Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...
MASS SPECTROMETRIC ANALYSIS AND CHARACTERIZATION OF KEPONE IN ENVIRONMENTAL AND HUMAN SAMPLES
A specific portion of our environment has been contaminated with Kepone, or chlordecone. Additionally, some specific human exposures to high concentrations of Kepone have been confirmed. Gas chromatography mass spectrometry involving chemical ionization and high resolution mass s...
Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection
Matisová, Eva; Hrouzková, Svetlana
2012-01-01
Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC) and fast CGC with mass spectrometric detection (MS) has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP) residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important. PMID:23202677
Fixture For Sampling Volatile Materials In Containers
NASA Technical Reports Server (NTRS)
Melton, Donald; Pratz, Earl Howard
1995-01-01
Fixture based on T-connector enables mass-spectrometric analysis of volatile contents of cylindrical containers without exposing contents to ambient conditions. Used to sample volatile contents of pressurized containers, contents of such enclosed processing systems as gas-phase reactors, gases in automotive emission systems, and gas in hostile environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.
Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to applymore » high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.« less
A combined approach using gas chromatographic retention indices and mass spectrometric characteristics has been elaborated for the isomer-specific identification of the 1700 bromo-, chloro- and bromochloro-dioxins which may be found in the environment. ver 100 dioxins were synthe...
2010-01-01
Chrom LC –MS...Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE A liquid chromatographic–mass spectrometric ( LC –MS) method for the analysis of the 5a...Journal of Chromatography B journa l homepage: www.e lsev ier .com/ locate /chromb A liquid chromatographic–mass spectrometric ( LC –MS) method for
NASA Astrophysics Data System (ADS)
Miftah, Abdelhalim; El Azzab, Driss; Attou, Ahmed; Manar, Ahmed; Rachid, Ahmed; Ramhy, Haytam
2018-03-01
The spectrometric prospection is a direct geophysical method based on the analysis of the radioactive elements spectra, due to three principal radioactive elements 40K, 238U and 232Th. In order to measure the content of radioactive elements a geophysical helicopter survey was carried out to a flight altitude of 60 m from the subsoil, covering the geological map of Tiouit 1/50,000 with an extent of 45.5 × 29 km2. In this paper, we propose an application in the environment and or occurrence by the production of maps concentration in K, U and Th to delimit the areas with purely natural radioactive risk by the calculation of the dose rate in mSv, the found values show a variation of 0,3 with 1649 mSv with a median value of 0,831 mSv. Moreover, data processing as the horizontal gradient filter which allowed to amplify the spectrometric signatures, this one coupled to the upward continuation, lead us to a better location of the abrupt changes, which materialize by spectrometric lineaments, reflecting the change of the geochemical properties of the basement.
[Rapid analysis of the radionuclides plutonium and americium-241 in soils].
Egorov, A V; Klochkova, N V
2009-01-01
The paper shows it possible to perform a rapid analysis of the isotopes of plutomium and americium-241. The basis of the developed rapid analysis is X-spectrometric determination of the amount of plutonium isotopes and gamma-spectrometric determination of the radionuclide 241AM.
Mass spectrometric immunoassay
Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve
2007-12-04
Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
Mass spectrometric immunoassay
Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve
2013-07-16
Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
Mass spectrometric immunoassay
Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve
2005-12-13
Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
NASA Astrophysics Data System (ADS)
Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.
2018-04-01
In the preceding article "Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate" by Oyler et al., an error in the J5 E. coli LPS chemical structure (Figs. 2 and 4) was introduced and propagated into the final revision.
USDA-ARS?s Scientific Manuscript database
A rapid, simple, and reliable flow-injection mass spectrometric (FIMS) method was developed to discriminate two major Echinacea species (E. purpurea and E. angustifolia) samples. Fifty-eight Echinacea samples collected from United States were analyzed using FIMS. Principle component analysis (PCA) a...
Laskin, Julia [Richland, WA; Futrell, Jean H [Richland, WA
2008-04-29
The invention relates to a method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation (SID) in conjunction with mass spectrometric analysis. Results demonstrate formation of a wide distribution of structure-specific fragments having wide sequence coverage useful for sequencing and identifying the complex molecules.
Kailasa, Suresh Kumar; Wu, Hui-Fen
2013-07-01
Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed.
Ambient aerodynamic ionization source for remote analyte sampling and mass spectrometric analysis.
Dixon, R Brent; Sampson, Jason S; Hawkridge, Adam M; Muddiman, David C
2008-07-01
The use of aerodynamic devices in ambient ionization source development has become increasingly prevalent in the field of mass spectrometry. In this study, an air ejector has been constructed from inexpensive, commercially available components to incorporate an electrospray ionization emitter within the exhaust jet of the device. This novel aerodynamic device, herein termed remote analyte sampling, transport, and ionization relay (RASTIR) was used to remotely sample neutral species in the ambient and entrain them into an electrospray plume where they were subsequently ionized and detected using a linear ion trap Fourier transform mass spectrometer. Two sets of experiments were performed in the ambient environment to demonstrate the device's utility. The first involved the remote (approximately 1 ft) vacuum collection of pure sample particulates (i.e., dry powder) from a glass slide, entrainment and ionization at the ESI emitter, and mass spectrometric detection. The second experiment involved the capture (vacuum collection) of matrix-assisted laser desorbed proteins followed by entrainment in the ESI emitter plume, multiple charging, and mass spectrometric detection. This approach is in principle a RASTIR-assisted matrix-assisted laser desorption electrospray ionization source (Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2006, 17, 1712-1716; Rapid Commun. Mass Spectrom. 2007, 21, 1150-1154.). A detailed description of the device construction, operational parameters, and preliminary small molecule and protein data are presented.
NASA Technical Reports Server (NTRS)
Nuss, H. E.
1975-01-01
The measuring and evaluation procedure for the determination of leak rates of satellite subsystems with a quadrupole mass spectrometer, and the results of the residual gas analysis are described. The method selected for leak rate determination was placing the system into a vacuum chamber and furnishing the chamber with a mass spectrometer and calibrated leaks. The residual gas of a thermal vacuum test facility, in which the thermal balance test radiation input was simulated by a heated canister, was analyzed with the mass spectrometer in the atomic mass unit range up to 300 amu. In addition to the measurements during the space environment tests, mass spectrometric studies were performed with samples of spacecraft materials. The studies were carried out during tests for the projects HELIOS, AEROS B and SYMPHONIE.
Structure elucidation of metabolite x17299 by interpretation of mass spectrometric data.
Zhang, Qibo; Ford, Lisa A; Evans, Anne M; Toal, Douglas R
2017-01-01
A major bottleneck in metabolomic studies is metabolite identification from accurate mass spectrometric data. Metabolite x17299 was identified in plasma as an unknown in a metabolomic study using a compound-centric approach where the associated ion features of the compound were used to determine the true molecular mass. The aim of this work is to elucidate the chemical structure of x17299, a new compound by de novo interpretation of mass spectrometric data. An Orbitrap Elite mass spectrometer was used for acquisition of mass spectra up to MS 4 at high resolution. Synthetic standards of N,N,N -trimethyl-l-alanyl-l-proline betaine (l,l-TMAP), a diastereomer, and an enantiomer were chemically prepared. The planar structure of x17299 was successfully proposed by de novo mechanistic interpretation of mass spectrometric data without any laborious purification and nuclear magnetic resonance spectroscopic analysis. The proposed structure was verified by deuterium exchanged mass spectrometric analysis and confirmed by comparison to a synthetic standard. Relative configuration of x17299 was determined by direct chromatographic comparison to a pair of synthetic diastereomers. Absolute configuration was assigned after derivatization of x17299 with a chiral auxiliary group followed by its chromatographic comparison to a pair of synthetic standards. The chemical structure of metabolite x17299 was determined to be l,l-TMAP.
As a first step in a hierarchical scheme to demonstrate the suitability of present U.S. Environmental Protection Agency (USEPA) analysis methods and/or develop new methodology, the gas chromatographic (GC) separation and mass spectrometric (MS) detection characteristics of 328 to...
2006-08-01
conditions will necessarily be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which...Spectrometric Detection for 5a. CONTRACT NUMBER Analysis of Supercritical Fuels Pyrolysis Products 5b. GRANT NUMBER FA9550-05-1-0253 5c... supercritical pyrolysis experiments with the model fuels 1-methylnaphthalene and toluene. The HPLC/UV/MS instrument facilitated the identification of fifteen 5
OpenMS: a flexible open-source software platform for mass spectrometry data analysis.
Röst, Hannes L; Sachsenberg, Timo; Aiche, Stephan; Bielow, Chris; Weisser, Hendrik; Aicheler, Fabian; Andreotti, Sandro; Ehrlich, Hans-Christian; Gutenbrunner, Petra; Kenar, Erhan; Liang, Xiao; Nahnsen, Sven; Nilse, Lars; Pfeuffer, Julianus; Rosenberger, George; Rurik, Marc; Schmitt, Uwe; Veit, Johannes; Walzer, Mathias; Wojnar, David; Wolski, Witold E; Schilling, Oliver; Choudhary, Jyoti S; Malmström, Lars; Aebersold, Ruedi; Reinert, Knut; Kohlbacher, Oliver
2016-08-30
High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.
USDA-ARS?s Scientific Manuscript database
A fuzzy mass spectrometric (MS) fingerprinting method combined with chemometric analysis was established to provide rapid discrimination between whole grain and refined wheat flour. Twenty one samples, including thirteen samples from three cultivars and eight from local grocery store, were studied....
Lebo, Jon A.; Zajicek, James L.; Huckins, James N.; Petty, Jimmie D.; Peterman, Paul H.
1992-01-01
A method is given for the recovery, cleanup, and analysis of polycyclic aromatic hydrocarbons (PAHs) that have been sequestered in SPMDs (semipermeable membrane devices). SPMDs are polymeric membranes enclosing lipids, and mimic the bioconcentration process of aquatic animals. SPMDs are used as passive, in situ monitors of contamination by organic pollutants of aquatic environments. The method reported here includes dialytic recovery of the PAHs, cleanup of the dialysates using size exclusion, adsorption, and argentation chromatographic modules in tandem, then analysis by gas chromatography with photoionization or mass spectrometric detection. The method is demonstrated to overcome the presence of a variety of environmental co-contaminants and other potential interferents in the dialysates. A field application is also demonstrated in which SPMDs are used to monitor PAH contamination in an urban creek. Approaches to the use of SPMD data to calculate aqueous concentrations of PAHs are discussed. The use of SPMDs in combination with the complementary, PAH-specific cleanup procedure provides a unique approach to the analysis of PAH residues in the aquatic environment.
Blatherwick, Eleanor Q; Van Berkel, Gary J; Pickup, Kathryn; Johansson, Maria K; Beaudoin, Marie-Eve; Cole, Roderic O; Day, Jennifer M; Iverson, Suzanne; Wilson, Ian D; Scrivens, James H; Weston, Daniel J
2011-08-01
Tissue distribution studies of drug molecules play an essential role in the pharmaceutical industry and are commonly undertaken using quantitative whole body autoradiography (QWBA) methods. The growing need for complementary methods to address some scientific gaps around radiography methods has led to increased use of mass spectrometric imaging (MSI) technology over the last 5 to 10 years. More recently, the development of novel mass spectrometric techniques for ambient surface sampling has redefined what can be regarded as "fit-for-purpose" for MSI in a drug metabolism and disposition arena. Together with a review of these novel alternatives, this paper details the use of two liquid microjunction (LMJ)-based mass spectrometric surface sampling technologies. These approaches are used to provide qualitative determination of parent drug in rat liver tissue slices using liquid extraction surface analysis (LESA) and to assess the performance of a LMJ surface sampling probe (LMJ-SSP) interface for quantitative assessment of parent drug in brain, liver and muscle tissue slices. An assessment of the utility of these spatially-resolved sampling methods is given, showing interdependence between mass spectrometric and QWBA methods, in particular there emerges a reason to question typical MSI workflows for drug metabolism; suggesting the expedient use of profile or region analysis may be more appropriate, rather than generating time-intensive molecular images of the entire tissue section.
Knappy, Chris; Barillà, Daniela; Chong, James; Hodgson, Dominic; Morgan, Hugh; Suleman, Muhammad; Tan, Christine; Yao, Peng; Keely, Brendan
2015-12-01
Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.
Mass spectrometric characterization of naphthenic acids in environmental samples: a review.
Headley, John V; Peru, Kerry M; Barrow, Mark P
2009-01-01
There is a growing need to develop mass spectrometric methods for the characterization of oil sands naphthenic acids (structural formulae described by C(n)H(2n+z)O(2) where n is the number of carbon atoms and "z" is referred to as the "hydrogen deficiency" and is equal to zero, or is a negative, even integer) present in environmental samples. This interest stems from the need to better understand their contribution to the total acid number of oil sands acids; along with assessing their toxicity in aquatic environments. Negative-ion electrospray ionization has emerged as the analytical technique of choice. For infusion samples, matrix effects are particularly evident for quantification in the presence of salts and co-elutants. However, such effects can be minimized for methods that employ chromatographic separation prior to mass spectrometry (MS) detection. There have been several advances for accurate identification of classes of naphthenic acid components that employ a range of MS hyphenated techniques. General trends measured for degradation of the NAs in the environment appear to be similar to those obtained with either low- or high-resolution MS. Future MS research will likely focus on (i) development of more reliable quantitative methods that use chromatography and internal standards, (ii) the utility of representative model naphthenic acids as surrogates for the complex NA mixtures, and (iii) development of congener-specific analysis of the principal toxic components.
Intrinsic Bioprobes, Inc. (Tempe, AZ)
Nelson, Randall W [Phoenix, AZ; Williams, Peter [Phoenix, AZ; Krone, Jennifer Reeve [Granbury, TX
2008-07-15
Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
Electrospray Modifications for Advancing Mass Spectrometric Analysis
Meher, Anil Kumar; Chen, Yu-Chie
2017-01-01
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented. PMID:28573082
Advances in ultrasensitive mass spectrometry of organic molecules.
Kandiah, Mathivathani; Urban, Pawel L
2013-06-21
Ultrasensitive mass spectrometric analysis of organic molecules is important for various branches of chemistry, and other fields including physics, earth and environmental sciences, archaeology, biomedicine, and materials science. It finds applications--as an enabling tool--in systems biology, biological imaging, clinical analysis, and forensics. Although there are a number of technical obstacles associated with the analysis of samples by mass spectrometry at ultratrace level (for example analyte losses during sample preparation, insufficient sensitivity, ion suppression), several noteworthy developments have been made over the years. They include: sensitive ion sources, loss-free interfaces, ion optics components, efficient mass analyzers and detectors, as well as "smart" sample preparation strategies. Some of the mass spectrometric methods published to date can achieve sensitivity which is by several orders of magnitude higher than that of alternative approaches. Femto- and attomole level limits of detection are nowadays common, while zepto- and yoctomole level limits of detection have also been reported. We envision that the ultrasensitive mass spectrometric assays will soon contribute to new discoveries in bioscience and other areas.
Smartphone spectroscopy: three unique modalities for point-of-care testing
NASA Astrophysics Data System (ADS)
Long, Kenneth D.; Yu, Hojeong; Cunningham, Brian T.
2015-06-01
Here we demonstrate three principle modalities for a smartphone-based spectrometer: absorption, fluorescence, and photonic crystal (PC)-based label-free detection. When combined with some simple optical components, the rear-facing CMOS camera in a mobile device can provide spectrometric data that rivals that of laboratory instruments, but at a fraction of the cost. The use of a smartphone-based platform poses significant advantages based upon the rise of smartphone apps, which allow for user-interface and data-processing algorithms to be packaged and distributed within environments that are externally maintained with potential for integration with services such as cloud storage, GIS-tagging, and remote expert analysis. We demonstrate the absorption modality of our device by performing an enzyme-linked immunosorbent assay (ELISA) on both a cancer biomarker and a peanut allergen, demonstrating clinically relevant limits of detection (LOD). Second, we demonstrate the success of a molecular beacon (MB)-based assay on the smartphone platform, achieving an LOD of 1.3 pM for a specific RNA sequence, less than that of a commercial benchtop instrument. Finally, we use a PC biosensor to perform label-free detection of a representative biological interaction: Protein A and human immunoglobulin G (IgG) in the nanomolar regime. Our work represents the first demonstration of smartphone-based spectroscopy for biological assays, and the first mobile-device-enabled detection instrument that serves to measure three distinct sensing modalities (label-free biosensing, absorption spectroscopy, and fluorescence spectroscopy). The smartphone platform has the potential to expand the use of spectrometric analysis to environments assay from the laboratory, which may include rural or remote locations, low-resource settings, and consumer markets.
IMAGING MASS SPECTROMETRY OF A CORAL MICROBE INTERACTION WITH FUNGI
ZHAO, XILING; LIU, WEI-TING; APARICIO, MARYSTELLA; ATENCIO, LIBRADA; BALLESTEROS, JAVIER; SÁNCHEZ, JOEL; GAVILÁN, RONNIE G.; GUTIÉRREZ, MARCELINO; DORRESTEIN, PIETER C.
