), thus avoiding an environment which is lethal to human habitation. This work has been and is currently being performed under development programs, the objective of which is to provide cost effective processes for producing thermally stable, polyimide flexible resilient foams, thermal-acoustical insulating materials, rigid low density foam panels, and high strength foam structures. The chemical and physical properties demonstrated by these materials represent a technological advancement in the art of thermally stable polyimide polymers which are expected to insure fire protection of structures and components used in air transportation and space exploration. Data compiled to date on thermal, physical and functional properties of these materials are presented.

  9. Diphenylmethane-containing dianhydride and polyimides prepared therefrom

    NASA Technical Reports Server (NTRS)

    St.clair, Anne K. (Inventor); Boston, Harold G. (Inventor); Pratt, J. Richard (Inventor)

    1993-01-01

    A high temperature stable, highly optically transparent-to-colorless, low dielectic linear aromatic polyimide is prepared by reacting an aromatic diamine with 3,3'bis (3,4-dicarboxyphenoxy) diphenylmethane dianhydride in an amide solvent to form a linear aromatic polyamic acid. This polyamic acid is then cyclized to form the corresponding polyimide.

  10. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  11. Electrically conductive polyimide film containing gold (III) ions, composition, and process of making

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)

    1996-01-01

    An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.

  12. A review of processable high temperature resistant addition-type laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    An important finding that resulted from research that was conducted to develop improved ablative resins was the discovery of a novel approach to synthesize processable high temperature resistant polymers. Low molecular weight polyimide prepolymers end-capped with norbornene groups were polymerized into thermo-oxidatively stable modified polyimides without the evolution of void producing volatile materials. This paper reviews basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type polyimides. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymer as the matrix are described. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomeric reactants on the fiber reinforcement is also described. Polyimide/graphite fiber composite performance at elevated temperatures is presented for A-type polyimides.

  13. Reflective Self-Metallizing Polyimide Films

    NASA Technical Reports Server (NTRS)

    Thompson, David W. (Inventor); Caplan, Maggie L. (Inventor); St.Clair, Anne (Inventor)

    1997-01-01

    A silver organic complex, such as silver acetate, is solubilized in a polyamic acid resin or soluble polyimide solution using a suitable solvent such as hexafluoroacetyl acetone. The mixture is stable and can be applied to both flat and contoured surfaces. Application can be performed by casting, dip-coating, spraying, or other suitable techniques. In addition, the mixture can be cast or extruded as a polyimide film which is not applied to an underlying substrate. Upon curing, a flexible silver coated polyimide film is produced.

  14. Processable Aromatic Polyimide Thermoplastic Blends

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M; Johnston, Norman J.; St. Clair, Terry L.; Nelson, James B.; Gleason, John R.; Proctor, K. Mason

    1988-01-01

    Method developed for preparing readily-processable thermoplastic polyimides by blending linear, high-molecular-weight, polyimic acid solutions in ether solvents with ultrafine, semicrystalline, thermoplastic polyimide powders. Slurries formed used to make prepregs. Consolidation of prepregs into finsihed composites characterized by excellent melt flow during processing. Applied to film, fiber, fabric, metal, polymer, or composite surfaces. Used to make various stable slurries from which prepregs prepared.

  15. Status review of PMR polyimides. [Polymerization of Monomer Reactants

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1979-01-01

    In the NASA developed PMR (polymerization of monomer reactants) the reinforcing fibers are impregnated with a solution containing a mixture of monomers dissolved in a low boiling point alkyl alcohol solvent, with the monomers reacting in situ at elevated temperatures to form a thermo-oxidatively stable polyimide matrix. The current status of first and second generation PMR polyimides is reviewed, considering synthesis and properties, processing, and applications. It is concluded that the PMR approach offers various significant advantages, especially superior high temperature properties and processing versatility, to fabricators and users of polyimide/fiber composites.

  16. Polyimide resin composites via in situ polymerization of monomeric reactants

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Thermo-oxidatively stable polyimide/graphite-fiber composites were prepared using a unique in situ polymerization of monomeric reactants directly on reinforcing fibers. This was accomplished by using an aromatic diamine and two ester-acids in a methyl alcohol solvent, rather than a previously synthesized prepolymer varnish, as with other A-type polyimides. A die molding procedure was developed and a composite property characterization conducted with high modulus graphite fiber tow. Flexure, tensile, compressive, and shear tests were conducted at temperatures from 72 to 650 F on laminates before and after exposures at the given temperatures in an air environment for times up to 1000 hours. The composite material was determined to be oxidatively, thermally, and hydrolytically stable.

  17. Polyimides Containing Silver Trifluoroacetylacetonate

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.; Rancourt, James D.; Taylor, Larry T.; Caplan, Maggie L.

    1994-01-01

    Mechanically strong, flexible, thermally stable, electrically conductive films and coatings suitable for use in electronics industry made by incorporating silver trifluoroacetylacetonate into linear aromatic condensation polyimides. In experimental films, most successful combinations of flexibility and conductivity obtained by use of 1:1, 1:1.74, and 1:2 mole ratios of silver trifluoroacetylacetonate per polyimide repeat unit. Other concentrations of silver trifluoroacetylacetonate used with different heat-treatment schedules to obtain conductive silver-impregnated films.

  18. Thermoresponsive light scattering device utilizing surface behavior effects between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation

    NASA Astrophysics Data System (ADS)

    Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto

    2018-06-01

    We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.

  19. Low-Dielectric Constant Polyimide Nanoporous Films: Synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Mehdipour-Ataei, S.; Rahimi, A.; Saidi, S.

    2007-08-01

    Synthesis of high temperature polyimide foams with pore sizes in the nanometer range was developed. Foams were prepared by casting graft copolymers comprising a thermally stable block as the matrix and a thermally labile material as the dispersed phase. Polyimides derived from pyromellitic dianhydride with new diamines (4BAP and BAN) were used as the matrix material and functionalized poly(propylene glycol) oligomers were used as a thermally labile constituent. Upon thermal treatment the labile blocks were subsequently removed leaving pores with the size and shape of the original copolymer morphology. The polyimides and foamed polyimides were characterized by some conventional methods including FTIR, H-NMR, DSC, TGA, SEM, TEM, and dielectric constant.

  20. Environmentally stable polymers and coatings for space application: CH-5, supplement 10

    NASA Technical Reports Server (NTRS)

    Sykes, G.

    1986-01-01

    High molecular weight, randomly coupled poly(imide siloxane) soluble block copolymers were synthesized from bis(amino propyl) polydimethylsiloxane equilibrates of various molecular weights, aromatic metalinked diamines, and 3,3'-4,4'-benzophenone tetracarboxylic dianhydride (BTDA). Two synthetic procedures were successfully used to synthesize the poly(amic acid siloxane) intermediates. For both synthetic procedures, a cosolvent system was employed to achieve complete solvation of all components throughout the polymerization. Physical property characterization is continuing.

  1. Synthesis and characterization of thermally stable and/or conductive polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajiwala, H.M.

    1992-01-01

    Eight new thermally stable polyimides were synthesized from two tricyclic heterocyclic diamines: thionine which has a phenothiazine moiety and proflavine which has an acridine unit. The polymerization reactions were optimized with respect to solvents, reaction time, reaction temperature, solid contents, etc., and their structure property relationships were studied. All these soluble polyimides have nice film forming properties. One of the polyimides containing the acridine moiety, appears to have a tendency to form a liquid crystalline state when its solution is passed through a fine capillary. All of these polyimides were thermally stable in air up to 500-550[degrees]C and up tomore » 600[degrees]C in a nitrogen atmosphere. They have refractive indices in the range of 1.65 to 1.85 and have relatively low value of permittivity. Two other thermally stable polymers, viz., polybenzimidazole and the ladder polymer having the phenazine moiety in the backbone were also synthesized. For these polymerization reactions, tetraamino derivative of phenazine was synthesized from the commercially available diamino, dinitro derivative of benzene. The polybenzimidazole was prepared via the azomethine pathway. This polymer had an intrinsic viscosity of 0.94 in methanesulfonic acid. The nice film forming polybenzimidazole polymer was found to be thermally stable up to 400[degrees]C. The ladder type of a polymer was synthesized by condensation polymerization between tetraaminophenazine and dihydroxybenzophenone in polyphosphoric acid at an elevated temperature. The completely conjugated ladder polymer was found to be semiconducting on doping with iodine. This polymer was highly crystalline as demonstrated by its X-ray diffraction pattern. A morphology study of the polymer indicated that the material has a tendency to form dendritic crystals. The polymer was thermally stable up to about 400[degrees]C in air.« less

  2. Isomer effects on polyimide properties

    NASA Technical Reports Server (NTRS)

    Stump, B. L.

    1978-01-01

    Thermally stable polyimide polymers were prepared. Parameters explored include asymmetry of substitution, addition of alkyl substituents to an aromatic ring, and an increase in the number of aromatic rings present in the diamine monomer. It is shown that the use of an asymmetrical diamine in the preparation of a polyimide produces a polymer with a markedly lowered glass transition temperature. This is achieved with little or no sacrifice of thermal stability. An alternate approach taken was to prepare imide monomers which are capable of addition-type polymerization.

  3. Isomer effects on polyimide properties

    NASA Technical Reports Server (NTRS)

    Stump, B. L.

    1975-01-01

    Polyimide polymers which are thermally stable and processable are developed. The addition of alkyl substituents to an aromatic ring in the polymer backbone is examined along with polyimide precursor amines containing functional groups that allow for post-cure crosslinking. The synthesis of key monomers is reported, including 2,4,6-tris (m-aminobenzyl) 1,3,5-trimethyl benzene and 2,4,6-tris (p-aminobenzyl) 1,3,5-trimethyl benzene. The preparation of a key monomer, 2,5,3-triamino benzophenone, is reported.

  4. PMR polyimides: Processable high temperature composite matrix resins

    NASA Technical Reports Server (NTRS)

    Winters, W. E.; Serafini, T. T.

    1975-01-01

    Processing reproducibility and versatility were demonstrated for producing addition-cured polyimide/graphite fiber composites using an in situ polymerization of monomeric reactants directly on the fiber surface. The polymers so derived, designated PMR polyimides, can be fabricated into composite structures by laminating, random fiber molding or autoclave curing. Composites were determined to be thermally stable and retain useful properties after extended exposures at 550 F to 650 F. The material and fabrication capability were demonstrated by the fabrication and evaluation of prototype complex fan blades.

  5. PMR polyimides - Processable high temperature composite matrix resins

    NASA Technical Reports Server (NTRS)

    Winters, W. E.; Serafini, T. T.

    1975-01-01

    Processing reproducibility and versatility were demonstrated for producing addition-cured polyimide/graphite fiber composites using a unique in situ polymerization of monomeric reactants directly on the fiber surface. The polymers so derived, designated PMR polyimides, can be fabricated into composite structures by laminating, random fiber molding or autoclave curing. Composites were determined to be thermally stable and retain useful properties after extended exposures at 550 to 650 F. The material and fabrication capability were demonstrated by the fabrication and evaluation of prototype complex fan blades.-

  6. Aromatic polyimides containing a dimethylsilane-linked dianhydride

    NASA Technical Reports Server (NTRS)

    St.clair, Anne K. (Inventor); St.clair, Terry L. (Inventor); Pratt, J. Richard (Inventor)

    1989-01-01

    A high-temperature stable, optically transparent, low dielectric aromatic polyimide is prepared by chemically combining equimolar quantities of an aromatic dianhydride reactant and an aromatic diamine reactant, which are selected so that one reactant contains at least one Si(CH3)2 group in its molecular structure, and the other reactant contains at least one -CF3 group in its molecular structure. The reactants are chemically combined in a solvent medium to form a solution of a high molecular weight polyamic acid, which is then converted to the corresponding polyimide.

  7. Aromatic polyimides containing a dimethylsilane-linked dianhydride

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K. (Inventor); St. Clair, Terry L. (Inventor); Pratt, J. Richard (Inventor)

    1992-01-01

    A high-temperature stable, optically transparent, low dielectric aromatic polyimide is prepared by chemically combining equimolar quantities of an aromatic dianhydride reactant and an aromatic diamine reactant, which are selected so that one reactant contains at least one Si(CH.sub.3).sub.2 group in its molecular structure, and the other reactant contains at least one --CH.sub.3 group in its molecular structure. The reactants are chemically combined in a solvent medium to form a solution of a high molecular weight polyamic acid, which is then converted to the corresponding polyimide.

  8. High-Solids Polyimide Precursor Solutions

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2004-01-01

    The invention is a highly concentrated stable solution of polymide precursors (monometers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethylalcohol. the concentrated polyimide precursos solution comparisons effective amounts of at least one aromatic diamine, at least one aromatic dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.

  9. Tribological properties and thermal stability of various types of polyimide films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1981-01-01

    Thermal exposure experiments at 315 and 350 C were conducted on seven different types of polyimide films to determine which was the most thermally stable and adherent. The polyimides were ranked according to the rate at which they lost weight and how well they adhere to the metallic substrate. Friction and wear experiments were conducted at 25 C (room temperature) on films bonded to 440C HT stainless steel. Friction, film wear rates, wear mechanisms, and transfer films of the seven films were investigated and compared. The polyimides were found to fall into two groups as far as friction and wear properties were concerned. Group one had lower friction but an order of magnitude higher film wear rate than did group two. The wear mechanism was predominately adhesive, but the size of the wear particles were larger for group one polyimides.

  10. Tribological properties and thermal stability of various types of polyimide films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1981-01-01

    Thermal exposure experiments at 315 and 350 C were conducted on seven different types of polyimide films to determine which was the most thermally stable and adherent. The polyimides were ranked according to the rate of which they lost weight and how well they adhered to the metallic substrate. Friction and wear experiments were conducted at 25 C (room temperature) on films bonded to 440C HT stainless steel. Friction, film wear rates, wear mechanisms, and transfer films of the seven films were investigated and compared. The polyimides were found to fall into two groups as far as friction and wear properties were concerned. Group I had lower friction but an order of magnitude higher film wear rate than did group II. The wear mechanism was predominately adhesive, but the size of the wear particles was larger for group I polyimides.

  11. A new intermediate for the production of flexible stable polymers

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1973-01-01

    Method of incorporating ether linkages into perfluoroalkylene segment of a dianydride intermediate yields intermediate that may be used in synthesis of flexible, stable polyimides for use as high-temperature, solvent-resistant sealants.

  12. Electrically conducting polyimide film containing tin complexes

    NASA Technical Reports Server (NTRS)

    St.clair, Anne K. (Inventor); Ezzell, Stephen A. (Inventor)

    1994-01-01

    Disclosed is a thermally-stable SnO2-surfaced polyimide film wherein the electrical conductivity of the SnO2 surface is within the range of about 3.0 x 10(exp -3) to about 1 x 10(exp -2) ohms(exp -1). Also disclosed is a method of preparing this film from a solution containing a polyamic acid and SnCl4 (DMSO)2.

  13. Reliability of spring interconnects for high channel-count polyimide electrode arrays

    NASA Astrophysics Data System (ADS)

    Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas

    2018-05-01

    Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.

  14. Preparation, testing, and delivery of low density polyimide foam panels

    NASA Technical Reports Server (NTRS)

    Ball, G. L., III; Post, L. K.; Salyer, I. O.

    1975-01-01

    Plastic foams based on polyimide resins were shown to be stable at relatively high temperatures, and to possess very low flame spread and smoke generation characteristics. A system and process were developed to prepare low-density polyimide foam from a liquid formulation. The system is based on the reaction of micropulverized grade pyromellitic dianhydride with a polymeric diisocyanate. The panels produced were postcured at elevated temperatures to achieve maximum thermal and fire resistance, and incorporation of a fire retardant into the formulation was considered. The effects of a flame retardant (Flameout 5600B1) were investigated, but eliminated in preference to the postcuring approach.

  15. Replacement of MDA with more oxidatively stable diamines in PMR-polyimides

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1985-01-01

    Studies are performed to investigate the effect of substituting 4,4'-oxydianiline and 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane for the 4,4'-methylenedianiline in PMR polyimide matrix resin. Graphite fiber reinforced composites are fabricated from unsized Celion 6000 and PMR-polyimide matrix resins having formulated molecular weights in the range of 1500 to 2400. The composite processing characteristics are investigated and the initial room temperature and 316 C (600 F) composite mechanical properties are determined. Comparative 316 C composite weight losses and 316 C mechanical properties retention after prolonged 316 C air exposure are also determined.

  16. Development of fire-resistant, low smoke generating, thermally stable end items for commercial aircraft and spacecraft using a basic polyimide resin

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Lee, R.; Sorathia, U. A.; Wilcoxson, A. L.

    1980-01-01

    A terpolyimide precursor was developed which can be foamed by microwave methods and yields foams possessing the best seating properties. A continuous process, based on spray drying techniques, permits production of polyimide powder precursors in large quantities. The constrained rise foaming process permits fabrication of rigid foam panels with improved mechanical properties and almost unlimited density characteristics. Polyimide foam core rigid panels were produced by this technique with woven fiberglass fabric bonded to each side of the panel in a one step microwave process. The fire resistance of polyimide foams was significantly improved by the addition of ceramic fibers to the powder precursors. Foams produced from these compositions are flexible, possess good acoustical attenuation and meet the minimum burnthrough requirements when impinged by high flux flame sources.

  17. Electrically conducting polyimide film containing tin complexes

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K. (Inventor); Ezzell, Stephen A. (Inventor); Taylor, Larry T. (Inventor); Boston, Harold G. (Inventor)

    1996-01-01

    Disclosed is a thermally-stable SnO.sub.2 -surfaced polyimide film wherein the electrical conductivity of the SnO.sub.2 surface is within the range of about 3.0.times.10.sup.-3 to about 1.times.10.sup.-2 ohms.sup.-1,. Also disclosed is a method of preparing this film from a solution containing a polyamic acid and SnCl.sub.4 (DMSO).sub.2.

  18. Crack-resistant polyimide coating for high-capacity battery anodes

    NASA Astrophysics Data System (ADS)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  19. Highly optical transparency and thermally stable polyimides containing pyridine and phenyl pendant.

    PubMed

    Yao, Jianan; Wang, Chunbo; Tian, Chengshuo; Zhao, Xiaogang; Zhou, Hongwei; Wang, Daming; Chen, Chunhai

    2017-01-01

    In order to obtain highly optical transparency polyimides, two novel aromatic diamine monomers containing pyridine and kinky structures, 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]diphenylmethane (BAPDBP) and 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]-1-phenylethane (BAPDAP), were designed and synthesized. Polyimides based on BAPDBP, BAPDAP, 2,2-bis[4-(5-amino-2-pyridinoxy)phenyl]propane (BAPDP) with various commercial dianhydrides were prepared for comparison and structure-property relationships study. The structures of the polyimides were characterized by Fourier transform infrared (FT-IR) spectrometer, wide-angle X-ray diffractograms (XRD) and elemental analysis. Film properties including solubility, optical transparency, water uptake, thermal and mechanical properties were also evaluated. The introduction of pyridine and kinky structure into the backbones that polyimides presented good optical properties with 91-97% transparent at 500 nm and a low cut-off wavelength at 353-398 nm. Moreover, phenyl pendant groups of the polyimides showed high glass transition temperatures ( T g ) in the range of 257-281 °C. These results suggest that the incorporating pyridine, kinky and bulky substituents to polymer backbone can improve the optical transparency effectively without sacrificing the thermal properties.

  20. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Tigelaar, D. M.; Watson, K. A.; Smith, J. G., Jr.; Lillehei, P. T.; Connell, J. W.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge build-up have been under investigation as part of a materials development activity. In the work described herein, single-walled carbon nanotubes (SWNT) solutions were dispersed in solutions of a novel ionomer in N,N-dimethylacetamide resulting in homogenous suspensions or quasi-solutions. The ionomer was used to aid in the dispersal of SWNTs in to a soluble, low color space environmentally durable polyimide. The use of the ionomer as a dispersant enabled the nanotubes to be dispersed at loading levels up to 3 weight % in a polyimide solution without visual agglomeration. The films were further characterized for their electrical and mechanical properties.

  1. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides

    NASA Technical Reports Server (NTRS)

    Alston, W. B.; Gratz, R. F.

    1985-01-01

    The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

  2. All-aromatic biphenylene end-capped polyquinoline and polyimide matrix resins

    NASA Technical Reports Server (NTRS)

    Droske, J. P.; Stille, J. K.; Alston, W. B.

    1985-01-01

    Biphenylene end-capped polyquinoline and polyimide resins afford low void content graphite-reinforced composites with good initial properties. However, with both resins, rapid degradation occurs during oxidative isothermal aging at elevated temperatures. The degradation is not observed during isothermal aging under a nitrogen atmosphere which suggests that the biphenylene end-cap (or the resulting crosslink/chain extension structures) is not particularly thermooxidatively stable. The nature of the thermooxidative instability is currently under investigation.

  3. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.

    1997-01-01

    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  4. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.

    1997-01-01

    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  5. Effect of Temperature and Deformation Rate on the Tensile Mechanical Properties of Polyimide Films

    NASA Technical Reports Server (NTRS)

    Moghazy, Samir F.; McNair, Kevin C.

    1996-01-01

    In order to study the structure-property relationships of different processed oriented polyimide films, the mechanical properties will be identified by using tensile tester Instron 4505 and structural information such as the 3-dimensional birefringence molecular symmetry axis and 3-dimensional refractive indices will be determined by using wave guide coupling techniques. The monoaxial drawing techniques utilized in this research are very useful for improving the tensile mechanical properties of aromatic polyimide films. In order to obtain high modulus/high strength polyimide films the following two techniques have been employed, cold drawing in which polyimide films are drawn at room temperature at different cross head speeds and hot drawing in which polyimide films are drawn at different temperatures and cross head speeds. In the hot drawing process the polyimide films are drawn at different temperatures until the glass transition temperature (Tg) is reached by using the environmental chamber. All of the mechanical and optical property parameters will be identified for each sample processed by both cold and hot drawing techniques.

  6. Degradation of thermal control materials under a simulated radiative space environment

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Sridhara, N.

    2012-11-01

    A spacecraft with a passive thermal control system utilizes various thermal control materials to maintain temperatures within safe operating limits. Materials used for spacecraft applications are exposed to harsh space environments such as ultraviolet (UV) and particle (electron, proton) irradiation and atomic oxygen (AO), undergo physical damage and thermal degradation, which must be considered for spacecraft thermal design optimization and cost effectiveness. This paper describes the effect of synergistic radiation on some of the important thermal control materials to verify the assumptions of beginning-of-life (BOL) and end-of-life (EOL) properties. Studies on the degradation in the optical properties (solar absorptance and infrared emittance) of some important thermal control materials exposed to simulated radiative geostationary space environment are discussed. The current studies are purely related to the influence of radiation on the degradation of the materials; other environmental aspects (e.g., thermal cycling) are not discussed. The thermal control materials investigated herein include different kind of second-surface mirrors, white anodizing, white paints, black paints, multilayer insulation materials, varnish coated aluminized polyimide, germanium coated polyimide, polyether ether ketone (PEEK) and poly tetra fluoro ethylene (PTFE). For this purpose, a test in the constant vacuum was performed reproducing a three year radiative space environment exposure, including ultraviolet and charged particle effects on North/South panels of a geostationary three-axis stabilized spacecraft. Reflectance spectra were measured in situ in the solar range (250-2500 nm) and the corresponding solar absorptance values were calculated. The test methodology and the degradations of the materials are discussed. The most important degradations among the low solar absorptance materials were found in the white paints whereas the rigid optical solar reflectors remained quite stable. Among the high solar absorptance elements, as such the change in the solar absorptance was very low, in particular the germanium coated polyimide was found highly stable.

  7. Art Preservation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A new class of polyimides, synthesized by Langley Research Center, has been evaluated by the Getty Conservation Institute's Materials Science Group for possible art conservation applications. Polyimides are noted for resistance to high temperature, wear and radiation. They are thermally stable and soluble in some common solvents. After testing under simulated exposures for changes in color, permeability and flexibility, one coating, ODPA-3, 3-ODA may be used to protect bronze statues from corrosion. A test on stained glass windows was unsuccessful.

  8. Cross-linked polyimides for integrated optics

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.

    1997-01-01

    We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.

  9. New Cu(GeNx) film in barrierless metallization for LED heat dissipation

    NASA Astrophysics Data System (ADS)

    Lin, Chon-Hsin

    2015-05-01

    In this study, we explore new Cu(Ge) and Cu(GeNx) films for LED heat dissipation. The films are Cu-alloy seed layers, fabricated by co-sputtering Cu and Ge in an Ar or N2 atmosphere on either Ta/Al2O3 or polyimide substrates. The Cu alloy films are then annealed at 600 and 730 °C, respectively, for 1 h without notable Cu oxide formation at the Cu-Ta/Al2O3 interface. No Cu oxide is formed at the Cu-polyimide interface either after annealing the films at 310 °C for 1 h. The film formed atop an Al2O3 substrate contains a trace amount of GeNx and is thermally stable up to 730 °C, and the film formed atop a polyimide substrate is thermally stable up to 310 °C, both exhibiting a low resistivity and a high thermal conductivity. Such a thermal feature makes the Cu(GeNx) film a good candidate material in barrierless metallization for many industrial applications, such as LED heat sinks.

  10. Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.

    PubMed

    Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik

    2010-01-01

    We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.

  11. Polyimide Cellulose Nanocrystal Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  12. The effect of simulated low earth orbit radiation on polyimides (UV degradation study)

    NASA Technical Reports Server (NTRS)

    Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1995-01-01

    UV degradation of polyimide films in air and vacuum were studied using UV-visible, ESR, FTIR, and XPS spectroscopies. The UV-visible spectra of polyimide films showed a blue shift in the absorption compared to Kapton. This behavior was attributed to the presence of bulky groups and kinks along the polymer chains which disrupt the formation of a charge transfer complex. The UV-visible spectra showed also that UV irradiation of polyimides result extensively in surface degradation, leaving the bulk of the polymer intact. ESR spectra of polyimides irradiated in vacuum revealed the formation of stable carbon-centered radicals which give a singlet ESR spectrum, while polyimides irradiated in air produced an asymmetric signal shifted to a lower magnetic field, with a higher g value and line width. This signal was attributed to oxygen-cenetered radicals of peroxy and/or alkoxy type. The rate of radical formation in air was two fold higher than for vacuum irradiation, and reached a plateau after a short time. This suggests a continuous depletion of radicals on the surface via an ablative degradation process. FTIR, XPS, and weight loss studies supported this postulate. An XPS study of the surface indicated a substantial increase in the surface oxidation after irradiation in air. The sharp increase in the C-O binding energy peak relative to the C-C peak was believed to be associated with an aromatic ring opening reaction.

  13. Shelf Life of PMR Polyimide Monomer Solutions and Prepregs Extended

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Scheiman, Daniel A.

    2000-01-01

    PMR (Polymerization of Monomeric Reactants) technology was developed in the mid-1970's at the NASA Glenn Research Center at Lewis Field for fabricating high-temperature stable polyimide composites. This technology allowed a solution of polyimide monomers or prepreg (a fiber, such as glass or graphite, impregnated with PMR polyimide monomers) to be thermally cured without the release of volatiles that cause the formation of voids unlike the non-PMR technology used for polyimide condensation type resins. The initial PMR resin introduced as PMR 15 is still commercially available and is used worldwide by aerospace industries as the state-of-the-art resin for high-temperature polyimide composite applications. PMR 15 offers easy composite processing, excellent composite mechanical property retention, a long lifetime at use temperatures of 500 to 550 F, and relatively low cost. Later, second-generation PMR resin versions, such as PMR II 50 and VCAP 75, offer improvements in the upper-use temperature (to 700 F) and in the useful life at temperature without major compromises in processing and property retention but with significant increases in resin cost. Newer versions of nontoxic (non-methylene dianiline) PMR resins, such as BAX PMR 15, offer similar advantages as originally found for PMR 15 but also with significant increases in resin cost. Thus, the current scope of the entire PMR technology available meets a wide range of aeronautical requirements for polymer composite applications.

  14. Effects of thermal and environmental exposure on the mechanical properties of graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.; Serafini, T. T.

    1971-01-01

    Composites were exposed in circulating and static air environments up to 589 K for a maximum of 1000 hours. Composites of HT-S, HM-S, Thornel 50S, and Fortafil 5-Y fiber and a new addition type polyimide resin were laminated in a matched-die mold. Flexural strengths, flexural modulus, and interlaminar shear strengths were determined at 297, 533, and 598 K after various durations of exposure. Composite and fiber weight loss characteristics were determined by isothermal gravimetric analysis in air. Properties of composites exposed and tested at the environment temperatures were compared with those determined under short-term exposure. A new short beam interlaminar shear fixture is described. Environmental effects of long-term ambient temperature exposure on the elevated temperature mechanical properties of graphite/polyimide composites are presented.

  15. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  16. Space Environmentally Stable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Watson, Kent A.; Connell, John W.

    2000-01-01

    Polyimides with a unique combination of properties including low color in thin films, atomic oxygen (AO), ultra-violet (UV) radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures and high thermal stability have been prepared and characterized. The polymers were prepared by reacting a novel aromatic diamine with aromatic dianhydrides in a polar aprotic solvent. The solubility of the polymers in the imide form as well as the color density of thin films were dependent upon the chemical structure of the dianhydride. Several thin films (25-50 mm thick) prepared by solution casting of amide acid or imide solutions exhibited very low color and high optical transparency (approximately 90%) as determined by UV/visible spectroscopy. The polymers exhibited T(sub g)s >200 C depending upon the structure of the dianhydride and temperatures of 5% weight loss approximately 500C in air as determined by dynamic thermogravimetric analysis. Thin films coated with silver/inconel were exposed to a high fluence of AO and 1000 equivalent solar hours of UV radiation. The effects of these exposures on optical properties were minor. These space environmentally durable polymers are potentially useful in a variety of applications on spacecraft such as thin film membranes on antennas, second-surface mirrors, thermal/optical coatings and multi-layer thermal insulation (MLI) blanket materials. The chemistry, physical and mechanical properties of the polymers as well as their responses to AO and UV exposure will be discussed.

  17. Stable Polyimides for Terrestrial and Space Uses

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G., Jr.; Hergenrother, Paul M.

    2005-01-01

    Polyimides of a recently developed type have an attractive combination of properties, including low solar absorptivity (manifested as low color) when cast into thin films, resistance to atomic oxygen and ultraviolet radiation, solubility in organic solvents, high glass-transition temperatures, and high thermal stability. The focus of the development work was on polymers that can endure the space environment and that have specific combinations of properties for use on Gossamer spacecraft. Because of their unique combination of properties, these polymers are also expected to find use in a variety of other applications on Earth as well as in space. Examples of other space applications include membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation. For both terrestrial and space applications, these polyimides can be processed into various forms, including films, fibers, foams, threads, adhesives, and coatings.

  18. Recent developments in polyimide and bismaleimide adhesives

    NASA Technical Reports Server (NTRS)

    Politi, R. E.

    1985-01-01

    Research on high temperature resin systems has intensified. In the Aerospace Industry, the motivation for this increased activity has been to replace heat resistant alloys of aluminum, stainless steel and titanium by lighter weight glass and carbon fiber reinforced composites. Applications for these structures include: (1) engine nacelles involving long time exposure (thousands of hours) to temperatures in the 150 to 300 C range, (2) supersonic military aircraft involving moderately long exposure (hundreds of hours) to temperatures of 150 to 200 C, and (3) missile applications involving only brief exposure (seconds or minutes) to temperatures up to 500 C and above. Because of fatigue considerations, whenever possible, it is preferable to bond rather than mechanically fasten composite structures. For this reason, the increased usage of high temperature resin matrix systems for composites has necessitated the devlopment of compatible and equally heat stable adhesive systems. The performance of high temperature epoxy, epoxy phenolic and condensation polyimide adhesives is reviewed. This is followed by a discussion of three recently developed types of adhesives: (1) condensation reaction polyimides having improved processing characteristics; (2) addition reaction polyimides; and (3) bismaleimides.

  19. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  20. Space Environmentally Durable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)

    2006-01-01

    Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic &anhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides. The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

  1. Space Environmentally Durable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)

    2005-01-01

    Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

  2. Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation.

    PubMed

    Alaslai, Nasser; Ma, Xiaohua; Ghanem, Bader; Wang, Yingge; Alghunaimi, Fahd; Pinnau, Ingo

    2017-09-01

    An intrinsically microporous polyimide is synthesized in m-cresol by a one-pot high-temperature condensation reaction of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and newly designed 2,6 (7)-dihydroxy-3,7(6)-diaminotriptycene (DAT1-OH). The 6FDA-DAT1-OH polyimide is thermally stable up to 440 °C, shows excellent solubility in polar solvents, and has moderately high Brunauer-Teller-Emmett (BET) surface area of 160 m 2 g -1 , as determined by nitrogen adsorption at -196 °C. Hydroxyl functionalization applied to the rigid 3D triptycene-based diamine building block results in a polyimide that exhibits moderate pure-gas CO 2 permeability of 70 Barrer combined with high CO 2 /CH 4 selectivity of 50. Mixed-gas permeation studies demonstrate excellent plasticization resistance of 6FDA-DAT1-OH with impressive performance as potential membrane material for natural gas sweetening with a CO 2 permeability of 50 Barrer and CO 2 /CH 4 selectivity of 40 at a typical natural gas well partial pressure of 10 atm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Programmable permanent data storage characteristics of nanoscale thin films of a thermally stable aromatic polyimide.

    PubMed

    Kim, Dong Min; Park, Samdae; Lee, Taek Joon; Hahm, Suk Gyu; Kim, Kyungtae; Kim, Jin Chul; Kwon, Wonsang; Ree, Moonhor

    2009-10-06

    We have synthesized a new thermally and dimensionally stable polyimide, poly(4,4'-amino(4-hydroxyphenyl)diphenylene hexafluoroisopropylidenediphthalimide) (6F-HTPA PI). 6F-HTPA PI is soluble in organic solvents and is thus easily processed with conventional solution coating techniques to produce good quality nanoscale thin films. Devices fabricated with nanoscale thin PI films with thicknesses less than 77 nm exhibit excellent unipolar write-once-read-many-times (WORM) memory behavior with a high ON/OFF current ratio of up to 10(6), a long retention time and low power consumption, less than +/-3.0 V. Furthermore, these WORM characteristics were found to persist even at high temperatures up to 150 degrees C. The WORM memory behavior was found to be governed by trap-limited space-charge limited conduction and local filament formation. The conduction processes are dominated by hole injection. Thus the hydroxytriphenylamine moieties of the PI polymer might play a key role as hole trapping sites in the observed WORM memory behavior. The properties of 6F-HTPA PI make it a promising material for high-density and very stable programmable permanent data storage devices with low power consumption.

  4. Novel aminobenzyl and imidobenzyl benzenes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; Pratt, J. R.; Stump, B. L.

    1976-01-01

    Compounds are useful as intermediates for several classes of polymers. Amines can function as cross-linking agents for epoxide and urethane polymers, as well as intermediates for synthesis of thermally-stable addition-type polyimides. Imide derivatives can be obtained by reacting amines with certain monoanhydrides containing olefinic unsaturation.

  5. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film.

    PubMed

    Senoo, Y; Nishizawa, N; Sakakibara, Y; Sumimura, K; Itoga, E; Kataura, H; Itoh, K

    2009-10-26

    A high-energy, wavelength-tunable, all-polarization-maintaining Er-doped ultrashort fiber laser was demonstrated using a polyimide film dispersed with single-wall carbon nanotubes. A variable output coupler and wavelength filter were used in the cavity configuration, and high-power operation was demonstrated. The maximum average power was 12.6 mW and pulse energy was 585 pJ for stable single-pulse operation with an output coupling ratio as high as 98.3%. Wide wavelength-tunable operation at 1532-1562 nm was also demonstrated by controlling the wavelength filter. The RF amplitude noise characteristics were examined in terms of their dependence on output coupling ratio and oscillation wavelength.

  6. TRANSPORT PROPERTIES OF CROSSLINKABLE POLYIMIDE BLENDS. (R824727)

    EPA Science Inventory

    Abstract

    The use of polymeric membranes for separation of chemically aggressive media, or at elevated temperatures, has been limited by membrane availability. While a number of polymers are both resistant to chemical dissolution and thermally stable to over 300°C,...

  7. Surface Evaluation by XPS of High Performance Foams After Exposure to Oxygen Plasma

    NASA Technical Reports Server (NTRS)

    Hampton, Michael D.

    2001-01-01

    This report will present the results of a study done during a 10-week summer faculty fellowship during the summer of 2001 working with Ms. Martha Williams of the Testbeds Group at Kennedy Space Center. The work was in a new area for this faculty and was both interesting and enjoyable. An imide is a compound in which nitrogen is bonded directly to an R group and to two other R groups through carbonyls. Polyimides have a number of properties that make them highly desirable materials for use on structures that are exposed to extreme conditions. They are strong, fire resistant, minimally outgasing, stable over a large temperature range, resistant to chemical attack, transparent to infrared and microwaves, and have a low density. One polyimide, solimide, commercially available as a foam, retains resiliency from -300 F to +500 F, is highly flame retardant, and decomposes with virtually no smoke or toxic byproduct formation. The density of this product is such that its use in place of fiberglass in the lower lobe of a 747 saves 400 lb. Shipboard applications have resulted in literally tons of weight reduction. While polyimide films have been used in structures to be placed in low earth orbit (LEO) for many years, polyimide foams have found only minimal application in this realm. NASA Langley Research Center has developed new technology that allows for the processing of new polyimide foams. The resulting increased availability of these materials, along with their highly desirable properties, has prompted a study to determine the suitability of these materials for use in structures to be placed in LEO.

  8. Solid lubricant materials for high temperatures: A review

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1985-01-01

    Solid lubricants that can be used above 300 C in air are discussed, including coatings and self-lubricating composite bearing materials. The lubricants considered are representative dichalcogenides, graphite, graphite fluoride, polyimides, soft oxides, oxidatively stable fluorides, and hard coating materials. A few general design considerations revelant to solid lubrication are interspersed.

  9. A critical study of the role of the surface oxide layer in titanium bonding

    NASA Technical Reports Server (NTRS)

    Dias, S.; Wightman, J. P.

