Wu, Yue; Zou, Yan; Yang, Hang; Li, Yaowen; Li, Hongkun; Cui, Chaohua; Li, Yongfang
2017-10-25
Nowadays, most of the solution-processed high-efficiency polymer solar cell (PSC) devices are fabricated by halogenated solvents (such as chlorobenzene, 1,2-dichlorobenzene, chloroform, etc.) which are harmful to people and the environment. Therefore, it is essential to develop high-efficiency PSC devices processed by environmentally friendly solvent processing for their industrialization. In this regard, we report a new alkylthio chain-based conjugated polymer PBDB-TS as donor material for environmentally friendly solvent-processed PSCs. PBDB-TS possesses a low-lying HOMO energy level at -5.42 eV and a good solubility in toluene and o-xylene. By using o-xylene and 1% N-methylpyrrolidone as processing solvent, following by the thermal annealing treatment for PBDB-TS:ITIC blend films, well-developed morphological features, and balanced charge transport properties are observed, leading to a high power conversion efficiency (PCE) of 9.85%, higher than that of the device cast from halogenated solvent (PCE = 9.65%). The results suggest that PBDB-TS is an attractive donor material for nonhalogen solvents-processing PSCs.
NASA Technical Reports Server (NTRS)
Jett, T. R.; Baker, M. A.; Thom, R. L.
1997-01-01
Perfluoroakylpolyether (PFPE) greases are used extensively in critical flight hardware in a space environment. In the past, these greases have been processed using chlorofluorocarbon (CFC) based solvents. In response to the recent ban of CFC's, new formulations of environmentally friendly PFPE greases that are not processed with CFC based solvents were developed. The purpose of this study was to compare the performance of a new environmentally friendly formulation PFPE grease to a previously proven space compatible formulation PFPE grease. A one year test using 20 small electrical motors (two bearings per motor) was conducted in a high vacuum environment(2.0 x 10(exp 4)) Torr at a temperature of 90 C. Twenty bearings were lubricated with a new environmentally friendly formulation, and twenty bearings were lubricated with an old formulation. The mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace was taken to measure post test wear of the bearings. In addition the bearings were visually examined and analyzed using an optical microscope.
Solvent extraction of gold using ionic liquid based process
NASA Astrophysics Data System (ADS)
Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.
2017-01-01
In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.
Preparation of Vegetable Oil Polymers by a Green Processing Method
USDA-ARS?s Scientific Manuscript database
Recently, attention has been focused on the development of environmentally friendly replacements for volatile organic solvents. One promising candidate is supercritical carbon dioxide (scCO2). The low toxicity of CO2 and lack of toxic solvent residues in the final products make CO2 an attractive m...
Convergent spray process for environmentally friendly coatings
NASA Technical Reports Server (NTRS)
Scarpa, Jack
1995-01-01
Conventional spray application processes have poor transfer efficiencies, resulting in an exorbitant loss in materials, solvents, and time. Also, with ever tightening Environmental Protection Agency (EPA) regulations and Occupational Safety and Health Administration requirements, the low transfer efficiencies have a significant impact on the quantities of materials and solvents that are released into the environment. High solids spray processes are also limited by material viscosities, thus requiring many passes over the surface to achieve a thickness in the 0.125 -inch range. This results in high application costs and a negative impact on the environment. Until recently, requirements for a 100 percent solid sprayable, environmentally friendly, lightweight thermal protection system that can be applied in a thick (greater than 0.125 inch) single-pass operation exceeded the capability of existing systems. Such coatings must be applied by hand lay-up techniques, especially for thermal and/or fire protection systems. The current formulation of these coatings has presented many problems such as worker safety, environmental hazards, waste, high cost, and application constraints. A system which can apply coatings without using hazardous materials would alleviate many of these problems. Potential applications include the aerospace thermal protective specialty coatings, chemical and petroleum industries that require fire-protection coatings that resist impact, chemicals, and weather. These markets can be penetrated by offering customized coatings applied by automated processes that are environmentally friendly.
USDA-ARS?s Scientific Manuscript database
Recent efforts have been focused on the development of environmentally friendly replacements for volatile organic solvents. One promising candidate is supercritical carbon dioxide because of its low toxicity and no solvent residues in the final products. Renewed interest in biodegradable polymeric m...
Interdisciplinary Chemistry Experiment: An Environmentally Friendly Extraction of Lycopene
ERIC Educational Resources Information Center
Zhu, Jie; Zhang, Mingjie; Liu, Qingwei
2008-01-01
A novel experiment for the extraction of lycopene from tomato paste without the use of an organic solvent is described. The experiment employs polymer, green, and analytical chemistry. This environmentally friendly extraction is more efficient and requires less time than the traditional approach using an organic solvent. The extraction is…
Environmentally Friendly Cleaners for Removing Tar from Metal Surfaces
2009-04-01
treatment plants that handle phosphate type solu- tions. The terms used by commercial vendors such as environmentally friendly, all natural, green, and...solvents used in relation to diesel fuel, and the procedure can also rank solvents quantitatively. Sacco (2004) has studied the blending of two plant ...other bituminous materials from industrial equipment surfaces. The composition is a mixture of a carrier monocyclic monoterpene and a nonionic
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-01-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
NASA Astrophysics Data System (ADS)
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-12-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.
Recent trends in biological extraction of chitin from marine shell wastes: a review.
Kaur, Surinder; Dhillon, Gurpreet Singh
2015-03-01
The natural biopolymer chitin and its deacetylated product chitosan are widely used in innumerable applications ranging from biomedicine, pharmaceuticals, food, agriculture and personal care products to environmental sector. The abundant and renewable marine processing wastes are commercially exploited for the extraction of chitin. However, the traditional chitin extraction processes employ harsh chemicals at elevated temperatures for a prolonged time which can harm its physico-chemical properties and are also held responsible for the deterioration of environmental health. In view of this, green extraction methods are increasingly gaining popularity due to their environmentally friendly nature. The bioextraction of chitin from crustacean shell wastes has been increasingly researched at the laboratory scale. However, the bioextraction of chitin is not currently exploited to its maximum potential on the commercial level. Bioextraction of chitin is emerging as a green, cleaner, eco-friendly and economical process. Specifically in the chitin extraction, microorganisms-mediated fermentation processes are highly desirable due to easy handling, simplicity, rapidity, controllability through optimization of process parameters, ambient temperature and negligible solvent consumption, thus reducing environmental impact and costs. Although, chitin production from crustacean shell waste through biological means is still at its early stage of development, it is undergoing rapid progress in recent years and showing a promising prospect. Driven by reduced energy, wastewater or solvent, advances in biological extraction of chitin along with valuable by-products will have high economic and environmental impact.
Innovative eco-friendly bio- solvent for combating sea surface and sedimented oil pollution
NASA Astrophysics Data System (ADS)
Theodorou, Paraskevas
2017-04-01
The combating of oil spill at sea surface by chemical dispersants accelerates the evaporation and disperse the oil into the water column, where it is broken down by natural processes and/or is sedimented at the sea bottom, especially at near coastal shallow areas, ports and marinas. The usual methodology for cleaning the sedimented oil from the sea bottom is mainly carried out via excavation and dumping of the polluted sediment into deeper sea areas, where the contamination is transferred from one area to another. The eco-friendly bio-solvent MSL Aqua 250 is an innovative new solution based mainly on natural constituents. The action mechanism and the effectiveness of this eco-friendly solvent is based on the high surface tension process. Organic compounds, including hydrocarbons upon coming in contact with MSL Aqua 250 solvent generate a significant surface tension reaction, which is able to alter the organic compounds to liquid form and then to drastically evaporate it. The use of MSL Aqua 250 solvent, both at sea surface and at the bottom, has the following advantages compared to the dispersants: • Efficient solution without transferring the pollution from sea surface to the water column and to the bottom or disturbing the Aquatic Eco System. • Non-Toxic. • Environmentally friendly with a restoration of marine life in the Eco System. • Cost effective. The MSL Aqua 250 solvent has been tested in cooperation with the Cyprus Department of Fisheries and Marine Research and the Technological University of Cyprus and used during the years 2015 and 2016 in marinas and fishing shelters in Cyprus faced oil pollution, with high concentration in the sea water and at the sea bottom of chemical parameters (BOD5, COD, FOG, TKN, TP, TPH), with excellent results.
Lekar, Anna V; Borisenko, Sergey N; Vetrova, Elena V; Filonova, Olga V; Maksimenko, Elena V; Borisenko, Nikolai I; Minkin, Vladimir I
2015-11-01
The aim of this work was to study an application of a previously developed expedient acid-free technique for the preparation of glycyrrhetinic acid from ammonium glycyrrhizinate that requires no use of acids and toxic organic solvents. Subcritical water that serves as a reactant and a solvent was used in order to obtain glycyrrhetinic acid in good yields starting from ammonium glycyrrhizinate. It has been shown that variation of only one parameter of the process (temperature) allows alteration to thecomposition of the hydrolysis products. A new method was used for the synthesis of glycyrrhetinic acid (glycyrrhizic acid aglycone) and its monoglycoside. HPLC combined with mass spectrometry and NMR spectroscopy were used to determine the quantitative and qualitative compositions of the obtained products. The method developed for the production of glycyrrhetinic acid in subcritical water is environmentally friendly and faster than conventional hydrolysis methods that use acids and-expensive and toxic organic solvents. The proposed technique has a potential for the future development of inexpensive and environmentally friendly technologies for production of new pharmaceutical plant-based substances.
Solvent-Free Toner Printing of Organic Semiconductor Layer in Flexible Thin-Film Transistors
NASA Astrophysics Data System (ADS)
Sakai, Masatoshi; Koh, Tokuyuki; Toyoshima, Kenji; Nakamori, Kouta; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Shinamura, Shoji; Kudo, Kazuhiro
2017-07-01
A solvent-free printing process for printed electronics is successfully developed using toner-type patterning of organic semiconductor toner particles and the subsequent thin-film formation. These processes use the same principle as that used for laser printing. The organic thin-film transistors are prepared by electrically distributing the charged toner onto a Au electrode on a substrate film, followed by thermal lamination. The thermal lamination is effective for obtaining an oriented and crystalline thin film. Toner printing is environmentally friendly compared with other printing technologies because it is solvent free, saves materials, and enables easy recycling. In addition, this technology simultaneously enables both wide-area and high-resolution printing.
Ionic Liquid Pretreatment of Lignocellulosic Biomass for Enhanced Enzymatic Delignification.
Moniruzzaman, Muhammad; Goto, Masahiro
2018-05-10
Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper
NASA Astrophysics Data System (ADS)
Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.
2014-12-01
Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-01-01
A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.
Environmentally-friendly lithium recycling from a spent organic li-ion battery.
Renault, Stéven; Brandell, Daniel; Edström, Kristina
2014-10-01
A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Junwoo; Malekshahi Byranvand, Mahdi; Kang, Gyeongho; Son, Sung Y; Song, Seulki; Kim, Guan-Woo; Park, Taiho
2017-09-06
In addition to having proper energy levels and high hole mobility (μ h ) without the use of dopants, hole-transporting materials (HTMs) used in n-i-p-type perovskite solar cells (PSCs) should be processed using green solvents to enable environmentally friendly device fabrication. Although many HTMs have been assessed, due to the limited solubility of HTMs in green solvents, no green-solvent-processable HTM has been reported to date. Here, we report on a green-solvent-processable HTM, an asymmetric D-A polymer (asy-PBTBDT) that exhibits superior solubility even in the green solvent, 2-methylanisole, which is a known food additive. The new HTM is well matched with perovskites in terms of energy levels and attains a high μ h (1.13 × 10 -3 cm 2 /(V s)) even without the use of dopants. Using the HTM, we produced robust PSCs with 18.3% efficiency (91% retention after 30 days without encapsulation under 50%-75% relative humidity) without dopants; with dopants (bis(trifluoromethanesulfonyl) imide and tert-butylpyridine, a 20.0% efficiency was achieved. Therefore, it is a first report for a green-solvent-processable hole-transporting polymer, exhibiting the highest efficiencies reported so far for n-i-p devices with and without the dopants.
Saini, Ramesh Kumar; Moon, So Hyun; Keum, Young-Soo
2018-06-01
Globally, the amount of food processing waste has become a major concern for environmental sustainability. The valorization of these waste materials can solve the problems of its disposal. Notably, the tomato pomace and crustacean processing waste presents enormous opportunities for the extraction of commercially vital carotenoids, lycopene, and astaxanthin, which have diverse applications in the food, feed, pharmaceuticals, and cosmetic industries. Moreover, such waste can generate surplus revenue which can significantly improve the economics of food production and processing. Considering these aspects, many reports have been published on the efficient use of tomato and crustacean processing waste to recover lycopene and astaxanthin. The current review provides up-to-date information available on the chemistry of lycopene and astaxanthin, their extraction methods that use environmentally friendly green solvents to minimize the impact of toxic chemical solvents on health and environment. Future research challenges in this context are also identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Large-Scale Synthesis of Tin-Doped Indium Oxide Nanofibers Using Water as Solvent
NASA Astrophysics Data System (ADS)
Altecor, Aleksey; Mao, Yuanbing; Lozano, Karen
2012-09-01
Here we report the successful fabrication of tin-doped indium oxide (ITO) nanofibers using a scalable Forcespinning™ method. In this environmentally-friendly process, water was used as the only solvent for both Polyvinylpyrrolidone (PVP, the sacrificial polymer) and the metal chloride precursor salts. The obtained precursor nanofiber mats were calcinated at temperatures ranging from 500-800°C to produce ITO nanofibers with diameters as small as 400 nm. The developed ITO nanofibers were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis.
NASA Astrophysics Data System (ADS)
Rabideau, Brooks; Ismail, Ahmed
2011-03-01
There is now a large push towards the development of energy sources that are both environmentally friendly and sustainable; with the conversion of cellulose derived from biomass into biofuels being one promising route. In this conversion, a variety of intermediary compounds have been identified, which appear critical to successful expansion of the process to an industrial scale. Here we examine the structure and diffusion of these furans and acids derived from cellulose within ionic liquids via molecular dynamic simulation. Ionic liquids have shown the ability to dissolve cellulose with certain `green' benefits over existing, conventional solvents. Specifically, we study the solvation properties of these chemicals by examining the pair correlation functions of solute with solvent, and by exploring the agglomeration and separation of these chemicals from the solvent as well as the hydrogen bonding between species. Additionally, we determine the diffusion constant of these compounds in ionic liquid and aqueous solvents.
NASA Technical Reports Server (NTRS)
Montgomery, Eliza L.; Calle, Luz Marina; Curran Jerome C.; Kolody, Mark R.
2013-01-01
The shift to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. The CPCs, while a temporary protective coating, must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different soft film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. The CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing . The initial results for the fifteen CPC systems are reported : Key words: corrosion preventive compound, CPC, spaceport, environmentally friendly, atmospheric exposure, marine, carbon steel, aluminum alloy, galvanic corrosion, wire on bolt.
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ito, Kenta; Sugahara, Kigenn; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2014-05-01
An organic solvent-free sugar-based transparency nanopatterning material which had specific desired properties such as nanostructures of subwavelength grating and moth-eye antireflection, acceptable thermal stability of 160 °C, and low imaginary refractive index of less than 0.005 at 350-800 nm was proposed using electron beam lithography. The organic solvent-free sugar-based transparency nanopatterning material is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of tetramethylammonium hydroxide. 120 nm moth-eye antireflection nanopatterns images with exposure dose of 10 μC/cm2 were provided by specific process conditions of electron beam lithography. The developed sugar derivatives with hydroxyl groups and EB sensitive groups in the organic solvent-free sugar-based transparency nanopatterning material were applicable to future development of optical interface films of biology and electronics as a novel chemical design.
Negative-tone development of photoresists in environmentally friendly silicone fluids
NASA Astrophysics Data System (ADS)
Ouyang, Christine Y.; Lee, Jin-Kyun; Ober, Christopher K.
2012-03-01
The large amount of organic solvents and chemicals that are used in today's microelectronic fabrication process can lead to environmental, health and safety hazards. It is therefore necessary to design new materials and new processes to reduce the environmental impact of the lithographic process. In addition, as the feature sizes decrease, other issues such as pattern collapse, which is related to the undesirable high surface tension of the developers and rinse liquids, can occur and limit the resolution. In order to solve these issues, silicone fluids are chosen as alternative developing solvents in this paper. Silicone fluids, also known as linear methyl siloxanes, are a class of mild, non-polar solvents that are non-toxic, not ozone-depleting, and contribute little to global warming. They are considered as promising developers because of their environmental-friendliness and their unique physical properties such as low viscosity and low surface tension. Recently, there have been emerging interests in negative-tone development (NTD) due to its better ability in printing contact holes and trenches. It is also found that the performance of negative-tone development is closely related to the developing solvents. Silicone fluids are thus promising developers for NTD because of their non-polar nature and high contrast negative-tone images are expected with chemical amplification photoresists due to the high chemical contrast of chemical amplification. We have previously shown some successful NTD with conventional photoresists such as ESCAP in silicone fluids. In this paper, another commercially available TOK resist was utilized to study the NTD process in silicone fluids. Because small and non-polar molecules are intrinsically soluble in silicone fluids, we have designed a molecular glass resist for silicone fluids. Due to the low surface tension of silicone fluids, we are able achieve high aspect-ratio, high-resolution patterns without pattern collapse.
Driving Forces Controlling Host-Guest Recognition in Supercritical Carbon Dioxide Solvent.
Ingrosso, Francesca; Altarsha, Muhannad; Dumarçay, Florence; Kevern, Gwendal; Barth, Danielle; Marsura, Alain; Ruiz-López, Manuel F
2016-02-24
The formation of supramolecular host-guest complexes is a very useful and widely employed tool in chemistry. However, supramolecular chemistry in non-conventional solvents such as supercritical carbon dioxide (scCO2 ), one of the most promising sustainable solvents, is still in its infancy. In this work, we explored a successful route to the development of green processes in supercritical CO2 by combining a theoretical approach with experiments. We were able to synthesize and characterize an inclusion complex between a polar aromatic molecule (benzoic acid) and peracetylated-β-cyclodextrin, which is soluble in the supercritical medium. This finding opens the way to wide, environmental friendly, applications of scCO2 in many areas of chemistry, including supramolecular synthesis, reactivity and catalysis, micro and nano-particle formation, molecular recognition, as well as enhanced extraction processes with increased selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures
NASA Technical Reports Server (NTRS)
Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.
2013-01-01
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
Environmentally friendly corrosion preventive compounds for ground support structures
NASA Astrophysics Data System (ADS)
Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farthing, G. A.; Rimpf, L. M.
The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. Whilemore » previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.« less
Resin purification from Dragons Blood by using sub critical solvent extraction method
NASA Astrophysics Data System (ADS)
Saifuddin; Nahar
2018-04-01
Jernang resin (dragon blood) is the world's most expensive sap. The resin obtained from jernang that grows only on the islands of Sumatra and Borneo. Jernang resin is in demand by the State of China, Hong Kong, and Singapore since they contain compounds that have the potential dracohordin as a medicinal ingredient in the biological and pharmacological activity such as antimicrobial, antiviral, antitumor and cytotoxic activity. The resin extracting process has conventionally been done by drizzly with maceration method as one way of processing jernang, which is done by people in Bireuen, Aceh. However, there are still significant obstacles, namely the quality of the yield that obtained lower than the jernang resin. The technological innovation carried out by forceful extraction process maceration by using methanol produced a yield that is higher than the extraction process maceration method carried out in Bireuen. Nevertheless, the use of methanol as a solvent would raise the production costs due to the price, which is relatively more expensive and non-environmentally friendly. To overcome the problem, this research proposed a process, which is known as subcritical solvent method. This process is cheap, and also abundant and environmentally friendly. The results show that the quality of jernang resins is better than the one that obtained by the processing group in Bireuen. The quality of the obtained jernang by maceration method is a class-A quality based on the quality specification requirements of jernang (SNI 1671: 2010) that has resin (b/b) 73%, water (w/w) of 6.8%, ash (w/b) 7%, impurity (w/w) 32%, the melting point of 88°C and red colours. While the two-stage treatment obtained a class between class-A and super quality, with the resin (b/b) 0.86%, water (w/w) of 6.5%, ash (w/w) of 2.8%, levels of impurities (w/w) of 9%, the melting point of 88 °C and dark-red colours.
Fei, Tao; Cazeneuve, Stacy; Wen, Zhiyou; Wu, Lei; Wang, Tong
2016-05-01
This work demonstrates a significant advance in bioprocessing for a high-melting lipid polymer. A novel and environmental friendly solvent mixture, acetone/ethanol/propylene carbonate (A/E/P, 1:1:1 v/v/v) was identified for extracting poly-hydroxybutyrate (PHB), a high-value biopolymer, from Cupriavidus necator. A set of solubility curves of PHB in various solvents was established. PHB recovery of 85% and purity of 92% were obtained from defatted dry biomass (DDB) using A/E/P. This solvent mixture is compatible with water, and from non-defatted wet biomass, PHB recovery of 83% and purity of 90% were achieved. Water and hexane were evaluated as anti-solvents to assist PHB precipitation, and hexane improved recovery of PHB from biomass to 92% and the purity to 93%. A scale-up extraction and separation reactor was designed, built and successfully tested. Properties of PHB recovered were not significantly affected by the extraction solvent and conditions, as shown by average molecular weight (1.4 × 10(6) ) and melting point (175.2°C) not being different from PHB extracted using chloroform. Therefore, this biorenewable solvent system was effective and versatile for extracting PHB biopolymers. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:678-685, 2016. © 2016 American Institute of Chemical Engineers.
Mouden, Sanae; Klinkhamer, Peter G L; Choi, Young Hae; Leiss, Kirsten A
2017-01-01
With mounting concerns over health and environmental effects of pesticides, the search for environmentally acceptable substitutes has amplified. Plant secondary metabolites appear in the horizon as an attractive solution for green crop protection. This paper reviews the need for changes in the techniques and compounds that, until recently, have been the mainstay for dealing with pest insects. Here we describe and discuss main strategies for selecting plant-derived metabolites as candidates for sustainable agriculture. The second part surveys ten important insecticidal compounds, with special emphasis on those involved in human health. Many of these insecticidal metabolites, however, are crystalline solids with limited solubility which might potentially hamper commercial formulation. As such, we introduce the concept of natural deep eutectic solvents for enhancing solubility and stability of such compounds. The concept, principles and examples of green pest control discussed here offer a new suite of environmental-friendly tools designed to promote and adopt sustainable agriculture.
Biomass-Derived Porous Carbonaceous Aerogel as Sorbent for Oil-Spill Remediation.
Wang, Zhuqing; Jin, Pengxiang; Wang, Min; Wu, Genhua; Dong, Chen; Wu, Aiguo
2016-12-07
We prepared a cost-effective, environmentally friendly carbonaceuous oil sorbent with a lotus effect structure using a simple one-pot hydrothermal reaction and a mild modification process. The carbonaceous oil sorbent can rapidly, efficiently, and continuously collect oil in situ from a water surface. This sorbent was unlike traditional sorbents because it was not dependent on the weight and volume of the sorption material. The sorbent was also successfully used to separate and collect crude oil from the water surface and can collect organic solvents underwater. This novel oil sorbent and oil-collection device can be used in case of emergency for organic solvent leakages, as well as leakages in tankers and offshore drilling platforms.
Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment
ERIC Educational Resources Information Center
Sharma, R. K.; Gulati, Shikha; Mehta, Shilpa
2012-01-01
Assimilating green chemistry principles in nanotechnology is a developing area of nanoscience research nowadays. Thus, there is a growing demand to develop environmentally friendly and sustainable methods for the synthesis of nanoparticles that utilize nontoxic chemicals, environmentally benign solvents, and renewable materials to avoid their…
New insights into liquid chromatography for more eco-friendly analysis of pharmaceuticals.
Shaaban, Heba
2016-10-01
Greening the analytical methods used for analysis of pharmaceuticals has been receiving great interest aimed at eliminating or minimizing the amount of organic solvents consumed daily worldwide without loss in chromatographic performance. Traditional analytical LC techniques employed in pharmaceutical analysis consume tremendous amounts of hazardous solvents and consequently generate large amounts of waste. The monetary and ecological impact of using large amounts of solvents and waste disposal motivated the analytical community to search for alternatives to replace polluting analytical methodologies with clean ones. In this context, implementing the principles of green analytical chemistry (GAC) in analytical laboratories is highly desired. This review gives a comprehensive overview on different green LC pathways for implementing GAC principles in analytical laboratories and focuses on evaluating the greenness of LC analytical procedures. This review presents green LC approaches for eco-friendly analysis of pharmaceuticals in industrial, biological, and environmental matrices. Graphical Abstract Green pathways of liquid chromatography for more eco-friendly analysis of pharmaceuticals.
Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation.
Chiappe, Cinzia; Pomelli, Christian Silvio
2017-06-01
Economical and environmental concerns are the main motivations for development of energy-efficient processes and new eco-friendly materials for the capture of greenhouse gases. Currently, H 2 S capture is dominated by physical and/or chemical absorption technologies, which are, however, energy intensive and often problematic from an environmental point of view due to emission of volatile solvent components. Ionic liquids have been proposed as a promising alternative to conventional solvents because of their low volatility and other interesting properties. The aim of the present review paper is to provide a detailed overview of the achievements and difficulties that have been encountered in finding suitable ionic liquids for H 2 S capture. The effect of ionic liquid anions, cations, and functional groups on the H 2 S absorption, separation, and oxidation are highlighted. Recent developments on yet scarcely available molecular simulations and on the development of robust predictive methods are also discussed.
NASA Astrophysics Data System (ADS)
Patel, Anant A.
As a result of tremendous efforts in past few decades, various techniques have been developed in order to resolve solubility issues associated with class II and IV drugs, However, majority of these techniques offer benefits associated with certain drawbacks; majorly including low drug loading, physical instability on storage and excessive use of environmentally challenging organic solvents. Hence, current effort was to develop an eco-friendly technique using liquid salt as green solvent, which can offer improvement in dissolution while maintaining long term stability. The liquid salt formulations (LSF) of poorly soluble model drugs ibuprofen, gemfibrozil and indomethacin were developed using 1-Ethyl-3-methylimidazolium ethyl sulfate (EMIM ES) as a non-toxic and environmentally friendly alternate to organic solvents. Liquid medications containing clear solutions of drug, EMIM ES and polysorbate 20, were adsorbed onto porous carrier Neusilin US2 to form free flowing powder. The LSF demonstrated greater rate and extent of dissolution compared to crystalline drugs. The dissolution data revealed that more than 80% drug release from LSF within 20 mins compared to less than 18% release from pure drugs. As high as 70% w/w liquid loading was achieved while maintaining good flowability and compressibility. In addition, the LSF samples exposed to high temperature and high humidity i.e. 40°C/80% RH for 8 weeks, demonstrated excellent physical stability without any signs of precipitation or crystallization. As most desirable form of administration is tablet, the developed liquid salt formulations were transformed into tablets using design of experiment approach by Design Expert Software. The tablet formulation composition and critical parameter were optimized using Box-Behnken Design. This innovative liquid salt formulation technique offered improvement in dissolution rate and extent as well as contributed to excellent physical stability on storage. Moreover, this formulation approach served as eco-friendly compelling alternate to conventional techniques involving organic solvents.
Alternative Nonvolatile Residue Analysis with Contaminant Identification Project
NASA Technical Reports Server (NTRS)
Loftin, Kathleen (Compiler); Summerfield, Burton (Compiler); Thompson, Karen (Compiler); Mullenix, Pamela (Compiler); Zeitlin, Nancy (Compiler)
2015-01-01
Cleanliness verification is required in numerous industries including spaceflight ground support, electronics, medical and aerospace. Currently at KSC requirement for cleanliness verification use solvents that environmentally unfriendly. This goal of this project is to produce an alternative cleanliness verification technique that is both environmentally friendly and more cost effective.
Investigation of a green process for the polymerization of catechin.
Ezgi Ünlü, Ayşe; Prasad, Brinda; Anavekar, Kishan; Bubenheim, Paul; Liese, Andreas
2017-10-21
Flavonoids are polyphenolic secondary plant metabolites which possess antioxidant and anti-inflammatory properties. Besides, they have been shown to exhibit increased antioxidant properties in their polymerized form. Catechins are one of the attractive class of flavonoids which belong to the group of flavan-3-ols. Polymerization of catechins have been investigated in numerous studies indicating the requirement of certain amount of organic solvent to provide the solubility of the monomer. However, many research projects have been conducted recently to replace toxic organic contaminants of the processes with environmentally friendly solvents. In this aspect, deep eutectic solvents (DESs) that are regarded as "green solvents" have been studied extensively in various enzyme catalyzed reactions. In the present study, we focused on establishing a green pathway for laccase catalyzed polycatechin synthesis by replacing organic solvent content with DESs as green solvents. For this aim, various parameters were investigated, such as DES types and concentrations laccase amount and reaction time. Consequently, the highest molecular weight polycatechin was obtained using 5% (v/v) B-M, 125 U laccase in 1 hr of reaction time, at 30°C, as 4,354 ± 678 g mol -1 . Corresponding X/XO inhibitory activity and superoxide radical scavenging activities were achieved as, 59 and 50%, respectively.
NASA Astrophysics Data System (ADS)
Yuan, Wei; Zhang, Xiaofang; Zhao, Jiangqi; Li, Qingye; Ao, Chenghong; Xia, Tian; Zhang, Wei; Lu, Canhui
Sorbents derived from biomass provide a novel approach to settle issues of organic solvent and/or oil leakage. In this work, a novel carbon aerogel (CA) was prepared as sorbents using the cheap and abundant bamboo pulp fibers as precursors through the pyrolysis method. The CA displayed an ultra-low density (5.65 mg cm-3), high hydrophobicity (water contact angle of 135.9°) and a large specific surface area (379.39 m2 g-1) as well as great mechanical properties. The absorption capacities of CA for organic solvents/oils were extraordinary (50-150 g/g). Particularly, its absorption on organic solvents was superior to many other bio-based CAs. The reusability of CA was also found impressive. For over five absorption-desorption cycles, the CA still showed excellent absorption behaviors on organic solvents and oils. Importantly, the fabrication process of CA is quite simple and environmentally friendly, demonstrating high potentials for future water treatment applications.
Anand, Madhu; McLeod, M Chandler; Bell, Philip W; Roberts, Christopher B
2005-12-08
This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and antisolvent to be recovered, thereby rendering it a green solvent process.
Kumar, Gajendra; Singh, Vidhi; Kumar, Dharmendra
2017-11-01
A environmental friendly system for fast transesterification of Jatropha curcas oil was developed for the production of biodiesel using an ultrasonic-assisted continuous tank reactor in the presence of fatty acid methyl ester (FAMEs) used as a green (intermediate) solvent with potassium hydroxide used as a catalyst. This research provide a new biodiesel production process, the optimal condition for the reaction were established: reaction temperature 25°C oil to methanol molar ratio was 1:5, catalyst concentration 0.75wt% of oil, solvent concentration 7.5%, flow rate 241.68±0.80ml/min, ultrasonic amplitude 60% and ultrasonic cycles 0.7s, transesterification was completed within 1.09min (residence time). The purity and conversion of biodiesel was 98.75±0.50% analyzed by the reverse phase HPLC method. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Shroofy, Mohanad; Zhang, Qinglin; Xu, Jiagang; Chen, Tao; Kaur, Aman Preet; Cheng, Yang-Tse
2017-06-01
We report a solvent-free dry powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries. This process eliminates volatile organic compound emission and reduces thermal curing time from hours to minutes. A mixture of NMC, carbon black, and poly(vinylidene difluoride) was electrostatically sprayed onto an aluminum current collector, forming a uniformly distributed electrode with controllable thickness and porosity. Charge/discharge cycling of the dry-powder-coated electrodes in lithium-ion half cells yielded a discharge specific capacity of 155 mAh g-1 and capacity retention of 80% for more than 300 cycles when the electrodes were tested between 3.0 and 4.3 V at a rate of C/5. The long-term cycling performance and durability of dry-powder coated electrodes are similar to those made by the conventional wet slurry-based method. This solvent-free dry powder coating process is a potentially lower-cost, higher-throughput, and more environmentally friendly manufacturing process compared with the conventional wet slurry-based electrode manufacturing method.
Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells.
Vaagensmith, Bjorn; Reza, Khan Mamun; Hasan, Md Nazmul; Elbohy, Hytham; Adhikari, Nirmal; Dubey, Ashish; Kantack, Nick; Gaml, Eman; Qiao, Qiquan
2017-10-18
Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent electrodes (TEs) offer great potential as a low cost alternative to expensive indium tin oxide (ITO). However, strong acids are typically used for enhancing the conductivity of PEDOT:PSS TEs, which produce processing complexity and environmental issues. This work presents an environmentally friendly acid free approach to enhance the conductivity of PEDOT:PSS using a light oxygen plasma treatment, in addition to solvent blend additives and post treatments. The plasma treatment was found to significantly reduce the sheet resistance of PEDOT:PSS TEs from 85 to as low as 15 Ω sq -1 , which translates to the highest reported conductivity of 5012 S/cm for PEDOT:PSS TEs. The plasma treated PEDOT:PSS TE resulted in an ITO-free perovskite solar cell efficiency of 10.5%, which is the highest reported efficiency for ITO-free perovskite solar cells with a PEDOT:PSS electrode that excludes the use of acid treatments. This research presents the first demonstration of this technology. Moreover, the PEDOT:PSS TEs enabled better charge extraction from the perovskite solar cells and reduced hysteresis in the current density-voltage (J-V) curves.
Calce, Enrica; Mercurio, Flavia Anna; Leone, Marilisa; Saviano, Michele; De Luca, Stefania
2016-06-05
An environmentally sustainable and energy-efficient synthetic process has been developed to prepare hyaluronan-based nano-sized material. It consists in a microwave-promoted acylation of the hydroxyl function of the polysaccharide with natural fatty acids, performed under solvent-free conditions. The efficient interaction of the solid reagents with the MW radiation accounts for the obtained high yielded products. The self-assembly process of the obtained compounds very fast occurred in an aqueous medium under MW-radiation, thus allowing the development of a green protocol for the nano-particles preparation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization.
Jain, Amit; Kim, Jun; Owoseni, Oluwaseye M; Weathers, Cierra; Caña, Daniel; Zuo, Kuichang; Walker, W Shane; Li, Qilin; Verduzco, Rafael
2018-05-15
Membrane capacitive deionization (MCDI) is a low-cost technology for desalination. Typically, MCDI electrodes are fabricated using a slurry of nanoparticles in an organic solvent along with polyvinylidene fluoride (PVDF) polymeric binder. Recent studies of the environmental impact of CDI have pointed to the organic solvents used in the fabrication of CDI electrodes as key contributors to the overall environmental impact of the technology. Here, we report a scalable, aqueous processing approach to prepare MCDI electrodes using water-soluble polymer poly(vinyl alcohol) (PVA) as a binder and ion-exchange polymer. Electrodes are prepared by depositing aqueous slurry of activated carbon and PVA binder followed by coating with a thin layer of PVA-based cation- or anion-exchange polymer. When coated with ion-exchange layers, the PVA-bound electrodes exhibit salt adsorption capacities up to 14.4 mg/g and charge efficiencies up to 86.3%, higher than typically achieved for activated carbon electrodes with a hydrophobic polymer binder and ion-exchange membranes (5-13 mg/g). Furthermore, when paired with low-resistance commercial ion-exchange membranes, salt adsorption capacities exceed 18 mg/g. Our overall approach demonstrates a simple, environmentally friendly, cost-effective, and scalable method for the fabrication of high-capacity MCDI electrodes.
New solvent-stabilized few-layer black phosphorus for antibacterial applications.
Sun, Zhenyu; Zhang, Yuqin; Yu, Hao; Yan, Chao; Liu, Yongchao; Hong, Song; Tao, Hengcong; Robertson, Alex W; Wang, Zhuo; Pádua, Agílio A H
2018-06-22
Discovering highly efficient, environmentally friendly, and low-cost exfoliating media that can both disperse and protect black phosphorus (BP) remains a challenge. Herein, we demonstrate such a new molecule, N,N'-dimethylpropyleneurea (DMPU), for effective exfoliation and dispersion of two-dimensional BP nanosheets. A very high exfoliation efficiency of up to 16% was achieved in DMPU, significantly surpassing other good solvents. Exfoliated flakes are free from structural disorder or oxidation. Nanosheets retain high stability in DMPU even after addition of 25 vol% of common solvents. The solvation shell appears to protect the nanosheets from reacting with water and air, more remarkably than the best solvent N-cyclohexyl-2-pyrrolidone reported so far. Molecular dynamics simulations of the exfoliation process show that DMPU is among the effective solvents, although energetically it does not appear as favorable as some other amides. We also demonstrate that our exfoliated BP nanosheets exhibit excellent antimicrobial activities against both Escherichia coli and Staphylococcus aureus, outperforming other common two-dimensional materials of graphene and MoS2, suggesting promise in biomedical applications.
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2015-03-01
We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.
Benabderrahmane, Wassila; Lores, Marta; Lamas, Juan Pablo; Benayache, Samir
2018-05-01
The use of a matrix solid-phase dispersion (MSPD) process to extract polyphenols from hawthorn (Crataegus oxyacantha L.) a deciduous shrub with an expected rich phytochemical profile, has been evaluated. MSPD extracts of fruits and leaves have an outstanding content of polyphenols, although the particular phenolic profile is solvent dependent. The extracts were analysed by HPLC-DAD for the accurate identification of the major bioactive polyphenols, some of which have never been described for this species. MSPD has proven to be a good alternative to the classic methods of obtaining natural extracts, fast and with low consumption of organic solvents, therefore, environmentally friendly. The bioactivities can be considered also very remarkable, revealing extracts with high levels of antioxidant activity.
Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J
2018-04-01
The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Innovative technologies for anti-flammable cotton fabrics
USDA-ARS?s Scientific Manuscript database
Due to its environmentally friendly properties, supercritical carbon dioxide (scCO2) is considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercr...
Diameter-controlled Ag nanowires were rapidly fabricated (1 min) using inexpensive, abundant, and environmentally-friendly glycerol as both reductant and solvent under non-stirred microwave irradiation conditions; no Ag particles were formed using conventional heating methods. Th...
A high resolution water soluble fullerene molecular resist for electron beam lithography.
Chen, X; Palmer, R E; Robinson, A P G
2008-07-09
Traditionally, many lithography resists have used hazardous, environmentally damaging or flammable chemicals as casting solvent and developer. There is now a strong drive towards processes that are safer and more environmentally friendly. We report nanometre-scale patterning of a fullerene molecular resist film with electron beam lithography, using water as casting solvent and developer. Negative tone behaviour is demonstrated after exposure and development. The sensitivity of this resist to 20 keV electrons is 1.5 × 10(-2) C cm(-2). Arrays of lines with a width of 30-35 nm and pitches of 200 and 400 nm, and arrays of dots with a diameter of 40 nm and a pitch of 200 nm have been patterned at 30 keV. The etch durability of this resist was found to be ∼2 times that of a standard novolac based resist. Initial results of the chemical amplification of this material for enhanced sensitivity are also presented.
Simple, benign, aqueous-based amination of polycarbonate surfaces
VanDelinder, Virginia; Wheeler, David R.; Small, Leo J.; ...
2015-03-18
Here we report a simple, safe, environmentally-friendly aqueous method that uses diamines to functionalize a polycarbonate surface with amino groups. We demonstrate the ability of this facile method to serve as a foundation upon which other functionalities may be attached, including anti-fouling coatings and oriented membrane proteins. The use of water as the solvent for the functionalization ensures that solvent induced swelling does not affect the optical or mechanical properties of the polycarbonate.
de Faria, Emanuelle L P; do Carmo, Rafael S; Cláudio, Ana Filipa M; Freire, Carmen S R; Freire, Mara G; Silvestre, Armando J D
2017-10-30
In recent years a high demand for natural ingredients with nutraceutical properties has been witnessed, for which the development of more environmentally-friendly and cost-efficient extraction solvents and methods play a primary role. In this perspective, in this work, the application of deep eutectic solvents (DES), composed of quaternary ammonium salts and organic acids, as alternative solvents for the extraction of cynaropicrin from Cynara cardunculus L. leaves was studied. After selecting the most promising DES, their aqueous solutions were investigated, allowing to obtain a maximum cynaropicrin extraction yield of 6.20 wt %, using 70 wt % of water. The sustainability of the extraction process was further optimized by carrying out several extraction cycles, reusing either the biomass or the aqueous solutions of DES. A maximum cynaropicrin extraction yield of 7.76 wt % by reusing the solvent, and of 8.96 wt % by reusing the biomass, have been obtained. Taking advantage of the cynaropicrin solubility limit in aqueous solutions, water was added as an anti-solvent, allowing to recover 73.6 wt % of the extracted cynaropicrin. This work demonstrates the potential of aqueous solutions of DES for the extraction of value-added compounds from biomass and the possible recovery of both the target compounds and solvents.