2013-01-01
Fungal infections are increasing worldwide, including in the aquatic environment. Microbiota that coexist with marine life can provide protection against fungal infections by secretion of metabolites with antifungal properties. Our laboratory has developed mass spectrometric methodologies with the goal of improving our functional understanding of microbial metabolites and guiding the discovery process of anti-infective agents from natural sources. GA40, a Bacillus amyloliquefaciens strain isolated from an octocoral in Panama, displayed antifungal activity against various terrestrial and marine fungal strains. Using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), the molecular species produced by this microbe were visualized in a side-by-side interaction with two representative fungal strains, Aspergillus fumigatus and Aspergillus niger. The visualization was performed directly on the agar without the need for extraction. By comparison of spatial distributions, relative intensities and m/z values of GA40 secreted metabolites in the fungal interactions versus singly grown control colonies, we obtained insight into the antifungal activity of secreted metabolites. Annotation of GA40 metabolites observed in MALDI-IMS was facilitated by MS/MS networking analysis, a mass spectrometric technique that clusters metabolites with similar MS/MS fragmentation patterns. This analysis established that the predominant GA40 metabolites belong to the iturin family. In a fungal inhibition assay of A. fumigatus, the GA40 iturin metabolites were found to be responsible for the antifungal properties of this Bacillus strain. PMID:23881443
Fernandes, T; Granja, R; Thillaud, P L
2014-01-01
During an archaeological excavation at a mediaeval monastery (Flor da Rosa, Crato, Portugal), a skeleton of a adult woman was found with two calcifications in the thoracic cage. The location and the macroscopic analysis of the calcifications allowed them to be assigned as pleural plaques. Spectrometric analysis and scanning electronic microscopy enabled to establish that it originated with an infectious process. These results associated with the lesions found in the ribs and vertebrae strongly suggest tuberculosis as the cause of these pleural plaques. Copyright © 2013 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.
Mirion--a software package for automatic processing of mass spectrometric images.
Paschke, C; Leisner, A; Hester, A; Maass, K; Guenther, S; Bouschen, W; Spengler, B
2013-08-01
Mass spectrometric imaging (MSI) techniques are of growing interest for the Life Sciences. In recent years, the development of new instruments employing ion sources that are tailored for spatial scanning allowed the acquisition of large data sets. A subsequent data processing, however, is still a bottleneck in the analytical process, as a manual data interpretation is impossible within a reasonable time frame. The transformation of mass spectrometric data into spatial distribution images of detected compounds turned out to be the most appropriate method to visualize the results of such scans, as humans are able to interpret images faster and easier than plain numbers. Image generation, thus, is a time-consuming and complex yet very efficient task. The free software package "Mirion," presented in this paper, allows the handling and analysis of data sets acquired by mass spectrometry imaging. Mirion can be used for image processing of MSI data obtained from many different sources, as it uses the HUPO-PSI-based standard data format imzML, which is implemented in the proprietary software of most of the mass spectrometer companies. Different graphical representations of the recorded data are available. Furthermore, automatic calculation and overlay of mass spectrometric images promotes direct comparison of different analytes for data evaluation. The program also includes tools for image processing and image analysis.
Preparation of alpha sources using magnetohydrodynamic electrodeposition for radionuclide metrology.
Panta, Yogendra M; Farmer, Dennis E; Johnson, Paula; Cheney, Marcos A; Qian, Shizhi
2010-02-01
Expanded use of nuclear fuel as an energy resource and terrorist threats to public safety clearly require the development of new state-of-the-art technologies and improvement of safety measures to minimize the exposure of people to radiation and the accidental release of radiation into the environment. The precision in radionuclide metrology is currently limited by the source quality rather than the detector performance. Electrodeposition is a commonly used technique to prepare massless radioactive sources. Unfortunately, the radioactive sources prepared by the conventional electrodeposition method produce poor resolution in alpha spectrometric measurements. Preparing radioactive sources with better resolution and higher yield in the alpha spectrometric range by integrating magnetohydrodynamic convection with the conventional electrodeposition technique was proposed and tested by preparing mixed alpha sources containing uranium isotopes ((238)U, (234)U), plutonium ((239)Pu), and americium ((241)Am) for alpha spectrometric determination. The effects of various parameters such as magnetic flux density, deposition current and time, and pH of the sample solution on the formed massless radioactive sources were also experimentally investigated. Copyright 2009 Elsevier Inc. All rights reserved.
[Mass-spectrometric analysis of an anti-microbial preparation decamethoxine].
Sukhodub, L F; Kosevich, M V; Shelkovskiĭ, V S; Volianskiĭ, Iu L
1989-11-01
I. I. Mechnikov Kharkov Research Institute of Microbiology, Vaccines and Sera, Ministry of Public Health of the Ukrainian SSR. The results of mass spectrometric investigation of decamethoxine++, an antimicrobial chemotherapeutic drug, are presented. It was shown that desorption-field mass spectrometry provided recording decamethoxine++ intensive quasimolecular ions [M.Cl]+ and [M]++ forming under conditions of high electric intensity only from the intact parent molecule. Hence, the presence of the peaks in the desorption field mass spectra made it possible to definitively determine decamethoxine++ in the samples. Therefore, the procedure of desorption-field mass spectrometry proved reliable in identification of bisquaternary ammonium compounds. Ways for thermal decomposition and mass spectrometric fragmentation of the decamethoxine++ molecule under various ionization conditions are also discussed.
[Improved euler algorithm for trend forecast model and its application to oil spectrum analysis].
Zheng, Chang-song; Ma, Biao
2009-04-01
The oil atomic spectrometric analysis technology is one of the most important methods for fault diagnosis and state monitoring of large machine equipment. The gray method is preponderant in the trend forecast at the same time. With the use of oil atomic spectrometric analysis result and combining the gray forecast theory, the present paper established a gray forecast model of the Fe/Cu concentration trend in the power-shift steering transmission. Aiming at the shortage of the gray method used in the trend forecast, the improved Euler algorithm was put forward for the first time to resolve the problem of the gray model and avoid the non-precision that the old gray model's forecast value depends on the first test value. This new method can make the forecast value more precision as shown in the example. Combined with the threshold value of the oil atomic spectrometric analysis, the new method was applied on the Fe/Cu concentration forecast and the premonition of fault information was obtained. So we can take steps to prevent the fault and this algorithm can be popularized to the state monitoring in the industry.
Mass spectrometric detection of siRNA in plasma samples for doping control purposes.
Kohler, Maxie; Thomas, Andreas; Walpurgis, Katja; Schänzer, Wilhelm; Thevis, Mario
2010-10-01
Small interfering ribonucleic acid (siRNA) molecules can effect the expression of any gene by inducing the degradation of mRNA. Therefore, these molecules can be of interest for illicit performance enhancement in sports by affecting different metabolic pathways. An example of an efficient performance-enhancing gene knockdown is the myostatin gene that regulates muscle growth. This study was carried out to provide a tool for the mass spectrometric detection of modified and unmodified siRNA from plasma samples. The oligonucleotides are purified by centrifugal filtration and the use of an miRNA purification kit, followed by flow-injection analysis using an Exactive mass spectrometer to yield the accurate masses of the sense and antisense strands. Although chromatography and sensitive mass spectrometric analysis of oligonucleotides are still challenging, a method was developed and validated that has adequate sensitivity (limit of detection 0.25-1 nmol mL(-1)) and performance (precision 11-21%, recovery 23-67%) for typical antisense oligonucleotides currently used in clinical studies.
Sochor, Jiri; Ryvolova, Marketa; Krystofova, Olga; Salas, Petr; Hubalek, Jaromir; Adam, Vojtech; Trnkova, Libuse; Havel, Ladislav; Beklova, Miroslava; Zehnalek, Josef; Provaznik, Ivo; Kizek, Rene
2010-11-29
The aim of this study was to describe behaviour, kinetics, time courses and limitations of the six different fully automated spectrometric methods--DPPH, TEAC, FRAP, DMPD, Free Radicals and Blue CrO5. Absorption curves were measured and absorbance maxima were found. All methods were calibrated using the standard compounds Trolox® and/or gallic acid. Calibration curves were determined (relative standard deviation was within the range from 1.5 to 2.5%). The obtained characteristics were compared and discussed. Moreover, the data obtained were applied to optimize and to automate all mentioned protocols. Automatic analyzer allowed us to analyse simultaneously larger set of samples, to decrease the measurement time, to eliminate the errors and to provide data of higher quality in comparison to manual analysis. The total time of analysis for one sample was decreased to 10 min for all six methods. In contrary, the total time of manual spectrometric determination was approximately 120 min. The obtained data provided good correlations between studied methods (R=0.97-0.99).
Membrane protein separation and analysis by supercritical fluid chromatography-mass spectrometry.
Zhang, Xu; Scalf, Mark; Westphall, Michael S; Smith, Lloyd M
2008-04-01
Membrane proteins comprise 25-30% of the human genome and play critical roles in a wide variety of important biological processes. However, their hydrophobic nature has compromised efforts at structural characterization by both X-ray crystallography and mass spectrometry. The detergents that are generally used to solubilize membrane proteins interfere with the crystallization process essential to X-ray studies and cause severe ion suppression effects that hinder mass spectrometric analysis. In this report, the use of supercritical fluid chromatography-mass spectrometry for the separation and analysis of integral membrane proteins and hydrophobic peptides is investigated. It is shown that detergents are rapidly and effectively separated from the proteins and peptides, yielding them in a state suitable for direct mass spectrometric analysis.
NASA Astrophysics Data System (ADS)
Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.
2016-07-01
This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.
The 209 polychlorinated biphenyl (PCB) congeners and associated nine isomeric groups (nine groups of PCBs with the same degree of chlorination) have been long recorded as high endocrine disrupting chemicals in the environment. Difficult analytical problems exist, in those frequen...
Zhao, Yang; Chang, Yuan-Shiun; Chen, Pei
2015-01-01
A flow-injection mass spectrometric metabolic fingerprinting method in combination with chemometrics was used to differentiate Aurantii Fructus Immaturus from its counterfeit Poniciri Trifoliatae Fructus Immaturus. Flow-injection mass spectrometric (FIMS) fingerprints of 9 Aurantii Fructus Immaturus samples and 12 Poniciri Trifoliatae Fructus Immaturus samples were acquired and analyzed using principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The authentic herbs were differentiated from their counterfeits easily. Eight characteristic components which were responsible for the difference between the samples were tentatively identified. Furthermore, three out of the eight components, naringin, hesperidin, and neohesperidin, were quantified. The results are useful to help identify the authenticity of Aurantii Fructus Immaturus. PMID:25622204
A membrane-separator interface for mass-spectrometric analysis of blood plasma
NASA Astrophysics Data System (ADS)
Elizarov, A. Yu.; Gerasimov, D. G.
2014-09-01
We demonstrate the possibility of rapid mass-spectrometric determination of the content of anesthetic agents in blood plasma with the aid of a membrane-separator interface. The interface employs a hydrophobic selective membrane that is capable of separating various anesthetic drugs (including inhalation anesthetic sevofluran, noninhalation anesthetic thiopental, hypnotic propofol, and opioid analgesic fentanyl) from the blood plasma and introducing samples into a mass spectrometer. Analysis of the blood plasma was not accompanied by the memory effect and did not lead to membrane degradation. Results of clinical investigation of the concentration of anesthetics in the blood plasma of patients are presented.
Inorganic trace analysis by mass spectrometry
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine; Dietze, Hans-Joachim
1998-10-01
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.
Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M
2007-10-01
A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.
Dixon, R. Brent; Bereman, Michael S.; Muddiman, David C.; Hawkridge, Adam M.
2007-01-01
A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data is presented. PMID:17716909
NASA Astrophysics Data System (ADS)
Gidaspov, B. V.; Zenkevich, I. G.; Rodin, A. A.
1989-09-01
The problem of identifying halogen-containing organic compounds in their gas-chromatographic and gas-chromatographic-mass-spectrometric (GC-MS) determination in different materials has been examined. Particular attention has been paid not to the complete characterisation of methods for carrying out this analysis but to the most important problem of increasing the selectivity at the stages of sampling, separation, and interpretation of the gas-chromatographic and GC-MS information. The bibliography contains 292 references.
Mass spectrometry and renal calculi
Purcarea, VL; Sisu, I; Sisu, E
2010-01-01
The present review represents a concise and complete survey of the literature covering 2004–2009, concerning the mass spectrometric techniques involved in the structural investigation of renal calculi. After a short presentation of the fundamental mass spectrometric techniques (MALDI–TOF, QTOF, MS–MS) as well as hyphenated methods (GC–MS, LC–MS, CE–MS), an extensive study of the urinary proteome analysis as well as the detection and quantification by mass spectrometry of toxins, drugs and metabolites from renal calculi is presented. PMID:20968197
The use of gas chromatographic-mass spectrometric-computer systems in pharmacokinetic studies.
Horning, M G; Nowlin, J; Stafford, M; Lertratanangkoon, K; Sommer, K R; Hill, R M; Stillwell, R N
1975-10-29
Pharmacokinetic studies involving plasma, urine, breast milk, saliva and liver homogenates have been carried out by selective ion detection with a gas chromatographic-mass spectrometric-computer system operated in the chemical ionization mode. Stable isotope labeled drugs were used as internal standards for quantification. The half-lives, the concentration at zero time, the slope (regression coefficient), the maximum velocity of the reaction and the apparent Michaelis constant of the reaction were determined by regression analysis, and also by graphic means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiner, E.J.; Schellenberg, D.H.; Taguchi, V.Y.
1991-01-01
A mass spectrometry/mass spectrometry-multiple reaction monitoring (MS/MS-MRM) technique for the analysis of all tetra- through octachlorinated dibenzo-p-dioxins (Cl{sub x}DD, x = 4-8) and dibenzofurans (Cl{sub x}DF, x = 4-8) has been developed at the Ministry of the Environment (MOE) utilizing a triple quadrupole mass spectrometer. Optimization of instrumental parameters using the analyte of interest in a direct insertion probe (DIP) resulted in sensitivities approaching those obtainable by high-resolution mass spectrometric (HRMS) methods. All congeners of dioxins and furans were detected in the femtogram range. Results on selected samples indicated that for some matrices, fewer chemical interferences were observed by MS/MSmore » than by HRMS. The technique used to optimize the instrument for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) analysis is adaptable to other analytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, O., E-mail: osierra@sgc.gov.co; Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.
This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in samplemore » density between samples and standards.« less
Identifying compounds found in the environment without knowledge of their origin is a very difficult analytical problem. Comparison of the low resolution mass spectrum of a compound with those in the NIST or Wiley mass spectral libraries can provide a tentative identification whe...
Dudley, E; El-Shakawi, S; Games, D E; Newton, R P
2000-03-01
A chromatographic separation of nucleosides from urine has been developed in order to facilitate their mass spectrometric analysis for clinical diagnosis. A number of chromatographic resins were studied in order to develop an effective and efficient purification procedure. The optimized sequential protocol comprises a centrifugation, acidification and neutralization step, followed by application of an affinity chromatographic column and finally further separation on an acidic cation exchange column and a basic anion exchanger. This scheme shows effective clean-up of a standard radiolabelled nucleoside with a recovery of 92.5%, and recovery of nucleosides added to urine samples before extraction showed recoveries of 72-82%.
Mass spectrometry analysis of terpene lactones in Ginkgo biloba.
Ding, Shujing; Dudley, Ed; Song, Qingbao; Plummer, Sue; Tang, Jiandong; Newton, Russell P; Brenton, A Gareth
2008-01-01
Terpene lactones are a family of compounds with unique chemical structures, first recognised in an extract of Ginkgo biloba. The discovery of terpene lactone derivatives has recently been reported in more and more plant extracts and even food products. In this study, mass spectrometric characteristics of the standard terpene lactones in Ginkgo biloba were comprehensively studied using both an ion trap and a quadrupole time-of-flight (QTOF) mass spectrometer. The mass spectral fragmentation data from both techniques was compared to obtain the mass spectrometric fragmentation pathways of the terpene lactones with high confidence. The data obtained will facilitate the analysis and identification of terpene lactones in future plant research via the fragmentation knowledge reported here.
Peschka, Manuela; Roberts, Paul H; Knepper, Thomas P
2007-10-01
The analysis and presence of clotrimazole, an antifungal agent with logK(OW) > 4, was thoroughly studied in the aquatic environment. For that reason analytical methods based on gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry were developed and validated to quantify clotrimazole with limits of quantification down to 5 and 1 ng/L, respectively. Both methods were compared in an intercalibration exercise. The complete mass-spectrometric fragmentation pattern could be elucidated with the aid of quadrupole time of flight mass spectrometry. Since clotrimazole tends to adsorb to laboratory glassware, studies on its adsorption behaviour were made to ensure the appropriate handling of water samples, e.g. pH, storage time, pretreatment of sampling vessels or material of the vials used for final extracts. The phenomena of adsorption to suspended matter were investigated while analysing different waste-water samples. Application of the methods in various investigated wastewater and surface water samples demonstrated that clotrimazole could only be detected in the low nanogram per litre range of anthropogenic influenced unfiltered water samples after acidification to pH 2.
Madhusudanan, K P; Banerjee, Suchitra; Khanuja, Suman P S; Chattopadhyay, Sunil K
2008-06-01
The applicability of a new mass spectrometric technique, DART (direct analysis in real time) has been studied in the analysis of the hairy root culture of Rauvolfia serpentina. The intact hairy roots were analyzed by holding them in the gap between the DART source and the mass spectrometer for measurements. Two nitrogen-containing compounds, vomilenine and reserpine, were characterized from the analysis of the hairy roots almost instantaneously. The confirmation of the structures of the identified compounds was made through their accurate molecular formula determinations. This is the first report of the application of DART technique for the characterization of compounds that are expressed in the hairy root cultures of Rauvolfia serpentina. Moreover, this also constitutes the first report of expression of reserpine in the hairy root culture of Rauvolfia serpentina. Copyright (c) 2008 John Wiley & Sons, Ltd.
We report here the first evidence of a possible mechanism for the formation of an azobenzene arsonic acid compound in the environment The compound was formed when 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) was added to aqueous suspensions of smectite clay The 3-amino-HPAA...
NASA Astrophysics Data System (ADS)
Bochiolo, M.; Verdoya, M.; Chiozzi, P.; Pasquale, V.