    1983-01-01

    Scanning electron microscope/X-ray photoelectron spectroscopy (SEM/XPS) analysis of fractured adhesively bonded Ti 6-4 samples is discussed. The text adhesives incuded NR 056X polyimide, polypheylquinoxaline (PPQ), and LARC-13 polyimide. Differentiation between cohesive and interfacial failure was based on the absence of presence of a Ti 2p XPS photopeak. In addition, the surface oxide layer on Ti-(6A1-4V) adherends is characterized and bond strength and durability are addressed. Bond durability in various environmental conditions is discussed.

  10. Considerations Concerning the Development and Testing of In-situ Materials for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Kim, M.-H. Y.; Heilbronn, L.; Thibeault, S. A.; Simonsen, L. C.; Wilson, J. W.; Chang, K.; Kiefer, R. L.; Maahs, H. G.

    2000-01-01

    Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.

  11. Preparation and Properties of Nanocomposites Prepared From Shortened, Functionalized Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Delozier, D. M.; Watson, K. A.; Connell, J. W.; Yu, Aiping; Haddon, R. C.; Bekyarova, E.

    2006-01-01

    As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented.

  12. Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.

    2003-01-01

    This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.

  13. Design Analysis and Thermo-Mechanical Fatigue of a Polyimide Composite for Combustion Chamber Support

    NASA Technical Reports Server (NTRS)

    Thesken, J. C.; Melis, M.; Shin, E.; Sutter, J.; Burke, Chris

    2004-01-01

    Polyimide composites are being evaluated for use in lightweight support structures designed to preserve the ideal flow geometry within thin shell combustion chambers of future space launch propulsion systems. Principles of lightweight design and innovative manufacturing techniques have yielded a sandwich structure with an outer face sheet of carbon fiber polyimide matrix composite. While the continuous carbon fiber enables laminated skin of high specific stiffness; the polyimide matrix materials ensure that the rigidity and durability is maintained at operation temperatures of 316 C. Significant weight savings over all metal support structures are expected. The protypical structure is the result of ongoing collaboration, between Boeing and NASA-GRC seeking to introduce polyimide composites to the harsh environmental and loads familiar to space launch propulsion systems. Design trade analyses were carried out using relevant closed form solutions, approximations for sandwich beams/panels and finite element analysis. Analyses confirm the significant thermal stresses exist when combining materials whose coefficients of thermal expansion (CTEs) differ by a factor of about 10 for materials such as a polymer composite and metallic structures. The ramifications on design and manufacturing alternatives are reviewed and discussed. Due to stringent durability and safety requirements, serious consideration is being given to the synergistic effects of temperature and mechanical loads. The candidate structure operates at 316 C, about 80% of the glass transition temperature T(sub g). Earlier thermomechanical fatigue (TMF) investigations of chopped fiber polyimide composites made this near to T(sub g), showed that cyclic temperature and stress promoted excessive creep damage and strain accumulation. Here it is important to verify that such response is limited in continuous fiber laminates.

  14. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.

    PubMed

    Myllymaa, Sami; Myllymaa, Katja; Korhonen, Hannu; Töyräs, Juha; Jääskeläinen, Juha E; Djupsund, Kaj; Tanila, Heikki; Lappalainen, Reijo

    2009-06-15

    Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.

  15. Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embedded in colorless polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Chan-Jae; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong

    2017-06-01

    This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent ( 93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 μm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm.

  16. Synthesis of temperature and solvent-resistant polymers

    NASA Technical Reports Server (NTRS)

    Webster, J. A.; Patterson, W. J.; Moffett, R. L.; Morris, D. E.

    1972-01-01

    Development of silicone polymers, polyimides, and polyisocyanurates for use as insulation, coatings, or adhesives under adverse environmental conditions is discussed. Chemical structure of the organic compounds is presented. Physical and mechanical properties of the compounds are analyzed.

  17. Stable high-power saturable absorber based on polymer-black-phosphorus films

    NASA Astrophysics Data System (ADS)

    Mao, Dong; Li, Mingkun; Cui, Xiaoqi; Zhang, Wending; Lu, Hua; Song, Kun; Zhao, Jianlin

    2018-01-01

    Black phosphorus (BP), a rising two-dimensional material with a layer-number-dependent direct bandgap of 0.3-1.5 eV, is very interesting for optoelectronics applications from near- to mid-infrared wavebands. In the atmosphere, few-layer BP tends to be oxidized or degenerated during interacting with lasers. Here, we fabricate few-layer BP nanosheets based on a liquid exfoliation method using N-methylpyrrolidone as the dispersion liquid. By incorporating BP nanosheets with polymers (polyvinyl alcohol or high-melting-point polyimide), two flexible filmy BP saturable absorbers are fabricated to realize passive mode locking in erbium-doped fiber lasers. The polymer-BP saturable absorber, especially the polyimide-BP saturable absorber, can prevent the oxidation or water-induced etching under high-power laser illuminations, providing a promising candidate for Q-switchers, mode lockers, and light modulators.

  18. The Dependence of Atomic Oxygen Undercutting of Protected Polyimide Kapton(tm) H upon Defect Size

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; deGroh, Kim K.

    2001-01-01

    Understanding the behavior of polymeric materials when exposed to the low-Earth-orbit (LEO) environment is important in predicting performance characteristics such as in-space durability. Atomic oxygen (AO) present in LEO is known to be the principal agent in causing undercutting erosion of SiO(x) protected polyimide Kapton(R) H film, which serves as a mechanically stable blanket material in solar arrays. The rate of undercutting is dependent on the rate of arrival, directionality and energy of the AO with respect to the film surface. The erosion rate also depends on the distribution of the size of defects existing in the protective coating. This paper presents results of experimental ground testing using low energy, isotropic AO flux together with numerical modeling to determine the dependence of undercutting erosion upon defect size.

  19. The Influence of Sizings on the Durability of High-Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Wesson, Sheldon P.; Shin, E. Eugene; Inghram, Linda; McCorkle, Linda; Papadopoulos, Demetrios; Wheeler, Donald; Sutter, James K.

    2004-01-01

    To increase performance and durability of high-temperature composites for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. Sizings commercially supplied on most carbon fibers are not compatible with polyimides. In this study, the chemistry of sizings on two high-modulus carbon fibers (M40J and M60J, Toray) was characterized as was the chemistry of PMR-II-50 fluorinated polyimide resin. The carbon fibers were characterized using single filament wetting, scanning electron microscopy, fourier transform infrared spectroscopy, and x-ray photoelectron spectroscopic measurements. The polyimide matrix resins were coated onto glass filaments for characterization by wetting measurements. Surface energy components were obtained by wetting with nondispersive (methylene iodide), acidic (ethylene glycol), and basic (formamide) probes. A continuous desizing system that uses an environmentally friendly chemical-mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room-temperature tests after thermal aging show that the reactive finish produces a higher strength and more durable interface compared to the manufacturer's sizing. When exposed to moisture blistering tests, however, the better bonded composite displayed a tendency to delaminate, presumably due to trapping of volatiles.

  20. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become completely encased in an outer layer of TEEK friable balloons. Optionally, the process could be further repeated to produce multiple aerogel-blanket layers interspersed with and encased by TEEK friable balloons.

  1. Fire resistant resilient foams. [for seat cushions

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1976-01-01

    Primary program objectives were the formulation, screening, optimization and characterization of open-cell, fire resistant, low-smoke emitting, thermally stable, resilient polyimide foams suitable for seat cushions in commercial aircraft and spacecraft. Secondary program objectives were to obtain maximum improvement of the tension, elongation and tear characteristics of the foams, while maintaining the resiliency, thermal stability, low smoke emission and other desirable attributes of these materials.

  2. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1978-01-01

    A new approach to the problem of flammability by the use of materials obtained from foamy polyimide resins is developed. The ability of these materials to provide fire protection is demonstrated. The development of processes for producing resilient cell foam for use in aircraft seating, thermal acoustical insulation, floor and wall panels, coated glass fabrics, and molded hardware.

  3. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  4. CO2 Separation Using Thermally Optimized Membranes: A Comprehensive Project Report (2000 - 2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Klaehn; C.J. Orme; E.S. Peterson

    2008-03-01

    This is a complete (Fiscal Years 2000–2006) collection of the Idaho National Laboratory’s (INL) research and development contributions to the project, “CO2 Separation Using Thermally Optimized Membranes.” The INL scientific contribution to the project has varied due to the fluctuations in funding from year to year. The focus of the project was polybenzimidazole (PBI) membranes and developing PBI compounds (both substitution and blends) that provide good film formation and gas separation membranes. The underlying problem with PBI is its poor solubility in common solvents. Typically, PBI is dissolved in “aggressive” solvents, like N,N-dimethylacetamide (DMAc) and N methylpyrrolidone (NMP). The INLmore » FY-03 research was directed toward making soluble N-substituted PBI polymers, where INL was very successful. Many different types of modified PBI polymers were synthesized; however, film formation proved to be a big problem with both unsubstituted and N-substituted PBIs. Therefore, INL researchers directed their attention to using plasticizers or additives to make the membranes more stable and workable. During the course of these studies, other high-performance polymers (like polyamides and polyimides) were found to be better materials, which could be used either by themselves or blends with PBI. These alternative high-performance polymers provided the best pathway forward for soluble high-temperature polymers with good stable film formation properties. At present, the VTEC polyimides (product of RBI, Inc.) are the best film formers that exhibit high-temperature resistance. INL’s gas testing results show VTEC polyimides have very good gas selectivities for both H2/CO2 and CO2/CH4. Overall, these high-performance polymers pointed towards new research areas where INL has gained a greater understanding of polymer film formation and gas separation. These studies are making possible a direct approach to stable polymer-based high-temperature gas separation membranes. This report is separated into several sections due to the complexity of the research and the variation with the development of better high-temperature, gas separation membranes. Several fiscal years are combined because the research and development efforts within those areas crossed fiscal year boundaries.« less

  5. CO2 Separation Using Thermally Optimized Membranes: A Comprehensive Project Report (2000 - 2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2008-03-04

    This is a complete (Fiscal Years 2000–2006) collection of the Idaho National Laboratory’s (INL) research and development contributions to the project, “CO2 Separation Using Thermally Optimized Membranes.” The INL scientific contribution to the project has varied due to the fluctuations in funding from year to year. The focus of the project was polybenzimidazole (PBI) membranes and developing PBI compounds (both substitution and blends) that provide good film formation and gas separation membranes. The underlying problem with PBI is its poor solubility in common solvents. Typically, PBI is dissolved in “aggressive” solvents, like N,N-dimethylacetamide (DMAc) and N methylpyrrolidone (NMP). The INLmore » FY-03 research was directed toward making soluble N-substituted PBI polymers, where INL was very successful. Many different types of modified PBI polymers were synthesized; however, film formation proved to be a big problem with both unsubstituted and N-substituted PBIs. Therefore, INL researchers directed their attention to using plasticizers or additives to make the membranes more stable and workable. During the course of these studies, other high-performance polymers (like polyamides and polyimides) were found to be better materials, which could be used either by themselves or blends with PBI. These alternative high-performance polymers provided the best pathway forward for soluble high-temperature polymers with good stable film formation properties. At present, the VTEC polyimides (product of RBI, Inc.) are the best film formers that exhibit high-temperature resistance. INL’s gas testing results show VTEC polyimides have very good gas selectivities for both H2/CO2 and CO2/CH4. Overall, these high-performance polymers pointed towards new research areas where INL has gained a greater understanding of polymer film formation and gas separation. These studies are making possible a direct approach to stable polymer-based high-temperature gas separation membranes. This report is separated into several sections due to the complexity of the research and the variation with the development of better high-temperature, gas separation membranes. Several fiscal years are combined because the research and development efforts within those areas crossed fiscal year boundaries.« less

  6. Synergistic effects of ultraviolet radiation, thermal cycling and atomic oxygen on altered and coated Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine their durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  7. Synergistic effects of ultraviolet radiation, thermal cycling, and atomic oxygen on altered and coated Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low Earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine there durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  8. New developments in thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    Advances in high-temperature polymers since 1985 are discussed with the emphasis on the chemistry. High-temperature polymers refer to materials that exhibit glass-transition temperatures greater than 200 C and have the chemical structure expected to provide high thermooxidative stability. Specific polymers or series of polymers were selected to show how the chemical structure influences certain properties. Poly(arylene ethers) and polyimides are the two principal families of polymers discussed. Recent work on poly(arylene ethers) has concentrated on incorporating heterocyclic units within the polymer backbone. Recent polyimide work has centered on the synthesis of new polymers from novel monomers, several containing the trifluoromethyl group strategically located on the molecule. Various members in each of these polymer families display a unique combination of properties, heretofore unattainable. Other families of polymers are also briefly discussed with a polymer from an AB maleimidobenzocyclobutene exhibiting an especially attractive combination of properties.

  9. A Universal Organic Cathode for Ultrafast Lithium- and Multivalent Metal Batteries.

    PubMed

    Fan, Xiulin; Wang, Fei; Ji, Xiao; Wang, Ruixing; Gao, Tao; Hou, Singyuk; Chen, Ji; Deng, Tao; Li, Xiaogang; Chen, Long; Luo, Chao; Wang, Luning; Wang, Chunsheng

    2018-04-27

    Low-cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li + , Mg 2+ , Al 3+ ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Conversion of Langmuir-Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene

    NASA Astrophysics Data System (ADS)

    Jo, Hye Jin; Lyu, Ji Hong; Ruoff, Rodney S.; Lim, Hyunseob; In Yoon, Seong; Jeong, Hu Young; Shin, Tae Joo; Bielawski, Christopher W.; Shin, Hyeon Suk

    2017-03-01

    Various solid carbon sources, particularly poly(methyl methacrylate), have been used as precursors to graphene. The corresponding growth process generally involves the decomposition of the solids to hydrocarbon gases followed by their adsorption on metallic substrates (e.g., Cu). We report a different approach that uses a thermally-resistant polyimide (PI) as a carbon precursor. Langmuir-Blodgett films of poly(amic acid) (PAA) were transferred to copper foils and then converted to graphene via a PI intermediate. The Cu foil substrate was also discovered to facilitate the orientation of aromatic moieties upon carbonization process of the PI. As approximately 50% of the initial quantity of the PAA was found to remain at 1000 °C, thermally-stable polymers may reduce the quantity of starting material required to prepare high quality films of graphene. Graphene grown using this method featured a relatively large domain size and an absence of adventitious adlayers.

  11. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer

    NASA Astrophysics Data System (ADS)

    Marchena, Miriam; Wagner, Frederic; Arliguie, Therese; Zhu, Bin; Johnson, Benedict; Fernández, Manuel; Lai Chen, Tong; Chang, Theresa; Lee, Robert; Pruneri, Valerio; Mazumder, Prantik

    2018-07-01

    We demonstrate the direct transfer of graphene from Cu foil to rigid and flexible substrates, such as glass and PET, using as an intermediate layer a thin film of polyimide (PI) mixed with an aminosilane (3-aminopropyltrimethoxysilane) or only PI, respectively. While the dry removal of graphene by an adhesive has been previously demonstrated—being removed from graphite by scotch tape or from a Cu foil by thick epoxy (~20 µm) on Si—our work is the first step towards making a substrate ready for device fabrication using the polymer-free technique. Our approach leads to an article that is transparent, thermally stable—up to 350 °C—and free of polymer residues on the device side of the graphene, which is contrary to the case of the standard wet-transfer process using PMMA. Also, in addition to previous novelty, our technique is fast and easier by using current industrial technology—a hot press and a laminator—with Cu recycling by its mechanical peel-off; it provides high interfacial stability in aqueous media and it is not restricted to a specific material—polyimide and polyamic acids can be used. All the previous reasons demonstrate a feasible process that enables device fabrication.

  12. PMR polyimide composites for aerospace applications. [Polymerization of Monomer Reactants

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1984-01-01

    A novel class of addition-type polyimides has been developed in response to the need for high temperature polymers with improved processability. The new plastic materials are known as PMR (for in situ polymerization of monomer reactants) polyimides. The highly processable PMR polyimides have made it possible to realize much of the potential of high temperature resistant polymers. Monomer reactant combinations for several PMR polyimides have been identified. The present investigation is concerned with a review of the current status of PMR polyimides. Attention is given to details of PMR polyimide chemistry, the processing of composites and their properties, and aerospace applications of PMR-15 polyimide composites.

  13. Area-selective atomic layer deposition of platinum using photosensitive polyimide.

    PubMed

    Vervuurt, René H J; Sharma, Akhil; Jiao, Yuqing; Kessels, Wilhelmus Erwin M M; Bol, Ageeth A

    2016-10-07

    Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a reference. The results show that polyimide has excellent selectivity towards the Pt deposition, after 1000 ALD cycles less than a monolayer of Pt is deposited on the polyimide surface. The polyimide film could easily be removed after ALD using a hydrogen plasma, due to a combination of weakening of the polyimide resist during Pt ALD and the catalytic activity of Pt traces on the polyimide surface. Compared to PMMA for AS-ALD of Pt, polyimide has better temperature stability. This resulted in an improved uniformity of the Pt deposits and superior definition of the Pt patterns. In addition, due to the absence of reflow contamination using polyimide the nucleation phase during Pt ALD is drastically shortened. Pt patterns down to 3.5 μm were created with polyimide, a factor of ten smaller than what is possible using PMMA, at the typical Pt ALD processing temperature of 300 °C. Initial experiments indicate that after further optimization of the polyimide process Pt features down to 100 nm should be possible, which makes AS-ALD of Pt using photosensitive polyimide a promising candidate for patterning at the nanoscale.

  14. En masse pyrolysis of flexible printed circuit board wastes quantitatively yielding environmental resources.

    PubMed

    Kim, Jang Won; Lee, Albert S; Yu, Seunggun; Han, Jeong Whan

    2018-01-15

    This paper reports the recycling of flexible printed circuit board (FPCB) waste through carbonization of polyimide by dual pyrolysis processes. The organic matter was recovered as pyrolyzed oil at low temperatures, while valuable metals and polyimide-derived carbon were effectively recovered through secondary high temperature pyrolysis. The major component of organics extracted from FPCB waste comprised of epoxy resins were identified as pyrolysis oils containing bisphenol-A. The valuable metals (Cu, Ni, Ag, Sn, Au, Pd) in waste FPCB were recovered as granular shape and quantitatively analyzed via ICP-OES. In attempt to produce carbonaceous material with increased degree of graphitization at low heat-treatment conditions, the catalytic effect of transition metals within FPCB waste was investigated for the efficient carbonization of polyimide films. The morphology of the carbon powder was observed by scanning electron microscopy and graphitic carbonization was investigated with X-ray analysis. The protocols outlined in this study may allow for propitious opportunities to salvage both organic and inorganic materials from FPCB waste products for a sustainable future. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fabrication of terahertz metamaterials using electrohydrodynamic jet printing for sensitive detection of yeast

    NASA Astrophysics Data System (ADS)

    Pradhipta Tenggara, Ayodya; Park, S. J.; Teguh Yudistira, Hadi; Ahn, Y. H.; Byun, Doyoung

    2017-03-01

    We demonstrated the fabrication of terahertz metamaterial sensor for the accurate and on-site detection of yeast using electrohydrodynamic jet printing, which is inexpensive, simple, and environmentally friendly. The very small sized pattern up to 5 µm-width of electrical split ring resonator unit structures could be printed on a large area on both a rigid substrate and flexible substrate, i.e. silicon wafer and polyimide film using the drop on demand technique to eject liquid ink containing silver nanoparticles. Experimental characterization and simulation were performed to study their performances in detecting yeast of different weights. It was shown that the metamaterial sensor fabricated on a flexible polyimide film had higher sensitivity by more than six times than the metamaterial sensor fabricated on a silicon wafer, due to the low refractive index of the PI substrate and due to the extremely thin substrate thickness which lowers the effective index further. The resonance frequency shift saturated when the yeast weights were 145 µg and 215 µg for metamaterial structures with gap size 6.5 µm fabricated on the silicon substrate and on the polyimide substrate, respectively.

  16. Negative birefringent polyimide films

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)

    1994-01-01

    A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.

  17. Development of a protective decorative fire resistant low smoke emitting, thermally stable coating material

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of suitable electrocoatings and subsequent application to nonconductive substrates are discussed. Substrates investigated were plastics or resin-treated materials such as FX-resin (phenolic-type resin) impregnated fiberglass mat, polyphenylene sulfide, polyether sulfone and polyimide-impregnated unidirectional fiberglass. Efforts were aimed at formulating a fire-resistant, low smoke emitting, thermally stable, easily cleaned coating material. The coating is to be used for covering substrate panels, such as aluminum, silicate foam, polymeric structural entities, etc., all of which are applied in the aircraft cabin interior and thus subject to the spillages, scuffing, spotting and the general contaminants which prevail in aircraft passenger compartments.

  18. Tribological properties at 25 C of seven polyimide films bonded to 440 C high-temperature stainless steel

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of seven polyimide films applied to 440 C high temperature stainless steel substrates were studied at 25 C with a pin-on-disk type of friction and were apparatus. The polyimides fell into two groups according to friction and wear properties. Group I polyimides had slightly lower friction but much higher wear than group II polyimides. The wear mechanism was predominately adhesion, but the wear particles were larger for group I polyimides. For most of the polyimides the transfer films consisted of clumps of compacted wear particles. One polyimide composition produced a very thin transfer film that sheared plastically in the contact area.

  19. Environmental Influence of Gravity and Pressure on Arc Tracking of Insulated Wires Investigated

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Momentary short-circuit arcs between a defective polyimide-insulated wire and another conductor may thermally char (pyrolize) the insulating material. The charred polyimide, being conductive, can sustain the short-circuit arc, which may propagate along the wire through continuous pyrolization of the polyimide insulation (arc tracking). If the arcing wire is part of a multiple-wire bundle, the polyimide insulation of other wires within the bundle may become thermally charred and start arc tracking also (flash over). Such arc tracking can lead to complete failure of an entire wire bundle, causing other critical spacecraft or aircraft failures. Unfortunately, all tested candidate wire insulations for aerospace vehicles were susceptible to arc tracking. Therefore, a test procedure was designed at the NASA Lewis Research Center to select the insulation type least susceptible to arc tracking. This test procedure addresses the following three areas of concern: (1) probability of initiation, (2) probability of reinitiation (restrike), and (3) extent of arc tracking damage (propagation rate). Item 2 (restrike probability) is an issue if power can be terminated from and reapplied to the arcing wire (by a switch, fuse, or resettable circuit breaker). The degree of damage from an arcing event (item 3) refers to how easily the arc chars nearby insulation and propagates along the wire pair. Ease of nearby insulation charring can be determined by measuring the rate of arc propagation. Insulation that chars easily will propagate the arc faster than insulation that does not char very easily. A popular polyimide insulated wire for aerospace vehicles, MIL-W-81381, was tested to determine a degree of damage from an arcing event (item 3) in the following three environments: (1) microgravity with air at 1-atm pressure, (2) 1g with air at 1 atm, and (3) 1g within a 10^-6 Torr vacuum. The microgravity 1-atm air was the harshest environment, with respect to the rate of damage of arc tracking, for the 20 AWG (American Wiring Gauge) MIL-W-81381 wire insulation type . The vacuum environment resulted in the least damage. Further testing is planned to determine if the environmental results are consistent between insulation types and to evaluate the other two parameters associated with arc tracking susceptibility.

  20. Low dielectric polyimide fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1994-01-01

    A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.

  1. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    NASA Astrophysics Data System (ADS)

    Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.

    2016-08-01

    Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.

  2. [A Surface Plasmon Micro-Ring Sensor Suitable for Humidity Sensing].

    PubMed

    Li, Zhi-quan; An, Dong-yang; Zhang, Xin; Zhao, Ling-ling; Sha, Xiao-peng; Guo, Shi-liang; Li, Wen-chao

    2015-09-01

    Temperature is a very important parameter in scientific research, production and life. Almost all the properties of materials are related to temperature. The precise measurement of the temperature is a very important task, so the temperature sensor is widely used as a core part in the temperature measuring instrument. A novel surface plasmon micro-ring sensor suitable for humidity sensing is presented in this paper. The sensor uses a multi-layered surface plasmon waveguide structure and choosing Polyimide (Polyimide, PI) as the moisture material. We get the transfer function of surface plasmon micro-ring sensor by using transfer matrix method. Refractive indexes of Polyimide and the multilayer waveguide structure change as environment relative humidity changes, thus leading to an obvious peak drift of output spectrum. The paper mainly discusses the influence of the changes of the refractive index of humidity-sensing parts on the output spectrum, and the transmission characteristics of multilayer waveguide structure. Through the finite element method and the theoretical simulation of Matlab, We can draw: When the length between the two coupling points of the U-shaped waveguide is an integer multiple of circumference of the micro-ring, an obvious drift in the horizontal direction appears, the free spectral range (FSR) doubled and the sensitivity is 0.0005 μm/%RH; When the external environment relative humidity RH changes from 10% to 100% RH, scatter is change between including (including 0.005 m to 0.005 m, compared to other humidity sensor, the Sensitivity of sensor improves 10~50 times and the transmission is very stable. Results show that the design of surface plasma micro ring sensors has better sensitivity, stable performance and can be used in the humidity measurement, achieving a high sensitivity in the sense of humidity when the wide range of filter frequency selection is taken into account, and providing a theoretical basis for the preparation of micro-optics.

  3. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites.

    PubMed

    Pothof, F; Bonini, L; Lanzilotto, M; Livi, A; Fogassi, L; Orban, G A; Paul, O; Ruther, P

    2016-08-01

    Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.

  4. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  5. Review of Polyimides Used in the Manufacturing of Micro Systems

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.

  6. Fundamental aspects of polyimide dry film and composite lubrication: A review

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of polyimide dry films and composites are reviewed. Friction coefficients, wear rates, transfer film characteristics, wear surface morphology, and possible wear mechanisms of several different polyimide films, polyimide-bonded solid lubricants, polyimide solid bodies, and polyimide composites are discussed. Such parameters as temperature, type of atmosphere, load, contact stress, and specimen configuration are investigated. Data from an accelerated test device (Pin-on-Disk) are compared to similar data obtained from an end use application test device (plain spherical bearing).

  7. Semi-interpenetrating polymer network's of polyimides: Fracture toughness

    NASA Technical Reports Server (NTRS)

    Hansen, Marion Glenn

    1988-01-01

    The objective was to improve the fracture toughness of the PMR-15 thermosetting polyimide by co-disolving LaRC-TPI, a thermoplastic polyimide. The co-solvation of a thermoplastic into a thermoset produces an interpenetration of the thermoplastic polymer into the thermoset polyimide network. A second research program was planned around the concept that to improve the fracture toughness of a thermoset polyimide polymer, the molecular weight between crosslink points would be an important macromolecular topological parameter in producing a fracture toughened semi-IPN polyimide.

  8. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.

    PubMed

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I; Wise, Kristopher E; Lowther, Sharon E; Fay, Catharine C; Thibeault, Sheila A; Bryant, Robert G

    2015-12-22

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.

  9. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  10. Correlating the synthesis protocol of aromatic polyimide film with the properties of polyamic acid precursor

    NASA Astrophysics Data System (ADS)

    Tan, P. C.; Ooi, B. S.; Ahmad, A. L.; Low, S. C.

    2017-06-01

    Thousands of different copolyimide combinations render it technically impossible to have a single universal synthesis method to produce aromatic polyimide film. This study aimed to outline the selection of synthesis protocol, either through the casting of chemically imidized polyimide solution or thermal imidization of polyamic acid (PAA), to produce the polyimide film. The rheological behaviour, molecular weight, and solubility of five structurally different PAA were analysed and correlated to both imidization methods. In this work, a tough polyimide film was successfully synthesized by casting the chemically imidized polyimide derived from high viscosity (> 81 cP) and high molecular weight (≥ 1.35 x 106 g/mol) PAA. On the contrary, both low viscosity (< 13 cP) and high viscosity (> 81 cP) PAA demonstrated the possibility to produce polyimide film via thermal imidization route. The longer molecular chain of ODPA-6FpDA:DABA (3:2) polyimide produced from thermal imidization had restricted the passage of CO2 across the polyimide film when it was applied in the gas separation application. The outcome from this work serves as a guideline for the selection of suitable polyimide film synthesis protocol, which will minimize the time and chemical consumption in future exploration of new polyimide structure.

  11. Polyimides Containing Fluorine and Phosphorus for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Watson, Kent A.

    2000-01-01

    As part of an effort to develop low color, ultraviolet (UV) radiation and atomic oxygen resistant polyimides for potential space applications, a novel diamine containing fluorine and phosphorus was synthesized and used to prepare polyimides. The approach was to combine attributes from colorless, UV resistant polyimides and atomic oxygen (AO) resistant polymers into a single material. Preparation of colorless polyimides has focused on minimization of charge transfer complex formation by incorporation of bulky substituents and disrupting conjugation by using meta-catenated monomers. AO resistant polymer technology development has focused on placing phenylphosphine oxide groups into the backbone of aromatic polymers. However, polyimides prepared utilizing this approach thus far have all exhibited significant color. Thus in an attempt to combine these features in a polyimide a new diamine, bis(3-aminophenyl)-3,5-di(trifluoromethyl)phenylphosphine oxide (TFMDA) was synthesized and used to prepare polyimides. The polyimides were cast into films and characterized for physical and mechanical properties, optical transmission and AO and UV resistance.

  12. New Materials for the Repair of Polyimide Electrical Wire Insulation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Two viable polyimide backbone materials have been identified that will allow the repair of polyimide electrical wire insulation found on the Space Shuttle and other aging aircraft. This identification is the outcome of ongoing efforts to assess the viability of using such polyimides and polyimide precursors (polyamic acids [PAAs]) as repair materials for aging polyimide electrical wire insulation. These repair materials were selected because they match the chemical makeup of the underlying wire insulation as closely as possible. This similarity allows for maximum compatibility, coupled with the outstanding physical properties of polyimides. The two polyimide backbone materials allow the polymer to be extremely flexible and to melt at low temperatures. A polymer chain end capping group that allows the polymer to crosslink into a nonflowable repair upon curing at around 200 C was also identified.

  13. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  14. Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries

    PubMed Central

    Yu, Denis Y. W.; Hoster, Harry E.; Batabyal, Sudip K.

    2014-01-01

    Nanomaterials as anode for lithium-ion batteries (LIB) have gained widespread interest in the research community. However, scaling up and processibility are bottlenecks to further commercialization of these materials. Here, we report that bulk antimony sulfide with a size of 10–20 μm exhibits a high capacity and stable cycling of 800 mAh g−1. Mechanical and chemical stabilities of the electrodes are ensured by an optimal electrode-electrolyte system design, with a polyimide-based binder together with fluoroethylene carbonate in the electrolyte. The polyimide binder accommodates the volume expansion during alloying process and fluoroethylene carbonate suppresses the increase in charge transfer resistance of the electrodes. We observed that particle size is not a major factor affecting the charge-discharge capacities, rate capability and stability of the material. Despite the large particle size, bulk antimony sulfide shows excellent rate performance with a capacity of 580 mAh g−1 at a rate of 2000 mA g−1. PMID:24691396

  15. Transparent anti-stain coatings with good thermal and mechanical properties based on polyimide-silica nanohybrids.

    PubMed

    Choi, Myeon-Cheon; Sung, Giju; Nagappan, Saravanan; Han, Mi-Jeong; Ha, Chang-Sik

    2012-07-01

    In this work, we synthesized polyimide/silica hybrid materials via sol-gel method using a fluorinated poly(amic acid) silane precursor and a variety of perfluorosilane contents. We studied the influence of a hybrid coating film with the following characteristics; hydrophobicity, oleophobicity, optical transparency, and surface hardness of the coating films. The hybrid coatings with the fluorosilane contents up to 10 wt% are optically transparent and present good thermal stability with a degradation temperature of > 500 degrees C as well as a glass transition of > 300 degrees C. Both water contact angle and oil contact angle increase rapidly with introducing small amount of the fluorosilane in the hybrids and reaches the maximum of 115 degrees and 61 degrees, respectively. The hardness of the hybrid coatings increases up to 5H with an increase of the FTES content in the hybrids. These colorless, transparent, and thermally stable hybrid materials could be suitable for applications as anti-stain coatings.

  16. Polyimides formulated from a partially fluorinated diamine for aerospace tribological applications

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1983-01-01

    Preliminary tribological studies on polyimides formulated from the diamine 2,2-bis 4-(4-aminophenoxy)phenyl hexafluorapane (4-BDAF) indicate that polyimides formulated from this diamine have excellent potential for high temperature tribological applications. The dianhydrides used to make the polyimides were pyromellitic (PMDA) and benzophenonetetracarboxylic acid (BTDA). Friction and wear studies at 25 and 200 C indicate that polyimides formulated using 50 mole percent of the PMDA dianhydride and 50 mole percent of the BTDA dianhydride perform better than polyimides formulated solely with the BTDA dianhydride. Graphite fiber reinforced polyimide composites were formulated with the polyimide made from the BTDA dianhydride, both graphitic and non-graphitic fibers were evaluated. Graphitic fibers produced better tribological results, since thin, flowing, "layer-like' transfer films were produced which did not build-up with long sliding durations. Non-graphitic fibers did not produce this type of transfer.

  17. PMR polyimide composites for aerospace applications

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides, are commercially available and the PMR concept was incorporated in several industrial applications. The status of PMR polyimides is reviewed. Emphasis is given to the chemistry, processing, and applications of the first generation PMR polyimides known as PMR-15.

  18. Structure/permeability relationships of silicon-containing polyimides

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Vaidyanathan, R.; Pratt, J. R.

    1989-01-01

    The permeability to H2, O2, N2, CO2 and CH4 of three silicone-polyimide random copolymers and two polyimides containing silicon atoms in their backbone chains, was determined at 35.0 C and at pressures up to about 120 psig (approximately 8.2 atm). The copolymers contained different amounts of BPADA-m-PDA and amine-terminated poly (dimethyl siloxane) and also had different numbers of siloxane linkages in their silicone component. The polyimides containing silicon atoms (silicon-modified polyimides) were SiDA-4,4'-ODA and SiDA-p-PDA. The gas permeability and selectivity of the copolymers are more similar to those of their silicone component than of the polyimide component. By contrast, the permeability and selectivity of the silicon-modified polyimides are more similar to those of their parent polyimides, PMDA-4,4'-ODA and SiDA-p-PDA. The substitution of SiDA for the PMDA moiety in a polyimide appears to result in a significant increase in gas permeability, without a correspondingly large decrease in selectivity. The potential usefulness of the above polymers and copolymers as gas separation membranes is discussed.

  19. Development of DMBZ-15 High-Glass-Transition-Temperature Polyimides as PMR-15 Replacements Given R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy

    2004-01-01

    PMR-15, a high-temperature polyimide developed in the mid-1970s at the NASA Lewis Research Center,1 offers the combination of low cost, easy processing, and good high-temperature performance and stability. It has been recognized as the leading polymer matrix resin for carbon-fiber-reinforced composites used in aircraft engine components. The state-of-the-art PMR-15 polyimide composite has a glass-transition temperature (Tg) of 348 C (658 F). Since composite materials must be used at temperatures well below their glass-transition temperature, the long-term use temperatures of PMR-15 composites can be no higher than 288 C (550 F). In addition, PMR-15 is made from methylene dianiline (MDA), a known liver toxin. Concerns about the safety of workers exposed to MDA during the fabrication of PMR-15 components and about the environmental impact of PMR-15 waste disposal have led to the industry-wide implementation of special handling procedures to minimize the health risks associated with this material. These procedures have increased manufacturing and maintenance costs significantly and have limited the use of PMR-15 in commercial aircraft engine components.

  20. Photomechanical Deformation of Azobenzene-Functionalized Polyimides Synthesized with Bulky Substituents (Postprint)

    DTIC Science & Technology

    2017-12-06

    mechanical response of the azobenzene- functionalized polyimide is correlated to the rotational freedom of the polyimide chains (resulting in extensive... correlated to the rotational freedom of the polyimide chains (resulting in extensive segmental mobility) and fractional free volume (FFV > 0.1...response has been described,34 and a recent simulation study on the stress relaxation dynamics of azo-polyimides has provided insights into the correlation

  1. Polyimides containing pendent siloxane groups

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); St.clair, Terry L. (Inventor); Hergenrother, Paul M. (Inventor)

    1994-01-01

    Novel polyimides containing pendent siloxane groups (PISOX) were prepared by the reaction of functionalized siloxane compounds with hydroxy containing polyimides (PIOH). The pendent siloxane groups on the polyimide backbone offer distinct advantages such as lowering the dielectric constant and moisture resistance and enhanced atomic oxygen resistance. The siloxane containing polyimides are potentially useful as protective silicon oxide coatings and are useful for a variety of applications where atomic oxygen resistance is needed.

  2. Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation

    DOEpatents

    Polishchuk, Kimberly Ann

    2013-03-05

    The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.

  3. Anchoring energy of photo-sensitive polyimide alignment film containing methoxy cinnamate

    NASA Astrophysics Data System (ADS)

    Kim, Suyoung; Shin, Sung Eui; Shin, DongMyung

    2010-02-01

    Photosensitive polyimide containing 2-methoxy cinnamate was synthesized for photo-alignment layer of liquid crystals (LCs). 2-Methoxy cinnamic acid was confirmed photo-sensitive material by linearly polarized UV light. We studied that effect of polarized UV light on rubbed polyimide film. Anchoring energy of liquid crystal with aligning surface was measured. Irradiation of depolarized UV light on rubbed Polyimide film suppressed effective anchoring energy. Linearly polarized UV light on rubbed polyimide film controlled anchoring energy effectively. Polyimide film containing 2-methoxy cinnamate can control the photo-alignment layer easily due to its photo-sensitivity.

  4. Space Survivability of Main-Chain and Side-Chain POSS-Kapton Polyimides

    NASA Astrophysics Data System (ADS)

    Tomczak, Sandra J.; Wright, Michael E.; Guenthner, Andrew J.; Pettys, Brian J.; Brunsvold, Amy L.; Knight, Casey; Minton, Timothy K.; Vij, Vandana; McGrath, Laura M.; Mabry, Joseph M.