Application of Twin Screw Extrusion in the Manufacture of Cocrystals, Part I: Four Case Studies
Daurio, Dominick; Medina, Cesar; Saw, Robert; Nagapudi, Karthik; Alvarez-Núñez, Fernando
2011-01-01
The application of twin screw extrusion (TSE) as a scalable and green process for the manufacture of cocrystals was investigated. Four model cocrystal forming systems, Caffeine-Oxalic acid, Nicotinamide-trans cinnamic acid, Carbamazepine-Saccharin, and Theophylline-Citric acid, were selected for the study. The parameters of the extrusion process that influenced cocrystal formation were examined. TSE was found to be an effective method to make cocrystals for all four systems studied. It was demonstrated that temperature and extent of mixing in the extruder were the primary process parameters that influenced extent of conversion to the cocrystal in neat TSE experiments. In addition to neat extrusion, liquid-assisted TSE was also demonstrated for the first time as a viable process for making cocrystals. Notably, the use of catalytic amount of benign solvents led to a lowering of processing temperatures required to form the cocrystal in the extruder. TSE should be considered as an efficient, scalable, and environmentally friendly process for the manufacture of cocrystals with little to no solvent requirements. PMID:24310598
Chen, Jue; Cao, Jun; Gao, Wen; Qi, Lian-Wen; Li, Ping
2013-10-21
Ionic liquids (ILs) have numerous chemical applications as environmentally green solvents that are extending into microemulsion applications. In this work, a novel benign IL-in-water microemulsion system modified by an IL surfactant has been proposed for simultaneous extraction of hydrophilic and lipophilic constituents from Flos Chrysanthemi (Chrysanthemum morifolium). Constituents were analyzed by rapid-resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. A mixture-design approach was used to optimize the IL surfactant and the IL oil phase in the microemulsion system. Microemulsions consisting of 6.0% 1-dodecyl-3-methylimidazolium hydrogen sulfate, 0.1% 1-vinyl-3-methylimidazolium hexafluorophosphate and 93.9% water offered the acceptable extract efficiency that are comparable to or even better than conventional volatile organic solvents. This assay was fully validated with respect to the linearity of response (r(2) > 0.999 over two orders of magnitude), precision (intra-RSD < 0.49 and inter-day RSD < 2.21), and accuracy (recoveries ranging from 93.73% to 101.84%). The proposed IL-in-water microemulsion method provided an environmentally friendly alternative for efficient extraction of compounds from Flos Chrysanthemi and could be extended to complex environmental and pharmaceutical samples.
Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent
Sapir, Liel; Stanley, Christopher B.; Harries, Daniel
2016-03-10
Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. In this paper, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure inmore » DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. Finally, the osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments.« less
Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapir, Liel; Stanley, Christopher B.; Harries, Daniel
Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. In this paper, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure inmore » DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. Finally, the osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments.« less
Yeo, Eudora S Y; Mathys, Gary I; Brack, Narelle; Thostenson, Erik T; Rider, Andrew N
2017-05-30
Functionalization of carbon nanomaterials is often a critical step that facilitates their integration into larger material systems and devices. In the as-received form, carbon nanomaterials, such as carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs), may contain large agglomerates. Both agglomerates and impurities will diminish the benefits of the unique electrical and mechanical properties offered when CNTs or GNPs are incorporated into polymers or composite material systems. Whilst a variety of methods exist to functionalize carbon nanomaterials and to create stable dispersions, many the processes use harsh chemicals, organic solvents, or surfactants, which are environmentally unfriendly and may increase the processing burden when isolating the nanomaterials for subsequent use. The current research details the use of an alternative, environmentally friendly technique for functionalizing CNTs and GNPs. It produces stable, aqueous dispersions free of harmful chemicals. Both CNTs and GNPs can be added to water at concentrations up to 5 g/L and can be recirculated through a high-powered ultrasonic cell. The simultaneous injection of ozone into the cell progressively oxidizes the carbon nanomaterials, and the combined ultrasonication breaks down agglomerates and immediately exposes fresh material for functionalization. The prepared dispersions are ideally suited for the deposition of thin films onto solid substrates using electrophoretic deposition (EPD). CNTs and GNPs from the aqueous dispersions can be readily used to coat carbon- and glass-reinforcing fibers using EPD for the preparation of hierarchical composite materials.
From green chemistry to nature: The versatile role of low transition temperature mixtures.
Durand, Erwann; Lecomte, Jérôme; Villeneuve, Pierre
2016-01-01
In 1998, the concept of "green chemistry" was established through twelve principles with the aim of improving the eco-efficiency of chemical processes and to judge, whether or not, a chemical process is sustainable. Currently, numerous processes do not obey to most of these principles (large energy usage, formation of waste, usage of hazardous solvents and reagents, etc …), which have forced the scientists to develop and implement new strategies for upcoming researches. One of the most attractive challenges is finding, creating and developing new and green media. Over the last decades, the scientific community has mainly focused on two different classes of solvents (namely, Ionic liquids and Eutectic Solvents). These solvents share advantageous characteristics (low vapor pressure, thermally stable, non-flammable, etc …) making them an attractive option to implement sustainable chemistry and engineering. Mainly due to its environmental and economic features, DES are now growing much more interest. Indeed, although their ecotoxicological profile is still poorly known, DES are classified as "green" solvents because they are composed of molecules which are considered to be eco-friendly. The fast, numerous and broad scope of studies on these new liquids make the literature rather complex to understand. Here, we attempted to establish a succinct history and a presentation of these liquids with emphasis on their role, classification, importance and application in biological systems. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Jeong, Kyung Min; Zhao, Jing; Jin, Yan; Heo, Seong Rok; Han, Se Young; Yoo, Da Eun; Lee, Jeongmi
2015-12-01
Deep eutectic solvents (DESs) were investigated as tunable, environmentally benign, yet superior extraction media to enhance the extraction of anthocyanins from grape skin, which is usually discarded as waste. Ten DESs containing choline chloride as hydrogen bond acceptor combined with different hydrogen bond donors were screened for high extraction efficiencies based on the anthocyanin extraction yields. As a result, citric acid, D-(+)-maltose, and fructose were selected as the effective DES components, and the newly designed DES, CM-6 that is composed of citric acid and D-(+)-maltose at 4:1 molar ratio, exhibited significantly higher levels of anthocyanin extraction yields than conventional extraction solvents such as 80% aqueous methanol. The final extraction method was established based on the ultrasound-assisted extraction under conditions optimized using response surface methodology. Its extraction yields were double or even higher than those of conventional methods that are time-consuming and use volatile organic solvents. Our method is truly a green method for anthocyanin extraction with great extraction efficiency using a minimal amount of time and solvent. Moreover, this study suggested that grape skin, the by-products of grape juice processing, could serve as a valuable source for safe, natural colorants or antioxidants by use of the eco-friendly extraction solvent, CM-6.
NASA Astrophysics Data System (ADS)
Mulia, Kamarza; Muhammad, Fajri; Krisanti, Elsa
2017-03-01
The leaves of binahong (Anredera cordifolia (Ten) Steenis) contain flavonoids as bioactive substances that have efficacy to treat wounds and diseases caused by bacteria. One of the flavonoids contained in the leaves is 8-glucopyranosyl-4'5'7-trihydroxyflavone or vitexin. Conventional extraction of flavonoids from leaves of binahong has been developed and usually using non-friendly organic solvent. To overcome these problems, a Natural Deep Eutectic Solvent (NADES) is used to replace the conventional organic solvents, as it is an environmentally friendly, non-toxic and high boiling point solvent. In this study, a betaine-based NADES combined with 1,4-butanediol in 1:3 mole ratio was used as the extraction solvent. Vitexin in the extract was analyzed qualitatively and quantitatively using an HPLC. The extraction of vitexin from binahong leaves at room temperature (27 °C) for four hours give yield of 46 ppm, much lower than 200 ppm yield obtained after extraction at 55 °C for 90 minutes. This results showed that (a) NADES consisting of betaine and 1,4 butanediol is a promising green solvent for extraction of vitexin from binahong leaves, and, (b) the extraction can be performed above ambient temperature, as long as it does not exceed the degradation temperature of the bioactive compound extracted.
Papathanasiou, Maria M; Quiroga-Campano, Ana L; Steinebach, Fabian; Elviro, Montaña; Mantalaris, Athanasios; Pistikopoulos, Efstratios N
2017-07-01
Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco-friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed-batch culture of GS-NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966-988, 2017. © 2017 American Institute of Chemical Engineers.
Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel
2015-06-23
We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.
Fernández, María de Los Ángeles; Espino, Magdalena; Gomez, Federico J V; Silva, María Fernanda
2018-01-15
An environmentally friendly method for the phenolic compound extraction from agro-food industrial by-products was developed in order to contribute with their sustainable valorization. A Natural Deep Eutectic Solvent was chemometrically-designed for the first time and compared with traditional solvents in terms of analyte stabilization. The combination of lactic acid, glucose and 15% water (LGH-15) was selected as optimal. A high-efficiency ultrasound-assisted extraction mediated by LGH-15 prior to HPLC-DAD allows the determination of 14 phenols in onion, olive, tomato and pear industrial by-products. NADES synthesis as well as the extraction procedures were optimized by Response Surface Methodology. Thus, phenolic determination in these complex samples was achieved by a simple, non-expensive, eco-friendly and robust system. The application to different matrices demonstrated the versatility of the proposed method. NADES opens interesting perspectives for their potential use as vehicles of bioactive compounds as food additives or pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Healing Materials for Ecotribology
Shi, Shih-Chen; Huang, Teng-Feng
2017-01-01
Hydroxypropyl methylcellulose (HPMC) is a biopolymer that is biodegradable, environmentally friendly, and bio-friendly. Owing to its unique chemical structure, HPMC can reduce the coefficient of friction (COF) and frictional wear and thus possesses excellent lubrication properties. HPMC has good dissolvability in specific solvents. The present research focuses on the reversible dissolution reaction subsequent to the film formation of HPMC, with a view to the healing and lubrication properties of thin films. Raman spectroscopy was used to test the film-forming properties of HPMC and the dissolution characteristics of various solvents. In this study, the solvents were water, methanol, ethanol, and acetone. The results showed that the HPMC film had the highest dissolvability in water. The ball-on-disk wear test was used to analyze the lubrication properties of HPMC, and the results showed that HPMC had the same COF and lubrication properties as the original film after being subjected to the water healing treatment. The HPMC film can be reused, recycled, and refilled, making it an ideal lubricant for next-generation ecotribology. PMID:28772449
Synthesis of an amine-oleate derivative using an ionic catalyst
USDA-ARS?s Scientific Manuscript database
A facile (and environmentally friendly) reaction, between epoxidized methyl oleate and aniline to produce an oleate-aniline adduct, without the formation of fatty amide, was discovered. This reaction was carried out neat, with a catalytic amount of an ionic liquid. No solvent or byproducts were pr...
Polymers prepared from plant oils in liquid carbon dioxide
USDA-ARS?s Scientific Manuscript database
Recently, attention has been focused on the preparation of polymers in environmentally friendly media. Supercritical carbon dioxide (scCO2) is a promising candidate. The low toxicity of CO2 and lack of toxic solvent residues in the final products make CO2 an attractive medium for the synthesis of ...
Formula for the Removal and Remediation of Polychlorinated Biphenyls in Painted Structures
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Loftin, Kathleen; Geiger, Cherie
2010-01-01
An activated metal treatment system (AMTS) removes and destroys polychlorinated biphenyls (PCBs) found in painted structures or within the binding or caulking material on structures. It may be applied using a "paint-on and wipe-off" process that leaves the structure PCB-free and virtually unaltered in physical form. AMTS is used in conjunction with a solvent solution capable of donating hydrogen atoms. AMTS as a treatment technology has two functions: first, to extract PCBs from the material, and second, to degrade the extracted PCBs. The process for removing PCBs from structures is accomplished as an independent step to the degradation process. The goal is to extract the PCBs out of the paint, without destroying the paint, and to partition the PCBs into an environmentally friendly solvent. The research to date indicates this can be accomplished within the first 24 hours of AMTS contact with the paint. PCBs are extremely hydrophobic and prefer to be in the AMTS over the hardened paint or binder material. The solvent selected must be used to open, but not to destroy, the paint s polymeric lattice structure, allowing pathways for PCB movement out of the paint and into the solvent. A number of solvent systems were tested and are available for use within the AMTS. The second process of the AMTS is the degradation or dehalogenation of the PCBs. The solvent selection for this process is limited to solvents that are capable of donating a hydrogen atom to the PCB structure. Additional AMTS formulation properties that must be addressed for each site-specific application include viscosity and stability. The AMTS must be thick enough to remain where it is applied. Several thickening agents have been tested. Adding a stabilizing agent ensures that the AMTS will not evaporate and leave unprotected, activated metal exposed. During AMTS formulation testing, a number of reagents were evaluated to ensure the rate of dehalogenation was not inhibited by its addition to the system.
Progress on lipid extraction from wet algal biomass for biodiesel production.
Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M
2016-11-01
Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Fabrication of Lead-Free (CH3 NH3 )3 Bi2 I9 Perovskite Photovoltaics in Ethanol Solvent.
Li, Haijin; Wu, Congcong; Yan, Yongke; Chi, Bo; Pu, Jian; Li, Jian; Priya, Shashank
2017-10-23
The toxicity of lead present in organohalide perovskites and the hazardous solvent systems used for their synthesis hinder the deployment of perovskite solar cells (PSCs). Herein, an environmentally friendly route toward bismuth-based, lead-free (CH 3 NH 3 ) 3 Bi 2 I 9 perovskites that utilize ethanol as the solvent is described. Using this method, dense and homogeneous microstructures were obtained, compared to the porous, rough microstructures obtained using dimethylformamide. Photovoltaic performances were enhanced, with an open-circuit voltage of 0.84 V measured. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui
2016-08-01
The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications.
Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui
2016-01-01
The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications. PMID:27501762
Villar-Navarro, Mercedes; Martín-Valero, María Jesús; Fernández-Torres, Rut Maria; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel
2017-02-15
An easy and environmental friendly method, based on the use of magnetic molecular imprinted polymers (mag-MIPs) is proposed for the simultaneous extraction of the 16 U.S. EPA polycyclic aromatic hydrocarbons (PAHs) priority pollutants. The mag-MIPs based extraction protocol is simple, more sensitive and low organic solvent consuming compared to official methods and also adequate for those PAHs more retained in the particulate matter. The new proposed extraction method followed by HPLC determination has been validated and applied to different types of water samples: tap water, river water, lake water and mineral water. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Quankui; Huang, Xiaojie; Tang, Junmei; Han, Yuemei; Chen, Hao
2013-12-01
A targeted drug delivery system based on graphene oxide (GO) was produced via one-pot synthesis method, taking advantages of the self-polymerization of the dopamine (DA). The polymerization of dopamine resulted in polydopamine capped GO nanocomposite. Meanwhile, the anti-tumor drug doxorubicin (DOX) can be loaded in the nanocomposite and the tumor cell targeting molecule folic acid (FA) can also been immobilized on the nanocomposite surface simultaneously. The size of the obtained FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) is about 600 nm. It renders a sustained drug release manner. The cell culture results reveal that the FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) via one-pot method shows property of targeted killing of cancer cells in vitro. This one-pot method just needs the pH adjusting to induce the self-polymerization of DA, but excludes the fussy chemical grafting process and the organic solvents, which make it an environmentally friendly method to synthesize FA-decorated GO-based drug delivery system.
Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L
2015-01-01
A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir; Shakiba, Atefeh; Vahdati-Khaki, Jalil
2016-02-15
Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reactionmore » temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.« less
Regeneration of the activity of three-way catalytic converters (TWCs) was tested for the first time using a biodegradable metal chelating agent (S, S. Ethylenediamine disuccinic acid (S, S-EDDS). The efficiency of this novel environmentally friendly solvent in removing various c...
ERIC Educational Resources Information Center
Wixtrom, Alex; Buhler, Jessica; Abdel-Fattah, Tarek
2014-01-01
Mechanochemical syntheses avoid or considerably reduce the use of reaction solvents, thus providing green chemistry synthetic alternatives that are both environmentally friendly and economically advantageous. The increased solid-state reactivity generated by mechanical energy imparted to the reactants by grinding or milling can offer alternative…
Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach
NASA Astrophysics Data System (ADS)
Capasso, A.; Del Rio Castillo, A. E.; Sun, H.; Ansaldo, A.; Pellegrini, V.; Bonaccorso, F.
2015-12-01
Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.
NASA Astrophysics Data System (ADS)
Yamazaki, Hana; Kamitabira, Saya; Maeda, Tomoki; Hotta, Atsushi
Considering an environmentally friendly material, poly(butylene succinate-co-butylene adipate)(PBSA) is one of the attractive biodegradable plastics that can be eventually degraded into H2O and CO2 by neighboring water molecules and microorganisms after the disposal. In order to expand the application of PBSA, the precise control of the biodegradability of PBSA is necessary. In this study, the dried-gel process was introduced to control the biodegradability of PBSA. The dried PBSA gels were prepared by using three different solvents (toluene, cyclohexanone, and o-dichlorobenzene). The scanning electron microscopy (SEM) micrographs revealed that the PBSA prepared by toluene had smaller spherocrystals than the other PBSA dried-gels prepared by cyclohexanone or o-dichlorobenzene. The biodegradability testing by immersing the three types of PBSA in NaOH aq. showed that the percentage of the weight loss of the PBSA produced by toluene was the highest. The results indicated that the microstructures of PBSA could be controlled by changing solvents during the gel preparations, and that the biodegradability of PBSA could therefore be efficiently modified by changing solvents. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.
Synthesis of γ-Valerolactone from Carbohydrates and its Applications.
Zhang, Zehui
2016-01-01
γ-Valerolactone (GVL) is a valuable chemical intermediate that can be obtained by catalytic reduction of levulinic acid (LA) or alkyl levulinates (AL). There are many reports on the synthesis of GVL from LA or AL. However, the demand for the large-scale synthesis of GVL requires more environmentally friendly and cost-effective production processes. This article focuses on the recent advance in the synthesis of GVL from carbohydrates or lignocellulosic biomass. In addition, application of GVL as the reaction solvents, fuel additives, and as precursor for the synthesis of jet fuel and polymer monomers is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of Ionic Liquids in Hydrometallurgy
Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung
2014-01-01
Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864
Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua
2014-01-01
Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.
Conjugated Polymers Atypically Prepared in Water
Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.
2010-01-01
Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869
Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han
2015-07-07
An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels.
NASA Astrophysics Data System (ADS)
Gören, A.; Mendes, J.; Rodrigues, H. M.; Sousa, R. E.; Oliveira, J.; Hilliou, L.; Costa, C. M.; Silva, M. M.; Lanceros-Méndez, S.
2016-12-01
New inks based on lithium iron phosphate and graphite for cathode and anode, respectively, were developed for printable lithium-ion batteries using the "green solvent" N,N‧-dimethylpropyleneurea (DMPU) and poly(vinylidene fluoride), PVDF, as a binder. The results were compared with the ones from inks developed with the conventionally used solvent N-methyl-2-pyrrolidone, NMP. The rheological properties of the PVDF/DMPU binder solution shows a more pronounced shear thinning behavior than the PVDF/NMP solution. Cathode inks prepared with 2.25 mL and 2.50 mL of DMPU for 1 g of electrode mass show an apparent viscosity of 3 Pa s and 2 Pa s for a shear rate of 100 s-1, respectively, being therefore processable by screen-printing or doctor blade techniques. The electrodes prepared with DMPU and processed by screen-printing show a capacity of 52 mAh g-1 at 2C for the cathode and 349 mAh g-1 at C/5 for the anode, after 45 charge-discharge cycles. The electrochemical performance of both electrodes was evaluated in a full-cell and after 9 cycles, the discharge capacity value is 81 mAh g-1, showing a discharge capacity retention of 64%. The new inks presented in this work are thus suitable for the development of printed batteries and represent a step forward towards more environmental friendly processes.
Jiang, Ping; Lucy, Charles A
2015-10-15
Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. Copyright © 2015 Elsevier B.V. All rights reserved.
Lin, Bing; Chen, Zhi-Yong; Liu, Huan-Huan; Wei, Qi-Di; Feng, Ting-Ting; Zhou, Ying; Wang, Can; Liu, Xiong-Li; Yuan, Wei-Cheng
2017-05-13
Described herein is an environmentally benign method for the synthesis of multisubstituted 3-alkoxylated-2-oxindoles 3 via direct alkoxylation of 3-halooxindoles 1 . A wide variety of such multisubstituted 3-alkoxylated-2-oxindole scaffolds were smoothly obtained in good yields (up to 94%) by heating in an oil bath at 35 °C for 24 h. A particularly valuable feature of this method was the development of environment-friendly chemistry using alcohols 2 as both the substrates and solvents in the presence of a catalytic amount of base.
Solvents and sustainable chemistry
Welton, Tom
2015-01-01
Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance. PMID:26730217
An environmentally friendly one-step method to synthesize palladium (Pd) nanobelts, nanoplates and nanotrees using vitamin B1 without using any special capping agents at room temperature is described. This greener method, which uses water as benign solvent and vitamin B1 as a red...
NASA Astrophysics Data System (ADS)
Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang
2017-07-01
Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.
Melt-processing of small molecule organic photovoltaics via bulk heterojunction compatibilization.
Rahmanudin, Aiman; Yao, Liang; Jeanbourquin, Xavier A; Liu, Yongpeng; Sekar, Arvindh; Ripaud, Emilie; Sivula, Kevin
2018-05-21
Melt-processing of organic semiconductors (OSCs) is a promising environmentally-friendly technique that can alleviate dependence on toxic chlorinated solvents. While melt-processed single-component OSC devices ( e.g. field-effect-transistors) have been demonstrated, multi-component bulk heterojunctions (BHJs) for organic photovoltaics (OPVs) remain a challenge. Herein, we demonstrate a strategy that affords tunable BHJ phase segregation and domain sizes from a single-phase homogeneous melt by employing strongly-crystalline small-molecule OSCs together with a customized molecular compatibilizing (MCP) additive. An optimized photoactive BHJ with 50 wt% MCP achieved a device power conversion efficiency of ca. 1% after melting the active layer at 240 °C (15 min, followed by slow cooling) before deposition of the top electrode. BHJ morphology characterization using atomic force and Kelvin probe microscopy, X-ray diffraction, and photo-luminescence measurements further demonstrate the trade-off between free charge generation and transport with respect to MCP loading in the BHJ. In addition, a functional OPV was also obtained from the melt-processing of dispersed micron-sized solid BHJ particles into a smooth and homogeneous thin-film by using the MCP approach. These results demonstrate that molecular compatibilization is a key prerequisite for further developments towards true solvent-free melt-processed BHJ OPV systems.
Pacheco-Fernández, Idaira; Herrera-Fuentes, Ariadna; Delgado, Bárbara; Pino, Verónica; Ayala, Juan H; Afonso, Ana M
2017-03-01
The environmental monitoring of trihalomethanes (THMs) has been performed by setting up a dispersive liquid-liquid microextraction method in combination with gas chromatography (GC)-mass spectrometry (MS). The optimized method only requires ∼26 µL of decanol as extractant solvent, dissolved in ∼1 mL of acetone (dispersive solvent) for 5 mL of the environmental water containing THMs. The mixture is then subjected to vortex for 1 min and then centrifuged for 2 min at 3500 rpm. The microdroplet containing the extracted THMs is then sampled with a micro-syringe, and injected (1 µL) in the GC-MS. The method is characterized for being fast (3 min for the entire sample preparation step) and environmentally friendly (low amounts of solvents required, being all non-chlorinated), and also for getting average relative recoveries of 90.2-106% in tap waters; relative standard deviation values always lower than 11%; average enrichment factors of 48-49; and detection limits down to 0.7 µg·L-1. Several waters: tap waters, pool waters, and wastewaters were successfully analyzed with the method proposed. Furthermore, the method was used to monitor the formation of THMs in wastewaters when different chlorination parameters, namely temperature and pH, were varied.
Potential of roselle and blue pea in the dye-sensitized solar cell
NASA Astrophysics Data System (ADS)
Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.
2017-09-01
This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.
Jin, Chunde; Han, Shenjie; Li, Jingpeng; Sun, Qingfeng
2015-06-05
Cellulose-based aerogel (CBA) was prepared from waste newspaper (WNP) without any pretreatment using 1-allyl-3-methyimidazolium chloride (AmImCl) as a solvent via regeneration and an environmentally friendly freeze-drying method. After being treated with trimethylchlorosilane (TMCS) via a simple thermal chemical vapor deposition process, the resulting CBAs were rendered both hydrophobic and oleophilic. Successful silanization on the surface of the porous CBA was verified by a variety of techniques including scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and water contact angle (WCA) measurements. As a result, the silane-coated, interconnected CBAs not only exhibited good absorption performance for oils (e.g., waste engine oil), but also showed absorption capacity for organic solvents such as chloroform (with a representative weight gain ranging from 11 to 22 times of their own dry weight), making them diversified absorbents for potential applications including sewage purification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vella, Filomena Monica; Laratta, Bruna; La Cara, Francesco; Morana, Alessandra
2018-05-01
The underutilised forest and industrial biomass of Castanea sativa (Mill.) is generally discarded during post-harvest and food processing, with high impact on environmental quality. The searching on alternative sources of natural antioxidants from low-cost supplies, by methods involving environment-friendly techniques, has become a major goal of numerous researches in recent times. The aim of the present study was the set-up of a biomolecules extraction procedure from chestnut leaves, burs and shells and the assessing of their potential antioxidant activity. Boiling water was the best extraction solvent referring to polyphenols from chestnut shells and burs, whereas the most efficient for leaves resulted 60% ethanol at room temperature. Greatest polyphenol contents were 90.35, 60.01 and 17.68 mg gallic acid equivalents g -1 in leaves, burs and shells, respectively. Moreover, flavonoids, tannins and antioxidant activity were assessed on the best extract obtained from each chestnut by-product.
Solventless pharmaceutical coating processes: a review.
Bose, Sagarika; Bogner, Robin H
2007-01-01
Coatings are an essential part in the formulation of pharmaceutical dosage form to achieve superior aesthetic quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous- or organic-based polymer solutions. Both organic and aqueous film coating bring their own disadvantages. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time because there is no drying/evaporation step. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review discusses and compares six solventless coating methods - compression coating, hot-melt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating - that can be used to coat the pharmaceutical dosage forms.
Green extraction of grape skin phenolics by using deep eutectic solvents.
Cvjetko Bubalo, Marina; Ćurko, Natka; Tomašević, Marina; Kovačević Ganić, Karin; Radojčić Redovniković, Ivana
2016-06-01
Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Life of Pennzane and 815Z-Lubricated Instrument Bearings Cleaned with Non-CFC Solvents
NASA Technical Reports Server (NTRS)
Loewenthal, Stuart; Jones, William; Predmore, Roamer
1999-01-01
This report takes the form of two papers: (1) "Life of Pennzane and 815Z-Lubricated Instrument Bearings cleaned with Non-CFC Solvents" and (2) a published paper, entitled "Instrument bearing life with NON-CFC cleaners". Abstract for paper # 1 : Bearings used in spacecraft mechanisms have historically been cleaned with chlorofluorocarbon CFC-1 13 (Freon) solvents and lubricated with a perfluorinated polyalkylether (PFPE) oils like 815-Z. Little full-scale bearing life test data exists to evaluate the effects of the newer class environmental-friendly bearing cleaners or improved synthetic hydrocarbon space oils like Pennzane. To address the lack of data, a cooperative, bearing life test program was initiated between NASA, Lockheed Martin and MPB. The objective was to obtain comparative long-term, life test data for flight-quality bearings, cleaned with non-CFC solvents versus CFC-1 13 under flight-like conditions with two space oils. A goal was to gain a better understanding of the lubricant surface chemistry effects with such solvents. A second objective was to obtain well-controlled, full-scale bearing life test data with a relatively new synthetic oil (Pennzane), touted as an improvement to Bray 815Z, an oil with considerable space flight history. The second paper, which serves as an attachment, is abstracted below: Bearings used in spacecraft mechanisms have historically been cleaned with chlorofluorocarbon CFC-113 (Freon) solvents and lubricated with a perfluorinated polyalkylether (PFPE) oils like 815-Z. Little full-scale bearing life test data exists to evaluate the effects of the newer class environmental-friendly bearing cleaners or improved synthetic hydrocarbon space oils like Pennzane. To address the lack of data, a cooperative, bearing life test program was initiated between NASA, Lockheed Martin and MPB. The objective was to obtain comparative long-term, life test data for flight-quality bearings, cleaned with non-CFC solvents versus CFC-1 13 under flight-like conditions with two space oils. A goal was to gain a better understanding of the lubricant surface chemistry effects with such solvents. A second objective was to obtain well-controlled, full-scale bearing life test data with a relatively new synthetic oil (Pennzane), touted as an improvement to Bray 815Z, an oil with considerable space flight history.
Microextraction techniques combined with capillary electrophoresis in bioanalysis.
Kohler, Isabelle; Schappler, Julie; Rudaz, Serge
2013-01-01
Over the past two decades, many environmentally sustainable sample-preparation techniques have been proposed, with the objective of reducing the use of toxic organic solvents or substituting these with environmentally friendly alternatives. Microextraction techniques (MEs), in which only a small amount of organic solvent is used, have several advantages, including reduced sample volume, analysis time, and operating costs. Thus, MEs are well adapted in bioanalysis, in which sample preparation is mandatory because of the complexity of a sample that is available in small quantities (mL or even μL only). Capillary electrophoresis (CE) is a powerful and efficient separation technique in which no organic solvents are required for analysis. Combination of CE with MEs is regarded as a very attractive environmentally sustainable analytical tool, and numerous applications have been reported over the last few decades for bioanalysis of low-molecular-weight compounds or for peptide analysis. In this paper we review the use of MEs combined with CE in bioanalysis. The review is divided into two sections: liquid and solid-based MEs. A brief practical and theoretical description of each ME is given, and the techniques are illustrated by relevant applications.
Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin
2016-06-23
We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H(+) to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H(+), and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m(2)). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.
Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin
2016-01-01
We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815
Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, Joshua A.; Ustarroz, Jon; Muselle, Thibault
2016-01-28
Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2–600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the timemore » evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (~2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Finally, altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.« less
NASA Astrophysics Data System (ADS)
Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin
2016-06-01
We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.
Kang, Sung-Won; Rahman, M Shafiur; Kim, Ah-Na; Lee, Kyo-Yeon; Park, Chan-Yang; Kerr, William L; Choi, Sung-Gil
2017-07-01
Defatted soy flour is a potential source of food protein, amino acids, ash and isoflavones. The supercritical carbon dioxide (SC-CO 2 ) and a traditional organic solvent extraction methods were used to remove fat from soy flour, and the quality characteristics of a control soy flour (CSF), defatted soy flour by SC-CO 2 (DSFSC-CO 2 ) and defatted soy flour by an organic solvent (DSF-OS) were compared. The SC-CO 2 process was carried out at a constant temperature of 45 °C, and a pressure of 40 MPa for 3 h with a CO 2 flow rate of 30 g/min. The DSFSC-CO 2 had significantly higher protein, ash, and amino acids content than CSF and DSF-OS. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated that CSF and DSFSC-CO 2 had protein bands of similar intensity and area that indicated no denaturation of protein, whereas DSF-OS showed diffuse bands or no bands due to protein denaturation. In addition to higher nutritional value and protein contents, DSFSC-CO 2 showed superior functional properties in terms of total soluble solids content, water and oil absorption, emulsifying and foaming capacity. The SC-CO 2 method offers a nutritionally and environmentally friendly alternative extraction processing approach for the removal of oil from high-protein food sources. It has a great potential for producing high-protein fat-free, and low-calorie content diet than the traditional organic solvent extraction method.
ERIC Educational Resources Information Center
Estevão, Mónica S.; Martins, Ricardo J. V.; Alfonso, Carlos A. M.
2017-01-01
An experiment exploring the chemistry of the carbonyl group for the one-step synthesis of "trans"-4,5- dibenzylaminocyclopent-2-enone is described. The reaction of furfural and dibenzylamine in the environmentally friendly solvent ethanol and catalyzed by the Lewis acid ErCl[subscript 3]·6H[subscript 2]O afforded the product in high…
Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza
2018-04-01
In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2 ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Deuk Yeon; Choi, Jae Hong; Shin, Jung Chul; Jung, Man Ki; Song, Seok Kyun; Suh, Jung Ki; Lee, Chang Young
2018-06-01
Compared with wet processes, dry functionalization using plasma is fast, scalable, solvent-free, and thus presents a promising approach for grafting functional groups to powdery nanomaterials. Previous approaches, however, had difficulties in maintaining an intimate sample-plasma contact and achieving uniform functionalization. Here, we demonstrate a plasma reactor equipped with a porous filter electrode that increases both homogeneity and degree of functionalization by capturing and circulating powdery carbon nanotubes (CNTs) via vacuum and gas blowing. Spectroscopic measurements verify that treatment with O2/air plasma generates oxygen-containing groups on the surface of CNTs, with the degree of functionalization readily controlled by varying the circulation number. Gas sensors fabricated using the plasma-treated CNTs confirm alteration of molecular adsorption on the surface of CNTs. A sequential treatment with NH3 plasma following the oxidation pre-treatment results in the functionalization with nitrogen species of up to 3.2 wt%. Our approach requiring no organic solvents not only is cost-effective and environmentally friendly, but also serves as a versatile tool that applies to other powdery micro or nanoscale materials for controlled modification of their surfaces.
NASA Astrophysics Data System (ADS)
Safari, Javad; Gandomi-Ravandi, Soheila
2014-09-01
A Biginelli-like condensation is described using acetophenone as active methylene compound with aldehydes and urea to furnish pyrimidinone analogues under solvent-free conditions. In this paper, besides the preparation of nanocomposites based on MWCNTs, our investigations have been focused on the catalytic efficiency of metal oxide-MWCNTs composites. The requisites of a good catalyst are high activity, selectivity, reusability, reasonable cost and long lifetime. The application of solvent-free conditions and transition metal oxides decorated-MWCNTs (MOx-MWCNTs) nanocomposites as attractive, effective and reusable catalysts leads to the efficient synthesis of 4,6-diaryl-3,4-dihydropyrimidin-2-(1H)-ones. This recyclable heterogeneous catalytic system provides a simple strategy to generate a variety of pyrimidinones under solvent-free conditions. Utilization of easy reaction condition, recyclable green catalyst, reduced environmental impacts and simple work-up make this methodology as an interesting option for the eco-friendly synthesis of Biginelli-like compounds.
Stocka, Jolanta; Tankiewicz, Maciej; Biziuk, Marek; Namieśnik, Jacek
2011-01-01
Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper. PMID:22174632
Non-aqueous cleaning solvent substitution
NASA Technical Reports Server (NTRS)
Meier, Gerald J.
1994-01-01
A variety of environmental, safety, and health concerns exist over use of chlorinated and fluorinated cleaning solvents. Sandia National Laboratories, Lawrence Livermore National Laboratories, and the Kansas City Division of AlliedSignal have combined efforts to focus on finding alternative cleaning solvents and processes which are effective, environmentally safe, and compliant with local, state, and federal regulations. An alternative solvent has been identified, qualified, and implemented into production of complex electronic assemblies, where aqueous and semi-aqueous cleaning processes are not allowed. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, was selected as the solvent of choice, and it was found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data. The electronics industry is constantly searching for proven methods and environmentally-safe materials to use in manufacturing processes. The information in this presentation will provide another option to consider on future projects for applications requiring high levels of quality, reliability, and cleanliness from non-aqueous cleaning processes.
Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C
2016-01-28
Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Williamson, Steve; Aman, Bob; Aurigema, Andrew; Melendez, Orlando
1999-01-01
The Wiltech Component Cleaning & Refurbishment Facility (WT-CCRF) at NASA Kennedy Space Center performs precision cleaning on approximately 200,000 metallic and non metallic components every year. WT-CCRF has developed a CFC elimination plan consisting of aqueous cleaning and verification and an economical dual solvent strategy for alternative solvent solution. Aqueous Verification Methodologies were implemented two years ago on a variety of Ground Support Equipment (GSE) components and sampling equipment. Today, 50% of the current workload is verified using aqueous methods and 90% of the total workload is degreased aqueously using, Zonyl and Brulin surfactants in ultrasonic baths. An additional estimated 20% solvent savings could be achieved if the proposed expanded use of aqueous methods are approved. Aqueous cleaning has shown to be effective, environmentally friendly and economical (i.e.. cost of materials, equipment, facilities and labor).
Solvent replacement for green processing.
Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A
1998-01-01
The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018
Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate
NASA Astrophysics Data System (ADS)
Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi
2017-09-01
Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.
Wang, Ruifeng; Qi, Xiujuan; Zhao, Lei; Liu, Shimin; Gao, Shuang; Ma, Xiangyuan; Deng, Youquan
2016-07-01
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1-Octyl-3-methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10-1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal-to-noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220-fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing
NASA Astrophysics Data System (ADS)
Davarpanah, Saideh; Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Bahrami, Hajir; Mazaheri, Firoozmehr
2009-01-01
In this paper, the surface modification of silk fiber using anhydrides to graft the polysaccharide chitosan and dyeing ability of the grafted silk were studied. Silk fiber was degummed and acylated with two anhydrides, succinic anhydride (SA) and phthalic anhydride (PA), in different solvents (dimethyl sulfoxide (DMSO) and N, N-dimethyl formamide (DMF)). The effects of anhydrides, solvents, anhydride concentration, liquor ratio (L:R) and reaction time on acylation of silk were studied. The polysaccharide chitosan was grafted to the acylated silk fiber and dyed by acid dye (Acid Black NB.B). The effects of pH, chitosan concentration, and reaction time on chitosan grafting of acylated silk were investigated. The physical properties show sensible changes regardless of weight gain. Scanning electron microscopy (SEM) analysis showed the presence of foreign materials firmly attached to the surface of silk. FTIR spectroscopy provided evidence that chitosan was grafted onto the acylated silk through the formation of new covalent bonds. The dyeing of the chitosan grafted-acylated silk fiber indicated the higher dye ability in comparison to the acylated and degummed silk samples. The mechanism of chitosan grafting over degummed silk through anhydride linkage was proposed. The findings of this research support the potential production of new environmentally friendly textile fibers. It is worthwhile to mention that the grafted samples have antibacterial potential due to the antibacterial property of chitosan molecules.
2016-01-05
2015, Abstract #1092. The Role of Chromium (III) in the Corrosion Inhibition of AA2024-T3 By Trivalent Chromium Process Coatings by Greg Swain...to replace chromate conversion coatings and primers with more environmentally-friendly, non-chromated coatings. The Trivalent Chromium Process (TCP...coatings and primers with more environmentally-friendly, non-chromated coatings. The Trivalent Chromium Process (TCP) coating, originally developed
Radošević, Kristina; Železnjak, Jelena; Cvjetko Bubalo, Marina; Radojčić Redovniković, Ivana; Slivac, Igor; Gaurina Srček, Višnja
2016-09-01
With the advent of ionic liquids, much was expected concerning their applicability as an alternative to organic solvents in the chemical technology and biotechnology fields. However, the most studied and commonly used ionic liquids based on imidazolium and pyridinium were found not to be as environmentally friendly as it was first expected. Therefore, a new generation of alternative solvents named natural ionic liquids and deep eutectic solvents, composed of natural and/or renewable compounds, have come into focus in recent years. Since the number of newly synthesized chemicals increases yearly, simple and reliable methods for their ecotoxicological assessment are necessary. Permanent fish cell lines can serve as a test system for the evaluation of a chemical's cytotoxicity. This paper presents research results on the cytotoxic effects on Channel Catfish Ovary (CCO) cell line induced by fifteen cholinium-based ionic liquids and deep eutectic solvents. Based on the decrease in cell viability, the most obvious toxic effect on CCO cells was caused by ionic liquid choline oxalate, while other solvents tested exhibited low cytotoxicity. Therefore, we can conclude that cholinium-based ionic liquids and deep eutectic solvents are comparatively less toxic to CCO cells than conventional ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.
[Supercritical and near-critical fluid solvents assisted reaction and separation processes].
Song, R; Zeng, J; Zhong, B
2001-11-01
The tunability of supercritical and near-critical fluid (S/NCF) solvents offers environmental improvements and economic advantages from improved performances and flexibility for separation and reaction processes through density changes or cosolvents. The paper reviews the sustainable reaction and separation processes in S/NCF solvents such as supercritical carbon dioxide and near-critical water.
Bi, Yan-Hong; Duan, Zhang-Qun; Li, Xiang-Qian; Wang, Zhao-Yu; Zhao, Xi-Rong
2015-02-11
Biobased ionic liquids with cholinium as the cation and amino acids as the anions, which could be prepared from renewable biomaterials by simple neutralization reactions, have recently been described as promising and green solvents. Herein, they were successfully used as the reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with l-serine for phosphatidylserine synthesis for the first time. Our results indicated that the highest phosphatidylserine yield of 86.5% was achieved. Moreover, 75% original activity of the enzyme was maintained after being used for 10 batches. The present work could be considered an alternative enzymatic strategy for preparing phosphatidylserine. Additionally, the excellent results make the biobased ionic liquids more promising candidates for use as environmentally friendly solvents in biocatalysis fields.