2012-08-01
We performed a radiometric survey for evaluating the natural radioactivity and the related potential hazard level both outdoor and indoor a mine tunnel. The mine is located in a zone of uranium enrichment in the Western Alps (Italy). At first, a γ-ray spectrometry survey of the area surrounding the mine was carried out to define the extent of the ore deposit. Then, spectrometric measurements were performed in the tunnel and rock samples were collected for laboratory analyses. The results point to significant heterogeneity in uranium concentration and consequently in the absorbed dose rate spatial distribution. Spectrometric results in situ and in the laboratory, together with radon air concentration measurements, were used to infer the radon specific exhalation and flow from the mine rocks. The specific exhalation is positively related to the activity concentration of uranium.
Volatile products from the interaction of KCl(g) with Cr2O3 and LaCrO3 in oxidizing environments
NASA Technical Reports Server (NTRS)
Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Fryburg, G. C.; Dillard, J. G.
1977-01-01
Cooled target collection techniques and high pressure mass spectrometric sampling were used to measure the relative rates of oxidative vaporization and to identify the volatile products emanating from samples of chromia and Mg-doped lanthanum chromite. The materials were exposed to partial pressures of KCl with and without H2O in one atmosphere of slowly flowing oxygen at elevated temperatures. Chromia and fresh samples of lanthanum chromite exhibited enhanced rates of oxidative vaporization upon exposure to these reactants. Mass spectrometric identification showed that the enhancements resulted from the heterogeneous formation of complex molecules of the type KCl sub 1,2,3 CrO3 and KOH sub l,2 CrO3. Lanthanum chromite that had undergone prolonged oxidative vaporization exhibited no enhanced oxidation upon exposure to the reactants.
Moldoveanu, Serban; Scott, Wayne; Zhu, Jeff
2015-11-01
Bioactive botanicals contain natural compounds with specific biological activity, such as antibacterial, antioxidant, immune stimulating, and taste improving. A full characterization of the chemical composition of these botanicals is frequently necessary. A study of small carbohydrates from the plant materials of 18 bioactive botanicals is further described. The study presents the identification of the carbohydrate using a gas chromatographic-mass spectrometric analysis that allows detection of molecules as large as maltotetraose, after changing them into trimethylsilyl derivatives. A number of carbohydrates in the plant (fructose, glucose, mannose, sucrose, maltose, xylose, sorbitol, and myo-, chiro-, and scyllo-inositols) were quantitated using a novel liquid chromatography with tandem mass spectrometric technique. Both techniques involved new method developments. The gas chromatography with mass spectrometric analysis involved derivatization and separation on a Rxi(®)-5Sil MS column with H2 as a carrier gas. The liquid chromatographic separation was obtained using a hydrophilic interaction type column, YMC-PAC Polyamine II. The tandem mass spectrometer used an electrospray ionization source in multiple reaction monitoring positive ion mode with the detection of the adducts of the carbohydrates with Cs(+) ions. The validated quantitative procedure showed excellent precision and accuracy allowing the analysis in a wide range of concentrations of the analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Duan, Xiaotao; Zhong, Dafang; Chen, Xiaoyan
2008-06-01
Houttuynin (decanoyl acetaldehyde), a beta-dicarbonyl compound, is the major antibacterial constituent in the volatile oil of Houttuynina cordata Thunb. In the present work, detection of houttuynin in human plasma based on the chemical derivatization with 2,4-dinitrophenylhydrazine (DNPH) coupled with liquid chromatography/tandem mass spectrometry was described. The primary reaction products between the beta-dicarbonyl compound and DNPH in aqueous phase were identified as heterocyclic structures, of which the mass spectrometric ionization and fragmentation behavior were characterized with the aid of high-resolution multistage mass spectral analysis. For quantification, houttuynin and internal standard (IS, benzophenone) in plasma were firstly converted to their DNPH derivatives without sample purification, then extracted from human plasma with n-hexane and detected by liquid chromatography tandem mass spectrometry performed in selected reaction monitoring (SRM) mode. This method allowed for a lower limit of quantification (LLOQ) of 1.0 ng/ml using 100-microl plasma. The validation results showed high accuracy (%bias < 2.1) and precision (%CV < 7.2) at broad linear dynamic range (1.0-5000 ng/ml). The simple and quantitative derivatization coupled with tandem mass spectrometric analysis facilitates a sensitive and robust method for the determination of plasma houttuynin in pharmacokinetic studies.
Analysis of airborne MAIS imaging spectrometric data for mineral exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jinnian; Zheng Lanfen; Tong Qingxi
1996-11-01
The high spectral resolution imaging spectrometric system made quantitative analysis and mapping of surface composition possible. The key issue will be the quantitative approach for analysis of surface parameters for imaging spectrometer data. This paper describes the methods and the stages of quantitative analysis. (1) Extracting surface reflectance from imaging spectrometer image. Lab. and inflight field measurements are conducted for calibration of imaging spectrometer data, and the atmospheric correction has also been used to obtain ground reflectance by using empirical line method and radiation transfer modeling. (2) Determining quantitative relationship between absorption band parameters from the imaging spectrometer data andmore » chemical composition of minerals. (3) Spectral comparison between the spectra of spectral library and the spectra derived from the imagery. The wavelet analysis-based spectrum-matching techniques for quantitative analysis of imaging spectrometer data has beer, developed. Airborne MAIS imaging spectrometer data were used for analysis and the analysis results have been applied to the mineral and petroleum exploration in Tarim Basin area china. 8 refs., 8 figs.« less
1982-08-23
LUBRICATION, FAILURE PROGRESSION WNITORING OIL-ANALYSIS, FAILURE ANALYSIS, TRIBOLOGY WEAR DEBRIS ANALYSIS, WEAR REGIMS DIAGNOSTICS, BENCH TESTING, FERROGRApHy ...Spectrometric Oil Analysis . ............... 400 G. Analytical Ferrography ............................. 411 3 NAEC-92-153 TABLE OF CONTENTS (Continued...of ferrography entry deposit mnicrographs of these sequences, which can be directly related to sample debris concentration levels. These micrographs
Analysis of Glycosaminoglycans Using Mass Spectrometry
Staples, Gregory O.; Zaia, Joseph
2015-01-01
The glycosaminoglycans (GAGs) are linear polysaccharides expressed on animal cell surfaces and in extracellular matrices. Their biosynthesis is under complex control and confers a domain structure that is essential to their ability to bind to protein partners. Key to understanding the functions of GAGs are methods to determine accurately and rapidly patterns of sulfation, acetylation and uronic acid epimerization that correlate with protein binding or other biological activities. Mass spectrometry (MS) is particularly suitable for the analysis of GAGs for biomedical purposes. Using modern ionization techniques it is possible to accurately determine molecular weights of GAG oligosaccharides and their distributions within a mixture. Methods for direct interfacing with liquid chromatography have been developed to permit online mass spectrometric analysis of GAGs. New tandem mass spectrometric methods for fine structure determination of GAGs are emerging. This review summarizes MS-based approaches for analysis of GAGs, including tissue extraction and chromatographic methods compatible with LC/MS and tandem MS. PMID:25705143
NASA Astrophysics Data System (ADS)
Yu, Zhan; Chen, Lee Chuin; Mandal, Mridul Kanti; Yoshimura, Kentaro; Takeda, Sen; Hiraoka, Kenzo
2013-10-01
This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.
Portable outgas detection apparatus
Haney, Steven Julian; Malinowski, Michael E.
2004-05-11
A portable device for detecting surface outgas contaminants of an article includes: (i) a portable housing that has a chamber which is in communication with a port that is adapted to be sealably attached to a surface of the article; (ii) a mass spectrometer that is coupled to the chamber for analyzing gaseous materials in the chamber; and (iii) means for generating a vacuum within the chamber thereby drawing outgas contaminants from the surface of the article into the chamber for analysis by the mass spectrometer. By performing a mass spectrometric analysis of the surface of interest and comparing the data with mass spectrometric data ascertained with the device from a clean surface, the type and amount of outgas contaminants, if any, can be determined.
NASA Astrophysics Data System (ADS)
Becker, J. Susanne; Zoriy, Miroslav; Przybylski, Michael; Becker, J. Sabine
2007-03-01
The combination of atomic and molecular mass spectrometric methods was applied for characterization and identification of several human proteins from Alzheimer's diseased brain. A brain protein mixture was separated by two-dimensional (2D) gel electrophoresis and the protein spots were fast screened by microlocal analysis using LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) in respect to phosphorus, sulfur, copper, zinc and iron content. Five selected protein spots in 2D gel containing these elements were investigated after tryptic digestion by matrix assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Than element concentrations (P, Cu, Zn and Fe) were determined in three identified human brain proteins by LA-ICP-MS in the 2D gel. Results of structure analysis of human brain proteins by MALDI-FTICR-MS were combined with those of the direct determination of phosphorus, copper, zinc and iron concentrations in protein spots with LA-ICP-MS. From the results of atomic and molecular mass spectrometric techniques the human brain proteins were characterized in respect to their structure, sequence, phosphorylation state and metal content as well.
NASA Astrophysics Data System (ADS)
Schlattauer, Leo; Parali, Levent; Pechousek, Jiri; Sabikoglu, Israfil; Celiktas, Cuneyt; Tektas, Gozde; Novak, Petr; Jancar, Ales; Prochazka, Vit
2017-09-01
This paper reports on the development of a gamma-ray spectroscopic system for the (i) recording and (ii) processing of spectra. The utilized data read-out unit consists of a PCI digital oscilloscope, personal computer and LabVIEW™ programming environment. A pulse-height spectra of various sources were recorded with two NaI(Tl) detectors and analyzed, demonstrating the proper usage of the detectors. A multichannel analyzer implements the Gaussian photopeak fitting. The presented method provides results which are in compliance to the ones taken from commercial spectroscopy systems. Each individual hardware or software unit can be further utilized in different spectrometric user-systems. An application of the developed system for research and teaching purposes regarding the design of digital spectrometric systems has been successfully tested at the laboratories of the Department of Experimental Physics.
Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.
Wang, Minkun; Tsai, Tsung-Heng; Di Poto, Cristina; Ferrarini, Alessia; Yu, Guoqiang; Ressom, Habtom W
2016-08-18
A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative comparison of the abundance of biomolecules in biological samples. We investigated topic models to computationally analyze mass spectrometric data considering both integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as well as synthetic data we generated based on the serum proteomic data. The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources with small average error ratios (<7 %) between estimation and ground truth. By applying the topic model-based purification to mass spectrometric data, we found more proteins and metabolites with significant changes between HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared to the results found prior to purification. We investigated topic model-based inference methods to computationally address the heterogeneity issue in samples analyzed by LC/GC-MS. We observed that incorporation of scan-level features have the potential to lead to more accurate purification results by alleviating the loss in information as a result of integrating peaks. We believe cancer biomarker discovery studies that use mass spectrometric analysis of human biospecimens can greatly benefit from topic model-based purification of the data prior to statistical and pathway analyses.
Mass Spectrometric Analysis of Synthetic Organic Pigments.
Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi
2018-04-18
Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.
Ulshina, D V; Kovalev, D A; Zhirov, A M; Zharinova, N V; Khudoleev, A A; Kogotkova, O I; Efremenko, V I; Evchenko, N I; Kulichenko, A N
2016-01-01
Carry out comparative analysis using time-of-flight mass-spectrometry with matrix laser desorption/ionization (MALDI-TOF MS) of protein profiles of brucellosis causative agents (Brucella melitensis Rev-1 and Brucella abortus 19BA), cultivated in various nutrient media: Albimi agar, brucellagar and erythrit-agar. Vaccine,strains: Brucella melitensis Rev-1 and Brucella abortus 19BA. Protein profiling in linear mode on Microflex "Bruker Daltonics" MALDI-TOF mass-spectrometer. A number of characteristic features of brucella mass-spectra was detected: in particular, preservation of the total qualitative composition of protein profiles of cultures and significant differences in the intensity of separate peaks depending on the nutrient medium used. Based on the analysis of the data obtained, use of Albimi agar as the nutrient medium for preparation of brucella culture samples for mass-spectrometric analysis was shown to be optimal.
THE APPLICATION OF MASS SPECTROMETRY TO PROTEIN ANALYSIS
The purpose of this presentation is to give our NHEERL collaborators a brief introduction to the use of mass spectrometric (MS) techniques in the analysis of proteins. The basic principles of electrospray ionization and matrix-assisted laser desorption ionization will be discuss...
Dual parallel mass spectrometry for lipid and vitamin D analysis
USDA-ARS?s Scientific Manuscript database
There are numerous options for mass spectrometric analysis of lipids, including different types of ionization, and a wide variety of experiments using different scan modes that can be conducted. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) provide complementary ...
Separation and Analysis of Citral Isomers.
ERIC Educational Resources Information Center
Sacks, Jeff; And Others
1983-01-01
Provides background information, procedures, and results of an experiments designed to introduce undergraduates to the technique of steam distillation as a means of isolating thermally sensitive compounds. Chromatographic techniques (HPLC) and mass spectrometric analysis are used in the experiment which requires three laboratory periods. (JN)
Review of chemical separation techniques applicable to alpha spectrometric measurements
NASA Astrophysics Data System (ADS)
de Regge, P.; Boden, R.
1984-06-01
Prior to alpha-spectrometric measurements several chemical manipulations are usually required to obtain alpha-radiating sources with the desired radiochemical and chemical purity. These include sampling, dissolution or leaching of the elements of interest, conditioning of the solution, chemical separation and preparation of the alpha-emitting source. The choice of a particular method is dependent on different criteria but always involves aspects of the selectivity or the quantitative nature of the separations. The availability of suitable tracers or spikes and modern high resolution instruments resulted in the wide-spread application of isotopic dilution techniques to the problems associated with quantitative chemical separations. This enhanced the development of highly elective methods and reagents which led to important simplifications in the separation schemes. The chemical separation methods commonly used in connection with alpha-spectrometric measurements involve precipitation with selected scavenger elements, solvent extraction, ion exchange and electrodeposition techniques or any combination of them. Depending on the purpose of the final measurement and the type of sample available the chemical separation methods have to be adapted to the particular needs of environment monitoring, nuclear chemistry and metrology, safeguards and safety, waste management and requirements in the nuclear fuel cycle. Against the background of separation methods available in the literature the present paper highlights the current developments and trends in the chemical techniques applicable to alpha spectrometry.
Allmer, Jens; Kuhlgert, Sebastian; Hippler, Michael
2008-07-07
The amount of information stemming from proteomics experiments involving (multi dimensional) separation techniques, mass spectrometric analysis, and computational analysis is ever-increasing. Data from such an experimental workflow needs to be captured, related and analyzed. Biological experiments within this scope produce heterogenic data ranging from pictures of one or two-dimensional protein maps and spectra recorded by tandem mass spectrometry to text-based identifications made by algorithms which analyze these spectra. Additionally, peptide and corresponding protein information needs to be displayed. In order to handle the large amount of data from computational processing of mass spectrometric experiments, automatic import scripts are available and the necessity for manual input to the database has been minimized. Information is in a generic format which abstracts from specific software tools typically used in such an experimental workflow. The software is therefore capable of storing and cross analysing results from many algorithms. A novel feature and a focus of this database is to facilitate protein identification by using peptides identified from mass spectrometry and link this information directly to respective protein maps. Additionally, our application employs spectral counting for quantitative presentation of the data. All information can be linked to hot spots on images to place the results into an experimental context. A summary of identified proteins, containing all relevant information per hot spot, is automatically generated, usually upon either a change in the underlying protein models or due to newly imported identifications. The supporting information for this report can be accessed in multiple ways using the user interface provided by the application. We present a proteomics database which aims to greatly reduce evaluation time of results from mass spectrometric experiments and enhance result quality by allowing consistent data handling. Import functionality, automatic protein detection, and summary creation act together to facilitate data analysis. In addition, supporting information for these findings is readily accessible via the graphical user interface provided. The database schema and the implementation, which can easily be installed on virtually any server, can be downloaded in the form of a compressed file from our project webpage.
Single-particle characterization of the High Arctic summertime aerosol
NASA Astrophysics Data System (ADS)
Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.
2014-01-01
Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS and its low hit rate. To our knowledge, this study reports on the first in-situ single-particle mass spectrometric measurements in the marine boundary layer of the High-Arctic pack-ice region.
Single-particle characterization of the high-Arctic summertime aerosol
NASA Astrophysics Data System (ADS)
Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.
2014-07-01
Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region.
NASA Astrophysics Data System (ADS)
Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.
2011-07-01
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
Campbell, Ian S; Ton, Alain T; Mulligan, Christopher C
2011-07-01
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
The Analysis of Cyanide and Its Breakdown Products in Biological Samples
2010-01-01
simultaneous GC-mass spectrometric (MS) analysis of cyanide and thiocyanate, and Funazo et al. (53) quantita- tively methylated cyanide and thiocyanate for...selective membrane electrode for thiocyanate ion based on a bis-taurine- salicylic binuclear copper(II) complex as ionophore. Chinese Journal of Chemistry
Speeding up the screening of steroids in urine: development of a user-friendly library.