    2009-01-01

    Kapton® polyimde (PI) is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen (AO) in low Earth orbit (LEO), Kapton® is severely degraded. An effective approach to prevent this erosion is chemically bonding polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerization of POSS-diamine with the polyimide monomers. POSS is a silicon and oxygen cage-like structure surrounded by organic groups and can be polymerizable. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During POSS polyimide exposure to atomic oxygen, organic material is degraded and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Ground-based studies and MISSE-1 and MISSE-5 flight results have shown that POSS polyimides are resistant to atomic-oxygen attack in LEO. In fact, 3.5 wt% Si8O11 main-chain POSS polyimide eroded about 2 μm during the 3.9 year flight in LEO, whereas 32 μm of 0 wt% POSS polyimide would have eroded within 4 mos. The atomic-oxygen exposure of main-chain POSS polyimides and new side-chain POSS polyimides has shown that copolymerized POSS imparts similar AO resistance to polyimide materials regardless of POSS monomer structure.

  5. Polyimides from 2,3,3',4'-Biphenyltetracarboxylic Dianhydride and Aromatic Diamines

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor); Connell, John W. (Inventor); Watson, Kent A. (Inventor)

    2005-01-01

    The present invention relates generally to polyimides. It relates particularly to novel polyimides prepared from 2,3, 3',4' -biphenyltetracarboxylic dianhydride and aromatic diamines. These novel polyimides have low color, good solubility, high thermal emissivity, low solar absorptivity and high tensile strength.

  6. Structure-Property Relationship in High Tg Thermosetting Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Meador, Mary Ann B.; HardyGreen, DeNise

    2000-01-01

    This viewgraph presentation gives an overview of the structure-property relationship in high glass transition temperatures (T(sub g)) thermosetting polyimides. The objectives of this work are to replace MDA in PMR-15 with 2,2-substituted benzidine and to evaluate the thermo-oxidative stability and mechanical properties of DMBZ-15 against PMR-15. Details are given on the T(sub g) of polyimide resins, the x-ray crystal structure of 2,2-Bis(trifluoro)benzidine (BFBZ), the isothermal aging of polyimide resins at 288 C under 1 atm of circulating air, the compressive strength of polyimide composites, and a gas evaluation profile of DMBZ-15 polyimide resins.

  7. Photodegradation of Polyimides 2. Thermal Property Changes of Polyimides Based on a Perfluorinated Dianhydride

    DTIC Science & Technology

    1989-05-31

    BASED Ck ON A PERFLUORINATED DIANHYDRIDE a (𔃾 by i C. E. Hoyle and E. T. Anzures Prepared for Publicatlon in J. Appl. olym. Sci. SDTIC ELECTE...34Photodegradation of Polyimides 2. Thermal Property Changes of Polyimides Based on a Perfluorinated Dianhydride" 12. PERSONAL AUTHOR(S) C. E. Hoyle and E...Additionally, the glass transition of photolyzed of polyimides containing the perfluorinated moiety is lowered with increasing photolysis time. By

  8. Fire Resistant, Moisture Barrier Membrane

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor)

    2000-01-01

    A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.

  9. Fire Resistant, Moisture Barrier Membrane

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor)

    1998-01-01

    A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.

  10. Development of an impact- and solvent-resistant thermoplastic composite matrix

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Kiskiras, C. J.

    1984-01-01

    Synthesis, moldability and chloroform, acetone and tricresyl phosphate resistance of 16 polymer compositions are described. These aliphatic heterocyclic polymers include polyimides, polybenzimidazoles, and N-arylenepolybenzimidazoles. A solution condensation (cresol) method to prepare imidized aliphaic polyimides is described. Two polyimides and one polybenzimidazole demonstrate no crazing or cracking during 500 hr exposure to the cited solvents under stress. Modification of one aliphatic polyimide with several aromatic amines suggests that m-phenylenediamine is singular in its behavior to improve the chloroform resistance of that class of polyimides.

  11. Polyimide Film of Increased Tear Strength

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; Hinkley, J. A.; Ezzell, S. A.

    1986-01-01

    High-temperature linear aromatic polyimide with improved resistance to tearing made by new process that incorporates elastomer into polyimide. Linear aromatic condensation polyimides are materials of prime choice for use as films and coatings on advanced spacecraft and aircraft where durability at temperatures in range of 200 to 300 degree C required. Elastomer-containing polyimide film with improved toughness proves useful for applications where resistance to tearing and long-term thermal stability necessary. Desired resistance to tearing achieved by careful control of amount and chemical composition of added elastomer.

  12. Processable high temperature resistant addition type polyimide laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    Basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type (A-type) polyimides are reviewed. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymers as the matrix are also reviewed. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomer reactants (PMR) on the fiber reinforcement is described. The elevated temperature properties of A-type PMR/graphite fiber composites are also presented.

  13. Rheological characterization of addition polyimide matrix resins and prepregs

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.; Galeos, R. M.

    1984-01-01

    Although graphite-reinforced polyimide matrix composites offer outstanding specific strength and stiffness, together with high thermal oxidative stability, processing problems connected with their rheological behavior remain to be addressed. The present rheological studies on neat polyimide resin systems encountered outgassing during cure. A staging technique has been developed which can successfully handle polyimide samples, and novel methods were applied to generate rheological curves for graphite-reinforced prepregs. The commercial graphite/polyimide systems studied were PRM 15, LARC 160, and V378A.

  14. Photodegradation of Polyimide 1. A Spectral, Viscometric, Chromatographic and Weight Loss Investigation of Polyimides Based on a Perfluorinated Dianhydride

    DTIC Science & Technology

    1989-05-31

    A SPECTRAL, VISC’)METRIC, CHROMATOGRAPHIC AND WEIGHT LOSS INVESTIGATION OF POLYIMIDES BASED ON A PERFLUORINATED DIANHYDRIDE by C. E. Hoyle and E. T...and Weight Loss Investigation of Polyimides Based on a Perfluorinated Dianhyd c A2. PERSONAL AUTHOR(S) C. E. Hoyle and E. T. Anzures 13a. TYPE OF REPORT...polyimide films with perfluorinated chromophores in the dianhydride moiety is characterized by significant weight loss and chain cleavage. A conventional

  15. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  16. Tin-polyimide and indium-polyimide thin-film composites as soft X-ray bandpass filters

    NASA Technical Reports Server (NTRS)

    Powell, Stephen F.; Allen, Maxwell J.; Willis, Thomas D.

    1993-01-01

    A tin-polyimide and an indium-polyimide soft X-ray bandpass filter were fabricated with thicknesses of 1400 and 1750 A for the metal and polyimide components, respectively. The transmission of each filter was measured at the Stanford Synchrotron Radiation Laboratory. The transmission of the tin-polyimide filter was found to be about 40 percent for radiation with wavelengths between 60 and 80 A. The transmission of the indium-polyimide filter was greater than 40 percent between 70 and 90 A. The indium was about 5 percent more transmissive than the tin and attained a maximum transmission of about 48 percent at 76 A. Such filters have potential applications to soft X-ray telescopes that operate in this region. They might also be of interest to investigators who work with X-ray microscopes that image live biological specimens in the 23-44-A water window.

  17. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, Jr., Thomas M.; Wells, Barbara J.

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  18. Low wear partially fluorinated polyimides

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Hady, W. F.

    1984-01-01

    Tribological studies were conducted on five different polyimide solid bodies formulated from the diamine 2,2-bis 4-(4-aminophenoxy)phenyl hexafluoropropane (4-BDAF) and the dianhydrides pyromellitic acid (PMDS) and benzophenonetetracarboxylic acid (BTDA). The following polyimides were evaluated 4-BDAF/PMDA, 4-BDAF/BTDA, 4-BDAF/80 mole percent PMDA, 20 mole percent BTDA, 4-BDAF/60 mole percent BTDA. Friction coefficients, polyimide wear rates, polyimide surface morphology and transfer films were evaluated at sliding speeds of 0.31 to 11.6 m/s and at temperatures of 25 C to 300 C. The results indicate that the tribological properties are highly dependent on the composition of the polyimide and on the experimental conditions. Two polyimides were found which produced very low wear rates but very high friction coefficients (greater than 0.85) under ambient conditions. They offer considerable potential for high traction types of application such as brakes.

  19. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  20. Process for lowering the dielectric constant of polyimides using diamic acid additives

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    Linear aromatic polyimides with low dielectric constants are produced by adding a diamic acid additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. The resulting modified polyimide is a better electrical insulator than state-of-the-art commercially available polyimides.

  1. Stripping and splicing polyimide-coated fibers

    NASA Astrophysics Data System (ADS)

    Duke, Douglas; Kanda, Yoshiharu; Tobita, Kenyo; Yamauchi, Ryozo

    2011-05-01

    Polyimide is often used as a coating material for optical fibers used in high temperature environments such as aerospace or oil and gas sensor applications. Unfortunately, polyimide coating is very difficult to strip by conventional mechanical stripping methods. The glass fiber is easily damaged if the stripping process is not extremely well controlled. Stripping the polyimide coating by heating with a flame or arc typically results in a significant reduction in fiber strength. Strength may be maintained by using hot acid stripping, however the use of the strong hot acid presents safety hazards and also requires controlled and safe waste disposal. Another issue with polyimide coating is variability of the coating diameter from various manufacturers or due to different polyimide coating processes. This not only complicates the polyimide stripping issue, but also presents problems with precise clamping and alignment during splicing, especially when it is necessary to splice with a short cleave length. In this paper, we present new polyimide coating stripping technology. The significant feature of this stripping technology is achievement of good strength while avoiding the use of hot acid or heating. We also developed a new specialty fiber fusion splicer that enables precise alignment and splicing regardless of the variability of polyimide coating diameter, even when clamping on the coating.

  2. Structure-property study of keto-ether polyimides

    NASA Technical Reports Server (NTRS)

    Dezern, James F.; Croall, Catharine I.

    1991-01-01

    As part of an on-going effort to develop an understanding of how changes in the chemical structure affect polymer properties, an empirical study was performed on polyimides containing only ether and/or carbonyl connecting groups in the polymer backbone. During the past two decades the structure-property relationships in linear aromatic polyimides have been extensively investigated. More recently, work has been performed to study the effect of isomeric attachment of keto-ether polyimides on properties such as glass transition temperature and solubility. However, little work has been reported on the relation of polyimide structure to mechanical properties. The purpose of this study was to determine the effect of structural changes in the backbone of keto-ether polyimides on their mechanical properties, specifically, unoriented thin film tensile properties. This study was conducted in two stages. The purpose of the initial stage was to examine the physical and mechanical properties of a representative group (four) of polyimide systems to determine the optimum solvent and cure cycle requirements. These optimum conditions were then utilized in the second stage to prepare films of keto-ether polyimides which were evaluated for mechanical and physical properties. All of the polyimides were prepared using isomers of oxydianiline (ODA) and diaminobenzophenone (DABP) in combination with 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic anhydride (ODPA).

  3. Aerospace applications of PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1985-01-01

    The current status of the novel class of processable, addition-type polyimides known as PMR (for in situ polymerization of monomer reactants) polyimides, developed by NASA at the Lewis Research Center, is reviewed. Highlights of PMR technology studies conducted at NASA Lewis are presented. Several examples of industrial applications of PMR-15 polyimide composites to aerospace structural components are examined.

  4. Substituted Cyclohexene Endcaps for Polymers with Thermal-Oxidative Stability

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly usefull in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft. The polyimides are derived from the polymerization of effective amounts of at least one tetracarboxylic dianhydride, at least one polyamine and a novel dicarboxylic endcap having the formula presented.

  5. Polyimide resins

    DOEpatents

    Tesoro, Giuliana C.; Sastri, Vinod R.

    1993-01-01

    A method for the preparation of a polyimide containing reversible crosslinks comprising the step of curing a monomer having the formula ##STR1## wherein R and R' may be the same or different and each is H or lower alkyl having 1-5 carbon atoms under conditions conducive to the formation of a polyimide and thereby forming a polyimide having the formula ##STR2## R and R' are as defined above and n is an integer from 10 to 100. The polyimide may be converted to a soluble polymer by cleaving the disulfide bond in the presence of a solvent and a reducing agent. The reduced polymer may be reformed into the polymer in an oxidation step or into a modified polyimide in other reaction steps. Copolymerization processes are also disclosed.

  6. High-Flow, High-Molecular-Weight, Addition-Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.

    1993-01-01

    In developed series of high-flow PMR-type polyimide resins, 2, 2'-bis(trifluoromethyl)-4, 4'-diaminobiphenyl (BTDB) substituted for 1, 4-pheylenediamine in PMR-II formulation. Polyimides designated either as PMR-12F when nadic ester (NE) end caps used, or as V-CAP-12F when p-aminostyrene end caps used. High-molecular-weight, addition-curing polyimides based on BTBD and HFDE highly processable high-temperature matrix resins used to make composite materials with excellent retention of properties during long-term exposure to air at 650 degrees F or higher temperature. Furthermore, 12F addition-curing polyimides useful for electronic applications; fluorinated rigid-rod polyimides known to exhibit low thermal expansion coefficients as well as low absorption of moisture.

  7. Flexible Microstrip Circuits for Superconducting Electronics

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Mateo, Jennette

    2013-01-01

    Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.

  8. Status review of PMR polyimides

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1978-01-01

    The current status of first and second generation PMR polyimides are reviewed. Synthesis, processing, and applications were considered, using prepreg materials based on processable, high temperature resistant polyimides.

  9. The AFIT Multielectrode Array for Neural Recording and Simulation: Design, Testing, and Encapsulation

    DTIC Science & Technology

    1993-12-01

    the Device ........................ 13 2.3.1 Silicon Nitride Passivation ................. 13 2.3.2 Polyimide Passivation ................... 14 2.4...Coating .......... ... 49 5.4 Applying the Polyimide ........................ 50 5.4.1 Application of the Polyimide ............ ... 52 5.4.2 Negative...Photo-resist Process ............... 52 5.4.3 Polyimide Etch ........................ 53 5.4.4 Final Cure ............................ 54 5.4.5

  10. High-temperature adhesives for bonding polyimide film. [bonding Kapton film for solar sails

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Slemp, W. S.; St.clair, T. L.

    1980-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575 K (575 F) in vacuum. Glass transition temperatures of the polyimide/"Kapton" bondlines were monitored by thermomechanical analysis.

  11. Transfer molding of PMR-15 polyimide resin

    NASA Technical Reports Server (NTRS)

    Reardon, J. P.; Moyer, D. W.; Nowak, B. E.

    1985-01-01

    Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations.

  12. Modified Single-Wall Carbon Nanotubes for Reinforce Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Lebron-COlon, Marisabel; Meador, Michael A.

    2006-01-01

    A significant improvement in the mechanical properties of the thermoplastic polyimide film was obtained by the addition of noncovalently functionalized single-wall carbon nanotubes (SWNTs). Polyimide films were reinforced using pristine SWNTs and functionalized SWNTs (F-SWNTs). The tensile strengths of the polyimide films containing F-SWNTs were found to be approximately 1.4 times higher than those prepared from pristine SWNTs.

  13. Helping Aircraft Engines Lighten Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.

  14. P-V-T Properties of Polyimides and Model Imide Compounds

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    Aromatic polyimides are used as matrix resins in advanced composites, as high strength films, and as high-temperature adhesives, owing in part to their unusual thermal and chemical stability. The polyimides' desirable qualities of very high softening temperatures and negligibly small solubilities in and low permeabilities by most solvents have limited the kinds of fundamental studies that can be performed on these systems. Consequently, relationships between the molecular structure of polyimides and their bulk properties are not as well understood as might be expected given their widespread applications. In particular, the intermolecular forces in polyimides that play a critical role determining their densities, solubilities, viscosities, moduli, glass transitions, etc. are less well characterized for polyimides than for other widely used polymeric materials. The purpose of the present study is to obtain experimental data for establishing parameters that characterize the intermolecular forces in polyimides. We report here our studies on tractable low molecular-weight imides that contain the same structural features that are present in polyimide materials. We have measured equation-of-state properties and dipole moments for a variety of such systems in the liquid state. Both pure compounds and binary mixtures have been studied.

  15. Aromatic Polyimide Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2000-01-01

    A mechanically undensified aromatic polyimide foam is made from an aromatic polyimide precursor solid residuum and has the following combination of properties: a density according to ASTM D-3574A of about 0.5 pounds/cu.ft to about 20 pounds/cu.ft; a compression strength according to ASTM D-3574C of about 1.5 psi to about 1500 psi; and a limiting oxygen index according to ASTM D-2863 of about 35% oxygen to about 75% oxygen at atmospheric pressure. The aromatic polyimide foam has no appreciable solid inorganic contaminants which are residues of inorganic blowing agents. The aromatic polyimide which constitutes the aromatic polyimide foam has a glass transition temperature (Tg) by differential scanning calorimetry of about 235 C to about 400 C; and a thermal stability of 0 to about 1% weight loss at 204 C as determined by thermogravinietric analysis (TGA). The aromatic polyimide foam has utility as foam insulation and as structural foam, for example, for aeronautical, aerospace and maritime applications.

  16. Development and fabrication of a graphite polyimide box beam

    NASA Technical Reports Server (NTRS)

    Nadler, M. A.; Darms, F. J.

    1972-01-01

    The state-of-the-art of graphite/polyimide structures was evaluated and key design and fabrication issues to be considered in future hardware programs are defined. The fabrication and testing at 500 F of a graphite/polyimide center wing box beam using OV-10A aircraft criteria was accomplished. The baseline design of this box was developed in a series of studies of other advanced composite materials: glass/epoxy, boron/epoxy, and boron/polyimide. The use of this basic design permits ready comparison of the performance of graphite/polyimide with these materials. Modifications to the baseline composite design were made only in those areas effected by the change of materials. Processing studies of graphite fiber polyimide resins systems resulted in the selection of a Modmor II/Gemon L material.

  17. Polyimides based on 4,4'-bis (4-aminophenoxy)-2,2'or 2,2', 6,6'-substituted biphenyl

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua K. (Inventor)

    1999-01-01

    This invention relates the novel diamines, the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature, good mechanical properties and improved processability in the manufacture of adhesives, electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2,2',6,6'-substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides, while retaining a realatively high glass transition temperature and improved mechanical properties at useful temperature ranges.

  18. Aromatic Diamines and Polyimides Based on 4,4'-Bis-(4-Aminophenoxy)-2,2' or 2,2',6,6'- Substituted Biphenyl

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua K. (Inventor)

    2000-01-01

    This invention relates the novel diamines. the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature. good mechanical properties and improved processability in the manufacture of adhesives. electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2.2',6.6substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides. while retaining a relatively high glass transition temperature and improved mechanical properties at useful temperature ranges.

  19. 3D Graphene-Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications.

    PubMed

    Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong

    2015-12-22

    Polyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging. In order to target these issues, a hybrid of PI with 3D-graphene (3D-C), 3D-C/PI, is developed here. This composite renders extraordinary enhancements of thermal conductivity (one order of magnitude) and electrical conductivity (10 orders of magnitude). It withstands and keeps a stable performance throughout various bending and thermal cycles, as well as the oxidative and aggressive environment of ground-based, simulated space environments. This makes this new hybrid film a suitable material for flexible space applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel Ordered Crown Ether-Containing Polyimides for Ion Conduction

    NASA Technical Reports Server (NTRS)

    Irvin, Jennifer A.; Stasko, Daniel; Fallis, Stephen; Guenthner, Andrew J.; Webber, Cynthia; Blackwell, John; Chvalun, Sergei N.

    2003-01-01

    We report the synthesis and characterization of thermally-stable polyimides for use as battery and fuel cell electrolyte membranes. Dianhydrides used were 1,4,5,8- naphthalenetetracarboxylic dianhydride and/or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride. Diamines used were anti-4,4-diaminodibenzo-l8-crown-6, 4,4'- diaminodibenzo-24-crown-8, 2,2-bis(4-aminophenyl)hexafluoropropane, and/or 2,5- diaminobenzenesulfonic acid. The polymers were characterized using electrochemical impedance spectroscopy (EIS), thermal analysis and X-ray diffraction. Polymers containing the hexafluoroisopropylidene (HFIP) group were soluble in common organic solvents, while polymers without the HFIP group were very poorly soluble. Sulfonation yields polymers that are sparingly soluble in aqueous base and/or methanol. Degree of sulfonation, determined by titration, was between one and three sulfonate groups per repeat unit. Proton conductivity was determined as a function of water content, with a maximum conductivity of l x 10(exp -2) per centimeter when fully hydrated. Crown ether-containing polymers exhibit a high degree of order that may be indicative of crown ether channel formation, which may facilitate Li(+) transport for use in battery membranes.

  1. High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier

    NASA Astrophysics Data System (ADS)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.

    2017-09-01

    A way of preparing separation layers by the pyrolysis of fluorinated polyimide obtained from 2,4,6-trimethyl- m-phenylenediamine (2,4,6-TM mPDA) and 2,2-bis(3',4'-dicarboxyphenyl)hexafluoropropane (6FDA) applied onto a diatomite carrier is described. Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study changes in the texture and chromatographic characteristics of these layers. It is found that changes in the structure and the effectivity of separation characteristic of the layers depend on the temperature of pyrolysis, which ranges from 250 to 1100°C. It is established that a layer of separation is formed at 250-350°C, and the order of elution of hydrocarbons is similar to their chromatographic behavior on such stationary phases as OV-101. Layers of amorphous carbon formed on the surfaces of individual particles on a diatomite surface at 500-700°C. These layers ensure highly stable and selective separation of permanent gases and hydrocarbons when they are present together.

  2. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  3. Exploration of photosensitive polyimide as the modification layer in thin film microcircuit

    NASA Astrophysics Data System (ADS)

    Liu, Lily; Song, Changbin; Xue, Bin; Li, Jing; Wang, Junxi; Li, Jinmin

    2018-02-01

    Positive type photosensitive polyimide is used as the modification layer in the thin film transistors production process. The photosensitive polyimide is not only used as the second insulating layer, it can also be used instead of a mask because of the photosensitivity. A suitable curing condition can help photosensitive polyimide form the high performance polyimide with orderly texture inside, and the performance of imidization depends on the precise control of temperature, time, and heat control during the curing process. Therefore, experiments of different stepped up heating tests are made, and the ability of protecting silicon dioxide is analyzed.

  4. Polyimide amic acid salts and polyimide membranes formed therefrom

    DOEpatents

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz; Macheras, James Timothy

    2004-04-06

    The invention relates to preparation and uses of novel polymeric materials, polyimide amic acid salts (PIAAS). The use of these materials for the fabrication of fluid separation membranes is further disclosed.

  5. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  6. Radiation protection using Martian surface materials in human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.

    2001-01-01

    To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.

  7. Effect of Sizings on the Durability of High Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Shin, E. Eugene; Inghram, Linda; McCorkle, Linda; Papadopoulos, Demetrios; Wheeler, Donald; Sutter, James K.

    2003-01-01

    To increase performance and durability of high-temperature composite for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. Sizing commercially supplied on most carbon fiber are not compatible with polyimides. In this study, the chemistry of sizing on two high modulus carbon fiber (M40J and M60J, Tiray) was characterized. A continuous desizling system that uses an environmentally friendly chemical-mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room-temperature tests after thermal aging show that the reactive finish produces a higher strength and more durable interface compared to the manufacturer's sizing. When exposed to moisture blistering tests, however, the butter bonded composite displayed a tendency to delaminate, presumably due to trapping of volatiles.

  8. Improvements to the Synthesis of Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Nguyen, Baochau N.; Guo, Haiquan; Vivod, Stephanie; He, Zuhui; Malow, Ericka; Silva, Rebecca

    2011-01-01

    Cross-linked polyimide aerogels are viable approach to higher temperature, flexible insulation for inflatable decelerators. Results indicate that the all-polyimide aerogels are as strong or stronger than polymer reinforced silica aerogels at the same density. Currently, examining use of carbon nanofiber and clay nanoparticles to improve performance. Flexible, polyimide aerogels have potential utility in other applications such as space suits, habitats, shelter applications, etc. where low dusting is desired

  9. Development of graphite/polyimide honeycomb core materials

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1978-01-01

    Honeycomb panel constructions consisting entirely of graphite/polyimide composites were developed and evaluated. Graphite/polyimide composites, were used in the honeycomb core webs and in pre-cured sandwich skins. Polyimide adhesives were also developed and evaluated for use in skin-core bonding. The purpose of this program was to develop light weight sandwich constructions for high temperature applications which could provide comparable shear strength and stiffness to metallic honeycomb constructions.

  10. PMR polyimides-review and update

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Alston, W. B.

    1982-01-01

    Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides are commercially available and the PMR concept is used by other investigators. The current status of first and second generation PMR polyimides were reviewed. Emphasis is given to the chemistry, processing and applications of the first generation material known as PMR-15.

  11. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.

    PubMed

    Chen, You-Yin; Lai, Hsin-Yi; Lin, Sheng-Huang; Cho, Chien-Wen; Chao, Wen-Hung; Liao, Chia-Hsin; Tsang, Siny; Chen, Yi-Fan; Lin, Si-Yue

    2009-08-30

    The design and testing of a new microelectrode array, the NCTU (National Chiao Tung University) probe, was presented. Evaluation results showed it has good biocompatibility, high signal-to-noise ratio (SNR: the root mean square of background noise to the average peak-to-peak amplitude of spikes) during chronic neural recordings, and high reusability for electrolytic lesions. The probe was a flexible, polyimide-based microelectrode array with a long shaft (14.9 mm in length) and 16 electrodes (5 microm-thick and 16 microm in radius); its performance in chronic in vivo recordings was examined in rodents. To improve the precision of implantation, a metallic, impact-resistant layer was sandwiched between the polyimide layers to strengthen the probe. The three-dimensional (3D) structure of electrodes fabricated by electroplating produced rough textures that increased the effective surface area. The in vitro impedance of electrodes on the NCTU probe was 2.4+/-0.52 MOmega at 1 kHz. In addition, post-surgical neural recordings of implanted NCTU probes were conducted for up to 40 days in awake, normally behaving rats. The electrodes on the NCTU probe functioned well and had a high SNR (range: 4-5) with reliable in vivo impedance (<0.7 MOmega). The electrodes were also robust enough to functionally record events, even after the anodal current (30 microA, 10s) was repeatedly applied for 60 times. With good biocompatibility, high and stable SNR for chronic recording, and high tolerance for electrolytic lesion, the NCTU probe would serve as a useful device in future neuroscience research.

  12. The effect of elastomer chain length on properties of silicone-modified polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Ezzell, S.

    1981-01-01

    A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.

  13. Polyimides containing carbonyl and ether connecting groups - II

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Havens, S. J.

    1989-01-01

    In a study of polyimides containing carbonyl and ether connecting groups between aromatic rings, several new polyimides were prepared and characterized. A few of these polymers were semicrystalline. Glass transition temperatures ranged from 164 to 258 C, and crystalline melt temperatures were observed between 350 and 424 C. The semicrystalline polyimide from the reaction of 3.3',4,4'-benzophenonetetracarboxylic dianhydride and 1,3-bis(4-aminophenoxy-4'-benzoyl)benzene provided transparent orange films with excellent tensile properties, exceptional resistance to solvents and strong base, and high thermooxidative stability. In addition, this polyimide provided excellent adhesive strength for joining titanium (6Al-4V) to titanium.

  14. Addition polymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and Bis-dienes: Processable resins for high temperature application

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.

    1987-01-01

    1,4,5,8-Tetrahydro-1,4;5,8-diepoxyanthracene reacts with various anthracene endcapped polyimide oligomers to form Diels-Alder cycloaddition copolymers. The polymers are soluble in common organic solvents, and have molecular weights of approximately 21,000 to 32,000. Interestingly, these resins appear to be more stable in air then in nitrogen. This is shown to be due to a unique dehydration (loss of water ranges from 2 to 5 percent) at temperatures of 390 to 400 C to give thermo-oxidatively stable pentiptycene units along the polymer backbone. Because of their high softening points and good thermo-oxidative stability, the polymers have potential as processible, matrix resins for high temperature composite applications.

  15. Incorporation of metal ions into polyimides

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; Carver, V. C.; Furtsch, T. A.; Saint Clair, A. K.

    1980-01-01

    The effects of the incorporation of metal ions into various polyimides on polyimide properties are investigated. Polyimide films derived from 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BDTA) 3,3'-diaminobenzophenone (m,m'-DABP), 4,4'-diaminobenzophenone (p,p'-DABP) or 4,4'-oxydianiline were prepared with the concurrent addition of approximately 20 metals in a variety of forms. In general, it is found that the films derived from BDTA + p,p'-DABP were brittle and of poor quality, with brittle films also produced in most of the BDTA + m, m'-DABP polyimides regardless of whether the added metal was hydrate or anhydrous. Thermomechanical analysis, torsional braid analysis, thermal gravimetric analysis, infrared spectral analysis and isothermal studies on many of the polyimide films produced indicate that the softening temperature is generally increased upon the addition of metal ions, at the expense of thermal stability, while no changes in chemical functionality are observed. The best system studied in regard to polymer property enhancement appears to be tri(acetylacetonato)aluminum(III) added to the m, m'-DABP polyamide, which has been found to exhibit four times the lap shear strength of the polyimide alone.

  16. Design and Fabrication of an Implantable Cortical Semiconductor Integrated Circuit Electrode Array

    DTIC Science & Technology

    1990-12-01

    25 Array Pads....................25 Polyimide ....................26 III. METHODOLOGY.........................27 Brain Chip Electronics...38 Ionic Permeation. .................. 38 Polyimide . ................... 38 Implantation. .................... 39 Wire Bonding...53 Pad Sensitivity ................. 53 Ionic Permeat:.on. .................. 54 Polyimide . ................... 54 Implantation

  17. Advanced Design Composite Aircraft

    DTIC Science & Technology

    1976-02-01

    been selected for ADCA applications. These are graphite (PAN)/ epoxy, graphite (PAN)/polyimide, Kevlar /epoxy, f ibergl ass/epoxy, and quartz...Aluminum Alloy Aluminum Alloy ACG (commercial grade) Nomex HRP Fiberglass/ Phenolic HRH Fiberglass/Polyimide Graphite/epoxy Graphi te/Polyimide

  18. Polyimide foams provide thermal insulation and fire protection

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.

    1972-01-01

    Chemical reactions to produce polyimide foams for application as thermal insulation and fire prevention materials are discussed. Thermal and physical properties of the polyimides are described. Methods for improving basic formulations to produce desired qualitites are included.

  19. High-temperature polyimides prepared from 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1984-01-01

    There are provided the aromatic diamines 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane, where the attached ortho halogen is preferably chlorine, and 4,4'-bis(4-aminophenoxy)biphenyl, as novel monomers for polyimide polymerizations. The former, when reacted with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, provides a polyimide having exceptional high-temperature performance. The latter diamine is a low-cost monomer for polyimide production.

  20. Surface interaction of polyimide with oxygen ECR plasma

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  1. Surface Evaluation by X-Ray Photoelectron Spectroscopy of High Performance Polyimide Foams After Exposure to Oxygen Plasma

    NASA Technical Reports Server (NTRS)

    Melendez, Orlando; Hampton, Michael D.; Williams, Martha K.; Brown, Sylvia F.; Nelson, Gordon L.; Weiser, Erik S.

    2002-01-01

    Aromatic polyimides have been attractive in the aerospace and electronics industries for applications such as cryogenic insulation, flame retardant panels and structural subcomponents. Newer to the arena of polyimides is the synthesis of polyimide foams and their applications. In the present work, three different, closely related, polyimide foams developed by NASA Langley Research Center (LaRC) are studied by X-ray Photoelectron Spectroscopy (XPS) after exposure to radio frequency generated Oxygen Plasma. Although polyimide films exposure to atomic oxygen and plasma have been studied previously and reported, the data relate to films and not foams. Foams have much more surface area and thus present new information to be explored. Understanding degradation mechanisms and properties versus structure, foam versus solid is of interest and fundamental to the application and protection of foams exposed to atomic oxygen in Low Earth Orbit (LEO).

  2. Low coefficient of thermal expansion polyimides containing metal ion additives

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  3. Low dielectric polyimide aerogels as substrates for lightweight patch antennas.

    PubMed

    Meador, Mary Ann B; Wright, Sarah; Sandberg, Anna; Nguyen, Baochau N; Van Keuls, Frederick W; Mueller, Carl H; Rodríguez-Solís, Rafael; Miranda, Félix A

    2012-11-01

    The dielectric properties and loss tangents of low-density polyimide aerogels have been characterized at various frequencies. Relative dielectric constants as low as 1.16 were measured for polyimide aerogels made from 2,2'-dimethylbenzidine (DMBZ) and biphenyl 3,3',4,4'-tetracarbozylic dianhydride (BPDA) cross-linked with 1,3,5-triaminophenoxybenzene (TAB). This formulation was used as the substrate to fabricate and test prototype microstrip patch antennas and benchmark against state of practice commercial antenna substrates. The polyimide aerogel antennas exhibited broader bandwidth, higher gain, and lower mass than the antennas made using commercial substrates. These are very encouraging results, which support the potential advantages of the polyimide aerogel-based antennas for aerospace applications.

  4. Polyimides with carbonyl and ether connecting groups between the aromatic rings

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    New polyimides have been prepared from the reaction of aromatic dianhydrides with novel aromatic diamines containing carbonyl and ether connecting groups between the aromatic rings. Several of these polyimides are shown to be semi-crystalline as evidenced by wide angle x ray diffraction and differential scanning calorimetry. Most of the polyimides form tough solvent resistant films with high tensile properties. Several of these materials can be thermally processed to form solvent and base resistant moldings.

  5. Effect of MeV electron irradiation on the free volume of polyimide

    NASA Astrophysics Data System (ADS)

    Alegaonkar, P. S.; Bhoraskar, V. N.

    2004-08-01

    The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from similar to13.70 to similar to10.98 Angstrom(3) and then increased to similar to18.11 Angstrom(3) with increasing the electron fluence, over the range of 5 x 10(14) - 5 x 10(15) e/cm(2). The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2 x 10(15) e/cm(2), at which microvoids of size greater than or equal to3 Angstrom are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size greater than or equal to3 Angstrom were retained in the surface region through which silver atoms of size similar to2.88 Angstrom could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was similar to2.5 mum.

  6. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi

    2015-09-01

    These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  7. Fabrication and characterization of nanoclay modified PMR type polyimide composites reinforced with 3D woven basalt fabric

    NASA Astrophysics Data System (ADS)

    Xie, Jianfei; Qiu, Yiping

    2009-07-01

    Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.

  8. Properties of M40J Carbon/PMR-II-50 Composites Fabricated with Desized and Surface Treated Fibers. Characterization of M40J Desized and Finished Fibers

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Gosau, Jan M.; Shin, E. Eugene; McCorkle, Linda S.; Sutter, James K.; OMalley, Michelle; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    To increase performance and durability of high temperature composites for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high temperature polyimide resins. It has been previously demonstrated that the electro-oxidative shear treatments used by fiber manufacturers are not effective on higher modulus fibers that have fewer edge and defect sites in the surface crystallites. In addition, sizings commercially supplied on most carbon fibers are not compatible with polyimides. This study was an extension of prior work characterizing the surface chemistry and energy of high modulus carbon fibers (M40J and M60J, Torray) with typical fluorinated polyimide resins, such as PMR-II-50. A continuous desizing system which utilizes environmentally friendly chemical- mechanical processes was developed for tow level fiber and the processes were optimized based on weight loss behavior, surface elemental composition (XPS) and morphology (FE-SEM) analyses, and residual tow strength of the fiber, and the similar approaches have been applied on carbon fabrics. Both desized and further treated with a reactive finish were investigated for the composite reinforcement. The effects of desizing and/or subsequent surface retreatment on carbon fiber on composite properties and performance including fiber-matrix interfacial mechanical properties, thermal properties and blistering onset behavior will be discussed in this presentation.

  9. Summary Report of the Summer Conference DARPA-Materials Research Council Held in La Jolla, California on 10 July thru 4 August 1989

    DTIC Science & Technology

    1989-08-04

    ceramic substrate and a multilayer thin film metal (copper) and polymer ( polyimide ) overlays. 73 The MCM technology was pioneered by IBM, which has made...packaging. The first is the use of polymeric dielectric layers such as polyimides . In fact, the current MCP’s 3 being developed for the DoD use... polyimide dielectrics. Nonetheless, much work remains to be done before these organic dielectrics can be regarded as Isatisfactory. Polyimides have a

  10. Method of Forming a Hot Film Sensor System on a Model

    NASA Technical Reports Server (NTRS)

    Tran, Sang Q. (Inventor)

    1998-01-01

    A method of forming a hot film sensor directly on a model is provided. A polyimide solution is sprayed onto the model. The model so sprayed is then heated in air. The steps of spraying and heating are repeated until a polyimide film of desired thickness is achieved on the model. The model with the polyimide film thereon is then thoroughly dried in air. One or more hot film sensors and corresponding electrical conducting leads are then applied directly onto the polyimide film.

  11. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  12. New Polyimide Has Many Uses

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Progar, Donald J.; Smith, Janice Y.; Smith, Ricky E.

    1991-01-01

    Low-toxicity and low-mutogenicity monomer key to new high-performance polyimide. LaRC-IA is thermoplastic polyimide made from 3-4'-oxydianiline and 4,4'-oxydiphthalic anhydride. Good processing characteristics, low toxicity, and no mutagenicity. Adhesives, composite matrix resins, heat resin moldings, and coating films made of new polymer found to exhibit properties identical or superior to commercially available polyimides. Potential applications wide ranging. With and without end capping, employed to prepare unfilled moldings, coatings and free films, adhesive tape, adhesively bonded substrates, prepregs, and composites.

  13. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  14. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  15. Study on process and characterization of high-temperature resistance polyimide composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang

    2016-05-18

    A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred.more » The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ∼305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (P{sub i}) during the imidization. The second-stage pressure (P{sub 2}) and the temperature for applying the P{sub 2} (T{sub 2}) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.« less

  16. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  17. Molecularly Oriented Polymeric Thin Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C.; Stoakley, Diane M.; St.Clair, Anne K.