Pang, Jinhui; Liu, Xin; Zhang, Xueming; Wu, Yuying; Sun, Runcang
2013-01-01
More and more attention has been paid to environmentally friendly bio-based renewable materials as the substitution of fossil-based materials, due to the increasing environmental concerns. In this study, regenerated cellulose films with enhanced mechanical property were prepared via incorporating different plasticizers using ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as the solvent. The characteristics of the cellulose films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis (TG), X-ray diffraction (XRD), 13C Solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) and tensile testing. The results showed that the cellulose films exhibited a homogeneous and smooth surface structure. It was noted that the thermal stability of the regenerated cellulose film plasticized with glycerol was increased compared with other regenerated cellulose films. Furthermore, the incorporation of plasticizers dramatically strengthened the tensile strength and improved the hydrophobicity of cellulose films, as compared to the control sample. Therefore, these notable results exhibited the potential utilization in producing environmentally friendly cellulose films with high performance properties. PMID:28809209
Vieira, Augusto A; Caldas, Sergiane S; Escarrone, Ana Laura Venquiaruti; Arias, Jean Lucas de Oliveira; Primel, Ednei Gilberto
2018-03-01
Booster biocides have been widely applied to ships and other submerged structures. These compounds can be released into the marine environment as the result of vessel hull leaching and may remain in different environmental compartments. This study aimed at introducing an environmentally friendly procedure for the extraction of irgarol and diuron from fish samples by vortex-assisted matrix solid phase dispersion (VA-MSPD) with detection by liquid chromatography tandem mass spectrometry. Different types of solid supports and solvents were evaluated. The best results were found when 0.5g mussel shell, 0.5g sodium sulfate and 5mL ethanol were used. Analytical recoveries ranged from 81 to 110%, with RSD below 10%, whereas the matrix effect was between -17 and 1% (for all samples under study). LOQ values of irgarol and diuron were 5 and 50ngg -1 , respectively. The method under investigation proved to be a promising alternative to controlling contamination of fish by booster biocides, with low consumption of biodegradable reagents. Copyright © 2017 Elsevier Ltd. All rights reserved.
1-Butyl-3-Methyl Imidazolium-based Ionic Liquids Explored as Potential Solvents for Lipid Processing
USDA-ARS?s Scientific Manuscript database
Due to global environmental concerns, there is increasing interest in replacing the volatile solvents currently used to process commodity plant lipids. Room-temperature molten salts are one type of media receiving great attention as a possible replacement of the typical organic solvent. Molten sal...
Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2014-11-01
Vortex-assisted dispersive liquid-liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high-performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5-39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01-0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4-110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low-Cost Aqueous Coal Desulfurization
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K.
1982-01-01
Water-based process for desulfurizing coal not only eliminates need for costly organic solvent but removes sulfur more effectively than an earlier solvent-based process. New process could provide low-cost commercial method for converting high-sulfur coal into environmentally acceptable fuel.
Proposals for the mitigation of the environmental impact of clinical laboratories.
Lopez, Joseph B; Badrick, Tony
2012-03-24
Laboratories should be aware of the carbon footprint resulting from their activities and take steps to mitigate it as part of their societal responsibilities. Once committed to a mitigation programme, they should announce an environmental policy, secure the support of senior management, initiate documentation, institute a staff training programme, schedule environmental audits and appoint an environmental manager. Laboratories may aspire to be accredited to one of the standards for environmental management, such as the ISO 14000. As environmental and quality issues are linked, the improvement in the environmental management of an organisation will ultimately lead to improved quality system performance. Indeed, environmental management could conceivably come under overall quality management. Although there will be initial costs, good environmental practices can bring savings. Environmental improvement should be based on the 3R concept to reduce, reuse and recycle. Several policy initiatives may be introduced. These include a green purchasing policy for equipment, laboratory furniture and reagents as well as the management of packaging wastes. There are several ways to reduce energy, water usage and wastage. A reduction of test numbers and collection tubes should be attempted. Paper management involves all aspects of 3R. The recycling of solvents and general wastes should be practised where feasible. The construction new laboratories or renovations to existing ones are opportunities to make them more environmentally-friendly. The advocacy of policies to associates and the inclusion of environmentally-friendly conditions on contractors are integral parts of the programme.
Xie, Chen; Tang, Xiaofeng; Berlinghof, Marvin; Langner, Stefan; Chen, Shi; Späth, Andreas; Li, Ning; Fink, Rainer H; Unruh, Tobias; Brabec, Christoph J
2018-06-27
Development of high-quality organic nanoparticle inks is a significant scientific challenge for the industrial production of solution-processed organic photovoltaics (OPVs) with eco-friendly processing methods. In this work, we demonstrate a novel, robot-based, high-throughput procedure performing automatic poly(3-hexylthio-phene-2,5-diyl) and indene-C 60 bisadduct nanoparticle ink synthesis in nontoxic alcohols. A novel methodology to prepare particle dispersions for fully functional OPVs by manipulating the particle size and solvent system was studied in detail. The ethanol dispersion with a particle diameter of around 80-100 nm exhibits reduced degradation, yielding a power conversion efficiency of 4.52%, which is the highest performance reported so far for water/alcohol-processed OPV devices. By successfully deploying the high-throughput robot-based approach for an organic nanoparticle ink preparation, we believe that the findings demonstrated in this work will trigger more research interest and effort on eco-friendly industrial production of OPVs.
Green analytical chemistry--theory and practice.
Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek
2010-08-01
This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.
Mishra, Ashish Kumar; Lakshmi, K. V.; Huang, Liping
2015-01-01
Exfoliated transition metal dichalcogenides (TMDs) such as WS2 and MoS2 have shown exciting potential for energy storage, catalysis and optoelectronics. So far, solution based methods for scalable production of few-layer TMDs usually involve the use of organic solvents or dangerous chemicals. Here, we report an eco-friendly method for facile synthesis of few-layer WS2 and MoS2 nanosheets using dilute aqueous solution of household detergent. Short time sonication of varying amount of bulk samples in soapy water was used to scale up the production of nanosheets. Thermal stability, optical absorption and Raman spectra of as-synthesized WS2 and MoS2 nanosheets are in close agreement with those from other synthesis techniques. Efficient photocatalytic activity of TMDs nanosheets was demonstrated by decomposing Brilliant Green dye in aqueous solution under visible light irradiation. Our study shows the great potential of TMDs nanosheets for environmental remediation by degrading toxic industrial chemicals in wastewater using sunlight. PMID:26503125
NASA Astrophysics Data System (ADS)
Mishra, Ashish Kumar; Lakshmi, K. V.; Huang, Liping
2015-10-01
Exfoliated transition metal dichalcogenides (TMDs) such as WS2 and MoS2 have shown exciting potential for energy storage, catalysis and optoelectronics. So far, solution based methods for scalable production of few-layer TMDs usually involve the use of organic solvents or dangerous chemicals. Here, we report an eco-friendly method for facile synthesis of few-layer WS2 and MoS2 nanosheets using dilute aqueous solution of household detergent. Short time sonication of varying amount of bulk samples in soapy water was used to scale up the production of nanosheets. Thermal stability, optical absorption and Raman spectra of as-synthesized WS2 and MoS2 nanosheets are in close agreement with those from other synthesis techniques. Efficient photocatalytic activity of TMDs nanosheets was demonstrated by decomposing Brilliant Green dye in aqueous solution under visible light irradiation. Our study shows the great potential of TMDs nanosheets for environmental remediation by degrading toxic industrial chemicals in wastewater using sunlight.
Use of Vacuum Degreasing for Precision Cleaning
NASA Technical Reports Server (NTRS)
Fox, Eric; Edwards, Kevin; Mitchell, Mark; Boothe, Richard
2017-01-01
Increasingly strict environmental regulations and the consequent phase out of many effective cleaning solvents has necessitated the development of novel cleaning chemistries and technologies. Among these is vacuum degreasing, a fully enclosed process that eliminates fugitive solvent emissions, thereby reducing cost, environmental, and health related exposure impacts. The effectiveness of vacuum degreasing using modified alcohol for common aerospace contaminants is reported and compared to current and legacy solvents.
Evaluation of Stability and Biological Activity of Solid Nanodispersion of Lambda-Cyhalothrin.
Cui, Bo; Feng, Lei; Pan, Zhenzhong; Yu, Manli; Zeng, Zhanghua; Sun, Changjiao; Zhao, Xiang; Wang, Yan; Cui, Haixin
2015-01-01
Pesticides are essential agrochemicals used to protect plants from diseases, pests and weeds. However, the formulation defects of conventional pesticides cause food toxicity and ecological environmental problems. In this study, a novel, efficient and environmentally friendly formulation of lambda-cyhalothrin, a solid nanodispersion, was successfully developed based on melt-emulsification and high-speed shearing methods. The solid nanodispersion presented excellent advantages over conventional pesticide formulations in such formulation functions as dispersibility, stability and bioavailability. The formulation is free of organic solvents, and the use of surfactant is reduced. Therefore, the application of the solid nanodispersion in crop production will improve efficacy and reduce the occurrence of both pesticide residues in food and environmental pollution from pesticides.
Evaluation of Stability and Biological Activity of Solid Nanodispersion of Lambda-Cyhalothrin
Cui, Bo; Feng, Lei; Pan, Zhenzhong; Yu, Manli; Zeng, Zhanghua; Sun, Changjiao; Zhao, Xiang; Wang, Yan; Cui, Haixin
2015-01-01
Pesticides are essential agrochemicals used to protect plants from diseases, pests and weeds. However, the formulation defects of conventional pesticides cause food toxicity and ecological environmental problems. In this study, a novel, efficient and environmentally friendly formulation of lambda-cyhalothrin, a solid nanodispersion, was successfully developed based on melt-emulsification and high-speed shearing methods. The solid nanodispersion presented excellent advantages over conventional pesticide formulations in such formulation functions as dispersibility, stability and bioavailability. The formulation is free of organic solvents, and the use of surfactant is reduced. Therefore, the application of the solid nanodispersion in crop production will improve efficacy and reduce the occurrence of both pesticide residues in food and environmental pollution from pesticides. PMID:26281043
Girardi, Valeria R; Silber, Juana J; Falcone, Ruben Darío; Correa, N Mariano
2018-03-19
In the present work we show how two biocompatible solvents, methyl laurate (ML) and isopropyl myristate (IPM), can be used as a less toxic alternative to replace the nonpolar component in a sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) reverse micelles (RMs) formulation. In this sense, the micropolarity and the hydrogen-bond ability of the interface were monitored through the use of the solvatochromism of a molecular probe (1-methyl-8-oxyquinolinium betaine, QB) and Fourier transform infrared spectroscopy (FTIR). Our results demonstrate that the micropolarity sensed by QB in ML RMs is lower than in IPM RMs. Additionally, the water molecules form stronger H-bond interactions with the polar head of AOT in ML than in IPM. By FTIR was revealed that more water molecules interact with the interface in ML/AOT RMs. On the other hand, for AOT RMs generated in IPM, the weaker water-surfactant interaction allows the water molecules to establish hydrogen bonds with each other trending to bulk water more easily than in ML RMs, a consequence of the dissimilar penetration of nonpolar solvents into the interfacial region. The penetration process is strongly controlled by the polarity and viscosity of the external solvents. All of these results allow us to characterize these biocompatible systems, providing information about interfacial properties and how they can be altered by changing the external solvent. The ability of the nontoxic solvent to penetrate or not into the AOT interface produces a new interface with attractive properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu
2015-05-22
A novel air assisted liquid-liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μgL(-1). The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3-13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2015 Elsevier B.V. All rights reserved.
High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum
Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano
2015-01-01
A novel membrane based on silicon dioxide (SiO2) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2 and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance. PMID:26512701
Ultrasound-assisted extraction of flaxseed oil using immobilized enzymes.
Long, Jing-jing; Fu, Yu-jie; Zu, Yuan-gang; Li, Ji; Wang, Wei; Gu, Cheng-bo; Luo, Meng
2011-11-01
An aqueous enzymatic process assisted by ultrasound extraction (AEP-UE) was applied to the extraction of oil from flaxseed (Linum usitatissimum L.). The highest oil recovery of 68.1% was obtained when ground flaxseed was incubated with 130 U/g of cellulase, pectinase, and hemicellulase for 12h, at 45°C and pH 5.0. The IC(50) values of oil obtained by AEP-UE and organic solvent extraction (OSE), as measured by DPPH scavenging activity essay, were 2.27 mg/mL and 3.31 mg/mL. The AEP-UE-derived oil had a 1.5% higher content of unsaturated fatty acids than the OSE-derived oil. AEP-UE is therefore a promising environmentally friendly method for large-scale preparation of flaxseed oil. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Steele, John; Chullen, Cinda; Morenz, Jesse; Stephenson, Curtis
2010-01-01
Freon-113(TradeMark) has been used as a chemistry lab sampling solvent at NASA/JSC for EMU (extravehicular Mobility Unit) SOP (Secondary Oxygen Pack) oxygen testing Cold Traps utilized at the USA (United Space Alliance) Houston facility. Similar testing has occurred at the HSWL (Hamilton Sundstrand Windsor Locks) facility. A NASA Executive Order bans the procurement of all ODS (ozone depleting substances), including Freon-113 by the end of 2009. In order to comply with NASA direction, HSWL began evaluating viable solvents to replace Freon-113 . The study and testing effort to find Freon-113 replacements used for Cold Trap sampling is the subject of this paper. Test results have shown HFE-7100 (a 3M fluorinated ether) to be an adequate replacement for Freon-113 as a solvent to remove and measure the non-volatile residue collected in a Cold Trap during oxygen testing. Furthermore, S-316 (a Horiba Instruments Inc. high molecular weight, non-ODS chlorofluorocarbon) was found to be an adequate replacement for Freon-113 as a solvent to reconstitute non-volatile residue removed from a Cold Trap during oxygen testing for subsequent HC (hydrocarbon) analysis via FTIR (Fourier Transform Infrared Spectroscopy).
Liang, Pei; Wang, Fang; Wan, Qin
2013-02-15
A highly efficient and environmentally friendly sample preparation method termed ionic liquid-based ultrasound-assisted emulsification microextraction (IL-USAEME) combined with high performance liquid chromatography has been developed for the determination of four fungicides (azoxystrobin, diethofencarb, pyrimethanil and kresoxim-methyl) in water samples. In this novel approach, ionic liquid (IL) was used as extraction solvent in place of the organic solvent used in conventional USAEME assay, and there is no need for using organic dispersive solvent which is typically required in the common dispersive liquid-liquid microextraction method. Various parameters that affect the extraction efficiency, such as the kind and volume of IL, ultrasound emulsification time, extraction temperature and salt addition were investigated and optimized. Under the optimum extraction condition, the linearities of calibration curves were in the range from 3 to 5000 ng mL(-1) for target analytes with the correlation coefficient higher than 0.9992. The enrichment factors and the limits of detection were in the range of 88-137 and 0.73-2.2 ng mL(-1), depending on the analytes. The environmental water samples were successfully analyzed using the proposed method, and the relative recoveries at fortified levels of 50 and 100 ng mL(-1) were in the range of 83.9%-116.2%. Copyright © 2012 Elsevier B.V. All rights reserved.
Analyzing Environmental Policies for Chlorinated Solvents with a Model of Markets and Regulations
1991-01-01
electronics, aerospace, fabricated metal products, and dry cleaning depend heavily on chlorinated solvents in their production processes . For example...production processes . The second of the model’s components is a group of economic equations that represents all of the solvent substitutions in...Instead, the process for numerically specifying the substitution parameters involves eliciting expert judgments and then normalizing the parameters
High pressure chemistry of red phosphorus by photoactivated simple molecules
NASA Astrophysics Data System (ADS)
Ceppatelli, Matteo; Bini, Roberto; Fanetti, Samuele; Caporali, Maria; Peruzzini, Maurizio
2013-06-01
High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In particular the photoactivation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photoactivators in HP conditions. Here we report a study on the HP photoinduced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using DAC and SAC. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occured in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).
Erbeldinger, M; Mesiano, A J; Russell, A J
2000-01-01
We present the first report of enzymatic catalysis in an ionic liquid. The virtually nonexistent vapor pressure makes ionic liquids an exciting new alternative for enzyme-catalyzed syntheses in environmentally friendly environments. Z-aspartame was synthesized in a thermolysin-catalyzed reaction of carbobenzoxy-L-aspartate and L-phenylalanine methyl ester hydrochloride in 1-butyl-3-methylimidazolium hexafluorophosphate (BP6). Ionic liquids such as BP6 are thermally stable and have a remarkable range of temperatures over which they remain liquid (300 degrees C). With an initial rate of 1.2 +/- 0.1 nmol min(-)(1) mg(-)(1), we observed a competitive rate in comparison to that of enzymatic synthesis in organic solvent. Additionally, the enzyme exhibits outstanding stability, which would normally require immobilization.
Dahmash, Eman Z; Mohammed, Afzal R
2015-01-01
Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.
Solvent-free melting techniques for the preparation of lipid-based solid oral formulations.
Becker, Karin; Salar-Behzadi, Sharareh; Zimmer, Andreas
2015-05-01
Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.
Alternative Green Solvents Project
NASA Technical Reports Server (NTRS)
Maloney, Phillip R.
2012-01-01
Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.
DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES WITH FUGITIVE AND OPEN EMISSIONS
Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the economics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. ...
Cellulosic ethanol production from green solvent-pretreated rice straw
USDA-ARS?s Scientific Manuscript database
Natural deep eutectic solvents (NADES) are recently developed “green solvents” consisted of bio-based ionic liquids and deep eutectic solvents mainly from plant based metabolites. NADES are biodegradable, non-toxic and environment-friendly. Conventional chemically synthesized ionic liquids have be...
Removal of Free Fatty Acid from Plant Oil by the Adsorption Process
NASA Astrophysics Data System (ADS)
Chung, Tsair-Wang; Wu, Yi-Ling; Hsu, Shih-Hong
2018-05-01
The food oil refinery process for deacidification is ususally conducted by the neutralization after degumming. In this study, commercialized resins will be used as adsorbents to remove the free fatty acid (FFA) in food oil without using any solvent. Applying this environmental friendly green process, the energy efficiency will be increased and the waste water will be reduced compared to the traditional process. The selected adsorbent can be reused which may reduce the process cost. Instead of using alkali neutralization, the proposed process may reduce the concern of food oil security. The commercial resins A26OH and IRA900Cl were compared as adsorbents to remove the FFA in deacidification for refinery of food oil without adding any alkali chemicals. This process will be conducted to remove the FFA form peanut oil in this study. Besides, this study will get the adsorption isotherms for one of the better sorbents of A26OH or IRA900Cl to remove FFA from peanut oil under 25, 35, and 45°C. The Langmuir and Freundlich isotherm models were compared to fit the experimental data. The obtained isotherm data is important for the adsorption system design.
NASA Astrophysics Data System (ADS)
Farahmand, Farnaz; Ghasemzadeh, Bahar; Naseri, Abdolhossein
2018-01-01
An air assisted liquid-liquid microextraction by applying the solidification of a floating organic droplet method (AALLME-SFOD) coupled with a multivariate calibration method, namely partial least squares (PLS), was introduced for the fast and easy determination of Atenolol (ATE), Propanolol (PRO) and Carvedilol (CAR) in biological samples via a spectrophotometric approach. The analytes would be extracted from neutral aqueous solution into 1-dodecanol as an organic solvent, using AALLME. In this approach a low-density solvent with a melting point close to room temperature was applied as the extraction solvent. The emulsion was immediately formed by repeatedly pulling in and pushing out the aqueous sample solution and extraction solvent mixture via a 10-mL glass syringe for ten times. After centrifugation, the extractant droplet could be simply collected from the aqueous samples by solidifying the emulsion at a lower than the melting point temperature. In the next step, analytes were back extracted simultaneously into the acidic aqueous solution. Derringer and Suich multi-response optimization were utilized for simultaneous optimizing the parameters of three analytes. This method incorporates the benefits of AALLME and dispersive liquid-liquid microextraction considering the solidification of floating organic droplets (DLLME-SFOD). Calibration graphs under optimized conditions were linear in the range of 0.30-6.00, 0.32-2.00 and 0.30-1.40 μg mL- 1 for ATE, CAR and PRO, respectively. Other analytical parameters were obtained as follows: enrichment factors (EFs) were found to be 11.24, 16.55 and 14.90, and limits of detection (LODs) were determined to be 0.09, 0.10 and 0.08 μg mL- 1 for ATE, CAR and PRO, respectively. The proposed method will require neither a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.
Farahmand, Farnaz; Ghasemzadeh, Bahar; Naseri, Abdolhossein
2018-01-05
An air assisted liquid-liquid microextraction by applying the solidification of a floating organic droplet method (AALLME-SFOD) coupled with a multivariate calibration method, namely partial least squares (PLS), was introduced for the fast and easy determination of Atenolol (ATE), Propanolol (PRO) and Carvedilol (CAR) in biological samples via a spectrophotometric approach. The analytes would be extracted from neutral aqueous solution into 1-dodecanol as an organic solvent, using AALLME. In this approach a low-density solvent with a melting point close to room temperature was applied as the extraction solvent. The emulsion was immediately formed by repeatedly pulling in and pushing out the aqueous sample solution and extraction solvent mixture via a 10-mL glass syringe for ten times. After centrifugation, the extractant droplet could be simply collected from the aqueous samples by solidifying the emulsion at a lower than the melting point temperature. In the next step, analytes were back extracted simultaneously into the acidic aqueous solution. Derringer and Suich multi-response optimization were utilized for simultaneous optimizing the parameters of three analytes. This method incorporates the benefits of AALLME and dispersive liquid-liquid microextraction considering the solidification of floating organic droplets (DLLME-SFOD). Calibration graphs under optimized conditions were linear in the range of 0.30-6.00, 0.32-2.00 and 0.30-1.40μg mL -1 for ATE, CAR and PRO, respectively. Other analytical parameters were obtained as follows: enrichment factors (EFs) were found to be 11.24, 16.55 and 14.90, and limits of detection (LODs) were determined to be 0.09, 0.10 and 0.08μg mL -1 for ATE, CAR and PRO, respectively. The proposed method will require neither a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Djatmika, Rosalina; Ding, Wang-Hsien; Sulistyarti, Hermin
2018-01-01
A rapid determination of four parabens preservatives (methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) in marketed seafood is presented. Analytes were extracted and purified using matrix solid-phase dispersion (MSPD) method, followed by Injection port acylation gas chromatography-mass spectrometry (GC-MS) with acetic anhydride reagent. In this method, acylation of parabens was performed by acetic anhydride at GC injection-port generating reduction of the time-consuming sample-processing steps, and the amount of toxic reagents and solvents. The parameters affecting this method such as injection port temperature, purge-off time and acylation (acetic anhydride) volume were studied. In addition, the MSPD influence factors (including the amount of dispersant and clean-up co-sorbent, as well as the volume of elution solvent) were also investigated. After MSPD method and Injection port acylation applied, good linearity of analytes was achieved. The limits of quantitation (LOQs) were 0.2 to 1.0 ng/g (dry weight). Compared with offline derivatization commonly performed, injection port acylation employs a rapid, simple, low-cost and environmental-friendly derivatization process. The optimized method has been successfully applied for the analysis of parabens in four kind of marketed seafood. Preliminary results showed that the total concentrations of four selected parabens ranged from 16.7 to 44.7 ng/g (dry weight).
Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa
2013-01-01
A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.
Ozonation of Canadian Athabasca asphaltene
NASA Astrophysics Data System (ADS)
Cha, Zhixiong
Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites. Two new solvent systems, a self-sustaining ozonation system and a cyclohexane/acetone/water or a cyclohexane/acetone/methanol system, were studied to overcome the drawback of using halogenated solvents. The self-sustaining ozonation process employed the final ozonation products as the reaction solvent. Compared to the self-sustaining ozonation, the cyclohexane solvent system showed higher ozone efficiency; however, it required dynamic adjustment of the solvent system during ozonation. An extensively ozonated asphaltene's weight would be doubled. Distillation of the products separated about 45% volatile products having biodiesel-style chemical structures. Compared to distillation, more than 90% of the ozonation products were extractable by acetone. The remaining acetone-insoluble part was further classified by dichloromethane and other solvents of different polarities. The separated ozonation products were good fuel additives or materials for other products.
Naz, Saba; Sherazi, Sayed Tufail Hussain; Talpur, Farah N; Mahesar, Sarfaraz A; Kara, Huseyin
2012-01-01
A simple, rapid, economical, and environmentally friendly analytical method was developed for the quantitative assessment of free fatty acids (FFAs) present in deodorizer distillates and crude oils by single bounce-attenuated total reflectance-FTIR spectroscopy. Partial least squares was applied for the calibration model based on the peak region of the carbonyl group (C=O) from 1726 to 1664 cm(-1) associated with the FFAs. The proposed method totally avoided the use of organic solvents or costly standards and could be applied easily in the oil processing industry. The accuracy of the method was checked by comparison to a conventional standard American Oil Chemists' Society (AOCS) titrimetric procedure, which provided good correlation (R = 0.99980), with an SD of +/- 0.05%. Therefore, the proposed method could be used as an alternate to the AOCS titrimetric method for the quantitative determination of FFAs especially in deodorizer distillates.
Evaluation of ultrasonic cavitation of metallic and non-metallic surfaces
NASA Technical Reports Server (NTRS)
Mehta, Narinder K.
1992-01-01
1,1,2 trichloro-1,2,2 trifluoro ethane (CFC-113) commercially known as Freon-113 is the primary test solvent used for validating the cleaned hardware at the Kennedy Space Center (KSC). Due to the ozone depletion problem, the current United States policy calls for the phase out of Freons by 1995. NASAs chlorofluorocarbon (CFC) replacement group at KSC has opted to use water as a replacement fluid for the validation process since water is non-toxic, inexpensive, and is environmentally friendly. The replacement validation method calls for the ultrasonification of the small parts with water at 52 C for a cycle or two of 10 min duration wash using commercial ultrasonic baths. In this project, experimental data was obtained to assess the applicability of the proposed validation method for any damage of the metallic and non-metallic surfaces resulting from ultrasonic cavitation.
5th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Cook, M. B. (Editor); Stanley, D. Cross (Editor)
2003-01-01
Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.
USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES
Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...
NASA Astrophysics Data System (ADS)
Decaux, C.; Matei Ghimbeu, C.; Dahbi, M.; Anouti, M.; Lemordant, D.; Béguin, F.; Vix-Guterl, C.; Raymundo-Piñero, E.
2014-10-01
The development of advanced and safe electrochemical supercapacitors or hybrid supercapacitors combining a battery electrode material such as graphite and a porous carbon electrode implies the use of new electrolytes containing a tetra-alkylammonium or lithium salt dissolved preferentially in a safe and environmentally friendly solvent such as alkylcarbonates. In those systems, the carbon porosity of the activated carbon electrode controls the electrochemical behavior of the whole device. In this work, it is demonstrated that electrolytes containing highly polarizing ions such as Li+ dissolved in polar solvents such as alkylcarbonates do not completely loss their solvation shell at the opposite of what is observed for poorly solvated cations like TEABF4. As a consequence, the optimal carbon pore size for obtaining the largest energy density, while keeping a high power density, is wider when strongly solvated cations, like Li+ are used than for conventional organic electrolytes using acetonitrile as solvent and TEA+ as salt cations. TEA+ cations are easily desolvated and hence are able to penetrate in small pores matching the dimensions of bare ions. The dissimilarity of behavior of alkylcarbonates and acetonitrile based electrolytes highlights the importance of ion-solvent interactions when searching the optimal porous texture for the electrode material.
Molnar, Maja; Komar, Mario; Brahmbhatt, Harshad; Babić, Jurislav; Jokić, Stela; Rastija, Vesna
2017-09-05
Deep eutectic solvents, as green and environmentally friendly media, were utilized in the synthesis of novel coumarinyl Schiff bases. Novel derivatives were synthesized from 2-((4-methyl-2-oxo-2 H -chromen-7-yl)oxy)acetohydrazide and corresponding aldehyde in choline chloride:malonic acid (1:1) based deep eutectic solvent. In these reactions, deep eutectic solvent acted as a solvent and catalyst as well. Novel Schiff bases were synthesized in high yields (65-75%) with no need for further purification, and their structures were confirmed by mass spectra, ¹H and 13 C NMR. Furthermore, their antioxidant activity was determined and compared to antioxidant activity of previously synthesized derivatives, thus investigating their structure-activity relationship utilizing quantitative structure-activity relationship QSAR studies. Calculation of molecular descriptors has been performed by DRAGON software. The best QSAR model ( R tr = 0.636; R ext = 0.709) obtained with three descriptors ( MATS3m , Mor22u , Hy ) implies that the pairs of atoms higher mass at the path length 3, three-dimensional arrangement of atoms at scattering parameter s = 21 Å - ¹, and higher number of hydrophilic groups (-OH, -NH) enhanced antioxidant activity. Electrostatic potential surface of the most active compounds showed possible regions for donation of electrons to 1,1-diphenyl-2-picryhydrazyl (DPPH) radicals.
Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup
NASA Astrophysics Data System (ADS)
Siebenhaller, Sascha; Gentes, Julian; Infantes, Alba; Muhle-Goll, Claudia; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Ochsenreither, Katrin; Syldatk, Christoph
2018-02-01
Honey and agave syrup are high quality natural products and consist of more than 80% sugars. They are used as sweeteners, and are ingredients of cosmetics or medical ointments. Furthermore, both have low water content, are often liquid at room temperature and resemble some known sugar-based deep eutectic solvents. Since it has been shown that it is possible to synthesize sugar esters in these deep eutectic solvents, in the current work honey or, as vegan alternative, agave syrup are used simultaneously as solvent and substrate for the enzymatic sugar ester production. For this purpose, important characteristics of the herein used honey and agave syrup were determined and compared with other available types. Subsequently, an enzymatic transesterification of four fatty acid vinyl esters was accomplished in ordinary honey and agave syrup. Notwithstanding of the high water content for transesterification reactions of the solvent, the successful sugar ester formation was proved by thin-layer chromatography and compared to a sugar ester which was synthesized in a conventional deep eutectic solvent. For a clear verification of the sugar esters, mass determinations by ESI-Q-ToF experiments and a NMR analysis were done. These environmentally friendly produced sugar esters have the potential to be used in cosmetics or pharmaceuticals, or to enhance their effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianjun, E-mail: zhangjianjun7110@163.com; Chen, Jun; Li, Qiang
2015-03-15
Graphical abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. Results show that microwave heating time plays an important role in the formation of CuInS{sub 2} nanostructure phase. The SEM results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The UV–vis spectrum results indicated that the CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. The possible growth mechanism of CuInS{sub 2} nanorods was discussed. -more » Abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. The as-synthesized CuInS{sub 2} nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The influences of microwave heating time on the formation of CuInS{sub 2} phase were discussed. Ultraviolet–visible (UV–vis) and photoluminescence (PL) spectra were utilized to investigate the optical properties of CuInS{sub 2} nanorods. The results showed that the as-synthesized CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. PL spectrum of the as-synthesized CuInS{sub 2} nanorods displays an emission peak centered at 580 nm under excitation wavelength of 366 nm at room temperature. The possible growth mechanism of CuInS{sub 2} nanorods was discussed.« less
PARALLEL MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR WASTE SOLVENT RECYCLING
Waste solvents are of great concern to the chemical process industries and to the public, and many technologies have been suggested and implemented in the chemical process industries to reduce waste and associated environmental impacts. In this article we have developed a novel p...
NASA Astrophysics Data System (ADS)
Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.
2016-07-01
This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.
Ahmad, Iqbal; Akhter, Sohail; Anwar, Mohammed; Zafar, Sobiya; Sharma, Rakesh Kumar; Ali, Asgar; Ahmad, Farhan Jalees
2017-05-15
The aim of this study was to develop Thymoquinone (TQ) loaded PEGylated liposomes using supercritical anti-solvent (SAS) process for enhanced blood circulation, and greater radioprotection. The SAS process of PEGylated liposomes synthesis was optimized by Box-Behnken design. Spherical liposomes with a particle size of 195.6±5.56nm and entrapment efficiency (%EE) of 89.4±3.69% were obtained. Optimized SAS process parameters; temperature, pressure and solution flow rate were 35°C, 140bar and 0.18mL/min, respectively, while 7.5mmol phospholipid, 0.75mmol of cholesterol, and 1mmol TQ were optimized formulation ingredients. Incorporation of MPEG-2000-DSPE (5% w/w) provided the PEGylated liposomes (FV-17B; particle size=231.3±6.74nm, %EE=91.9±3.45%, maximum TQ release >70% in 24h). Pharmacokinetics of FV-17B in mice demonstrated distinctly superior systemic circulation time for TQ in plasma. Effectiveness of radioprotection by FV-17B in mice model was demonstrated by non-significant body weight change, normal vital blood components (WBCs, RBCs, and Platelets), micronuclei and spleen index and increased survival probability in post irradiation animal group as compared to controls (plain TQ and marketed formulation). Altogether, the results anticipated that the SAS process could serve as a single step environmental friendly technique for the development of stable long circulating TQ loaded liposomes for effective radioprotection. Copyright © 2017 Elsevier B.V. All rights reserved.
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts
Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...
2017-10-03
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less
Green bio-oil extraction for oil crops
NASA Astrophysics Data System (ADS)
Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.
2016-06-01
The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.
Aqueous synthesis of LiFePO4 with Fractal Granularity.
Cabán-Huertas, Zahilia; Ayyad, Omar; Dubal, Deepak P; Gómez-Romero, Pedro
2016-06-03
Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consisted of nanoparticles grown into larger micro-sized formations which in turn agglomerate leading to high tap density electrodes, which is beneficial for energy density. These intricate structures could be easily and effectively coated with a thin and uniform carbon layer for increased conductivity, as it is well established for simpler microstructures. Materials and electrodes were studied by means of XRD, SEM, TEM, SAED, XPS, Raman and TGA. Last but not least, lithium transport through fractal LiFePO4 electrodes was investigated based upon fractal theory. These water-made fractal electrodes lead to high-performance lithium cells (even at high rates) tested by CV and galvanostatic charge-discharge, their performance is comparable to state of the art (but less environmentally friendly) electrodes.
Aqueous synthesis of LiFePO4 with Fractal Granularity
Cabán-Huertas, Zahilia; Ayyad, Omar; Dubal, Deepak P.; Gómez-Romero, Pedro
2016-01-01
Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consisted of nanoparticles grown into larger micro-sized formations which in turn agglomerate leading to high tap density electrodes, which is beneficial for energy density. These intricate structures could be easily and effectively coated with a thin and uniform carbon layer for increased conductivity, as it is well established for simpler microstructures. Materials and electrodes were studied by means of XRD, SEM, TEM, SAED, XPS, Raman and TGA. Last but not least, lithium transport through fractal LiFePO4 electrodes was investigated based upon fractal theory. These water-made fractal electrodes lead to high-performance lithium cells (even at high rates) tested by CV and galvanostatic charge-discharge, their performance is comparable to state of the art (but less environmentally friendly) electrodes. PMID:27256504
Aqueous synthesis of LiFePO4 with Fractal Granularity
NASA Astrophysics Data System (ADS)
Cabán-Huertas, Zahilia; Ayyad, Omar; Dubal, Deepak P.; Gómez-Romero, Pedro
2016-06-01
Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consisted of nanoparticles grown into larger micro-sized formations which in turn agglomerate leading to high tap density electrodes, which is beneficial for energy density. These intricate structures could be easily and effectively coated with a thin and uniform carbon layer for increased conductivity, as it is well established for simpler microstructures. Materials and electrodes were studied by means of XRD, SEM, TEM, SAED, XPS, Raman and TGA. Last but not least, lithium transport through fractal LiFePO4 electrodes was investigated based upon fractal theory. These water-made fractal electrodes lead to high-performance lithium cells (even at high rates) tested by CV and galvanostatic charge-discharge, their performance is comparable to state of the art (but less environmentally friendly) electrodes.
EPA's solvent substitution software tool, PARIS III is provided by the EPA for free, and can be effective and efficiently used to help environmentally-conscious individuals find better and greener solvent mixtures for many different common industrial processes. People can downlo...
NASA Astrophysics Data System (ADS)
Pramanik, A.; Biswas, S.; Kumbhakar, P.
2018-02-01
Recently studies on synthesis and fluorescence based sensing in biocompatible carbon quantum dots (CQDs) have become a widely spoken topic of research due to the several advantageous properties of CQDs in compared to semiconductor quantum dots. In this work, we have reported the rarely reported solvatochromism along-with a high photoluminescence (PL) quantum yield (PLQY) of 22%. Samples have been synthesized by using a simple process of hydrothermal carbonization of a naturally occurring bio-waste i.e. Aegle marmelos leaves powder. The linear absorption and PL emission characteristics of CQDs have been studied in different solvent environments to explore the origin of the observed excitation dependent PL emissions characteristics of the sample. The interesting solvatochromic PL (SPL) behavior of CQDs are observed at an excitation wavelength of 325 nm by dispersing them in different polar protic and aprotic solvents, which suggest their possible applications as a replacement of solvatochromic dye molecules for sensing applications. Different polarity functions and molecular-microscopic solvent polarity parameter (ETN) are used to calculate the change in dipole moment (Δδ) of the solute-solvent system and the origin of SPL in CQDs has been explained. The SPL behavior of CQDs has been utilized for fluorescence sensing of organic liquids (Ethanol and Tetrahydrofuran) in water. Whereas, the photo-induced electron transfer mediated quenching in PL of aqueous dispersion of CQDs has led to development of ;turn off; fluorescence Fe3 + ion sensor with a detection limit of 0.12 μM. Therefore, this work may open a new avenue of conversion of a bio-waste into a fluorescent bio-asset.
ERIC Educational Resources Information Center
Jena, Ananta Kumar
2012-01-01
This paper studied the empirical pattern to observe the overall attitude of pre service teachers' of different training colleges towards environmental education and practice. Environmental education is a continuous lifelong process, starts at the preschool level and continues up to adulthood via all levels of education. In this context, to know…
NASA Astrophysics Data System (ADS)
Marinescu, Maria; Tudorache, Diana Gabriela; Marton, George Iuliu; Zalaru, Christina-Marie; Popa, Marcela; Chifiriuc, Mariana-Carmen; Stavarache, Cristina-Elena; Constantinescu, Catalin
2017-02-01
Eco-friendly, one-pot, solvent-free synthesis of biologically active 2-substituted benzimidazoles is presented and discussed herein. Novel N-Mannich bases are synthesized from benzimidazoles, secondary amines and formaldehyde, and their structures are confirmed by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and elemental analysis. All benzimidazole derivatives are evaluated by qualitative and quantitative methods against 9 bacterial strains. The largest microbicide and anti-biofilm effect is observed for the 2-(1-hydroxyethyl)-compounds. Density functional theory (DFT) modeling of the molecular structure and frontier molecular orbitals, i.e. highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO/LUMO), is accomplished by using the GAMESS 2012 software. Antimicrobial activity is correlated with the electronic parameters (chemical hardness, electronic chemical potential, global electrophilicity index), Mullikan atomic charges and geometric parameters of the benzimidazole compounds. The planarity of the compound, symmetry of the molecule, and the presence of a nucleophilic group, are advantages for a high antimicrobial activity. Finally, we briefly show that further accurate processing of such compounds into thin films and hybrid structures, e.g. by laser ablation matrix-assisted pulsed laser evaporation and/or laser-induced forward transfer, may indeed provide simple and environmental friendly, state-of-the-art solutions for antimicrobial coatings.
Why Acting Environmentally-Friendly Feels Good: Exploring the Role of Self-Image
Venhoeven, Leonie A.; Bolderdijk, Jan Willem; Steg, Linda
2016-01-01
Recent research suggests that engagement in environmentally-friendly behavior can feel good. Current explanations for such a link do not focus on the nature of environmentally-friendly behavior itself, but rather propose well-being is more or less a side-benefit; behaviors that benefit environmental quality (e.g., spending one's money on people rather than products) also tend to make us feel good. We propose that the moral nature of environmentally-friendly behavior itself may elicit positive emotions as well, because engaging in this behavior can signal one is an environmentally-friendly and thus a good person. Our results show that engagement in environmentally-friendly behavior can indeed affect how people see themselves: participants saw themselves as being more environmentally-friendly when they engaged in more environmentally-friendly behavior (Study 1). Furthermore, environmentally-friendly behavior resulted in a more positive self-image, more strongly when it was voluntarily engaged in, compared to when it was driven by situational constraints (Study 2). In turn, the more environmentally-friendly (Study 1) and positive (Study 2) people saw themselves, the better they felt about acting environmentally-friendly. Together, these results suggest that the specific self-signal that ensues from engaging in environmentally-friendly behavior can explain why environmentally-friendly actions may elicit a good feeling. PMID:27933017
Chen, Zhi-Gang; Zhang, Dan-Ni; Cao, Lin; Han, Yong-Bin
2013-04-01
A total of nine lipases and three proteases were tested for enzymatic regioselective acylation(s) of cordycepin with vinyl acetate in organic media. The highest conversion with better initial reaction rate was achieved with immobilized Candida antarctica lipase B (Novozym 435). An eco-friendly solvent 2-methyltetrahydrofuran (MeTHF) was thought to be the most suitable reaction medium. Novozym 435 was found to be a useful biocatalyst for the 25-g scale syntheses of cordycepin acetate (96.2% isolated yield), and the biocatalyst displayed excellent regioselectivity and high operational stability during the transformation. The 5'-substituted cordycepin derivative was the sole detectable product from each acylation reaction. Novozym 435 could be recycled for the synthesis of cordycepin derivative on a 25-g scale and 63% of its original activity was maintained after being reused for 7 batches. MeTHF could be considered as an eco-friendly solvent for the large scale use in biotransformation. Copyright © 2013 Elsevier Ltd. All rights reserved.