Galesio, M; López-Fdez, H; Reboiro-Jato, M; Gómez-Meire, Silvana; Glez-Peña, D; Fdez-Riverola, F; Lodeiro, Carlos; Diniz, M E; Capelo, J L
2013-12-11
This work presents a novel database search engine - MLibrary - designed to assist the user in the detection and identification of androgenic anabolic steroids (AAS) and its metabolites by matrix assisted laser desorption/ionization (MALDI) and mass spectrometry-based strategies. The detection of the AAS in the samples was accomplished by searching (i) the mass spectrometric (MS) spectra against the library developed to identify possible positives and (ii) by comparison of the tandem mass spectrometric (MS/MS) spectra produced after fragmentation of the possible positives with a complete set of spectra that have previously been assigned to the software. The urinary screening for anabolic agents plays a major role in anti-doping laboratories as they represent the most abused drug class in sports. With the help of the MLibrary software application, the use of MALDI techniques for doping control is simplified and the time for evaluation and interpretation of the results is reduced. To do so, the search engine takes as input several MALDI-TOF-MS and MALDI-TOF-MS/MS spectra. It aids the researcher in an automatic mode by identifying possible positives in a single MS analysis and then confirming their presence in tandem MS analysis by comparing the experimental tandem mass spectrometric data with the database. Furthermore, the search engine can, potentially, be further expanded to other compounds in addition to AASs. The applicability of the MLibrary tool is shown through the analysis of spiked urine samples. Copyright © 2013 Elsevier Inc. All rights reserved.
Mass spectrometric determination of early and advanced glycation in biology.
Rabbani, Naila; Ashour, Amal; Thornalley, Paul J
2016-08-01
Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1-5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and N(ε)-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them - amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine - particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given.
Surface analysis of lipids by mass spectrometry: more than just imaging.
Ellis, Shane R; Brown, Simon H; In Het Panhuis, Marc; Blanksby, Stephen J; Mitchell, Todd W
2013-10-01
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Ambient desorption ionization techniques, such as laser desorption with electrospray ionization assistance (ELDI), direct analysis in real time (DART) and desorption electrospray ionization (DESI) have been developed as alternatives to traditional mass spectrometric-based methods. Such techniques al...
Eckels, David E.; Hass, William J.
1989-05-30
A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.
Bromate is a disinfection byproduct in drinking water which is formed during the ozonation of source water containing bromide. This paper described the analysis of bromate via ion chromatography-inductively coupled plasma mass spectrometry. The separation of bromate from interfer...
Analysis and application of heavy isotopes in the environment
NASA Astrophysics Data System (ADS)
Steier, Peter; Dellinger, Franz; Forstner, Oliver; Golser, Robin; Knie, Klaus; Kutschera, Walter; Priller, Alfred; Quinto, Francesca; Srncik, Michaela; Terrasi, Filippo; Vockenhuber, Christof; Wallner, Anton; Wallner, Gabriele; Wild, Eva Maria
2010-04-01
A growing number of AMS laboratories are pursuing applications of actinides. We discuss the basic requirements of the AMS technique of heavy (i.e., above ˜150 amu) isotopes, present the setup at the Vienna Environmental Research Accelerator (VERA) which is especially well suited for the isotope 236U, and give a comparison with other AMS facilities. Special emphasis will be put on elaborating the effective detection limits for environmental samples with respect to other mass spectrometric methods. At VERA, we have carried out measurements for radiation protection and environmental monitoring ( 236U, 239,240,241,242,244Pu), astrophysics ( 182Hf, 236U, 244Pu, 247Cm), nuclear physics, and a search for long-lived super-heavy elements ( Z > 100). We are pursuing the environmental distribution of 236U, as a basis for geological applications of natural 236U.
NASA Astrophysics Data System (ADS)
Dean, Timothy C.; Ventrice, Carl A.
1995-05-01
As a final report for phase 1 of the project, the researchers are submitting to the Tennessee Tech Office of Research the following two papers (reprinted in this report): 'Collision Line Broadening Effects on Spectrometric Data from the Optical Plume Anomaly System (OPAD),' presented at the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27-29 June 1994, and 'Calculation of Collision Cross Sections for Atomic Line Broadening in the Plume of the Space Shuttle Main Engine (SSME),' presented at the IEEE Southeastcon '95, 26-29 March 1995. These papers fully state the problem and the progress made up to the end of NASA Fiscal Year 1994. The NASA OPAD system was devised to predict concentrations of anomalous species in the plume of the Space Shuttle Main Engine (SSME) through analysis of spectrometric data. The self absorption of the radiation of these plume anomalies is highly dependent on the line shape of the atomic transition of interest. The Collision Line Broadening paper discusses the methods used to predict line shapes of atomic transitions in the environment of a rocket plume. The Voigt profile is used as the line shape factor since both Doppler and collisional line broadening are significant. Methods used to determine the collisional cross sections are discussed and the results are given and compared with experimental data. These collisional cross sections are then incorporated into the current self absorbing radiative model and the predicted spectrum is compared to actual spectral data collected from the Stennis Space Center Diagnostic Test Facility rocket engine. The second paper included in this report investigates an analytical method for determining the cross sections for collision line broadening by molecular perturbers, using effective central force interaction potentials. These cross sections are determined for several atomic species with H2, one of the principal constituents of the SSME plume environment, and compared with experimental data.
NASA Astrophysics Data System (ADS)
Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.
2016-09-01
Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The ;Multigroup γ-ray Analysis Method for Uranium; (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.
Bibi, Aisha; Ju, Huangxian
2016-04-01
A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.
Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli (Lucy)
2014-01-01
Sweet basil, Ocimum basilicum., is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1 min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. PMID:24518341
Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli Lucy
2014-07-01
Sweet basil, Ocimum basilicum, is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hsieh, Cheng-Huan; Meher, Anil Kumar; Chen, Yu-Chie
2013-01-01
Contactless atmospheric pressure ionization (C-API) method has been recently developed for mass spectrometric analysis. A tapered capillary is used as both the sampling tube and spray emitter in C-API. No electric contact is required on the capillary tip during C-API mass spectrometric analysis. The simple design of the ionization method enables the automation of the C-API sampling system. In this study, we propose an automatic C-API sampling system consisting of a capillary (∼1 cm), an aluminium sample holder, and a movable XY stage for the mass spectrometric analysis of organics and biomolecules. The aluminium sample holder is controlled by the movable XY stage. The outlet of the C-API capillary is placed in front of the orifice of a mass spectrometer, whereas the sample well on the sample holder is moved underneath the capillary inlet. The sample droplet on the well can be readily infused into the C-API capillary through capillary action. When the sample solution reaches the capillary outlet, the sample spray is readily formed in the proximity of the mass spectrometer applied with a high electric field. The gas phase ions generated from the spray can be readily monitored by the mass spectrometer. We demonstrate that six samples can be analyzed in sequence within 3.5 min using this automatic C-API MS setup. Furthermore, the well containing the rinsing solvent is alternately arranged between the sample wells. Therefore, the C-API capillary could be readily flushed between runs. No carryover problems are observed during the analyses. The sample volume required for the C-API MS analysis is minimal, with less than 1 nL of the sample solution being sufficient for analysis. The feasibility of using this setup for quantitative analysis is also demonstrated.
Amantonico, Andrea; Urban, Pawel L; Fagerer, Stephan R; Balabin, Roman M; Zenobi, Renato
2010-09-01
Heterogeneity is a characteristic feature of all populations of living organisms. Here we make an attempt to validate a single-cell mass spectrometric method for detection of changes in metabolite levels occurring in populations of unicellular organisms. Selected metabolites involved in central metabolism (ADP, ATP, GTP, and UDP-Glucose) could readily be detected in single cells of Closterium acerosum by means of negative-mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The analytical capabilities of this approach were characterized using standard compounds. The method was then used to study populations of individual cells with different levels of the chosen metabolites. With principal component analysis and support vector machine algorithms, it was possible to achieve a clear separation of individual C. acerosum cells in different metabolic states. This study demonstrates the suitability of mass spectrometric analysis of metabolites in single cells to measure cell-population heterogeneity.
Brensinger, Karen; Rollman, Christopher; Copper, Christine; Genzman, Ashton; Rine, Jacqueline; Lurie, Ira; Moini, Mehdi
2016-01-01
To address the need for the forensic analysis of high explosives, a novel capillary electrophoresis mass spectrometry (CE-MS) technique has been developed for high resolution, sensitivity, and mass accuracy detection of these compounds. The technique uses perfluorooctanoic acid (PFOA) as both a micellar electrokinetic chromatography (MEKC) reagent for separation of neutral explosives and as the complexation reagent for mass spectrometric detection of PFOA-explosive complexes in the negative ion mode. High explosives that formed complexes with PFOA included RDX, HMX, tetryl, and PETN. Some nitroaromatics were detected as molecular ions. Detection limits in the high parts per billion range and linear calibration responses over two orders of magnitude were obtained. For proof of concept, the technique was applied to the quantitative analysis of high explosives in sand samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
Mechanisms and pathways of aniline elimination from aquatic environments.
Lyons, C D; Katz, S; Bartha, R
1984-01-01
The fate of aniline, a representative of arylamine pollutants derived from the manufacture of dyes, coal liquefaction, and pesticide degradation, was comprehensively evaluated by use of unpolluted and polluted pond water as model environments. Evaporation plus autoxidation proved to be minor elimination mechanisms, removing ca. 1% of the added aniline per day. Instantaneous binding to humic components of a 0.1% sewage sludge inoculum removed 4%. Biodegradation of aniline in pond water was accelerated by the sewage sludge inoculum. A substantial portion of the degraded aniline carbon was mineralized to CO2 within a 1-week period, and microbial biomass was formed as a result of aniline utilization. Biodegradation was clearly the most significant removal mechanism of polluting aniline from pond water. A gas chromatographic-mass spectrometric analysis of biodegradation intermediates revealed that the major pathway of aniline biodegradation in pond water involved oxidative deamination to catechol, which was further metabolized through cis,cis-muconic, beta-ketoadipic, levulinic, and succinic acid intermediates to CO2. Minor biodegradation pathways involved reversible acylation to acetanilide and formanilide, whereas N-oxidation resulted in small amounts of oligomeric condensation products. PMID:6497369
Slabizki, Petra; Legrum, Charlotte; Meusinger, Reinhard; Schmarr, Hans-Georg
2014-10-01
The three constitutional isomers of dimethyl-substituted methoxypyrazines: 3,5-dimethyl-2-methoxypyrazine 1; 2,5-dimethyl-3-methoxypyrazine 2; and 2,3-dimethyl-5-methoxypyrazine 3 are potent flavor compounds with similar mass spectrometric, gas chromatographic, and nuclear magnetic resonance spectroscopic behavior. Therefore, unambiguous analytical determination is critical, particularly in complex matrices. The unequivocal identification of 1-3 could be achieved by homo- and heteronuclear NMR correlation experiments. The observed mass fragmentation for 1-3 is proposed and discussed, benefitting from synthesized partially deuterated 1 and 2. On common polar and apolar stationary phases used in gas chromatography (GC) 1 and 2 show similar behavior whereas 3 can be separated. In our focus on off-flavor analysis with respect to wine aroma, 1 has been described as a "moldy" off-flavor compound in cork and 2 as a constituent in Harmonia axyridis contributing to the so-called "ladybug taint," whereas 3 has not yet been described as a constituent of wine aroma. A successful separation of 1 and 2 could be achieved on octakis-(2,3-di-O-pentyl-6-O-methyl)-γ-cyclodextrin as stationary phase in GC. Applying heart-cut multidimensional GC analysis with tandem mass spectrometric detection we could confirm the presence of 1 as a "moldy" off-flavor compound in cork. However, in the case of Harmonia axyridis, a previous identification of 2 has to be reconsidered. In our experiments we identified the constitutional isomer 1, which was also found in Coccinella septempunctata, another species discussed with respect to the "ladybug taint." The analysis of such structurally related compounds is a demonstrative example for the importance of a chromatographic separation, as mass spectrometric data by itself could not guarantee the unequivocal identification.
A low Earth orbit molecular beam space simulation facility
NASA Technical Reports Server (NTRS)
Cross, J. B.
1984-01-01
A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.
Selective Sampling with Direct Ion Mobility Spectrometric Detection for Explosives Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Scott D; Ewing, Robert G; Waltman, Melanie J
2009-06-29
This study investigates the potential and limitations of a streamlined, field-deployable analytical approach that involves selective capture of explosive materials with direct analysis by ion mobility spectrometry (IMS). Selective capture of explosives was performed on deactivated quartz fiber filters impregnated with metal β-diketonate polymers. These Lewis acidic polymers selectively interact with Lewis base analytes such as explosives. The filter coupons could be directly inserted into an IMS instrument for analysis. The uptake kinetics of 2,4,6-trinitrotoluene (TNT) from a saturated atmosphere were characterized, and based on these studies, passive equilibrium sampling was applied to estimate the TNT concentration within an ammunitionmore » magazine that contained bulk TNT. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) uptake from a saturated environment also was examined over a one-month period. Each incremental sampling period showed increasing quantities of RDX culminating with collection of approximately 5 ng of RDX on the coupon at the end of one month. This is the first time that gas-phase uptake of RDX has been demonstrated.« less
Spectrometer Sensitivity Investigations on the Spectrometric Oil Analysis Program.
1983-04-22
31 H. ACID DISSOLUTION METHOD (ADM) ........... 90 31 I. ANALYSIS OF SAMPLES............................ 31 jJ. PARTICLE TRANSPORT EFFICIENCY OF...THE ROTATING *DISK.................................... 32 I .K. A/E35U-3 ACID DISSOLUTION METHOD.................. 32 L. BURN TIME... ACID DISSOLUTION METHOD ......... ,...,....... 95 3. EFFECT OF BURN TIME ............ 95 4. DIRECT SAMPLE INTRODUCTION .......................... 95
Antifungal diterpenes from Hypoestes serpens (Acanthaceae).
Rasoamiaranjanahary, Lalao; Marston, Andrew; Guilet, David; Schenk, Kurt; Randimbivololona, Fanantenanirainy; Hostettmann, Kurt
2003-02-01
Two new diterpenes, fusicoserpenol A and dolabeserpenoic acid A, with antifungal activity, were isolated from leaves of Hypoestes serpens (Acanthaceae). Their structures were elucidated by means of spectrometric methods including 1D and 2D NMR experiments and MS analysis. X-ray crystallographic analysis confirmed the structure of fusicoserpenol A and established the relative configuration.
Application of LC-MS to the analysis of dyes in objects of historical interest
NASA Astrophysics Data System (ADS)
Zhang, Xian; Laursen, Richard
2009-07-01
High-performance liquid chromatography (HPLC) with photodiode array and mass spectrometric detection permits dyes extracted from objects of historical interest or from natural plant or animal dyestuffs to be characterized on the basis of three orthogonal properties: HPLC retention time, UV-visible spectrum and molecular mass. In the present study, we have focused primarily on yellow dyes, the bulk of which are flavonoid glycosides that would be almost impossible to characterize without mass spectrometric detection. Also critical for this analysis is a method for mild extraction of the dyes from objects (e.g., textiles) without hydrolyzing the glycosidic linkages. This was accomplished using 5% formic acid in methanol, rather than the more traditional 6 M HCl. Mass spectroscopy, besides providing the molecular mass of the dye molecule, sometimes yields additional structural data based on fragmentation patterns. In addition, coeluting compounds can often be detected using extracted ion chromatography. The utility of mass spectrometry is illustrated by the analysis of historical specimens of silk that had been dyed yellow with flavonoid glycosides from Sophora japonica (pagoda tree) and curcumins from Curcuma longa (turmeric). In addition, we have used these techniques to identify the dye type, and sometimes the specific dyestuff, in a variety of objects, including a yellow varnish from a 19th century Tibetan altar and a 3000-year-old wool mortuary textiles, from Xinjiang, China. We are using HPLC with diode array and mass spectrometric detection to create a library of analyzed dyestuffs (>200 so far; mostly plants) to serve as references for identification of dyes in objects of historical interest.
Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew
2015-01-01
Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme supplements are ineffective in degrading immunogenic gluten epitopes. PMID:26030273
2004-10-01
Gas Chromatographic/Mass Spectrometric Differentiation of Atenolol, Metoprolol , Propranolol, and an Interfering Metabolite Product of Metoprolol ...4. Title and Subtitle 5. Report Date October 2004 Gas Chromatographic/Mass Spectrometric Differentiation of Atenolol, Metoprolol , Propranolol...and an Interfering Metabolite Product of Metoprolol 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Angier MK
Issa, M M; Nejem, R M; El-Abadla, N S; Al-Kholy, M; Saleh, Akila A
2008-01-01
A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 mug/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 mug/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 mug/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.
Issa, M. M.; Nejem, R. M.; El-Abadla, N. S.; Al-Kholy, M.; Saleh, Akila. A.
2008-01-01
A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 μg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 μg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 μg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%. PMID:20046743
Li, Xiangtang; Zhao, Shulin; Hu, Hankun; Liu, Yi-Ming
2016-06-17
Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for predicting dry mechanical properties from wet wood and standing trees
Meglen, Robert R.; Kelley, Stephen S.
2003-08-12
A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.
Forensic applications of supercritical fluid chromatography - mass spectrometry.
Pauk, Volodymyr; Lemr, Karel
2018-06-01
Achievements of supercritical fluid chromatography with mass spectrometric detection made in the field of forensic science during the last decade are reviewed. The main topics include analysis of traditional drugs of abuse (e.g. cannabis, methamphetamine) as well as new psychoactive substances (synthetic cannabinoids, cathinones and phenethylamines), doping agents (anabolic steroids, stimulants, diuretics, analgesics etc.) and chemical warfare agents. Control of food authenticity, detection of adulteration and identification of toxic substances in food are also pointed out. Main aspects of an analytical workflow, such as sample preparation, separation and detection are discussed. A special attention is paid to the performance characteristics and validation parameters of supercritical fluid chromatography-mass spectrometric methods in comparison with other separation techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elizarov, A. Yu.; Levshankov, A. I.