    1997-01-01

    The increased commitment from NASA and private industry to the exploration of outer space and the use of orbital instrumentation to monitor the earth has focused attention on organic polymeric materials for a variety of applications in space. Some polymeric materials have exhibited short-term (3-5 yr) space environmental durability; however, future spacecraft are being designed with lifetimes projected to be 10-30 years. This gives rise to concern that material property change brought about during operation may result in unpredicted spacecraft performance. Because of their inherent toughness and flexibility, low density, thermal stability, radiation resistance and mechanical strength, aromatic polyimides have excellent potential use as advanced materials on large space structures. Also, there exists a need for high temperature (200-300 C) stable, flexible polymeric films that have high optical transparency in the 300-600nm range of the electromagnetic spectrum. Polymers suitable for these space applications were fabricated and characterized. Additionally, these polymers were molecularly oriented to further enhance their dimensional stability, stiffness, elongation and strength. Both unoriented and oriented polymeric thin films were also cryogenically treated to temperatures below -184 C to show their stability in cold environments and determine any changes in material properties.

  18. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  19. Polyimide/metal composite films via in situ decomposition of inorganic additives - Soluble polyimide versus polyimide precursor

    NASA Technical Reports Server (NTRS)

    Rancourt, J. D.; Porta, G. M.; Moyer, E. S.; Madeleine, D. G.; Taylor, L. T.

    1988-01-01

    Polyimide-metal oxide (Co3O4 or CuO) composite films have been prepared via in situ thermal decomposition of cobalt (II) chloride or bis(trifluoroacetylacetonato)copper(II). A soluble polyimide (XU-218) and its corresponding prepolymer (polyamide acid) were individually employed as the reaction matrix. The resulting composites exhibited a greater metal oxide concentration at the air interface with polyamide acid as the reaction matrix. The water of imidization that is released during the concurrent polyamide acid cure and additive decomposition is believed to promote metal migration and oxide formation. In contrast, XU-218 doped with either HAuCl4.3H2O or AgNO3 yields surface gold or silver when thermolyzed (300 C).

  20. Cyclopentadiene evolution during pyrolysis-gas chromatography of PMR polyimides

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Gluyas, Richard E.; Snyder, William J.

    1992-01-01

    The effect of formulated molecular weight (FMW), extent of cure, and cumulative aging on the amount of cyclopentadiene (CPD) evolved from Polymerization of Monomeric Reactants (PMR) polyimides were investigated by pyrolysis-gas chromotography (PY-GC). The PMR polyimides are additional crosslinked resins formed from an aromatic diamine, a diester of an aromatic tetracarboxylic acid and a monoester of 5-norbornene-2, 3-dicarboxylic acid. The PY-GC results were related to the degree of crosslinking and to the thermo-oxidative stability (weight loss) of PMR polyimides. Thus, PY-GC has shown to be a valid technique for the characterization of PMR polyimide resins and composites via correlation of the CPD evolved versus the thermal history of the PMR sample.

  1. Substrate Material for Holographic Emulsions Utilizing Fluorinated Polyimide Film

    NASA Technical Reports Server (NTRS)

    Gierow, Paul A. (Inventor); Clayton, William R. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    A new holographic substrate utilizing flexible. optically transparent fluorinated polyimides. Said substrates have 0 extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.

  2. Polyimides containing meta-biphenylenedioxy moieties and articles prepared therefrom

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L. (Inventor); Pratt, Richard (Inventor)

    1995-01-01

    Two monomers containing meta-biphenylenedioxy moieties were prepared. One monomer, a diamine, is used to prepare polyimide, polyamide, and epoxy polymers. The other monomer, a dianhydride, was used to prepared polyimide polymers. These polymers are used to make films, coatings, and selective membranes.

  3. The mechanical stability of polyimide films at high pH

    NASA Technical Reports Server (NTRS)

    Croall, Catharine I.; St.clair, Terry L.

    1990-01-01

    Polyimide insulated electrical wire has been widely used in the aerospace industry in commercial, military, and to a lesser degree, general aviation aircraft since the early 1970s. Wiring failures linked to insulation damage have drawn much attention in the media and concerns have developed regarding the long term stability and safety of polyimide insulated electrical wire. The mechanical durability and chemical stability of polyimide insulated wire are affected by hydrolysis, notch propagation, wet and dry arc tracking, topcoat flaking, and degradation due to high pH fluids. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as KAPTON (tradename), APICAL (tradename), LARC-TPI, and UPILEX (tradename) R and S, as well as a number of experimental films prepared at NASA-Langley. Material properties investigated include viscosity, solubility, moisture absorption, glass transition temperature, dielectric constant, and mechanical properties before and after exposure to various conditions.

  4. Photogeneration of refractive-index patterns in doped polyimide films.

    PubMed

    Chakravorty, K K

    1993-05-01

    A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.

  5. Photogeneration of refractive-index patterns in doped polyimide films

    NASA Astrophysics Data System (ADS)

    Chakravorty, K. K.

    1993-05-01

    A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.

  6. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups

    NASA Astrophysics Data System (ADS)

    Wu, Tingting; Dong, Jie; Gan, Feng; Fang, Yuting; Zhao, Xin; Zhang, Qinghua

    2018-05-01

    Conventional polyimide aerogels made from biphenyl-3,3‧,4,4‧-tetracarboxylic dianydride (BPDA) and 4,4‧-oxidianiline (ODA) exhibit poor resistance to moisture and mechanical properties. In this work, a versatile diamine, 2,2‧-bis-(trifluoromethyl)-4,4‧-diaminobiphenyl (TFMB), is introduced to BPDA/ODA backbone to modify the comprehensive performance of this aerogel. Among all formulations, the resulted polyimide aerogels exhibit the lowest shrinkage and density as well as highest porosity, at the ODA/TFMB molar ratio of 5/5. Dielectric constants and loss tangents of the aerogels fall in the range of 1.29-1.33 and 0.001-0.004, respectively, and more TFMB fractions results in a slightly decrease of dielectric constant and loss tangent. In addition, moisture-resistance of the aerogels are dramatically enhanced as the water absorption decreasing from 415% for BPDA/ODA to 13% for the polyimide aerogel at the ODA/TFMB molar ratio of 7/3, and even to 4% for the homo-BPDA/TFMB polyimide aerogel, showing a superhydrophobic characteristic, which is a great advantage for polyimide aerogels used as low dielectric materials. Meanwhile, all of formulations of aerogels exhibit high absorption capacities for oils and common organic solvents, indicating that these fluorinated polyimide aerogels are good candidates for the separation of oils/organic solvents and water. Mechanical properties and thermal stability of the polyimide aerogels are also raised to varying degrees due to the rigid-rod biphenyl structure introduced by TFMB.

  7. Synthesis and Characterization of Polyimides with Ether Linkages

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Fu, Joyce; Scheiman, Daniel A.

    1998-01-01

    A series of polyimides derived from a newly synthesized diamine, namely, 4,4-bis(4-aminophenoxy)-2,2-dimethylbiphenyl (BAPD), were developed and characterized. Their physical and thermal properties were compared to polyimides based on'commercially available 2,2-bis(4-(4-aminophenoxy)phenyl)propane (BAPP).

  8. High density circuit technology, part 2

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    A multilevel metal interconnection system for very large scale integration (VLSI) systems utilizing polyimides as the interlayer dielectric material is described. A complete characterization of polyimide materials is given as well as experimental methods accomplished using a double level metal test pattern. A low temperature, double exposure polyimide patterning procedure is also presented.

  9. 77 FR 62259 - Certain Polyimide Films, Products Containing Same, and Related Methods Commission Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-772] Certain Polyimide Films, Products... polyimide films, products containing same, and related methods by reason of infringement of one or more of... prong of the domestic industry requirement. Id. With respect to the `961 patent, the Commission...

  10. 77 FR 47092 - Certain Polyimide Films, Products Containing Same, and Related Methods; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-772] Certain Polyimide Films, Products Containing Same, and Related Methods; Notice of Commission Determination to Partially Review and Partially... polyimide films, products containing same, and related methods by reason of infringement of one or more of...

  11. Preparing composite materials from matrices of processable aromatic polyimide thermoplastic blends

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); St.clair, Terry L. (Inventor); Baucom, Robert M. (Inventor); Gleason, John R. (Inventor)

    1991-01-01

    Composite materials with matrices of tough, thermoplastic aromatic polyimides are obtained by blending semi-crystalline polyimide powders with polyamic acid solutions to form slurries, which are used in turn to prepare prepregs, the consolidation of which into finished composites is characterized by excellent melt flow during processing.

  12. Siloxane containing addition polyimides. II - Acetylene terminated polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Acetylene terminated polyimide oligomers having a range of molecular weights have been synthesized by reacting bis (gamma-aminopropyl) tetramethyldisiloxane, aminophenylacetylene and 3, 3', 4, 4' benzophenonetetracarboxylic dianhydride in different molar ratios. The prepolymers were isolated and characterized for melt flow and cure properties. They show promise as adhesives for bonding titanium to titanium and as matrix resins for graphite cloth reinforced composites. The most promising system has been blended in varying proportions with Thermid 600, a commercially available acetylene terminated polyimide oligomer, and the mixtures have been tested for application as composite matrix resins.

  13. Fabrication of graphite/polyimide composite structures.

    NASA Technical Reports Server (NTRS)

    Varlas, M.

    1972-01-01

    Selection of graphite/polyimide composite as a prime candidate for high-temperature structural applications involving long-duration temperature environments of 400 to 600 F. A variety of complex graphite/polyimide components has been fabricated, using a match-metal die approach developed for making fiber-reinforced resin composites. Parts produced include sections of a missile adapter skin flange, skin frame section, and I-beam and hat-section stringers, as well as unidirectional (0 deg) and plus or minus 45 deg oriented graphite/polyimide tubes in one-, two-, and six-inch diameters.

  14. Thermal History Of PMRs Via Pyrolysis-Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Gluyas, Richard E.; Alston, William B.; Snyder, William J.

    1994-01-01

    Pyrolysis-gas chromatography (PY-GC) useful as analytical technique to determine extents of cure or postcure of PMR-15 polyimides and to lesser extent, cumulative thermal histories of PMR-15 polyimides exposed to high temperatures. Also applicable for same purposes to other PMR polyimides and to composite materials containing PMR polyimides. Valuable in reducing costs and promoting safety in aircraft industry by helping to identify improperly cured or postcured PMR-15 composite engine and airframe components and helping to identify composite parts nearing ends of their useful lives.

  15. Phenylated polyimides prepared from 3,6-diarylpyromellitic dianhydride and aromatic diamines

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1992-01-01

    A new class of soluble phenylated polyimides made from 3,6-diarypyromellitic dianhydride and process for the manufacture of the 3,6-diarypyromellitic dianhydride starting material. The polyimides obtained with said dianhydride are readily soluble in appropriate organic solvents and are distinguished by excellent thermal, electrical and/or mechanical properties making the polyimides ideally suited as coating materials for microelectronic apparatii, as membranes for selective molecular separation or permeation or selective gas separation or permeation, or as reinforcing fibers in molecular composites, or as high modulus, high tensile strength fibers.

  16. Improvement of the relaxation time and the order parameter of nematic liquid crystal using a hybrid alignment mixture of carbon nanotube and polyimide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon, E-mail: jihoonlee@jbnu.ac.kr

    2014-05-12

    We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to themore » smooth surface topology of the CNT-polyimide mixture.« less

  17. Performance of Partially Fluorinated Polyimide Insulation for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Stavnes, Mark W.; Ide, James R.; Muegge, ED

    1995-01-01

    Polyimide has been used extensively as the primary wiring insulation in commercial planes, military aircraft, and space vehicles due to its low weight, high service temperature, and good dielectric strength. New failure modes, however, have been associated with the use of polyimide because of the susceptibility of the insulation to pyrolization and arc tracking. A new wiring construction utilizing partially fluorinated polyimide insulation has been tested and compared with the standard military polyimide wire. Electrical properties which were investigated include AC corona inception and extinction voltages (sea level and 60,000 feet), time/current to smoke, and wire fusing time. The two constructions were also characterized in terms of their mechanical properties including abrasion resistance, dynamic cut through, and notch propagation. These test efforts and the results obtained are presented and discussed.

  18. Performance of partially fluorinated polyimide insulation for aerospace applications

    NASA Astrophysics Data System (ADS)

    Hammoud, Ahmad N.; Stavnes, Mark W.; Ide, James R.; Muegge, Ed

    1995-08-01

    Polyimide has been used extensively as the primary wiring insulation in commercial planes, military aircraft, and space vehicles due to its low weight, high service temperature, and good dielectric strength. New failure modes, however, have been associated with the use of polyimide because of the susceptibility of the insulation to pyrolization and arc tracking. A new wiring construction utilizing partially fluorinated polyimide insulation has been tested and compared with the standard military polyimide wire. Electrical properties which were investigated include AC corona inception and extinction voltages (sea level and 60,000 feet), time/current to smoke, and wire fusing time. The two constructions were also characterized in terms of their mechanical properties including abrasion resistance, dynamic cut through, and notch propagation. These test efforts and the results obtained are presented and discussed.

  19. Evaluation of colorless polyimide film for thermal control coating applications

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Slemp, W. S.

    1985-01-01

    A series of essentially colorless aromatic polyimide films was synthesized and characterized with the objective of obtaining maximum optical transparency for applications in space. Optical transparency is a requirement for high performance polymeric films used in second surface mirror coatings on thermal control systems. The intensity in color of aromatic polyimide films was lowered by reducing the electronic interaction between chromophoric centers in the polymer molecular structure and by using highly purified monomers. The resulting lightly colored to colorless polyimide films were characterized by UV-visible and infrared spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. After irradiation, the films were found to be 2 to 2.5 times more transparent than commercial polyimide film of the same thickness.

  20. Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Cao, Li; Kong, Lei; Kong, Lingqian; Zhang, Xingxiang; Shi, Haifeng

    2015-12-01

    Hybrid membranes (SPI/ZGO) composed of sulfonated polyimide (SPI) and zwitterionic polymer-functionalized graphene oxide (ZGO) are fabricated via a solution-casting method for vanadium redox flow battery (VRB). Successful preparation of ZGO fillers and SPI/ZGO hybrid membranes are demonstrated by FT-IR, XPS and SEM, indicating that ZGO fillers is homogeneously dispersed into SPI matrix. Through controlling the interfacial interaction between SPI matrix and ZGO fillers, the physicochemical properties, e.g., vanadium ion barrier and proton transport pathway, of hybrid membranes are tuned via the zwitterionic acid-base interaction in the hybrid membrane, showing a high ion selectivity and good stability with the incorporated ZGO fillers. SPI/ZGO-4 hybrid membrane proves a higher cell efficiencies (CE: 92-98%, EE: 65-79%) than commercial Nafion 117 membrane (CE: 89-94%, EE: 59-70%) for VRB application at 30-80 mA cm-2. The assembled VRB with SPI/ZGO-4 membrane presents a stable cycling charge-discharge performance over 280 times, which demonstrates its excellent chemical stability under the strong acidic and oxidizing conditions. SPI/ZGO hybrid membranes show a brilliant perspective for VRB application.

  1. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Hailong; Li, Peipei; Liu, Jiurong

    A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g -1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g -1 at a very high charge–dischargemore » rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. In conclusion, the graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.« less

  2. Immobilization of long-lived radionuclides in carbon matrices produced with the use of polyimide binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulakhatov, Murat; Bartenev, Sergey; Firsin, Nikolai

    Available in abstract form only. Full text of publication follows: Conditions for immobilization of long-lived radionuclides {sup 99}Tc, {sup 129}I and {sup 241}Am in carbon matrices were investigated by using their chemical analogs. Stable isotopes of rhenium, iodine and europium were used as chemical analogs of {sup 99}Tc, {sup 129}I and {sup 241}Am, respectively. It is shown that the carbon matrices incorporating the above elements can be produced by carbonization of composites with ITA-31 polyimide binder of the following composition: equal molar ratio between dianhydride of 3,3/,4,4/-benzophenone-tetracarboxylic acid and tetraacetyl derivative of 4,4/-diaminodiphenyl ester, radionuclide being investigated or its chemicalmore » analog and carbon fabric as reinforcing component. The elements under investigation were used both in the form of salts or oxides and in the form of their complexes with ion-exchange resins. The produced composites were carbonized in inert gas (argon) or in vacuum. The physical-chemical properties of the samples were studied. It was revealed that the resultant matrices meet the requirements imposed on waste storage and final disposal. (authors)« less

  3. Micromachined devices for interfacing neurons

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Beutel, Hansjoerg; Blau, Cornelia; Meyer, Joerg-Uwe

    1998-07-01

    Micromachining technologies were established to fabricate microelectrode arrays and devices for interfacing parts of the central or peripheral nervous system. The devices were part of a neural prosthesis that allows simultaneous multichannel recording and multisite stimulation of neurons. Overcoming the brittle mechanics of silicon devices and challenging housing demands close to the nerve we established a process technology to fabricate light-weighted and highly flexible polyimide based devices. Platinum and iridium thin-film electrodes were embedded in the polyimide. With reactive ion etching we got the possibility to simply integrate interconnections and to form nearly arbitrary outer shapes of the devices. We designed multichannel devices with up to 24 electrodes in the shape of plates, hooks and cuffs for different applications. In vitro tests exhibited stable electrode properties and no cytotoxicity of the materials and the devices. Sieve electrodes were chronically implanted in rats to interface the regenerating sciatic nerve. After six months, recordings and stimulation of the nerve via electrodes on the micro-device proved functional reinnervation of the limb. Concentric circular structures were designed for a retina implant for the blind. In preliminary studies in rabbits, evoked potentials in the visual cortex corresponded to stimulation sites of the implant.

  4. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries

    DOE PAGES

    Lyu, Hailong; Li, Peipei; Liu, Jiurong; ...

    2018-01-24

    A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g -1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g -1 at a very high charge–dischargemore » rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. In conclusion, the graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.« less

  5. Fully transparent, non-volatile bipolar resistive memory based on flexible copolyimide films

    NASA Astrophysics Data System (ADS)

    Yu, Hwan-Chul; Kim, Moon Young; Hong, Minki; Nam, Kiyong; Choi, Ju-Young; Lee, Kwang-Hun; Baeck, Kyoung Koo; Kim, Kyoung-Kook; Cho, Soohaeng; Chung, Chan-Moon

    2017-01-01

    Partially aliphatic homopolyimides and copolyimides were prepared from rel-(1'R,3S,5'S)-spiro[furan-3(2H),6'-[3]oxabicyclo[3.2.1]octane]-2,2',4',5(4H)-tetrone (DAn), 2,6-diaminoanthracene (AnDA), and 4,4'-oxydianiline (ODA) by varying the molar ratio of AnDA and ODA. We utilized these polyimide films as the resistive switching layer in transparent memory devices. While WORM memory behavior was obtained with the PI-A100-O0-based device (molar feed ratio of DAn : AnDA : ODA = 1 : 1 : 0), the PI-A70-O30-based device (molar feed ratio of DAn : AnDA : ODA = 1 : 0.7 : 0.3) exhibited bipolar resistive switching behavior with stable retention for 104 s. This result implies that the memory properties can be controlled by changing the polyimide composition. The two devices prepared from PI-A100-O0 and PI-A70-O30 showed over 90% transmittance in the visible wavelength range from 400 to 800 nm. The behavior of the memory devices is considered to be governed by trap-controlled, space-charge limited conduction (SCLC) and local filament formation. [Figure not available: see fulltext.

  6. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  7. The 3F condensation polyimides: Review and update

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Gratz, Roy F.

    1989-01-01

    Nine new condensation polyimides containing the phenyltrifluoroethylidene (3F) linkage were synthesized by the amic-acid route. Several other polyimides, including some with hexafluoroisopropylidene (6F) linkage, were also prepared as controls. Amic-acid solutions were characterized by determining their inherent viscosities prior to thermal conversion into polyimide films. Glass transition temperatures (T sub g), thermogravimetric analysis (TGA), and isothermal weight loss data (at 316, 371, and 371 C under 0.5 MPa air pressure) were obtained for the films. The films were pulverized into molding powders which, in turn, were thermally processed under pressure into neat resin disks. The disks were also characterized by T sub g's and 316 and 371 C isothermal weight losses. The film study identified two new polyimides with T sub g's greater than 371 C and two new polyimides with low rates of weight loss. The resin disks exhibited the same overall trends in T sub g and weight loss as the respective films, however the weight loss per unit surface area was always greater, presumably due to molecular degradation induced during preparation of the molding powders. The overall results indicate that polyimides containing the 3F linkage have T sub g's and thermo-oxidative stability comparable to polyimides containing the 6F group. Alternate technology was also shown by the synthesis of two new polyalkyl substituted 3F diamines and five more new 3F polymers. Their potential as photoresists was demonstrated by T sub g advancement after ultraviolet exposure. Last, four U.S. patents on 3F monomers and polymers were issued and up to eight more are pending.

  8. Silicone Coating on Polyimide Sheet

    NASA Technical Reports Server (NTRS)

    Park, J. J.

    1985-01-01

    Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.

  9. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  10. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  11. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  12. Fabrication and evaluation of dispersed-Ag nanoparticles-in-polyimide thin films

    NASA Astrophysics Data System (ADS)

    Sonehara, Makoto; Watanabe, Yuki; Yamaguchi, Sota; Kato, Takanori; Yoshisaku, Yasuaki; Sato, Toshiro; Itoh, Eiji

    2017-10-01

    A thin-film common-mode filter (TF-CMF) for cell phones in the UHF band was fabricated and evaluated. The TF-CMF consisted of multiple metal-insulator-metal (MIM) capacitors and inductors. The sizes of the 0.70-1.0 GHz band-type and 1.8-2.0 GHz band-type TF-CMFs are 1,140 × 1,260 × 10.5 µm3, and 1,060 × 1,060 × 10.5 µm3, respectively. The footprint in both types of TF-CMFs is over 1 mm2. In order to miniaturize the TF-CMF, we proposed to change a polyimide-only to a polyimide with dispersed Ag nanoparticles with high permittivity in the insulator layer for the MIM capacitor of the TF-CMF. A polyimide (\\text{polyimide precursor}:\\text{toluene with dispersed Ag nanoparticles} = 100:1) thin film with dispersed high-density Ag nanoparticles has a relative permittivity of about 8, which is twice as high as that of the polyimide-only thin film. If the capacitance and distance between electrodes are the same, then the capacitor footprint may be halved.

  13. Design, fabrication and test of graphite/polyimide composite joints and attachments. [spacecraft control surfaces

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.

  14. Evaluation of colorless polyimide film for thermal control coating applications

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; Slemp, W. S.

    1985-01-01

    A series of essentially colorless aromatic polyimide films has been synthesized and characterized with the objective of obtaining maximum optical transparency for applications in space. Optical transparency is a requirement for high performance polymeric films used in second surface mirror coatings on thermal control systems. The intensity in color of aromatic polyimide films was lowered by reducing the electronic interaction between chromophoric centers in the polymer molecular structure and by using highly purified monomers. The resulting lightly colored to colorless polyimide films have been characterized by UV-visible and infrared spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. After irradiation, the films were found to be 2 to 2.5 times more transparent than commercial polyimide film of the same thickness.

  15. Polyimides and Process for Preparing Polyimides Having Thermal-Oxidative Stability

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2001-01-01

    Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having formula with an R1 group of either hydrogen or an alkyl radical of one to four carbons, an R2 group of either OH, NH2, F, or Cl radical, an R3 group of either H, OH, NH2, F, Cl or an alkylene radical, an R4 group of either an alkyl, aryl, aryloxy, nitro, F, or Cl radical, and/or an R5 group of either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepegs and PMR composites.

  16. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  17. A tough performance simultaneous semi-interpenetrating polymer network

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1989-01-01

    A semi-interpenetrating polyimide (semi-IPN) network and methods for making and using the same are disclosed. The semi-IPN system comprises a high performance thermosetting polyimide having an acetylene-terminated group acting as a crosslinking site and a high performance linear thermoplastic polyimide. The polymer is made by combining low viscosity precursors and low molecular weight polymers of the thermosetting and thermoplastic polyimides and allowing them to react in the immediate presence of each other to form a simultaneous semi-interpenetrating polyimide network. Provided is a high temperature system having significantly improved processability and damage tolerance while maintaining excellent thermo-oxidative stability, mechanical properties and resistance to humidity, when compared with the commercial high temperature resin, Thermid 600. This material is particularly adapted for use as a molding, adhesive and advanced composite matrix for aerospace structural and electronic applications.

  18. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  19. Advanced Polymers Containing the Phenyltrifluoroethylidene Connecting Group

    NASA Technical Reports Server (NTRS)

    Alstron, William B.; Sivko, Gloria S.

    2006-01-01

    A new, lower cost fluorinated dianhydride based on the phenyltrifluoroethylidene (3F) connecting linkage was invented by the principal author in the early 1980's. New 3F condensation and addition cured polyimides were synthesized with the newly discovered 3F dianhydride and the previously known 3F diamine. As controls, polyimides based on the somewhat analogous higher cost hexafluoroisopropylidene (6F) linkage were also prepared. The short term thermal oxidative stability (TOS), determined by thermal gravimetric analysis (TGA), and the glass transition temperatures (Tg) of 3F dianhydride polyimides were found to be similar to 6F dianhydride polyimides, but the Tg was slightly higher for 3F diamine polyimides than 6F diamine polyimides. Unfortunately, in real time testing, long term TOS of 3F polymers was clearly inferior to 6F polymers. This was due to a 3 to 5 fold greater rate of loss of trifluoromethyl group from 3F versus 6F linkages. However, at shorter times or lower temperatures, 3F TOS was almost comparable to 6F TOS. The wide scope of the 3F technology was also demonstrated to have distinct unique advantages over 6F technology through the use of the 3F pendant phenyl ring as a synthetic site to introduce other functional groups. These groups have been used for the control or modification of polymer properties; an advantage lacking within 6F technology. The synthetic ease by which 3F can be introduced into various types of monomers has lead to the explosion of advanced 3F polyimides and other high performance advanced 3F polymers in the prior decade of 3F polymer literature as cited herein; covering polyimides, substituted polyimides, at least ten types of nonpolyimide 3F polymer modifications, and also the government's nine 3F U.S. patents and corporations' nine 3F U.S. patents.

  20. Low-Dielectric Polyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K.; St. Clair, Terry L.; Winfree, William P.; Emerson, Bert R., Jr.

    1989-01-01

    New process developed to produce aromatic condensation polyimide films and coatings having dielectric constants in range of 2.4 to 3.2. Materials better electrical insulators than state-of-the-art commercial polyimides. Several low-dielectric-constant polyimides have excellent resistance to moisture. Useful as film and coating materials for both industrial and aerospace applications where high electrical insulation, resistance to moisture, mechanical strength, and thermal stability required. Applicable to production of high-temperature and moisture-resistance adhesives, films, photoresists, and coatings. Electronic applications include printed-circuit boards, both of composite and flexible-film types and potential use in automotive, aerospace, and electronic industries.

  1. Fire-resistant phosphorus containing polyimides and copolyimides

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A. (Inventor)

    1985-01-01

    Phosphorus-containing polyimides and copolyimides are synthesized in a two-step polycondensation reaction from 1- (diorganooxyphosphonl)methly 2,4- and 2,6-diaminobenzenes and tetracarboxylic anhydride. The diorgano position of the diorganooxyphosphonyl group includes alkyl, such as ethyl, substituted alkyl, such as 2-chloroethyl, and aryl such as phenyl. The tetracarboxylic anhydries include compounds such as pyrometallitic dianhydride and benzophenone tetracarboxylic dianhydride. The glass transition temperature (Tg) of the polyimides is reduced by incorporation of the (dialkoxyphosphonyl)methyl groups. The phosphorus-containing copolyimides show a considerably higher degree of fire-resistance as compared to that of the corresponding common polyimides.

  2. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  3. Polyimides containing pendent trifluoromethyl groups

    NASA Technical Reports Server (NTRS)

    Havens, S. J.; Hergenrother, P. M.

    1993-01-01

    Several new polyimides containing trifluoromethyl groups were prepared from the reaction of various aromatic dianhydrides and two new diamines containing trifluoromethyl groups, 4,4'-bis(3-amino-5-trifluoromethylphenoxy)biphenyl and l,4-bis(3-amino-5-trifluoromethylphenoxy)benzene. The diamines were prepared from the aromatic nucleophilic displacement of the disodium salts of 4,4'-biphenol or hydroquinone with 3,5-dinitrobenzotrifluoride followed by hydrogenation of the resultant dinitro compounds. The thermally cured polyimides exhibited glass transition temperatures between 186 and 262 C. By thermogravimetric analysis, the polyimides exhibited 5 percent weight losses at 484-527 C in nitrogen and 452-506 C in air.

  4. Polyimides: Tribological properties and their use as lubricants

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    Friction, wear, and wear mechanisms of several different polyimide films, solid bodies, composites, and bonded solid lubricant films are compared and discussed. In addition, the effect of such parameters as temperatures, type of atmosphere, contact stress, and specimen configuration are investigated. A friction and wear transition occurs in some polyimides at elevated temperatures and this transition is related to molecular relaxations that occur in polyimides. Friction and wear data from an accelerated test (pin-on-disk) are compared to similar data from an end use test device (plain spherical bearing), and to other polymers investigated in a similar geometry.

  5. Functionalized Silk Materials

    DTIC Science & Technology

    2010-06-10

    properties, such as toughness, biocompatibility and biodegrability. Trends in spider silk-like block copolymer secondary structure and assembly behavior...to construct transistors on ultrathin sheets of polyimide . Briefly, the doped silicon nanomembranes were transfer printed onto a film of polyimide ...layer of polyimide was used to encapsulate the active devices. Dry etching the polymer layers completed the fabrication of an array of isolated

  6. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  7. High temperature adhesives for bonding Kapton

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Slemp, W. S.; Saint Clair, T. L.

    1978-01-01

    Experimental polyimide resins have been developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of 'Kapton'/'Kapton' bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/'Kapton' bondlines were monitored by thermomechanical analysis.

  8. United States Air Force Summer Faculty Research Program - Management Report - 1985.

    DTIC Science & Technology

    1985-12-01

    Properties and Processing of a Dr. Vernon R. Allen Perfluorinated Polyalkylene Linked Polyimide 4 Quantifying Experience in the Cost Dr. Jihad A. Alsadek...Dr. Terrill D. Smith Compounds 127 Studies on Combustion of Liquid Fuel Dr. Siavash H. Sohrab Sprays in Stagnation Flows 128 Monitoring Environmental...Trafton Various Dinitrotoluenes and the Synthesis of Azo Compounds . 125 e 0 Ka 140 A Comparison of Measured and Calculated Dr. Larry Vardiman

  9. Composition and Process for Retarding the Premature Aging of PMR Monomer Solutions and PMR Prepegs

    NASA Technical Reports Server (NTRS)

    Alston, William B. (Inventor); Gahn, Gloria S. (Inventor)

    2000-01-01

    Polyimides are derived from solutions of at least one low-boiling organic solvent, e.g. isopropanol containing a mixture of polyimide-forming monomers. The monomeric solutions have an extended shelf life at ambient (room) temperatures as high as 80 C, and consist essentially of a mixture of monoalkyl ester-acids, alkyl diester-diacids and aromatic polyamines wherein the alkyl radicals of the esteracids are derived from lower molecular weight aliphatic secondary alcohols having 3 to 5 carbon atoms per molecule such as isopropanol, secondary butanol, 2-methyl-3-butanol, 2 pentanol or 3-pentanol. The solutions of the polyimide-forming monomers have a substantially improved shelf-life and are particularly useful in the aerospace and aeronautical industry for the preparation of polyimide reinforced fiber composites such as the polyimide cured carbon composites used in jet engines, missiles, and for other high temperature applications.

  10. Development of design data for graphite reinforced epoxy and polyimide composites

    NASA Technical Reports Server (NTRS)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  11. Surface Modification of Polyimide for Improving Adhesion Strength by Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Byun, Tae Joon; Kim, Sung Il; Kim, Youn Joon; Choi, Yoon Suk; Choi, In Sik; Setsuhara, Yuichi; Geon Han, Jeon

    2009-08-01

    This study examined the effect of an inductively coupled plasma (ICP) treatment using an argon and helium gas mixture on the adhesion between polyimide and a copper film. Optical emission spectroscopy (OES) of the ICP revealed the emission intensity of helium and argon at various intensities with the helium mixing ratio. The treated polyimide surface was analyzed using a contact angle analyzer, Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The contact angle and RMS roughness ranged from 66 to 31° and 2.3 to 4.1 nm, respectively. XPS showed an increase in C-O bonding. The highest peel strength was 0.43 kgf/cm at a 40% of helium mixing ratio, which contained the highest level of activate species. Overall, an ICP treatment of a polyimide surface with a 40% helium gas mixture improves the adhesion strength between copper and polyimide significantly.

  12. Study of the technics of coating stripping and FBG writing on polyimide fiber

    NASA Astrophysics Data System (ADS)

    Song, ZhiQiang; Qi, HaiFeng; Ni, JiaSheng; Wang, Chang

    2017-10-01

    Compared with ordinary optical fiber, polyimide fiber has the characteristics of high temperature resistance and high strength, which has important application in the field of optical fiber sensing. The common methods of polyimide coating stripping were introduced in this paper, including high temperature stripping, chemical stripping and arc ablation. In order to meet the requirements of FBG writing technology, a method using argon ion laser ablation coating was proposed. The method can precisely control the stripping length of the coating and completely does not affect the tensile strength of the optical fiber. According to the experiment, the fabrication process of polyimide FBG is stripping-hydrogen loadingwriting. Under the same conditions, 10 FBG samples were fabricated with good uniformity of wavelength bandwidth and reflectivity. UV laser ablation of polyimide coating has been proved to be a safe, reliable and efficient method.

  13. Low toxicity high temperature PMR polyimide

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  14. High-Performance Polyimide Powder Coatings

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Much of the infrastructure at Kennedy Space Center and other NASA sites has been subjected to outside weathering effects for more than 40 years. Because much of this infrastructure has metallic surfaces, considerable effort is continually devoted to developing methods to minimize the effects of corrosion on these surfaces. These efforts are especially intense at KSC, where offshore salt spray and exhaust from Solid Rocket Boosters accelerate corrosion. Coatings of various types have traditionally been the choice for minimizing corrosion, and improved corrosion control methods are constantly being researched. Recent work at KSC on developing an improved method for repairing Kapton (polyimide)-based electrical wire insulation has identified polyimides with much lower melting points than traditional polyimides used for insulation. These lower melting points and the many other outstanding physical properties of polyimides (thermal stability, chemical resistance, and electrical properties) led us to investigate whether they could be used in powder coatings.

  15. Prototype rigid polyimide components. [application of Apollo technology to commercial nonflammable materials

    NASA Technical Reports Server (NTRS)

    Wykes, D. H.

    1975-01-01

    The activity is reported which was conducted for utilizing spin-off Apollo base technology to fabricate a variety of commercial and aerospace related parts that are nonflammable and resistant to high-temperature degradation. Manufacturing techniques and the tooling used to fabricate each of the polyimide/glass structures is discussed. A brief history, tracing the development of high-temperature polyimide resins, is presented along with a discussion of the properties of DuPont's PI 2501/glass material (later redesignated PI 4701/glass). Mechanical and flammability properties of DuPont's PI 2501/glass laminates are compared with epoxy, phenolic, and silicone high-temperature resin/glass material systems. Offgassing characteristics are also presented. A discussion is included of the current developments in polyimide materials technology and the potential civilian and government applications of polyimide materials to reduce fire hazards and increase the survivability of men and equipment.

  16. Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M.; Watson, Kent A.; Smith, Joseph G., Jr.; Clancy, Thomas C.; Connell, John W.

    2006-01-01

    Novel aromatic/aliphatic polyimides were prepared from 2,7-diamino-9,9'- dioctylfluorene (AFDA) and aromatic dianhydrides. Upon investigating the effectiveness of these polyimides for dispersing single wall carbon nanotubes (SWNTs) in solution, three were discovered to disperse SWNTs in N,N-dimethylacetamide (DMAc). Two of these polyimides, one from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and one from symmetric 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), were used to prepare nanocomposites. Homogeneous polyimide/SWNT suspensions from both polymers were used in the preparation of films and fibers containing up to 1 wt% SWNTs. The samples were thermally treated to remove residual solvent and the films were characterized for SWNT dispersion by optical and high resolution scanning electron microscopy (HRSEM). Electrical and mechanical properties of the films were also determined. Electrospun fibers were examined by HRSEM to characterize SWNT alignment and orientation.

  17. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer

    PubMed Central

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-01-01

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm2/Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 105. Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles. PMID:27876893

  18. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer.

    PubMed

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-11-23

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O 2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm 2 /Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 10 5 . Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles.

  19. Microelectrodes with Three-Dimensional Structures for Improved Neural Interfacing

    DTIC Science & Technology

    2001-10-25

    highly xible bio-interfaces [2]. Polyimides combine excellent ectrical and mechanical characteristics with biocompatibility ], and are well known in...excellent biocompatibility , polyimide -based electrodes promise for fabrication of long-term implants for the use in prostheses. The flexible structures...R. R. Richardson, J. A. Miller, and W. M. Reichert, " Polyimides as Biomaterials - Preliminary Biocompatibility Testing," Biomaterials, vol. 14, pp

  20. Polyimide matrix resins for up to 700 deg F service

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Chang, G. E.; Powell, S. H.; Green, H. E.

    1985-01-01

    TRW is in the process of data accumulation that strongly indicates that incorporation of the perfluorsisopropylidene linkage in molecular structures other than those employed in DU Pont's NR-150B polyimides likewise yield polymers demonstrating extremely high thermo-oxidative stability. Polyimide synthetic and characterization studies conducted to date on new polymers incorporating the perfluoroisopropylidene linkage are presented and discussed.

  1. LARC-TPI and new thermoplastic polyimides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, A.; Ohta, M.

    1987-02-01

    The LARC-TPI linear thermoplastic polyimide has been developed by NASA for high temperature adhesive applications in aerospace structures in the forms of varnish, films, powders, and prepregs. LARC-TPI improves adhesive processability and lowers glass transition temperature, while retaining mechanical, thermal and electrical properties inherent in the polyimides. It may be used as a structural adhesive for metals, composites, ceramics, and films. 8 references.