High pressure chemistry of red phosphorus by photo-activated simple molecules
NASA Astrophysics Data System (ADS)
Ceppatelli, M.; Fanetti, S.; Bini, R.; Caporali, M.; Peruzzini, M.
2014-05-01
High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In addition the photo-activation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photo-activators in HP conditions. Here we report a study on the HP photo-induced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using membrane Diamond (DAC) and Sapphire (SAC) anvil cells. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occurred in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).
Wang, Ruixue; Chen, Ya; Xu, Zhenming
2015-05-19
Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".
Environment-friendly drilling operation technology
NASA Astrophysics Data System (ADS)
Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun
2017-01-01
Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.
Yiin, Chung Loong; Quitain, Armando T; Yusup, Suzana; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya
2017-11-01
This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H 2 O 2 . Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene
2011-01-01
This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet thatmore » boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.« less
Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties
NASA Astrophysics Data System (ADS)
Wilken, Susanne; Xiong, Shizhao; Scheers, Johan; Jacobsson, Per; Johansson, Patrik
2015-02-01
Ionic liquids have been highlighted as non-flammable, environmentally friendly, and suggested as possible solvents in lithium ion battery electrolytes. Here, the application of two ionic liquids from the EMIm-family in a state-of-the-art carbonate solvent based electrolyte is studied with a focus on safety improvement. The impact of the composition on physical and safety related properties is investigated for IL concentrations of additive (∼5 wt%) up to co-solvent concentrations (∼60 wt%). Furthermore, the role of the lithium salt concentration is separately addressed by studying a set of electrolytes at 0.5 M, 1 M, and 2 M LiPF6 concentrations. A large impact on the electrolyte properties is found for the electrolytes containing EMImTFSI and high salt concentrations. The composition 2 M LiPF6 EC:DEC:IL (1:1:3 wt%) is found non-flammable for both choices of ILs added. The macroscopic observations are complemented by a Raman spectroscopy analysis whereby a change in the Li+ solvation is detected for IL concentrations >4.5 mol%.
Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids.
Lee, Jae Won; Fukusaki, Eiichiro; Bamba, Takeshi
2012-10-01
Supercritical carbon dioxide (SCCO(2)) is an ecofriendly supercritical fluid that is chemically inert, nontoxic, noninflammable and nonpolluting. As a green material, SCCO(2) has desirable properties such as high density, low viscosity and high diffusivity that make it suitable for use as a solvent in supercritical fluid extraction, an effective and environment-friendly analytical method, and as a mobile phase for supercritical fluid chromatography, which facilitates high-throughput, high-resolution analysis. Furthermore, the low polarity of SCCO(2) is suitable for the extraction and analysis of hydrophobic compounds. The growing concern surrounding environmental pollution has triggered the development of green analysis methods based on the use of SCCO(2) in various laboratories and industries. SCCO(2) is becoming an effective alternative to conventional organic solvents. In this review, the usefulness of SCCO(2) in supercritical fluid extraction and supercritical fluid chromatography for the extraction and analysis of lipids is described.
Lu, Shuai; Zhu, Xinju; Li, Ke; Guo, Yu-Jing; Wang, Meng-Dan; Zhao, Xue-Mei; Hao, Xin-Qi; Song, Mao-Ping
2016-09-16
A novel iron-involved tosylmethylation of imidazo[1,2-α]pyridines with p-toluenesulfonylmethyl isocyanide in a solvent mixture of H2O and PEG400 under an Ar atmosphere has been developed. This protocol provides a facile synthetic route for the functionalization of the imidazo[1,2-α]pyridine scaffold with broad substrate compatibility, which is less expensive and environmentally friendly. The current methodology could further enable regioselective C-H tosylmethylation of indole at the C3 position. Also, p-toluenesulfonylmethyl isocyanide was utilized as the tosylmethylating reagent for the first time.
Osorio-Nieto, Urbano; Chamorro-Arenas, Delfino; Quintero, Leticia; Höpfl, Herbert; Sartillo-Piscil, Fernando
2016-09-16
The first chemical method for selective dual sp(3) C-H functionalization at the alpha-and beta positions of cyclic amines to their corresponding 3-alkoxyamine lactams is reported. Unlike traditional Cα-H oxidation of amines to amides mediated by transition metals, the present protocol, which involves the use of NaClO2/TEMPO/NaClO in either aqueous or organic solvent, not only allows the Cα-H oxidation but also the subsequent functionalization of the unreactive β-methylene group in an unprecedented tandem fashion and using environmentally friendly reactants.
Zhang, Cuimiao; Chen, Jing; Zeng, Yi; Rui, Xianhong; Zhu, Jixin; Zhang, Wenyu; Xu, Chen; Lim, Tuti Mariana; Hng, Huey Hoon; Yan, Qingyu
2012-06-21
A simple, non-template, non-surfactant and environmentally friendly hydrothermal method is presented based on the controlled release of the reactants into the reaction solvents to induce slow nucleation and growth of three-dimensional hierarchical nanostructures of transition metal oxides. This method is a general approach, which can be used to prepare Co(3)O(4), CuO, and Ni(OH)(2)/NiO. These metal oxides with hierarchical nanostructures can be used as anode materials for lithium-ion batteries with good Li storage performance, e.g. high specific capacities and stable cyclability.
NASA Technical Reports Server (NTRS)
Pickett, Lorri A. (Editor)
1995-01-01
Topics covered include: Risk assessment of hazardous materials, Automated systems for pollution prevention and hazardous materials elimination, Study design for the toxicity evaluation of ammonium perchlorate, Plasma sprayed bondable stainless surface coatings, Development of CFC-free cleaning processes, New fluorinated solvent alternatives to ozone depleting solvents, Cleaning with highly fluorinated liquids, Biotreatment of propyleneglycol nitrate by anoxic denitrification, Treatment of hazardous waste with white rot fungus, Hydrothermal oxidation as an environmentally benign treatment technology, Treatment of solid propellant manufacturing wastes by base hydrolysis, Design considerations for cleaning using supercritical fluid technology, and Centrifugal shear carbon dioxide cleaning.
Method for producing nanostructured metal-oxides
Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander
2006-01-17
A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.
Rahman, Mir Tamzid; Kameda, Tomohito; Kumagai, Shogo; Yoshioka, Toshiaki
2018-07-01
Nitrate-intercalated MgAl layered double hydroxide (LDH) was successfully delaminated in water by a facile and effective method upon reflux at 120 °C for 24 h followed by sonication at 40 °C for 5 h. This process is environmentally friendly since water is the only solvent used. The delaminated nanosheets were characterized by microscopic, spectroscopic, and particle size analyses. The delamination process successfully produced octahedron-shaped single-layer nanosheets 50-150 nm in size. X-ray photoelectron spectroscopy (XPS) data confirmed that the surface elements and their chemical status are consistent with the basic layer of MgAl LDH. The delaminated nanosheets displayed higher adsorption capacity for removing heavy metals from waste water than the original powdered LDH. After treating the waste water, a sharp and intense peak in the X-ray powder diffraction (XRD) pattern of the precipitate confirms the restacking of the LDH nanosheets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pant, Hem Raj; Kim, Han Joo; Joshi, Mahesh Kumar; Pant, Bishweshwar; Park, Chan Hee; Kim, Jeong In; Hui, K S; Kim, Cheol Sang
2014-01-15
A stable silver-doped fly ash/polyurathene (Ag-FA/PU) nanocomposite multifunctional membrane is prepared by a facile one-step electrospinning process using fly ash particles (FAPs). Colloidal solution of PU with FAPs and Ag metal precursor was subjected to fabricate nanocomposite spider-web-like membrane using electrospinning process. Presence of N,N-dimethylformamide (solvent of PU) led to reduce silver nitrate into Ag NPs. Incorporation of Ag NPs and FAPs through electrospun PU fibers is proven through electron microscopy and spectroscopic techniques. Presence of these NPs on PU nanofibers introduces several potential physicochemical properties such as spider-web-like nano-neeting for NPs separation, enhanced absorption capacity to remove carcinogenic arsenic (As) and toxic organic dyes, and antibacterial properties with reduce bio-fouling for membrane filter application. Preliminary observations used for above-mentioned applications for water treatment showed that it will be an economically and environmentally friendly nonwoven matrix for water purification. This simple approach highlights new avenues about the utilization of one pollutant material to control other pollutants in scalable and inexpensive ways. Copyright © 2013 Elsevier B.V. All rights reserved.
Gure, Abera; Lara, Francisco J; Moreno-González, David; Megersa, Negussie; del Olmo-Iruela, Monsalud; García-Campaña, Ana M
2014-09-01
A salting-out assisted liquid-liquid extraction (SALLE) combined with capillary high performance liquid chromatography with diode array detector (capillary HPLC-DAD) was proposed for extraction and determination of residues of nine sulfonylurea herbicides (SUHs) in environmental water and banana juice samples. Various parameters affecting the extraction process such as the type and volume of the organic solvent, sample volume, type and amount of salt, pH of the sample and vortex time were optimized. Under optimum conditions, matrix matched calibration curves were established using river water and banana juice samples. Good linear relationships as well as low limits of detection, LODs (0.4-1.3 and 3-13 µg/L) and quantification, LOQs (1.3-4.3 and 10-43 µg/L) were obtained in water and banana juice samples, respectively. The precision (intra- and inter-day) of the peak areas expressed as relative standard deviations (%, RSD), at two concentration levels were below 10 % in both matrices. Recoveries obtained from spiked environmental waters (river water and groundwater) and banana juice samples, at two concentration levels, ranged from 72 to 115%. The results of the analysis revealed that the proposed SALLE-capillary HPLC method is simple, rapid, cheap and environmentally friendly, being successfully applicable for the determination of SUH residues in waters and banana juices. Copyright © 2014 Elsevier B.V. All rights reserved.
DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES
A catalytic reforming process has been studied using hierarchical design and simulation calculations. Approximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use this infor...
Green Synthesis of Nanomaterials: Environmental Aspects
There is always a search for reliable and environmentally friendly processes to manufacture metal and metal oxide nanoparticles minimizing or even eliminating the use of hazardous chemicals. The only way to develop these “green” processes is to adapt benign synthesis approaches t...
DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES
A catalytic reforming process has been studied using hierarchical design and simulation calculations. Aproximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use tis inform...
Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee
2016-03-18
An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Fujian; Huang, Kuan; Wu, Qin; Dai, Sheng
2017-07-01
A solvent-free induced self-assembly technology for the synthesis of nitrogen-doped ordered mesoporous polymers (N-OMPs) is developed, which is realized by mixing polymer precursors with block copolymer templates, curing at 140-180 °C, and calcination to remove the templates. This synthetic strategy represents a significant advancement in the preparation of functional porous polymers through a fast and scalable yet environmentally friendly route, since no solvents or catalysts are used. The synthesized N-OMPs and their derived catalysts are found to exhibit competitive CO 2 capacities (0.67-0.91 mmol g -1 at 25 °C and 0.15 bar), extraordinary CO 2 /N 2 selectivities (98-205 at 25 °C), and excellent activities for catalyzing conversion of CO 2 into cyclic carbonate (conversion >95% at 100 °C and 1.2 MPa for 1.5 h). The solvent-free technology developed in this work can also be extended to the synthesis of N-OMP/SiO 2 nanocomposites, mesoporous SiO 2 , crystalline mesoporous TiO 2 , and TiPO, demonstrating its wide applicability in porous material synthesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Green approach using monolithic column for simultaneous determination of coformulated drugs.
Yehia, Ali M; Mohamed, Heba M
2016-06-01
Green chemistry and sustainability is now entirely encompassed across the majority of pharmaceutical companies and research labs. Researchers' attention is careworn toward implementing the green analytical chemistry principles for more eco-friendly analytical methodologies. Solvents play a dominant role in determining the greenness of the analytical procedure. Using safer solvents, the greenness profile of the methodology could be increased remarkably. In this context, a green chromatographic method has been developed and validated for the simultaneous determination of phenylephrine, paracetamol, and guaifenesin in their ternary pharmaceutical mixture. The chromatographic separation was carried out using monolithic column and green solvents as mobile phase. The use of monolithic column allows efficient separation protocols at higher flow rates, which results in short time of analysis. Two-factor three-level experimental design was used to optimize the chromatographic conditions. The greenness profile of the proposed methodology was assessed using eco-scale as a green metrics and was found to be an excellent green method with regard to the usage and production of hazardous chemicals and solvents, energy consumption, and amount of produced waste. The proposed method improved the environmental impact without compromising the analytical performance criteria and could be used as a safer alternate for the routine analysis of the studied drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Okoduwa, Stanley I. R.; Mbora, Lovina O.; Adu, Matthew E.; Adeyi, Ameh A.
2015-01-01
The need to develop effective alternative for synthetic indicators is the demand of present-day chemistry. The acid-base indicator properties of Rose (Rosa setigera), Allamanda (Allamanda cathartica), and Hibiscus (Hibiscus rosa-sinensis) flowers were examined. Colour pigments were extracted from the flowers via cold and solvent extraction using soxhlet extractor. The pH value of the extracts with wavelengths of absorption was determined using ultraviolet spectrophotometer. From the results obtained, all the extracts exhibited sharp contrast between their colours in acid and base. Their pH was found to be 5.5 for cold extract of Rose and 5.6 for solvent extraction, 5.24 for cold extract of a Hibiscus and 6.52 for solvent extraction, 5.35 for cold extract of Allamanda, and 5.45 for solvent extraction. The maximum wavelengths of absorption obtained for all the extract fall within the visible region of electromagnetic spectrum. These values are almost similar to that obtained from synthetic indicators. It is on these bases that we concluded that natural indicators could be an excellent replacement for synthetic indicators since they are cheap, readily available, simple to extract, not toxic, user and environmentally friendly. PMID:26819757
Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds.
Van Aken, Benoit; Doty, Sharon Lafferty
2010-01-01
Phytoremediation is the use of plants for the treatment of environmental pollution, including chlorinated organics. Although conceptually very attractive, removal and biodegradation of chlorinated pollutants by plants is a rather slow and inefficient process resulting in incomplete treatment and potential release of toxic metabolites into the environment. In order to overcome inherent limitations of plant metabolic capabilities, plants have been genetically modified, following a strategy similar to the development of transgenic crops: genes from bacteria, fungi, and mammals involved in the metabolism of organic contaminants, such as cytochrome P-450 and glutathione S-transferase, have been introduced into higher plants, resulting in significant improvement of tolerance, removal, and degradation of pollutants. Recently, plant-associated bacteria have been recognized playing a significant role in phytoremediation, leading to the development of genetically modified rhizospheric and endophytic bacteria with improved biodegradation capabilities. Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environmental-friendly treatment of polluted soil and water. This review focuses on recent advances in the development of transgenic plants and bacteria for the treatment of chlorinated pollutants, including chlorinated solvents, polychlorinated phenols, and chlorinated herbicides.
NASA Astrophysics Data System (ADS)
Galih Saputri, Diani; Khairuddin; Dwi Nurhayati, Nanik; Pham, Trinh
2017-11-01
The use of starch as biodegradable base material for packaging application was of great interest as an environmentally friendly alternative to the present use of polyethylene and polyvinyl chloride. However, starch tended to be brittle and had a lack of stability due to exposure to water. Several aproaches have been done to improve shellac properties including through chemical modification, mixing with polymers, clays, and plasticizers. The present study related to optimization of starch properties when mixing with polyethylene glycol (PEG) coated on the paper. The aim was to obtain the temperature and mixing time between starch and PEG so produced composites with optimal barrier properties. The composites of PEG/starch 10 % w/w were prepared using solvent casting and coated on paper surface, and dried in the oven for 12 hours at 40°C. Water Vapour Transmitter Rate (WVTR) (Payne cup method) showed that 70°C was the optimum temperature when mixing time was 30 minutes. Moreover, it showed that the optimum mixing time was 30 minutes when mixing temperature was 80 and 70 °C. Fourier Transform Infra Red (FTIR) showed a strong interaction between PEG400 and starch.
Pang, JinHui; Wu, Miao; Zhang, QiaoHui; Tan, Xin; Xu, Feng; Zhang, XueMing; Sun, RunCang
2015-05-05
With the serious "white pollution" resulted from the non-biodegradable plastic films, considerable attention has been directed toward the development of renewable and biodegradable cellulose-based film materials as substitutes of petroleum-derived materials. In this study, environmentally friendly cellulose films were successfully prepared using different celluloses (pine, cotton, bamboo, MCC) as raw materials and ionic liquid 1-ethyl-3-methylimidazolium acetate as a solvent. The SEM and AFM indicated that all cellulose films displayed a homogeneous and smooth surface. In addition, the FT-IR and XRD analysis showed the transition from cellulose I to II was occurred after the dissolution and regeneration process. Furthermore, the cellulose films prepared by cotton linters and pine possessed the most excellent thermal stability and mechanical properties, which were suggested by the highest onset temperature (285°C) and tensile stress (120 MPa), respectively. Their excellent properties of regenerated cellulose films are promising for applications in food packaging and medical materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn
2017-10-01
We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.
Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing
2017-07-07
In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.
The contamination of ground water at industrial and military facilities by chlorinated solvents remains a significant environmental challenge. In the 1990's several successful demonstrations of in situ biodegradation processes, targeted for chloroethenes, occurred. While these tr...
Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocols...
Supercritical Fluid Technologies to Fabricate Proliposomes.
Falconer, James R; Svirskis, Darren; Adil, Ali A; Wu, Zimei
2015-01-01
Proliposomes are stable drug carrier systems designed to form liposomes upon addition of an aqueous phase. In this review, current trends in the use of supercritical fluid (SCF) technologies to prepare proliposomes are discussed. SCF methods are used in pharmaceutical research and industry to address limitations associated with conventional methods of pro/liposome fabrication. The SCF solvent methods of proliposome preparation are eco-friendly (known as green technology) and, along with the SCF anti-solvent methods, could be advantageous over conventional methods; enabling better design of particle morphology (size and shape). The major hurdles of SCF methods include poor scalability to industrial manufacturing which may result in variable particle characteristics. In the case of SCF anti-solvent methods, another hurdle is the reliance on organic solvents. However, the amount of solvent required is typically less than that used by the conventional methods. Another hurdle is that most of the SCF methods used have complicated manufacturing processes, although once the setup has been completed, SCF technologies offer a single-step process in the preparation of proliposomes compared to the multiple steps required by many other methods. Furthermore, there is limited research into how proliposomes will be converted into liposomes for the end-user, and how such a product can be prepared reproducibly in terms of vesicle size and drug loading. These hurdles must be overcome and with more research, SCF methods, especially where the SCF acts as a solvent, have the potential to offer a strong alternative to the conventional methods to prepare proliposomes.
Life cycle assessment of mobile phone housing.
Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru
2004-01-01
The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.
Aqueous alternatives for metal and composite cleaning
NASA Technical Reports Server (NTRS)
Quitmeyer, Joann
1994-01-01
For many years the metalworking industry has cleaned metal and composite substrates with chlorinated solvents. Recently, however, health and disposal related environmental concerns have increased regarding chlorinated solvents, including 1,1,1-trichloroethane, trichloroethylene, methylene chloride, or Freon'. World leaders have instituted a production ban of certain ozone depleting chlorofluorocarbons (CFC's) by 1996. The Occupational Safety and Health Administration (OSHA) has instituted worker vapor exposure limitations for virtually all of the solvents used in solvent-based cleaners. In addition, the United States Environmental Protection Agency (EPA) has defined nearly all solvent-based cleaners as 'hazardous'. Cradle to grave waste responsibility is another reason manufacturers are trying to replace chlorinated solvents in their cleaning processes. Because of these factors, there now is a world wide effort to reduce and/or eliminate the use of chlorinated solvents for industrial cleaning. Waterbased cleaners are among the alternatives being offered to the industry. New technology alkaline cleaners are now available that can be used instead of chlorinated solvents in many cleaning processes. These waterbased cleaners reduce the release of volatile organic compounds (VOC's) by as much as 99 percent. (The definition and method of calculation of VOC's now varies from region to region.) Hazardous waste generation can also be significantly reduced or eliminated with new aqueous technology. This in turn can ease worker exposure restrictions and positively impact the environment. This paper compares the chemical and physical properties of this aqueous cleaners versus chlorinated solvents.
ERIC Educational Resources Information Center
Clark, Bob
2006-01-01
Green cleaning is gaining momentum. It is a method of cleaning and maintaining facilities that is friendly to the environment and healthful for students and staff. The process uses environmentally friendly and nontoxic cleaning products and practices that must be third-party-certified. Using green cleaning practices and products can result in…
The use of nipah leaves (Nypa fruticans) as an environmentally friendly roofing material
NASA Astrophysics Data System (ADS)
Umar, Muhammad Zakaria; Faslih, Arman; Arsyad, Muhammad; Ikhsan, Ainussalbi Al; Umar, Mazhfia
2017-09-01
An environmentally friendly building is a building that cares for the environment. The use of building materials from plants are very beneficial to maintain the climatic conditions of space and one proper example is the roof made from palm leaves. Petoaha Village, located in the District of Abeli, Kendari Municipality has craftsmen specified in creating roof from palm leaves. The purpose of this study to analyze and identify the instruments of labor, materials, and how to create a roof of palm leaves in the Petoaha Village. This research applies a qualitative case study approach. The result shows that the roof of palm leaves is categorized as an environmentally friendly roofing material due to simple working tools, vegetative based material, man power use and preservation process through immersion in sea water.
Sivapragasam, Magaret; Moniruzzaman, Muhammad; Goto, Masahiro
2016-08-01
The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Milivojevic, Ana; Corovic, Marija; Carevic, Milica; ...
2017-09-23
Solubility and stability of flavonoid glycosides, valuable natural constituents of cosmetics and pharmaceuticals, could be improved by lipase-catalyzed acylation. Focus of this study was on development of eco-friendly process for the production of flavonoid acetates. By using phloridzin as model compound and triacetin as acetyl donor and solvent, 100% conversion and high productivity (23.32 g l –1 day –1) were accomplished. Complete conversions of two other glycosylated flavonoids, naringin and esculin, in solvent-free system were achieved, as well. Comprehensive kinetic mechanism based on two consecutive mono-substrate reactions was established where first one represents formation of flavonoid monoacetate and within secondmore » reaction diacetate is being produced from monoacetate. Both steps were regarded as reversible Michaelis-Menten reactions without inhibition. Apparent kinetic parameters for two consecutive reactions (V m constants for substrates and products and K m constants for forward and reverse reactions) were estimated for three examined acetyl acceptors and excellent fitting of experimental data (R 2 > 0.97) was achieved. Obtained results showed that derived kinetic model could be applicable for solvent-free esterifications of different flavonoid glycosides. As a result, it was valid for entire transesterification course (72 h of reaction) which, combined with complete conversions and green character of synthesis, represents firm basis for further process development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milivojevic, Ana; Corovic, Marija; Carevic, Milica
Solubility and stability of flavonoid glycosides, valuable natural constituents of cosmetics and pharmaceuticals, could be improved by lipase-catalyzed acylation. Focus of this study was on development of eco-friendly process for the production of flavonoid acetates. By using phloridzin as model compound and triacetin as acetyl donor and solvent, 100% conversion and high productivity (23.32 g l –1 day –1) were accomplished. Complete conversions of two other glycosylated flavonoids, naringin and esculin, in solvent-free system were achieved, as well. Comprehensive kinetic mechanism based on two consecutive mono-substrate reactions was established where first one represents formation of flavonoid monoacetate and within secondmore » reaction diacetate is being produced from monoacetate. Both steps were regarded as reversible Michaelis-Menten reactions without inhibition. Apparent kinetic parameters for two consecutive reactions (V m constants for substrates and products and K m constants for forward and reverse reactions) were estimated for three examined acetyl acceptors and excellent fitting of experimental data (R 2 > 0.97) was achieved. Obtained results showed that derived kinetic model could be applicable for solvent-free esterifications of different flavonoid glycosides. As a result, it was valid for entire transesterification course (72 h of reaction) which, combined with complete conversions and green character of synthesis, represents firm basis for further process development.« less
Shahvelayati, Ashraf S; Ghazvini, Maryam; Yadollahzadeh, Khadijeh; Delbari, Akram S
2018-01-01
The development of multicomponent reactions (MCRs) in the presence of task-specific ionic liquids (ILs), used not only as environmentally benign reaction media, but also as catalysts, is a new approach that meet with the requirements of sustainable chemistry. In recent years, the use of ionic liquids as a green media for organic synthesis has become a chief study area. This is due to their unique properties such as non-volatility, non-flammability, chemical and thermal stability, immiscibility with both organic compounds and water and recyclability. Ionic liquids are used as environmentally friendly solvents instead of hazardous organic solvents. We report the condensation reaction between α-oximinoketone and dialkyl acetylene dicarboxylate in the presence of triphenylphosphine to afford substituted pyrroles under ionic liquid conditions in good yields. Densely functionalized pyrroles was easily prepared from reaction of α-oximinoketones, dialkyl acetylene dicarboxylate in the presence of triphenylphosphine in a quantitative yield under ionic liquid conditions at room temperature. In conclusion, ionic liquids are indicated as a useful and novel reaction medium for the selective synthesis of functionalized pyrroles. This reaction medium can replace the use of hazardous organic solvents. Easy work-up, synthesis of polyfunctional compounds, decreased reaction time, having easily available-recyclable ionic liquids, and good to high yields are advantages of present method. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten
2013-03-19
Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.
Vahidi, Ehsan; Zhao, Fu
2017-12-01
Over the past decade, Rare Earth Elements (REEs) have gained special interests due to their significance in many industrial applications, especially those related to clean energy. While REEs production is known to cause damage to the ecosystem, only a handful of Life Cycle Assessment (LCA) investigations have been conducted in recent years, mainly due to lack of data and information. This is especially true for the solvent extraction separation of REEs from aqueous solution which is a challenging step in the REEs production route. In the current investigation, an LCA is carried out on a typical REE solvent extraction process using P204/kerosene and the energy/material flows and emissions data were collected from two different solvent extraction facilities in Inner Mongolia and Fujian provinces in China. In order to develop life cycle inventories, Ecoinvent 3 and SimaPro 8 software together with energy/mass stoichiometry and balance were utilized. TRACI and ILCD were applied as impact assessment tools and LCA outcomes were employed to examine and determine ecological burdens of the REEs solvent extraction operation. Based on the results, in comparison with the production of generic organic solvent in the Ecoinvent dataset, P204 production has greater burdens on all TRACI impact categories. However, due to the small amount of consumption, the contribution of P204 remains minimal. Additionally, sodium hydroxide and hydrochloric acid are the two impactful chemicals on most environmental categories used in the solvent extraction operation. On average, the solvent extraction step accounts for 30% of the total environmental impacts associated with individual REOs. Finally, opportunities and challenges for an enhanced environmental performance of the REEs solvent extraction operation were investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abbasghorbani, Maryam; Attaran, Abdolmohammad; Payehghadr, Mahmood
2013-01-01
In this research, solvent-assisted dispersive micro-SPE was introduced as a simple modified technique for the determination of parabens in water and cosmetic samples. Aminopropyl-functionalized magnetite nanoparticles (MNPs) were successfully synthesized and applied. GC with photoionization detector was used for the separation and detection of parabens. In this method, hexylacetate (15 μL) as a solvent and aminopropyl-functionalized MNPs (5 μg) as a sorbent were added to an aqueous sample (10 mL) and then the sample was sonicated. Dispersed magnetite was collected in the bottom of the conical tube by using a strong magnet and then ACN was added as a desorption solvent. Forty microliters of this solvent was transferred into a microvial and then acetic anhydride and pyridine were added, thus derivatization was performed by acetic anhydride. After evaporation, 1 μL of derivatized sample was injected into a gas chromatograph for analysis. Several important parameters, such as kind of organic solvent, desorption solvent and volume, amount of aminopropyl-functionalized MNPs and effect of salt addition were investigated. Under optimum conditions, the limits of detection achieved were between 50 and 300 ng/L, with RSDs (n = 5) lower than 8%. Under the optimum conditions, the enrichment factors ranged from 217 to 1253 and the extraction recoveries ranged from 10 to 62%. The recoveries were obtained for the analytes in river water and mouthwash solution and hand cream in the range of 87-103%. The advantages of proposed method are simplicity of operation, rapidity, high extraction yields, and environmental friendly character. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Herdiansyah, Herdis; Satriya Utama, Andre; Safruddin; Hidayat, Heri; Gema Zuliana Irawan, Angga; Immanuel Tjandra Muliawan, R.; Mutia Pratiwi, Diana
2017-10-01
One of the factor that influenced the development of science is the existence of the library, which in this case is the college libraries. Library, which is located in the college environment, aims to supply collections of literatures to support research activities as well as educational for students of the college. Conceptually, every library now starts to practice environmental principles. For example, “X” library as a central library claims to be an environmental friendly library for practicing environmental friendly management, but the X library has not inserted the satisfaction and service aspect to the users, including whether it is true that environmental friendly process is perceived by library users. Satisfaction can be seen from the comparison between expectations and reality of library users. This paper analyzes the level of library user satisfaction with library services in the campus area and the gap between expectations and reality felt by the library users. The result of the research shows that there is a disparity between the hope of library management, which is sustainable and environmentally friendly with the reality in the management of the library, so that it has not given satisfaction to the users yet. The gap value of satisfaction that has the biggest difference is in the library collection with the value of 1.57; while for the smallest gap value is in the same service to all students with a value of 0.67.
Ponomarev, Nikolai; Repo, Eveliina; Srivastava, Varsha; Sillanpää, Mika
2017-11-15
Synthesis of nanocomposites was performed using microcrystalline cellulose (MCC), MgCl 2 in PEG/NaOH solvent by a thermal-assisted method at different temperatures by varying time and the amount of MCC. Results of XRD, FTIR, and EDS mapping showed that the materials consisted of only cellulose (CL) and magnesium hydroxide (MH). According to FTIR and XRD, it was found that crystallinity of MH in cellulose nanocomposites is increased with temperature and heating time and decreased with increasing of cellulose amount. The PEG/NaOH solvent has a significant effect on cellulose and Mg(OH) 2 morphology. BET and BJH results demonstrated the effects of temperature and cellulose amount on the pore size corresponding to mesoporous materials. TG and DTG analyses showed the increased thermal stability of cellulose nanocomposites with increasing temperature. TEM and SEM analyses showed an even distribution of MH nanostructures with various morphology in the cellulose matrix. The cellulose presented as the polymer matrix in the nanocomposites. It was supposed the possible interaction between cellulose and Mg(OH) 2 . The novel synthesis method used in this study is feasible, cost-efficient and environmentally friendly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Child-Friendly Schools: An Assessment of Secondary Schools
ERIC Educational Resources Information Center
Çobanoglu, Fatma; Ayvaz-Tuncel, Zeynep; Ordu, Aydan
2018-01-01
As education has many variables, essential arrangements are required in different areas to enhance its quality. School buildings, environmental arrangements, teaching and learning process, sources and materials, teachers, principals, health and security are the variables of which come to mind first. The concept of 'child-friendly school' ('CFS')…
Kang, Sung-Won; Kim, Hye-Min; Rahman, M. Shafiur; Kim, Ah-Na; Yang, Han-Sul
2017-01-01
Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide (SC-CO2) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by SC-CO2 (DBLSC-CO2) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The DBLSC-CO2 samples had significantly higher (p<0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using SC-CO2 than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and DBLSC-CO2 had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, DBLSC-CO2 was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, SC-CO2 treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, SC-CO2 may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents. PMID:28316468
Kang, Sung-Won; Kim, Hye-Min; Rahman, M Shafiur; Kim, Ah-Na; Yang, Han-Sul; Choi, Sung-Gil
2017-01-01
Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide (SC-CO 2 ) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by SC-CO 2 (DBLSC-CO 2 ) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The DBLSC-CO 2 samples had significantly higher ( p <0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using SC-CO 2 than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and DBLSC-CO 2 had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, DBLSC-CO 2 was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, SC-CO 2 treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, SC-CO 2 may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents.
Wang, Meilian; Fang, Sheng; Liang, Xianrui
2018-06-04
Reported here is a simple and rapid static headspace gas chromatography (SHS-GC) method for the determination of trace solvents including ethanol, isopropanol, n-butanol, 1,4-dioxane, tetrahydrofuran, acetonitrile, methanol and acetone which commonly used in drug production process. Natural deep eutectic solvents (NADESs) are firstly used as the matrix medium for this method, which provided high sensitivity for residual solvents detection. With the optimized method, validation experiments were performed and the data showed excellent linearity for all the solvents (R 2 ≥ 0.999, n = 7). The limits of detection (LOD) for ethanol, isopropanol, n-butanol, 1,4-dioxane, tetrahydrofuran, acetonitrile, methanol and acetone are 0.09, 0.08, 0.07, 0.11, 0.06, 0.10, 0.12 and 0.08 μg g -1 , respectively. Accuracy was checked by a recovery experiment at three different levels, and the recoveries of the tested solvents were ranged from 94.3% to 105.4%. The relative standard deviation (RSD) of each solvent for intra- and inter-day precision is in the range of 0.85 to 3.65 and 1.51 to 4.53, respectively. The developed approach can be readily used for determination of the residual solvents in six active pharmaceutical ingredients including pramipexole dihydrochloride, rivaroxaban, lisinopril, ramipril, imatinib mesylate and sitagliptin. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haoyi, Li; Weimin, Yang; Hongbo, Chen; Jing, Tan; Pengcheng, Xie
2016-03-01
A concept of Differential-Integral (DI) method applied in polymer processing and molding was proposed, which included melt DI injection molding, DI nano-composites extrusion molding and melt differential electrospinning principle and equipment. Taking the melt differential electrospinning for example to introduce the innovation research progress, two methods preparing polymer ultrafine fiber have been developed: solution electro-spinning and melt electro-spinning, between which solution electro-spinning is much simpler to realize in lab. More than 100 institutions have endeavored to conduct research on it and more than 30 thousand papers have been published. However, its industrialization was restricted to some extend because of the existence of toxic solvent during spinning process and poor mechanical strength of resultant fibers caused by small pores on fiber surface. Solvent-free melt electrospinning is environmentally friendly and highly productive. However, problems such as the high melt viscosity, thick fiber diameter and complex equipment makes it relatively under researched compared with solution electrospinning. With the purpose of solving the shortage of traditional electro-spinning equipment with needles or capillaries, a melt differential electro-spinning method without needles or capillaries was firstly proposed. Nearly 50 related patents have been applied since 2005, and systematic method innovations and experimental studies have also been conducted. The prepared fiber by this method had exhibited small diameter and smooth surface. The average fiber diameter can reach 200-800 nm, and the single nozzle can yield two orders of magnitude more than the capillaries. Based on the above principle, complete commercial techniques and equipment have been developed to produce ultra-fine non-woven fabrics for the applications in air filtration, oil spill recovery and water treatment, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Sue B.
2016-10-31
The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.
Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings
NASA Technical Reports Server (NTRS)
Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina
2014-01-01
Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.
The worldwide annual usage of volatile organic solvents is generally of the order of ~4 billion pounds. In the environmentally conscieous era, the focus in to design chemical processes and products that eliminate or minimize the waste generation and the ideal approach may compris...
Zhu, Feng-Xia; Wang, Wei; Li, He-Xing
2011-08-03
An operationally simple approach for the preparation of a new class of bifunctional Au nanoparticle-acid catalysts has been developed. In situ reduction of Au(3+) with HS-functionalized periodic mesoporous organosilicas (PMOs) creates robust, fine Au nanoparticles and concomitantly produces a sulfonic acid moiety strongly bonded to PMOs. Characterizations of the nanostructures reveal that Au nanoparticles are formed with uniformed, narrow size distribution around 1-2 nm, which is very critical for essential catalytic activities. Moreover, the Au nanoparticles are mainly attached onto the pore surface rather than onto the outer surface with ordered mesoporous channels, allowing for maximal exposure to reaction substrates while minimizing Au nanoparticle leaching. Their higher S(BET), V(P), and D(P) than either the Au-HS-PMO(Et) or the Au/SO(3)H-PMO(Et) render the catalyst with comparably even higher catalytic efficiency than its homogeneous counterparts. Furthermore, the unique amphiphilic compartment of the Au-HS/SO(3)H-PMO(Et) nanostructures enables organic reactions to proceed efficiently in a pure aqueous solution without using any organic solvents or even without water. As demonstrated experimentally, remarkably, the unique bifunctional Au-HS/SO(3)H-PMO(Et) catalyst displays higher efficiencies in promoting water-medium alkyne hydration, intramolecular hydroamination, styrene oxidation, and three-component coupling reactions and even the solvent-free alkyne hydration process than its homogeneous catalysts. The robust catalyst can be easily recycled and used repetitively at least 10 times without loss of catalytic efficiency. These features render the catalyst particularly attractive in the practice of organic synthesis in an environmentally friendly manner.
Liu, Yongzhuang; Chen, Wenshuai; Xia, Qinqin; Guo, Bingtuo; Wang, Qingwen; Liu, Shouxin; Liu, Yixing; Li, Jian
2017-01-01
Abstract Lignocellulosic biomass is an abundant and renewable resource for the production of biobased value‐added fuels, chemicals, and materials, but its effective exploitation by an energy‐efficient and environmentally friendly strategy remains a challenge. Herein, a facile approach for efficiently cleaving lignin–carbohydrate complexes and ultrafast fractionation of components from wood by microwave‐assisted treatment with deep eutectic solvent is reported. The solvent was composed of sustainable choline chloride and oxalic acid dihydrate, and showed a hydrogen‐bond acidity of 1.31. Efficient fractionation of lignocellulose with the solvent was realized by heating at 80 °C under 800 W microwave irradiation for 3 min. The extracted lignin showed a low molecular weight of 913, a low polydispersity of 1.25, and consisted of lignin oligomers with high purity (ca. 96 %), and thus shows potential in downstream production of aromatic chemicals. The other dissolved matter mainly comprised glucose, xylose, and hydroxymethylfurfural. The undissolved material was cellulose with crystal I structure and a crystallinity of approximately 75 %, which can be used for fabricating nanocellulose. Therefore, this work promotes an ultrafast lignin‐first biorefinery approach while simultaneously keeping the undissolved cellulose available for further utilization. This work is expected to contribute to improving the economics of overall biorefining of lignocellulosic biomass. PMID:28054749
NASA Astrophysics Data System (ADS)
Dinh, Toan; Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Qamar, Afzaal; Woodfield, Peter; Zhu, Yong; Nguyen, Nam-Trung; Viet Dao, Dzung
2017-06-01
In this paper, we report on a low-cost, environment-friendly and wearable thermal flow sensor, which can be manufactured in-house using pencil graphite as a sensing hot film and biodegradable printing paper as a substrate, without using any toxic solvents or cleanroom facilities. The hot film flow sensor offers excellent performance such as high signal-to-noise ratio (≥slant 40 for an air flow velocity of 1 m s-1), high sensitivity to airflow (53.7 mV(m s-1)-0.8) and outstanding long-term stability (almost no drift in 24 h). The sensor can be comfortably affixed to the philtrum of patients and measures human respiration in realtime. The results indicate that the wearable thermal flow sensors fabricated by this solvent-free and user-friendly method could be employed in human respiratory monitoring.
Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review
NASA Astrophysics Data System (ADS)
Singh, K.; Sultan, I.
2017-07-01
Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.
Towards an energy-friendly and cleaner solvent-extraction of vegetable oil.