2011-04-01
Interaction between inhalational anesthetic sevoflurane and an absorber of CO2 (soda lime) in the breathing circuit of an anesthesia machine during low-flow anesthesia (0.5 l of a fresh gaseous mixture per minute) is studied with the mass-spectrometric method. Monitoring data for the concentration of sevoflurane and three toxic products of sevoflurane decompositions (substances A, B, and C) during anesthesia in the inspiration-expiration regime are presented. The highest concentration of substance A is found to be 65 ppm. The biochemical blood analysis before and after anesthesia shows that nephropathy is related to the function of liver toxicity. It is found that inhalational anesthetic sevoflurane influences the concentration of intravenous hypnotic propofol in blood.
A Method for Analyzing A+2 Isotope Patterns for Use in Undergraduate Organic Courses
ERIC Educational Resources Information Center
Gross, Ray A.
2007-01-01
A novel ratio method is developed and automated for finding the bromine-chlorine-sulfur stoichiometry in the molecular formula of an unknown. This method is also useful in spectrometric analysis or beginning organic chemistry.
Bu, Wenting; Zheng, Jian; Ketterer, Michael E; Hu, Sheng; Uchida, Shigeo; Wang, Xiaolin
2017-12-01
Measurements of the long-lived radionuclide 236 U are an important endeavor, not only in nuclear safeguards work, but also in terms of using this emerging nuclide as a tracer in chemical oceanography, hydrology, and actinide sourcing. Depending on the properties of a sample and its neutron irradiation history, 236 U/ 238 U ratios from different sources vary significantly. Therefore, this ratio can be treated as an important fingerprint for radioactive source identification, and in particular, affords a definitive means of discriminating between naturally occurring U and specific types of anthropogenic U. The development of mass spectrometric techniques makes it possible to determine ultra-trace levels of 236 U in environmental samples. In this paper, we review the current status of mass spectrometric approaches for determination of 236 U in environmental samples. Various sample preparation methods are summarized and compared. The mass spectrometric techniques emphasized herein are thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS). The strategies or principles used by each technique for the analysis of 236 U are described. The performances of these techniques in terms of abundance sensitivity and detection limit are discussed in detail. To date, AMS exhibits the best capability for ultra-trace determinations of 236 U. The levels and behaviors of 236 U in various environmental media are summarized and discussed as well. Results suggest that 236 U has an important, emerging role as a tracer for geochemical studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Kenny, Diarmuid T; Gaunitz, Stefan; Hayes, Catherine A; Gustafsson, Anki; Sjöblom, Magnus; Holgersson, Jan; Karlsson, Niclas G
2013-01-01
Analysis of O-linked glycosylation is one of the main challenges during structural validation of recombinant glycoproteins. With methods available for N-linked glycosylation in regard to oligosaccharide analysis as well as glycopeptide mapping, there are still challenges for O-linked glycan analysis. Here, we present mass spectrometric methodology for O-linked oligosaccharides released by reductive β-elimination. Using LC-MS and LC-MS(2) with graphitized carbon columns, oligosaccharides are analyzed without derivatization. This approach provides a high-throughput method for screening during clonal selection, as well as product structure verification, without impairing sequencing ability. The protocols are exemplified by analysis of glycoproteins from mammalian cell cultures (CHO cells) as well as insect cells and yeast. The data shows that the method can be successfully applied to both neutral and acidic O-linked oligosaccharides, where sialic acid, hexuronic acid, and sulfate are common substituents. Further characterization of O-glycans can be achieved using permethylation. Permethylation of O-linked oligosaccharides followed by direct infusion into the mass spectrometer provide information about oligosaccharide composition, and subsequent MS (n) experiments can be carried out to elucidate oligosaccharide structure including linkage information and sequence.
Van Oudenhove, Laurence; Devreese, Bart
2013-06-01
Proteomics has evolved substantially since its early days, some 20 years ago. In this mini-review, we aim to provide an overview of general methodologies and more recent developments in mass spectrometric approaches used for relative and absolute quantitation of proteins. Enhancement of sensitivity of the mass spectrometers as well as improved sample preparation and protein fractionation methods are resulting in a more comprehensive analysis of proteomes. We also document some upcoming trends for quantitative proteomics such as the use of label-free quantification methods. Hopefully, microbiologists will continue to explore proteomics as a tool in their research to understand the adaptation of microorganisms to their ever changing environment. We encourage them to incorporate some of the described new developments in mass spectrometry to facilitate their analyses and improve the general knowledge of the fascinating world of microorganisms.
NASA Astrophysics Data System (ADS)
Schoenmakers, Peter
2009-07-01
This review focuses on the chromatography research that has been carried out within industry or in close cooperation with industry and that has been reported in the scientific literature between 2006 and mid-2008. Companies in the health care sector, such as pharmaceutical and biotechnology companies, are the largest contributors. Industrial research seems to take place in an open environment in cooperation with academia, peer companies, and institutions. Industry appears ready to embrace new technologies as they emerge, but they focus strongly on making chromatography work robustly, reliably, rapidly, and automatically. “Hyphenated” systems that incorporate on-line sample-preparation techniques and mass-spectrometric detection are the rule rather than the exception. Various multidimensional separation methods are finding numerous applications. Strategies aimed at speeding up the development of new chromatographic methods remain the focus of attention. Also, there is a clear trend toward exploring chromatographic methods for parallel processing along with other strategies for high-throughput analysis.
Lechner, Matthias; Rieder, Josef
2007-01-01
The theoretical use of mass spectrometric profiling of low-molecular-weight volatile compounds, as one possible method to non-invasively and rapidly diagnose a variety of diseases, such as cancer, infection, and metabolic disorders has greatly raised the profile of this technique over the last ten years. Despite a number of promising results, this technique has not been introduced into common clinical practice yet. The use of mass spectrometric profiling of exhaled air is particularly hampered by various technical problems and basic methodological issues which have only been partially overcome. However, breath analysis aside, recently published studies reveal completely new ideas and concepts on how to establish fast and reliable diagnosis by using this valuable tool. These studies focussed on the headspace screening of various bodily fluids and sample fluids obtained during diagnostic procedures, as well as microbial cell cultures and demonstrated the vast diagnostic potential of this technique in a wide variety of settings, predominantly in vitro. It is the aim of the present review to discuss the most commonly detected low-molecular-weight volatile compounds and to summarize the current potential applications, latest developments and future perspectives of this promising diagnostic approach.
Grégory, Dubourg; Chaudet, Hervé; Lagier, Jean-Christophe; Raoult, Didier
2018-03-01
Describing the human hut gut microbiota is one the most exciting challenges of the 21 st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.
Applications of Mass Spectrometry for Cellular Lipid Analysis
Wang, Chunyan; Wang, Miao; Han, Xianlin
2015-01-01
Mass spectrometric analysis of cellular lipids is an enabling technology for lipidomics, which is a rapidly-developing research field. In this review, we briefly discuss the principles, advantages, and possible limitations of electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry-based methodologies for the analysis of lipid species. The applications of these methodologies to lipidomic research are also summarized. PMID:25598407
Schieltz, David M; McGrath, Sara C; McWilliams, Lisa G; Rees, Jon; Bowen, Michael D; Kools, John J; Dauphin, Leslie A; Gomez-Saladin, Eduardo; Newton, Bruce N; Stang, Heather L; Vick, Michael J; Thomas, Jerry; Pirkle, James L; Barr, John R
2011-06-15
In late February 2008, law enforcement officials in Las Vegas, Nevada, discovered in a hotel room, a copy of The Anarchist Cookbook, suspected castor beans and a "white powder" thought to be a preparation of ricin. Ricin is a deadly toxin from the seed of the castor bean plant (Ricinus communis). The United States regulates the possession, use, and transfer of ricin and it is the only substance considered a warfare agent in both the Chemical and the Biological Weapons Conventions. Six samples obtained from the hotel room were analyzed by laboratories at the Centers for Disease Control and Prevention using a panel of biological and mass spectrometric assays. The biological assays (real time-PCR, time resolved fluorescence and cytotoxicity) provided presumptive evidence of active ricin in each of the samples. This initial screen was followed by an in-depth analysis using a novel, state-of-the-art mass spectrometry-based ricin functional assay and high sensitivity tandem mass spectrometry for protein identification. Mass spectrometric analysis positively identified ricin and confirmed that in each of the samples it was enzymatically active. The tandem mass spectrometry analysis used here is the most selective method available to detect ricin toxin. In each sample, ricin was unequivocally identified along with other R. communis plant proteins, including the highly homologous protein RCA120. Although database searches using tandem mass spectra acquired from the samples indicated that additional controlled substances were not present in these samples, the mass spectrometric results did provide extensive detail about the sample contents. To the best of our knowledge following a review of the available literature, this report describes the most detailed analysis of a white powder for a public health or forensic investigation involving ricin. Published by Elsevier Ireland Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Vyacheslav; Potapov, Victor; Safronov, Alexey
2013-07-01
The underwater spectrometric system for survey the bottom of material science multi-loop reactor MR ponds was elaborated. This system uses CdZnTe (CZT) detectors that allow for spectrometric measurements in high radiation fields. The underwater system was used in the spectrometric survey of the bottom of the MR reactor pool, as well as in the survey located in the MR storage pool of highly radioactive containers and parts of the reactor construction. As a result of these works irradiated nuclear fuel was detected on the bottom of pools, and obtained estimates of the effective surface activity detected radionuclides and created bymore » them the dose rate. (authors)« less
Mass spectrometric detection of peginesatide in human urine in doping control analysis.
Möller, Ines; Thomas, Andreas; Delahaut, Philippe; Geyer, Hans; Schänzer, Wilhelm; Thevis, Mario
2012-11-01
Erythropoiesis-stimulating agents (ESAs) have frequently been confessed to be illicitly used in elite sports due to their endurance enhancing effects. Recently, peginesatide, the first representative of a new generation of ESAs, referred to as Erythropoietin (EPO)-mimetic peptides, obtained approval in the USA under the trade name Omontys(®) for the treatment of anaemic patients. Lacking sequence homology with EPO, it consists of a pegylated homodimeric peptide of approximately 45 kDa, and thus, specific approaches for the determination of peginesatide in blood were developed as conventional detection assays for EPO do not allow for the analysis of the EPO-mimetic peptides. However, as urine specimens are the most frequently provided doping control samples and pharmacokinetic studies conducted in rats and monkeys revealed the excretion of the pegylated peptide into urine, a detection method for peginesatide in urine would be desirable. A mass spectrometric assay in human urine was developed consisting of protein precipitation with acetonitrile followed by proteolytic digestion after the removal of the acetonitrile fraction under reduced pressure. Purification and concentration of the resulting proteotypic target peptide was accomplished by means of solid-phase extraction on strong cation-exchange resin prior to liquid chromatographic-tandem mass spectrometric analysis. Method validation was performed for qualitative purposes and demonstrated specificity, precision, linearity as well as sufficient sensitivity (limit of detection: 0.5 ng/ml) while proof-of-concept for the applicability of the assay for the determination of peginesatide in authentic urine samples was obtained by analyzing animal in vivo specimens collected after a single i.v. administration of peginesatide over a period of 4 days. Copyright © 2012 Elsevier B.V. All rights reserved.
Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.
Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R
2012-08-07
Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.
Measuring masses of large biomolecules and bioparticles using mass spectrometric techniques.
Peng, Wen-Ping; Chou, Szu-Wei; Patil, Avinash A
2014-07-21
Large biomolecules and bioparticles play a vital role in biology, chemistry, biomedical science and physics. Mass is a critical parameter for the characterization of large biomolecules and bioparticles. To achieve mass analysis, choosing a suitable ion source is the first step and the instruments for detecting ions, mass analyzers and detectors should also be considered. Abundant mass spectrometric techniques have been proposed to determine the masses of large biomolecules and bioparticles and these techniques can be divided into two categories. The first category measures the mass (or size) of intact particles, including single particle quadrupole ion trap mass spectrometry, cell mass spectrometry, charge detection mass spectrometry and differential mobility mass analysis; the second category aims to measure the mass and tandem mass of biomolecular ions, including quadrupole ion trap mass spectrometry, time-of-flight mass spectrometry, quadrupole orthogonal time-of-flight mass spectrometry and orbitrap mass spectrometry. Moreover, algorithms for the mass and stoichiometry assignment of electrospray mass spectra are developed to obtain accurate structure information and subunit combinations.
USDA-ARS?s Scientific Manuscript database
In the field of food contaminant analysis, the most significant development of recent years has been the integration of ultra-high pressure liquid chromatography (UHPLC), coupled to tandem quadrupole mass spectrometry (MS/MS), into analytical applications. In this review, we describe the emergence o...
Method of predicting mechanical properties of decayed wood
Kelley, Stephen S.
2003-07-15
A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.
Barker, S A; Littlefield-Chabaud, M A; David, C
2001-02-10
A method for the solid-phase extraction (SPE) and liquid chromatographic-atmospheric pressure chemical ionization-mass spectrometric-mass spectrometric-isotope dilution (LC-APcI-MS-MS-ID) analysis of the indole hallucinogens N,N-dimethyltryptamine (DMT) and 5-methoxy DMT (or O-methyl bufotenin, OMB) from rat brain tissue is reported. Rats were administered DMT or OMB by the intraperitoneal route at a dose of 5 mg/kg and sacrificed 15 min post treatment. Brains were dissected into discrete areas and analyzed by the methods described as a demonstration of the procedure's applicability. The synthesis and use of two new deuterated internal standards for these purposes are also reported.
Wada, Yoshinao; Dell, Anne; Haslam, Stuart M; Tissot, Bérangère; Canis, Kévin; Azadi, Parastoo; Bäckström, Malin; Costello, Catherine E; Hansson, Gunnar C; Hiki, Yoshiyuki; Ishihara, Mayumi; Ito, Hiromi; Kakehi, Kazuaki; Karlsson, Niclas; Hayes, Catherine E; Kato, Koichi; Kawasaki, Nana; Khoo, Kay-Hooi; Kobayashi, Kunihiko; Kolarich, Daniel; Kondo, Akihiro; Lebrilla, Carlito; Nakano, Miyako; Narimatsu, Hisashi; Novak, Jan; Novotny, Milos V; Ohno, Erina; Packer, Nicolle H; Palaima, Elizabeth; Renfrow, Matthew B; Tajiri, Michiko; Thomsson, Kristina A; Yagi, Hirokazu; Yu, Shin-Yi; Taniguchi, Naoyuki
2010-04-01
The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiative's activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.
2007-06-01
T ACanadaY Approved for PublicR Distribution Uln& Liquid Chromatography Electrospray Ionization Mass Spectrometric ( LC -ESI- MS) and Desorption...consumer products with chemical warfare agents or other toxic chemicals. Liquid chromatography electrospray ionization mass spectrometry ( LC -ESI-MS) and...house LC -ESI-MS and LC -ESI-MS/MS methods were evaluated for the determination of chemical warfare agents in spiked bottled water samples. The
Figueiredo, L; Erny, G L; Santos, L; Alves, A
2016-01-01
Personal-care products (PCPs) involve a variety of chemicals whose persistency along with their constant release into the environment raised concern to their potential impact on wildlife and humans health. Regarded as emergent contaminants, PCPs demonstrated estrogenic activity leading to the need of new methodologies to detect and remove those compounds from the environment. Molecular imprinting starts with a complex between a template molecule and a functional monomer, which is then polymerized in the presence of a cross-linker. After template removal, the polymer will contain specific cavities. Based on a good selectivity towards the template, molecularly imprinted polymers (MIPs) have been investigated as efficient materials for the analysis and extraction of the so called emergent pollutants contaminants. Rather than lowering the limit of detections, the key theoretical advantage of MIP over existing methodologies is the potential to target specific chemicals. This unique feature, sometime named specificity (as synonym to very high selectivity) allows to use cheap, simple and/or rapid quantitative techniques such as fast separation with ultra-violet (UV) detection, sensors or even spectrometric techniques. When a high degree of selectivity is achieved, samples extracted with MIPs can be directly analyzed without the need of a separation step. However, while some papers clearly demonstrated the specificity of their MIP toward the targeted PCP, such prove is often lacking, especially with real matrices, making it difficult to assess the success of the different approaches. This review paper focusses on the latest development of MIPs for the analysis of personal care products in the environment, with particular emphasis on design, preparation and practical applications of MIPs. Copyright © 2015 Elsevier B.V. All rights reserved.
Mechanisms and pathways of aniline elimination from aquatic environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, C.D.; Katz, S.; Bartha, R.
1984-09-01
The fate of aniline, a representative of arylamine pollutants derived from the manufacture of dyes, coal liquefaction, and pesticide degradation, was comprehensively evaluated by use of unpolluted and polluted pond water as model environments. Evaporation plus autoxidation proved to be minor elimination mechanisms, removing ca. 1% of the added aniline per day. Instantaneous binding to humic components of a 0.1% sewage sludge inoculum removed 4%. Biodegradation of aniline in pond water was accelerated by the sewage sludge inoculum. A substantial portion of the degraded aniline carbon was mineralized to CO/sub 2/ within a 1-week period, and microbial biomass was formedmore » as a result of analine utilization. Biodegradation was clearly the most significant removal mechanism of polluting aniline from pond water. A gas chromatographic-mass spectrometric analysis of biodegradation intermediates revealed that the major pathway of aniline biodegradation in pond water involved oxidative deamination to catechol, which was further metabolized through cis,cis-muconic, beta-ketoadipic, levulinic, and succinic acid intermediates to CO/sub 2/. Minor biodegradation pathways involved reversible acylation to acetanilide and formanilide, whereas N-oxidation resulted in small amounts of oligomeric condensation products. 36 references, 4 figures, 3 tables.« less
Thermodynamics of formation of coffinite, USiO4
Guo, Xiaofeng; Szenknect, Stéphanie; Mesbah, Adel; Labs, Sabrina; Clavier, Nicolas; Poinssot, Christophe; Ushakov, Sergey V.; Curtius, Hildegard; Bosbach, Dirk; Ewing, Rodney C.; Burns, Peter C.; Dacheux, Nicolas; Navrotsky, Alexandra
2015-01-01
Coffinite, USiO4, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high-temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO2 (uraninite) and SiO2 (quartz) by 25.6 ± 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 °C is −1,970.0 ± 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupled with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U3O8 and SiO2 starting around 450 °C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low-temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion. PMID:25964321
Thermodynamics of formation of coffinite, USiO₄
Guo, Xiaofeng; Szenknect, Stéphanie; Mesbah, Adel; ...