  2. Characterization of a thermally imidized soluble polyimide film

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Davis, Judith R. J.; Chang, A. C.; Richardson, John N.

    1989-01-01

    A soluble aromatic poly(amic acid) film was converted to a soluble polyimide by staging at 25 deg intervals to 325 C and characterized at each interval by several analytical methods. The behavior observed was consistent with an interpretation that a reduction occurred in molecular weight of the poly(amic acid) during the initial stages of cure before the ultimate molecular weight was achieved as a polyimide. This interpretation was supported by the results of solution viscosity, gel permeation chromatography, low angle laser light scattering photometry and infrared spectroscopy analysis. The results serve to increase the fundamental understanding of how polyimides are thermally formed from poly(amic acids).

  3. The mechanical properties of polyimide films after exposure to high pH

    NASA Technical Reports Server (NTRS)

    Croall, Catharine I.; St.clair, Terry L.

    1992-01-01

    Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.

  4. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  5. A new readily processable polyimide

    NASA Technical Reports Server (NTRS)

    Harris, F. W.; Beltz, M. W.; Hergenrother, P. M.

    1986-01-01

    As part of an effort to develop tough solvent resistance thermoplastics for potential use as structural resins on aerospace vehicles, a new processable polyimide was evaluated. The synthesis involved the reaction of a new diamine, 1,3-bis 2-(3-aminophenoxy)ethyl ether, with 3,3',4,4'-benzophenonetetracarboxylic dianhydride to form the polyamic acid and subsequent conversion of it to the polyimide. Various physical properties such as thermal stability, solvent resistance, glass transition temperature, crystalline melt temperature, melt viscosity and mechanical properties such as fracture toughness, adhesive, film and composite properties are reported. Of particular interest is the extremely high titanium to titanium tensile shear strength obtained for this polyimide.

  6. Effect of using polyimide capillaries during thermal experiments on the particle size distribution of supported Pt nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gámez-Mendoza, Liliana; Resto, Oscar; Martínez-Iñesta, María

    2015-09-20

    Kapton HN-type polyimide capillaries are commonly used as sample holders for transmission X-ray experiments at temperatures below 673 K because of their thermal stability, high X-ray transmittance and low cost. Using high-angle annular dark field scanning high-resolution transmission electron microscopy and thermogravimetric analysis, this work shows that using polyimide capillaries leads to the overgrowth of supported Pt nanoparticles during reduction at temperatures below the glass transition temperature (T g= 658 K) owing to an outgassing of water from the polyimide. Quartz capillaries were also studied and this overgrowth was not observed.

  7. Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Itotia, Isaac K.; Drayton, Rhonda Franklin

    2003-01-01

    Measured and modeled propagation characteristics of Finite Ground Coplanar (FGC) waveguide fabricated on a 15 ohm-cm Si substrate with a 23 micron thick, 68% porous Si layer and a 20 micron thick polyimide interface layer are presented for the first time. Attenuation and effective permittivity as function of the FGC geometry and the bias between the center conductor and the ground planes are presented. It is shown that the porous Si reduces the attenuation by 1 dB/cm compared to FGC lines with only polyimide interface layers, and the polyimide on porous silicon demonstrates negligible bias dependence.

  8. Fiber study involving a polyimide matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, R.J.; Rommel, M.; Hinkley, J.A.

    1996-12-31

    Mechanical properties are presented for eight different intermediate modulus carbon fiber/ polyimide matrix composites. Two unsized carbon fibers (Thornel T650-42 and Hercules IM9) and two sized carbon fibers (high temperature sized Thornel T650-42 HTS and epoxy sized Toray T1000) were prepregged on the NASA LaRC Multipurpose Tape Machine using the NASA LaRC developed polyimide resin matrix, LaRC{trademark}-PETI-5, and the DuPont developed Avitnid{reg_sign} R1-16. Composite panels fabricated from these prepregs were evaluated to determine their mechanical properties. The data show the effects of using sized fibers on the processing and mechanical properties of polyimide composites.

  9. Surface modification of polyimide gate insulators for solution-processed 2,7-didecyl[1]benzothieno[3,2-b][1]benzothiophene (C10-BTBT) thin-film transistors.

    PubMed

    Jang, Kwang-Suk; Kim, Won Soo; Won, Jong-Myung; Kim, Yun-Ho; Myung, Sung; Ka, Jae-Won; Kim, Jinsoo; Ahn, Taek; Yi, Mi Hye

    2013-01-21

    The surface property of a polyimide gate insulator was successfully modified with an n-octadecyl side-chain. Alkyl chain-grafted poly(amic acid), the polyimide precursor, was synthesized using the diamine comonomer with an alkyl side-chain. By adding a base catalyst to the poly(amic acid) coating solution, the imidization temperature of the spin-coated film could be reduced to 200 °C. The 350 nm-thick polyimide film had a dielectric constant of 3.3 at 10 kHz and a leakage current density of less than 8.7 × 10(-10) A cm(-2), while biased from 0 to 100 V. To investigate the potential of the alkyl chain-grafted polyimide film as a gate insulator for solution-processed organic thin-film transistors (TFTs), we fabricated C(10)-BTBT TFTs. C(10)-BTBT was deposited on the alkyl chain-grafted polyimide gate insulator by spin-coating, forming a well-ordered crystal structure. The field-effect mobility and the on/off current ratio of the TFT device were measured to be 0.20-0.56 cm(2) V(-1) s(-1) and >10(5), respectively.

  10. Optically transparent/colorless polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Stclair, T. L.; Slemp, W.; Ezzell, K. S.

    1985-01-01

    Several series of linear aromatic polyimide films have been synthesized and characterized with the objective of obtaining maximum optical transparency. Two approaches have been used as part of this structure-property relationship study. The first approach is to vary the molecular structure so as to separate chromophoric centers and reduce electronic interactions between polymer chains to lower the intensity of color in the resulting polymer films. A second and concurrent approach is to perform polymerizations with highly purified monomers. Glass transition temperatures of thermally cured polyimide films are obtained by thermomechanical analysis and thermal decomposition temperatures are determined by thermogravimetric analysis. Transmittance UV-visible spectra of the polyimide films are compared to that of a commercial polyimide film. Fully imidized films are tested for solubility in common organic solvents. The more transparent films prepared in this study are evaluated for use on second-surface mirror thermal control coating systems. Lightly colored to colorless films are characterized by UV-visible spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. The effects of monomer purity, casting solvent and cure atmosphere on polyimide film transparency are also investigated.

  11. Reducing Stiffness and Electrical Losses of High Channel Hybrid Nerve Cuff Electrodes

    DTIC Science & Technology

    2001-10-25

    Electrodes were developed. These electrodes consisted of a micromachined polyimide -based thin-film structure with integrated electrode contacts and...electrodes, mechanical properties were enhanced by changing the method of joining silicone and polyimide from using one part silicone adhesive to...gold, platinum, platinum black, polyimide , silicone, polymer bonding I. INTRODUCTION Cuff-type electrodes are probably the most commonly used neural

  12. Viscoelasticity and Creep Recovery of Polyimide Thin Films

    DTIC Science & Technology

    1990-06-01

    3931; (617) 253-0292. Accesion For NTIS CRA&I DTIC TAB Unannounced 0 JuslfIcation .... ’ ry (I’. . ,* VISCOELASTICITY AND CREEP RECOVERY OF POLYIMIDE...polyimide is subjected to sustained loads. Viscoelastic properties of materials are traditionally measured by uniaxial tests [4]. Creep, stress...structure The membrane fabrication and analysis is implemented in the environment of a previously reported CAD architecture [7,81, which uses a

  13. Polyimide-glass multilayer printed wiring boards

    NASA Astrophysics Data System (ADS)

    Lula, J. W.

    1984-07-01

    Multilayer printed wiring boards (PWBs) from a polyimide/glass reinforced copper clad laminate and prepreg were manufactured. A lamination cycle and innerlayer copper surface treatment that gave satisfactory delamination resistance at soldering temperatures were developed. When compared to similar epoxy/glass multilayer PWBs, the polyimide PWBs had higher thermal stability, greater resistance to raised lands, fewer plating voids, less outgassing, and adhesion that was equivalent to urethane foam encapsulants.

  14. Thin Films Protect Electronics from Heat and Radiation

    NASA Technical Reports Server (NTRS)

    2013-01-01

    While Anne St. Clair worked on high performance polyimides at Langley Research Center, she noticed that some of the films were nearly colorless. The polyimides became known as LaRC-CP1 and LaRC-CP2, and were licensed by NeXolve Corporation, based in Huntsville, Alabama. Today, NeXolve provides polyimide film products to commercial customers for spacecraft, telescopes, and circuit boards.

  15. Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia

    2016-07-01

    Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are given. The report also presents the results of computer simulation of protons and oxygen atoms interaction with polyimide, and a comparison of the experimental and calculated data.

  16. High Performance Composites and Adhesives for V/STOL Aircraft.

    DTIC Science & Technology

    1984-02-22

    out to examine the effect of humidity and out-time on the processing behavior and the mechanical properties of C-10/T-300 composites. 39 M&ffcici...stored at room temperature in two separate environmental chambers, controlled at l6% and 95/« relative humidity , respective- ly. At the end of every...NBS Special Publication 563, 17 (Oct 1979). " Effects of Prepreg Out-time and Humidity on the Composition and Processing of Polyimide/Graphite

  17. LDEF polymeric materials: A summary of Langley characterization

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

    1995-01-01

    The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

  18. Tilted Liquid Crystal Alignment on Asymmetrically Grooved Porous Alumina Film

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Hiroshima, Kohki

    2005-06-01

    This paper reports the achievement of tilted liquid crystal (LC) alignment on an anodic porous alumina (APA) film using microgrooves with asymmetric shapes and dozens of minute pores. The microgrooves with asymmetric shapes were formed by a rubbing technique. The minute pores were then produced by anodization. The LC pretilt angle was controlled by the shapes of the microgrooves and pores. The LC director was orientated in the same inclining direction as that of a rubbed polyimide (PI) film. The pretilt angle was in the range of 20 to 90°. This tilted LC alignment remains very stable against external forces such as thermal shock and intense light.

  19. The development of autoclave processable, thermally stable adhesives for titanium alloy and graphite composite structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.

    1971-01-01

    The A-type polyimide adhesive resin P11B was modified by use of mixed diamines (thio-dianiline and meta phenylene diamine) which provided the desired autoclave processability. This new resin was termed P11BA. It was shown that copolymeric blends of P11BA and Amoco AI-1137 amide-imide resin provided improved adhesive properties when autoclave processed over the properties obtained previously by press bonding with P11B based copolymeric blended adhesives. Properties of bonded assemblies are presented for long-term aging at both elevated and low temperatures, and also stress-rupture tests at elevated temperature.

  20. Method of Forming a Composite Coating with Particle Materials that are Readily Dispersed in a Sprayable Polyimide Solution

    NASA Technical Reports Server (NTRS)

    Tran, Sang Q. (Inventor)

    1998-01-01

    A method for creating a composite form of coating from a sprayable solution of soluble polyimides and particle materials that are uniformly dispersed within the solution is described. The coating is formed by adding a soluble polyimide to a solvent, then stirring particle materials into the solution. The composite solution is sprayed onto a substrate and heated in an oven for a period of time in order to partially remove the solvent. The process may be repeated until the desired thickness or characteristic of the coating is obtained. The polyimide is then heated to at least 495 F, so that it is no longer soluble.

  1. Room Temperature Halogenation of Polyimide Film Surface using Chlorine Trifluoride Gas

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Kosuga, Takahiro; Koike, Kunihiko; Aida, Toshihiro; Takeuchi, Takashi; Aihara, Masahiko

    2004-02-01

    In order to develop a new application of chlorine trifluoride gas, the halogenation of a polyimide film surface at room temperature and at atmospheric pressure is studied for the first time. The polyimide film surface after exposure to the chlorine trifluoride gas shows a decreased water contact angle with increasing chlorine trifluoride gas concentration and exposure period. Since both X-ray photoelectron spectroscopy and infrared absorption spectroscopy simultaneously showed the formation of a carbon-chlorine bond and carbon-fluorine bond, it is concluded that the chlorine trifluoride gas can easily and safely perform the halogenation of the polyimide film surface under the stated conditions using a low-cost process and equipment.

  2. Surface modification of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors.

    PubMed

    Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye

    2013-06-11

    We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.

  3. Analysis of the Barrier Properties of Polyimide-Silicate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Johnston, J. Chris; Inghram, Linda; McCorkle, Linda; Silverman, Edward

    2003-01-01

    Montmorillonite clay was organically modified and dispersed into a thermoplastic (BPADA-BAPP) and a thermosetting (PMR-15) polyimide matrix. The barrier properties of the neat resins and the nanocomposites were evaluated. Reductions in gas permeability and water absorption were observed in thermoplastic polyimide nanocomposites. The thermosetting polyimide showed a reduction in weight loss during isothermal aging at 288 C. Carbon fabric (T650-35, 8 HS, 8 ply) composites were prepared using both the BPADE-BAPP and PMR-15 based nanocomposites. Dispersion of the layered silicate in the BPADA-BAPP matrix reduced helium permeability by up to 70 percent. The PMR-15/ silicate nanocomposite matrix had an increase in thermal oxidative stability of up to 25 percent.

  4. The electrical conductivities of polyimide and polyimide/Li triflate composites: An a.c. impedance study

    NASA Astrophysics Data System (ADS)

    Aziz, Nor Diyana Abdul; Kamarulzaman, Norlida; Subban, Ri Hanum Yahaya; Hamzah, Ahmad Sazali; Ahmed, Azni Zain; Osman, Zurina; Rusdi, Roshidah; Kamarudin, Norashikin; Mohalid, Norhanim; Romli, Ahmad Zafir; Shaameri, Zurina

    2017-09-01

    Polymer electrolytes have been an essential area of research for many decades. One of the reasons was the need to find new electrolyte materials suitable for device applications like solid-state batteries, supercapacitors, fuel cells, etc. with enhanced characteristics. For more than 40 years, polyimide has been known as a super-engineering plastic due to its excellent thermal stability (Tg > 250 °C) and mechanical properties. Therefore, in an effort to develop new polymer electrolytes, polyimide as a polymer matrix was chosen. Composite films of the polymer doped with lithium salt, LiCF3SO3 was prepared. These PI based polymer electrolyte films were investigated by the alternating current (a.c.) impedance spectroscopy method in the temperature range from 300 K to 373 K. It was observed that conductivity increased with the increase of temperature and amount of doping salt. Alternatively, the activation energy (Ea) of the composite films decreased with the increase of the doping salt, LiCF3SO3.

  5. Study on Thermal Conductivities of Aromatic Polyimide Aerogels.

    PubMed

    Feng, Junzong; Wang, Xin; Jiang, Yonggang; Du, Dongxuan; Feng, Jian

    2016-05-25

    Polyimide aerogels for low density thermal insulation materials were produced by 4,4'-diaminodiphenyl ether and 3,3',4,4'-biphenyltetracarboxylic dianhydride, cross-linked with 1,3,5-triaminophenoxybenzene. The densities of obtained polyimide aerogels are between 0.081 and 0.141 g cm(-3), and the specific surface areas are between 288 and 322 m(2) g(-1). The thermal conductivities were measured by a Hot Disk thermal constant analyzer. The value of the measured thermal conductivity under carbon dioxide atmosphere is lower than that under nitrogen atmosphere. Under pressure of 5 Pa at -130 °C, the thermal conductivity is the lowest, which is 8.42 mW (m K)(-1). The polyimide aerogels have lower conductivity [30.80 mW (m K)(-1)], compared to the value for other organic foams (polyurethane foam, phenolic foam, and polystyrene foam) with similar apparent densities under ambient pressure at 25 °C. The results indicate that polyimide aerogel is an ideal insulation material for aerospace and other applications.

  6. Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yao, Dahua; Yang, Yu; Deng, Yonghong; Wang, Chaoyang

    2018-03-01

    A series of polyimides, which contain polyethylene glycol (PEG) segments with different molecular weight in the polymer chains, are synthesized through a facile one-pot method and characterized by Fourier transform infrared spectroscopy and hydrogen nuclear magnetic resonance spectroscopy. The main part of polyimides is originated from trimellitic anhydride chloride (TMAC) and 4,4‧-methylenedianiline, onto which PEG segments are introduced through an esterification reaction with TMAC. These obtained polyimides, which acquire excellent water solubility after being neutralized by triethylamine, are applied as water-soluble binders to silicon negative electrodes for lithium ion batteries, and significantly improve the electrochemical performance of silicon anodes. Specially, the PI-200 (polyimide copolymerized with PEG-200) based silicon electrode exhibits a high initial discharge capacity of 2989.7 mAh g-1 and remains about 2235.5 mAh g-1 after 200 cycles at the current density of 0.1 C (420 mA g-1).

  7. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  8. Process for preparing essentially colorless polyimide film containing phenoxy-linked diamines

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Stclair, T. L.

    1986-01-01

    A polyimide film that is approximately 90% transparent at 500 nm, useful for thermal protective coatings and solar cells, and the processes for preparing the same by thermal and chemical conversion are disclosed. An essential feature for achieving maximum optical transparency films requires utilizing recrystallized and/or sublimated specific aromatic diamines and dianhydride monomers and introducing phenoxy or thiophenyl separator groups and isomeric m,m' or o,p'-oriented diamines into the polymer molecular structure. The incorporation of these groups in the polymer structure serves to separate the chromaphoric centers and reduce the formation of inter-chain and intra-chain charge transfer complexes which normally cause absorptions in the UV-visible range. The films may be obtained by hand, brushing, casting, or spraying a layer of polyamic acid solutions onto a surface and thermally converting the applied layer to the polyimide, or the polyamic acid solution can be chemically converted to the polyimide, subsequentially dissolved in an organic solvent, and applied as a polyimide film layer with the solvent therein thermally removed.

  9. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  10. Spectroscopic investigation of different concentrations of the vapour deposited copper phthalocyanine as a "guest" in polyimide matrix.

    PubMed

    Georgiev, Anton; Yordanov, Dancho; Dimov, Dean; Assa, Jacob; Spassova, Erinche; Danev, Gencho

    2015-04-05

    Nanocomposite layers 250 nm copper phthalocyanine/polyimide prepared by simultaneous vapour deposition of three different sources were studied. Different concentrations of copper phthalocyanine as a "guest" in polyimide matrix as a function of conditions of the preparation have been determined by FTIR (Fourier Transform Infrared) and UV-VIS (Ultraviolet-Visible) spectroscopies. The aim was to estimate the possibility of the spectroscopic methods for quantitative determination of the "guest" and compare with the quality of the polyimide thin films in relation to the "guest" concentration. The band at 1334 cm(-1) has been used for quantitative estimation of "guest" in polyimide matrix. The concentrations of the copper phthalocyanine less than 20% require curve fitting techniques with Fourier self deconvolution. The relationship between "guest" concentrations and degree of imidization, as well as the electronic UV-VIS spectra are discussed in relation to the composition, imidization degree and the two crystallographic modification of the embedded chromophore. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe

    1996-01-01

    Thermoset and thermoplastic polyimides have complementary physical and mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. A combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPN) of thermoset LaRC(TM)-RP46 and thermoplastic LaRC(TM)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0:100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical and mechanical properties. As expected, positronium atoms are not formed in these samples. The second lifetime component has been used to infer the positron trap dimensions. The 'free volume' goes through a minimum at a ratio of about 50:50, and this suggests that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples are discussed.

  12. High temperature resin matrix composites for aerospace structures

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  13. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    PubMed

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  14. Thermostability of Hybrid Thermoelectric Materials Consisting of Poly(Ni-ethenetetrathiolate), Polyimide and Carbon Nanotubes

    PubMed Central

    Oshima, Keisuke; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki

    2017-01-01

    Three-component organic/inorganic hybrid films were fabricated by drop-casting the mixed dispersion of nanodispersed-poly(nickel 1,1,2,2-ethenetetrathiolate) (nano-PETT), polyimide (PI) and super growth carbon nanotubes (SG-CNTs) in N-methylpyrrolidone (NMP) at the designed ratio on a substrate. The dried nano-PETT/PI/SG-CNT hybrid films were prepared by the stepwise cleaning of NMP and methanol, and were dried once more. The thermoelectric properties of Seebeck coefficient S and electrical conductivity σ were measured by a thin-film thermoelectric measurement system ADVANCE RIKO ZEM-3M8 at 330–380 K. The electrical conductivity of nano-PETT/PI/SG-CNT hybrid films increased by 1.9 times for solvent treatment by clearing insulated of polymer. In addition, the density of nano-PETT/PI/SG-CNT hybrid films decreased 1.31 to 0.85 g·cm−3 with a decrease in thermal conductivity from 0.18 to 0.12 W·m−1·K−1. To evaluate the thermostability of nano-PETT/PI/SG-CNT hybrid films, the samples were kept at high temperature and the temporal change of thermoelectric properties was measured. The nano-PETT/PI/SG-CNT hybrid films were rather stable at 353 K and kept their power factor even after 4 weeks. PMID:28773182

  15. Effect of fiber reinforcement on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1992-01-01

    A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  16. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    DTIC Science & Technology

    2006-09-01

    aqueous in vivo-like surrounding15-18 to entrap both the redox polymer and glucose oxidase on polyimide sheets. We have used biocompatible PEG-DA hydrogel...arrays were fabricated on gold electrodes on flexible polyimide sheets by cross-linking glucose oxidase and redox polymer using UV-initiated free...cyclic voltammetry. We have fabricated an array of glucose sensors on flexible polyimide sheets that exhibit the desired linear response in the

  17. Electrically conductive polyimides containing silver trifluoroacetylacetonate

    NASA Technical Reports Server (NTRS)

    Rancourt, James D. (Inventor); Stoakley, Diane M. (Inventor); Caplan, Maggie L. (Inventor); St. Clair, Anne K. (Inventor); Taylor, Larry T. (Inventor)

    1996-01-01

    Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.

  18. Electro-optical and physic-mechanical properties of colored alicyclic polyimide

    NASA Astrophysics Data System (ADS)

    Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.

    2016-09-01

    Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.

  19. 2,2-Bis[(2-halo-4-aminophenoxy)phenyl]-hexafluoropropane

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1985-01-01

    There are provided the aromatic diamines 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane, where the attached ortho halogen is preferably chlorine, and 4,4'-bis(4-aminophenoxy)biphenyl, as novel monomers for polyimide polymerizations. The former, when reacted with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, provides a polyimide having exceptional high-temperature performance. The latter diamine is a low-cost monomer for polyimide production.

  20. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  1. Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine

    1997-01-01

    This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.

  2. Atomic Oxygen Effects on POSS Polyimides

    DTIC Science & Technology

    2011-07-25

    resistance to UV damage, and excellent thermal properties.1 Despite the desirable properties of Kapton, this polyimide and all organic polymeric materials...stability, insulation properties, IR transparency, low solar absorptance, resistance to UV damage, and excellent thermal properties.1 Despite the...8 × 1021 atoms cm-2. Free standing films of MC-POSS polyimide were sewn to a Kapton blanket and exposed to a sweeping ram in LEO on MISSE-5

  3. Gas Permeation Properties of Soluble Aromatic Polyimides Based on 4-Fluoro-4,4'-Diaminotriphenylmethane

    PubMed Central

    Guzmán-Lucero, Diego; Froylán Palomeque-Santiago, Jorge; Camacho-Zúñiga, Claudia; Ruiz-Treviño, Francisco Alberto; Guzmán, Javier; Galicia-Aguilar, Alberto; Aguilar-Lugo, Carla

    2015-01-01

    A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180–200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0–1.3 dL/g). All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients) toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing. PMID:28788041

  4. Gas Permeation Properties of Soluble Aromatic Polyimides Based on 4-Fluoro-4,4'-Diaminotriphenylmethane.

    PubMed

    Guzmán-Lucero, Diego; Palomeque-Santiago, Jorge Froylán; Camacho-Zúñiga, Claudia; Ruiz-Treviño, Francisco Alberto; Guzmán, Javier; Galicia-Aguilar, Alberto; Aguilar-Lugo, Carla

    2015-04-21

    A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180-200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0-1.3 dL/g). All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients) toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing.

  5. Polyimide as a versatile enabling material for microsystems fabrication: surface micromachining and electrodeposited nanowires integration

    NASA Astrophysics Data System (ADS)

    Walewyns, Thomas; Reckinger, Nicolas; Ryelandt, Sophie; Pardoen, Thomas; Raskin, Jean-Pierre; Francis, Laurent A.

    2013-09-01

    The interest of using polyimide as a sacrificial and anchoring layer is demonstrated for post-processing surface micromachining and for the incorporation of metallic nanowires into microsystems. In addition to properties like a high planarization factor, a good resistance to most non-oxidizing acids and bases, and CMOS compatibility, polyimide can also be used as a mold for nanostructures after ion track-etching. Moreover, specific polyimide grades, such as PI-2611 from HD Microsystems™, involve a thermal expansion coefficient similar to silicon and low internal stress. The process developed in this study permits higher gaps compared to the state-of-the-art, limits stiction problems with the substrate and is adapted to various top-layer materials. Most metals, semiconductors or ceramics will not be affected by the oxygen plasma required for polyimide etching. Released structures with vertical gaps from one to several tens of μm have been obtained, possibly using multiple layers of polyimide. Furthermore, patterned freestanding nanowires have been synthesized with diameters from 20 to 60 nm and up to 3 μm in length. These results have been applied to the fabrication of two specific devices: a generic nanomechanical testing lab-on-chip platform and a miniaturized ionization sensor.

  6. Synthesis and characterization of fluorinated polyaminoquinones and fluorinated polyimides

    NASA Astrophysics Data System (ADS)

    Vaccaro, Eleonora

    Phenolic and quinonoid compounds are widely studied in biological sciences because of their ability to chelate heavy metals like iron and copper and recently have found new applications in synthetic macromolecules. Amino- p-benzoquinone polymers, poly[(2,5-hexamethylenediamino)-1,4-benzoquinone] and poly {[2,5-(2,2'-bistrifluoromethyl)-4,4' -biphenylenediamino]1,4-benzoquinone}, were synthesized and evaluated as adhesion promoters for steel/epoxy joints. An improvement in the torsional shear strength of these joints was observed when these polymers were used as adhesion promoters. The durability of the adhesive bond was also improved after boiling water treatment, relative to untreated and silane treated joints. The improvement in adhesion could be attributed to the formation of a chelate between the polyaminoquinone (PAQ) and the iron surface and a chemical reaction between the PAQ and the epoxy resin. A low molecular weight model compound, bis[2,5-(4-methylanilido)]-1,4-benzoquinone was also used to study coupling between the epoxy adhesive and the steel surface. Electron spin resonance (ESR), atomic absorption spectroscopy and infrared spectroscopy were used to document the epoxy-coupling agent reaction and the chelate formation. Polyimides have acquired importance in the last twenty years as the most promising macromolecules for high technology applications in new materials. Their good thermo-oxidative stability is well known, as well as their high glass transition temperature. Polyimides are versatile polymers, which can be utilized for a wide range of applications: i.e., as matrices for high performance advanced composite materials, as thin films in electronic applications, as structural adhesives and sealants and as membranes for gas separation. A novel anhydride, 1,1,1-trifluoromethyl-1-pentafluorophenylethylidene-2,2-diphthalic anhydride, 8FDA, was synthesized. Five diamines were used in the synthesis of polyimides, namely p-phenylene diamine, 3,4'-oxydianiline, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2'-bis(trifluoromethyl)benzidine and 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. A variety of structures was achieved, allowing for a thorough determination of the structure/properties relationship. The presence of the pentafluorophenyl substituent in the polyimide backbone imparted more flexibility to the 8F polyimides, as demonstrated by the low glass transition temperatures. The dielectric constant of these 8F polyimides was the lowest ever reported for polyimides. It is believed that the pentafluorophenyl group may increase the free volume and hydrophobicity of the 8F polyimides. The thermo- and thermo-oxidative stability of these 8F polyimides was also studied and appeared to be adequate for high temperature applications.

  7. Photolithography-free laser-patterned HF acid-resistant chromium-polyimide mask for rapid fabrication of microfluidic systems in glass

    NASA Astrophysics Data System (ADS)

    Zamuruyev, Konstantin O.; Zrodnikov, Yuriy; Davis, Cristina E.

    2017-01-01

    Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µm minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µm. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µm in borosilicate glass), feature under etch ratio in isotropic etch (~1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility.

  8. Micro-Fabricated Perforated Polymer Devices for Long-Term Drug Delivery

    DTIC Science & Technology

    2011-02-24

    conventional manufacturing methods. We have used a biocompatible polymer ( polyimide ) to serve as a reservoir and photolithographically produced microholes for...RIE with ICP source was used to etch holes on polyimide surface. Biocompatible materials Ti, SiO2 and SiNx were studied as mask materials. Ti film...used to fabricate micro holes on the surface of polyimide tubes. Several materials have been used to form the etching mask, including titanium film

  9. The characteristics of polyimide photoalignment layer with chalcone derivatives produced by linear polarized UV light

    NASA Astrophysics Data System (ADS)

    Jung, Kyoung Hoon; Hyun, Soon-Young; Song, Dong-Mee; Shin, Dong-Myung

    2003-01-01

    The photoalignment of liquid crystal (LC) molecules located onto polyimide films with chalcone derivatives using linearly polarized UV (LPUV) light is investigated. The LPUV light irradiation generated dimerization products of the chalcones followed by isomerization of the chalcone derivatives. The alignment directions of LC molecules were either homeotropic or planar with respect to plane of polyimide film, depending upon the alkyl chain length attached on the chalcones.

  10. Development of new addition-type composite resins

    NASA Technical Reports Server (NTRS)

    Kray, R. J.

    1981-01-01

    The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.

  11. A High T(sub g) PMR Polyimide Composites (DMBZ-15)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Bowles, Kenneth J.; Papadopoulos, Demitrios S.; Hardy-Green, DeNise; Mccorkle, Linda

    2000-01-01

    A high T(sub g) thermosetting PMR-type polyimide, designated as DMBZ-15, was developed by replacing methylene dianline (MDA) in PMR-15 with 2,2'-dimethylbenzidine. Polyimide/carbon fiber (T650-35) composites were fabricated from a formulation of 3,3', 4,4'-benzophenonetetracarboxylic acid dimethyl ester (BTDE) and 2,2'-dimethylbenzidine (DMBZ), along with nadic ester (NE) as the endcap. DMBZ-15 displays a higher glass transition temperature (T(sub g) = 414 C) than PMR-15 (T(sub g) = 345 C), and thus retains better mechanical properties for brief exposure above 400 C. The physical properties and longterm thermo-oxidative stability of the DMBZ-15 polyimide/carbon fiber composites are also compared to that of PMR-15.

  12. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  13. Novel polyimide compositions based on 4,4': Isophthaloyldiphthalic anaydride (IDPA)

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); Saintclair, Terry L. (Inventor)

    1989-01-01

    A series of twelve high temperature, high performance polyimide compositions based on 4,4'-isophthaloyl diphthalic anhydride (IDPA) was prepared and characterized. Tough, film-forming, organic solvent-insoluble polyimides were obtained. Three materials were semicrystalline. Several gave excellent long-term thermooxidative stability by isothermal thermogravimetric analysis (ITGA) at 300 C and 350 C in air when compared to Kapton H film (duPont). One extensively studied material displayed different levels of semicrystallinity over a wide range of final cure time/temperatures. The polyimide from IDPA and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene exhibited multiple crystallization and melting behavior, implying the existence of two kinetic and two thermodynamic crystallization and melting transitions by differential scanning calorimetry (DSC).

  14. Understanding the Effect of the Dianhydride Structure on the Properties of Semiaromatic Polyimides Containing a Biobased Fatty Diamine

    PubMed Central

    2017-01-01

    In this work we report the effect of the hard block dianhydride structure on the overall properties of partially biobased semiaromatic polyimides. For the study, four polyimides were synthesized using aliphatic fatty dimer diamine (DD1) as the soft block and four different commercially available aromatic dianhydrides as the hard block: 4,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (BPADA), 4,4′-oxidiphthalic anhydride (ODPA), 4,4′-(Hexafluoroisopropylidene) diphthalic anhydride (6FDA), and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA). The polymers synthesized were fully organo-soluble thermoplastic branched polyimides with glass transition temperatures close to room temperature. The detailed analysis took into account several aspects of the dianhydrides structure (planarity, rigidity, bridging group between the phtalimides, and electronic properties) and related them to the results obtained by differential scanning calorimetry, rheology, fluorescence and broadband dielectric spectroscopy. Moreover, the effects of physical parameters (crystallization and electronic interactions) on the relaxation behavior are discussed. Despite the presence of the bulky branched soft block given by the dimer diamine, all polyimides showed intermolecular charge transfer complexes, whose extent depends on the electronic properties of the dianhydride hard block. Furthermore, the results showed that polyimides containing flexible and bulky hard blocks turned out fully amorphous while the more rigid dianhydride (BPDA) led to a nanophase separated morphology with low degree of crystallinity resulting in constrained segmental relaxation with high effect on its mechanical response with the annealing time. This work represents the first detailed report on the development and characterization of polyimides based on a biobased fatty dimer diamine. The results highlight the potential of polymer property design by controlled engineering of the aromatic dianhydride blocks. PMID:29333351

  15. Synthesis of polyimides from α,αʹ-bis(3-aminophenoxy)-p-xylene: Spectroscopic, single crystal XRD and thermal studies

    NASA Astrophysics Data System (ADS)

    Ashraf, Ahmad Raza; Akhter, Zareen; Simon, Leonardo C.; McKee, Vickie; Castel, Charles Dal

    2018-05-01

    The meta-catenated ether-based diamine monomer α,αʹ-bis(3-aminophenoxy)-p-xylene (3APX) was synthesized from dinitro precursor α,αʹ-bis(3-nitrophenoxy)-p-xylene (3NPX). FTIR, 1H and 13C NMR spectroscopic studies accompanied by elemental analysis were performed for structural elucidations of 3NPX and 3APX. The spatial orientations of 3APX were explored by single crystal X-ray diffraction analysis. Its crystal system was found to be monoclinic, adopting the space group P21/c. The synthesized diamine monomer (3APX) was used for preparation of new series of polyimides by reacting with three different dianhydrides (BTDA, ODPA, 6FDA). The relevant copolyimides were developed via incorporation of 4,4ʹ-methylenedianiline (MDA) in the backbone of afore-synthesized polyimides. The structures of polyimides and copolyimides were verified by FTIR and 1H NMR spectroscopic techniques. Their properties were evaluated by dynamic and isothermal TGA (nitrogen and air atmospheres) and WAXRD studies. Polyimides displayed significantly high thermal stability as their degradation started around 400 °C and it was improved further by execution of copolymerization strategy with MDA. The 5% weight loss temperature (T5) of polyimides under nitrogen atmosphere was in the range of 425-460 °C while for copolyimides it increased to 454-498 °C. Thermal decomposition in air was slower than nitrogen between 400 and 550 °C however it was accelerated above 550 °C. Isothermal TGA disclosed that copolyimides have the ability to endure elevated temperatures for extended period. WAXRD analysis showed the amorphous nature of polyimides and copolyimides.

  16. Polyimide Resins Resist Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as additional government-funded testing proved that RP-46 is even more exceptional than originally thought.

  17. Statistical Design in Isothermal Aging of Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Jobe, Marcus; Crane, Elizabeth A.

    1995-01-01

    Recent developments in research on polyimides for high temperature applications have led to the synthesis of many new polymers. Among the criteria that determines their thermal oxidative stability, isothermal aging is one of the most important. Isothermal aging studies require that many experimental factors are controlled to provide accurate results. In this article we describe a statistical plan that compares the isothermal stability of several polyimide resins, while minimizing the variations inherent in high-temperature aging studies.

  18. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  19. Formulation and characterization of polyimide resilient foams of various densities for aircraft seating applications

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Lee, R.; Sorathia, U. A. K.

    1981-01-01

    Light weight, heat and fire resistant low smoke generating polyimide foams are developed for aircraft seating applications. The material is upgraded and classified into groups for fabrication of cushions possessing acceptable comfort properties. Refinement and selection of foaming processes using a variety of previously developd foaming techniques and definition of property relationships to arrive at the selection and classfication of polyimide foams into five groups in accordance with predetermined ILD values are emphasized.

  20. Adhesion and failure analysis of metal-polymer interface in flexible printed circuits boards

    NASA Astrophysics Data System (ADS)

    Park, Sanghee; Kim, Ye Chan; Choi, Kisuk; Chae, Heeyop; Suhr, Jonghwan; Nam, Jae-Do

    2017-12-01

    As device miniaturization in microelectronics is currently requested in the development of high performance device, which usually include highly-integrated metal-polyimide multilayer structures. A redistribution layer (RDL) process is currently emerging as one of the most advance fabrication techniques for on-chip interconnect and packaging. One of the major issues in this process is the poor adhesion of the metal-polyimide interfaces particularly in flexible circuit boards due to the flexibility and bendability of devices. In this study, low pressure O2 plasma treatment was investigated to improve the adhesion of metal-polyimide interfaces, using inductively coupled plasma (ICP) treatment. We identified that the adhesion of metal-polyimide interfaces was greatly improved by the surface roughness control providing 46.1 MPa of shear force in the ball shear test after O2 plasma treatment, compared 14.2 MPa without O2 plasma treatment. It was seemingly due to the fact that the adhesion in metal-polyimide interfaces was improved by a chemical conversion of C=O to C-O bonds and by a ring opening reaction of imide groups, which was confirmed with FT-IR analysis. In the finite element numerical analysis of metal-polyimide interfaces, the O2 plasma treated interface showed that the in-plane stress distribution and the vertical directional deformation agreed well with real failure modes in flexible circuits manufacturing.

  1. Rigid-Rod Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Kinder, James D.; Hull, Diana L.; Youngs, Wiley J.

    1996-01-01

    Experimental polyimides relatively rigid synthesized in effort to exploit some of advantages of rodlike polymers, while alleviating disadvantages. Polymers used to make colorless fibers and transparent films for optical and electronic application.