Kong, Weibin; Baeyens, Jan; Qin, Peiyong; Zhang, Huili; Tan, Tianwei
2018-07-01
The extraction of vegetable oils is an energy-intensive process. It has moreover a significant environmental impact through hexane emissions and through the production of organic-loaded wastewater. A rice bran oil process was selected as the basis, since full data were available. By using Aspen Plus v8.2 simulation, with additional scripts, several improvements were examined, such as using heat exchanger networks, integrating a Vapor Recompression Heat Pump after the evaporation and stripping, and examining a nitrogen stripping of hexane in the rice bran meal desolventizing unit followed by a gas membrane to recover hexane. Energy savings by the different individual and combined improvements are calculated, and result in a 94.2% gain in steam consumption and a 73.8% overall energy saving. The power consumption of the membrane unit reduces the overall energy savings by about 5%. Hexane separation and enrichment by gas membranes facilitates its condensation and re-use, while achieving a reduction of hexane emissions by over 50%. Through the considerable reduction of required steam flow rates, 61% of waste water is eliminated, mostly as organic-loaded steam condensate. Through overall energy savings, 52% of related CO 2 emissions are eliminated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Xinyu; Yu, Jiang; Zeng, Aiwu
2017-03-01
In this paper, cotton seed oil deodorizer distillate (CSODD), was recovered to obtain fatty acid sterol ester (FASE), which is one of the biological activated substances added as human therapeutic to lower cholesterol. Esterification reactions were carried out using Candida rugosa lipase as a catalyst, and the conversion of phytosterol was optimized using response surface methodology. The highest conversion (90.8 ± 0.4%) was reached at 0.84 wt% enzyme load, 1:25 solvent/CSODD mass ratio, and 44.2 °C after 12 H reaction. A kinetic model based on the reaction rate equation was developed to describe the reaction process. The activation energy of the reaction was calculated to be 56.9 kJ/mol and the derived kinetic parameters provided indispensable basics for further study. The optimization and kinetic research of synthesizing FASE from deodorizer distillate provided necessary information for the industrial applications in the near future. Experimental results showed that the proposed process is a promising alternative to recycle sterol esters from vegetable oil deodorizer distillates in a mild, efficient, and environmental friendly method. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Xu, William (Zhiming)
Due to the increased requirements of environmental protection, significant effort has been made to develop new "green" chemistry and engineering methods. Two effective approaches for "green" processes are: (1) to employ routes with fewer synthetic and separation steps, and (2) to replace volatile organic solvents with environmentally friendly solvents. Supercritical carbon dioxide (scCO2) has emerged as such a viable "green" alternative to organic solvents for several applications including extraction, polymerization, and nanotechnology, etc. In addition, it is an enabling solvent, allowing new types of chemistry and materials to be formed. In order to effectively utilize scCO2, it is required to study its effect on the relevant chemical process. This thesis focuses on the copolymerization of ethylene and vinyl acetate in scCO2, and the application of scCO2 in the synthesis of novel poly(vinyl acetate) (PVAc) and poly(ethylene-co-vinyl acetate) (PEVA) nanocomposites. Firstly, the kinetics of the process was investigated. The thermal decomposition of the free-radical initiator diethyl peroxydicarbonate (DEPDC) was monitored by in situ attenuate total reflection Fourier transform infrared spectroscopy (ATR-FTIR) in heptane, and in scCO2. The rate constant and activation energy of the thermal decomposition of DEPDC in scCO2 were determined, and a decomposition mechanism was proposed. Further, with a knowledge of the initiator kinetics, in situ ATR-FTIR was employed to monitor the initial formation of copolymers of ethylene and vinyl acetate during polymerization in scCO2. The reactivity ratios for the copolymerization of ethylene and vinyl acetate in scCO2 were determined using both the Kelen-Tudos and the non-linear least-squares methods. The potential of scCO2 was further examined to synthesize advanced and novel nanomaterials based on an understanding of the polymerization mechanism. A novel one-step synthesis route was developed for making silica-PVAc nanocomposites in scCO2, where the parallel reactions of free radical polymerization, hydrolysis/condensation, and linkage of the nanoparticles to the polymer chains, were found to take place simultaneously. This provides a new process featuring significant energy-saving, waste-reduction, and excellent distribution of nanoparticles in the polymer matrix. In addition, the incorporation of quantum dots (QDs) into a transparent polymer matrix was investigated to form light-selective nanofilms. Both CdS and CdS-ZnS core-shell QDs were synthesized, then functionalized with a methoxysilane group, and finally used to synthesize novel QD-PVAc and QD-PEVA nanocomposites in scCO2. The synthesized QD-PEVA nanofilms displayed significant absorption in the ultraviolet and violet regions of the electromagnetic spectrum, while providing a characteristic emission in the region from orange to red light. These materials have significant potential in green houses, and solar absorber films. Key words. supercritical CO2, initiator, thermal decomposition, kinetics, mechanism, ATR-FTIR, reactivity ratios, ethylene, vinyl acetate, silica, nanocomposite, one-pot synthesis, light-selective, nanofilm, quantum dots.
ENVIRONMENTALLY-BENIGN MULTIPHASE CATALYSIS. (R826034)
Environmental concerns stemming from the use of conventional solvents and from hazardous waste generation have propelled research efforts aimed at developing benign chemical processing techniques that either eliminate or significantly mitigate pollution at the source. This pap...
Soares, Karina Lotz; Cerqueira, Maristela Barnes Rodrigues; Caldas, Sergiane Souza; Primel, Ednei Gilberto
2017-09-01
This study describes the development, optimization and validation of a method for the extraction of 15 pesticides of different chemical classes in drinking water treatment sludge (DWTS) by vortex-assisted Matrix Solid Phase Dispersion (MSPD) with determination by gas chromatography coupled to mass spectrometry. It focused on the application of alternative and different solid supports to the extraction step of the MSPD. The main parameters that influenced the extraction were studied in order to obtain better recovery responses. Recoveries ranged from 70 to 120% with RSD below 20% for all analytes. Limits of quantification (LOQ) of the method ranged from 5 to 500 μg kg -1 whereas the analytical curves showed correlation coefficients above 0.997. The method under investigation used low volume of solvent (5 mL), low sample mass (1.5 g) and low mass of chitin (0.5 g), an environmentally friendly support. It has advantages, such as speed, simplicity and low cost material, over other methods. When the method was applied, 4 out of 15 pesticides were detected in the DWTS samples in concentrations below the LOQ. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jan Tic, Wilhelm
2017-10-01
Solvents are primarily used for making protective coatings. Considering their chemical nature, there are a great variety of coatings, including those based on liquid hydrocarbons and organic chloroderivatives. These products are a serious load to the environment because of their physicochemical properties, therefore, they have for some time been replaced with more-environmentally friendly, new generation products. One of them is the hydroxyester HE-1: made from isobutyric aldehyde condensation products, it is an alternative to those coalescents for paints and varnishes which are intended to be replaced or their use restricted. The results of selected toxicological tests relating to the human health risk effect of the hydroxyester HE-1 - environmentally-friendly additive to paints and varnishes are presented. The test results indicate that HE-1 causes skin irritation in rabbit only when used at its maximum concentrations. No lesions in the cornea or iris were observed in any of the test rabbits after the application of the hydroxyester HE-1. In the mutagenic effect test of HE-1 on the bacteria Salmonella typhimurium, the result was negative. Based on the test results, it was found that the hydroxyester HE-1 may only have a human health risk effect when used at its maximum concentrations.
2016-01-01
Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1 with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment. PMID:27429835
Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi
2011-01-15
A simple, rapid and environmentally friendly method has been developed for the determination of four triazole fungicides (myclobutanil, tebuconazole, triadimenol, hexaconazole) in water samples by dispersion-solidification liquid-liquid microextraction coupled with high performance liquid chromatography-diode array detection. Several variables that affect the extraction efficiencies, including the type and volume of the extraction solvent and dispersive solvent, extraction time, effect of pH and salt addition, were investigated and optimized. Under the optimum conditions, the proposed method is sensitive and shows a good linearity within a range of 0.5-200 ng mL(-1), with the correlation coefficients (r) varying from 0.9992 to 0.9998. High enrichment factors were achieved ranging from 190 to 450. The recoveries of the target analytes from water samples at spiking levels of 1.0, 5.0 and 50.0 ng mL(-1) were between 84.8% and 110.2%. The limits of detection (LODs) for the analytes were ranged in 0.06-0.1 ng mL(-1), and the relative standard deviations (RSD) varied from 3.9% to 5.7%. The proposed method has been successfully applied for the determination of the triazole fungicides in real water samples. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Caillau, Mathieu; Chevalier, Céline; Crémillieu, Pierre; Delair, Thierry; Soppera, Olivier; Leuschel, Benjamin; Ray, Cédric; Moulin, Christophe; Jonin, Christian; Benichou, Emmanuel; Brevet, Pierre-François; Yeromonahos, Christelle; Laurenceau, Emmanuelle; Chevolot, Yann; Leclercq, Jean-Louis
2018-03-01
Biopolymers represent natural, renewable and abundant materials. Their use is steadily growing in various areas (food, health, building …) but, in lithography, despite some works, resists, solvents and developers are still oil-based and hazardous chemicals. In this work, we replaced synthetic resist by chitosan, a natural, abundant and hydrophilic polysaccharide. High resolution sub-micron patterns were obtained through chitosan films as water developable, chemically unmodified, positive tone mask resist for an eco-friendly electron beam and deep-UV (193 nm) lithography process. Sub-micron patterns were also successfully obtained using a 248 nm photomasker thanks to the addition of biosourced photoactivator, riboflavin. Patterns were then transferred by plasma etching into silica even for high resolution patterns.
Green Extraction from Pomegranate Marcs for the Production of Functional Foods and Cosmetics
Boggia, Raffaella; Turrini, Federica; Villa, Carla; Lacapra, Chiara; Zunin, Paola; Parodi, Brunella
2016-01-01
The aim of this study was to investigate the potential of retrieving polyphenolic antioxidants directly from wet pomegranate marcs: the fresh by-products obtained after pomegranate juice processing. These by-products mainly consist of internal membranes (endocarp) and aril residues. Even if they are still edible, they are usually discharged during juice production and, thus, they represent a great challenge in an eco-sustainable industrial context. Green technologies, such as ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), have been employed to convert these organic residues into recycled products with high added value. UAE and MAE were used both in parallel and in series in order to make a comparison and to ensure exhaustive extractions, respectively. Water, as an environmentally friendly extraction solvent, has been employed. The results were compared with those ones coming from a conventional extraction. The most promising extract, in terms of total polyphenol yield and radical scavenging activity, has been tested both as a potential natural additive and as a functional ingredient after its incorporation in a real food model and in a real cosmetic matrix, respectively. This study represents a proposal to the agro-alimentary sector given the general need of environmental “responsible care”. PMID:27763542
Electron Donor-Acceptor Nature of the Ethanol-CO2 Dimer
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Martin-Drumel, Marie-Aline; McCarthy, Michael A.
2017-08-01
Supercritical CO2 is an appealing nontoxic, environmentally friendly solvent for the industrial extraction of many classes of compounds, from caffeine to natural product drug precursors to petrochemical impurities. Apolar in isolation, the ability of supercritical CO2 to dissolve polar species has been empirically shown to be greatly enhanced by the addition of a small molar percentage of a polar cosolvent, often ethanol. Computational work predicts that the isolated ethanol-CO2 complex can exist either in an electron-donor configuration or through a hydrogen-bonding one; yet, neither has been previously experimentally observed. Here, we demonstrate by rotational spectroscopy that the isolated, gas-phase ethanol-CO2 dimer is an electron donor-acceptor complex.
Abboud, Ayad Sami; Sanagi, Mohd Marsin; Ibrahim, Wan Aini Wan; Keyon, Aemi S Abdul; Aboul-Enein, Hassan Y
2018-02-01
In this study, caged calcium alginate-caged multiwalled carbon nanotubes dispersive microsolid phase extraction was described for the first time for the extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatographic analysis. Fluorene, phenanthrene and fluoranthene were selected as model compounds. The caged calcium alginate-caged multiwalled carbon nanotubes was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and thermal gravimetry analyses. The effective parameters namely desorption solvent, solvent volume, extraction time, desorption time, the mass of adsorbent and sample volume were optimized. Under the optimum extraction conditions, the developed method showed good linearity in the range of 0.5-50 ng mL-1 (R2 ≥ 0.996), low limits of detection and quantification (0.42-0.22 ng mL-1) (0.73-1.38 ng mL-1) respectively, good relative recoveries (71.2-104.2%) and reproducibility (RSD 1.8-12.4%, n = 3) for the studied PAHs in water sample. With high enrichment factor (1,000), short extraction time (<30 min), low amounts of adsorbent (100 mg) and low amounts of solvent (0.1 mol) have proven that the microsolid phase extraction method based on calcium alginate-caged multiwalled carbon nanotubes are environmentally friendly and convenient extraction method to use as an alternative adsorbent in the simultaneous preconcentration of PAHs from environmental water samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Aging Effects of Environmentally-Friendly Cleaners on Adhesive Bond Integrity
NASA Technical Reports Server (NTRS)
Biegert, L. L.; Anderson, G. L.; Evans, K. B.; Olsen, B. D.; Weber, B. L.; McCool, A. A. (Technical Monitor)
2000-01-01
Because of the 1990 Clean Air Act Amendment many chlorinated solvents are being phased out of use in manufacturing industries. Replacement of the ODC (ozone- depleting chemicals) with less volatile, non-ozone depleting cleaners has been extensively studied over the past nine years at Thiokol Propulsion, Cordant Technologies. Many of the non-ODC cleaners contain compounds that can potentially degrade over time under conditions of high temperature, humidity and exposure to light. The chemical composition of environmentally conditioned cleaners and the subsequent effect on aluminum/amine-cured epoxy bond integrity as measured by Tapered Double Cantilever Beam were evaluated. From this study it is observed that moisture content increases for those cleaners containing polar compounds. Non-volatile residue content increases as stabilizers are depleted and the chemical compound limonene is oxidized. A change in aluminum/ amine-cured epoxy bond fracture toughness is observed as some of these cleaners age with increases in moisture and NVR content.
Caldas, Sergiane Souza; Rombaldi, Caroline; Arias, Jean Lucas de Oliveira; Marube, Liziane Cardoso; Primel, Ednei Gilberto
2016-01-01
A rapid and efficient sample pretreatment using solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was studied for the extraction of 58 pharmaceuticals and personal care products (PPCPs) and pesticides from water samples. Type and volume of extraction and disperser solvents, pH, salt addition, amount of salt and type of demulsification solvent were evaluated. Limits of quantification (LOQ) in the range from 0.0125 to 1.25 µg L(-1) were reached, and linearity was in the range from the LOQ of each compound to 25 μg L(-1). Recoveries ranged from 60% to 120% for 84% of the compounds, with relative standard deviations lower than 29%. The proposed method demonstrated, for the first time, that sample preparation by SD-DLLME with determination by LC-MS/MS can be successfully used for the simultaneous extraction of 32 pesticides and 26 PPCPs from water samples. The entire procedure, including the extraction of 58 organic compounds from the aqueous sample solution and the breaking up of the emulsion after extraction with water, rather than with an organic solvent, was environmentally friendly. In addition, this technique was less expensive and faster than traditional techniques. Finally, the analytical method under study was successfully applied to the analysis of all 58 pesticides and PPCPs in surface water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, B.E.
1995-04-01
A cross-functional team of process, product, quality, material, and design lab engineers was assembled to develop an environmentally friendly cleaning process for leadless chip carrier assemblies (LCCAs). Using flush and filter testing, Auger surface analysis, GC-Mass spectrophotometry, production yield results, and electrical testing results over an extended testing period, the team developed an aqueous cleaning process for LCCAs. The aqueous process replaced the Freon vapor degreasing/ultrasonic rinse process.
Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP
Wood, David L.; Quass, Jeffrey D.; Li, Jianlin; ...
2017-05-16
Processing lithium-ion battery (LIB) electrode dispersions with water as the solvent during primary drying offers many advantages over N-methylpyrrolidone (NMP). An in-depth analysis of the comparative drying costs of LIB electrodes is discussed for both NMP- and water-based dispersion processing in terms of battery pack $/kWh. Electrode coating manufacturing and capital equipment cost savings are compared for water vs. conventional NMP organic solvent processing. A major finding of this work is that the total electrode manufacturing costs, whether water- or NMP-based, contribute about 8–9% of the total pack cost. However, it was found that up to a 2 × reductionmore » in electrode processing (drying and solvent recovery) cost can be expected along with a $3–6 M savings in associated plant capital equipment (for a plant producing 100,000 10-kWh Plug-in Hybrid Electric Vehicle (PHEV) batteries) using water as the electrode solvent. This paper shows a different perspective in that the most important benefits of aqueous electrode processing actually revolve around capital equipment savings and environmental stewardship and not processing cost savings.« less
Fodi, Tamas; Didaskalou, Christos; Kupai, Jozsef; Balogh, Gyorgy T; Huszthy, Peter; Szekely, Gyorgy
2017-09-11
Solvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging. Separation processes for concentrating and purifying chemicals can account for as much as 80 % of the total manufacturing costs. In this work, a nanofiltration unit was coupled to a continuous-flow rector for in situ solvent and reagent recycling. The nanofiltration unit is straightforward to implement and simple to control during continuous operation. The hybrid process operated continuously over six weeks, recycling about 90 % of the solvent and reagent. Consequently, the E-factor and the carbon footprint were reduced by 91 % and 19 %, respectively. Moreover, the nanofiltration unit led to a solution of the product eleven times more concentrated than the reaction mixture and increased the purity from 52.4 % to 91.5 %. The boundaries for process conditions were investigated to facilitate implementation of the methodology by the pharmaceutical sector. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acting green elicits a literal warm glow
NASA Astrophysics Data System (ADS)
Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda
2015-01-01
Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.
Environmental impact assessment and eco-friendly decision-making in civil structures.
Kim, Sang-Hyo; Choi, Moon-Seock; Mha, Ho-Seong; Joung, Jung-Yeun
2013-09-15
This study develops two useful procedures in performing an environmental-impact assessment. One is the advanced life-cycle assessment (LCA) method, which effectively tracks the flow of materials and considers the recycling and demolition of a civil structure. The other is an eco-friendly decision-making procedure, which may effectively apply when determining the prototype of a civil structure. The advanced LCA method differs from traditional LCA procedure, as it classifies the input material prior to the impact assessment. Classification work is performed to establish independent life-cycle stages for each material. The processes of recycling and demolition are appropriately added to the life-cycle stages. The impact assessment is performed separately for the materials, and results are aggregated at the end of the analysis. The eco-friendly decision-making procedure enables designers to choose an economical, and environmentally friendly, alternative during the planning phase of the construction project. This procedure rationally amalgamates economical value and environmental effects into a single indicator. The life cycle cost (LCC) of a structure can be analysed by using conventional LCC tools, whereas the environmental impact is estimated by LCA. The results from LCC and LCA are then integrated by using either a CO2 conversion method or an analytical hierarchy process (AHP). The CO2 conversion method presents the result as a monetary value, whereas the AHP presents the result as a non-dimensional value. A practical example using a steel box girder bridge and a pre-stressed concrete (PSC) box-girder bridge is also given in order to aid the understanding of the presented procedure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract
Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H
2013-01-01
The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. PMID:23620666
Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning
NASA Technical Reports Server (NTRS)
Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.; Cash, Steve (Technical Monitor)
2002-01-01
NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the RSRM (Reusable Solid Rocket Motor) system. Work with a previous generation of rubber equipment at MSFC (Marshall Space Flight Center) in the 1970's had involved the use of ODC's such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.
Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning
NASA Technical Reports Server (NTRS)
Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.
2003-01-01
NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the Redesigned Solid Rocket Motor (RSRM) system. Work with a previous generation of rubber equipment at MSFC in the 1970's had involved the use of Oxygen Deficient Center (ODC's) such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.
Supercritical fluid extraction
Wai, Chien M.; Laintz, Kenneth
1994-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Ma, Shufeng; Hu, Liming; Ma, Chaoyang; Lv, Wenping; Wang, Hongxin
2014-09-01
A novel on-line three-dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1-butyl-3-methylimidazolium chloride aqueous solution was selected as the solvent system. In the first-dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second-dimension high-speed countercurrent chromatographic column for separation. In the third-dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1, 20.4 mg of compound 2, 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic-liquid-based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents.
Radošević, Kristina; Bubalo, Marina Cvjetko; Srček, Višnje Gaurina; Grgas, Dijana; Dragičević, Tibela Landeka; Redovniković, Ivana Radojčić
2015-02-01
Deep eutectic solvents (DESs) have been dramatically expanding in popularity as a new generation of environmentally friendly solvents with possible applications in various industrial fields, but their ecological footprint has not yet been thoroughly investigated. In the present study, three choline chloride-based DESs with glucose, glycerol and oxalic acid as hydrogen bond donors were evaluated for in vitro toxicity using fish and human cell line, phytotoxicity using wheat and biodegradability using wastewater microorganisms through closed bottle test. Obtained in vitro toxicity data on cell lines indicate that choline chloride: glucose and choline chloride:glycerol possess low cytotoxicity (EC50>10 mM for both cell lines) while choline chloride:oxalic acid possess moderate cytotoxicity (EC50 value 1.64 mM and 4.19 mM for fish and human cell line, respectively). Results on phytotoxicity imply that tested DESs are non-toxic with seed germination EC50 values higher than 5000 mg L(-1). All tested DESs were classified as'readily biodegradable' based on their high levels of mineralization (68-96%). These findings indicate that DESs have a green profile and a good prospect for a wider use in the field of green technologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup.
Siebenhaller, Sascha; Gentes, Julian; Infantes, Alba; Muhle-Goll, Claudia; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Ochsenreither, Katrin; Syldatk, Christoph
2018-01-01
Honey and agave syrup are high quality natural products and consist of more than 80% sugars. They are used as sweeteners, and are ingredients of cosmetics or medical ointments. Furthermore, both have low water content, are often liquid at room temperature and resemble some known sugar-based deep eutectic solvents (DES). Since it has been shown that it is possible to synthesize sugar esters in these DESs, in the current work honey or, as vegan alternative, agave syrup are used simultaneously as solvent and substrate for the enzymatic sugar ester production. For this purpose, important characteristics of the herein used honey and agave syrup were determined and compared with other available types. Subsequently, an enzymatic transesterification of four fatty acid vinyl esters was accomplished in ordinary honey and agave syrup. Notwithstanding of the high water content for transesterification reactions of the solvent, the successful sugar ester formation was proved by thin-layer chromatography (TLC) and compared to a sugar ester which was synthesized in a conventional DES. For a clear verification of the sugar esters, mass determinations by ESI-Q-ToF experiments and a NMR analysis were done. These environmentally friendly produced sugar esters have the potential to be used in cosmetics or pharmaceuticals, or to enhance their effectiveness.
Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup
Siebenhaller, Sascha; Gentes, Julian; Infantes, Alba; Muhle-Goll, Claudia; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Ochsenreither, Katrin; Syldatk, Christoph
2018-01-01
Honey and agave syrup are high quality natural products and consist of more than 80% sugars. They are used as sweeteners, and are ingredients of cosmetics or medical ointments. Furthermore, both have low water content, are often liquid at room temperature and resemble some known sugar-based deep eutectic solvents (DES). Since it has been shown that it is possible to synthesize sugar esters in these DESs, in the current work honey or, as vegan alternative, agave syrup are used simultaneously as solvent and substrate for the enzymatic sugar ester production. For this purpose, important characteristics of the herein used honey and agave syrup were determined and compared with other available types. Subsequently, an enzymatic transesterification of four fatty acid vinyl esters was accomplished in ordinary honey and agave syrup. Notwithstanding of the high water content for transesterification reactions of the solvent, the successful sugar ester formation was proved by thin-layer chromatography (TLC) and compared to a sugar ester which was synthesized in a conventional DES. For a clear verification of the sugar esters, mass determinations by ESI-Q-ToF experiments and a NMR analysis were done. These environmentally friendly produced sugar esters have the potential to be used in cosmetics or pharmaceuticals, or to enhance their effectiveness. PMID:29487847
Mohamed, Heba M; Lamie, Nesrine T
2016-09-01
In the past few decades the analytical community has been focused on eliminating or reducing the usage of hazardous chemicals and solvents, in different analytical methodologies, that have been ascertained to be extremely dangerous to human health and environment. In this context, environmentally friendly, green, or clean practices have been implemented in different research areas. This study presents a greener alternative of conventional RP-HPLC methods for the simultaneous determination and quantitative analysis of a pharmaceutical ternary mixture composed of telmisartan, hydrochlorothiazide, and amlodipine besylate, using an ecofriendly mobile phase and short run time with the least amount of waste production. This solvent-replacement approach was feasible without compromising method performance criteria, such as separation efficiency, peak symmetry, and chromatographic retention. The greenness profile of the proposed method was assessed and compared with reported conventional methods using the analytical Eco-Scale as an assessment tool. The proposed method was found to be greener in terms of usage of hazardous chemicals and solvents, energy consumption, and production of waste. The proposed method can be safely used for the routine analysis of the studied pharmaceutical ternary mixture with a minimal detrimental impact on human health and the environment.
Pinxterhuis, Erik B.; Gualtierotti, Jean-Baptiste; Heeres, Hero J.
2017-01-01
Access to enantiopure compounds on large scale in an environmentally friendly and cost-efficient manner remains one of the greatest challenges in chemistry. Resolution of racemates using enantioselective liquid–liquid extraction has great potential to meet that challenge. However, a relatively feeble understanding of the chemical principles and physical properties behind this technique has hampered the development of hosts possessing sufficient resolving power for their application to large scale processes. Herein we present, employing the previously untested SPINOL based phosphoric acids host family, an in depths study of the parameters affecting the efficiency of the resolution of amino-alcohols in the optic of further understanding the core principles behind ELLE. We have systematically investigated the dependencies of the enantioselection by parameters such as the choice of solvent, the temperature, as well as the pH and bring to light many previously unsuspected and highly intriguing interactions. Furthermore, utilizing these new insights to our advantage, we developed novel, highly efficient, extraction and resolving protocols which provide remarkable levels of enantioselectivity. It was shown that the extraction is catalytic in host by demonstrating transport in a U-tube and finally it was demonstrated how the solvent dependency could be exploited in an unprecedented triphasic resolution system. PMID:28989671
Graphene sponge as an efficient and recyclable oil sorbent
NASA Astrophysics Data System (ADS)
Chen, Pin-Hsuan; Sie, Min-Chun; Jeng, Pei-Di; Wu, Ruei-Ci; Wang, Chen-Bin
2017-09-01
Fructose, an environmentally friendly reducing agent, was chosen during the process of reduction and self-assembly of graphene oxide (r-GO) via the hydrothermal method to prepare the graphene sponge (r-GS). Graphite oxide (GO) was prepared by oxidizing graphite (G) powders through a modified Hummers method. The GO dispersion (10 mg/mL) was mixed with equal mass ratio of fructose and ultrasonic-assisted dispersing in a beaker at RT for 30 min. Then, the suspended solution was transferred to a 200 mL Teflon-lined autoclave and maintained at 160 °C for 6 h. After cooling to RT, the black rod was washed with deionized water and lyophilized to obtain r-GS. The samples were characterized by XRD, TEM/SEM, BET, EA, FTIR, Raman and TPR. The absorption capacity and recycling measurement for oil over the fabricated r-GS was evaluated. In the preliminary results, the hydrophobic r-GS showed light weight and formed 3D porous structure that could enhance the absorption of organic solvents and oils. The absorption capacities of r-GS for various organic solvents and oils were quantified. The absorption capacities were in the range of 15 ˜ 38 g/g. The ultrahigh absorption capacity indicates that the absorption is more like an accommodation of oils in the hydrophobic micro- and macro-pores of the r-GS. In particular, the absorption capacity for vegetable oil is 37.8 g/g, indicating that the r-GS can be used for oil leakage treatment.
Caputo, Leonardo; Quintieri, Laura; Cavalluzzi, Maria Maddalena; Lentini, Giovanni; Habtemariam, Solomon
2018-06-17
Citrus pomace is a huge agro-food industrial waste mostly composed of peels and traditionally used as compost or animal feed. Owing to its high content of compounds beneficial to humans (e.g., flavonoids, phenol-like acids, and terpenoids), citrus waste is increasingly used to produce valuable supplements, fragrance, or antimicrobials. However, such processes require sustainable and efficient extraction strategies by solvent-free techniques for environmentally-friendly good practices. In this work, we evaluated the antimicrobial and antibiofilm activity of water extracts of three citrus peels (orange, lemon, and citron) against ten different sanitary relevant bacteria. Both conventional extraction methods using hot water (HWE) and microwave-assisted extraction (MAE) were used. Even though no extract fully inhibited the growth of the target bacteria, these latter (mostly pseudomonads) showed a significant reduction in biofilm biomass. The most active extracts were obtained from orange and lemon peel by using MAE at 100 °C for 8 min. These results showed that citrus peel water infusions by MAE may reduce biofilm formation possibly enhancing the susceptibility of sanitary-related bacteria to disinfection procedures.
Green synthesis of Au nanoparticles using potato extract: stability and growth mechanism
NASA Astrophysics Data System (ADS)
Castillo-López, D. N.; Pal, U.
2014-08-01
We report on the synthesis of spherical, well-dispersed colloidal gold nanoparticles of 17.5-23.5 nm average sizes in water using potato extract (PE) both as reducing and stabilizing agent. The effects of PE content and the pH value of the reaction mixture have been studied. Formation and growth dynamics of the Au nanoparticles in the colloids were studied using transmission electron microscopy and UV-Vis optical absorption spectroscopy techniques. While the reductor content and, hence, the nucleation and growth rates of the nanoparticles could be controlled by controlling the PE content in the reaction solution, the stability of the nanoparticles depended strongly on the pH of the reaction mixture. The mechanisms of Au ion reduction and stabilization of Au nanoparticles by potato starch have been discussed. The use of common natural solvent like water and biological reductor like PE in our synthesis process opens up the possibility of synthesizing Au nanoparticles in fully green (environmental friendly) way, and the Au nanoparticles produced in such way should have good biocompatibility.
Pectin-based nanocomposite aerogels for potential insulated food packaging application.
Nešić, Aleksandra; Gordić, Milan; Davidović, Sladjana; Radovanović, Željko; Nedeljković, Jovan; Smirnova, Irina; Gurikov, Pavel
2018-09-01
Environmental-friendly pectin-TiO 2 nanocomposite aerogels were prepared via sol-gel process and subsequent drying under supercritical conditions. The first step includes dissolution of pectin in water, addition of proper amount of TiO 2 colloid and crosslinking reaction induced in the presence of tert-butanol and zinc ions. Then, the gels are subjected to the solvent exchange and supercritical CO 2 drying. The influence of TiO 2 nanoparticles on the textural, mechanical, thermal and antibacterial properties of aerogels was investigated. Results indicate that in the presence of TiO 2 nanoparticles (NPs) mechanical, thermal and antimicrobial properties of pectin-based aerogels are improved in comparison to the control pectin aerogels. It should be emphasized that the thermal conductivity of pectin-based aerogels (0.022-0.025 W m -1 K -1 ) is lower than the thermal conductivity of air. Generally, the results propose that the pectin-TiO 2 nanocomposite aerogels, as bio-based material, might have potential application for the storage of temperature-sensitive food. Copyright © 2018 Elsevier Ltd. All rights reserved.
Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling.
Syed, S
2016-04-01
The demand of silver is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high grade silver ores are retreating. However, there exist large stashes of low and lean grade silver ores that are yet to be exploited. The main impression of this work was to draw attention to the most advance technologies in silver recovery and recycling from various sources. The state of the art in recovery of silver from different sources by hydrometallurgical and bio-metallurgical processing and varieties of leaching, cementing, reducing agents, peeling, electro-coagulants, adsorbents, electro-dialysis, solvent extraction, ion exchange resins and bio sorbents are highlighted in this article. It is shown that the major economic driver for recycling of depleted sources is for the recovery of silver. In order to develop an nature-friendly technique for the recovery of silver from diverse sources, a critical comparison of existing technologies is analyzed for both economic viability and environmental impact was made in this amendment and silver ion toxicity is highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Botton, Vanderleia; Piovan, Leandro; Meier, Henry França; Mitchell, David Alexander; Cordova, Jesús; Krieger, Nadia
2018-04-01
A fermented solid containing lipases was produced by solid-state fermentation of Rhizopus microsporus on sugarcane bagasse enriched with urea, soybean oil, and a mineral solution. The dry fermented solid produced using R. microsporus (RMFS) was used to catalyze the synthesis of alkyl-esters by esterification in a solvent-free system containing ethanol and oleic acid (as a model system) or a mixture of fatty acids obtained from the physical hydrolysis of soybean soapstock acid oil (FA-SSAO) in subcritical water. The conversions were 93.5 and 84.1%, for oleic acid and FA-SSAO, respectively, at 48 h and 40 °C, at a molar ratio (MR) of ethanol to fatty acid of 5:1. A further increase in the MR to 10:1 improved the production of ethylic-esters, giving conversions at 48 h of 98 and 86% for oleic acid and FA-SSAO, respectively. The results obtained in this work foster further studies on scaling-up of an environmentally friendly process to produce biofuels.
NASA Astrophysics Data System (ADS)
Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang
2016-04-01
This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI figures. See DOI: 10.1039/c6nr00468g
Environmental friendly method for the extraction of coir fibre and isolation of nanofibre.
Abraham, Eldho; Deepa, B; Pothen, L A; Cintil, J; Thomas, S; John, M J; Anandjiwala, R; Narine, S S
2013-02-15
The objective of this work was to develop an environmental friendly method for the effective utilization of coir fibre by adopting steam pre-treatment. The retting of the coconut bunch makes strong environmental problems which can be avoided by this method. Chemical characterization of the fibre during each processing stages confirmed the increase of cellulose content from raw (40%) to final steam treated fibres (93%). Morphological and dynamic light scattering analyses of the fibres at different processing stages revealed that the isolation of cellulose nano fibres occur in the final step of the process as an aqueous suspension. FT-IR and XRD analysis demonstrated that the treatments lead to the gradual removal of lignin and hemicelluloses from the fibres. The existence of strong lignin-cellulose complex in the raw coir fibre is proved by its enhanced thermal stability. Steam explosion has been proved to be a green method to expand the application areas of coir fibre. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mittal, Vineet; Nanda, Arun
2017-12-01
Marrubium vulgare Linn (Lamiaceae) was generally extracted by conventional methods with low yield of marrubiin; these processes were not considered environment friendly. This study extracts the whole plant of M. vulgare by microwave assisted extraction (MAE) and optimizes the effect of various extraction parameters on the marrubiin yield by using Central Composite Design (CCD). The selected medicinal plant was extracted using ethanol: water (1:1) as solvent by MAE. The plant material was also extracted using a Soxhlet and the various extracts were analyzed by HPTLC to quantify the marrubiin concentration. The optimized conditions for the microwave-assisted extraction of selected medicinal plant was microwave power of 539 W, irradiation time of 373 s and solvent to drug ratio, 32 mL per g of the drug. The marrubiin concentration in MAE almost doubled relative to the traditional method (0.69 ± 0.08 to 1.35 ± 0.04%). The IC 50 for DPPH was reduced to 66.28 ± 0.6 μg/mL as compared to conventional extract (84.14 ± 0.7 μg/mL). The scanning electron micrographs of the treated and untreated drug samples further support the results. The CCD can be successfully applied to optimize the extraction parameters (MAE) for M. vulgare. Moreover, in terms of environmental impact, the MAE technique could be assumed as a 'Green approach' because the MAE approach for extraction of plant released only 92.3 g of CO 2 as compared to 3207.6 g CO 2 using the Soxhlet method of extraction.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Patel, S.; Joshi, U. S.
2016-09-01
Cu2SnS3 (CTS) is one of promising candidate as an absorber material for thin film solar cell. Because of relatively higher prize of Indium and hazardous environmental impact of processing of Gallium, CTS is suitable alternative candidate to Cu2SnS3 (CIGS) based solar cell as its constituent elements such as copper, tin and sulphur are abundantly available in earth's crust. CTS is ternary semiconductor and its energy band gap is 1.5eV, which is perfectly matched with solar energy spectrum for maximum transfer of solar energy into electrical energy through photovoltaic action. The primary methods for the synthesis of CTS are Thermal evaporation, electrochemical, sputtering and wet chemical methods. Here in this paper we have optimized a low cost non-vacuum solution process method for the synthesis of CTS without any external sulfurization. The X-ray diffraction studies showed the formation of phase with the peaks corresponding to (112), (220) and (312) planes. Chemical Solution Deposition (CSD) for the synthesis of CTS is suitable for large area deposition and it includes several routes like solvothermal methods, direct liquid coating and nano ink based technique. The metal Chloride salts and thiourea is used as a source of sulphur to synthesize CTS solution and homogeneous thin films of CTS deposited on glass substrate using spin coating method. Use of abrasive solvent like hydrazine and hydrogen sulphide gas which are used to synthesize CTS thin film have detrimental effect on environment, we report eco friendly solvent based approach to synthesize CTS at low temperature 200 °C.
Kang, Jun Ki; Park, Sung Pyo; Na, Jae Won; Lee, Jin Hyeok; Kim, Dongwoo; Kim, Hyun Jae
2018-05-11
Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO 2 ) surface reacts with H 2 O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH∙). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm 2 /V·s for IGZO TFTs and from 2.78 to 7.82 cm 2 /V·s for IZO TFTs, and the V th shift caused by positive bias stress (PBS) and negative bias illumination stress (NBIS) over 1,000 s under 5,700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO 2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO 2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.
ERIC Educational Resources Information Center
Crumbie, Robyn L.
2006-01-01
The reactions use recyclable Magtrieve as the oxidant in a simple reaction sequence illustrating the reciprocity of oxidation and reduction processes. The reciprocity of oxidation and reduction reactions are explored while undertaking the reactions in an environmentally friendly manner.
Hoashi, Yohei; Tozuka, Yuichi; Takeuchi, Hirofumi
2013-02-01
Solventless dry powder coating methods have many advantages compared to solvent-based methods: they are more economical, simpler, safer, more environmentally friendly and easier to scale up. The purpose of this study was to investigate a highly effective dry powder coating method using the mechanofusion system, a mechanochemical treatment equipped with high compressive and shearing force. Acetaminophen (AAP) and carnauba wax (CW) were selected as core particles of the model drug and coating material, respectively. Mixtures of AAP and CW with and without talc were processed using the mechanofusion system. Sustained AAP release was observed by selecting appropriate processing conditions for the rotation speed and the slit size. The dissolution rate of AAP processed with CW substantially decreased with an increase in talc content up to 40% of the amount of CW loaded. Increasing the coating amount by two-step addition of CW led to more effective coating and extended drug release. Scanning electron micrographs indicated that CW adhered and showed satisfactory coverage of the surface of AAP particles. Effective CW coating onto the AAP surface was successfully achieved by strictly controlling the processing conditions and the composition of core particles, coating material and glidant. Our mechanochemical dry powder coating method using the mechanofusion system is a simple and promising means of solventless pharmaceutical coating.
Supercritical fluid technology: concepts and pharmaceutical applications.
Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama
2011-01-01
In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao Tang; Tan Zhu; He Xu
China currently put forwards 'striving to build an environmentally friendly society' as one of the most important development goals. The land administration authorities are facing the challenge of effectively incorporating environment considerations into their planning system. This paper aims to investigate why and how Strategic Environmental Assessment (SEA) is enacted as an effective tool to integrate the environment into land-use planning during the construction process of an environmentally friendly society in China, and identify factors that influence the integration. It presents characteristics of the land-use planning system, and reviews the progress and current state of SEA in China. Results showmore » that SEA provides many benefits in promoting environmental considerations into the land-use planning process. The legal frameworks and operational procedures, in the context of land-use master planning SEA, are summarized and an assessment made of their effectiveness. Some barriers are highlighted through examination of the latest case studies, and several recommendations are presented to overcome these obstacles.« less
Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Muñiz-Valencia, Roberto; Jurado, Jose M; Alcázar, Ángela; Aguayo-Villarreal, Ismael A
2017-12-15
Due the negative effects of pesticides on environment and human health, more efficient and environmentally friendly methods are needed. In this sense, a simple, fast, free from memory effects and economical direct-immersion single drop micro-extraction (SDME) method and GC-MS for multi-class pesticides determination in mango samples was developed. Sample pre-treatment using ultrasound-assisted solvent extraction and factors affecting the SDME procedure (extractant solvent, drop volume, stirring rate, ionic strength, time, pH and temperature) were optimized using factorial experimental design. This method presented high sensitive (LOD: 0.14-169.20μgkg -1 ), acceptable precision (RSD: 0.7-19.1%), satisfactory recovery (69-119%) and high enrichment factors (20-722). Several obtained LOQs are below the MRLs established by the European Commission; therefore, the method could be applied for pesticides determination in routing analysis and custom laboratories. Moreover, this method has shown to be suitable for determination of some of the studied pesticides in lime, melon, papaya, banana, tomato, and lettuce. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xia, Guobin; Lin, Chunfang; Liu, Songbai
2016-09-01
A large scale isolation and purification of theaflavin (TF) and epigallocatechin (EGC) has been successfully developed by tannase-mediated biotransformation combining high-speed countercurrent chromatography. After tannase hydrolysis of a commercially available theaflavins extract (TE), the content of TF and EGC in tannase-mediated biotransformation product (TBP) achieved approximately 3 times enrichment. SEM studies revealed smooth tannase biotransformation and the possibility of recovery of the tannase. A single 1.5 hours' HSCCC separation for TF and EGC employing a two-phase solvent system could simultaneously produce 180.8 mg of 97.3% purity TF and 87.5 mg of 97.3% purity EGC. However, a preparative HPLC separation of maximum injection volume containing 120 mg TBP prepared 11.2 mg TF of 94.9% purity and 7.7 mg EGC of 89.9% purity. HSCCC separation demonstrated significant advantages over Prep HPLC in terms of sample loading size, separation time, environmental friendly solvent systems, and the production. © 2016 Wiley Periodicals, Inc.
Life cycle assessment of biomethane use in Argentina.
Morero, Betzabet; Groppelli, Eduardo; Campanella, Enrique A
2015-04-01
Renewable substitutes for natural gas, such as biogas, require adequate treatment to remove impurities. This paper presents the life cycle and environmental impact of upgrading biogas using absorption-desorption process with three different solvents: water, diglycolamine and polyethylene glycol dimethyl ether. The results showed that water produces a minor impact in most of the considered categories, and an economic analysis showed that water is the most feasible solvent for obtaining the lowest payback period. This analysis includes three different sources for biogas production and two end uses for biomethane. The use of different wastes as sources results in different environmental impacts depending on the type of energy used in the anaerobic digestion. The same situation occurs when considering the use of biomethane as a domestic fuel or for power generation. Using energy from biogas to replace conventional energy sources in production and upgrading biogas significantly reduce the environmental impacts of processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdelraheem, A.; El-Shazly, A. H.; Elkady, M. F.