2015-05-26
Coffinite, USiO₄, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO₂ (uraninite) and SiO₂ (quartz) by 25.6 ± 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 °C is -1,970.0 ± 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupledmore » with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U₃O₈ and SiO₂ starting around 450 °C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion.« less
Ntshangase, Sphamandla; Shobo, Adeola; Kruger, Hendrik G; Asperger, Arndt; Niemeyer, Dagmar; Arvidsson, Per I; Govender, Thavendran; Baijnath, Sooraj
2017-10-13
1. TBA-354 was a promising antitubercular compound with activity against both replicating and static Mycobacterium tuberculosis (M.tb), making it the focal point of many clinical trials conducted by the TB Alliance. However, findings from these trials have shown that TBA-354 results in mild signs of reversible neurotoxicity; this left the TB Alliance with no other choice but to stop the research. 2. In this study, mass spectrometric methods were used to evaluate the pharmacokinetics and spatial distribution of TBA-354 in the brain using a validated liquid chromatography tandem-mass spectrometry (LCMS/MS) and mass spectrometric imaging (MSI), respectively. Healthy female Sprague-Dawley rats received intraperitoneal (i.p.) doses of TBA-354 (20 mg/kg bw). 3. The concentrationtime profiles showed a gradual absorption and tissue penetration of TBA-354 reaching the C max at 6 h post dose, followed by a rapid elimination. MSI analysis showed a time-dependent drug distribution, with highest drug concentration mainly in the neocortical regions of the brain. 4. The distribution of TBA-354 provides a possible explanation for the motor dysfunction observed in clinical trials. These results prove the importance of MSI as a potential tool in preclinical evaluations of suspected neurotoxic compounds.
Kupčík, Rudolf; Zelená, Miroslava; Řehulka, Pavel; Bílková, Zuzana; Česlová, Lenka
2016-02-01
Hydrophobins are small proteins that play a role in a number of processes during the filamentous fungi growth and development. These proteins are characterized by the self-assembly of their molecules into an amphipathic membrane at hydrophilic-hydrophobic interfaces. Isolation and purification of hydrophobins generally present a challenge in their analysis. Hydrophobin SC3 from Schizophyllum commune was selected as a representative of class I hydrophobins in this work. A novel procedure for selective and effective isolation of hydrophobin SC3 based on solid-phase extraction with polytetrafluoroethylene microparticles loaded in a small self-made microcolumn is reported. The tailored binding of hydrophobins to polytetrafluoroethylene followed by harsh elution conditions resulted in a highly specific isolation of hydrophobin SC3 from the model mixture of ten proteins. The presented isolation protocol can have a positive impact on the analysis and utilization of these proteins including all class I hydrophobins. Hydrophobin SC3 was further subjected to reduction of its highly stable disulfide bonds and to chymotryptic digestion followed by mass spectrometric analysis. The isolation and digestion protocols presented in this work make the analysis of these highly hydrophobic and compact proteins possible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gugiu, Gabriel B
2017-01-01
Lipidomics refers to the large-scale study of lipids in biological systems (Wenk, Nat Rev Drug Discov 4(7):594-610, 2005; Rolim et al., Gene 554(2):131-139, 2015). From a mass spectrometric point of view, by lipidomics we understand targeted or untargeted mass spectrometric analysis of lipids using either liquid chromatography (LC) (Castro-Perez et al., J Proteome Res 9(5):2377-2389, 2010) or shotgun (Han and Gross, Mass Spectrom Rev 24(3):367-412, 2005) approaches coupled with tandem mass spectrometry. This chapter describes the former methodology, which is becoming rapidly the preferred method for lipid identification owing to similarities with established omics workflows, such as proteomics (Washburn et al., Nat Biotechnol 19(3):242-247, 2001) or genomics (Yadav, J Biomol Tech: JBT 18(5):277, 2007). The workflow described consists in lipid extraction using a modified Bligh and Dyer method (Bligh and Dyer, Can J Biochem Physiol 37(8):911-917, 1959), ultra high pressure liquid chromatography fractionation of lipid samples on a reverse phase C18 column, followed by tandem mass spectrometric analysis and in silico database search for lipid identification based on MSMS spectrum matching (Kind et al., Nat Methods 10(8):755-758, 2013; Yamada et al., J Chromatogr A 1292:211-218, 2013; Taguchi and Ishikawa, J Chromatogr A 1217(25):4229-4239, 2010; Peake et al., Thermoscientifices 1-3, 2015) and accurate mass of parent ion (Sud et al., Nucleic Acids Res 35(database issue):D527-D532, 2007; Wishart et al., Nucleic Acids Res 35(database):D521-D526, 2007).
Millán Martín, Silvia; Delporte, Cédric; Farrell, Amy; Navas Iglesias, Natalia; McLoughlin, Niaobh; Bones, Jonathan
2015-03-07
A twoplex method using (12)C6 and (13)C6 stable isotope analogues (Δmass = 6 Da) of 2-aminobenzoic acid (2-AA) is described for quantitative analysis of N-glycans present on monoclonal antibodies and other glycoproteins using ultra performance liquid chromatography with sequential fluorescence and accurate mass tandem quadrupole time of flight (QToF) mass spectrometric detection.
NASA Astrophysics Data System (ADS)
Bu, Wenting; Zheng, Jian; Liu, Xuemei; Long, Kaiming; Hu, Sheng; Uchida, Shigeo
2016-05-01
The radioactive fission products 135Cs, 137Cs and 90Sr have been released into the environment by human activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear power plant accidents. Monitoring of these radionuclides is important for dose assessment. Moreover, the 135Cs/137Cs isotopic ratio can be used as an important long-term fingerprint for radioactive source identification as it varies with weapon, reactor and fuel types. In recent years, mass spectrometry has become a powerful method for the determination of 135Cs, 137Cs and 90Sr in environmental samples. Mass spectrometry is characterized by the high sensitivity and low detection limit and the relatively shorter sample preparation and analysis times compared with radiometric methods. However, the mass spectrometric determination of radiocesium and 90Sr is affected by the peak tailings of the stable nuclides 133Cs and 88Sr, respectively, and the related isobaric and polyatomic interferences. Chemical separation and optimization of the mass spectrometry instrumental setup are strongly needed prior to the mass spectrometry detection. In this paper, we have reviewed the published works about the determination of 135Cs, 137Cs and 90Sr by mass spectrometry. The mass spectrometric techniques we cover are resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICP-MS). For each technique, the principles or strategies used for the analysis of these radionuclides are discussed; these included the abundance sensitivity, ways to suppress the interference signals, and the instrumental setup. In particular, the chemical procedures for eliminating the interferences are also summarized. To date, triple quadrupole ICP-MS (ICP-QQQ) showed great ability for the analysis of these radionuclides and the detection limits were as low as 0.01 pg/mL levels. Finally, some investigations on the behaviors of radiocesium and radioactive source identifications are presented with the results of 135Cs/137Cs isotopic ratios measured in various environmental samples.
Mass spectrometric determination of the composition of the Venus clouds
NASA Technical Reports Server (NTRS)
Herzog, R. F. K.
1973-01-01
The instrumentation is analyzed for determining the composition of the clouds on Venus. Direct analysis of the gas phase atmosphere, and the detection of ferrous chloride with a mass spectrometer are dicussed along with the mass analyzer, and the pre-separation of cloud particles from the ambient atmosphere.
Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Miller, R. A.; Kohl, F. J.; Stearns, C. A.
1977-01-01
Cooled target collection techniques were used to study the formation of volatile products when samples of Cr, Ti, IN-738, 713C, NASA-TRW VIA and B-1900 were exposed, at elevated temperatures, to oxidizing environments containing H2O(g) and NaCl(g). Samples were heated to 1050 C in one atmosphere of slowly flowing oxygen, saturated with water at 21 C, and containing about 50 ppm NaCl(g). Volatile products were detected for all materials except B-1900 and Ti. High pressure mass spectrometric sampling was used to directly identify volatile products emanating from samples of Cr and IN-738 subject to the above environments.
The Imaging Spectrometric Observatory for the ATLAS 1 mission
NASA Technical Reports Server (NTRS)
Torr, Douglas G.
1995-01-01
The Imaging Spectrometric Observatory (ISO) was flown on the ATLAS 1 mission and was enormously successful, providing a baseline database on the coupled stratospheric, mesospheric, thermospheric, and ionospheric regions. Specific ISO accomplishments include measurements of the hydroxyl radical, studies of the global ionosphere, retrieval of the concentrations of neutral species from the ISO data, studies of mesospheric oxygen emissions, retrieval of mesospheric O from oxygen emissions, studies of the OH Meinel bands and the search for the Herzberg III bands, search for metallic species, studies of thermospheric nitric oxide, auroral study of molecular nitrogen emissions, and studies of thermospheric species. Apart from participation in the data analysis, the primary post-flight responsibility of Marshall Space Flight Center was the delivery of the final post mission dataset. Support provided by the University of Alabama in Huntsville is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapov, Victor; Safronov, Alexey; Ivanov, Oleg
2013-07-01
The underwater spectrometer system for detection of irradiated nuclear fuel on the pool bottom of the reactor was elaborated. During the development process metrological studies of CdZnTe (CZT) detectors were conducted. These detectors are designed for spectrometric measurements in high radiation fields. A mathematical model based on the Monte Carlo method was created to evaluate the capability of such a system. A few experimental models were realized and the characteristics of the spectrometric system are represented. (authors)
Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele
2008-11-01
Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.
Analysis of MALDI-TOF Serum Profiles for Biomarker Selection and Sample Classification
2005-01-01
these five m/z windows as its inputs yielded 92% sensitivity and 90% specificity in distinguishing hepatocellular carcinoma (HCC) patients from...Cubizolles, I. Laurendeau, and P. Bedossa, "Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic...Goldman, "Enrichment of low molecular weight fraction of serum for mass spectrometric analysis of peptides associated with hepatocellular carcinoma ," Submitted
Quantitative mass spectrometry of unconventional human biological matrices
NASA Astrophysics Data System (ADS)
Dutkiewicz, Ewelina P.; Urban, Pawel L.
2016-10-01
The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.
USDA-ARS?s Scientific Manuscript database
A liquid chromatographic-tandem mass spectrometric (LC-MS/MS) multi-residue method for the simultaneous quantification and identification of 38 residues of the most widely used anthelmintic veterinary drugs (including benzimidazoles, macrocyclic lactones, and flukicides) in milk and liver has been d...
USDA-ARS?s Scientific Manuscript database
An integrated approach based on high resolution MS analysis (orbitrap), database (db) searching and MS/MS fragmentation prediction for the rapid identification of plant phenols is reported. The approach was firstly validated by using a mixture of phenolic standards (phenolic acids, flavones, flavono...
Laarabi, Saïd; El Kinani, Khalifa; Ettouhami, Aziz; Limouri, Mohammed
2005-05-01
In vivo spectrometric analysis of the electrical impedance of the first leaf of maize (Zea mays L.) as a function of soil and atmosphere hydrous conditions. We have measured the electrical resistance and capacitance of the first leaf of maize aged 14 days. The plants were cultivated at different levels of soil and atmospheric humidity and submitted to quiet or agitated air. In 'control' plants cultivated in quiet air under moderate relative humidity (HRA) (50 to 60%), the amplitude of the spectrometric bioimpedance spectrum (CSB) increased with the quantity of water available to the roots. Agitated air or elevated HRA increased the magnitude of the CSB in plants cultivated at 40% of the maximal retention capacity (CRM) of the soil. On the other hand, the CSB decreased in plants cultivated at 60% of the CRM or in hydroponics. This was accompanied by a dramatic decrease in the electrical resistance. The action of the atmospheric factors studied depends on the quantity of water where the roots are bathing.
Ion spectrometric detection technologies for ultra-traces of explosives: a review.
Mäkinen, Marko; Nousiainen, Marjaana; Sillanpää, Mika
2011-01-01
In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corte, Frans de; Vandenberghe, Dimitri; Wispelaere, Antoine de
In luminescence dating of sediments, one of the most interesting tools for the determination of the annual radiation dose is Ge {gamma}-ray spectrometry. Indeed, it yields information on both the content of the radioelements K, Th, and U, and on the occurrence - in geological times - of disequilibria in the Th and U decay series. In the present work, two methodological variants of the {gamma}-spectrometric analysis were tested, which largely depend on the quality of the nuclear decay data involved: (1) a parametric calibration of the sediment measurements, and (2) the correction for the heavy spectral interference of themore » 226Ra 186.2 keV peak by 235U at 185.7 keV. The performance of these methods was examined via the analysis of three Certified Reference Materials, with the introduction of {gamma}-ray intensity data originating from ENSDF. Relevant conclusions were drawn as to the accuracy of the data and their uncertainties quoted.« less
Loeschner, Katrin; Navratilova, Jana; Grombe, Ringo; Linsinger, Thomas P J; Købler, Carsten; Mølhave, Kristian; Larsen, Erik H
2015-08-15
Nanomaterials are increasingly used in food production and packaging, and validated methods for detection of nanoparticles (NPs) in foodstuffs need to be developed both for regulatory purposes and product development. Asymmetric flow field-flow fractionation with inductively coupled plasma mass spectrometric detection (AF(4)-ICP-MS) was applied for quantitative analysis of silver nanoparticles (AgNPs) in a chicken meat matrix following enzymatic sample preparation. For the first time an analytical validation of nanoparticle detection in a food matrix by AF(4)-ICP-MS has been carried out and the results showed repeatable and intermediately reproducible determination of AgNP mass fraction and size. The findings demonstrated the potential of AF(4)-ICP-MS for quantitative analysis of NPs in complex food matrices for use in food monitoring and control. The accurate determination of AgNP size distribution remained challenging due to the lack of certified size standards. Copyright © 2015 Elsevier Ltd. All rights reserved.
A fast sampling device for the mass spectrometric analysis of liquid rocket engine exhaust
NASA Technical Reports Server (NTRS)
Ryason, P. R.
1975-01-01
The design of a device to obtain compositional data on rocket exhaust by direct sampling of reactive flow exhausts into a mass spectrometer is presented. Sampling at three stages differing in pressure and orifice angle and diameter is possible. Results of calibration with pure gases and gas mixtures are erratic and of unknown accuracy for H2, limiting the usefulness of the apparatus for determining oxidizer/fuel ratios from combustion product analysis. Deposition effects are discussed, and data obtained from rocket exhaust spectra are analyzed to give O/F ratios and mixture ratio distribution. The O/F ratio determined spectrometrically is insufficiently accurate for quantitative comparison with cold flow data. However, a criterion for operating conditions with improved mixing of fuel and oxidizer which is consistent with cold flow results may be obtained by inspection of contour plots. A chemical inefficiency in the combustion process when oxidizer is in excess is observed from reactive flow measurements. Present results were obtained with N2O4/N2H4 propellants.
Bossi, Rossana; Rastogi, Suresh C; Bernard, Guillaume; Gimenez-Arnau, Elena; Johansen, Jeanne D; Lepoittevin, Jean-Pierre; Menné, Torkil
2004-05-01
This paper describes a validated liquid chromatographic-tandem mass spectrometric method for quantitative analysis of the potential oak moss allergens atranol and chloroatranol in perfumes and similar products. The method employs LC-MS-MS with electrospray ionization (ESI) in negative mode. The compounds are analysed by selective reaction monitoring (SRM) of 2 or 3 ions for each compound in order to obtain high selectivity and sensitivity. The method has been validated for the following parameters: linearity; repeatability; recovery; limit of detection; and limit of quantification. The limits of detection, 5.0 ng/mL and 2.4 ng/mL, respectively, for atranol and chloroatranol, achieved by this method allowed identification of these compounds at concentrations below those causing allergic skin reactions in oak-moss-sensitive patients. The recovery of chloratranol from spiked perfumes was 96+/-4%. Low recoveries (49+/-5%) were observed for atranol in spiked perfumes, indicating ion suppression caused by matrix components. The method has been applied to the analysis of 10 randomly selected perfumes and similar products.