  2. Thermal cycling tests on surface-mount assemblies

    NASA Astrophysics Data System (ADS)

    Jennings, C. W.

    1988-03-01

    The capability of surface-mount (SM) solder joints to withstand various thermal cycle stresses was evaluated through electrical circuit resistance changes of a test pattern and by visual examination for cracks in the solder after exposure to thermal cycling. The joints connected different electrical components, primarily leadless-chip carriers (LCCs), and printed wiring-board (PWB) pads on different laminate substrates. Laminate compositions were epoxy-glass and polyimide-glass with and without copper/Invar/copper (CIC) inner layers, polyimide-quartz, epoxy-Kevlar, and polyimide-Kevlar. The most resistant joints were between small LCCs (24 and 48 pins) and polyimide-glass laminate with CIC inner layers. Processing in joint formation was found to be an important part of joint resistant. Thermal cycling was varied with respect to both time and temperature. A few resistors, capacitors, and inductors showed opens after 500 30-min cycles between -65 C and 125 C. Appreciable moisture contents were measured for laminate materials, especially those of polyimide-Kevlar after equilibration in 100 percent relative humidity at room temperature. If not removed or reduced, moisture can cause delamination in vapor-phase soldering.

  3. Nuclear Instruments and Methods in Physics Research. Section B; Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe

    1998-01-01

    Thermoset and thermoplastic polyimides have complementary physical/mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. It is expected that a combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPNs) of thermoset LaRC(Trademark)-RP46 and thermoplastic LARC(Trademark)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0: 100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical/mechanical properties. As expected, positronium atoms are not formed in these samples. The second life time component has been used to infer the positron trap dimensions. The "free volume" goes through a minimum at about 50:50 ratio, suggesting that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples have been discussed in this paper.

  4. Epoxy/Glass and Polyimide (LaRC(TradeMark) PETI-8)/Carbon Fiber Metal Laminates Made by the VARTM Process

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Loos, Alfred C.; Jensen, Brian J.; Britton, Sean M.; Tuncol, Goker; Long, Kai

    2010-01-01

    Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems for advanced aerospace applications that can be processed without the use of an autoclave. Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Vacuum assisted resin transfer molding (VARTM) has shown the potential to reduce the manufacturing cost of composite structures. Fiber metal laminates (FML) made via this process with aluminum, glass fabric, and epoxy resins have been previously fabricated at LaRC. In this work, the VARTM process has been refined for epoxy/glass FMLs and extended to the fabrication of FM Ls with titanium/carbon fabric layers and a polyimide system developed at NASA, LARC(TradeMark) PETI-8. Resin flow pathways were introduced into the titanium foils to aid the infiltration of the polyimide resin. Injection temperatures in the range of 250-280 C were required to achieve the necessary VARTM viscosities (<10 Poise). Laminate quality and initial mechanical properties will be presented.

  5. Development of LaRC (TM): IA thermoplastic polyimide coated aerospace wiring

    NASA Technical Reports Server (NTRS)

    Keating, Jack

    1995-01-01

    NASA Langley has invented LaRC(exp TM) IA and IAX which are thermoplastic polyimides with good melting, thermal and chemical resistance properties. It was the objective of this contract to prepare and extrude LaRC (exp TM) polyimide onto aircraft wire and evaluate the polymers performance in this critical application. Based on rheology and chemical resistance studies at Imitec, LaRC (exp TM) IAX melts readily in an extruder, facilitating the manufacture of thin wall coatings. The polyimide does not corode the extruder, develop gel particles nor advance in viscosity. The insulated wire was tested according to MiL-W-22759E test specifications. The resulting wire coated with LaRC (exp TM) IAX displayed exceptional properties: surface resistance, non blocking, non burning, hot fluid resistance, impulse dielectric, insulation resistance, low temperature flexibility, thermal aging, wire weight, dimensions, negligible high temperature shrinkage and stripability. The light weight and other properties merit its application in satellites, missiles and aircraft applications. The extruded IAX results in a polyimide aircraft insulation without seams, outstanding moisture resistance, continuous lengths and abrasion resistance.

  6. Coarse-Grained and Atomistic Modeling of Polyimides

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Hinkley, Jeffrey A.

    2004-01-01

    A coarse-grained model for a set of three polyimide isomers is developed. Each polyimide is comprised of BPDA (3,3,4,4' - biphenyltetracarboxylic dianhydride) and one of three APB isomers: 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene or 1,3-bis(3-aminophenoxy)benzene. The coarse-grained model is constructed as a series of linked vectors following the contour of the polymer backbone. Beads located at the midpoint of each vector define centers for long range interaction energy between monomer subunits. A bulk simulation of each coarse-grained polyimide model is performed with a dynamic Monte Carlo procedure. These coarsegrained models are then reverse-mapped to fully atomistic models. The coarse-grained models show the expected trends in decreasing chain dimensions with increasing meta linkage in the APB section of the repeat unit, although these differences were minor due to the relatively short chains simulated here. Considerable differences are seen among the dynamic Monte Carlo properties of the three polyimide isomers. Decreasing relaxation times are seen with increasing meta linkage in the APB section of the repeat unit.

  7. High T(g) Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy

    2001-01-01

    The use of high temperature polymer matrix composites in aerospace applications has expanded steadily over the past 30 years, due to the increasing demand of replacing metal parts with light weight composite materials for fuel efficiency and bigger payloads in the aircraft and the space transportation vehicles. Polyimide/carbon fiber composites, especially, have been regarded as major high temperature matrix materials, based on their outstanding performance in terms of heat resistance, high strength-to-weight ratio and property retention compared with epoxies (177 C/350 F) and bismaleimides (232 C/450 F). Traditional, then-neoplastic polyimides were prepared from dianhydrides and diamines in N-methyl-2-pyrrolidinone (NMP) at room temperature to form the polyamic acids, which were then imidized at 150 C to yield polyimides. However, the high-boiling solvent (NMP, BP= 202 C) is very difficult to remove, leading to the formation of voids during composite fabrication. In the early 1970's, PMR addition curing polyimides with reactive endcaps were developed at the Lewis Research Center (renamed NASA Glenn) to ensure the easy processing of imide oligomers in methanol during composite fabrication.

  8. Heat, Moisture and Chemical Resistant Polyimide Compositions and Methods for Making and Using Them

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    2004-01-01

    Polyimides having a desired combination of high thermo-oxidative stability, low moisture absorption and excellent chemical and corrosion resistance are prepared by reacting a mixture of compounds including (a) 3,3',4,4'- benzophenonetetracarboxylic dianhydride (BTDA), (b) 3,4'- oxydianiline (3,4'-ODA), and (c) 5-norbornene-2,3- dicarboxylic anhydride (NA) in a high boiling, aprotic solvent to give 5 to 35% by weight of polyamic acid solution. The ratio of (a), (b), and (c) is selected to afford a family of polyimides having different molecular weights and properties. The mixture first forms a polyamic acid precursor. Upon heating at or above 300 C, the polyamic acids form polyimides, which are particularly suitable for use as a high temperature coating, adhesive, thin film, or composite matrix resin.

  9. Surface Texturing of Polyimide Composite by Micro-Ultrasonic Machining

    NASA Astrophysics Data System (ADS)

    Qu, N. S.; Zhang, T.; Chen, X. L.

    2018-03-01

    In this study, micro-dimples were prepared on a polyimide composite surface to obtain the dual benefits of polymer materials and surface texture. Micro-ultrasonic machining is employed for the first time for micro-dimple fabrication on polyimide composite surfaces. Surface textures of simple patterns were fabricated successfully with dimple depths of 150 μm, side lengths of 225-425 μm, and area ratios of 10-30%. The friction coefficient of the micro-dimple surfaces with side lengths of 325 or 425 μm could be increased by up to 100% of that of non-textured surfaces, alongside a significant enhancement of wear resistance. The results show that surface texturing of polyimide composite can be applied successfully to increase the friction coefficient and reduce wear, thereby contributing to a large output torque.

  10. PMR polyimides from solutions containing mixed endcaps

    NASA Technical Reports Server (NTRS)

    Delvigs, P.

    1985-01-01

    Previous studies have shown that partial substitution of p-aminostyrene (PAS) for the monomethylester of endo-5-norbornene-2, 3-dicarboxylic acid (NE) lowered the cure temperature of PMR polyimides from 316 to 260 C, but the modified PMR polyimides required higher compression-molding pressures than state-of-the-art PMR-15. In this study PMR polyimides are prepared employing three encaps: NE, PAS, and endo-N-phenyl-5-norbornene-2,3-dicarboximide (PN). The effect of PN addition on the processing characteristics and glass transition temperatures of graphite fiber-reinforced PMR composites is studied. The room temperature and short-time 316 C mechanical properties of the composites are determined. The weight loss and mechanical property retention characteristics of the composites after exposure in air at 316 C are also determined.

  11. Polyimides Derived from Novel Asymmetric Benzophenone Dianhydrides

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2015-01-01

    This invention relates to the composition and processes for preparing thermoset polyimides derived from an asymmetric dianhydride, namely 2,3,3',4'-benzophenone dianhydride (a-BTDA) with at least one diamine, and a monofunctional terminal endcaps. The monofunctional terminating groups include 4-phenylethynylphthalic anhydride ester-acid derivatives, phenylethyl trimellitic anhydride (PETA) and its ester derivatives as well as 3-phenylethynylaniline. The process of polyimide composite comprises impregnating monomer reactants of dianhydride or its ester-acid derivatives, diamine and with monofunctional reactive endcaps into glass, carbon, quartz or synthetic fibers and fabrics, and then stack up into laminates and subsequently heated to between 150-375.degree. C. either at atmosphere or under pressure to promote the curing and crosslinking of the reactive endcaps to form a network of thermoset polyimides.

  12. Comparison of the tribological properties at 25 C of seven different polyimide films bonded to 301 stainless steel

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    A pin-on-disk type of friction and wear apparatus was used to study the tribological properties of seven different polyimide films bonded to AISI 301 stainless steel disks at 25 C. It was found that the substrate material was extremely influential in determining the lubricating ability of the polyimide films. All seven films spalled in less than 1000 cycles of sliding. This was believed to be caused by poor adherence to the 301 stainless steel or the inability of the films to withstand the high localized tensile stresses imparted by the deformation of the soft substrate under sliding conditions. The friction coefficients obtained for six of the polyimides varied between 0.21 to 0.32 while one varied between 0.32 to 0.39.

  13. Measurement of Microscale Bio-Thermal Responses by Means of a Micro-Thermocouple Probe

    DTIC Science & Technology

    2001-10-25

    3) A silane coupler (VM-652, HD MicroSystems) was applied as a primer for good adhesion of the polyimide coating (Pyralin® PI2556, HD...MicroSystems), which was used as an insulating layer. We also used SiO2 instead of polyimide . (4) A gold (Au) thin film was deposited by means of the ion...sputtering technique. (5) A coating of polyimide /SiO2 was applied. (6) Finally, a coating of MPC (2-methacryloyloxyethyl phosphorylcholine) copolymers

  14. Dielectric Properties of Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Simpson, J. O.; Farmer, B. L.

    1997-01-01

    Molecular modeling and dielectric measurements are being used to identify mechanisms governing piezoelectric behavior in polyimides such as dipole orientation during poling, as well as degree of piezoelectricity achievable. Molecular modeling on polyimides containing pendant, polar nitrile (CN) groups has been completed to determine their remanent polarization. Experimental investigation of their dielectric properties evaluated as a function of temperature and frequency has substantiated numerical predictions. With this information in hand, we are then able to suggest changes in the molecular structures, which will then improve upon the piezoelectric response.

  15. Structural and Electrical Characteristics of Carbon Nanowalls Synthesized on the Polyimide Film.

    PubMed

    Kwon, Seok Hun; Kim, Hyung Jin; Choi, Won Seok; Kang, Hyunil

    2018-09-01

    In this study, the structural and electrical characteristics of carbon nanowalls (CNWs) synthesized on polyimide films were investigated. CNWs were synthesized on polyimide films as various growth times. The cross-section and surface of the CNWs synthesized were examined using FE-SEM. The growth and defects of CNWs were observed by raman spectrum. The hall measurement system was used to analyzed sheet resistance, resistivity and conductivity. The CNWs synthesized at 40 minutes showed outstanding structural and electrical characterizations than another growth times.

  16. Thermoplastic polymides and composites therefrom

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1994-01-01

    A new class polyimide and polyimide precursors based on diaryl oxyalkylene diamines, such as 1,3-bis[4-aminophenoxy]-2,2-dimethyl propane, a process for their preparation and their use as the continuous phase for the manufacture of composites and composite laminates reinforced by reinforcing agents such as carbon fibers, Kevlar.TM., and other similar high strength reinforcing agents. The polyimides and molecular composites obtained from the diamines according to the invention show thermoplastic properties, excellent flex fatigue and fracture resistance, and excellent thermal and oxidative stability.

  17. LARC-TPI: A multi-purpose thermoplastic polyimide

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1982-01-01

    A linear thermoplastic polyimide, LARC-TPI, was characterized and developed for a variety of high temperature applications. In its fully imidized form, this material can be used as an adhesive for bonding metals such as titanium, aluminum, copper, brass, and stainless steel. LARC-TPI was evaluated as a thermoplastic for bonding large pieces of polyimide film to produce flexible, 100 void-free laminates for flexible circuit applications. The development of LARC-TPI as a potential molding powder, composite matrix resin, high temperature film and fiber is also discussed.

  18. High temperature polyimide foams for shuttle upper surface thermal insulation

    NASA Technical Reports Server (NTRS)

    Ball, G. L., III; Leffingwell, J. W.; Salyer, I. O.; Werkmeister, D. W.

    1974-01-01

    Polyimide foams developed by Monsanto Company were examined for use as upper surface space shuttle thermal insulation. It was found that postcured polyimide foams having a density of 64 kg/cu m (4 lb/cu ft) had acceptable physical properties up to and exceeding 700 K (800 F). Physical tests included cyclic heating and cooling in vacuum, weight and dimensional stability, mechanical strength and impact resistance, acoustic loading and thermal conductivity. Molding and newly developed postcuring procedures were defined.

  19. High-precision cutting of polyimide film using femtosecond laser for the application in flexible electronics

    NASA Astrophysics Data System (ADS)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2018-01-01

    The experimental results of cutting a polyimide film on the optical glass substrate by means of femtosecond lasers are given. Two modes of laser cutting of this film without damages to a glass base are determined. The first is the photo graphitization using a high repetition rate femtosecond laser. The second is ablative, under the effect of femtosecond laser pulses with high energy and low repetition rate. Cutting of semiconductor chips formed on the polyimide film surface is successfully demonstrated.

  20. Tailor making high performance graphite fiber reinforced PMR polyimides

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Vannucci, R. D.

    1974-01-01

    Studies performed to demonstrate the feasibility of using the polymerization of monomer reactants (PMR) approach to tailor make processable polyimide matrix resins are described. Monomeric reactant solutions containing the dimethyl ester of 3,3',4,4' -benzophenonetetracarboxylic acid, 4, 4' -methylenedianiline and the monomethyl ester of 5-norbornene-2, 3-dicarboxylic acid were used to impregnate Hercules HTS graphite fiber. Six different monomeric reactant stoichiometries were studied. The processing characteristics and elevated temperature mechanical properties of the PMR polyimide/HTS graphite fiber composites are described.

  1. Polyimide foam for the thermal insulation and fire protection

    NASA Technical Reports Server (NTRS)

    Rosser, R. W. (Inventor)

    1973-01-01

    The preparation of chemically resistant and flame retardant foams from polyfunctional aromatic carboxylic acid derivatives and organic polyisocyanates is outlined. It was found that polyimide foams of reproducible density above 1 lb./ft. and below 6 lbs./cu ft. can be obtained by employing in the reaction of least 2% by weight of siloxane-glycol copolymer as a surfactant which acts as a specific density control agent. Polyimide foams into which reinforcing fibers such as silicon dioxide and carbon fibers may be incorporated were also produced.

  2. Polyimides From BTDA, m-PDA, and HDA

    NASA Technical Reports Server (NTRS)

    Delano, Chadwick B.; Kiskiras, Charles J.

    1987-01-01

    Aliphatic segments in polyimide backbones achieve low molding temperatures and resistance to solvents. Low molding temperatures in combination with good solvent resistance make these polymers candidates for use in aerospace applications.

  3. Commercialization of LARC (TradeMark) -SI Polyimide Technology

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.

    2011-01-01

    LARC(TradeMark)-SI, Langley Research Center- Soluble Imide, was developed in 1992, with the first patent issuing in 1997, and then subsequent patents issued in 1998 and 2000. Currently, this polymer has been successfully licensed by NASA, and has generated revenues, at the time of this reporting, in excess of $1.4 million. The success of this particular polymer has been due to many factors and many lessons learned to the point that the invention, while important, is the least significant part in the commercialization of this material. Commercial LARC(TradeMark)-SI is a polyimide composed of two molar equivalents of dianhydrides: 4,4 -oxydiphthalic anhydride (ODPA), and 3,3 ,4,4 -biphenyltetracarboxylic dianhydride (BPDA) and 3,4 -oxydianiline (3,4 -ODA) as the diamine. The unique feature of this aromatic polyimide is that it remains soluble after solution imidization in high-boiling, polar aprotic solvents, even at solids contents of 50-percent by weight. However, once isolated and heated above its T(sub g) of 240 C, it becomes insoluble and exhibits high-temperature thermoplastic melt-flow behavior. With these unique structure property characteristics, it was thought this would be an advantage to have an aromatic polyimide that is both solution and melt processable in the imide form. This could potentially lead to lower cost production as it was not as equipment- or labor-intensive as other high-performance polyimide materials that either precipitate or are intractable. This unique combination of properties allowed patents with broad claim coverage and potential commercialization. After the U.S. Patent applications were filed, a Small Business Innovation Research (SBIR) contract was awarded to Imtec, Inc. to develop and supply the polyimide to NASA and the general public. Some examples of demonstration parts made with LARC(TradeMark)-SI ranged from aircraft wire and multilayer printed-circuit boards, to gears, composite panels, supported adhesive tape, composite coatings, cookware, and polyimide foam. Even with its unique processing characteristics, the thermal and mechanical properties were not drastically different from other solution or meltprocessable polyimides developed by NASA. LARC(TradeMark)-SI risked becoming another interesting, but costly, high-performance material.

  4. Composite flexible blanket insulation

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Lowe, David M. (Inventor)

    1994-01-01

    An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.

  5. Copoly(Imide Siloxane) Abhesive Materials with Varied Siloxane Oligomer Length

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.

    2010-01-01

    Incorporation of PDMS moieties into a polyimide matrix lowered the surface energy resulting in enhanced adhesive interactions. Polyimide siloxane materials were generated using amine-terminated PDMS oligomers of different lengths to study changes in surface migration behavior, phase segregation, mechanical, thermal, and optical properties. These materials were characterized using contact angle goniometry, tensile testing, and differential scanning calorimetry. The surface migration behavior of the PDMS component depended upon the siloxane molecular weight as indicated by distinct relationships between PDMS chain length and advancing water contact angles. Similar correlations were observed for percent elongation values obtained from tensile testing, while the addition of PDMS reduced the modulus. High fidelity topographical modification via laser ablation patterning further reduced the polyimide siloxane surface energy. Initial particulate adhesion testing experiments demonstrated that polyimide siloxane materials exhibited greater abhesive interactions relative to their respective homopolyimides.

  6. Polyimides containing oxyethylene units. Part 4: Polymerization of dianhydrides containing ether linkages

    NASA Technical Reports Server (NTRS)

    Harris, F. W.; Karnavas, A. J.; Das, S.; Cucuras, C. N.; Hergenrother, P. M.

    1986-01-01

    The development of new composite resins for various aerospace applications is attempted. Although it is highly desirable that these polymers be soluble in order to facilitate processing, they must display considerable solvent-resistance in use. A recent approach has involved the synthesis of a new series of polyimides containing flexible linkages. The polymers were prepared by the polymerization of aromatic dianhydrides with diamines containing oxyethylene linkages. For example, the polymerization of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) with 1,2-bis(4-aminophenoxy)ethane (1a) and bis2-(4-aminophenoxy)ethylether (lb), afforded highly crystalline polyimides that were completely insoluble. However, a polyimide that was amorphous and soluble was obtained from the polymerization of BTDA and an isomer of lb, i.e., bis2-(3-aminophenoxy)ethyl ether (4b). In an attempt to obtain a soluble, amorphous polyimide that could be annealed into a crysalline state, block copolymers of 1b and 4b and BTDA were prepared. Copolymers containing less than 20 weight % 1b were soluble in organic solvents. However, these polymers did not crystallize when heated above their Tg's. Copolymers containing higher levels of 1b were semicrystalline and insoluble. The polymerization of the diamines containing oxyethylene linkages with 4,4'-oxydiphthalic anhydride (ODPA) and a new dianhydride, i.e., 4,4'-oxyethyleneoxyethyleneoxydiphthalic anhydride (OEDA) was investigated. It was postulated that the use of these more flexible dianhydrides would result in more processable polyimides.

  7. Polyimide Composites from 'Salt-Like' Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Hou, Tan H.; Weiser, Erik S.; SaintClair, Terry L.

    2001-01-01

    Four NASA Langley-developed polyimide matrix resins, LaRC(TM)-IA, LaRC(TM)-IAX, LaRC(TM)-8515 and LaRC(TM)-PETI-5, were produced via a 'saltlike' process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behavior and the resin rheology were characterized. Composite molding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fiber/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (30-35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.

  8. Develop, demonstrate, and verify large area composite structural bonding with polyimide adhesives. [adhesively bonding graphite-polyimide structures

    NASA Technical Reports Server (NTRS)

    Bhombal, B. D.; Wykes, D. H.; Hong, K. C.; Stenersen, A. A.

    1982-01-01

    The technology required to produce graphite-polyimide structural components with operational capability at 598 K (600 F) is considered. A series of polyimide adhesives was screened for mechanical and physical properties and processibility in fabricating large midplane bonded panels and honeycomb sandwich panels in an effort to fabricate a structural test component of the space shuttle aft body flap. From 41 formulations, LaRC-13, FM34B-18, and a modified LaRC-13 adhesive were selected for further evaluation. The LaRC-13 adhesive was rated as the best of the three adhesives in terms of availability, cost, processibility, properties, and ability to produce void fee large area (12" x 12") midplane bonds. Surface treatments and primers for the adhesives were evaluated and processes were developed for the fabrication of honeycomb sandwich panels of very good quality which was evidenced by rupture in the honeycomb core rather than in the facesheet bands on flatwise tensile strength testing. The fabrication of the adhesively bonded honeycomb sandwich cover panels, ribs, and leading edge covers of Celion graphite/LARC-160 polyimide laminates is described.

  9. Application of polyimide actuator rod seals

    NASA Technical Reports Server (NTRS)

    Watermann, A. W.; Gay, B. F.; Robinson, E. D.; Srinath, S. K.; Nelson, W. G.

    1972-01-01

    Development of polyimide two-stage hydraulic actuator rod seals for application in high-performance aircraft was accomplished. The significant portion of the effort was concentrated on optimization of the chevron and K-section second-stage seal geometries to satisfy the requirements for operation at 450 K (350 F) with dynamic pressure loads varying between 200 psig steady-state and 1500 psig impulse cycling. Particular significance was placed on reducing seal gland dimension by efficiently utilizing the fatigue allowables of polyimide materials. Other objectives included investigation of pressure balancing techniques for first-stage polyimide rod seals for 4000 psig 450 K(350 F) environment and fabrication of a modular retainer for the two-stage combination. Seals were fabricated in 0.0254 m (1.0in.) and 0.0635 m (2.5in.) sizes and tested for structural integrity, frictional resistance, and endurance life. Test results showed that carefully designed second stages using polyimides could be made to satisfy the dynamic return pressure requirements of applications in high-performance aircraft. High wear under full system pressure indicated that further research is necessary to obtain an acceptable first-stage design. The modular retainer was successfully tested and showed potential for new actuator applications.

  10. Positron annihilation spectroscopic study of high performance semi-interpenetrating network polyimids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, A.K.

    1995-12-01

    Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if itmore » were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.« less

  11. Preparing thermoplastic aromatic polyimides

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1973-01-01

    Method prepares aromatic polyimides with significantly reduced glass-transition temperatures and without accompanying loss of high-level thermo-oxidative stability which has been typical. This has been made possible by use of diamine monomers with specific stereoisomeric features.

  12. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Il; Heo, Jin Hyuck; Park, Sung-Hyun; Hong, Ki Il; Jeong, Hak Gee; Im, Sang Hyuk; Kim, Han-Ki

    2017-02-01

    We fabricated high-performance flexible CH3NH3PbI3 (MAPbI3) perovskite solar cells with a power conversion efficiency of 15.5% on roll-to-roll sputtered ITO films on 60 μm-thick colourless polyimide (CPI) substrate. Due to the thermal stability of the CPI substrate, an ITO/CPI sample subjected to rapid thermal annealing at 300 °C showed a low sheet resistance of 57.8 Ω/square and high transmittance of 83.6%, which are better values than those of an ITO/PET sample. Outer and inner bending tests demonstrated that the mechanical flexibility of the ITO/CPI was superior to that of the conventional ITO/PET sample owing to the thinness of the CPI substrate. In addition, due to its good mechanical flexibility, the ITO/CPI showed no change in resistance after 10,000 cycle outer and inner dynamic fatigue tests. Flexible perovskite solar cells with the structure of Au/PTAA/MAPbI3/ZnO/ITO/CPI showed a high power conversion efficiency of 15.5%. The successful operation of these flexible perovskite solar cells on ITO/CPI substrate indicated that the ITO film on thermally stable CPI substrate is a promising of flexible substrate for high-temperature processing, a finding likely to advance the commercialization of cost-efficient flexible perovskite solar cells.

  13. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  14. Silver Nanowire Embedded Colorless Polyimide Heater for Wearable Chemical Sensors: Improved Reversible Reaction Kinetics of Optically Reduced Graphene Oxide.

    PubMed

    Choi, Seon-Jin; Kim, Sang-Joon; Jang, Ji-Soo; Lee, Ji-Hyun; Kim, Il-Doo

    2016-09-14

    Optically reduced graphene oxide (ORGO) sheets are successfully integrated on silver nanowire (Ag NW)-embedded transparent and flexible substrate. As a heating element, Ag NWs are embedded in a colorless polyimide (CPI) film by covering Ag NW networks using polyamic acid and subsequent imidization. Graphene oxide dispersed aqueous solution is drop-coated on the Ag NW-embedded CPI (Ag NW-CPI) film and directly irradiated by intense pulsed light to obtain ORGO sheets. The heat generation property of Ag NW-CPI film is investigated by applying DC voltage, which demonstrates unprecedentedly reliable and stable characteristics even in dynamic bending condition. To demonstrate the potential application in wearable chemical sensors, NO 2 sensing characteristic of ORGO is investigated with respect to the different heating temperature (22.7-71.7 °C) of Ag NW-CPI film. The result reveals that the ORGO sheets exhibit high sensitivity of 2.69% with reversible response/recovery sensing properties and minimal deviation of baseline resistance of around 1% toward NO 2 molecules when the temperature of Ag NW-CPI film is 71.7 °C. This work first demonstrates the improved reversible NO 2 sensing properties of ORGO sheets on flexible and transparent Ag NW-CPI film assisted by Ag NW heating networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  16. Evaluation of Nanoclay Exfoliation Strategies for Thermoset Polyimide Nanocomposite Systems

    NASA Technical Reports Server (NTRS)

    Ginter, Michael J.; Jana, Sadhan C.; Miller, Sandi G.

    2007-01-01

    Prior works show exfoliated layered silicate reinforcement improves polymer composite properties. However, achieving full clay exfoliation in high performance thermoset polyimides remains a challenge. This study explores a new method of clay exfoliation, which includes clay intercalation by lower molecular weight PMR monomer under conditions of low and high shear and sonication, clay treatments by aliphatic and aromatic surfactants, and clay dispersion in primary, higher molecular weight PMR resin. Clay spacing, thermal, and mechanical properties were evaluated and compared with the best results available in literature for PMR polyimide systems.

  17. Development of design allowable data for Celion 6000/LARC-160, graphite/polyimide composite laminates

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.; Scanlan, P. R.; Rosen, C. D.

    1982-01-01

    A design allowables test program was conducted on Celion 6000/LARC-160 graphite polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Tension, compression, in-plane shear and short beam shear properties were determined for uniaxial, quasi-isotropic and + or - 45 deg laminates. Effects of thermal aging and moisture saturation on mechanical properties were also evaluated. Celion 6000/LARC-160 graphite/polyimide can be considered an acceptable material system for structural applications to 589 K (600 F).

  18. Development of autoclave moldable addition-type polyimides

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.; Orell, M. K.; Zakrzewski, G. A.

    1976-01-01

    Chemistry and processing modifications of the poly(Diels Alder) polyimide (PDA) resin were performed to obtain structural composites suitable for 589 K (600 F) service. This work demonstrated that the PDA resin formulation is suitable for service at 589 K (600 F) for up to 125 hours when used in combination with Hercules HTS graphite fiber. Sandwich panels were autoclave molded using PDA/HTS skins and polyimide/glass honeycomb core. Excellent adhesion between honeycomb core and the facing skins was demonstrated. Fabrication ease was demonstrated by autoclave molding three-quarter scale YF-12 wing panels.

  19. Analyses of Failure Mechanisms and Residual Stresses in Graphite/Polyimide Composites Subjected to Shear Dominated Biaxial Loads

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Predecki, P. K.; Armentrout, D.; Benedikt, B.; Rupnowski, P.; Gentz, M.; Kumosa, L.; Sutter, J. K.

    2002-01-01

    This research contributes to the understanding of macro- and micro-failure mechanisms in woven fabric polyimide matrix composites based on medium and high modulus graphite fibers tested under biaxial, shear dominated stress conditions over a temperature range of -50 C to 315 C. The goal of this research is also to provide a testing methodology for determining residual stress distributions in unidirectional, cross/ply and fabric graphite/polyimide composites using the concept of embedded metallic inclusions and X-ray diffraction (XRD) measurements.

  20. Isomer effects on polyimide properties

    NASA Technical Reports Server (NTRS)

    Stump, B. L.

    1975-01-01

    The effect of structure variation on the solubility and glass-transition temperature of polyimide polymers is investigated. The addition of alkyl substituents to an aromatic ring in the polymer molecule, the reduction in the number of imide rings per average polymer chain-length, and a variation in the symmetry of the polymer molecule are studied. The synthesis of key intermediates for the preparation of the monomers required in this investigation is reported along with progress made in the synthesis of polyimide-precursor amines that contain functional groups to allow for post-cure cross-linking.

  1. HPLC for quality control of polyimides

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Sykes, G. F.

    1979-01-01

    High Pressure Liquid Chromatography (HPLC) as a quality control tool for polyimide resins and prepregs are presented. A data base to help establish accept/reject criteria for these materials was developed. This work is intended to supplement, not replace, standard quality control tests normally conducted on incoming resins and prepregs. To help achieve these objectives, the HPLC separation of LARC-160 polyimide precursor resin was characterized. Room temperature resin aging effects were studied. Graphite reinforced composites made from fresh and aged resin were fabricated and tested to determine if changes observed by HPLC were significant.

  2. Tribological properties of graphite-fiber-reinforced, partially fluorinated polyimide composites

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Hady, W. F.

    1985-01-01

    Graphite-fiber-reinforced polyimide (GFRPI) composites were formulated from three new partially fluorinated polyimides and three types of graphite fiber. Nine composites were molded into pins and evaluated in a pin-on-disk tribometer. Friction coefficients, wear rates, pin wear surface morphology, and transfer film formation were assessed at 25 and 300 C. Also assessed was the effect of sliding speed on friction. Wear was up to two orders of magnitude lower at 25 C and up to one order of magnitude lower at 300 C than with previously formulated NASA GFRPI composites.

  3. Property enchancement of polyimide films by way of the incorporation of lanthanide metal ions

    NASA Technical Reports Server (NTRS)

    Thompson, David W.

    1993-01-01

    Lanthanide metal ions were incorporated into the polyimide derived from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 1,3-bis(aminophenoxy) benzene (APB) in an attempt to produce molecular level metal-polymer composites. The lanthanide series of metal ions (including aluminum, scandium, and yttrium) provide discrete and stable metal ions in the 3+ oxidation state. Throughout the series there is a uniform variation in ionic size ranging from 50 pm for aluminum to a maximum of 103.4 pm for cerium and gradually decreasing again to 84.8 pm for lutetium. The high charge-to-size ratio for these ions as well as the ability to obtain large coordination numbers makes them excellent candidates for interacting with the polymer substructure. The distinct lack of solubility of simple lanthanide salts such as the acetates and halides has made it difficult to obtain metal ions distributed in the polymer framework as discrete ions or metal complexes rather than microcomposites of metal clusters. (Lanthanum nitrates are quite soluble, but the presence of the strongly oxidizing nitrate ion leads to serious degradation of the polymer upon thermal curing. This work was successful at extending the range of soluble metals salts by using chelating agents derived from the beta-diketones dipivaloylmethane, dibenzoylmethane, trifluoroacetylacetone, and hexafluoroacetylacetone. Metal acetates which are insoluble in dimethylacetamide dissolve readily in the presence of the diketones. Addition of the polyimide yields a homogeneous resin which is then cast into a clear film. Upon curing clear films were obtained with the dibenzoylmethane and trifluoroacetylacetone ligands. The dipavaloylmethane precipitates the metal during the film casting process, and hexafluoroacetylacetone gives cured films which are deformed and brittle. These clear films are being evaluated for the effect of the metal ions on the coefficient of thermal expansion, resistance to atomic oxygen, and on selective gas permeability. Much more commonly than above, polyimide films are prepared by casting the film as the poly(amic acid) precursor which is then converted to the imidized form during the thermal cure cycle. Very limited success was achieved in the past in adding lanthanide metal ions to the amide precursors because of gellation and lack of solubility. With the use of the diketone ligands cited above, the solubility and gellation problems were overcome. However, the films after curing were clear but unacceptably brittle. Attempts to overcome this cure embrittlement problem are in progress.

  4. Evaluation of polyimide/glass fiber composites for construction of light weight pressure vessels for cryogenic propellants

    NASA Technical Reports Server (NTRS)

    Petker, I.; Segimoto, M.

    1973-01-01

    The application of polyimide resin as a matrix for glass filament-wound thin metal-lined pressure vessels was studied over a temperature range of (minus) 320 to 600 F. Keramid 601 polyimide was found to perform quite well over the entire range of temperature. Hoop stress values of 425 ksi were determined at 75 F which is equivalent to epoxy resin in similar structures. At -320 and 600 F, 125 and 80% of this strength was retained. Thermal ageing at 500 F for up to 50 hours was studied with severe reduction in strength, but there is evidence that this reduction could be improved. Another polyimide resin studied was P10PA which was found to have processing characteristics inappropriate for filament-winding. NOL ring tensile and shear data was determined from both resins with S-glass. Pressure vessel design, fabrication and test procedures are described in detail.

  5. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands.

    PubMed

    Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi; Lee, Bang Yeon

    2017-07-18

    FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.

  6. Selected fretting-wear-resistant coatings for titanium - 6-percent-aluminum - 4-percent-vanadium alloy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1976-01-01

    A titanium - 6-percent-aluminum - 4-percent-vanadium alloy (Ti-6Al-4V) was subjected to fretting-wear exposures against uncoated Ti-6Al-4V as a baseline and against various coatings and surface treatments applied to Ti-6Al-4V. The coatings evaluated included plasma-sprayed tungsten carbide with 12 percent cobalt, aluminum oxide with 13 percent titanium oxide, chromium oxide, and aluminum bronze with 10 percent aromatic polyester; polymer-bonded polyimide, polyimide with graphite fluoride, polyimide with molybdenum disulfide (MoS2), and methyl phenyl silicone bonded MoS2, preoxidation surface treatment, a nitride surface treatment, and a sputtered MoS2 coating. Results of wear measurements on both the coated and uncoated surfaces after 300,000 fretting cycles indicated that the polyimide coating was the most wear resistant and caused the least wear to the uncoated mating surface.

  7. Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Xu, Xiaomin; Suo, Xinkun; Gong, Yongfeng; Li, Hua

    2018-01-01

    Individual capsule-like polyimide splats have been fabricated by suspension flame spray, and the polyimide splat exhibits hollow structure with an inner pore and a tiny hole on its top surface. Enwrapping of 200-1000-nm copper particles inside the splats is accomplished during the deposition for constrained release of copper for antifouling performances. Antifouling testing of the coatings by 24-h exposure to Escherichia coli-containing artificial seawater shows that the Cu-doped splat already prohibits effectively attachment of the bacteria. The prohibited adhesion of bacteria obviously impedes formation and further development of bacterial biofilm. This capsulated splat with releasing and loading of copper biocides results in dual-functional structures bearing both release-killing and contact-killing mechanisms. The suspension flame spray route and the encapsulated structure of the polyimide-Cu coatings would open a new window for designing and constructing marine antifouling layers for long-term applications.

  8. Long term isothermal aging and thermal analysis of N-CYCAP polyimides

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Waters, John F.; Schverman, Marla A.

    1991-01-01

    The N-CYCAP polyimides utilize a (2,2) paracyclophane endcap that polymerizes and does not generate volatile gases during the cure process. These polyimides have both high glass temperatures (390 C) and an onset of decomposition in air of 560 C. Thermal oxidative stability (TOS) weight loss studies show that replacing 25 percent by weight of the paraphenylene diamine in the polymer backbone with metaphenylene diamine improves the weight loss characteristics. N-CYCAP neat resin samples performed better than PMR-II-50 when exposed at 343 and 371 C in air for up to 1000 hours. Preliminary composite studies show that both PMR-II-50 and N-CYCAP have better thermal stability when fabricated on T-40R. Higher isothermal aging temperatures of longer aging times are needed to determine the differences in TOS between composite samples of PMR-II-50 and N-CYCAP polyimides.