2018-05-01
Lately, supercritical CO2 (SCCO2) have been getting great interest. It can be used in numerous applications because it is environmentally friendly, safe, comparatively low cost, and nonflammable. One of its applications is being a solvent in the synthesis of polymeric-clay nanocomposite. In this paper, intercalated polyaniline-clay nanocomposite (PANC) was prepared using SCCO2. The intercalation structure of polyaniline chains between clay layers was verified by various characterization techniques. Scanning electron microscope and transmission electron microscope (SEM-TEM) were used to show the morphology of the synthesized nanocomposite. The molecular structure of PANC nanocomposite was confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The BET surface area and the conductivity of the nanocomposite were determined.
FINDING SOLVENT REPLACEMENTS TO REDUCE THE POTENTIAL ENVIRONMENTAL IMPACT OF INDUSTRIAL WASTES
The United States Environmental Protection Agency has developed a solvent substitution software tool PARIS II (Program for Assisting the Replacement of Industrial Solvents, version 2.0). The purpose of this tool is to find less toxic solvents or solvent mixtures which may functi...
Slater, C Stewart; Savelski, Mariano J; Hitchcock, David; Cavanagh, Eduardo J
2016-01-01
An environmental analysis has been conducted to determine the cradle to gate life cycle emissions to manufacture the green solvent, 2-methyl tetrahydrofuran. The solvent is considered a greener chemical since it can be manufactured from renewable resources with a lower life cycle footprint. Analyses have been performed using different methods to show greenness in both its production and industrial use. This solvent can potentially be substituted for other ether and chlorinated solvents commonly used in organometallic and biphasic reactions steps in pharmaceutical and fine chemical syntheses. The 2-methyl tetrahydrofuran made from renewable agricultural by-products is marketed by Penn A Kem under the name ecoMeTHF™. The starting material, 2-furfuraldehyde (furfural), is produced from corn cob waste by converting the available pentosans by acid hydrolysis. An evaluation of each step in the process was necessary to determine the overall life cycle and specific CO2 emissions for each raw material/intermediate produced. Allocation of credits for CO2 from the incineration of solvents made from renewable feedstocks significantly reduced the overall carbon footprint. Using this approach, the overall life cycle emissions for production of 1 kg of ecoMeTHF™ were determined to be 0.191 kg, including 0.150 kg of CO2. Life cycle emissions generated from raw material manufacture represents the majority of the overall environmental impact. Our evaluation shows that using 2-methyl tetrahydrofuran in an industrial scenario results in a 97% reduction in emissions, when compared to typically used solvents such as tetrahydrofuran, made through a conventional chemical route.
Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware
NASA Technical Reports Server (NTRS)
Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.
2014-01-01
Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.
NASA Astrophysics Data System (ADS)
Ahmad, R.; Nicholson, K. S.; Nawaz, Q.; Peukert, W.; Distaso, M.
2017-07-01
Kesterites (CZT(S,Se)4) emerged as a favourable photovoltaic material, leading to solar cell efficiencies as high as 12.7%. The development of sustainable roll-to-roll printing processes that make use of Cu2ZnSnS4 (CZTS) nanoparticle inks requires the proper design of synthetic approaches and the understanding of the relation between process parameters and product purity. In the current paper, we developed this relationship by calculating a specific energy factor. A microwave-assisted synthetic method that operates at atmospheric pressure and makes use of eco-friendly solvents is established. Four solvents, i.e. ethylene glycol (EG), diethylene glycol (di-EG), triethylene glycol (tri-EG) and tetraethylene glycol (tet-EG) are compared and the temperature during the reaction is assessed by two different methods. In particular, two by-products have been identified, i.e. Cu2 - x S and a hexagonal phase. We show that the variation of reaction parameters such as power irradiation, type of solvent and precursor concentration influences the nanoparticles' sizes (from 12 to 6 nm) and also the temperature-time profile of reaction which, in turn, can be related to phase purity of CZTS nanoparticles. The results suggest that the product purity scales with the specific energy factor providing a useful tool to a rational design of high-quality CZTS nanoparticles.
Pandey, Ashish; Pandey, Siddharth
2014-12-18
Deep eutectic solvents (DESs) have shown potential as promising environmentally friendly alternatives to conventional solvents. Many common and popular DESs are obtained by simply mixing a salt and a H-bond donor. Properties of such a DES depend on its constituents. Change in temperature and addition of water, a benign cosolvent, can change the physicochemical properties of DESs. The effect of changing temperature and addition of water on solvatochromic probe behavior within three DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, and urea, respectively, in 1:2 mol ratios termed ethaline, glyceline, and reline is presented. Increase in temperature results in reduced H-bond donating acidity of the DESs. Dipolarity/polarizability and H-bond accepting basicity do not change with changing temperature of the DESs. The response of the fluorescence probe pyrene also indicates a decrease in the polarity of the DESs as temperature is increased. Addition of water to DES results in increased dipolarity/polarizability and a decrease in H-bond accepting basicity. Except for pyrene, solvatochromic probes exhibit responses close to those predicted from ideal-additive behavior with slight preferential solvation by DES within the aqueous mixtures. Pyrene response reveals significant preferential solvation by DES and/or the presence of solvent-solvent interactions, especially within aqueous mixtures of ethaline and glyceline, the DESs constituted of H-bond donors with hydroxyl functionalities. FTIR absorbance and Raman spectroscopic measurements of aqueous DES mixtures support the outcomes from solvatochromic probe responses. Aqueous mixtures of ethaline and glyceline possess relatively more interspecies H-bonds as compared to aqueous mixtures of reline, where interstitial accommodation of water within the reline molecular network appears to dominate.
Structure, morphology, and assembly behavior of kafirin
Xiao, Jie; Li, Yunqi; Li, Ji; ...
2014-12-15
Prolamins from grains have attracted intensive attention in recent years due to their potential in satisfying the demand for environmentally friendly (biodegradable), abundantly available (sustainable), and cost-effective biomaterials. However, for kafirin, the prolamin from sorghum, its composition, structure, morphology, and self-assembly behaviors have not been fully characterized. In this paper, kafirin was extracted from the whole sorghum grain and found to contain 68, 14, 6, and 12% of α-, β-, and γ-fractions and cross-linked kafirin, respectively. Freeze-dried kafirin contained ~49% α-helix in the solid state. When dissolved in 65% (v/v) isopropanol, 60% (v/v) tert-butanol, and 85% (v/v) ethanol aqueous solvents,more » the relative α-helix content in kafirin increased with the decrease of solvent polarity. Structural analysis using small-angle X-ray scattering (SAXS) indicated that kafirin (2 mg/mL) took stretched and extended conformations with dimensions of 118 × 15 × 15 and 100 × 11 × 11 Å in 60% tert-butanol and 65% isopropanol, respectively. More elongated conformation of individual kafirin with high-order assembly was observed in 85% ethanol. Protein aggregation occurred as protein concentration increased in its good solvent. The morphology of kafirin assemblies captured by atomic force microscopy (AFM) revealed that kafirin protein took uniform particle morphology at low concentration, and disk-like or rod-like structures resulting from solvent evaporation induced particle interactions emerged at high concentrations. Lastly, these results suggest that both protein concentration and solvent polarity can effectively regulate kafirin assemblies from thick rod-like to slim rod-like structures, a convenient way to tune the fibrillation of prolamin-based biomaterials.« less
You, Xiangwei; Wang, Suli; Liu, Fengmao; Shi, Kaiwei
2013-07-26
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction technique based on the solidification of a floating organic droplet followed by high performance liquid chromatography with diode array detection was developed for simultaneous determination of six fungicide residues in juices and red wine samples. The low-toxicity solvent, 1-dodecanol, was used as an extraction solvent. For its low density and proper melting point near room temperature, the extractant droplet was collected easily by solidifying it at a low temperature. The surfactant, Tween 80, was used as an emulsifier to enhance the dispersion of the water-immiscible extraction solvent into an aqueous phase, which hastened the mass-transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid-liquid microextraction methods was not used in the proposed method. Some parameters (e.g., the type and volume of extraction solvent, the type and concentration of surfactant, ultrasound extraction time, salt addition, and volume of samples) that affect the extraction efficiency were optimized. The proposed method showed a good linearity within the range of 5μgL(-1)-1000μgL(-1), with the correlation coefficients (γ) higher than 0.9969. The limits of detection for the method ranged from 0.4μgL(-1) to 1.4μgL(-1). Further, this simple, practical, sensitive, and environmentally friendly method was successfully applied to determine the target fungicides in juice and red wine samples. The recoveries of the target fungicides in red wine and fruit juice samples were 79.5%-113.4%, with relative standard deviations that ranged from 0.4% to 12.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-01-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius. PMID:28008987
NASA Astrophysics Data System (ADS)
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-12-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.
Zhao, Jing; Zhu, Ying-Jie; Wu, Jin; Zheng, Jian-Qiang; Zhao, Xin-Yu; Lu, Bing-Qiang; Chen, Feng
2014-03-15
Chitosan-coated calcium silicate hydrate (CSH/chitosan) mesoporous microspheres formed by self-assembly of nanosheets have been synthesized in aqueous solution under ambient conditions without using any toxic surfactant or organic solvent. The method reported herein has advantages of simplicity, low cost and being environmentally friendly. The BET specific surface area of CSH/chitosan mesoporous microspheres is measured to be as high as ~356 m(2) g(-1), which is considerably high among calcium silicate materials. The as-prepared CSH/chitosan mesoporous microspheres are promising adsorbent and exhibit a quick and highly efficient adsorption behavior toward heavy metal ions of Ni(2+), Zn(2+), Cr(3+), Pb(2+) Cu(2+) and Cd(2+) in aqueous solution. The adsorption kinetics can be well fitted by the pseudo second-order model. The maximum adsorption amounts of Ni(2+), Zn(2+), Pb(2+), Cu(2+) and Cd(2+) on CSH/chitosan mesoporous microspheres are extremely high, which are 406.6, 400, 796, 425 and 578 mg/g, respectively. The CSH/chitosan adsorbent exhibits the highest affinity for Pb(2+) ions among five heavy metal ions. The adsorption capacities of the CSH/chitosan adsorbent toward heavy metal ions are relatively high compared with those reported in the literature. Copyright © 2013 Elsevier Inc. All rights reserved.
Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...
GUIDE FOR CONDUCTING TREATABILITY STUDIES UNDER CERCLA: SOLVENT EXTRACTION - INTERIM GUIDANCE
Systematically conducted, well-documented treatability studies are an important component of the remedial investigation/feasibility study (RI/FS) process and the remedial design/remedial action (RD/RA) process under the Comprehensive Environmental Response, Compensation and Liabi...
Guo, Mengzhe; Liang, Junling; Wu, Shihua
2010-08-13
In this work, we have developed a novel hybrid two-dimensional counter-current chromatography and liquid chromatography (2D CCC x LC) system for the continuous purification of arctiin from crude extract of Arctium lappa. The first dimensional CCC column has been designed to fractionalize crude complex extract into pure arctiin effluent using a one-component organic/salt-containing system, and the second dimensional LC column has been packed with macroporous resin for on-line adsorption, desalination and desorption of arctiin which was effluent purified from the first CCC dimension. Thus, the crude arctiin mixture has been purified efficiently and conveniently by on-line CCC x LC in spite of the use of a salt-containing solvent system in CCC separation. As a result, high purity (more than 97%) of arctiin has been isolated by repeated injections both using the ethyl acetate-8% sodium chloride aqueous solution and butanol-1% sodium chloride aqueous solution. By contrast with the traditional CCC processes using multi-component organic/aqueous solvent systems, the present on-line CCC x LC process only used a one-component organic solvent and thus the solvent is easier to recover and regenerate. All of used solvents such as ethyl acetate, n-butanol and NaCl aqueous solution are low toxicity and environment-friendly. Moreover, the lower phase of salt-containing aqueous solution used as mobile phase, only contained minor organic solvent, which will save much organic solvent in continuous separation. In summary, our results indicated that the on-line hybrid 2D CCC x LC system using one-component organic/salt-containing aqueous solution is very promising and powerful tool for high-throughput purification of arctiin from fruits of A. lappa. 2010 Elsevier B.V. All rights reserved.
Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei
2016-09-01
Biorefinery process of corn cob bagasse was investigated by integrating microbial lipid and ABE fermentation. The effects of NaOH concentration on the fermentations performance were evaluated. The black liquor after pretreatment was used as substrate for microbial lipid fermentation, while the enzymatic hydrolysates of the bagasse were used for ABE fermentation. The results demonstrated that under the optimized condition, the cellulose and hemicellulose in raw material could be effectively utilized. Approximate 87.7% of the polysaccharides were converted into valuable biobased products (∼175.7g/kg of ABE along with ∼36.6g/kg of lipid). At the same time, almost half of the initial COD (∼48.9%) in the black liquor could be degraded. The environmentally friendly biorefinery process showed promising in maximizing the utilization of biomass for future biofuels production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prayon process for wet acid purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davister, A.; Peeterbroeck, M.
Described is a process developed in Belgium which enables the upgrading technical phosphoric acid to feed and food grades. After laboratory and pilot tests, Prayon developed and patented a solvent extraction process using a mixture of di-isopropyl ether and tributyl phosphate as solvent. The purified phosphoric acid obtained complies with the quality requirements of the market and can be used for metal treatments, in the manufacture of pure phosphates, for cattle feed, by the fermentation industry, for beverages, etc. Among the advantages of this process are its simplicity of operation, its low power consumption, and minimal environmental pollution. Extensive technologicalmore » data are given.« less
Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V; Lettieri, Paola; Titchener-Hooker, Nigel J
2016-09-01
Life-cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost-efficient, robust and environmentally-friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale-up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed-batch (FB) and perfusion-based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO 2 than the FB process. Water consumption was the most important impact category, especially when scaling-up the processes, as energy was required to produce process water and water-for-injection, while CO 2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally-friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324-1335, 2016. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES
The design of a chemical process involves many aspects: from profitability, flexibility and reliability to safety to the environment. While each of these is important, in this work, the focus will be on profitability and the environment. Key to the study of these aspects is the ...
THE DESIGN OF TECHNOLOGICALLY EFFECTIVE AND ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES
There is presently considerable interest in finding environmentally benign replacement solvents that can perform in many different applications as solvents normally do. This requires solvents with desirable properties, e.g., ability to dissolve certain compounds, and without oth...
Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan
2016-03-01
Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry. A three-dimensional porous coating was formed with carbon nanoparticles. In combination with high-performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor-by-factor optimization method. The established method exhibited good linearity (0.01-10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2-106% and 93.4-108%, respectively. The results indicated that the carbon nanoparticle-coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.
Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia
2016-07-05
Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.
Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong
2017-01-01
Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed hybrid sequence was more favorable than the traditional distillation process when the methanol fraction of the feed stream was <3% and more benefit could be obtained when that fraction decreased.
Synthesis and characterization of CMC from water hyacinth for lithium-ion battery applications
NASA Astrophysics Data System (ADS)
Hidayat, Sahrul; Susanty, Riveli, Nowo; Suroto, Bambang Joko; Rahayu, Iman
2018-02-01
Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and longer lifetime compared to similar rechargeable battery systems. One of the components that determine the performance of a lithium ion battery is the binder material, whether at the anode or the cathode. In commercial batteries, the material used as the binder is Polyvinylidene Difluoride (PVDF), with n-methyl-2-phyrrolidone (NMP) as the solvent. Both are synthetic materials that are expensive, toxic and harmful to the environment. An alternative binder material for lithium-ion battery electrodes is CMC (carboxymethyl cellulose) in a water solvent. CMC is cheaper than PVDF, non-toxic and more environmental friendly. CMC can be synthesized from several types of plants, such as water hyacinth, which is a weed plant with high cellulose content. The synthesis of CMC consists of three main steps, namely 1) the isolation process from water hyacinth, 2) the alkalization and carboxymethylation process and 3) the purification process to obtain CMC in high purity. FTIR characterization of the CMC shows five region of absorption bands. The bands in the region 1330-1400 cm-1 are due to symmetrical deformations of CH2 and OH groups. The ether bonds in CMC occur in the fingerprint region of 1250-1060 cm-1. The presence of new and strong absorption band around 1600 cm-1 is confirmed to the stretching vibration of the carboxyl group (COO-), while the one around 1415 cm-1 is assigned to carboxyl groups as it salts. The broad absorption band above 3400 cm-1 is due to the stretching frequency of the hydroxyl group (-OH). Purity test on three samples (CMC mesh-100, CMC mesh-60 and CMC, mesh-40) gives purity values of 99.89%, 99.99% and 99.89%, respectively. This proves that CMC have actually been formed with high purity.
Eco-friendly (green) synthesis of magnetically active gold nanoclusters
NASA Astrophysics Data System (ADS)
Kadasala, Naveen Reddy; Lin, Lu; Gilpin, Christopher; Wei, Alexander
2017-12-01
Au-FexOy composite nanoparticles (NPs) are of great technological interest due to their combined optical and magnetic properties. However, typical syntheses are neither simple nor ecologically friendly, creating a challenging situation for process scale-up. Here we describe conditions for preparing Au-FexOy NPs in aqueous solutions and at ambient temperatures, without resorting to solvents or amphiphilic surfactants with poor sustainability profiles. These magnetic gold nanoclusters (MGNCs) are prepared in practical yields with average sizes slightly below 100 nm, and surface plasmon resonances that extend to near-infrared wavelengths, and sufficient magnetic moment (up to 6 emu g-1) to permit collection within minutes by handheld magnets. The MGNCs also produce significant photoluminescence when excited at 488 nm. Energy dispersive X-ray (EDX) analysis indicates a relatively even distribution of Fe within the MGNCs, as opposed to a central magnetic core.
Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A.; Birdwell, Jr, Joseph F.; Bonnesen, Peter V.
This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less
Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A.; Birdwell, Joseph F.; Bonnesen, Peter V.
This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.
The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm 3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less
Uysal, Deniz; Karadaş, Cennet; Kara, Derya
2017-05-01
A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.
Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li
2014-08-05
The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.
Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams
Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; ...
2015-01-21
The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm 3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less
Towards sustainable and safe apparel cleaning methods: A review.
Troynikov, Olga; Watson, Christopher; Jadhav, Amit; Nawaz, Nazia; Kettlewell, Roy
2016-11-01
Perchloroethylene (PERC) is a compound commonly used as a solvent in dry cleaning, despite its severe health and environmental impacts. In recent times chemicals such as hydrocarbons, GreenEarth(®), acetal and liquid carbon dioxide have emerged as less damaging substitutes for PERC, and an even more sustainable water-based wet cleaning process has been developed. We employed a systematic review approach to provide a comprehensive overview of the existing research evidence in the area of sustainable and safe apparel cleaning methods and care. Our review describes traditional professional dry cleaning methods, as well as those that utilise solvents other than PERC, and their ecological attributes. In addition, the new professional wet cleaning process is discussed. Finally, we address the health hazards of the various solvents used in dry cleaning and state-of-the-art solvent residue trace analysis techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kuroda, Noritaka; Hird, Nick; Cork, David G
2006-01-01
During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.
Solid state synthesis of poly(dichlorophosphazene)
Allen, Christopher W.; Hneihen, Azzam S.; Peterson, Eric S.
2001-01-01
A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.
Controlled synthesis of titania using water-soluble titanium complexes: A review
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Dien, Luong Xuan; Vo, Dai-Viet N.; Le, Thanh Son
2017-07-01
The development of human society has led to the increase in energy and resources consumption as well as the arising problems of environmental damage and the toxicity to the human health. The development of novel synthesis method which tolerates utilization of toxic solvents and chemicals would fulfill the demand of the society for safer, softer, and environmental friendly technologies. For the past decades, a remarkable progress has been attained in the development of new water-soluble titanium complexes (WSTC) and their use for the synthesis of nanocrystalline titanium dioxide materials by aqueous solution-based approaches. The progress of synthesis of nanocrystalline titanium dioxide using such WSTCs is reviewed in this work. The key structural features responsible for the successfully controlled synthesis of TiO2 are discussed to provide guidelines for the morphology-controlled synthesis. Finally, this review ends with a summary and some perspectives on the challenges as well as new directions in this fascinating research.
Minute synthesis of extremely stable gold nanoparticles.
Zhou, Min; Wang, Baoxiang; Rozynek, Zbigniew; Xie, Zhaohui; Fossum, Jon Otto; Yu, Xiaofeng; Raaen, Steinar
2009-12-16
We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.
Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects.
Cecchi, Franco; Cavinato, Cristina
2015-05-01
Scientific and industrial experiences, together with economical and policies changes of last 30 years, bring anaerobic digestion among the most environmental friendly and economically advantageous technologies for organic waste treatment and management in Europe. In this short review, the role of anaerobic digestion of organic wastes is discussed, considering the opportunity of a territorial friendly approach, without barriers, where different organic wastes are co-treated. This objective can be achieved through two proposed strategies: one is the anaerobic digestion applied as a service for the agricultural and farming sector; the other as a service for citizen (biowaste, diapers and wastewater treatment integration). The union of these two strategies is an environmental- and territorial-friendly process that aims to produce renewable energy and fertiliser material, with a low greenhouse gas emission and nutrients recovery. The advantage of forthcoming application of anaerobic digestion of organic wastes, even for added value bioproducts production and new energy carriers, are finally discussed. Among several advantages of anaerobic digestion, the role of the environmental controller was evaluated, considering the ability of minimising the impacts exploiting the biochemical equilibrium and sensitivity as a quality assurance for digestate. © The Author(s) 2015.
Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment
NASA Astrophysics Data System (ADS)
Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.
2018-05-01
Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.
Kim, Soo-Dong; Choe, Won-Gyun; Jeong, Jong-Ryul
2013-11-01
In this work, high-reflectance brilliant white color magnetic microspheres comprising a Fe/TiO2/Ag core-shell structure with a continuous, uniform compact silver layer were successfully fabricated by TiO2-assisted electroless plating in a simple and eco-friendly method. The coating procedure for TiO2 and Ag involved a sol-gel reaction and electroless plating with ultrasound treatment. The electroless plating step was carried out in an eco-friendly manner in a single process without environmentally toxic additives. The TiO2 layer was used as a modification layer between the Fe microspheres and the silver layer to improve adhesion. A continuous and compact silver layer could be formed with a high degree of morphological control by introducing ultrasonication and adjusting the ammonium hydroxide concentration. Copyright © 2013 Elsevier B.V. All rights reserved.
Lightweight, high-opacity paper : process costs and energy use reduction
John H. Klungness; Fabienne Pianta; Mathew L. Stroika; Marguerite Sykes; Freya Tan; Said AbuBakr
1999-01-01
Fiber loading is an environmentally friendly, energy efficient, and economical method for depositing precipitated calcium carbonate (PCC) partly within pulp fibers. Fiber loading can easily be done within the existing pulp processing system. This paper is a review of the process development from bench-scale to industrial-scale demonstrations, with additional...
An economically viable and environmentally benign continuous flow intensified process has been developed to demonstrate the ability to upgrade biomass into potential biofuels, solvents, and pharmaceutical feedstocks using a bimetallic AgPd@g-C3N4 catalyst.
DEMONSTRATION BULLETIN: IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC.
The Steam Enhanced Recovery Process (SERP) is designed to remove volatile compounds such as halogenated solvents and petroleum hydrocarbons, and semi-volatile compounds from contaminated soils in situ. The vapor pressures of most contaminants will increase by the addition of ste...
DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliot B. Kennel; Chong Chen; Dady Dadyburjor
2005-04-13
The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just asmore » the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.« less
Organic solar cells with graded absorber layers processed from nanoparticle dispersions.
Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander
2016-03-28
The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.
Physical and Electrical Properties of SiO2 Layer Synthesized by Eco-Friendly Method
NASA Astrophysics Data System (ADS)
Jong-Woong Kim,; Young-Seok Kim,; Sung-Jei Hong,; Tae-Hwan Hong,; Jeong-In Han,
2010-05-01
SiO2 thin film has a wide range of applications, including insulation layers in microelectronic devices, such as semiconductors and flat panel displays, due to its advantageous characteristics. Herein, we developed a new eco-friendly method for manufacturing SiO2 nanoparticles and, thereby, SiO2 paste to be used in the digital printing process for the fabrication of SiO2 film. By excluding harmful Cl- and NO3- elements from the SiO2 nanoparticle synthetic process, we were able to lower the heat treatment temperature for the SiO2 precursor from 600 to 300 °C and the diameter of the final SiO2 nanoparticles to about 14 nm. The synthesized SiO2 nanoparticles were dispersed in an organic solvent with additives to make a SiO2 paste for feasibility testing. The SiO2 paste was printed onto a glass substrate to test the feasibility of using it for digital printing. The insulation resistance of the printed film was high enough for it to be used as an insulation layer for passivation.
ERIC Educational Resources Information Center
Alp, Elvan; Ertepinar, Hamide; Tekkaya, Ceren; Yilmaz, Ayhan
2008-01-01
This study investigated elementary school students' environmental knowledge and attitudes, the effects of sociodemographic variables on environmental knowledge and attitudes, and how self-reported environmentally friendly behaviour is related to environmental knowledge, behavioural intentions, environmental affects, and the students' locus of…
Ferri, Maura; Graen-Heedfeld, Jürgen; Bretz, Karlheinz; Guillon, Fabien; Michelini, Elisa; Calabretta, Maria Maddalena; Lamborghini, Matteo; Gruarin, Nicolò; Roda, Aldo; Kraft, Axel
2017-01-01
Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen. PMID:28125712
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... Friends Fund XLII, LLC; Notice of Application Ready for Environmental Analysis and Soliciting Comments...+ Hydro Friends Fund XLII, LLC. e. Name of Project: Braddock Locks and Dam Hydroelectric Project. f...\\ Hydro Friends Fund XLII, LLC, c/o Hydro Green Energy, LLC, 900 Oakmont Lane, Suite 310, Westmont, IL...
Nanoparticulate strategies for effective delivery of poorly soluble therapeutics.
Gokce, Evren H; Ozyazici, Mine; Souto, Eliana B
2010-07-01
The pharmacological activity of a drug molecule depends on its ability to dissolve and interact with its biological target, either through dissolution and absorption, or through dissolution and receptor interaction. The low bioavailability that characterizes poorly water-soluble drugs is usually attributed to the dissolution kinetic profile. Novel strategies to effectively deliver these drugs include nanoparticulate approaches that either increase the surface area of the drug or improve the solubility characteristics of the drug. Nanosizing approaches are based on the production of drug nanocrytals dispersed in an aqueous surfactant solution, whereas other possibilities include drug loading in nanoparticles. Promising nanoparticulate approaches include the development of lipid-based nanocarriers to increase drug solubility followed by enhanced bioavailability. To select the best approach there are, however, some critical considerations to take into account, for example the physicochemical properties of the drug, the possibility to scale-up the production process, the toxicological considerations of the use of solvents and cosolvents, the selection of an environmentally sustainable methodology and the development of a more patient-friendly dosage form. This article addresses these relevant questions and provides feasible examples of novel strategies with respect to relevant administration routes.
A study of material composition disclosure practices in green footwear products.
Jacques, Jocelise J; Guimarães, Lia B M
2012-01-01
This work is based on the study of pioneering sustainable product development initiatives, and the analysis was guided by the cradle-to-cradle concept, which sees the waste of a given process as raw material for another, just like it happens in nature. Several studies on human factors have focused on factory conditions and workers dealing with product assembly. This research, however, relates more to consumer behavior, product use and end-of-life. The purchase of more environmentally- friendly products, in particular, is heavily influenced by the information made available by the companies. In this scenario, this article discusses three early but notable efforts on green product development, focusing on the disclosure practices adopted by the companies regarding the composition of their products. Research and data collection has focused on the footwear industry, whose products satisfy a basic human need and are ubiquitous worldwide. The use of hazardous materials and chemicals in shoe manufacturing, particularly the use of chromium - a highly toxic element - in addition to toxic solvents and adhesives and non-recyclable synthetic materials can pose serious risks to human health and the environment, even though the consumer usually is not aware of all the relevant characteristics of this kind of product.
Samadi, Fatemeh; Sarafraz-Yazdi, Ali; Es'haghi, Zarrin
2018-05-30
A vortex assisted dispersive solid phase extraction approach (VADSPE) based on crab shell powder as biodegradable and biocompatible μ-sorbent was developed for simultaneous analysis of three benzodiazepines (BZPs): Oxazepam, Flurazepamand Diazepam, in biological matrixes included blood, nail, hair and urine samples. The effective parameters in VADSPE process, including the volume of uptake solvent, the dosage of sorbent, extraction time and back extraction time, were optimized using response surface methodology(RSM) based on central composite design(CCD). The suggested technique allows successful trapping of BZPs in a single-step extraction. Under the optimized extraction conditions, the proposed approach was exhibited low limits of detection (0.003-1.2 μg·mL -1 ), an acceptable linearity (0.04-20 μg·mL -1 ). Method performance was assessed by recovery experiments at spiking levels of 10 μg·mL -1 (n = 5) for BZPs in blood, nail, hair and urine samples. Relative recoveries were determined by HPLC, which were between 36%and 95.6%. Copyright © 2018. Published by Elsevier B.V.
Study on tea leaves extract as green corrosion inhibitor of mild steel in hydrochloric acid solution
NASA Astrophysics Data System (ADS)
Hamdan, A. B.; Suryanto; Haider, F. I.
2018-01-01
Corrosion inhibitor from extraction of plant has been considered as the most preferable and most chosen technique to prevent corrosion of metal in acidic medium because of the environmental friendly factor. In this study, black tea leaves extraction was tested as corrosion inhibitor for mild steel in 0.1M of hydrochloric acid (HCl) with the absence and presence of corrosion inhibitor. The efficiency and effectiveness of black tea as corrosion inhibitor was tested by using corrosion weight loss measurement experiment was carried out with varies parameters which with different concentration of black tea extract solution. The extraction of black tea solution was done by using aqueous solvent method. The FT-IR result shows that black tea extract containing compounds such as catechin, caffeine and tannins that act as anti-corrosive reagents and responsible to enhance the effectiveness of black tea extract as corrosion inhibitor by forming the hydrophobic thin film through absorption process. As a result of weight loss measurement, it shows that loss in weight of mild steel reduces as the concentration of inhibitor increases. The surface analysis was done on the mild steel samples by using SEM.
Determination and Quantification of Molecular Interactions in Protein Films: A Review.
Hammann, Felicia; Schmid, Markus
2014-12-10
Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins.
Determination Quantification of Molecular Interactions in Protein Films: A Review
Hammann, Felicia; Schmid, Markus
2014-01-01
Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins. PMID:28788285
Lin, Zaw; Karthik, Paneer Selvam; Hada, Masaki; Nishikawa, Takeshi; Hayashi, Yasuhiko
2017-01-01
Owing to its unique properties, graphene has attracted tremendous attention in many research fields. There is a great space to develop graphene synthesis techniques by an efficient and environmentally friendly approach. In this paper, we report a facile method to synthesize well-dispersed multilayer graphene (MLG) without using any chemical reagents or organic solvents. This was achieved by the ozone-assisted sonication of the natural graphite in a water medium. The frequency or number of ozone treatments plays an important role for the dispersion in the process. The possible mechanism of graphene exfoliation and the introduction of functional groups have been postulated. The experimental setup is unique for ozone treatment and enables the elimination of ozone off-gas. The heat generated by the dissipation of ultrasonic waves was used as it is, and no additional heat was supplied. The graphene dispersion was stable, and no evidence of aggregation was observed---even after several months. The characterization results show that well-dispersed MLG was successfully synthesized without any significant damage to the overall structure. The graphene obtained by this method has potential applications in composite materials, conductive coatings, energy storage, and electronic devices. PMID:28555015
Lin, Zaw; Karthik, Paneer Selvam; Hada, Masaki; Nishikawa, Takeshi; Hayashi, Yasuhiko
2017-05-27
Owing to its unique properties, graphene has attracted tremendous attention in many research fields. There is a great space to develop graphene synthesis techniques by an efficient and environmentally friendly approach. In this paper, we report a facile method to synthesize well-dispersed multilayer graphene (MLG) without using any chemical reagents or organic solvents. This was achieved by the ozone-assisted sonication of the natural graphite in a water medium. The frequency or number of ozone treatments plays an important role for the dispersion in the process. The possible mechanism of graphene exfoliation and the introduction of functional groups have been postulated. The experimental setup is unique for ozone treatment and enables the elimination of ozone off-gas. The heat generated by the dissipation of ultrasonic waves was used as it is, and no additional heat was supplied. The graphene dispersion was stable, and no evidence of aggregation was observed---even after several months. The characterization results show that well-dispersed MLG was successfully synthesized without any significant damage to the overall structure. The graphene obtained by this method has potential applications in composite materials, conductive coatings, energy storage, and electronic devices.
Membrane emulsification to produce perfume microcapsules
NASA Astrophysics Data System (ADS)
Pan, Xuemiao
Microencapsulation is an efficient technology to deliver perfume oils from consumer products onto the surface of fabrics. Microcapsules having uniform size/mechanical strength, may provide better release performance. Membrane emulsification in a dispersion cell followed by in-situ polymerization was used to prepare narrow size distribution melamine-formaldehyde (MF) microcapsules containing several types of oil-based fragrances or ingredients. Investigated in this study are the parameters impacting to the size and size distribution of the droplets and final MF microcapsules. A pilot plant-scale cross-flow membrane system was also used to produce MF microcapsules, demonstrating that the membrane emulsification process has potential to be scaled up for industrial applications. In this study, health and environmental friendly poly (methyl methacrylate) (PMMA) microcapsules with narrow size distribution were also prepared for the first time using the dispersion cell membrane emulsification system. Characterization methods previously used for thin-shell microcapsules were expanded to analyse microcapsules with thick shells. The intrinsic mechanical properties of thick shells were determined using a micromanipulation technique and finite element analysis (FEM). The microcapsules structure was also considered in the determination of the permeability and diffusivity of the perfume oils in good solvents..
NASA Astrophysics Data System (ADS)
Quiroga, Jairo; Romo, Pablo E.; Ortiz, Alejandro; Isaza, José Hipólito; Insuasty, Braulio; Abonia, Rodrigo; Nogueras, Manuel; Cobo, Justo
2016-09-01
The synthesis of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids 3 from the reaction of 6-aminopyrimidines 1 with arylidene derivatives of pyruvic acid 2 under microwave and ultrasound irradiation is described. The orientation of cyclization process was determined by NMR measurements. The methodology provides advantages such as high yields and friendly to the environment without the use of solvents. The antioxidant properties, DPPH free radical scavenging, ORAC, and anodic potential oxidation of the new pyridopyrimidines were studied.
Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sojeong; Qu, Wenchao; Alexoff, David L.
2014-12-12
An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.
USDA-ARS?s Scientific Manuscript database
An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...
USDA-ARS?s Scientific Manuscript database
Ultrasound-assisted enzymatic bio-processing of greige cotton offers an environmentally friendly alternative approach to conventional alkaline scouring. Our research has found that the introduction of a low energy, uniform ultrasound field into enzyme processing solutions greatly improved enzyme ef...
Development of bio-sourced binder to metal injection moulding
NASA Astrophysics Data System (ADS)
Royer, Alexandre; Barrière, Thierry; Gelin, Jean-Claude
2016-10-01
In the MIM process the binder play the most important role. It provides fluidity of the feedstock mixture for injection molding and adhesion of the powder to keep the molded shape. The binder must provide strength and cohesion for the molded part, must be easy to be removed from the molded part, and must be the recyclable, environmentally friendly and economical ones. The goal of this study is to develop a binder environmentally friendly. For this, a study of formulation based on polyethylene glycol, because of is water debinding properties, was made. Polylactic acid and Polyhydroxyalkanoates were investigated as bio sourced polymers. The chemical, miscibility and rheological behavior of the binder formulation were investigated.
Steam generation by combustion of processed waste fats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudel, F.; Lengenfeld, P.
1993-12-31
The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.
DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES
Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...
Process for removing polychlorinated biphenyls from soil
Hancher, C.W.; Saunders, M.B.; Googin, J.M.
1984-11-16
The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.
ERIC Educational Resources Information Center
Candan, Sevcan; Erten, Sinan
2015-01-01
In this study, the effectiveness of Eco-Friendly Person Activity Package developed in order to raise environmental awareness in pre-service teachers and enable them to be an example of an eco-friendly teacher for their future students, and the responses about Eco-Friendly Person Activity Package were investigated. The study was conducted on 75…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... Friends Fund XLII, LLC; Notice of Scoping Meetings and Environmental Site Review and Soliciting Scoping.... c. Date filed: September 17, 2012. d. Applicant: Lock+ Hydro Friends Fund XLII, LLC. e. Name of...)-825(r). h. Applicant Contact: Mr. Mark R. Stover, Lock+\\TM\\ Hydro Friends Fund XLII, LLC, c/o Hydro...
Karadaş, Cennet; Kara, Derya
2017-04-01
A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.
Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.
2013-01-01
Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864
Palm ethyl ester purification by using Choline Chloride - 1,2 propanediol as deep eutectic solvent
NASA Astrophysics Data System (ADS)
Manurung, R.; Alhamdi, M. A.; Syahputra, A.
2018-02-01
Deep eutectic solvent (DES) has gained more attention for using in biodiesel production because of environmental benefits and process improvements. This study was aimed to test the potency and effectiveness of Deep Eutectic Solvent (DES) based choline chloride: 1.2-propanediol as co-solvent in biodiesel purification. The method used in preparing DES synthesis process was conducted by mixing choline chloride: 1.2-propanediol with mole ratio variation such as: 1:2 ; 1:2.5 ; 1:3 ; and 1:3.5 (mole/mole). The temperature of DES synthesis was at 80 °C with 300 rpm stirring speed for 60 minutes. Variation of DES concentration base on percentage palm oil used: 1, 3, and 5 %. DES possible to increase the ethyl ester yield of biodiesel in the purification process. The best result of yield was 89.95% with the 9:1 molar ratio ethanol: oil and 5% of DES. The operation condition was at 70 °C of temperature reaction, 400 rpm of stirring speed, and 90 minutes of reaction time.
NASA Astrophysics Data System (ADS)
Cacho, Juan-Ignacio; Campillo, Natalia; Viñas, Pilar; Hernandez-Cordoba, Manuel
2015-04-01
Nitrophenols (NPs) are widely distributed environmental contaminants that can be present in soils and sediments due to the degradation of some pesticides (parathion and fenitrothion) or by accidental spilling in ammunition plants or storage places. This communication reports a rapid and sensitive procedure for the determination of the most common NPs in soils by using gas chromatography coupled to mass spectrometry (GC-MS) as the analytical technique. Ultrasound assisted extraction (UAE) was employed for the extraction of the NPs from the soil samples to an organic solvent. Next, the resulting UAE extracts were submitted to dispersive liquid-liquid microextraction (DLLME) for achieving an effective preconcentration. DLLME is an easy-to-carry out, environmentally friendly separation technique involving minimal amounts of organic solvents. Since the volatility of NPs is low, as a previous stage to the GC-MS measurement the compounds were derivatized using a simple "in-situ" acetylation procedure. The main parameters affecting the UAE stage, as well as the DLLME and derivatization steps, were investigated looking for maximum analytical signals. The optimized procedure provided extraction recoveries in the 72-86% range, with precision values (expressed as relative standard deviation, RSD) ≤ 12%, and detection limits ranging from 1.3 and 3.3 ng g-1, depending on the compound. 20 soil and sediment samples, from military, industrial and agricultural areas were analyzed by the studied procedure in order to check its applicability.
Eco-friendly electron beam lithography using water-developable resist material derived from biomass
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Oshima, Akihiro; Wakabayashi, Takanori; Kozawa, Takahiro; Tagawa, Seiichi
2012-07-01
We investigated the eco-friendly electron beam (EB) lithography using a high-sensitive negative type of water-developable resist material derived from biomass on hardmask layer for tri-layer processes. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of trimethylphenylammonium hydroxide. The images of 200 nm line and 800 nm space pattern with exposure dose of 7.0 μC/cm2 and CF4 etching selectivity of 2.2 with hardmask layer were provided by specific process conditions.
Development of eco-friendly submicron emulsions stabilized by a bio-derived gum.
Pérez-Mosqueda, Luis María; Ramírez, Pablo; Trujillo-Cayado, Luis Alfonso; Santos, Jenifer; Muñoz, José
2014-11-01
Many traditional organic solvents are being gradually replaced by ecofriendly alternatives. D-Limonene is a terpenic (bio)-solvent that fulfils the requirements to be considered a green solvent. D-Limonene sub-micron emulsions suffer from Ostwald ripening destabilization. In this study, we examined the influence of the addition of a natural gum (rosin gum) to D-limonene in order to prevent Ostwald ripening. This contribution deals with the study of emulsions formulated with a mixture of D-limonene and rosin gum as dispersed phase and Pluronic PE9400 as emulsifier. The procedure followed for the development of these formulations was based on the application of product design principles. This led to the optimum ratio rosin gum/D-limonene and subsequently to the optimum surfactant concentration. The combination of different techniques (rheology, laser diffraction and multiple light scattering) was demonstrated to be a powerful tool to assist in the prediction of the emulsions destabilization process. Not only did the addition of rosin gum highly increase the stability of these emulsions by inhibiting the Ostwald ripening, but it also reduced the emulsions droplet size. Thus, we found that stable sub-micron D-limonene-in-water emulsions have been obtained in the range 3-6 wt% Pluronic PE-9400 by means of a single-step rotor/stator homogenizing process. Copyright © 2014 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2016-09-01
Due to the environmental and economic benefits, biocementation resulting from a microbiologically induced calcium carbonate precipitation process is being increasingly used to enhance civil infrastructurethrough stone surface protection, sand ceme...