Di Filippo, Patrizia; Riccardi, Carmela; Pomata, Donatella; Marsiglia, Riccardo; Console, Carla; Puri, Daniele
2018-01-01
Fosetyl-aluminum is a synthetic fungicide administered to plants especially to prevent diseases caused by the members of the Peronosporales and several Phytophthora species. Herein, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze residues of fosetyl-A1 in air particulate matter. This study was performed in perspective of an exposure assessment of this substance of health concern in environments where high levels of fosetly-Al, relatively to airborne particulate matter, can be found after spraying it. The cleanup procedure of the analyte, from sampled filters of atmospheric particulate matter, was optimized using a Strata X solid-phase extraction cartridge, after accelerated extraction by using water. The chromatographic separation was achieved using a polymeric column based on hydrophilic interaction in step elution with water/acetonitrile, whereas the mass spectrometric detection was performed in negative electrospray ionization. The proposed method resulted to be a simple, fast, and suitable method for confirmation purposes. PMID:29686933
Schubert, Birthe; Oberacher, Herbert
2011-06-03
In this study the impact of solvent conditions on the performance of μLC/MS for the analysis of basic drugs was investigated. Our aim was to find experimental conditions that enable high-performance chromatographic separation particularly at overloading conditions paired with a minimal loss of mass spectrometric detection sensitivity. A focus was put on the evaluation of the usability of different kinds of acidic modifiers (acetic acid (HOAc), formic acid (FA), methansulfonic acid (CH₃SO₃H), trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA), and heptafluorobutyric acid (HFBA)). The test mixture consisted of eleven compounds (bunitrolol, caffeine, cocaine, codeine, diazepam, doxepin, haloperidol, 3,4-methylendioxyamphetamine, morphine, nicotine, and zolpidem). Best chromatographic performance was obtained with the perfluorinated acids. Particularly, 0.010-0.050% HFBA (v/v) was found to represent a good compromise in terms of chromatographic performance and mass spectrometric detection sensitivity. Compared to HOAc, on average a 50% reduction of the peak widths was observed. The use of HFBA was particularly advantageous for polar compounds such as nicotine; only with such a hydrophobic ion-pairing reagent chromatographic retention of nicotine was observed. Best mass spectrometric performance was obtained with HOAc and FA. Loss of detection sensitivity induced by HFBA, however, was moderate and ranged from 0 to 40%, which clearly demonstrates that improved chromatographic performance is able to compensate to a large extent the negative effect of reduced ionization efficiency on detection sensitivity. Applications of μLC/MS for the qualitative and quantitative analysis of clinical and forensic toxicological samples are presented. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Harwit, M.; Swift, R.; Wattson, R.; Decker, J.; Paganetti, R.
1976-01-01
A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed.
New mass-spectrometric facility for the analysis of highly radioactive samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warmack, R.J.; Landau, L.; Christie, W.H.
A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained.
Milton, Martin J T; Wang, Jian
2003-01-01
A new isotope dilution mass spectrometry (IDMS) method for high-accuracy quantitative analysis of gases has been developed and validated by the analysis of standard mixtures of carbon dioxide in nitrogen. The method does not require certified isotopic reference materials and does not require direct measurements of the highly enriched spike. The relative uncertainty of the method is shown to be 0.2%. Reproduced with the permission of Her Majesty's Stationery Office. Copyright Crown copyright 2003.
Phenol-selective mass spectrometric analysis of jet fuel.
Zhu, Haoxuan; Janusson, Eric; Luo, Jingwei; Piers, James; Islam, Farhana; McGarvey, G Bryce; Oliver, Allen G; Granot, Ori; McIndoe, J Scott
2017-08-21
Bromobenzyl compounds react selectively with phenols via the Williamson ether synthesis. An imidazolium charge-tagged bromobenzyl compound can be used to reveal phenol impurities in jet fuel by analysis via electrospray ionization mass spectrometry. The complex matrix as revealed by Cold EI GC/MS analysis is reduced to a few simple sets of compounds in the charge-tagged ESI mass spectrum, primarily substituted phenols and thiols. Examination of jet fuels treated by different refinery methods reveals the efficacy of these approaches in removing these contaminants.
mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data.
Strohalm, Martin; Kavan, Daniel; Novák, Petr; Volný, Michael; Havlícek, Vladimír
2010-06-01
While tools for the automated analysis of MS and LC-MS/MS data are continuously improving, it is still often the case that at the end of an experiment, the mass spectrometrist will spend time carefully examining individual spectra. Current software support is mostly provided only by the instrument vendors, and the available software tools are often instrument-dependent. Here we present a new generation of mMass, a cross-platform environment for the precise analysis of individual mass spectra. The software covers a wide range of processing tasks such as import from various data formats, smoothing, baseline correction, peak picking, deisotoping, charge determination, and recalibration. Functions presented in the earlier versions such as in silico digestion and fragmentation were redesigned and improved. In addition to Mascot, an interface for ProFound has been implemented. A specific tool is available for isotopic pattern modeling to enable precise data validation. The largest available lipid database (from the LIPID MAPS Consortium) has been incorporated and together with the new compound search tool lipids can be rapidly identified. In addition, the user can define custom libraries of compounds and use them analogously. The new version of mMass is based on a stand-alone Python library, which provides the basic functionality for data processing and interpretation. This library can serve as a good starting point for other developers in their projects. Binary distributions of mMass, its source code, a detailed user's guide, and video tutorials are freely available from www.mmass.org .
NASA Astrophysics Data System (ADS)
Blecka, Maria I.
2010-05-01
The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.
A Study Of The Radionuclidic Content Of The Environmental Samples Resulting From NIPNE Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stochioiu, Ana I.; Bercea, Sorin I.; Ivan, Constantin G.
2007-04-23
The results of alpha, beta, gamma global activity measurements and gamma spectrometric measurements are presented. For more detailed characterization of samples, gamma-spectrometric measurement, implying identification of radionuclides and their activities are carried-out on significant ambiental annual samples.
DEVELOPMENT OF AN ELECTROSPRAY MASS SPECTROMETRIC METHOD FOR DETERMINING PERCHLORATE IN FERTILIZERS
An electrospray mass spectrometric method has been developed for application to agricultural and horticultural fertilizers to determine perchlorate. After fertilizers are leached or dissolved in water, the method relies on the formation of stable ion pair complex of the perchlor...
USDA-ARS?s Scientific Manuscript database
High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...
Ding, Hui; Ding, Wanjing; Ma, Zhongjun
2017-03-22
Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives.
USDA-ARS?s Scientific Manuscript database
The fungal species Fusarium goolgardi occurs on the plant Xanthorrhoea glauca in natural ecosystems of Australia and is closely related to fusaria that produce a subgroup (type A) of trichothecene mycotoxins that lack a carbonyl group at carbon atom 8 (C-8). Here, mass spectrometric analysis reveale...
2010-03-01
Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS
USDA-ARS?s Scientific Manuscript database
A new bio-based epoxy monomer containing conjugated double bonds, the glycidyl ester of eleostearic acid (GEEA), was synthesized from tung oil fatty acids. It was characterized using 1H-NMR, 13C-NMR and mass spectrometric analysis. Differential scanning calorimetry (DSC) and FT-IR spectroscopy were ...
Mass spectroscopic apparatus and method
Bomse, David S.; Silver, Joel A.; Stanton, Alan C.
1991-01-01
The disclosure is directed to a method and apparatus for ionization modulated mass spectrometric analysis. Analog or digital data acquisition and processing can be used. Ions from a time variant source are detected and quantified. The quantified ion output is analyzed using a computer to provide a two-dimensional representation of at least one component present within an analyte.
USDA-ARS?s Scientific Manuscript database
A fuzzy chromatography mass spectrometric (FCMS) fingerprinting method combined with chemometric analysis was established to diffrentiate between whole wheat (WW) flours and refined wheat (RW) flour, and the breads made from them. The chemical compositions of the bread samples were profiled using h...
An analytical method to identify and quantify trace levels of C5 to C12 perfluorocarboxylic acids (PFCAs) in articles of commerce (AOC) is developed and rigorously validated. Solid samples were extracted in methanol, and liquid samples were diluted with a solvent consisting of 60...
Sonophotocatalytic mineralization of Norflurazon in aqueous environment.
Sathishkumar, Panneerselvam; Mangalaraja, Ramalinga Viswanathan; Rozas, Oscar; Vergara, Carola; Mansilla, Héctor D; Gracia-Pinilla, M A; Anandan, Sambandam
2016-03-01
Norflurazon (4-chloro-5-(methylamino)-2-[3-(trifluoromethyl)phenyl]pyridazin-3(2H)-one; C12H9ClF3N3O) is an excellent weed controlling agent being practiced in the agricultural lands. The excessive addition or the undissolved Norflurazon (maximum solubility 28 mg/L at 25 °C) enters into the aquatic environment and causes the adverse effects associated with its high concentration. To avoid the perilous effects, visible light assisted photocatalysis set-up coupled with the 42 kHz ultrasound producing bath type sonicator is used to completely mineralize the Norflurazon. TiO2, ZnO and gold loaded zinc oxide nanocatalysts were utilized to study the mineralization of Norflurazon. Au-ZnO shows the greater efficiency for the sonophotocatalytic removal of Norflurazon among the various nanocatalysts employed to study the mineralization. The order of Norflurazon mineralization was sonophotocatalysis > sonocatalysis > photocatalysis. The additive effect was achieved for the sonophotocatalytic degradation. The high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometric (LCMS) analyses were employed to identify the various intermediates produced during the mineralization. The identification of four pseudo molecular ions and various intermediates using the LCMS analysis evidently suggests the sonophotocatalytic degradation was preceded in various decay pathways. A suitable mechanism has been proposed for the sonophotocatalytic mineralization of Norflurazon. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ground gamma-ray spectrometric studies of El-Sahu area, southwestern Sinai, Egypt
NASA Astrophysics Data System (ADS)
Abdrabboh, Ahmad M.
2017-12-01
Based on the previous airborne gamma-ray spectrometric study carried out in southwestern Sinai area, El Sahu area was selected for detail ground gamma-ray spectrometric survey. This area is considered as a good target for radioactive mineral exploration. The study area is exposed in a Paleozoic basin covered by different rocks (ranging from Precambrian to Quaternary). The ground gamma-ray spectrometric survey has been conducted along the study area through random survey. The resultant gamma-ray spectrometric maps show different levels of radioactivity over the studied area, which reflect contrasting radioelement contents for the exposed various rock types. The studied area possesses total count ranging from 2.6 to 326 Ur, 0.1 to 2.8% K, 1.7 to 316 ppm eU and 0.9 to 47.5 ppm eTh. The highest uranium concentrations are located in the northern and southern parts of El Sahu area. They are mainly associated with Um Bogma Formation occurrences. Uranium ratio maps (eU/K and eU/eTh) as well as ternary maps show sharp increase of eU content over both potassium and thorium contents associated with the ENE and NNW trends in Um Bogma Formation, indicating an increase in the U-potentiality than the surrounding rocks. This indicates that the mineralization in the study area may be structurally-controlled.
NASA Astrophysics Data System (ADS)
Hema, M. K.; Karthik, C. S.; Warad, Ismail; Lokanath, N. K.; Zarrouk, Abdelkader; Kumara, Karthik; Pampa, K. J.; Mallu, P.
2018-04-01
Trans-[Cu(O∩O)2] complex, O∩O = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione was reported with high potential toward CT-DNA binder. The solved XRD-structure of complex indicated a perfect regular square-planer geometry around the Cu(II) center. The trans/cis-DFT-isomerization calculation supported the XRD seen in reflecting the trans-isomer as the kinetic-favor isomer. The desired complex structure was also characterized by conductivity measurement, CHN-elemental analyses, MS, EDX, SEM, UV-Vis., FT-IR, HAS and TG/DTG. The Solvatochromism behavior of the complex was evaluated using four different polar solvents. MPE and Hirshfeld surface analysis (HSA) come to an agreement that fluoride and thiophene protons atoms are with suitable electro-potential environment to form non-classical H-bonds of type CThsbnd H⋯F. The DNA-binding properties were investigated by viscosity tests and spectrometric titrations, the results revealed the complex as strong calf-thymus DNA binder. High intrinsic-binding constants value ∼1.8 × 105 was collected.
NASA Astrophysics Data System (ADS)
Bylyku, Elida
2009-04-01
In Albania in recent years it has been of increasing interest to determine various pollutants in the environment and their possible effects on human health. The radiochemical procedure used to identify Pu, Am, U, Th, and Sr radioisotopes in soil, sediment, water, coal, and milk samples is described. The analysis is carried out in the presence of respective tracer solutions and combines the procedure for Pu analysis based on anion exchange, the selective method for Sr isolation based on extraction chromatography using Sr-Spec resin, and the application of the TRU-Spec column for separation of Am fraction. An acid digestion method has been applied for the decomposition of samples. The radiochemical procedure involves the separation of Pu from Th, Am, and Sr by anion exchange, followed by the preconcentration of Am and Sr by coprecipitation with calcium oxalate. Am is separated from Sr by extraction chromatography. Uranium is separated from the bulk elements by liquid-liquid extraction using UTEVA® resin. Thin sources for alpha spectrometric measurements are prepared by microprecipitation with NdF3. Two International Atomic Energy Agency reference materials were analyzed in parallel with the samples.
Higashi, Yasuhiro; Hirai, Masami Yokota; Fujiwara, Toru; Naito, Satoshi; Noji, Masaaki; Saito, Kazuki
2006-11-01
Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Their composition changes according to nutritional conditions. Here, we report the precise molecular identification of seed proteins by proteomic analysis of wild-type Arabidopsis thaliana and methionine-over-accumulating mutant mto1-1 plants. The identities of 50 protein spots were determined in the protein extract of mature Arabidopsis seeds by two-dimensional (2D) gel electrophoresis and subsequent mass spectrometric analysis. Of these protein spots, 42 were identified as derived from 12S globulins or 2S albumins. These results indicate that approximately 84% of protein species in Arabidopsis seeds are derived from a few genes coding for 12S globulins and 2S albumins. Extensive mass spectrometric analysis of the 42 spots revealed that successive C-terminal degradation occurred on the 12S globulins. The feasibility of this C-terminal processing was rationalized by molecular modeling of the three-dimensional structure of 12S globulins. The C-terminal degradation at glutamic acid residues of the 12S globulin subunits was repressed under sulfur-deficient conditions. Transcriptome analysis was combined with proteomic analysis to elucidate the mechanism of changes in seed protein composition in response to sulfur deficiency. The results suggest that seed storage proteins in Arabidopsis undergo multi-layer regulation, with emphasis on post-translational modifications that enable the plant to respond to sulfur deficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew
Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis (m/m=17,500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of more than 300 molecules from 92 selected m/z windows (± 1 Da) with a spatial resolution of better than 150 um. Uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pre-treatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 um/s while acquiring higher-energy collision-induced dissociation (HCD) spectra for a targeted inclusion list of 92 m/z valuesmore » at a rate of ~6.3 spectra/s. Molecular ions and their corresponding fragments, separated using high-resolution mass analysis, were assigned based on accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isobaric sodium and potassium adducts of phospholipids. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.« less
NASA Astrophysics Data System (ADS)
Jain, Uttam; Mukherjee, Abhishek
2018-03-01
This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".
Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.
Bregy, Lukas; Sinues, Pablo Martinez-Lozano; Nudnova, Maryia M; Zenobi, Renato
2014-06-01
On-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications. If an API-MS instrument exists in a laboratory, the cost to implement this technology is only around [Formula: see text]500, far less than the investment for a specialized mass spectrometric system designed for volatile organic compounds (VOCs) analysis. In this proof-of-principle study we were able to measure mass spectra of exhaled human breath and found these to be comparable to spectra obtained with other electrospray-based methods. We detected over 100 VOCs, including relevant metabolites like fatty acids, with molecular weights extending up to 340 Da. In addition, we were able to monitor the time-dependent evolution of the peaks and show the enhancement of the metabolism after a meal. We conclude that this approach may complement current methods to analyze breath or other types of vapors, offering an affordable option to upgrade any pre-existing API-MS to a real-time breath analyzer.
Hu, Junjie; Liu, Fei; Ju, Huangxian
2015-04-21
A peptide-encoded microplate was proposed for MALDI-TOF mass spectrometric (MS) analysis of protease activity. The peptide codes were designed to contain a coding region and the substrate of protease for enzymatic cleavage, respectively, and an internal standard method was proposed for the MS quantitation of the cleavage products of these peptide codes. Upon the cleavage reaction in the presence of target proteases, the coding regions were released from the microplate, which were directly quantitated by using corresponding peptides with one-amino acid difference as the internal standards. The coding region could be used as the unique "Protease ID" for the identification of corresponding protease, and the amount of the cleavage product was used for protease activity analysis. Using trypsin and chymotrypsin as the model proteases to verify the multiplex protease assay, the designed "Trypsin ID" and "Chymotrypsin ID" occurred at m/z 761.6 and 711.6. The logarithm value of the intensity ratio of "Protease ID" to internal standard was proportional to trypsin and chymotrypsin concentration in a range from 5.0 to 500 and 10 to 500 nM, respectively. The detection limits for trypsin and chymotrypsin were 2.3 and 5.2 nM, respectively. The peptide-encoded microplate showed good selectivity. This proposed method provided a powerful tool for convenient identification and activity analysis of multiplex proteases.
Yi, Zhou; Manil-Ségalen, Marion; Sago, Laila; Glatigny, Annie; Redeker, Virginie; Legouis, Renaud; Mucchielli-Giorgi, Marie-Hélène
2016-05-06
Affinity purifications followed by mass spectrometric analysis are used to identify protein-protein interactions. Because quantitative proteomic data are noisy, it is necessary to develop statistical methods to eliminate false-positives and identify true partners. We present here a novel approach for filtering false interactors, named "SAFER" for mass Spectrometry data Analysis by Filtering of Experimental Replicates, which is based on the reproducibility of the replicates and the fold-change of the protein intensities between bait and control. To identify regulators or targets of autophagy, we characterized the interactors of LGG1, a ubiquitin-like protein involved in autophagosome formation in C. elegans. LGG-1 partners were purified by affinity, analyzed by nanoLC-MS/MS mass spectrometry, and quantified by a label-free proteomic approach based on the mass spectrometric signal intensity of peptide precursor ions. Because the selection of confident interactions depends on the method used for statistical analysis, we compared SAFER with several statistical tests and different scoring algorithms on this set of data. We show that SAFER recovers high-confidence interactors that have been ignored by the other methods and identified new candidates involved in the autophagy process. We further validated our method on a public data set and conclude that SAFER notably improves the identification of protein interactors.