  9. Structural and Acoustic Damping Characteristics of Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Park, Junhong

    2005-01-01

    A broad range of tests have been performed to evaluate the capability of tiny lightweight polyimide spheres to reduce sound and vibration. The types of testing includes impedance tube measurement of propagation constant, sound power insertion loss for single and double wall systems, particle frame wave characterization and beam vibration reduction. The tests were performed using spheres made of two types of polyimide and with varying diameter. Baseline results were established using common noise reduction treatment materials such as fiberglass and foam. The spheres were difficult to test due to their inherent mobility. Most tests required some adaptation to contain the spheres. One test returned obvious non-linear behavior, a result which has come to be expected for treatments of this type. The polyimide spheres are found to be a competent treatment for both sound and vibration energy with the reservation that more work needs to be done to better characterize the non-linear behavior.

  10. Isomeric oxydiphthalic anhydride polyimides

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K.; Pratt, J. Richard; Stclair, Terry L.

    1988-01-01

    Much of the polyimide research at Langley Research Center has focused on isomeric modification of the diamine component; polyimides having considerably improved processability and adhesion have resulted. The present structure-property study was designed to investigate how isomeric attachment of the three oxydiphthalic anhydride (ODPA) polyimides affects their properties. Each dianhydride, 3,4,3',4'-oxydiphthalic anhydride (4,4'-OPDA,I), 2,3,2',3'-oxydiphthalic anhydride (3,3'-ODPA,II), and 2,3,3',4'-oxydiphthalic anhydride (3,4'-OPDA,III), was reacted with p-phenylenediamine, 4,4'-oxydianiline, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, and 4,4'-bis(3-aminophenoxy)benzophenone in DMAc. The inherent viscosities of the resulting poly(amic acids) were determined. Thermally imidized films were studied for their creasability and solubility, as well as by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide angle X-ray scattering (WAXS). A comparison of these properties will be made.

  11. Evaluation of two polyimides and of an improved liner retention design for self-lubricating bushings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1984-01-01

    Two different polyimide polymers were studied and the effectiveness of a design feature to improve retention of the self lubricating composite liners under high load was evaluated. The basic bearing design consisted of a molded layer of chopped graphite-fiber-reinforced-polyimide (GFRP) composite bonded to the bore of a steel bushing. The friction, wear, and load carrying ability of the bushings were determined in oscillating tests at 25, 260 and 315 C at radial unit loads up to 260 MPa. Friction coefficients were typically 0.15 to 0.25. Bushings with liners containing a new partially fluorinated polymer were functional, but had a lower load capacity and higher wear rate than those containing a more conventional, high temperature polyimide. The liner retention design feature reduced the tendency of the liners to crack and work out of the contact zone under high oscillating loads.

  12. Mechanically Resilient Polymeric Films Doped with a Lithium Compound

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of mechanically resilient polymeric films, comprising rod-coil block polyimide copolymers, which are doped with a lithium compound providing lithium ion conductivity, that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consists of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  13. Method to Prepare Processable Polyimides with Non-Reactive Endgroups Using 1,3-bis(3-Aminophenoxy) Benzene

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2000-01-01

    Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of a non-reactive endcapper, such as phthalic anhydride. Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. Polyimides that are more rigid in nature require more APB to impart processability than polyimides that are less rigid in nature. The copolymers that result from using APB to enhance processability have a unique combination of properties including excellent thin film properties, low pressure processing (200 psi and below), improved toughness, improved solvent resistance, improved adhesive properties, improved composite mechanical properties, long term melt stability (several hours at 390 C), and lower melt viscosities.

  14. Method To Prepare Processable Polyimides With Reactive Endogroups Using 1,3-bis(3-aminophenoxy)benzene

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2001-01-01

    Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of a non-reactive endcapper, such as phthalic anhydride. Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. Polyimides that are more rigid in nature require more APB to impart processability than polyimides that are less rigid in nature. The copolymers that result from using APB to enhance processability have a unique combination of properties including excellent thin film properties, low pressure processing (200 psi and below), improved toughness, improved solvent resistance, improved adhesive properties, improved composite mechanical properties, long term melt stability (several hours at 390 C), and lower melt viscosities.

  15. Mechanical properties of three layer glass fibre reinforced unsaturated polyester filled with P84 Polyimide

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nik Noor Idayu Nik; Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir

    2017-12-01

    The glass fibre reinforced orthophthalic unsaturated polyester composite was widely used in the pipeline industry as a replacement to the corroded steel pipes. A filler which possesses high mechanical performance at high temperature; P84 Polyimide used as the particulate reinforcement in the unsaturated polyester matrix system to increase the mechanical performance of the glass fibre reinforced unsaturated polyester. The glass fibre composite laminates were prepared through a hand lay-up technique and fabricated into three layer laminate. Prior to be used as the matrix system in the lamination process, the unsaturated polyester resin was mixed with masterbatch P84 Polyimide at three loadings amount of 1, 3, and 5 wt%. The addition of P84 Polyimide at 1, 3, and 5 wt% increased the tensile properties and flexural properties especially at 1 wt% filler loading. As the filler loading increased, the tensile properties and flexural properties showed decreasing pattern. In the dynamic mechanical analysis, the values of storage modulus were taken at two points; 50 °C and 150 °C which were the storage modulus before and after the glass transition temperature. All storage modulus showed fluctuation trend for both before and after Tg. However, the storage modulus of the filled composite laminates after Tg showed higher values than unfilled composite laminates at all filler loading. Since the P84 Polyimide possesses high thermal stability, the presence of P84 Polyimide inside the composite system had assisted in delaying the Tg. In terms of the filler dispersion, the Cole-Cole plot showed an imperfect semi-circular shape which indicated good filler dispersion.

  16. Adhesives for laminating polyimide insulated flat conductor cable

    NASA Technical Reports Server (NTRS)

    Montermoso, J. C.; Saxton, T. R.; Taylor, R. L.

    1967-01-01

    Polymer adhesive laminates polyimide-film flat conductor cable. It is obtained by reacting an appropriate diamine with a dianhydride. The adhesive has also been used in the lamination of copper to copper for the preparation of multilayer circuit boards.

  17. Stretch-Oriented Polyimide Films

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Klinedinst, D.; Feuz, L.

    2000-01-01

    Two thermoplastic polyimides - one amorphous, the other crystallizable -- were subjected to isothermal stretching just above their glass transition temperatures. Room-temperature strengths in the stretch direction were greatly improved and, moduli increased up to 3.6-fold. Optimum stretching conditions were determined.

  18. Bonded polyimide fuel cell package

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  19. Space Durable Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Watson, Kent A.; Smith, Joseph G., Jr.; Connell, John W.

    2003-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film is based on the use of single walled carbon nanotubes (SWNT) as conductive additives. Earlier approaches investigated in our lab involved both an in-situ polymerization approach and addition of SWNT to an oligomer containing reactive end-groups as methods to improve SWNT dispersion. The work described herein is based on the spray coating of a SWNT/solvent dispersion onto the film surface. Two types of polyimides were investigated, one with reactive end groups that can lead to bond formation between the oligomer chain and the SWNT surface and those without reactive end-groups. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the mechanical, optical, thermo-optical properties of the film as compared to the other methods. The chemistry and physical properties of these nanocomposites will be discussed.

  20. MSFC inspections of installed polyimide wire

    NASA Technical Reports Server (NTRS)

    Landers, Joe C.

    1994-01-01

    An alert was issued because of the arc-tracking possibilities of installed polyimide wire harnesses. MSFC undertook a program to try to enhance the safety and reliability of these harnesses. Photographs are presented showing the need for inspections of installed wiring harnesses.

  1. Polyimides Containing Amide And Perfluoroisopropyl Links

    NASA Technical Reports Server (NTRS)

    Dezem, James F.

    1993-01-01

    New polyimides synthesized from reactions of aromatic hexafluoroisopropyl dianhydrides with asymmetric amide diamines. Soluble to extent of at least 10 percent by weight at temperature of about 25 degrees C in common amide solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide. Polyimides form tough, flexible films, coatings, and moldings. Glass-transition temperatures ranged from 300 to 365 degrees C, and crystalline melting temperatures observed between 543 and 603 degrees C. Display excellent physical, chemical, and electrical properties. Useful as adhesives, laminating resins, fibers, coatings for electrical and decorative purposes, films, wire enamels, and molding compounds.

  2. Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.

    1979-01-01

    Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.

  3. Polyimide composites: Application histories

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.

    1985-01-01

    Advanced composite hardware exposed to thermal environments above 127 C (260 F) must be fabricated from materials having resin matrices whose thermal/moisture resistance is superior to that of conventional epoxy-matrix systems. A family of polyimide resins has evolved in the last 10 years that exhibits the thermal-oxidative stability required for high-temperature technology applications. The weight and structural benefits for organic-matrix composites can now be extended by designers and materials engineers to include structures exposed to 316 F (600 F). Polyimide composite materials are now commercially available that can replace metallic or epoxy composite structures in a wide range of aerospace applications.

  4. LaRC-I-TPI - A status report on a new high performance, thermoplastic polyimide

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard; Saint Clair, Terry L.

    1990-01-01

    A new thermoplastic polyimide designated LaRC-I-TPI has been prepared from 4,4'-isophthaloyldiphthalic anhydride (IDPA) and 1,3-phenylenediamine (m-PDA), phthalic anhydride endcapped or unendcapped. It is closely related to the well-known commercial LaRC-TPI. A survey of the synthesis and some thermal, film, adhesive, fracture toughness, and composite properties of this new polyimide is presented. While both materials have similar properties at comparable stages of development, LaRC-I-TPI should be less expensive to manufacture as a result of the use of lower cost readily available monomers.

  5. PMR polyimide prepreg with improved tack characteristics

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1976-01-01

    Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics were described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) were discussed.

  6. Experiments Related to the Fabrication of Carbon Fiber/AMB-21 Polyimide Composite Tubes Using the RTM Process

    NASA Technical Reports Server (NTRS)

    Exum, Daniel

    1996-01-01

    AMB-21 is a new polymer developed by Mr. Ray Vannucci, NASA, LeRC as a noncarcinogenic polyimide matrix which may be suitable for fabricating composite parts by the Resin Transfer Modeling (RTM) process. The polyimide for this project was prepared at the Center of Composite Materials Research at N.C. A&T State University because it is not currently an item of commerce. The RTM process is especially suitable for producing geometrically complex composite parts at a low cost. Because of the high melting point and very high viscosity at the time of processing, polyimides have not been extensively used in the RTM process. The process for preparing AMB-21 as well as the process for fabricating composite plates will be described. The basic fabrication process consists of injecting a solvent solution of AMP-21 into a carbon fiber preform, evaporating the solvent, imidizing the polyimide, and vacuum/compression modeling the impregnated preform. All the above molding steps are preformed in a specially designed RTM mold which will be described. The results of this process have been inconsistent. Where as some experiments have resulted in a reasonably sound panels, others have not. Further refinements of the process are required to establish a reliable process.

  7. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  8. Evaluation of Kapton pyrolysis, arc tracking, and flashover on SiO(x)-coated polyimide insulated samples of flat flexible current carriers for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Mundson, Chris

    1993-01-01

    Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.

  9. Influence of γ-Irradiation on the Optical Properties of the Polyimide-YBa2Cu3O6.7 System

    NASA Astrophysics Data System (ADS)

    Muradov, A. D.; Korobova, N. E.; Kyrykbaeva, A. A.; Yar-Mukhamedova, G. Sh.; Mukashev, K. M.

    2018-05-01

    Influence of γ-irradiation on the optical properties of a polyimide film and its polymer compositions with fillers of a dispersed powder of a high-temperature superconductor ҮBa2Cu3O6.7 (YBaCuO) with concentrations of 0.05, 0.10, and 0.50 wt.% was studied. It was established that γ-irradiation with a dose up to 600 kGy does not affect the transparency of polyimide films in the visible region of the spectrum. However, at irradiation doses of 250 and 600 kGy, a weakly expressed fine structure appears in the spectra of polyimide films in the range of 220-300 nm due to the contribution of the resulting diene structures to the optical transmission and the increased content of oxygen atoms. The YBaCuO filler and γ-irradiation cause the polyimide transition from the amorphous state to the crystalline state, which is manifested in a sharp change in the spectrum in the range of 2.3-3.9 eV. A significant increase in the extinction coefficient was found in the composite containing 0.50 wt.% of the filler that is associated with an increase in the radius of action of structurally active fillers on the macromolecules of the matrix.

  10. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    PubMed

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  11. Development of High Performance Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O.; St.Clair, Terry L.; Welch, Sharon S.

    1996-01-01

    In this work a series of polyimides are investigated which exhibit a strong piezoelectric response and polarization stability at temperatures in excess of 100 C. This work was motivated by the need to develop piezoelectric sensors suitable for use in high temperature aerospace applications.

  12. Bonded polyimide fuel cell package and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2005-11-01

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  13. Compounds containing meta-biphenylenedioxy moieties and polymers therefrom

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L. (Inventor); Pratt, John Richard (Inventor)

    1993-01-01

    Two monomers containing meta-biphenylenedioxy moieties were prepared. One monomer, a diamine, is used to prepare polyimide, polyamide, and epoxy polymers. The other monomer, a dianhydride, was used to prepare polyimide polymers. These polymers are used to make films, coatings, and selective membranes.

  14. Method of preparation of bonded polyimide fuel cell package

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA; Graff, Robert T [Modesto, CA; Bettencourt, Kerry [Dublin, CA

    2011-04-26

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  15. Validation of a Polyimide Foam Model for Use in Transmission Loss Applications

    NASA Technical Reports Server (NTRS)

    Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler

    2010-01-01

    The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.

  16. Modified LaRC(TM)-IA Polyimides

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice C.; Hou, Tan H.; Working, Dennis C.

    1994-01-01

    Modified versions of thermoplastic polyimide LaRC(TM)-IA incorporate various amounts of additional, rigid moieties into backbones of LaRC(TM)-IA molecules. Modified versions more resistant to solvents and exhibit higher glass-transition temperatures, yet retain melt-flow processability of unmodified LaRC(TM)-IA.

  17. Better End-Cap Processing for Oxidation-Resistant Polyimides

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Frimer, Aryeh A.

    2004-01-01

    A class of end-cap compounds that increase the thermo-oxidative stab ility of polyimides of the polymerization of monomeric reactants (PM R) type has been extended. In addition, an improved processing proto col for this class of end-cap compounds has been invented.

  18. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands

    PubMed Central

    Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi

    2017-01-01

    FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands. PMID:28718826

  19. Investigation of the interfacial reaction between metal and fluorine-contained polyimides

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Yu; Chen, J. S.; Hsu, S. L. C.

    2005-07-01

    In this work, thin metal films (Cr and Ta) were deposited on fluorine-contained polyimides, 6FDA-BisAAF, and 6FDA-PPD. The chemical states of the metal/polyimide samples were characterized by using x-ray photoelectron spectroscopy (XPS). XPS analysis reveals that metal-C, C-O, and metal-O bondings are present in metallized 6FDA-BisAAF and 6FDA-PPD. C-F bonds are observed in bare 6FDA-BisAAF and 6FDA-PPD however, they are not seen in the metallized samples. Disappearance of the C-F bonding is attributed to the disruption of CF3 side groups from the main chains of 6FDA-BisAAF and 6FDA-PPD when the chains are exposed to the plasma during the metal deposition. Nevertheless, the disruption of CF3 side groups also creates sites for the formation of metal-C or C-O bondings, which provide a positive adhesion strength at the metal/polyimide interface, as revealed by the tape test.

  20. LARC-IA: A flexible backbone polyimide

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; Stclair, Terry L.

    1990-01-01

    A new linear, aromatic, thermoplastic polyimide, prepared from oxydiphthalic anhydride (ODPA) and 3,4'-oxydianiline (ODA) in diglyme and identified as LARC-IA, was synthesized and evaluated. The monomers are relatively inexpensive and physiologically safe. Molecular weight was controlled by use of a monofunctional anhydride, phthalic anhydride (PA), in order to promote controlled flow and wetting properties. The polymer is considered a safe alternative to commercially available LARC-TPI which is prepared with an expensive diamine of uncertain carcinogenicity. The evaluation was based primarily on the polymer's adhesive properties as determined by thermal and water boil exposure of lap shear specimens. Strengths were determined at room temperature, 177, 204 and 232 C before and after exposure to determine the adhesive system's durability to adverse environments over a period of time. Other properties (FWT, G(1c), film and composite properties) were examined which were determined to be typical of a high temperature polyimide. Results of the study show a favorable comparison to LARC-TPI, a commercially available polyimide.

  1. Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.

  2. Viscoelastic and Mechanical Properties of Thermoset PMR-type Polyimide-Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Abdalla, Mohamed O.; Dean, Derrick; Campbell, Sandi

    2002-01-01

    High temperature thermoset polyimide-clay nanocomposites were prepared by blending 2.5 and 5 wt% of an unmodified Na(+-) montmorillonite (PGV) and two organically modified FGV (PGVCl0COOH, PGVC12) with a methanol solution of PMR-15 precursor. The methanol facilitated the dispersal of the unmodified clay. Dynamic mechanical analysis results showed a significant increase in the thermomechanical properties (E' and E") of 2.5 wt% clay loaded nanocomposites in comparison with the neat polyimide. Higher glass transition temperatures were observed for 2.5 wt% nanocomposites compared to the neat polyimide. Flexural properties measurements for the 2.5 wt% nanocomposites showed a significant improvement in the modulus and strength, with no loss in elongation. This trend was not observed for the 5 wt% nanocomposites. An improvement in the CTE was observed for the PGV/PMR-15 nanocomposites, while a decrease was observed for the organically modified samples. This was attributed to potential variations in the interface caused by modifier degradation.

  3. Feasibility demonstration for electroplating ultra-thin polyimide film. [fabricating film for space erectable structures

    NASA Technical Reports Server (NTRS)

    Schneier, R.; Braswell, T. V.; Vaughn, R. W.

    1978-01-01

    The effect of electrodeposition variables on film thickness was investigated using a dilute polyimide solution as a bath into which aluminum (as foil or as a vapor deposited coating) was immersed. The electrodeposited film was dried for 2 hours at 93 C (primarily to remove solvent) and cured for 18 hours at 186 C. Infrared studies indicate that imide formation (curing) occurs at 149 C under vacuum. From a conceptual viewpoint, satisfactory film metallized on one side can be obtained by this method. The cured ultra thin polyimide film exhibits properties equivalent to those of commercial film, and the surface appearance of the strippable polyimide film compares favorably with that of a sample of commercial film of thicker gauge. The feasibility of manufacturing approximately one million sq m of ultra thin film capable of being joined to fabricate an 800 m by 9 800 m square from starting material 0.5 to 1 m wide for space erectable structures was demonstrated.

  4. Blocking Filters with Enhanced Throughput for X-Ray Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Grove, David; Betcher, Jacob; Hagen, Mark

    2012-01-01

    New and improved blocking filters (see figure) have been developed for microcalorimeters on several mission payloads, made of high-transmission polyimide support mesh, that can replace the nickel mesh used in previous blocking filter flight designs. To realize the resolution and signal sensitivity of today s x-ray microcalorimeters, significant improvements in the blocking filter stack are needed. Using high-transmission polyimide support mesh, it is possible to improve overall throughput on a typical microcalorimeter such as Suzaku s X-ray Spectrometer by 11%, compared to previous flight designs. Using polyimide to replace standard metal mesh means the mesh will be transparent to energies 3 keV and higher. Incorporating polyimide s advantageous strength-to-weight ratio, thermal stability, and transmission characteristics permits thinner filter materials, significantly enhancing through - put. A prototype contamination blocking filter for ASTRO-H has passed QT-level acoustic testing. Resistive traces can also be incorporated to provide decontamination capability to actively restore filter performance in orbit.

  5. Low-Cost, High Glass-Transition Temperature, Thermosetting Polyimide Developed

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.

    1999-01-01

    PMR-15 polyimide, developed in the mid-1970's at the NASA Lewis Research Center, is recognized as a state-of-the-art high-temperature resin for composite applications in the temperature range of 500 to 550 F (260 to 288 C). PMR-15 offers easy processing and good property retention at a reasonable cost. For these reasons, it is widely used in both military and commercial aircraft engine components. Traditionally, polyimide composites have been designed for long-term use at 500 to 600 F over thousands of hours. However, new applications in reusable launch vehicles (RLV's) require lightweight materials that can perform for short times (tens of hours) at temperatures between 800 and 1000 F (425 and 538 C). Current efforts at Lewis are focused on raising the use temperature of polyimide composites by increasing the glass-transition temperature of the matrix resins. Achieving this dramatic increase in the upper use temperature without sacrificing polymer and composite processability is a major technical challenge.

  6. Electron Beam Exposure of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon and carbon-polyimide composites are being considered for use as radiator face sheets or fins for space radiator applications. Several traditional white thermal control paints are being considered for the surface of the composite face sheets or fins. One threat to radiator performance is high energy electrons. The durability of the thermal control paints applied to the carbon-carbon and carbon-polyimide composites was evaluated after extended exposure to 4.5 MeV electrons. Electron exposure was conducted under argon utilizing a Mylar(TradeMark) bag enclosure. Solar absorptance and infrared emittance was evaluated before and after exposure to identify optical properties degradation. Adhesion of the paints to the carbon-carbon and carbon-polyimide composite substrates was also of interest. Adhesion was evaluated on pristine and electron beam exposed coupons using a variation of the ASTM D-3359 tape test. Results of the optical properties evaluation and the adhesion tape tests are summarized.

  7. Measurement of the performance of a spiral wound polyimide regenerator in a pulse tube refrigerator

    NASA Technical Reports Server (NTRS)

    Rawlins, Wayne; Timmerhaus, Klaus D.; Radebaugh, Ray; Daney, D. E.

    1991-01-01

    A regenerator for use in a pulse tube refrigerator has been constructed from a polyimide (polypyromellitimide or PPMI) whose small ratio of thermal conductivity to heat capacity make it a good candidate for a regenerator material in cryocoolers. The regenerator was fabricated using 25 micron thick photoresist strips bonded to a 50 micron thick sheet of PPMI. This composite sheet was wound in jelly-roll fashion around a mandrel and inserted into the regenerator housing. The photoresist strips, formed using a photolithographic technique, provided a 25 micron spacing for the axial flow of gas between each layer of PPMI. Ineffectiveness results are presented for this material under actual operating conditions in a pulse tube refrigerator and compared with a numerical model. The numerical model indicated that a polyimide regenerator would perform much better than one constructed of stainless steel screen, but the experimental results showed the opposite behavior. Measured values for the ineffectiveness were 0.003 for the stainless steel screen and 0.017 for the polyimide.

  8. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOEpatents

    Cornelius, Christopher J [Albuquerque, NM

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  9. Simulation of space radiation effects on polyimide film materials for high temperature applications

    NASA Technical Reports Server (NTRS)

    Fogdall, L. B.; Cannaday, S. S.

    1977-01-01

    Space environment effects on candidate materials for the solar sail film are determined. Polymers, including metallized polyimides that might be suitable solar radiation receivers, were exposed to combined proton and solar electromagnetic radiation. Each test sample was weighted, to simulate the tension on the polymer when it is stretched into near-planar shape while receiving solar radiation. Exposure rates up to 16 times that expected in Earth orbit were employed, to simulate near-sun solar sailing conditions. Sample appearance, elongation, and shrinkage were monitored, noted, and documented in situ. Thermosetting polyimides showed less degradation or visual change in appearance than thermoplastics.

  10. Feasibility of Kevlar 49/PMR-15 Polyimide for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 F to 600 F for the PMR-15 and from 75 F to 450 F for the Kevlar/3501-6 epoxy material. The effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths were also studied.

  11. Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.

  12. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  13. Tackifier for addition polyimides containing monoethylphthalate

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Butler, J. M. (Inventor)

    1981-01-01

    An improvement of addition polyimides wherein an essentially solventless, high viscosity laminating resin is synthesized from low cost liquid monomers is disclosed. The improved process takes advantage of a reactive, liquid plasticizer such as monoethylphthalate (MEP) which is used in lieu of an alcohol solvent, and helps solve a major problem of maintaining good prepreg tack and drape, or the ability of the prepreg to adhere to adjacent plies and conform to a desired shape during the layup process. This improvement results in both longer life of the polymer prepreg and the processing of low void laminate and appears to be applicable to all addition polyimide systems.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, S.B.; Walton, T.C.

    Polyimides have gained wide acceptance for use in many aerospace composite, electrical, and industrial applications. The intent of this work is to share with the reader practical knowledge of how some of the currently available commercial systems perform. Several prepreg processable polyimide systems were evaluated for adhesive properties and characterized with the use of SEM, TGA, DSC, TMA, Dynamic Spectroscopy, and Force vs. Time Electronic Impact Analyses for comparison. The chemistry and nature of these resin systems is reviewed, including several BMIs (new hot melts examined)., Amide-Imides (Al) and Thermoplastic Polyimide (TPI). PMR-15 and a high temperature epoxy resin aremore » included for comparison of high temperature properties. 17 references.« less

  15. Polyimides Containing Pendent Phosphine Oxide Groups for Space Applications

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Watson, K. A.; Connell, J. W.

    2002-01-01

    As part of an ongoing materials development activity to produce high performance polymers that are durable to the space environment, phosphine oxide containing polyimides have been under investigation. A novel dianhydride was prepared from 2,5-dihydroxyphenyldiphenylphosphine oxide in good yield. The dianhydride was reacted with commercially available diamines, and a previously reported diamine was reacted with commercially available dianhydrides to prepare isomeric polyimides. The physical and mechanical properties, particularly thermal and optical properties, of the polymers were determined. One material exhibited a high glass transition temperature, high tensile properties, and low solar absorptivity. The chemistry, physical, and mechanical properties of these resins will be discussed.

  16. PMR Polyimide prepreg with improved tack characteristics. [Polymerization of Monomer Reactants applications to fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1978-01-01

    Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics are described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) are discussed.

  17. Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)

    1979-01-01

    Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

  18. Dust Sensor with Large Detection Area Using Polyimide Film and Piezoelectric Elements

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Okudaira, O.; Kurosawa, K.; Okamoto, T.; Matsui, T.

    2016-10-01

    We describe the development of dust particles sensor in space with large area (1m × 1m scale). The sensor has just a thin film of polyimide attached with small tips of piezoelectric elements. We performed experiments to characterize the sensor.

  19. Polyimide from bis(n-isoprenyl)s of aryl diamides

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr. (Inventor); Ottenbrite, Raphael M. (Inventor)

    1993-01-01

    A process and polyimide product formed by the reaction of a bismaleimide with a bis(amidediene) is disclosed wherein the bis(amidediene) is formed by reacting an excess of an acid chloride with 1,4-N,N'-diisoprenyl 2,3,5,6-tetramethy1 benzene.

  20. High-temperature, long-life polyimide seals for hydraulic actuator rods

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Lee, J.; Loomis, W. R.

    1971-01-01

    Two types of polyimide seals are developed for hydraulic actuator rod in low pressure second stage of two-stage configuration. Each seal melts test objectives of twenty million cycles of operation at 534 K. Analytical and experimental study results are discussed. Potential applications are given.

  1. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  2. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator.

    PubMed

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F; Joh, Han-Ik; Jo, Seong Mu

    2016-11-11

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO 2 ) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB.

  3. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator

    PubMed Central

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F.; Joh, Han-Ik; Jo, Seong Mu

    2016-01-01

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO2) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB. PMID:27833132

  4. Low-void polyimide resins for autoclave processing

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.

    1972-01-01

    Development of an advanced A-type polyimide, which can be used to produce autoclave molded, low-void content composites suitable for use at temperatures up to 316 C is reported. It consists of a mixture of methyl nadic anhydride, an 80:20 molar ratio of methylene dianaline and thiodianilene, and pyromellitic dianhydride.

  5. New polyimide polymer has excellent processing characterisitcs with improved thermo-oxidative and hydrolytic stabilities

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Kendrick, W. P.

    1972-01-01

    Polyimide P10P and its processing technique apply to most high temperature plastic products, devices and castings. Prepolymer, when used as varnish, impregnates fibers directly and is able to be processed into advanced composities. Material may also be used as molding powder and adhesive.

  6. Industry technology assessment of graphite-polymide composite materials. [conferences

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.

  7. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parks, Steven L. (Inventor)

    2014-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  8. Low-Melt Poly(amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)

    2015-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  9. Ka-Band, RF MEMS Switches on CMOS Grade Silicon with a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Varaljay, Nicholas C.; Papapolymerou, John

    2003-01-01

    For the first time, RF MEMS switcbes on CMOS grade Si witb a polyimide interface layer are fabricated and characterized. At Ka-Band (36.6 GHz), an insertion loss of 0.52 dB and an isolation of 20 dB is obtained.

  10. 77 FR 33768 - Certain Polyimide Films, Products Containing Same, and Related Methods; Notice of Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-772] Certain Polyimide Films, Products Containing Same, and Related Methods; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the presiding...

  11. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOEpatents

    Marchant, D.D.

    1983-06-10

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  12. Polyimide Prepregs With Improved Tack

    NASA Technical Reports Server (NTRS)

    Vanucci, R.

    1987-01-01

    Drape and tack improved without loss of strength. Composites made with PMR-15 (or equivalent) polyimides have gained acceptance as viable engineering materials for high-use-temperature applications. Acceptance due to both thermo-oxidative stability of PMR-15 (or equivalent) and ease which PMR-15 (or equivalent) prepreg materials processed into composite structures.

  13. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    PubMed Central

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; Zhao, Jie; Yan, Kai; Cui, Yi

    2016-01-01

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm−2 in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes. PMID:26987481

  14. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE PAGES

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; ...

    2016-03-18

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  15. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  16. Polyimides with attached chromophores for improved performance in electro-optical devices

    NASA Astrophysics Data System (ADS)

    Guenthner, Andrew J.; Wright, Michael E.; Fallis, Stephen; Lindsay, Geoffrey A.; Petteys, Brian J.; Yandek, Gregory R.; Zang, De-Yu; Sanghadasa, Mohan; Ashley, Paul R.

    2006-08-01

    A method of chemical synthesis that allows for the facile attachment of a wide variety of chemical compounds, including highly active nonlinear optical chromophores, to polyimides has been developed recently at the Naval Air Warfare Center, Weapons Division. The synthesis of these compounds is presented, along with a discussion of their relevant physical and chemical properties, alone and in comparison to equivalent guest/host materials. Examples of attached chromophores include the well-known Disperse Red 1, along with high-activity chromophores of more recent interest such as FTC and CLD. The synthesis of structures that contain both attached chromophores and chemical functionalities that enable thermal cross-linking of the polyimides is also discussed.

  17. Graphite/Polyimide Composites Subjected to Biaxial Loads at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Kumosa, Maciej S.; Sutter, J. K.

    2007-01-01

    First, we will review our most important research accomplishments from a five year study concerned with the prediction of mechanical properties of unidirectional and woven graphite/polyimide composites based on T650-35, M40J and M60J fibers embedded in either PMR-15 or PMR-II-50 polyimide resins. Then, an aging model recently developed for the composites aged in nitrogen will be proposed and experimentally verified on an eight harness satin (8HS) woven T650-35/PMR-15 composite aged in nitrogen at 315 C for up to 1500 hours. The study was supported jointly between 1999 and 2005 by the AFOSR, the NASA Glenn Research Center, and the National Science Foundation.

  18. Study of coatings for improved fire and decay resistance of mine timbers

    NASA Technical Reports Server (NTRS)

    Baum, B.

    1977-01-01

    The purpose of this program was to find a fire- and rot-retardant polymer/fungicide reaction product for coating mine timbers. Fire-retardant polymers were screened as films and coatings on fir wood. Curable polyimide appeared to be flame retardant and evolved a minimum of fumes when exposed to a flame. Several organic and metal, low toxicity, fungicides were reacted with the polyimide in-situ on the wood. These coated samples were screened for fungus resistance. All formulations rated well - even the polyimide film without additives was fungicidal. The fir wood control itself resisted internal damage during the ten weeks of fungus exposure. A more severe test for fungus resistance will be required.

  19. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  20. Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhu, Ben-Peng; Lu, Zhi-Hong; Wang, Zi-Yu; Fei, Chun-Long; Yin, Di; Xiong, Rui; Shi, Jing; Chi, Qing-Guo; Lei, Qing-Quan

    2013-01-01

    This work reports the high dielectric permittivity of polyimide (PI) embedded with CaCu3Ti4O12 (CCTO) nanoparticles. The dielectric behavior has been investigated over a frequency of 100 Hz-1 MHz. High dielectric permittivity (ɛ = 171) and low dielectric loss (tan δ = 0.45) at 100 Hz have been observed near the percolation threshold. The experimental results fit well with the Percolation theory. We suggest that the high dielectric permittivity originates from the large interface area and the remarkable Maxwell-Wagner-Sillars effect at percolation in which nomadic charge carriers are blocked at internal interfaces between CCTO nanoparticles and the polyimide matrix.

  1. Synthesis of perfluoroalkylene aromatic diamines

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Nakahara, J. H.; Kratzer, R. H.

    1978-01-01

    Analogues of methylene dianilines were synthesized, in which the methylene group between the two aromatic nuclei was replaced by various perfluoroalkylene linkage. The hydrolytic thermal, and thermal oxidative stabilities of PMR Polyimides derived from these diamines were determined. Three types of PMR Polyimide discs were fabricated from the dimethyl ester of 3,3', 4,4'-benzophenonetetracarboxylic acid, the methyl ester of 5-norbornene-2,3-dicarboxylic acid, and one of the following three diamines: methyl dianiline, 1,3-bis(4-aminophenyl)hexafluoropropane, and 2,2-bis(4-aminophenyl)hexafluoropropane. The polyimide based on 2,2-bis(4-aminophenyl)hexafluoropropane exhibited the best hydrolytic, thermal, and thermal oxidative stability as determined by moisture uptake and thermogravimetric analysis.

  2. Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)

    2014-01-01

    Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.

  3. Tackifier for addition polyimides

    NASA Technical Reports Server (NTRS)

    Butler, J. M.; St.clair, T. L.

    1980-01-01

    A modification to the addition polyimide, LaRC-160, was prepared to improve tack and drape and increase prepeg out-time. The essentially solventless, high viscosity laminating resin is synthesized from low cost liquid monomers. The modified version takes advantage of a reactive, liquid plasticizer which is used in place of solvent and helps solve a major problem of maintaining good prepeg tack and drape, or the ability of the prepeg to adhere to adjacent plies and conform to a desired shape during the lay up process. This alternate solventless approach allows both longer life of the polymer prepeg and the processing of low void laminates. This approach appears to be applicable to all addition polyimide systems.

  4. Tough, processable simultaneous semi-interpenetrating polyimides

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1996-01-01

    A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance and mechanical performance, when compared to the commercial Thermid.RTM. materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR-15082) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.

  5. MIS-based sensors with hydrogen selectivity

    DOEpatents

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  6. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Snyder, Sarah J. (Inventor); Williams, Martha K. (Inventor)

    2016-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use as adhesives, and methods of using the materials for attaching two substrates. The methods typically form an adhesive bond that is hermetically sealed to both substrates. Additionally, the method typically forms a cross-linked bonding material that is flexible.

  7. Non-Toxic Multifunctional Silsesquioxane Diamine Monomer for Use in Aerospace Polyimides

    DTIC Science & Technology

    2017-11-03

    oligoimides were not quantified in this effort (requiring modulated DSC or resolving data from thermograms run at several heating rates), it is evident...Sci, 1972, 16, 905. 2. P.J. Cavano, W.E. Winters, “PMR Polyimide/Graphite Fiber Composite Fan Blades ,” NASA CR-135113, pp. 5-6, December 1976

  8. Development of lightweight graphite/polyimide honeycomb. Phase 1: Materials selection

    NASA Technical Reports Server (NTRS)

    Poesch, J. G.

    1971-01-01

    The materials selected for the production of extremely lightweight honeycomb sandwich panels are discussed. The resin selected for the first core and face sheet fabrication was Monsanto RS6234 polyimide. The fiber selected for core manufacture was Hercules HT-S, and for face sheets, Hercules HM-S; these selections are discussed.

  9. Polyimide/carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2003-01-01

    The goal of this product is to design and characterize well-defined conductive nanocomposite materials. The materials will be composed of a polymer matrix composed of rigid-backbone polyimides, and will be filled with modified or unmodified multi-walled carbon nanotubes (MWNTs). The ultimate design of this project is to create composite materials with optical clarity and a high conductivity.

  10. Graphite-fiber-reinforced polyimide liners of various compositions in plain spherical bearings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1978-01-01

    A plain spherical bearing design with a ball diameter of 28.6 mm, a race length of 12.7 mm, and a 1.7-mm-thick, molded composite liner was evaluated. The liner material is a self-lubricating composite of graphite-fiber-reinforced polyimide resin (GFRPI). The liner is prepared by transfer molding a mixture of one part chopped graphite fiber and one part partially polymerized resin into the space between the bearing ball and the outer race and then completing the polymerization under heat and pressure. Several liner compositions were evaluated: two types of polyimide, condensation and addition; two types of graphite fiber, low and high modulus; and four powder additives - cadmium oxide, cadmium iodide, graphite fluoride, and molybdenum disulfide. The bearings were oscillated + or - 15 deg at 1 Hz for 20 kilocycles under a radial unit load of 29 MN sq m (4200 psi) in dry air at 25, 200, or 315 C. Both types of fiber and polyimide gave low friction and wear. A simple equation was developed to fit the wear-time data and adequately predicted wear to 100 kilocycles.

  11. Conductive copper sulfide thin films on polyimide foils

    NASA Astrophysics Data System (ADS)

    Cardoso, J.; Gomez Daza, O.; Ixtlilco, L.; Nair, M. T. S.; Nair, P. K.

    2001-02-01

    Kapton polyimide is known for its high thermal stability, >400 °C. Copper sulfide thin films of 75 and 100 nm thickness were coated on DuPont Kapton HN polyimide foils of 25 µm thickness by floating them on a chemical bath containing copper complexes and thiourea. The coated foils were annealed at 150-400 °C in nitrogen, converting the coating from CuS to Cu1.8S. The sheet resistance of the annealed coatings (100 nm) is 10-50 Ω/□ and electrical conductivity, 2-10×103 Ω-1 cm- 1, which remain nearly constant even after the foils are immersed in 0.1-1 M HCl for 30-120 min. The coated polyimide has a transmittance (25-35%) peak located in the wavelength region 550-600 nm, with transmittance dropping to near zero below 450 nm and below 10% in the near-infrared spectral region. These characteristics are relevant in solar radiation control applications. The coated foils might also be used as conductive substrates for electrolytic deposition of metals and semiconductors and for optoelectronic device structures.