USDA Flax fiber utilization research
USDA-ARS?s Scientific Manuscript database
The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...
Han, Li; Wang, Xing-Rui; He, Min; Guo, Wei-Guang
2013-12-01
Based on Sichuan province environmental statistical survey data and other relevant activity data, volatile organic compounds (VOCs) emissions from typical anthropogenic sources in Sichuan province were calculated for the year of 2011 by applying the emission factor method. Besides, ozone and secondary organic aerosol formation potentials of these typical anthropogenic sources were discussed. The total VOC emission from these sources was about 482 kt in Sichuan province, biomass burning, solvent utilization, industrial processes, storage and distribution of fuel, and fossil fuel combustion contributed 174 kt, 153 kt, 121 kt, 21 kt and 13 kt, respectively; architecture wall painting, furniture coating, wood decoration painting and artificial board were the major emission sectors of the solvent utilization; while for the industrial processes, 19.4% of VOCs emission was from the wine industry. Chengdu was the largest contributor compared to the other cities in Sichuan, whose VOCs emission from these typical anthropogenic sources in 2011 was 112 kt. OFP of these sources was 1,930 kt altogether. Solvent utilization contributed 50.5% of the total SOA formation potentials, biomass burning and industrial processes both contributed about 23% , with storage and distribution of fuel and fossil fuel combustion accounting for 1% and 1.4%, respectively.
Method of preparation of removable syntactic foam
Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.
1995-07-11
Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.
Method of preparation of removable syntactic foam
Arnold, Jr., Charles; Derzon, Dora K.; Nelson, Jill S.; Rand, Peter B.
1995-01-01
Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.
Supercritical fluid processing: opportunities for new resist materials and processes
NASA Astrophysics Data System (ADS)
Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.
1996-05-01
Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.
Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films.
Lizundia, E; Urruchi, A; Vilas, J L; León, L M
2016-01-20
In this work we attempt to improve the functional properties and thermal stability of cellulose nanocrystal (CNC) films by means of eco-friendly materials and processes. Mechanically flexible films of closely packed CNCs with concentrations up to 5 wt.% of zinc oxide (ZnO) nanoparticles have been prepared by a simple, standard and environmentally friendly method using solely water. Results reveal that ultraviolet light is blocked by 98.5% at 1 wt.% ZnO while good transparency is maintained. A sharp hydrophobicity increase is observed with the addition of ZnO which would enhance the durability of films by decreasing the water diffusion through the material. The thermal degradation activation energy (E) presents an increase of 141%, denoting a high thermal stability of films, which would result beneficial for their potential application in the field of flexible electronics. Mechanical results demonstrate a high structural integrity of CNC/ZnO as a result of the occurring strong cellulosic inter- and intramolecular interactions within the closely packed CNC network. In overall, this work highlights the potential for environmentally friendly processing of sustainable nanostructured functional materials based on cellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition.
Das, Archana M; Ali, Abdul A; Hazarika, Manash P
2014-11-04
Cellulose acetate was synthesized from rice husk by using a simple, efficient, cost-effective and solvent-free method. Cellulose was isolated from rice husk (RH) using standard pretreatment method with dilute alkaline and acid solutions and bleaching with 2% H2O2. Cellulose acetate (CA) was synthesized successfully with the yield of 66% in presence of acetic anhydride and iodine as a catalyst in eco-friendly solvent-free conditions. The reaction parameters were standardized at 80 °C for 300 min and the optimum results were taken for further study. The extent of acetylation was evaluated from % yield and the degree of substitution (DS), which was determined by (1)H NMR and titrimetrically. The synthesized products were characterized with the help modern analytical techniques like FT-IR, (1)H NMR, XRD, etc. and the thermal behavior was evaluated by TGA and DSC thermograms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Jianbo; Xu, Zhenming
2017-03-15
up to now, the recycling of e-waste should be developed towards more depth and refinement to promote industrial production of e-waste resource recovery. in the present study, the recycling of aluminum electrolytic capacitors (AECs) from waste printed circuit boards (WPCBs) is focused on. First of all, AECs are disassembled from WPCBs by a self-designed machine; meanwhile, the disassembled AECs are subjected to an integrated process, involving heating treatment, crushing, sieving, and magnetic separating, to recover aluminum and iron; finally, the off-gas and residue generated during the aforementioned processes are analyzed to evaluate environmental risks. The results indicate that 96.52% and 98.68% of aluminum and iron, respectively, can be recovered from AECs under the optimal condition. The off-gas generated during the process is mainly composed of elements of C, H, and O, indicating that the off-gas is non-toxic and could be re-utilized as clean energy source. The residue according with toxicity characteristics leaching standard can be landfilled safely in sanitary landfill site. The present study provides an environmentally friendly and industrial application potential strategy to recycle AECs to promote e-waste recycling industry. Copyright © 2016 Elsevier B.V. All rights reserved.
An analysis of environmental data transmission
NASA Astrophysics Data System (ADS)
Yuan, Lina; Chen, Huajun; Gong, Jing
2017-05-01
To comprehensively construct environmental automatic monitoring has become the urgent need of environmental management, is a major measure to implement the scientific outlook on development and build a harmonious socialist society, and is an inevitable choice of “building a resource-conserving and environment-friendly society”, which is of great importance and profound significance to adjust the economic structure and transform growth pattern. This article first introduces the importance of environmental data transmission, then expounds the characteristics, key technologies, transmitting mode, and design ideas of environmental data transmission process, and finally, summarizes the full text.
NASA Technical Reports Server (NTRS)
Clausen, Christian A., III
1996-01-01
Liquid oxygen is used as the oxidizer for the liquid fueled main engines during the launch of the space shuttle. Any hardware that comes into contact with pure oxygen either during servicing of the shuttle or in the operation of the shuttle must be validated as being free of nonvolatile residue (NVR). This is a safety requirement to prevent spontaneous combustion of carbonaceous NVR if it was to come into contact with pure oxygen. Previous NVR validation testing of space hardware used Freon (CFC-113) as the test solvent. Because CFC-113 no longer can be used, a program was conducted to develop a NVR test procedure that uses a safe environmentally friendly solvent. The solvent that has been used in the new NVR test procedure is water. Work that has been conducted over the past three years has served to demonstrate that when small parts are subjected to ultrasound in a water bath and NVR is present a sufficient quantity is dispersed into the water to analyze for its concentration by the TOC method. The work that is described in this report extends the water wash NVR validation test to large-scale parts; that is, parts too large to be subjected to ultrasound. The method consists of concentrating the NVR in the water wash onto a bed of silica gel. The total adsorbent bed is then analyzed for TOC content by using a solid sample probe. Work that has been completed thus far has demonstrated that hydrocarbon based NVR's can be detected at levels of less than 0.1 mg per square foot of part's surface area by using a simple water wash.
Alves, Andreia; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan
2016-09-01
A new, fast, and environmentally friendly method based on ultrasound assisted extraction combined with dispersive liquid-liquid microextraction (US-DLLME) was developed and optimized for assessing the levels of seven phthalate metabolites (including the mono(ethyl hexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP), and mono-benzyl phthalate (MBzP)) in human nails by UPLC-MS/MS. The optimization of the US-DLLME method was performed using a Taguchi combinatorial design (L9 array). Several parameters such as extraction solvent, solvent volume, extraction time, acid, acid concentration, and vortex time were studied. The optimal extraction conditions achieved were 180 μL of trichloroethylene (extraction solvent), 2 mL trifluoroacetic acid in methanol (2 M), 2 h extraction and 3 min vortex time. The optimized method had a good precision (6-17 %). The accuracy ranged from 79 to 108 % and the limit of method quantification (LOQm) was below 14 ng/g for all compounds. The developed US-DLLME method was applied to determine the target metabolites in 10 Belgian individuals. Levels of the analytes measured in nails ranged between <12 and 7982 ng/g. The MEHP, MBP isomers, and MEP were the major metabolites and detected in every sample. Miniaturization (low volumes of organic solvents used), low costs, speed, and simplicity are the main advantages of this US-DLLME based method. Graphical Abstract Extraction and phase separation of the US-DLLME procedure.
Low Temperature Soda-Oxygen Pulping of Bagasse.
Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang
2016-01-13
Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.
Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro
2018-04-15
A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Febriana, Ike Dayi; Gala, Selfina; Mahfud, Mahfud
2017-05-01
Azo dye are synthetic organic dyes which has an azo group (- N = N -) as chromophore. Azo dye is resistand to decomposition process and harmfull for the environment and human being. Natural dye can be used as substitution of azo dye at textile industry. Natural dye are eco - friendly and can be applied for dyeing of fibrous material. Natural dye can be obtained from natural origin such as leaves, wood, or roots. The wood of jackfruit (Artocarpus heterophyllus) can used as natural source of natural dye. Ultrasound assisted extraction (UAE) is a new method that can be used to extract natural dye from jackfruit's wood. The aim of this research are to study about influence of ethanol concentration as solvent and extraction kinetic. Jackfruit's wood dust from sawmill used for the experimentation were sifted by sieve 35 mesh. Ethanol 96% used as solvent of this experiment and varied the concentration in volume to volume ratio (v/v). Experiment were carried out from 20 to 50 minutes. The result of this experiment shows that ethanol concentration influenced yield of extraction from jackfruit's wood. Concentration of ethanol will be affected polarity of solvent. The Peleg model was used to describe about kinetic model of natural dye extraction. Value of k1 and k2 constant are 0.003835 and 0.04186 respectively.
Merini, Luciano Jose; Cuadrado, Virginia; Giulietti, Ana María
2008-05-01
The 2,4-dichlorophenoxyacetic acid (2,4-D) is a hormone-like herbicide widely used in agriculture. Although its half life in soil is approximately two weeks, the thousands of tons introduced in the environment every year represent a risk for human health and the environment. Considering the toxic properties of this compound and its degradation products, it is important to assess and monitor the 2,4-D residues in agricultural soils. Furthermore, experiments of phyto/bioremediation are carried out to find economic and environmental friendly tools to restore the polluted soils. Accordingly, it is essential to accurately measure the amount of 2,4-D and its metabolites in soils. There is evidence that 2,4-D extraction from soil samples seriously depends on the physical and chemical properties of the soil, especially in those soils with high content of humic acids. The aim of this work was to assess the variables that influence the recovery and subsequent analysis of 2,4-D and its main metabolite (2,4-dichlorophenol) from those soils samples. The results showed that the recovery efficiency depends on the solvent and method used for the extraction, the amount and kind of solvent used for dissolving the herbicide and the soil water content at the moment of spiking. An optimized protocol for the extraction and quantification of 2,4-D and its main metabolite from soil samples is presented.
Gupta, Manoj Kumar; Jain, Rajeev; Singh, Pratibha; Ch, Ratnasekhar; Mudiam, Mohana Krishna Reddy
2015-06-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and well-known carcinogens. Hydroxy derivatives of PAH are considered as biomarkers of PAH exposure, and there is a need to measure these metabolites at low concentrations. So, a precise and eco-friendly analytical method has been developed for rapid determination of PAH metabolites. For the first time, a new analytical method based on coupling of dispersive liquid-liquid microextraction (DLLME) with auto-injector port silylation (auto-IPS) followed by gas chromatography-tandem mass spectrometry (GC-MS-MS) analysis is reported for the analysis of seven urinary PAH metabolites. Factors affecting DLLME and IPS, such as type and volume of extraction and disperser solvent, pH, ionic strength, injector port temperature, volume of N,O-bis(trimethylsilyl)trifluoroacetamide and type of solvent were investigated. Under optimized conditions, the limit of detection and limit of quantification were found to be in the range of 1-9 and 3-29 ng/mL, respectively. Satisfactory recoveries of metabolites in urine samples in the range of 87-95% were found. The developed method has been successfully applied for the determination of PAH metabolites in urine samples of exposed workers. DLLME-auto-IPS-GC-MS-MS method is time, labor, solvent and reagent saving, which can be routinely used for the analysis of urinary PAH metabolites. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Saraçli, Sinan; Yilmaz, Veysel; Arslan, Talha
2014-01-01
Problem Statement: The damage caused by recent environmental problems has led to increased environmental concerns and the development of environment-friendly consumption behaviours in almost every society. Environment-friendly consumption involves the consideration of environmental benefits by minimizing any damage done to the environment at all…
SOLVENT DESIGN UNDER VARYING ENVIRONMENTAL REQUIREMENTS
There is currently a great need to replace many solvents that are commonly used by industry and the public, but whose continued use entails a number of human health and environmental risks. One issue hampering solvent replacement is the general thought that replacement, particul...
Biobased, environmentally friendly lubricants for processing plants
USDA-ARS?s Scientific Manuscript database
Vegetable oil based lubricants have excellent lubricity, biodegradability, good viscosity temperature characteristics and low evaporation loss, but poor thermos-oxidative stability and cold flow properties. This paper presents a systematic approach to improve the oxidative and cold flow behavior of...
Biodegradable Pectin/clay Aerogels
USDA-ARS?s Scientific Manuscript database
Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...
Determining the Effects of Ethanol on Pump Station Facilities
DOT National Transportation Integrated Search
2010-04-23
Ethanol has been used for the last several years as an environmentally friendly alternative to methyl tertbutyl ether (MTBE), which is an oxygenate additive to gasoline, to increase octane levels, and to facilitate the combustion process. However, th...
COMPOSITES FROM RECYCLED WOOD AND PLASTICS
The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...
COMPOSITES FROM RECYCLED WOOD AND PLASTICS
The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. wo processing technologies were used to prepare wood-plastic composites: air-laying and melt-...
Solvent recyclability in a multistep direct liquefaction process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hetland, M.D.; Rindt, J.R.
1995-12-31
Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken tomore » produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.« less
Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.
Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D
2017-09-06
Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.
Sustainable Strategies for the Synthesis of Organics and Nanomaterials
The presentation summarizes recent activity in eco-friendly chemical synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reaction...
Sustainable Alternatives for the Synthesis of Organics and Nanomaterials
The presentation summarizes recent activity in eco-friendly chemical synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reaction...
Jastrzębska, Aneta; Piasta, Anna; Szłyk, Edward
2014-01-01
A simple and useful method for the determination of biogenic amines in beverage samples based on isotachophoretic separation is described. The proposed procedure permitted simultaneous analysis of histamine, tyramine, cadaverine, putrescine, tryptamine, 2-phenylethylamine, spermine and spermidine. The data presented demonstrate the utility, simplicity, flexibility, sensitivity and environmentally friendly character of the proposed method. The precision of the method expressed as coefficient of variations varied from 0.1% to 5.9% for beverage samples, whereas recoveries varied from 91% to 101%. The results for the determination of biogenic amines were compared with an HPLC procedure based on a pre-column derivatisation reaction of biogenic amines with dansyl chloride. Furthermore, the derivatisation procedure was optimised by verification of concentration and pH of the buffer, the addition of organic solvents, reaction time and temperature.
Cho, Daehwan; Kim, Moonkyoung; Hwang, Jeonghyun; Park, Jay Hoon; Joo, Yong Lak; Jeong, Youngjin
2015-12-01
We report a facile fabrication of porous silicon nanofibers by a simple three-stage procedure. Polymer/silicon precursor composite nanofibers are first fabricated by electrospinning, a water-based spinning dope, which undergoes subsequent heat treatment and then reduction using magnesium to be converted into porous silicon nanofibers. The porous silicon nanofibers are coated with a graphene by using a plasma-enhanced chemical vapor deposition for use as an anode material of lithium ion batteries. The porous silicon nanofibers can be mass-produced by a simple and solvent-free method, which uses an environmental-friendly polymer solution. The graphene-coated silicon nanofibers show an improved cycling performance of a capacity retention than the pure silicon nanofibers due to the suppression of the volume change and the increase of electric conductivity by the graphene.
Nojavan, Saeed; Yazdanpanah, Mina
2017-11-24
Water-insoluble β-cyclodextrin polymer was synthesized by chemical cross-linking using epichlorohydrin (EPI) as a cross-linker agent. The produced water-insoluble polymer was used as a sorbent for the micro-solid phase extraction (μ-SPE) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water samples. The μ-SPE device consisted of a sealed tea bag envelope containing 15mg of sorbent. For the evaluation of the extraction efficiency, parameters such as extraction and desorption time, desorption solvent and salt concentration were investigated. At an extraction time of 30min in the course of the extraction process, analytes were extracted from a 10mL aqueous sample solution. The analytes were desorbed by ultrasonication in 200μL of acetonitrile for 20min. Analysis of the analytes was done by a gas chromatography-flame ionization detector (GC-FID) system. The enrichment factor (EF) was found to be in the range 23.0-45.4 (EF max =50.0). The method provided linearity ranges of between 0.5 and 500.0ng/mL (depending on the analytes), with good coefficients of determination (r 2 ) ranging between 0.997 and 0.999 under optimized conditions. Detection limits for BTEX were in the range of between 0.15 and 0.60ng/mL, while corresponding recoveries were in the range of 46.0-90.0%. The relative standard deviation of the method for the analytes at 100.0ng/mL concentration level ranged from 5.5 to 11.2% (n=5). The proposed method was concluded to be a cost effective and environmentally-friendly extraction technique with ease of operation and minimal usage of organic solvent. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun
2015-01-01
In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630
Picó, Enrique Angulo; López, Carmen; Cruz-Izquierdo, Álvaro; Munarriz, Mercedes; Iruretagoyena, Francisco Javier; Serra, Juan Luis; Llama, María Jesús
2018-05-12
In this work, magnetic cross-linked enzyme aggregates (mCLEAs) of CALB (lipase B from Candida antarctica) were prepared and characterized. Moreover, a method for an easy, sustainable and economic extraction of lipids from nitrogen-starved cells of Chlorella vulgaris var L3 was developed. Then, the extracted lipids (oils and free fatty acids, FFAs) were converted to biodiesel using mCLEAs and chemical acid catalysis. Among several lipid extraction methods, saponification was selected given the amount of wet microalgal biomass it can process per unit of time, its low market value, and because it allows for the use of less toxic solvents. A biodiesel conversion of 80.2 ± 4.4% was obtained by chemical catalysis (1 h at 100°C) using FFAs and methanol as the alkyl donor. However, a biodiesel conversion of more than 90% (3 h at 30°C) was obtained using mCLEAs and methanol. Both chemical and enzymatic catalysts gave biodiesel with similar fatty acid alkyl ester (FAAE) composition. Methanol, at 15% (v/v) or higher concentration, caused a decrease of lipase activity and a concomitant increase in the size of mCLEA aggregates (up to 2 μm), as measured by dynamic light scattering (DLS). The magnetic character of the novel biocatalyst permits its easy recovery and reuse, for at least ten consecutive catalytic cycles (retaining 90% of the initial biodiesel conversion), using mild reaction conditions and environmentally-friendly solvents. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun
2015-01-01
In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells' adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering.
NASA Astrophysics Data System (ADS)
Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.
2017-02-01
In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.
Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas
Basu, Arunabha
2015-05-05
A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.
COMPUTER AIDED DESIGN OF REPLACEMENT SOLVENTS UNDER VARYING ENVIRONMENTAL CONSTRAINTS
There is a great need to replace many solvents that are commonly used by industry and the public, but whose continued use entails a number of human health and environmental risks. One problem hampering solvent replacement is the thought that replacement, particularly for environm...
Solvent containing processes and work practices: environmental observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalliokoski, P.
1986-01-01
Even though there has been a shift toward water-based or fully solid systems, organic solvents still comprise a significant occupational health hazard. Fortunately, exposure levels can nowadays be effectively controlled by proper enclosures and ventilation in most remaining applications of organic solvents, and, generally taken, the development of occupational health conditions has been favorable on the workplaces using organic solvents. When as many as 24.2% of the 2639 solvent measurements carried out by the Institute of Occupational Health in Finland exceeded the occupational health standards between 1971 and 1976, such non-compliance levels were detected only in 3.0% of the 2823more » samples taken between 1977 and 1980. The persons dealing with occupational health problems in workplaces should also be aware of the possible existence of solvent misuse. This may not develop into the level of solvent sniffing, but into a milder addiction. The workers adopt working habits that cause unnecessary exposure. Repeatedly found exceptionally high concentration levels in biological exposure tests are an indication of a possible abuse. 25 references.« less
DEVELOPMENT OF SULFATE RADICAL-BASED CHEMICAL OXIDATION PROCESSES FOR TREATMENT OF PCBS
This study investigates transition metal based activation of peroxymonosulfate for generation of highly reactive sulfate radicals to degrade Polychlorinated Biphenyls (PCBs) in contaminated aqueous and sediment systems. Environmental friendly transition metal iron (Fe (II), Fe (I...
Vázquez, José Antonio; Rodríguez-Amado, Isabel; Montemayor, María Ignacia; Fraguas, Javier; del Pilar González, María; Murado, Miguel Anxo
2013-01-01
In the last decade, an increasing number of glycosaminoglycans (GAGs), chitin and chitosan applications have been reported. Their commercial demands have been extended to different markets, such as cosmetics, medicine, biotechnology, food and textiles. Marine wastes from fisheries and aquaculture are susceptible sources for polymers but optimized processes for their recovery and production must be developed to satisfy such necessities. In the present work, we have reviewed different alternatives reported in the literature to produce and purify chondroitin sulfate (CS), hyaluronic acid (HA) and chitin/chitosan (CH/CHs) with the aim of proposing environmentally friendly processes by combination of various microbial, chemical, enzymatic and membranes strategies and technologies. PMID:23478485
Bensalem, Sakina; Lopes, Filipa; Bodénès, Pierre; Pareau, Dominique; Français, Olivier; Le Pioufle, Bruno
2018-06-01
One way envisioned to overcome part of the issues biodiesel production encounters today is to develop a simple, economically viable and eco-friendly process for the extraction of lipids from microalgae. This study investigates the lipid extraction efficiency from the microalga Chlamydomonas reinhardtii as well as the underlying mechanisms. We propose a new methodology combining a pulsed electric field (PEF) application and mechanical stresses as a pretreatment to improve lipid extraction with solvents. Cells enriched in lipids are therefore submitted to electric field pulses creating pores on the cell membrane and then subjected to a mechanical stress by applying cyclic pressures on the cell wall (using a microfluidic device). Results showed an increase in lipid extraction when cells were pretreated by the combination of both methods. Microscopic observations showed that both pretreatments affect the cell structure. Finally, the dependency of solvent lipid extraction efficiency with the cell wall structure is discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Child-Friendly Cities: A Place for Active Citizenship in Geographical and Environmental Education
ERIC Educational Resources Information Center
Wilks, Judith
2010-01-01
This research was designed to investigate innovative practices associated with child-friendly cities initiatives in the United Kingdom and Italy and how civics and citizenship initiatives are being applied into practical programmes of exploration and learning in geography and environmental education. The Child-Friendly Cities Initiative (CFCI) of…
Microwave-Assisted Eco-Friendly Synthesis of Organics and Nanomaterials
This presentation summarizes our recent activity in MW-assisted synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The greener synthesis of heterocyclic compounds, coupling reac...
Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project
NASA Technical Reports Server (NTRS)
Calle, Luz
2014-01-01
Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.
Green Solvents for Precision Cleaning
NASA Technical Reports Server (NTRS)
Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul
2013-01-01
Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the moderate processing conditions of 323 K, 13.8 MPa, 30 min and 750 rpm.
Method for efficient recovery of high-purity polycarbonates from electronic waste.
Weeden, George S; Soepriatna, Nicholas H; Wang, Nien-Hwa Linda
2015-02-17
More than one million tons of polycarbonates from waste electrical and electronic equipment are consigned to landfills at an increasing rate of 3-5% per year. Recycling the polymer waste should have a major environmental impact. Pure solvents cannot be used to selectively extract polycarbonates from mixtures of polymers with similar properties. In this study, selective mixed solvents are found using guidelines from Hansen solubility parameters, gradient polymer elution chromatography, and solubility tests. A room-temperature sequential extraction process using two mixed solvents is developed to recover polycarbonates with high yield (>95%) and a similar purity and molecular weight distribution as virgin polycarbonates. The estimated cost of recovery is less than 30% of the cost of producing virgin polycarbonates from petroleum. This method would potentially reduce raw materials from petroleum, use 84% less energy, reduce emission by 1-6 tons of CO2 per ton of polycarbonates, and reduce polymer accumulation in landfills and associated environmental hazards.
Periaswamy Sivagnanam, Saravana; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo
2015-01-01
The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process. PMID:26035021
Sivagnanam, Saravana Periaswamy; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo
2015-05-29
The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.
Ryu, Jee-Hoon; Kim, Minju; Kim, Eun-Gyeong; Beuchat, Larry R; Kim, Hoikyung
2014-09-01
Fresh produce is usually eaten raw without cooking or heating, which may increase the probability of foodborne infection. The microbiological quality of 11 types of fresh, raw vegetables (romaine lettuce, sesame leaves, crown daisy, garlic chives, iceberg lettuce, cabbage, broccoli, leek, chili pepper, capsicum, and zucchini) purchased at retail markets in Iksan, Korea as affected by cultivation method (environmentally friendly vegetables [organic, pesticide-free, and low-pesticide vegetables] and conventionally grown vegetables) and harvest season was determined. Escherichia coli O157:H7 and Salmonella were not detected in all samples of vegetables tested. Aerobic mesophiles (>6 log cfu/g) were detected in environmentally friendly romaine lettuce and crown daisy and environmentally friendly and conventionally grown garlic chives, which also contained coliforms (>3 log cfu/g). Sesame leaf and crown daisy (regardless of cultivation method), as well as conventionally grown romaine lettuce and leek, contained >1 log cfu/g of E. coli. The overall microbiological quality of environmentally friendly and conventionally grown vegetables was not significantly different (P > 0.05). However, there were seasonal effects on populations of coliforms and generic E. coli on vegetables. The greatest numbers of microorganisms were isolated from environmentally friendly or conventionally grown vegetables purchased in winter. The vegetables, regardless of cultivation method or season, should be subjected to appropriate antimicrobial treatment to enhance their microbial safety. © 2014 Institute of Food Technologists®
Computer-aided solvent selection for multiple scenarios operation of limited-known properties solute
NASA Astrophysics Data System (ADS)
Anantpinijwatna, Amata
2017-12-01
Solvents have been applied for both production and separation of the complex chemical substance such as the pyrrolidine-2-carbonyl chloride (C5H8ClNO). Since the properties of the target substance itself are largely unknown, the selection of the solvent is limited by experiment only. However, the reaction carried out in conventional solvents are either afforded low yields or obtained slow reaction rates. Moreover, the solvents are also highly toxic and environmental unfriendly. Alternative solvents are required to enhance the production and lessen the harmful effect toward both organism and environment. A costly, time-consuming, and laborious experiments are required for acquiring a better solvent suite for production and separation of these complex compounds; whereas, a limited improvement can be obtained. On the other hand, the combination of the state-of-the-art thermodynamic models can provide faster and more robust solutions to this solvent selection problem. In this work, a framework for solvents selection in complex chemical production process is presented. The framework combines a group-contribution thermodynamic model and a segment activity coefficient model for predicting chemical properties and solubilities of the target chemical in newly formulated solvents. A guideline for solvent selection is also included. The potential of the selected solvents is then analysed and verified. The improvement toward the production yield, production rate, and product separation is then discussed.
Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future.
Das, Rudra Narayan; Roy, Kunal
2013-02-01
In order to protect the life of all creatures living in the environment, the toxicity arising from various hazardous chemicals must be controlled. This imposes a serious responsibility on different chemical, pharmaceutical, and other biological industries to produce less harmful chemicals. Among various international initiatives on harmful aspects of chemicals, the 'Green Chemistry' ideology appears to be one of the most highlighted concepts that focus on the use of eco-friendly chemicals. Ionic liquids are a comparatively new addition to the huge garrison of chemical compounds released from the industry. Extensive research on ionic liquids in the past decade has shown them to be highly useful chemicals with a good degree of thermal and chemical stability, appreciable task specificity and minimal environmental release resulting in a notion of 'green chemical'. However, studies have also shown that ionic liquids are not intrinsically non-toxic agents and can pose severe degree of toxicity as well as the risk of bioaccumulation depending upon their structural components. Moreover, ionic liquids possess issues of waste generation during synthesis as well as separation problems. Predictive quantitative structure-activity relationship (QSAR) models constitute a rational opportunity to explore the structural attributes of ionic liquids towards various physicochemical and toxicological endpoints and thereby leading to the design of environmentally more benevolent analogues with higher process selectivity. Such studies on ionic liquids have been less extensive compared to other industrial chemicals. The present review attempts to summarize different QSAR studies performed on these chemicals and also highlights the safety, health and environmental issues along with the application specificity on the dogma of 'green chemistry'.
Qifeng Zheng; Zhiyong Cai; Shaoqin Gong
2014-01-01
Cross-linked polyvinyl alcohol (PVA)âcellulose nanofibril (CNF) hybrid organic aerogels were prepared using an environmentally friendly freeze-drying process. The resulting PVA/CNF aerogel was rendered both superhydrophobic and superoleophilic after being treated with methyltrichlorosilane via a simple thermal chemical vapor deposition process. Successful silanization...
Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots
2017-12-09
Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous
Method of preparation of removable syntactic foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.
1995-07-11
Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced bymore » this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.« less
Cell disruption and lipid extraction for microalgal biorefineries: A review.
Lee, Soo Youn; Cho, Jun Muk; Chang, Yong Keun; Oh, You-Kwan
2017-11-01
The microalgae-based biorefinement process has attracted much attention from academic and industrial researchers attracted to its biofuel, food and nutraceutical applications. In this paper, recent developments in cell-disruption and lipid-extraction methods, focusing on four biotechnologically important microalgal species (namely, Chlamydomonas, Haematococcus, Chlorella, and Nannochloropsis spp.), are reviewed. The structural diversity and rigidity of microalgal cell walls complicate the development of efficient downstream processing methods for cell-disruption and subsequent recovery of intracellular lipid and pigment components. Various mechanical, chemical and biological cell-disruption methods are discussed in detail and compared based on microalgal species and status (wet/dried), scale, energy consumption, efficiency, solvent extraction, and synergistic combinations. The challenges and prospects of the downstream processes for the future development of eco-friendly and economical microalgal biorefineries also are outlined herein. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding
2012-05-01
Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.
Comparison of starch and gelatin hydrogels for non-toxic supercapacitor electrolytes
NASA Astrophysics Data System (ADS)
Railanmaa, Anna; Lehtimäki, Suvi; Lupo, Donald
2017-06-01
Starch and gelatin are two of the most abundantly available natural polymers. Their non-toxicity, low cost, and compatibility with aqueous solvents make them ideal for use in ubiquitous, environmentally friendly electronics systems. This work presents the results of conductivity measurements through impedance spectroscopy for gelatin- and starch-based aqueous gel electrolytes. The NaCl-based gels were physically cross-linked. The conductivity values were 84.6 mS/cm at 1.5 mol L-1 and 71.5 mS/cm at 2 mol L-1 for gelatin and starch, respectively. The mechanical properties of gelatin were found preferable to those of starch, although they deteriorated significantly when the salt concentration exceeded 2 mol L-1. The ability of the gels to successfully act as a supercapacitor electrolyte was demonstrated with printed electrodes on plastic substrate. The devices were characterized through cyclic voltammetry measurements. The results imply that these polymer gel electrolytes are very promising for replacing the traditional aqueous liquid electrolytes in supercapacitors in applications where, for example, user and environmental safety is essential.
Trivedi, Jayati; Aila, Mounika; Sharma, Chandra Dutt; Gupta, Piyush; Kaul, Savita
2015-01-01
In view of the rising global problems of environment pollution and degradation, the present process provides a 'green solution' to the synthesis of higher esters of lubricant range, more specifically in the range C12-C36, using different combinations of acids and alcohols, in a single step reaction. The esters produced are biodegradable in nature and have a plethora of uses, such as in additives, as lubricating oils and other hydraulic fluids. The enzymatic esterification was performed using liquid (non-immobilized or free) lipase enzyme, without any additional organic solvent. Soluble lipase proves to be superior to immobilized enzymes as it is more cost effective and provides a faster process for the production of higher esters of lubricant range. An interesting finding was, that the lipase enzyme showed higher conversion rates with increasing carbon number of straight chain alcohols and acids. Reactions were carried out for the optimization of initial water concentration, temperature, pH of the substrate mixture and the chain length of the substrates. Under optimized conditions, the method was suitable to achieve ~ 99% conversion. Thus, the process provides an environment friendly, enzymatic alternative to the chemical route which is currently used in the industrial synthesis of lubricant components.
Butanol production by fermentation: efficient bioreactors
USDA-ARS?s Scientific Manuscript database
Energy security, environmental concerns, and business opportunities in the emerging bio-economy have generated strong interest in the production of n-butanol by fermentation. Acetone butanol ethanol (ABE or solvent) batch fermentation process is product limiting because butanol even at low concentra...
Organic photovoltaic cells: from performance improvement to manufacturing processes.
Youn, Hongseok; Park, Hui Joon; Guo, L Jay
2015-05-20
Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.
Martínez, I; El-Said Mohamed, M; Santos, V E; García, J L; García-Ochoa, F; Díaz, E
2017-11-20
Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.
A Green Solvent Induced DNA Package
NASA Astrophysics Data System (ADS)
Satpathi, Sagar; Sengupta, Abhigyan; Hridya, V. M.; Gavvala, Krishna; Koninti, Raj Kumar; Roy, Bibhisan; Hazra, Partha
2015-03-01
Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (>=1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.
Metal Separations and Recovery in the Mining Industry
NASA Astrophysics Data System (ADS)
Izatt, Steven R.; Bruening, Ronald L.; Izatt, Neil E.
2012-11-01
Molecular Recognition Technology (MRT) plays an important role in the hydrometallurgical processing dissolved entities in solutions in the mining industry. The status of this industry with respect to sustainability and environmental issues is presented and discussed. The roles of MRT and ion exchange in metal separation and recovery processes in the mining industry are discussed and evaluated. Examples of MRT separation processes of interest to the mining community are given involving gold, cobalt purification by extraction of trace cadmium, rhenium, and platinum group metals (PGMs). MRT processes are shown to be sustainable, economically viable, energy efficient, and environmentally friendly, and to have a low carbon footprint.
Extracting metals directly from metal oxides
Wai, Chien M.; Smart, Neil G.; Phelps, Cindy
1997-01-01
A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.
Extracting metals directly from metal oxides
Wai, C.M.; Smart, N.G.; Phelps, C.
1997-02-25
A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.
Green catalyzed oxidation of hydrocarbons in alternative solvent systems generated by PARIS II
Thomas M. Becker, Michael A. Gonzalez, Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Mar...
Risk analysis within environmental impact assessment of proposed construction activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeleňáková, Martina; Zvijáková, Lenka
Environmental impact assessment is an important process, prior to approval of the investment plan, providing a detailed examination of the likely and foreseeable impacts of proposed construction activity on the environment. The objective of this paper is to develop a specific methodology for the analysis and evaluation of environmental impacts of selected constructions – flood protection structures using risk analysis methods. The application of methodology designed for the process of environmental impact assessment will develop assumptions for further improvements or more effective implementation and performance of this process. The main objective of the paper is to improve the implementation ofmore » the environmental impact assessment process. Through the use of risk analysis methods in environmental impact assessment process, the set objective has been achieved. - Highlights: This paper is informed by an effort to develop research with the aim of: • Improving existing qualitative and quantitative methods for assessing the impacts • A better understanding of relations between probabilities and consequences • Methodology for the EIA of flood protection constructions based on risk analysis • Creative approaches in the search for environmentally friendly proposed activities.« less
USDA-ARS?s Scientific Manuscript database
In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical rea...
Nonflammable, Nonaqueous, Low Atmospheric Impact, High Performance Cleaning Solvents
NASA Technical Reports Server (NTRS)
Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.
2001-01-01
For many years, chlorofluorocarbon (CFC) and chlorocarbon solvents have played an important part in aerospace operations. These solvents found extensive use as cleaning and analysis (EPA) solvents in precision and critical cleaning. However, CFCs and chlorocarbon solvents have deleterious effects on the ozone layer, are relatively strong greenhouse gases, and some are suspect or known carcinogens. Because of their ozone-depletion potential (ODP), the Montreal Protocol and its amendments, as well as other environmental regulations, have resulted in the phaseout of CFC-113 and 1,1,1-trichloroethane (TCA). Although alternatives have been recommended, they do not perform as well as the original solvents. In addition, some analyses, such as the infrared analysis of extracted hydrocarbons, cannot be performed with the substitute solvents that contain C-H bonds. CFC-113 solvent has been used for many critical aerospace applications. CFC-113, also known as Freon (registered) TF, has been used extensively in NASA's cleaning facilities for precision and critical cleaning, in particular the final rinsing in Class 100 areas, with gas chromatography analysis of rinse residue. While some cleaning can be accomplished by other processes, there are certain critical applications where CFC-113 or a similar solvent is highly cost-effective and ensures safety. Oxygen system components are one example where a solvent compatible with oxygen and capable of removing fluorocarbon grease is needed. Electronic components and precision mechanical components can also be damaged by aggressive cleaning solvents.
Shih, Hou-Kuang; Shu, Ting-Yun; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon
2015-01-07
In this study, a novel fatty-acid-based in-tube dispersive liquid-liquid microextraction (FA-IT-DLLME) technique is proposed for the first time and is developed as a simple, rapid and eco-friendly sample extraction method for the determination of alkylphenols in aqueous samples using high-performance liquid chromatography-ultraviolet detection (HPLC-UV). In this extraction method, medium-chain saturated fatty acids were investigated as a pH-dependent phase because they acted as either anionic surfactants or neutral extraction solvents based on the acid-base reaction caused solely by the adjustment of the pH of the solution. A specially designed home-made glass extraction tube with a built-in scaled capillary tube was utilized as the phase-separation device for the FA-IT-DLLME to collect and measure the separated extractant phase for analysis. Nonylphenol (NP) and 4-tert-octylphenol (4-tOP) were chosen as model analytes. The parameters influencing the FA-IT-DLLME were thoroughly investigated and optimized. Under the optimal conditions, the detector responses of NP and 4-tOP were linear in the concentration ranges of 5-4000 μg L(-1), with correlation coefficients of 0.9990 and 0.9996 for NP and 4-tOP, respectively. The limits of detection based on a signal-to-noise ratio of 3 were 0.7 and 0.5 μg L(-1), and the enrichment factors were 195 and 143 for NP and 4-tOP, respectively. The applicability of the developed method was demonstrated for the analysis of alkylphenols in environmental wastewater samples, and the recoveries ranged from 92.9 to 107.1%. The extraction process required less than 4 min and utilized only acids, alkalis, and fatty acids to achieve the extraction. The results demonstrated that the presented FA-IT-DLLME approach is highly cost-effective, simple, rapid and environmentally friendly in its sample preparation. Copyright © 2014 Elsevier B.V. All rights reserved.
Environmental Management: the Ideology of Natural Resource Rational Use
NASA Astrophysics Data System (ADS)
Zolotukhin, V. M.; Gogolin, V. A.; Yazevich, M. Yu; Baumgarten, M. I.; Dyagileva, A. V.
2017-01-01
The article presents an analysis of the ontological and methodological principles of environmental management. These principles form the united ideology of natural resource rational use as the environment preservation basis. Consideration of environmental issues from the environmental management point of view is stipulated by the concern of the scientific community about the existence of mankind and the sphere of its inhabiting. The need to overcome the stereotypes existing in mass consciousness about safe and environmentally friendly consumption is stressed. The process of forming environmental management policy should contribute to the stabilization (balancing) of the consumers’ expectations and collective decision-making based on a public ecological consensus.
Wai, Chien M.; Laintz, Kenneth E.
1999-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying
2016-03-11
This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Tufvesson, Pär; Ekman, Anna; Sardari, Roya R R; Engdahl, Kristina; Tufvesson, Linda
2013-12-01
Production of propionic acid by fermentation of glycerol as a renewable resource has been suggested as a means for developing an environmentally-friendly route for this commodity chemical. However, in order to quantify the environmental benefits, life cycle assessment of the production, including raw materials, fermentation, upstream and downstream processing is required. The economic viability of the process also needs to be analysed to make sure that any environmental savings can be realised. In this study an environmental and economic assessment from cradle-to-gate has been conducted. The study highlights the need for a highly efficient bioprocess in terms of product titre (more than 100g/L and productivity more than 2g/(L · h)) in order to be sustainable. The importance of the raw materials and energy production for operating the process to minimize emissions of greenhouse gases is also shown. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hamilton, Amanda E
2015-01-01
Durations of breastfeeding activity in the United States fall short of established recommendations by leading public health institutions. In response to this problem, this study sought to develop environmentally friendly messages to promote continued breastfeeding for moms already breastfeeding in order to help them reach recommended breastfeeding durations. Messages were successfully cultivated to encourage moms already breastfeeding to meet recommended breastfeeding durations. In addition, this study cultivated strategies by which to use environmentally friendly messages to urge mothers who still need to decide whether to breastfeed or formula feed to breastfeed, although this was not the purpose of the research. Avenues for future communication-based breastfeeding research were also elucidated. The Elaboration Likelihood Model serves as useful theory to assess the role of environmentally friendly messages in the promotion of continued breastfeeding.
Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V.; Lettieri, Paola
2016-01-01
Life‐cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost‐efficient, robust and environmentally‐friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale‐up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed‐batch (FB) and perfusion‐based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO2 than the FB process. Water consumption was the most important impact category, especially when scaling‐up the processes, as energy was required to produce process water and water‐for‐injection, while CO2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally‐friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324–1335, 2016 PMID:27390260
Complete degradation of Orange G by electrolysis in sub-critical water.
Yuksel, Asli; Sasaki, Mitsuru; Goto, Motonobu
2011-06-15
Complete degradation of azo dye Orange G was studied using a 500 mL continuous flow reactor made of SUS 316 stainless steel. In this system, a titanium reactor wall acted as a cathode and a titanium plate-type electrode was used as an anode in a subcritical reaction medium. This hydrothermal electrolysis process provides an environmentally friendly route that does not use any organic solvents or catalysts to remove organic pollutants from wastewater. Reactions were carried out from 30 to 90 min residence times at a pressure of 7 MPa, and at different temperatures of 180-250°C by applying various direct currents ranging from 0.5 to 1A. Removal of dye from the product solution and conversion of TOC increased with increasing current value. Moreover, the effect of salt addition on degradation of Orange G and TOC conversion was investigated, because in real textile wastewater, many salts are also included together with dye. Addition of Na(2)CO(3) resulted in a massive degradation of the dye itself and complete mineralization of TOC, while NaCl and Na(2)SO(4) obstructed the removal of Orange G. Greater than 99% of Orange G was successfully removed from the product solution with a 98% TOC conversion. Copyright © 2011 Elsevier B.V. All rights reserved.
Karatapanis, Andreas E; Petrakis, Dimitrios E; Stalikas, Constantine D
2012-05-13
Magnetically driven separation techniques have received considerable attention in recent decade because of their great potential application. In this study, we investigate the application of an unmodified layered magnetic Fe/Fe(2)O(3) nanoscavenger for the analytical enrichment and determination of sub-parts per billion concentrations of Cd(II), Pb(II), Ni(II), Cr(VI) and As(V) from water samples. The synthesized nanoscavenger was characterized by BET, TGA, XRD and IR and the parameters influencing the extraction and recovery of the preconcentration process were assessed by atomic absorption spectrometry. The possible mechanism of the enrichment of heavy metals on Fe/Fe(2)O(3) was proposed, which involved the dominant adsorption and reduction. The nanoscale size offers large surface area and high reactivity of sorption and reduction reactions. The obtained limits of detection for the metals studied were in the range of 20-125 ng L(-1) and the applicability of the nanomaterial was verified using a real sample matrix. The method is environmentally friendly as only 15 mg of nanoscavenger are used, no organic solvent is required for the extraction and the experiment is performed without the need for filtration or preparation of packed preconcentration columns. Copyright © 2012 Elsevier B.V. All rights reserved.
Cheviron, Perrine; Gouanvé, Fabrice; Espuche, Eliane
2014-08-08
Environmentally friendly silver nanocomposite films were prepared by an ex situ method consisting firstly in the preparation of colloidal silver dispersions and secondly in the dispersion of the as-prepared nanoparticles in a potato starch/glycerol matrix, keeping a green chemistry process all along the synthesis steps. In the first step concerned with the preparation of the colloidal silver dispersions, water, glucose and soluble starch were used as solvent, reducing agent and stabilizing agent, respectively. The influences of the glucose amount and reaction time were investigated on the size and size distribution of the silver nanoparticles. Two distinct silver nanoparticle populations in size (diameter around 5 nm size for the first one and from 20 to 50 nm for the second one) were distinguished and still highlighted in the potato starch/glycerol based nanocomposite films. It was remarkable that lower nanoparticle mean sizes were evidenced by both TEM and UV-vis analyses in the nanocomposites in comparison to the respective colloidal silver dispersions. A dispersion mechanism based on the potential interactions developed between the nanoparticles and the polymer matrix and on the polymer chain lengths was proposed to explain this morphology. These nanocomposite film series can be viewed as a promising candidate for many applications in antimicrobial packaging, biomedicines and sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eco-friendly Synthesis of Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts
The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...
Water-Soluble Polymers with Strong Photoluminescence through an Eco-Friendly and Low-Cost Route.
Guo, Zhaoyan; Ru, Yue; Song, Wenbo; Liu, Zhenjie; Zhang, Xiaohong; Qiao, Jinliang
2017-07-01
Photoluminescence (PL) of nonconjugated polymers brings a favorable opportunity for low-cost and nontoxic luminescent materials, while most of them still exhibit relatively weak emission. Strong PL from poly[(maleic anhydride)-alt-(vinyl acetate)] (PMV) from low-cost monomer has been found in organic solvents, yet the necessity of noxious solvents would hinder its practical applications. Herein, through a novel, eco-friendly, and one-step route, PMV-derived PL polymers can be fabricated with the highest quantum yield of 87% among water-soluble nonconjugated PL polymers ever reported. These PMV-derived polymers emit strong blue emission in both solutions and solids, and can be transformed into red-emission agents easily. These PL polymers exhibit application potentials in light-conversion agricultural films. It is assumed that this work not only puts forward a convenient preparation routine for nonconjugated polymers with high PL, but also provides an industrial application possibility for them. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LCA of greywater management within a water circular economy restorative thinking framework.
Dominguez, Sara; Laso, Jara; Margallo, María; Aldaco, Rubén; Rivero, Maria J; Irabien, Ángel; Ortiz, Inmaculada
2018-04-15
Greywater reuse is an attractive option for the sustainable management of water under water scarcity circumstances, within a water circular economy restorative thinking framework. Its successful deployment relies on the availability of low cost and environmentally friendly technologies. The life cycle assessment (LCA) approach provides the appropriate methodological tool for the evaluation of alternative treatments based on environmental decision criteria and, therefore, it is highly useful during the process conceptual design. This methodology should be employed in the early design phase to select those technologies with lower environmental impact. This work reports the comparative LCA of three scenarios for greywater reuse: photocatalysis, photovoltaic solar-driven photocatalysis and membrane biological reactor, in order to help the selection of the most environmentally friendly technology. The study has been focused on the removal of the surfactant sodium dodecylbenzenesulfonate, which is used in the formulation of detergents and personal care products and, thus, widely present in greywater. LCA was applied using the Environmental Sustainability Assessment methodology to obtain two main environmental indicators in order to simplify the decision making process: natural resources and environmental burdens. Energy consumption is the main contributor to both indicators owing to the high energy consumption of the light source for the photocatalytic greywater treatment. In order to reduce its environmental burdens, the most desirable scenario would be the use of solar light for the photocatalytic transformation. However, while the technological challenge of direct use of solar light is approached, the environmental suitability of the photovoltaic solar energy driven photocatalysis technology to greywater reuse has been demonstrated, as it involves the smallest environmental impact among the three studied alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Taguchi, Taiga; Kohno, Yoshiumi; Shibata, Masashi; Tomita, Yasumasa; Fukuhara, Choji; Maeda, Yasuhisa
2018-05-01
β-carotene (BC) is one of the naturally occurring dyes belonging to the carotenoids group. Although it is more environmentally friendly and better suited for humans compared with synthetic dyes, it destabilizes with light and heat, easily losing its color under irradiation. Extended application of BC are therefore limited. The aim of this study is to improve the stability of BC by intercalation into the montmorillonite layers modified with a cationic surfactant, by a simple mixing and minimal solvent use. The physical mixing of small quantities of concentrated BC/hexane solutions with organo-modified montmorillonite successfully resulted in the composite material. The length and the number of alkyl chains of the surfactant used for the organic modification influenced the stability enhancement of the incorporated dye. The improved stability of the dye molecules incorporated in the interlayer space was found to be due to restricted contact with atmospheric oxygen.
Phosphine-free synthesis and characterization of type-II ZnSe/CdS core-shell quantum dots
NASA Astrophysics Data System (ADS)
Ghasemzadeh, Roghayyeh; Armanmehr, Mohammad Hasan; Abedi, Mohammad; Fateh, Davood Sadeghi; Bahreini, Zaker
2018-01-01
A phosphine-free route for synthesis of type-II ZnSe/CdS core-shell quantum dots, using green, low cost and environmentally friendly reagents and phosphine-free solvents such as 1-octadecene (ODE) and liquid paraffin has been reported. Hot-injection technique has been used for the synthesis of ZnSe core quantum dots. The CdS shell quantum dots prepared by reaction of CdO precursor and S powder in 1-octadecene (ODE). The ZnSe/CdS core-shell quantum dots were synthesized via successive ion layer adsorption and reaction (SILAR) technique. The characterization of produced quantum dots were performed by absorption and fluorescence spectroscopy, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results showed the formation of type-II ZnSe/CdS core-shell quantum dots with FWHM 32 nm and uniform size distribution.
Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Engelhard, Mark H; Yin, Geping; Lin, Yuehe
2011-03-22
Here we report that poly(diallyldimethylammonium chloride) (PDDA) acts as both a reducing agent and a stabilizer to prepare soluble graphene nanosheets from graphite oxide. The results of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and Fourier transform infrared indicated that graphite oxide was successfully reduced to graphene nanosheets which exhibited single-layer structure and high dispersion in various solvents. The reaction mechanism for PDDA-induced reduction of exfoliated graphite oxide was proposed. Furthermore, PDDA facilitated the in situ growth of highly dispersed Pt nanoparticles on the surface of graphene nanosheets to form Pt/graphene nanocomposites, which exhibited excellent catalytic activity toward formic acid oxidation. This work presents a facile and environmentally friendly approach to the synthesis of graphene nanosheets and opens up a new possibility for preparing graphene and graphene-based nanomaterials for large-scale applications.
Li, Binglin; Wang, Jiao; Zhang, Xiaoli; Zhao, Binxia; Niu, Lu
2016-10-12
The purely aqueous system of phospholipase D (PLD)-mediated transphosphatidylation using pre-existing carriers for the adsorption of phosphatidylcholine (PC) to act as an "artificial interface" was introduced to replace the liquid-liquid system. Toxic organic solvents are avoided during the reaction, and the free enzyme can be simply reused by centrifugation. Special attention has been paid to the effect of the pore diameter and surface area of silica gel 60H covered with PC molecules on the yield of phosphatidylserine (PS). Results indicated that the highest PS yield of 99.5% was achieved. Moreover, 73.6% of the yield of PS was obtained after being used for six batches. This is the first description of the remarkably high reusability of free enzymes for enzymatic synthesis of PS as well. The excellent results make the aqueous-solid system more promising candidates for the industrial production of PS.
Bioremoval of heavy metals by bacterial biomass.
Aryal, Mahendra; Liakopoulou-Kyriakides, Maria
2015-01-01
Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.
Amlashi, Nadiya Ekbatani; Hadjmohammadi, Mohammad Reza; Nazari, Seyed Saman Seyed Jafar
2014-09-26
For the first time, a novel water-contained surfactant-based vortex-assisted microextraction method (WSVAME) was developed for the extraction of two synthetic antioxidants (t-butyl hydroquinone (TBHQ) and butylated hydroxyanisole (BHA)) from edible oil samples. The novel microextraction method is based on the injection of an aqueous solution of non-ionic surfactant, Brij-35, into the oil sample in a conical bottom glass tube to form a cloudy solution. Vortex mixing was applied to accelerate the dispersion process. After extraction and phase separation by centrifugation, the lower sediment phase was directly analyzed by HPLC. The effects of the four experimental parameters including volume and concentration of extraction solvent (aqueous solution of Brij-35), percentage of acetic acid added to the oil sample and vortex time on the extraction efficiency were studied with a full factorial design. The central composite design and multiple linear regression method were applied for the construction of the best polynomial model based on experimental recoveries. The proposed method showed good linearity within the range of 0.200-200 μg mL(-1), the square of correlation coefficient higher than 0.999 and appropriate limit of detection (0.026 and 0.020 μg mL(-1) for TBHQ and BHA, respectively), while the precision for inner-day was ≤ 3.0 (n=5) and it was ≤ 3.80 (n=5) for inter-day assay. Under the optimal condition (30 μL of 0.10 mol L(-1) Brij-35 solution as extraction solvent and vortex time 1 min), the method was successfully applied for determination of TBHQ and BHA in different commercial edible oil samples. The recoveries in all cases were above 95%, with relative standard deviations below 5%. This approach is considered as a simple, sensitive and environmentally friendly method because of biodegradability of the extraction phase and no use of organic solvent in the extraction procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh
2016-09-01
A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.
NASA Astrophysics Data System (ADS)
Imron, M. A.; Ahkam, D. N. I.; Hidayat, A. W.
2017-12-01
The number of factories and home industries, both upper and lower middle class certainly adds waste generated, resulting in environmental pollution. The development of buildings is one of the largest contributors to global warming. For that, it takes technological innovations that lead to the criteria of green building. The application of green material is important aspects of environmentally friendly development, the selection of materials on the green material criteria of both roles should be applied continuously in order to realize the environmental sustainability of the material. Utilization Waste eggshell and bagasse which is a community waste, has the potential to become innovative environmentally friendly building materials. The eggshell is composed of 94% calcium carbonate, 1% magnesium carbonate, 1% calcium phosphate, and 4% organic material, especially protein, while the bagasse has a high content of silica (SiO2). In this study, the compounds are used as raw material for making alternative drywall in the form of DECO FRECASE. DECO FRECASE is an innovation of environmentally friendly building materials as an interior wall construction. Through DECO FRECASE, it is expected that building material innovation in Indonesia can be improved and of course environmental problems can be minimized by utilizing it as raw material for building construction.
Poostforooshan, Jalal; Badiei, Alireza; Kolahdouz, Mohammadreza; Weber, Alfred P
2016-08-24
Here we report a novel, facile, and sustainable approach for the preparation of spherical submicrometer carbon nitride-based polymer composites by a continuous aerosol-photopolymerization process. In this regard, spherical mesoporous carbon nitride (SMCN) nanoparticles were initially prepared via a nanocasting approach using spray-drying synthesized spherical mesoporous silica (SMS) nanoparticles as hard templates. In addition to experimental characterization, the effect of porosity on the light absorption enhancement and consequently the generation rate of electron-hole pairs inside the SMCN was simulated using a three-dimensional finite difference time-domain (FDTD) method. To produce the carbon nitride-based polymer composite, SMCN nanoparticles exhibit excellent performance in photopolymerization of butyl acrylate (PBuA) monomer in the presence of n-methyldiethanolamine (MDEA) as a co-initiator in a continuous aerosol-based process. In this one-pot synthesis, SMCN nanoparticles act not only as photoinitiators but at the same time as fillers and templates. The average aerosol residence time in the photoreactor is about 90 s. The presented aerosol-photopolymerization process avoids the need for solvent and surfactant, operates at room temperature, and, more importantly, is suitable to produce the spherical composite with hydrophobic polymers. Furthermore, we simulated the condition of SMCN nanoparticles during illumination in the gas phase process, which can freely rotate. The results demonstrated that the hole (h(+)) density is almost equally distributed in the whole part of the SMCN nanoparticles due to their rotation, leading to efficient light harvesting and more homogeneous photoreaction. The combination of the outstanding features of environmentally friendly SMCN, photopolymerization, and aerosol processing might open new avenues, especially in green chemistry, to produce novel polymer composites with multifunctional properties.
Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective
2017-01-01
Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent. PMID:28513150
Tejada-Casado, Carmen; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud
2018-03-30
Ultra-high performance liquid chromatography (UHPLC) coupled with fluorescence detection (FL) has been proposed for the first time to determine thirteen benzimidazoles (BZs) in farmed fish samples. In order to optimize the chromatographic separation, parameters such as mobile phase composition and flow rate were carefully studied, establishing a gradient mode with a mobile phase consisted of water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 mL/min. The separation was performed on a Zorbax Eclipse Plus RRHD C 18 column (50 × 2.1 mm, 1.8 μm), involving a total analysis time lower than 12 min. Salting-out assisted liquid-liquid extraction (SALLE) was applied as sample treatment to different types of farmed fish (trout, sea bream and sea bass). To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt used. Characterization of the method in terms of performance characteristics was carried out, obtaining satisfactory results for the linearity (R 2 ≥ 0.997), repeatability (RSD ≤ 6.1%), reproducibility (RSD ≤ 10.8%) and recoveries (R ≥ 79%; RSD ≤ 7.8%). Detection limits between 0.04-29.9 μg kg -1 were obtained, demonstrating the applicability of this fast, simple and environmentally friendly method. Copyright © 2018 Elsevier B.V. All rights reserved.
Improved detergent-based recovery of polyhydroxyalkanoates (PHAs).
Yang, Yung-Hun; Brigham, Christopher; Willis, Laura; Rha, ChoKyun; Sinskey, Anthony
2011-05-01
Extracting polyhydroxyalkanoate (PHA) polymer from bacterial cells often involves harsh conditions, including use of environmentally harmful solvents. We evaluated different detergents under various conditions to extract PHA from Ralstonia eutropha and Escherichia coli cells. Most detergents tested recovered highly pure PHA polymer from cells in amounts that depended on the percentage of polymer present in the cell. Detergents such as linear alkylbenzene sulfonic acid (LAS-99) produced a high yield of high purity polymer, and less detergent was needed compared to the amount of SDS to produce comparable yields. LAS-99 also has the advantage of being biodegradable and environmentally safe. Chemical extraction of PHA with detergents could potentially minimize or eliminate the need to use harsh organic solvents, thus making industrial PHA production a cleaner technology process. © Springer Science+Business Media B.V. 2011
Environmentally friendly preparation of metal nanoparticles
The book chapter summarizes the “state of the art” in the exploitation of various environmentally-friendly synthesis approaches, reaction precursors and conditions to manufacture metal and metal oxide nanoparticles for a vast variety of purposes.
Cappa, Carola; Lucisano, Mara; Barbosa-Cánovas, Gustavo V; Mariotti, Manuela
2016-07-01
The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400MPa; 600MPa), pressure holding time (5min; 10min), and temperature (20°C; 40°C). Samples were pre-conditioned (final moisture level: 40g/100g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600MPa. Corn starch and rice flour treated at 600MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced. This work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leather Coated with Mixtures of Humectant and Antioxidants to Improve UV and Heat Resistance
USDA-ARS?s Scientific Manuscript database
Ultraviolet (UV) and heat resistance are very important qualities for leather products. We recently developed an environmentally friendly finishing process for improving the UV- and heat resistance of automobile upholstery leather. We previously reported and demonstrated some promising results fro...
Fluorous Compounds and their Role in Separation Chemistry
ERIC Educational Resources Information Center
Ubeda, Maria Angeles; Dembinski, Roman
2006-01-01
The main focus of fluorous chemistry targets resource and time-consuming separation, in order to improve the material economy and thus represents potentially environmentally friendly technology. Fluorous chemistry offers the advantage of easy separation based on different affirmatives of organics and fluorous molecules, where the process called…
There has been an increasing demand for efficient, economical and environmentally friendly methods for partial oxidation of hydrocarbons by molecular oxygen, to desirable industrial feedstock oxygenates. Current processes are energy intensive, have low conversion efficiencies and...
Improved synthesis of phosphatidylserine using bio-based solvents, limonene and p-cymene.
Bi, Yan-Hong; Duan, Zhang-Qun; Du, Wen-Ying; Wang, Zhao-Yu
2015-01-01
The bio-based solvents limonene and p-cymene obtained from citrus waste were innovatively employed as the reaction media for enzymatic synthesis of phosphatidylserine. (R)-(+)-Limonene, which is available in large quantities from citrus waste, and its close derivative p-cymene, are promising green solvents. Herein, they were successfully employed as reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine for phosphatidylserine synthesis for the first time. A 95 % yield of phosphatidylserine was achieved after 12 h and the side-reactions (which are the undesirable hydrolysis of phosphatidylcholine and phosphatidylserine) did not happen. This work presents an alternative strategy for preparing phosphatidylserine that possesses obvious advantages over the traditional processes in terms of high efficiency combined with environmental friendliness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Basudev, E-mail: swain@iae.re.kr; Ryang Park, Jae; Yoon Shin, Dong
Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonancemore » spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30 vol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1 h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). - Highlights: • Waste automotive laminated glass and polyvinyl butyral mechanochemically separated. • An economical total recovery and environment-friendly process has been developed. • It is a global problem rather than regional environmental issue has been addressed. • Without using hazardous chemical wastes are being converted to a wealth.« less
USDA-ARS?s Scientific Manuscript database
In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical re...
Solubility and Phase Behavior of CL20 and RDX in Supercritical Carbon Dioxide
2004-12-01
with Enhanced mass transfer (SAS-EMTM) are potential green processes for producing ultrafine particles . In these processes, the material to be...particulated will be dissolved (solubilized) into an environmentally benign solvent such as supercritical carbon dioxide and then condensed to ultrafine ... particles by reducing the pressure and temperature of the mixture. Theoretical and/or predictive models are required for process simulation and to
NASA Astrophysics Data System (ADS)
Van Oost, G.
2017-11-01
Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste, and to convert organic waste into energy or chemical substances as well as to destroy toxic organic compounds, and to vitrify radioactive waste in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.
NASA Astrophysics Data System (ADS)
Van Oost, G.
2017-12-01
Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste. It allows the conversion of organic waste into energy or chemical substances as well as the destruction of toxic organic compounds in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.
Teaching Ecology to Children of Preschool Education to Instill Environmentally Friendly Behaviour
ERIC Educational Resources Information Center
Ferreira, Maria Eduarda; Cruz, Catarina; Pitarma, Rui
2016-01-01
This qualitative study analyzes the results of a pedagogical and didactic experiment which was focused on the problem of teaching environmentally-friendly behaviours to young kindergarten children. It is essential to awaken children's curiosity and desire to know more about environmental issues in their regions so that children develop their own…
Environmentally friendly and biobased lubricants
USDA-ARS?s Scientific Manuscript database
Biobased and environmentally friendly lubricants are finding applications in many areas ranging from hydraulic fluids to grease. They offer excellent biodegradability and very low ecotoxicity; high viscosity index; improved tribological properties; lower volatility and flash points relative to petro...
40 CFR 148.10 - Waste specific prohibitions-solvent wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less...
Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo
2017-12-15
A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.
AQUEOUS MICROWAVE CHEMISTRY: A CLEAN AND GREEN SYNTHETIC TOOL FOR RAPID DRUG DISCOVERY
The development of “Greener Organic Chemistry” is due to the recognition that environmentally friendly products and processes will be economical in the long term as they circumvent the need for treating ‘end-of-the-pipe’ pollutants and byproducts generated by conventional synthes...
Sustainability-based decision making is a challenging process that requires balancing trade-offs among social, economic, and environmental components. System Dynamic (SD) models can be useful tools to inform sustainability-based decision making because they provide a holistic co...
Evaluating Eco-Innovation of OECD Countries with Data Envelopment Analysis
ERIC Educational Resources Information Center
Mavi, Reza Kiani; Standing, Craig
2016-01-01
Government regulations require businesses to improve their processes and products/services in a green and sustainable manner. For being environmentally friendly, businesses should invest more on eco-innovation practices. Firms eco-innovate to promote eco-efficiency and sustainability. This paper evaluates the eco-innovation performance of…
The phase II of this project was successfully completed with field tests being presently underway. It was found from the laboratory study that the fly ash slurry had sufficient thickening time and could be pumped successfully through coiled and straight tubing. Pumping through...
Gene-Environment Interplay between Number of Friends and Prosocial Leadership Behavior in Children
ERIC Educational Resources Information Center
Rivizzigno, Alessandra S.; Brendgen, Mara; Feng, Bei; Vitaro, Frank; Dionne, Ginette; Tremblay, Richard E.; Boivin, Michel
2014-01-01
Enriched environments may moderate the effect of genetic factors on prosocial leadership (gene-environment interaction, G × E). However, positive environmental experiences may also themselves be influenced by a genetic disposition for prosocial leadership (gene-environment correlation, rGE). Relating these processes to friendships, the present…
Tolls, Johannes; Gómez, Divina; Guhl, Walter; Funk, Torsten; Seger, Erich; Wind, Thorsten
2016-01-01
Regulation (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) requires that environmental exposure assessments be performed for all uses of dangerous substances that are marketed in the European Union in quantities above 10 tons per year. The quantification of emissions to the environment is a key step in this process. This publication describes the derivation of release factors and gives guidance for estimating use rates for quantifying the emissions from the manufacturing and application of adhesives and sealants. Release factors available for coatings and paints are read across to adhesives or sealants based on similarities between these 2 product groups with regard to chemical composition and to processing during manufacturing and application. The granular emission scenarios in these documents are mapped to the broad emission scenarios for adhesives or sealants. According to the mapping, the worst-case release factors for coatings or paints are identified and assigned to the adhesives or sealants scenarios. The resulting 10 specific environmental release categories (SPERCs) for adhesives and sealants are defined by differentiating between solvent and nonsolvent ingredients and between water-borne and solvent-borne or solvent-free products. These cover the vast majority of the production processes and uses and are more realistic than the 5 relevant emission estimation defaults provided in the REACH guidance. They are accompanied with adhesive or sealant consumption rates in the EU and with guidance for estimating conservative substance use rates at a generic level. The approach of combining conservative SPERC release factors with conservative estimates of substance rates is likely to yield emission estimates that tend to overpredict actual releases. Because this qualifies the approach for use in lower-tier environmental exposure assessment, the Association of the European Adhesive & Sealant Industry (FEICA) SPERCs are available in several exposure assessment tools that are used under REACH. Given the limited regional variation in the manufacturing and use processes of adhesives and sealants, the SPERCs may be applicable for emission estimation not only in the EU but also in other regions. © 2015 SETAC.
EXPERIENCES IN DESIGNING SOLVENTS FOR THE ENVIRONMENT
To meet the great need of replacing many harmful solvents commonly used by industry and the public with environmentally benign substitute solvents, the PARIS II solvent design software has been developed. Although the difficulty of successfully finding replacements increases with...
Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their application as recyclable catalysts for the efficient and eco-friendly protection of alcohols as tetrahydropyranyl (THP) ethers are described; the same catalyst can also be utilized for the depro...
Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines
A simple and facile condensation of hydrazines/hydrazides and diamines with 1,3-diketones/β-ketoester leads to the preparation of pyrazoles and diazepines in high yields. This eco-friendly protocol is accelerated by microwave heating and efficiently carried out without any r...
Environmental Hazards Education for Childbirth Educators
Ondeck, Michele; Focareta, Judith
2009-01-01
The purpose of this article is to educate childbirth educators about environmental hazards and provide resources. Hazardous chemicals have been found in cord blood, placenta, meconium, and breastmilk samples. These chemicals include commonly known hazards such as lead, mercury, and environmental tobacco smoke, as well as some pesticides, solvents, products containing chlorine, and other chemicals referred to as “persistent organic pollutants.” The fetus is particularly vulnerable to environmental chemicals that can disrupt the developmental process at critical times during gestation. Childbirth educators are encouraged to inform themselves in order to inform childbearing families to take preventive action and explore alternative behaviors to reduce exposure to environmental hazards. PMID:20808430
Plasma gasification of municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, G.W.; Tsangaris, A.V.
1995-12-31
Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSWmore » was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.« less
16 CFR 260.11 - Ozone-safe and ozone-friendly claims.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...
16 CFR 260.11 - Ozone-safe and ozone-friendly claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...
40 CFR 427.90 - Applicability; description of the solvent recovery subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solvent recovery subcategory. 427.90 Section 427.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Solvent Recovery Subcategory § 427.90 Applicability; description of the solvent recovery subcategory. The...
Solvent cleaning system and method for removing contaminants from solvent used in resin recycling
Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA
2009-01-06
A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.
Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa
2017-10-01
Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm 3 ). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.
Qu, Li; Morton, David A V; Zhou, Qi Tony
2015-01-01
Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.
Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.
The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as {sup 99}Tc`s long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of {sup 90}Sr;more » and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates.« less
Environmental Compliance Assessment System (ECAS). North Carolina Supplement
1994-09-01
specified. 1-2 *Drvcleaning - a process for the cleaning of textiles and fabric products in which articles are washed in a nonaqueous solution...piping and valves. " Dryer - a machine used to remove petroleum solvent from articles of clothing or other textile or leather goods, after washing and...Tobacco Processing 2200-2299 Textile Processing 2400-2499 Lumber and Wood Products Except 7, cure 2500-2599 Manufacturing of Furniture and F, i 2600
A sustainable approach to empower the bio-based future ...
An economically viable and environmentally benign continuous flow intensified process has been developed to demonstrate the ability to upgrade biomass into potential biofuels, solvents, and pharmaceutical feedstocks using a bimetallic AgPd@g-C3N4 catalyst. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry.
40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-base solvent wash paint subcategory. 446.10 Section 446.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent wash... production of oil-base paint where the tank cleaning is performed using solvents. When a plant is subject to...
Almeida, Carlos; Ahmad, Samir M; Nogueira, José Manuel F
2017-03-01
In the present work, bar adsorptive microextraction using miniaturized devices (7.5 × 3.0 mm) coated with suitable sorbent phases, combined with microliquid desorption (100 μL) followed by high-performance liquid chromatography with diode array detection (BAμE-μLD/HPLC-DAD), is proposed for the determination of trace level of six pharmaceuticals (furosemide, mebeverine, ketoprofen, naproxen, diclofenac and mefenamic acid) in environmental water and urine matrices. By comparing ten distinct sorbent materials (five polymeric and five activated carbons), the polymer P5 proved to be the most suitable to achieve the best selectivity and efficiency. The solvent volume minimization in the liquid desorption stage demonstrated remarkable effectiveness, being more environmentally friendly, and simultaneously increased the microextraction enrichment factor two-fold. Assays performed through BAμE(P5, 0.9 mg)-μLD(100 μL)/HPLC-DAD on 25 mL of ultrapure water samples spiked at the 4.0 μg/L level yielded average recoveries ranging from 91.4% (furosemide) to 101.0% (ketoprofen) with good precision (RSD < 10.6%), under optimized experimental conditions. The analytical performance showed convenient detection limits (25.0 - 120.0 ng/L), good linear dynamic ranges (0.1 to 24.0 μg/L), appropriate determination coefficients (r 2 > 0.9983), and excellent repeatability through intraday (RSD < 10.4%)) and interday (RSD < 10.0%) assays. By using the standard addition methodology, the application of the present analytical approach on environmental waters and urine samples revealed the occurrence of trace levels of some pharmaceuticals. The solvent minimization during the back-extraction step associated with the miniaturization of BAμE devices proved to be a very promising analytical technology for static microextraction analysis. Graphical abstract BAμE operating under the floating sampling technology for the determination of pharmaceuticals in aqueous media.
Almeida, C; Strzelczyk, Rafał; Nogueira, J M F
2014-03-01
Bar adsorptive microextraction combined with micro-liquid desorption followed by large volume injection-gas chromatography-mass spectrometry operating in the selected-ion monitoring acquisition mode (BAµE-µLD/LVI-GC-MS(SIM)), is proposed for the determination of trace levels of three insecticide repellents (N,N-diethyl-meta-toluamide (DEET), cis and trans permethrin (PERM)) in environmental water matrices. By comparing different sorbent coatings (five activated carbons and six polymers) through BAµE, an activated carbon (AC2) proved to be the best compromise between selectivity and efficiency, even against polydimethylsiloxane through stir bar sorptive extraction. The novel improvement proposed on the back-extraction stage performed in a single step, by reducing the desorption solvent volume at the microliter level, demonstrated remarkable performance turning possible to save time, making easier the practical manipulation and more environmentally friendly. Assays performed by BAµE(AC2)-µLD/LVI-GC-MS(SIM) on 25 mL of ultrapure water samples spiked at the 1.0 μg/L level, yielded recoveries ranging from 73.8±8.8% (trans-PERM) to 96.4±9.9% (DEET), under optimised experimental conditions. The analytical performance showed convenient detection limits (8-20 ng/L) and good linear dynamic ranges (0.04-4.0 µg/L) with suitable determination coefficients (r(2)>0.9963, DEET). Excellent repeatability were also achieved through intraday (RSD<14.9%) and interday (RSD<11.9%) experiments. The novel improvement on downsizing the BAµE device to half-size proved to be either a promising option in forthcoming to reduce still more the desorption solvent volume without losing microextraction efficiency. By using the standard addition methodology, the application of the present analytical approach on tap, ground, river, swimming-pool and estuary water samples revealed good sensitivity at trace level and absence of matrix effects. © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.
1998-01-01
Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.
NASA Technical Reports Server (NTRS)
Predmore, Roamer; LeBoeuf, Claudia; Hovanec, Andrew
1997-01-01
In response to the elimination of production of several Ozone Depleting Chemicals (ODC's) which have been widely used in successful space flight mechanism cleaning and lubricating procedures, GSFC developed and implemented an overall philosophy of mitigating the risks to flight hardware during the transition phase to ODC-free cleaning procedures. The short term leg of the philosophy was the stockpiling of an appropriate amount of ODC solvents such that all short term GSFC missions will be able to stay with or revert to heritage cleaning and lubricating procedures in the face of life issues. The long-term leg of that philosophy was the initiation of a several tier testing program that will deliver increasing amounts of information over the next few years, starting with accelerated lubricant life tests that compare lubricant life on surfaces cleaned with ODC solvents with lubricant life on surfaces cleaned with ODC-free solvents. While tribological testing, mechanism life testing and space-flight experience will ultimately bring us into the 21st century with environmentally friendly means of cleaning long-life precision mechanism components, many satellites will be launched over the next few years before a number of important tribological questions can be answered. In order to prepare for this challenge, the Materials Engineering Branch in cooperation with the Electromechanical Branch launched an intensive review of all ongoing missions. The failure risk was determined for each long-life lubricated mechanism based on a number of parameters, including 4 comparison of flight solvents used to clean the heritage/life test hardware. Also studied was the ability of the mechanism manufacturers to stockpile ODC's based on state laws and company policies. A stockpiling strategy was constructed based on this information and subsequently implemented. This paper provides an overview of the GSFC ODC elimination risk mitigation philosophy as well as a detailed examination of the development of the ODC stockpiling plan.
Zarzycki, Paweł K; Zarzycka, Magdalena B; Clifton, Vicki L; Adamski, Jerzy; Głód, Bronisław K
2011-08-19
The goal of this paper is to demonstrate the separation and detection capability of eco-friendly micro-TLC technique for the classification of spirulina and selected herbs from pharmaceutical and food products. Target compounds were extracted using relatively low-parachor liquids. A number of the spirulina samples which originated from pharmaceutical formulations and food products, were isolated using a simple one step extraction with small volume of methanol, acetone or tetrahydrofuran. Herb samples rich in chlorophyll dyes were analyzed as reference materials. Quantitative data derived from micro-plates under visible light conditions and after iodine staining were explored using chemometrics tools including cluster analysis and principal components analysis. Using this method we could easily distinguish genuine spirulina and non-spirulina samples as well as fresh from expired commercial products and furthermore, we could identify some biodegradation peaks appearing on micro-TLC profiles. This methodology can be applied as a fast screening or fingerprinting tool for the classification of genuine spirulina and herb samples and in particular may be used commercially for the rapid quality control screening of products. Furthermore, this approach allows low-cost fractionation of target substances including cyanobacteria pigments in raw biological or environmental samples for preliminary chemotaxonomic investigations. Due to the low consumption of the mobile phase (usually less than 1 mL per run), this method can be considered as environmentally friendly analytical tool, which may be an alternative for fingerprinting protocols based on HPLC machines and simple separation systems involving planar micro-fluidic or micro-chip devices. Copyright © 2011 Elsevier B.V. All rights reserved.
Environmentally friendly driving feedback systems research and development for heavy duty trucks.
DOT National Transportation Integrated Search
2016-03-31
In this research project, the research team developed an environmentally-friendly driving feedback system for heavy-duty trucks, which was : adapted from a similar system previously developed for light-duty cars. The system consists of: 1) Eco-Routin...
NASA Astrophysics Data System (ADS)
Likhanov, V. A.; Lopatin, O. P.
2017-12-01
The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded. Ecologically friendly sources of energy, such as natural gas as well as renewable methyl and ethyl alcohols, are investigated. In order to develop, determine, and optimize the composition of environmentally friendly energy carriers for an HPP, the latter has been tested when working on diesel fuel (DF), compressed natural gas (CNG), and methanol and ethanol fuel emulsions (MFE, EFE). It has been experimentally established that, for the application of environmentally friendly energy carriers for a 4Ch 11.0/12.5 diesel engine of a mobile fuel and power plant, it is necessary to maintain the following ratio of components when working on CNG: 80% gas and 20% DF primer portion. When working on an alcohol mixture, emulsions of the following composition were used: 25% alcohol (methanol or ethanol), 0.5% detergent-dispersant additive succinimide C-5A, 7% water, and 67.5% DF. When this diesel passed from oil DF to environmentally friendly energy sources, it allowed for the reduction of the content of exhaust gases (EG) (1) when working on CNG with recirculation of exhaust gases (EGR) (recirculation was used to eliminate the increased amount of nitric oxides by using CNG): carbon black by 5.8 times, carbon dioxide by 45.9%, and carbon monoxide by 23.8%; (2) when working on MFE: carbon black by 6.4 times, nitrogen oxides by 29.6%, carbon dioxide by 10.1%, and carbon oxide by 47.6%; (3) when working on EFE: carbon black by 4.8 times; nitrogen oxides by 40.3%, carbon dioxide by 26.6%, and carbon monoxide by 28.6%. The prospects of use of environmentally friendly energy carriers in diesels of mobile HPPs, such as natural gas, ethanol, and methanol, has been determined.
Extraction of metals using supercritical fluid and chelate forming legand
Wai, Chien M.; Laintz, Kenneth E.
1998-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Extraction of metals using supercritical fluid and chelate forming ligand
Wai, C.M.; Laintz, K.E.
1998-03-24
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.
Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts
Wai, Chien M.; Smart, Neil G.; Lin, Yuehe
1998-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, R.
1984-01-01
This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes includingmore » methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.« less
Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting
2015-07-07
Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.
Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting
2015-01-01
Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels. PMID:26100881
Program for Assisting the Replacement of Industrial Solvents PARIS III User’s Guide
PARIS III is a third generation Windows-based computer software to assist the design of less harmful solvent replacements by estimating values of the solvent properties that characterize the static, dynamic, performance, and environmental behavior of the original solvent mixture ...
El Achaby, Mounir; El Miri, Nassima; Aboulkas, Adil; Zahouily, Mohamed; Bilal, Essaid; Barakat, Abdellatif; Solhy, Abderrahim
2017-03-01
Novel synthesis strategy of eco-friendly bio-nanocomposite films have been exploited using cellulose nanocrystals (CNC) and polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend matrix as a potential in food packaging application. The CNC were extracted from sugarcane bagasse using sulfuric acid hydrolysis, and they were successfully characterized regarding their morphology, size, crystallinity and thermal stability. Thereafter, PVA/CMC-CNC bio-nanocomposite films, at various CNC contents (0.5-10wt%), were fabricated by the solvent casting method, and their properties were investigated. It was found that the addition of 5wt% CNC within a PVA/CMC increased the tensile modulus and strength by 141% and 83% respectively, and the water vapor permeability was reduced by 87%. Additionally, the bio-nanocomposites maintained the same transparency level of the PVA/CMC blend film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. In these bio-nanocomposites, the adhesion properties and the large number of functional groups that are present in the CNC's surface and the macromolecular chains of the PVA/CMC blend are exploited to improve the interfacial interactions between the CNC and the blend. Consequently, these eco-friendly structured bio-nanocomposites with superior properties are expected to be useful in food packaging applications. Copyright © 2016. Published by Elsevier B.V.
The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials.
Ma, Ming-Guo; Zhu, Jie-Fang; Zhu, Ying-Jie; Sun, Run-Cang
2014-09-01
In recent years, the microwave-assisted ionic-liquid method has been accepted as a promising methodology for the preparation of nanomaterials and cellulose-based nanocomposites. Applications of this method in the preparation of cellulose-based nanocomposites comply with the major principles of green chemistry, that is, they use an environmentally friendly method in environmentally preferable solvents to make use of renewable materials. This minireview focuses on the recent development of the synthesis of nanomaterials and cellulose-based nanocomposites by means of the microwave-assisted ionic-liquid method. We first discuss the preparation of nanomaterials including noble metals, metal oxides, complex metal oxides, metal sulfides, and other nanomaterials by means of this method. Then we provide an overview of the synthesis of cellulose-based nanocomposites by using this method. The emphasis is on the synthesis, microstructure, and properties of nanostructured materials obtained through this methodology. Our recent research on nanomaterials and cellulose-based nanocomposites by this rapid method is summarized. In addition, the formation mechanisms involved in the microwave-assisted ionic-liquid synthesis of nanostructured materials are discussed briefly. Finally, the future perspectives of this methodology in the synthesis of nanostructured materials are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Kennedy, Mike
2008-01-01
More and more people are viewing the world through green-tinted glasses, and those ideas about making school and university facilities more environmentally friendly suddenly are appearing to be prudent and responsible. Among the groups that have been advocating for environmentally friendly school design for years are the Collaborative for High…