  12. The surface properties of fluorinated polyimides exposed to VUV and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1995-01-01

    The effect of atomic oxygen flux and VUV radiation alone and in combination on the surface of fluorinated polyimide films was studied using XPS spectroscopy. Exposure of fluorinated polyimides to VUV radiation alone caused no observable damage to the polymer surface, while an atomic oxygen flux resulted in substantial oxidation of the surface. On the other hand, exposure to VUV radiation and atomic oxygen in combination caused extensive oxidation of the polymer surface after only 2 minutes of exposure. The amount of oxidized carbon on the polymer surface indicated that there is aromatic ring opening oxidation. The changes in the O1s/C1s, N1s/C1s, and F1s/C1s ratios suggested that an ablative degradation process is highly favorable. A synergistic effect of VUV radiation in the presence of atomic oxygen is clearly evidenced from the XPS study. The atomic oxygen could be considered as the main factor in the degradation process of fluorinated polyimide films exposed to a low earth orbit environment.

  13. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression is investigated. Material properties of sandwich panel constituents (adhesive and facings) were determined from flatwise tension and sandwich beam flexure tests. An adhesive bond study resulted in the selection of a suitable cure cycle for FM 34 polyimide film adhesive and, a bonding technique using a liquid cell edge version of that adhesive resulted in considerable mass savings. Tensile and compressive material properties of the facings, quasiisotropic, symmetric, laminates (0, +45,90,-45)s of Celion/PMR-15, were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) usng the sandwich beam flexure test method. Results indicate the Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 1006.5 sq cm. 156 sq in., had quasiisotropic symmetric facings (0, + or - 45,90)s and a glass/polyimide honeycomb core (HRH-327-3/8-4).

  14. Polyimides with pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Nwokogu, Godson

    1992-01-01

    Several new polyimides containing pendent ethynyl groups were prepared and characterized. The new polyimides were prepared from the following novel ethynyl containing diamines; 1,1-bis(p aminophenyl)-1-(p ethynylphenyl) 2,2,2-trifluoroethane, and 1,1-bis(p aminophenyl)-1-(p phenylethynylphenyl)-2,2,2 trifluoroethane, and 1,1-bis(p aminophenyl)-1-(p hexynylphenyl)-2,2,2 trifluoroethane by reacting with either 3,3',4,4' benzophenone tetracarboxylic dianhydride or 2,2-bis(3,4 dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). Inherent viscosities for the polymers ranged from 0.26 to 0.94 dL/g. Three copolymers prepared by reacting 10 mole pct. of one of the ethynyl containing diamines and 90 mole pct. of 2,2-bis-(4-(4 aminophenoxy)phenyl) hexafluoropropane with 6FDA were also prepared and characterized. Inherent viscosities for these copolymers ranged from 1.08 to 1.54 dL/g. Original polyimide glass transition temperatures were approx. 265 C while curing at 300 to 350 C for 1 hr in air increased the Tgs by approx. 10 C. Film properties and thermal stability were also measured for these copolyimides.

  15. Characterization of Polyimide Matrix Resins and Prepregs

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.; Galeos, R. M.

    1985-01-01

    Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.

  16. Polyimide Aerogels Using Triisocyanate as Cross-linker.

    PubMed

    Nguyen, Baochau N; Meador, Mary Ann B; Scheiman, Daniel; McCorkle, Linda

    2017-08-16

    A family of polyimide (PI)-based aerogels is produced using Desmodur N3300A, an inexpensive triisocyanate, as the cross-linker. The aerogels are prepared by cross-linking amine end-capped polyimide oligomers with the triisocyanate. The polyimide oligomers are formulated using 2,2'-dimethylbenzidine, 4,4'-oxydianiline, or mixtures of both diamines, combined with 3,3',4,4'-biphenyltetracarboxylic dianhydride, and are chemically imidized at room temperature. Depending on the backbone chemistry, chain length, and polymer concentration, density of the aerogels ranged from 0.06 to 0.14 g/cm 3 and Brunauer-Emmett-Teller surface areas ranged from 350 to 600 m 2 /g. Compressive moduli of these aerogels were as high as 225 MPa, which are comparable to, or higher than, those previously reported prepared with similar backbone structures but with other cross-linkers. Because of their lower cost and commercial availability as cross-linker, the aerogels may have further potential as insulation for building and construction, clothing, sporting goods, and automotive applications, although lower-temperature stability may limit their use in some aerospace applications.

  17. Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors

    DOE PAGES

    Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.

    2015-03-11

    In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less

  18. Prediction of In-Space Durability of Protected Polymers Based on Ground Laboratory Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon; DiFilippo, Frank J.

    1996-01-01

    The probability of atomic oxygen reacting with polymeric materials is orders of magnitude lower at thermal energies (greater than O.1 eV) than at orbital impact energies (4.5 eV). As a result, absolute atomic oxygen fluxes at thermal energies must be orders of magnitude higher than orbital energy fluxes, to produce the same effective fluxes (or same oxidation rates) for polymers. These differences can cause highly pessimistic durability predictions for protected polymers and polymers which develop protective metal oxide surfaces as a result of oxidation if one does not make suitable calibrations. A comparison was conducted of undercut cavities below defect sites in protected polyimide Kapton samples flown on the Long Duration Exposure Facility (LDEF) with similar samples exposed in thermal energy oxygen plasma. The results of this comparison were used to quantify predicted material loss in space based on material loss in ground laboratory thermal energy plasma testing. A microindent hardness comparison of surface oxidation of a silicone flown on the Environmental Oxygen Interaction with Materials-III (EOIM-III) experiment with samples exposed in thermal energy plasmas was similarly used to calibrate the rate of oxidation of silicone in space relative to samples in thermal energy plasmas exposed to polyimide Kapton effective fluences.

  19. Bisphenol-A sensors on polyimide fabricated by laser direct writing for on-site river water monitoring at attomolar concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Cheng; Wang, Shutong; Wu, Jayne

    This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on themore » electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by ac electroosmotic effect that accelerates the transport of BPA molecules to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery analysis of BPA spiked in surface water. In conclusion, this work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecological impact of BPA exposure.« less

  20. Bisphenol-A sensors on polyimide fabricated by laser direct writing for on-site river water monitoring at attomolar concentration

    DOE PAGES

    Cheng, Cheng; Wang, Shutong; Wu, Jayne; ...

    2016-06-28

    This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on themore » electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by ac electroosmotic effect that accelerates the transport of BPA molecules to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery analysis of BPA spiked in surface water. In conclusion, this work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecological impact of BPA exposure.« less

  1. Bisphenol A Sensors on Polyimide Fabricated by Laser Direct Writing for Onsite River Water Monitoring at Attomolar Concentration.

    PubMed

    Cheng, Cheng; Wang, Shutong; Wu, Jayne; Yu, Yongchao; Li, Ruozhou; Eda, Shigetoshi; Chen, Jiangang; Feng, Guoying; Lawrie, Benjamin; Hu, Anming

    2016-07-20

    This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on the electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by ac electroosmotic effect that accelerates the transport of BPA molecules to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery analysis of BPA spiked in surface water. This work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecological impact of BPA exposure.

  2. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.

    PubMed

    Liu, Yi-Kai; Lee, Ming-Tsang

    2014-08-27

    This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.

  3. Flexible Electronic Substrate Film Fabricated Using Natural Clay and Wood Components with Cross-Linking Polymer.

    PubMed

    Takahashi, Kiyonori; Ishii, Ryo; Nakamura, Takashi; Suzuki, Asami; Ebina, Takeo; Yoshida, Manabu; Kubota, Munehiro; Nge, Thi Thi; Yamada, Tatsuhiko

    2017-05-01

    Requirements for flexible electronic substrate are successfully accomplished by green nanocomposite film fabricated with two natural components: glycol-modified biomass lignin and Li + montmorillonite clay. In addition to these major components, a cross-linking polymer between the lignin is incorporated into montmorillonite. Multilayer-assembled structure is formed due to stacking nature of high aspect montmorillonite, resulting in thermal durability up to 573 K, low thermal expansion, and oxygen barrier property below measurable limit. Preannealing for montmorillonite and the cross-linking formation enhance moisture barrier property superior to that of industrial engineering plastics, polyimide. As a result, the film has advantages for electronic film substrate. Furthermore, these properties can be achieved at the drying temperature up to 503 K, while the polyimide films are difficult to fabricate by this temperature. In order to examine its applicability for substrate film, flexible electrodes are finely printed on it and touch sensor device can be constructed with rigid elements on the electrode. In consequence, this nanocomposite film is expected to contribute to production of functional materials, progresses in expansion of biomass usage with low energy consumption, and construction of environmental friendly flexible electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Impact of silver metallization and electron irradiation on the mechanical deformation of polyimide films

    NASA Astrophysics Data System (ADS)

    Muradov, A. D.; Mukashev, K. M.; Yar-Mukhamedova, G. Sh.; Korobova, N. E.

    2017-11-01

    The impact of silver metallization and electron irradiation on the physical and mechanical properties of polyimide films has been studied. The metal that impregnated the structure of the polyimide substrate was 1-5 μm. The surface coatings contained 80-97% of the relative silver mirror in the visible and infrared regions. Irradiation was performed at the ELU-6 linear accelerator with an average beam electron energy of 2 MeV, an integral current of up to 1000 μA, a pulse repetition rate of 200 Hz, and a pulse duration of 5 μs. The absorbed dose in the samples was 10, 20, 30, and 40 MGy. The samples were deformed at room temperature under uniaxial tension on an Instron 5982 universal testing system. The structural changes in the composite materials that result from the impact of the physical factors were studied using an X-ray diffractometer DRON-2M in air at 293 K using Cu K α radiation (λαCu = 1.5418 Å). A substantial growth of mechanical characteristics resulting from the film metallization, as compared to the pure film, was observed. The growth of the ultimate strength by Δσ = 105 MPa and the plasticity by Δɛ = 75% is connected with the characteristics of the change of structure of the metallized films and the chemical etching conditions. The electron irradiation of the metallized polyimide film worsens its elastic and strength characteristics due to the formation of new phases in the form of silver oxide in the coating. The concentration of these phases increased with increasing dose, which was also the result of the violation of the ordered material structure, namely, the rupture of polyimide macromolecule bonds and the formation of new phases of silver in the coating. A mathematical model was obtained that predicts the elastic properties of silver metallized polyimide films. This model agrees with the experimental data.

  5. Automated Solvent Seaming of Large Polyimide Membranes

    NASA Technical Reports Server (NTRS)

    Rood, Robert; Moore, James D.; Talley, Chris; Gierow, Paul A.

    2006-01-01

    A solvent-based welding process enables the joining of precise, cast polyimide membranes at their edges to form larger precise membranes. The process creates a homogeneous, optical-quality seam between abutting membranes, with no overlap and with only a very localized area of figure disturbance. The seam retains 90 percent of the strength of the parent material. The process was developed for original use in the fabrication of wide-aperture membrane optics, with areal densities of less than 1 kg/m2, for lightweight telescopes, solar concentrators, antennas, and the like to be deployed in outer space. The process is just as well applicable to the fabrication of large precise polyimide membranes for flat or inflatable solar concentrators and antenna reflectors for terrestrial applications. The process is applicable to cast membranes made of CP1 (or equivalent) polyimide. The process begins with the precise fitting together and fixturing of two membrane segments. The seam is formed by applying a metered amount of a doped solution of the same polyimide along the abutting edges of the membrane segments. After the solution has been applied, the fixtured films are allowed to dry and are then cured by convective heating. The weld material is the same as the parent material, so that what is formed is a homogeneous, strong joint that is almost indistinguishable from the parent material. The success of the process is highly dependent on formulation of the seaming solution from the correct proportion of the polyimide in a suitable solvent. In addition, the formation of reliable seams depends on the deposition of a precise amount of the seaming solution along the seam line. To ensure the required precision, deposition is performed by use of an automated apparatus comprising a modified commercially available, large-format, ink-jet print head on an automated positioning table. The printing head jets the seaming solution into the seam area at a rate controlled in coordination with the movement of the positioning table.

  6. New High Temperature Cross Linking Monomers

    NASA Technical Reports Server (NTRS)

    Scola, Daniel A.

    1978-01-01

    This report describes the results of a one-year program designed to synthesize new, nonvolatile crosslinking monomers and to prove their feasibility in the development of lower temperature curing PMR-polyimide resins with high temperature capability. The objective of this program is to develop PMR-polyimide resins capable of being processed at a maximum temperature of 232C to 288C (450F to 500F) without sacrifice of the high temperature 316C (600F) capability of the state-of-the-art PMR-15 polyimide resin. Four monomethyl esters were synthesized and characterized for use in the crosslinking studies. It was found that all four crosslinkers were capable of entering into a crosslinking reaction to produce polymer specimens which were strong, dense and free of voids. The infrared and DSC studies of each crosslinker with monomers 4,4'-methylenedianiline (MDA) and the dimethyl ester of 3,3',4,4'-benzophenonetetracarboxylic acid (BTDE) comprising the resin systems, crosslinker/MDA/BTDE suggested that curing could be accomplished at 288C (550F). However, fabrication of dense, void free polymer specimens required a temperature of 316C (600F) and a pressure of 0.69 MPa (100 psi). The crosslinkers, monomethyl ester of 2,5-bicyclo[2.2.1]heptadiene-2,3-dicarboxylic acid (NDE) and monomethyl ester of maleic acid (MAE) were selected for evaluation in Celion 6000/PMR polyimide composites. These composites were characterized at RT, 288C (550F) and 316C (600F) initially and after isothermal aging at 288C (550F) and 316C (600F) for several hundred hours. The results of the isothermal aging studies suggested that both PMR systems NDE-MDA-BTDE and MAE-MDA-BTDE are promising candidates as matrices for addition type polyimide composites. These studies demonstrated that alternate crosslinkers to NE/MDA/BTDE are feasible, but mechanisms to lower the crosslinking temperature must be developed to provide lower temperature processing PMR-type polyimides.

  7. Thin-window high-efficiency position sensitive proportional counter for the vacuum flat crystal spectrometers on the Lawrence Livermore National Laboratory electron beam ion trap (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Goddard, R.

    2001-01-01

    We have mounted 1 {mu}m thick aluminized polyimide windows onto the position sensitive proportional counters employed by the wide-band flat crystal spectrometers at the Lawrence Livermore National Laboratory electron beam ion trap experiment. The aluminized polyimide, supported by thin wires across the short axis of the window, is used to isolate the detection chamber of the proportional counters, which operate at a pressure of 760 Torr, from the vacuum chamber of the spectrometer. The windows are modified versions of those developed for the proportional counters which were used during ground calibration of the Chandra X-ray Observatory. The transmission properties ofmore » these windows are, therefore, well known. The increased transmission efficiency of the polyimide windows relative to the 4 {mu}m thick polypropylene window material previously employed by our proportional counters has extended the useful range of the spectrometer from roughly 20 to 30 Aa at energies below the carbon edge, as well as increasing detection efficiency at wavelengths beyond the carbon edge. Using an octadecyl hydrogen maleate crystal with 2d=63.5Aa, we demonstrate the increased wavelength coverage by measuring the resonance, intercombination, and forbidden lines in helium-like NVII in two different density regimes. The thin polyimide windows have also increased the efficiency of the spectrometers entire wavelength range. To demonstrate the increased efficiency we compare the FeXVII spectrum in the 15--17 Aa band measured with the 1 {mu}m aluminized polyimide windows to the 4 {mu}m aluminized polypropylene windows. The comparison shows an average increase in efficiency of {approx}40%. The polyimide windows have a significantly lower leak rate than the polypropylene windows making it possible to achieve approximately an order of magnitude lower pressure in the spectrometer vacuum chamber which reduces the gas load on the trap region.« less

  8. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes.

    PubMed

    Singh, Swatantra P; Li, Yilun; Zhang, Jibo; Tour, James M; Arnusch, Christopher J

    2018-01-23

    Graphene based materials have profoundly impacted research in nanotechnology, and this has significantly advanced biomedical, electronics, energy, and environmental applications. Laser-induced graphene (LIG) is made photothermally and has enabled a rapid route for graphene layers on polyimide surfaces. However, polysulfone (PSU), poly(ether sulfone) (PES), and polyphenylsulfone (PPSU) are highly used in numerous applications including medical, energy, and water treatment and they are critical components of polymer membranes. Here we show LIG fabrication on PSU, PES, and PPSU resulting in conformal sulfur-doped porous graphene embedded in polymer dense films or porous substrates using reagent- and solvent-free methods in a single step. We demonstrate the applicability as flexible electrodes with enhanced electrocatalytic hydrogen peroxide generation, as antifouling surfaces and as antimicrobial hybrid membrane-LIG porous filters. The properties and surface morphology of the conductive PSU-, PES-, and PPSU-LIG could be modulated using variable laser duty cycles. The LIG electrodes showed enhanced hydrogen peroxide generation compared to LIG made on polyimide, and showed exceptional biofilm resistance and potent antimicrobial killing effects when treated with Pseudomonas aeruginosa and mixed bacterial culture. The hybrid PES-LIG membrane-electrode ensured complete elimination of bacterial viability in the permeate (6 log reduction), in a flow-through filtration mode at a water flux of ∼500 L m -2 h -1 (2.5 V) and at ∼22 000 L m -2 h -1 (20 V). Due to the widespread use of PSU, PES, and PPSU in modern society, these functional PSU-, PES-, and PPSU-LIG surfaces have great potential to be incorporated into biomedical, electronic, energy and environmental devices and technologies.

  9. 76 FR 25373 - Certain Polyimide Films, Products Containing Same, and Related Methods; Notice of Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... Same, and Related Methods; Notice of Institution of Investigation AGENCY: U.S. International Trade... United States after importation of certain polyimide films, products containing same, and related methods... containing same, and related methods that infringe one or more of claims 1-14 of the `866 patent; claims 1-6...

  10. Diamines and polyimides containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)

    1994-01-01

    Diamines containing pendent ethynyl and substituted ethynyl groups are synthesized. These diamines are reacted with dianhydrides to form polyamide acids, which are chemically or thermally cyclodehydrated to form polyimides and copolyimides with pendent ethynyl groups. Upon heating, the pendent ethynyl groups react to form crosslinked resins that are useful as adhesives, composite matrices, coatings, moldings, and films.

  11. Laser Induced Electrodeposition on Polyimide and GaAs Substrates

    DTIC Science & Technology

    1983-10-01

    6 3.1 Laser Gold Plating on Undoped Ga As Substrate ........... 6 3.1.1 Deposit Formation...22 iv LIST OF ILLUSTRATIONS Figure Page 1. Experimental Set-Up . . . . . .................. 4 2. Laser Gold Pla’ting Undoped GaAs (100...9 3. Laser Gold Plating Undoped GaAs (100) Deposit Resistance Measurement ......................... .10 4. Laser Gold Plating on Polyimide

  12. Synthesis and Characterization of Processable Polyimides with Enhanced Thermal Stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1999-01-01

    The following is a summary report of the research carried out under NASA Grant NAG-1-448. The work was divided into four major areas: 1) Enhanced polyimide processing through the use of reactive plasticizers 2) Development of processable polyhenylquinoxalines 3) Synthesis and characterization of perfluorovinylether-terminated imide oligomers and 4) Fluorosilicones containing perfuorocyclobutane rings.

  13. Polarization Stability of Amorphous Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  14. Nonlinear effects on composite laminate thermal expansion

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Rosen, B. W.; Pipes, R. B.

    1979-01-01

    Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.

  15. Films, Preimpregnated Tapes and Composites Made from Polyimide "Salt-Like" Solutions

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    High quality films, preimpregnated tape (prepegs), and composites have been fabricated from polyimide precursor 'saltlike' solutions. These salt-like solutions have a low viscosity (5,000 to 10,000 cp) and a high solids content (50-65% by weight) and can be coated onto reinforcing fiber to produce prepegs with excellent tack and drape at 12-15% residual solvent (approximately 4-6% water from thermal imidization reaction). The processing of these types of prepegs significantly overcomes solvent removal problems and allows excellent fiber wet out. In addition, the physical characteristics of the polyimide precursor salt-like solutions permits processing into high-performance materials through the use of standard prepregging and composite fabrication equipment. The resultant composites are of high quality.

  16. Solvent resistant thermoplastic aromatic poly(imidesulfone) and process for preparing same

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A. (Inventor)

    1983-01-01

    A process for preparing a thermoplastic poly(imidesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistance which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.

  17. Process for preparing solvent resistant, thermoplastic aromatic poly(imidesulfone)

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A. (Inventor)

    1984-01-01

    A process for preparing a thermoplastic poly(midesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistant which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.

  18. Development of an impact- and solvent-resistant thermoplastic composite matrix, phase 3

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Kiskiras, C. J.

    1985-01-01

    The polyimide from BTDA 1,6-hexanediamine and m-phenylenediamine was selected from a prior study for the present study. Methods to prepare prepreg which would provide low void composites at low molding pressures from the thermoplastic polyimide were studied. Cresol solutions of the polyimide were applied to a balanced weave carbon fabric and the cresol removed prior to composite molding. Low void composites were prepared from smoothed prepregs at high pressures (34.5 MPa) and temperatures as low as 260 C. Lower molding pressures lead to higher void composites. Need for a lower melt viscosity in the neat resin is suggested as a requirement to achieve low void composites at low pressures. Some mechanical properties are included.

  19. Development of lightweight graphite/polyimide sandwich panels, phases 3, 4 and 5

    NASA Technical Reports Server (NTRS)

    Merlette, J. B.

    1972-01-01

    Work performed in the last three phases of the program included: (1) face sheet processing; (2) honeycomb core manufacture; (3) face sheet-to-core bonding development; and (4) sandwich panel fabrication and testing. Resin cure studies were a major portion of this effort since processing problems traced to the polyimide matrix resin had to be resolved before quality core and face sheets could be fabricated. Honeycomb core fabrication and testing were conducted by Hexcel Corporation. A total of four graphite/polyimide resin composite cores were fabricated, tested, and reported. Two sandwich panels weighing .48 and .58 lb/sq ft, respectively were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  20. Tough, processable simultaneous semi-interpenetrating polyimides

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1994-01-01

    A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance, and mechanical performance when compared to the commercial Thermid materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR150B2) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.

  1. AZ-2000-IECW and StaMet Black Kapton Options for Solar Probe Plus MAG Sensor MLI Kevlar/Polyimide Shells

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2017-01-01

    AZ-2000-IECW white paint and StaMet black Kapton have been evaluated for the Kevlar/polyimide shells that enclose the Solar Probe Plus Magnetometer (MAG) sensors and multilayer insulation. Flight qualification testing on AZ-2000-IECW painted Kevlar/polyimide laminate was completed at Goddard Space Flight Center. This paint potentially meets all the requirements. However, it has no flight heritage. StaMet is hotter in the sun, and is specular. The results of the MAG thermal balance test show StaMet meets the thermal requirement and heater power budget. The mission prefers to fly StaMet after evaluating the risks of AZ-2000-IECW flaking and glint from StaMet to the Star Trackers.

  2. Development of side-chain NLO polymer materials with high electro-optic activity and long-term stability

    NASA Astrophysics Data System (ADS)

    Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen

    2005-01-01

    The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.

  3. Use of the quartz crystal microbalance to determine the monomeric friction coefficient of polyimides

    NASA Technical Reports Server (NTRS)

    Bechtold, Mary M.

    1995-01-01

    When a thin film of polymer is coated on to a quartz crystal microbalance (QCM), the QCM can be used to detect the rate of increase in weight of the polymer film as the volatile penetrant diffuses into the polymer. From this rate information the diffusion coefficient of the penetrant into the polymer can be computed. Calculations requiring this diffusion coefficient lead to values which approximate the monomeric friction coefficient of the polymer. This project has been concerned with the trial of crystal oscillating circuits suitable for driving polymer coated crystals in an atmosphere of penetrant. For these studies done at room temperature, natural rubber was used as an easily applied polymer that is readily penetrated by toluene vapors, qualities anticipated with polyimides when they are tested at T(g) in the presence of toluene. Three quartz crystal oscillator circuits were tested. The simplest circuit used +/- 5 volt dc and had a transistor to transistor logic (TTL) inverter chip that provides a 180 deg phase shift via a feed back loop. This oscillator circuit was stable but would not drive the crystal when the crystal was coated with polymer and subjected to toluene vapors. Removal of a variable resistor from this circuit increased stability but did not otherwise increase performance. Another driver circuit tested contained a two stage differential input, differential output, wide band video amplifier and also contain a feed back loop. The circuit voltage could not be varied and operated at +/- 5 volts dc; this circuit was also stable but failed to oscillate the polymer coated crystal in an atmosphere saturated with toluene vapors. The third oscillator circuit was of similar construction and relied on the same video amplifier but allowed operation with variable voltage. This circuit would drive the crystal when the crystal was submerged in liquid toluene and when the crystal was coated with polymer and immersed in toluene vapors. The frequency readings obtained when using this oscillating circuit are highly variable. This circuit requires further modification to stabilize frequency readings before its use in studies to determine the diffusion coefficient of penetrant molecules into a polymer film coated on a QCM.

  4. High Temperature VARTM with LaRC Polyimides

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Grimsley, Brian W.; Jensen, Brian J.; Kellen, Charles B.

    2004-01-01

    Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems for advanced aerospace applications that can be processed without the use of an autoclave. Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Vacuum assisted resin transfer molding (VARTM) has shown potential to reduce the manufacturing cost of composite structures. In VARTM, the fibrous preform is infiltrated on a rigid tool surface contained beneath a flexible vacuum bag. Both resin injection and fiber compaction are achieved under pressures of 101.3 KPa or less. Recent studies have demonstrated the feasibility of the VARTM process for fabrication of void free structures utilizing epoxy resin systems with fiber volume fractions approaching 60%. In this work, the VARTM process has been extended to the fabrication of composite panels from polyimide systems developed at the Langley Research Center. This work has focused on processing LARC(trademark) PETI-8 (Langley Research Center Phenylethynyl Terminated Imide- 8), an aromatic polyimide based on 3,3',4,4' -biphenyltetracarboxylic dianhydride, a 50:50 molar ratio of 3,4'-oxydianiline and 1,3-bis(3-aminophenoxy)benzene, with 4-phenylethynylphthalic anhydride as the endcapping agent. Various molecular weight versions were investigated to determine their feasibility of being processed by VARTM at elevated temperatures. An injection temperature of approximately 280 C was required to achieve the necessary viscosity (<5 Poise) for flow at VARTM pressures. Laminate quality and initial mechanical properties are presented for LARC(trademark) PETI-8 and 6k IM7 uniweave fabric.

  5. Development of a Low Cost Molded Plastic Missile/RPV Control Surface Actuator

    DTIC Science & Technology

    1975-10-01

    Glass Fiber 3 2.1.2.2 Nylon/30% Glaso Fiber 7 2.2 Phase I Testing Of Polyimide/Glass 8 j/ Burst Testsl 11tig 2.2.2atgu TechShatset S.2. Phse Cliner oldng...Dimensional and Hard- 23 a >~ ness Change Results19 2.2.4.2.3 Weight Changes 23 2.2.5 Phase II Environmental Testing 27 II I -ii TALIO ONET TABLE OF...CONTENTS (CONT’D) SECTION PAGE 2.3 Phase I Analysis and Design 27 2.3.1 Sizing and Optimizing AR 27 2.3.2 Valve Sizing 36 2.3.3 Pistons Side Load and Rocker

  6. Small Angle Neutron Scattering (SANS) Characterization of Electrically Conducting Polyaniline Nanofiber/Polyimide Nanocomposites

    DTIC Science & Technology

    2011-10-25

    range, neither the D-B nor the IPL model could be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped...be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped polymer)/polyimide blend systems. At 1 and 2

  7. High-Temperature Treatments For Polyimide/Graphite Composite

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Lowell, Carl

    1992-01-01

    Combination of inert-gas heat treatment and coating with material impermeable by oxygen proposed to increase thermo-oxidative and high-temperature structural stabilities of composite materials made of graphite fibers in matrices of PMR-15 polyimide. Proposal directed toward development of lightweight matrix/fiber composites for use in aircraft engines, wherein composites exposed to maximum operating temperatures between 371 and 427 degrees C.

  8. Crystallization of Stretched Polyimides: A Structure-Property Study

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Dezern, James F.

    2002-01-01

    A simple rotational isomeric state model was used to detect the degree to which polyimide repeat units might align to give an extended crystal. It was found experimentally that the hallmarks of stretch-crystallization were more likely to occur in materials whose molecules could readily give extended, aligned conformations. A proposed screening criterion was 84% accurate in selecting crystallizing molecules.

  9. Polythiophene coated aromatic polyimide enabled ultrafast and sustainable lithium ion batteries

    DOE PAGES

    Lyu, Hailong; Liu, Jiurong; Mahurin, Shannon; ...

    2017-10-31

    Organic composite electrode materials based on aromatic polyimide (PI) and electron conductive polythiophene (PT) have been prepared by a facilein situchemical oxidation polymerization method. The optimized composite electrode PI30PT delivers a remarkable high-rate cyclability, achieving a high capacity of 89.6 mA h g -1at 20 C with capacity retention of 94% after 1000 cycles.

  10. Light-Weight Low-Loss Dielectric Polymer Composites Containing Carbon Nanostructure

    DTIC Science & Technology

    2014-10-17

    increases in temperature. Subsequent thermal breakdown and carbonization of the polyurethane coating and polyimide substrate significantly reduced the RF...measurements through HD-GNR films. For the highly uniform films produced in separate experiments on a glass substrate with sufficient thermal conductivity ...further carbonized the polyurethane- coated polyimide substrate. This was attributed to the electromagnetic and the resulting thermal energy

  11. Catalysts for polyimide foams from aromatic isocyanates and aromatic dianhydrides. [flame retardant foams

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Sawko, P. M.; Estrella, C. A. (Inventor)

    1979-01-01

    Polyimide foam products having greatly improved burn-through and flame-spread resistance are prepared by the reaction of aromatic polyisocyanates with aromatic dianhydrides in the presence of metallic salts of octoic acid. The salts, for example stannous octoate, ferric octoate and aluminum octoate, favor the formation of imide linkages at the expense of other possible reactions.

  12. Enhanced performance of solution-processed organic thin-film transistors with a low-temperature-annealed alumina interlayer between the polyimide gate insulator and the semiconductor.

    PubMed

    Yoon, Jun-Young; Jeong, Sunho; Lee, Sun Sook; Kim, Yun Ho; Ka, Jae-Won; Yi, Mi Hye; Jang, Kwang-Suk

    2013-06-12

    We studied a low-temperature-annealed sol-gel-derived alumina interlayer between the organic semiconductor and the organic gate insulator for high-performance organic thin-film transistors. The alumina interlayer was deposited on the polyimide gate insulator by a simple spin-coating and 200 °C-annealing process. The leakage current density decreased by the interlayer deposition: at 1 MV/cm, the leakage current densities of the polyimide and the alumina/polyimide gate insulators were 7.64 × 10(-7) and 3.01 × 10(-9) A/cm(2), respectively. For the first time, enhancement of the organic thin-film transistor performance by introduction of an inorganic interlayer between the organic semiconductor and the organic gate insulator was demonstrated: by introducing the interlayer, the field-effect mobility of the solution-processed organic thin-film transistor increased from 0.35 ± 0.15 to 1.35 ± 0.28 cm(2)/V·s. Our results suggest that inorganic interlayer deposition could be a simple and efficient surface treatment of organic gate insulators for enhancing the performance of solution-processed organic thin-film transistors.

  13. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  14. Mechanical response of two polyimides through coarse-grained molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sudarkodi, V.; Sooraj, K.; Nair, Nisanth N.; Basu, Sumit; Parandekar, Priya V.; Sinha, Nishant K.; Prakash, Om; Tsotsis, Tom

    2018-03-01

    Coarse-grained molecular dynamics (MD) simulations allow us to predict the mechanical responses of polymers, starting merely with a description of their molecular architectures. It is interesting to ask whether, given two competing molecular architectures, coarse-grained MD simulations can predict the differences that can be expected in their mechanical responses. We have studied two crosslinked polyimides PMR15 and HFPE52—both used in high- temperature applications—to assess whether the subtle differences in their uniaxial stress-strain responses, revealed by experiments, can be reproduced by carefully coarse-grained MD models. The coarse graining procedure for PMR15 is outlined in this work, while the coarse grain forcefields for HFPE52 are borrowed from an earlier one (Pandiyan et al 2015 Macromol. Theory Simul. 24 513-20). We show that the stress-strain responses of both these polyimides are qualitatively reproduced, and important insights into their deformation and failure mechanisms are obtained. More importantly, the differences in the molecular architecture between the polyimides carry over to the differences in the stress-strain responses in a manner that parallels the experimental results. A critical assessment of the successes and shortcomings of predicting mechanical responses through coarse-grained MD simulations has been made.

  15. Optical fiber sensors based on novel polyimide for humidity monitoring of building materials

    NASA Astrophysics Data System (ADS)

    Chai, Jing; Liu, Qi; Liu, Jinxuan; Zhang, Dingding

    2018-03-01

    This paper presents novel preparation methods of polyimide and coupling agent, coated on the fiber Bragg grating (FBG) sensor for monitoring relative humidity (RH). The sensing mechanism that the volume change of the moisture-sensitive polyimide induces the shift of the Bragg wavelength of FBG is used in the RH sensor. The performance of the polymer-coated RH sensor was evaluated under laboratory conditions of temperature over a range of values (20.0-80.0 °C) and humidity over a range of RH values (25.0-95.0%). The time response and RH sensitivity of the sensor based on novel polyimide and coupling agent was improved, compared to the previous. A new packaged RH sensor was designed, which was used in detecting the moisture diffusion and evolutions inside of sample made of building materials which exposed to a controlled environment in the lab after casting. Relative humidity inside of sample with time was 100% in the first phase of vapor-saturated, slowly reduced in the latter phase. The results indicate the RH sensor developed provides a feasible method to detect the influence of environment on moisture inside the material in the drying process.

  16. Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.

    PubMed

    Kim, Eui Tae; Kim, Cinoo; Lee, Seung Woo; Seo, Jong-Mo; Chung, Hum; Kim, Sung June

    2009-09-01

    To adopt micropatterning technology in manufacturing silicone elastomer-based microelectrode arrays for retinal stimulation, a silicone-polyimide hybrid microelectrode array was proposed and tested in vivo. Gold microelectrodes were created by semiconductor manufacturing technology based on polyimide and were hybridized with silicone elastomer by spin coating. The stability of the hybrid between the two materials was flex and blister tested. The feasibility of the hybrid electrode was evaluated in the rabbit eye by reviewing optical coherence tomography (OCT) findings after suprachoroidal implantation. The flex test showed no dehiscence between the two materials for 24 hours of alternative flexion and extension from -45.0 degrees to +45.0 degrees . During the blister test, delamination was observed at 8.33 +/- 1.36 psi of pressure stress; however, this property was improved to 11.50 +/- 1.04 psi by oxygen plasma treatment before hybridization. OCT examination revealed that the implanted electrodes were safely located in the suprachoroidal space during the 4-week follow-up period. The silicone-polyimide hybrid microelectrode array showed moderate physical properties, which are suitable for in vivo application. Appropriate pretreatment before hybridization improved electrode stability. In vivo testing indicated that this electrode is suitable as a stimulation electrode in artificial retina.

  17. Effects of real-time thermal aging on graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Haskins, J. F.; Kerr, J. R.

    1985-01-01

    As part of a program to evaluate high-temperature advanced composites for use on supersonic cruise transport aircraft, two graphite/polyimide composites have been aged at elevated temperatures for times up to 5.7 years. Work on the first, HT-S/710 graphite/polyimide, was started in 1974. Evaluation of the second polyimide, Celion 6000/LARC-160, began in 1980. Baseline properties are presented, including unnotched and notched tensile data as a function of temperature, compression, flexure, shear, and constant-amplitude fatigue data at R = 0.1 and R = -1. Tensile specimens were aged in ovens where pressure and aging temperatures were controlled for various times up to and including 50,000 hours. Changes in tensile strength were determined and plotted as a function of aging time. The HT-S/710 composite aged at 450 F and 550 F if compared to the Celion 6000/LARC-160 composite aged at 350 F and 450 F. After tensile testing, many of the thermal aging specimens were examined using a scanning electron microscope. Results of these studies are presented, and changes in properties and degradation mechanisms during high-temperature aging are discussed and illustrated using metallographic techniques.

  18. Polyimide-based intracortical neural implant with improved structural stiffness

    NASA Astrophysics Data System (ADS)

    Lee, Kee-Keun; He, Jiping; Singh, Amarjit; Massia, Stephen; Ehteshami, Gholamreza; Kim, Bruce; Raupp, Gregory

    2004-01-01

    A novel structure for chronically implantable cortical electrodes using polyimide bio-polymer was devised, which provides both flexibility for micro-motion compliance between brain tissues and the skull and at the brain/implant interface and stiffness for better surgical handling. A 5-10 µm thick silicon backbone layer was attached to the tip of the electrode to enhance the structural stiffness. This stiff segment was then followed by a 1 mm flexible segment without a silicon backbone layer. The fabricated implants have tri-shanks with five recording sites (20 µm × 20 µm) and two vias of 40 µm × 40 µm on each shank. In vitro cytotoxicity tests of prototype implants revealed no adverse toxic effects on cells. Bench test impedance values were assessed, resulting in an average impedance value of ~2 MOmega at 1 KHz. For a 5 µm thick silicon backbone electrode, the stiffness of polyimide-based electrodes was increased ten times over that of electrodes without the silicon backbone layer. Furthermore, polyimide-based electrodes with 5 µm and 10 µm thick silicon backbone layer penetrated pia of rat brain without buckling that has been observed in implants without silicon reinforcement.

  19. Rationally designed polyimides for high-energy density capacitor applications.

    PubMed

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-09

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  20. Preparation and Characterization of Space Durable Polymer Nanocomposite Films from Functionalized Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.

    2003-01-01

    Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.

Top