Study of Chemical Changes in Uranium Oxyfluoride Particles Progress Report March - October 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kips, R; Kristo, M; Hutcheon, I
2009-11-22
Nuclear forensics relies on the analysis of certain sample characteristics to determine the origin and history of a nuclear material. In the specific case of uranium enrichment facilities, it is the release of trace amounts of uranium hexafluoride (UF{sub 6}) gas - used for the enrichment of uranium - that leaves a process-characteristic fingerprint. When UF{sub 6} gas interacts with atmospheric moisture, uranium oxyfluoride particles or particle agglomerates are formed with sizes ranging from several microns down to a few tens of nanometers. These particles are routinely collected by safeguards organizations, such as the International Atomic Energy Agency (IAEA), allowingmore » them to verify whether a facility is compliant with its declarations. Spectrometric analysis of uranium particles from UF{sub 6} hydrolysis has revealed the presence of both particles that contain fluorine, and particles that do not. It is therefore assumed that uranium oxyfluoride is unstable, and decomposes to form uranium oxide. Understanding the rate of fluorine loss in uranium oxyfluoride particles, and the parameters that control it, may therefore contribute to placing boundaries on the particle's exposure time in the environment. Expressly for the purpose of this study, we prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (EU-JRC-IRMM) from a static release of UF{sub 6} in a humid atmosphere. The majority of the samples was stored in controlled temperature, humidity and lighting conditions. Single particles were characterized by a suite of micro-analytical techniques, including NanoSIMS, micro-Raman spectrometry (MRS), scanning (SEM) and transmission (TEM) electron microscopy, energy-dispersive X-ray spectrometry (EDX) and focused ion beam (FIB). The small particle size was found to be the main analytical challenge. The relative amount of fluorine, as well as the particle chemical composition and morphology were determined at different stages in the ageing process, and immediately after preparation. This report summarizes our most recent findings for each of the analytical techniques listed above, and provides an outlook on what remains to be resolved. Additional spectroscopic and mass spectrometric measurements were carried out at Pacific Northwest National Laboratory, but are not included in this summary.« less
Ding, Hui; Ding, Wanjing; Ma, Zhongjun
2017-01-01
Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives. PMID:28327529
A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...
NASA Astrophysics Data System (ADS)
Buntine, Wray L.; Kraft, Richard; Whitaker, Kevin; Cooper, Anita E.; Powers, W. T.; Wallace, Tim L.
1993-06-01
Data obtained in the framework of an Optical Plume Anomaly Detection (OPAD) program intended to create a rocket engine health monitor based on spectrometric detections of anomalous atomic and molecular species in the exhaust plume are analyzed. The major results include techniques for handling data noise, methods for registration of spectra to wavelength, and a simple automatic process for estimating the metallic component of a spectrum.
Trace element analysis of soil type collected from the Manjung and central Perak
NASA Astrophysics Data System (ADS)
Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che
2015-04-01
Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.
Li, Guo-Sheng; Wei, Xian-Yong
2017-01-01
Elucidation of chemical composition of biooil is essentially important to evaluate the process of lignocellulosic biomass (LCBM) conversion and its upgrading and suggest proper value-added utilization like producing fuel and feedstock for fine chemicals. Although the main components of LCBM are cellulose, hemicelluloses, and lignin, the chemicals derived from LCBM differ significantly due to the various feedstock and methods used for the decomposition. Biooil, produced from pyrolysis of LCBM, contains hundreds of organic chemicals with various classes. This review covers the methodologies used for the componential analysis of biooil, including pretreatments and instrumental analysis techniques. The use of chromatographic and spectrometric methods was highlighted, covering the conventional techniques such as gas chromatography, high performance liquid chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectrometry. The combination of preseparation methods and instrumental technologies is a robust pathway for the detailed componential characterization of biooil. The organic species in biooils can be classified into alkanes, alkenes, alkynes, benzene-ring containing hydrocarbons, ethers, alcohols, phenols, aldehydes, ketones, esters, carboxylic acids, and other heteroatomic organic compounds. The recent development of high resolution mass spectrometry and multidimensional hyphenated chromatographic and spectrometric techniques has considerably elucidated the composition of biooils. PMID:29387086
A Retrospective Evaluation of the Use of Mass Spectrometry in FDA Biologics License Applications
NASA Astrophysics Data System (ADS)
Rogstad, Sarah; Faustino, Anneliese; Ruth, Ashley; Keire, David; Boyne, Michael; Park, Jun
2017-05-01
The characterization sections of biologics license applications (BLAs) approved by the United States Food and Drug Administration (FDA) between 2000 and 2015 were investigated to examine the extent of the use of mass spectrometry. Mass spectrometry was found to be integral to the characterization of these biotherapeutics. Of the 80 electronically submitted monoclonal antibody and protein biotherapeutic BLAs included in this study, 79 were found to use mass spectrometric workflows for protein or impurity characterization. To further examine how MS is being used in successful BLAs, the applications were filtered based on the type and number of quality attributes characterized, the mass spectrometric workflows used (peptide mapping, intact mass analysis, and cleaved glycan analysis), the methods used to introduce the proteins into the gas phase (ESI, MALDI, or LC-ESI), and the specific types of instrumentation used. Analyses were conducted over a time course based on the FDA BLA approval to determine if any trends in utilization could be observed over time. Additionally, the different classes of protein-based biotherapeutics among the approved BLAs were clustered to determine if any trends could be attributed to the specific type of biotherapeutic.
Hoofnagle, Andrew N; Whiteaker, Jeffrey R; Carr, Steven A; Kuhn, Eric; Liu, Tao; Massoni, Sam A; Thomas, Stefani N; Townsend, R Reid; Zimmerman, Lisa J; Boja, Emily; Chen, Jing; Crimmins, Daniel L; Davies, Sherri R; Gao, Yuqian; Hiltke, Tara R; Ketchum, Karen A; Kinsinger, Christopher R; Mesri, Mehdi; Meyer, Matthew R; Qian, Wei-Jun; Schoenherr, Regine M; Scott, Mitchell G; Shi, Tujin; Whiteley, Gordon R; Wrobel, John A; Wu, Chaochao; Ackermann, Brad L; Aebersold, Ruedi; Barnidge, David R; Bunk, David M; Clarke, Nigel; Fishman, Jordan B; Grant, Russ P; Kusebauch, Ulrike; Kushnir, Mark M; Lowenthal, Mark S; Moritz, Robert L; Neubert, Hendrik; Patterson, Scott D; Rockwood, Alan L; Rogers, John; Singh, Ravinder J; Van Eyk, Jennifer E; Wong, Steven H; Zhang, Shucha; Chan, Daniel W; Chen, Xian; Ellis, Matthew J; Liebler, Daniel C; Rodland, Karin D; Rodriguez, Henry; Smith, Richard D; Zhang, Zhen; Zhang, Hui; Paulovich, Amanda G
2016-01-01
For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care. © 2015 American Association for Clinical Chemistry.
Lipidomics in triacylglycerol and cholesteryl ester oxidation.
Kuksis, Arnis
2007-05-01
Although direct mass spectrometry is capable of identification the major molecular species of lipids in crude total lipid extracts, prior chromatographic isolation is necessary for detection and identification of the minor components. This is especially important for the analysis of the oxolipids, which usually occur in trace amounts in the total lipid extract, and require prior isolation for detailed analysis. Both thin-layer chromatography and adsorption cartridges provide effective means for isolation and enrichment of lipid classes, while gas-liquid chromatography and high performance liquid chromatography with on-line mass spectrometry permit further separation and identification of molecular species. Prior chromatographic resolution is absolutely necessary for the identification of isobaric and chiral molecules, which mass spectrometry/mass spectrometry (MS/MS) cannot distinguish. Both gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry applications may require the preparation of derivatives in order to improve the chromatographic and mass spectrometric properties of the oxolipids which is a small inconvenience for securing analytical reliability. The following chapter reviews the advantages and necessity of combined chromatographic-mass spectrometric approaches to successful identification and quantification of molecular species of oxoacylglycerols and oxocholesteryl esters in in-vitro model studies of lipid peroxidation and in the analyses of oxolipids recovered from tissues.
A thermospray-liquid chromatographic/mass spectrometric (TS-LC/MS) method was evaluated in an interlaboratory study for determining 3 N-methyl carbamates (bendiocarb, carbaryl, and carbofuran), 3-N-methyl carbamoyloximes (aldicarb, methomyl, and oxamyl), 2 substituted urea pestic...
Youssef, Mohamed A S
2016-02-01
In the last decades of years, there was considerable growth in the use of airborne gamma-ray spectrometry. With this growth, there was an increasing need to standardize airborne measurements, so that they can be independent of survey parameters. Acceptable procedures were developed for converting airborne to ground gamma-ray spectrometric measurements of total-count intensity as well as, potassium, equivalent uranium and equivalent thorium concentrations, due to natural sources of radiation. The present study aims mainly to establish relationships between ground and airborne gamma-ray spectrometric data, North Ras Millan, Southern Sinai Peninsula, Egypt. The relationships between airborne and ground gamma-ray spectrometric data were deduced for the original and separated rock units in the study area. Various rocks in the study area, represented by Quaternary Wadi sediments, Cambro-Ordovician sandstones, basic dykes and granites, are shown on the detailed geologic map. The structures are displayed, which located on the detailed geologic map, are compiled from the integration of previous geophysical and surface geological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rosenberg, Erwin
2003-06-06
The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS-MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to environment, health and food. Particular attention is given to the characterisation of biomolecules and metalloproteins (metallothioneins and phytochelatins) and to the investigation of the interaction of metals and biomolecules. Particularly in the latter field, ESI-MS is the ideal technique due to the softness of the ionisation process which allows to assume that the detected gas-phase ions are a true representation of the ions or ion-biomolecule complexes prevalent in solution. It is particularly this field, important to biochemistry, physiology and medical chemistry, where we can expect significant developments also in the future.
Sandra, Koen; Moshir, Mahan; D'hondt, Filip; Tuytten, Robin; Verleysen, Katleen; Kas, Koen; François, Isabelle; Sandra, Pat
2009-04-15
Multidimensional liquid-based separation techniques are described for maximizing the resolution of the enormous number of peptides generated upon tryptic digestion of proteomes, and hence, reduce the spatial and temporal complexity of the sample to a level that allows successful mass spectrometric analysis. This review complements the previous contribution on unidimensional high performance liquid chromatography (HPLC). Both chromatography and electrophoresis will be discussed albeit with reversed-phase HPLC (RPLC) as the final separation dimension prior to MS analysis.
Activation analysis of admixtures in certain semiconductive materials
NASA Technical Reports Server (NTRS)
Artyukhin, P. I.; Gilbert, E. P.; Pronin, V. A.
1978-01-01
The use of extractions and chromatographic operations to separate macrobases, and to divide elements into groups convenient for gamma-spectrometric analysis is discussed. Methods are described for the activation detection of some impurities in silicon, arsenic, thallium, and trichloromethylsilane, on the basis of the extraction properties of bis(2-chlorethyl ether) and dimethylbenzylalkylammonium chloride. A schematic diagram of the extraction separation of elements-admixture is presented showing the aqueous and organic phases. The content percentage of the various elements are given in tables.
NASA Astrophysics Data System (ADS)
Woolfitt, Adrian R.; Boyer, Anne E.; Quinn, Conrad P.; Hoffmaster, Alex R.; Kozel, Thomas R.; de, Barun K.; Gallegos, Maribel; Moura, Hercules; Pirkle, James L.; Barr, John R.
A range of mass spectrometry-based techniques have been used to identify, characterize and differentiate Bacillus anthracis, both in culture for forensic applications and for diagnosis during infection. This range of techniques could usefully be considered to exist as a continuum, based on the degrees of specificity involved. We show two examples here, a whole-organism fingerprinting method and a high-specificity assay for one unique protein, anthrax lethal factor.
Meglen, Robert R.; Kelley, Stephen S.
2003-01-01
In a method for determining the dry mechanical strength for a green wood, the improvement comprising: (a) illuminating a surface of the wood to be determined with a reduced range of wavelengths in the VIS-NIR spectra 400 to 1150 nm, said wood having a green moisture content; (b) analyzing the surface of the wood using a spectrometric method, the method generating a first spectral data of a reduced range of wavelengths in VIS-NIR spectra; and (c) using a multivariate analysis technique to predict the mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of a reduced range of wavelengths in VIS-NIR spectra obtained from a reference wood having a green moisture content, the second spectral being correlated with a known mechanical strength analytical result obtained from the reference wood when dried and a having a dry moisture content.
Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.
1979-01-01
An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.
Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials
Sanzolone, R.F.; Chao, T.T.
1976-01-01
An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.
NASA Technical Reports Server (NTRS)
Viton, M.; Courtes, G.; Sivan, J. P.; Decher, R.; Gary, A.
1985-01-01
Technical difficulties encountered using the Very Wide Field Camera (VWFC) during the Spacelab 1 Shuttle mission are reported. The VWFC is a wide low resolution (5 arcmin half-half width) photographic camera, capable of operating in both spectrometric and photometric modes. The bandpasses of the photometric mode of the VWFC are defined by three Al + MgF2 interference filters. A piggy-back spectrograph attached to the VWFC was used for observations in the spectrometric mode. A total of 48 astronomical frames were obtained using the VWFC, of which only 20 were considered to be of adequate quality for astronomical data processing. Preliminary analysis of the 28 poor-quality images revealed the following possible defects in the VWFC: darkness in the spacing frames, twilight/dawn UV straylight, and internal UV straylight. Improvements in the VWFC astronomical data processing scheme are expected to help identify and eliminate UV straylight sources in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdian, D.C.; Cha, Sangwon; Oh, Jisun
2010-03-18
Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations atmore » the cellular level.« less
[Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].
Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L
2016-05-20
To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.
NASA Technical Reports Server (NTRS)
Gordon, W. A.
1975-01-01
Matrix effects related to the chemical form of analyzed materials were studied. An arc in argon was used which was buffered with silver chloride. The effect of chemical form was minimal for a variety of metals, oxides, and carbides representing the most refractory compounds and thermally stable metal-containing molecules. Only four of the most refractory materials known showed significant emission depressions due to incomplete volatilization in the arc system. These results are discussed in terms of vapor pressures of the solid materials placed on the anodes and dissociation reactions of the molecules in the gaseous environment.
Karasali, Helen; Kasiotis, Konstantinos M; Machera, Kyriaki; Ambrus, Arpad
2014-11-26
Counterfeit pesticides threaten public health, food trade, and the environment. The present work draws attention to the importance of regular monitoring of impurities in formulated pesticide products. General screening revealed the presence of carbaryl as a contaminant in a copper oxychloride formulated product. In this paper, as a case study, a liquid chromatographic diode array-mass spectrometric method developed for general screening of pesticide products and quantitative determination of carbaryl together with its validation is presented. The proposed testing strategy is considered suitable for use as a general approach for testing organic contaminants and impurities in solid pesticide formulations.
James L. Minor; Roger C. Pettersen
1987-01-01
In many plants, a portion of the polysaccharides appears to have a very low degree of cross-linking with aromatic polymers such as lignin or flavolans. The proportion of cross-linked units may be enriched for study by enzymatically hydrolyzing the nonbonded carbohydrates. A convenient method is described for the simultaneous analysis of sugar content and apparent chain...
Mass spectrometric measurements of atmospheric composition
NASA Technical Reports Server (NTRS)
Hoffman, J. H.
1974-01-01
The development of a magnetic sector field analyzer for continuous sampling and measurement of outer planetary atmospheres is discussed. Special features of the analyzer include a dynamic range of 10 to the minus 7th power, a mass range from 1 to 48 AMU, two ion sensitivities, a special scan time of 35 sec at 14 BPS, and the use of ion counting techniques for analysis.
The chemistry of secondary organic aerosol formation from reactions of
1-tetradecene and O3 in dry air in the presence of excess alcohols
and carboxylic acids was investigated in an environmental chamber using a
thermal desorption particle beam mass spec...
NASA Astrophysics Data System (ADS)
Vershinin, N. O.; Sokolova, I. V.; Tchaikovskaya, O. N.; Nevolina, K. A.
2015-11-01
The herbicide 2,4-dichlorophenoxyacetic acid was investigated in aqueous solution. A KrCl excilamp with an emission wavelength of 222 nm was used as radiation source. The direction of variation in the concentration of the toxicant during UV irradiation is discussed. The photodegradation constants are calculated. A chromatographic-mass spectrometric analysis of the photoproducts was undertaken.
Development of an Assessment Method for Building Materials Under Euratom Scope.
de With, Govert
2017-11-01
In 2013, the European Commission published its basic safety standards for protection against the dangers arising from exposure to ionizing radiation (Council Directive 2013/59/Euratom)-also known as EU-BSS. As a result, the use of raw materials with potentially elevated activity concentrations such as fly ash, phosphogypsum, and slags will now fall under EU-BSS scope when applied in building materials. In light of this new policy, a variety of tools are available to assess compliance with the 1-mSv y reference level for building materials. At the heart of these tools is a gamma-spectrometric determination of the naturally occurring radionuclides Ra, Th, and K in the material of concern. As a large number of construction products contain a certain amount of the raw material that falls under the scope of the EU regulation, this policy will lead to substantial measurement of building materials that pose little radiation risk. For this reason, a method is developed to enable assessment against the 1-mSv value not on the basis of gamma-spectrometric analysis but rather based on the product's material composition. The proposed method prescribes a maximum permitted content of raw materials with potentially elevated activity concentrations in terms of a weight percentage of the end product, where the raw materials of concern are defined as those listed in Annex XIII of the EU-BSS. The permitted content is a function of the product's surface density. Therefore, a product with a low surface density of up to 25 kg m can consist of nearly 100% raw materials with potentially elevated activity concentrations, and this percentage drops to around 15% for products with a surface density of around 500 kg m. Building materials that comply with these requirements on product composition are exempt from testing, while products that do not comply must perform regular gamma-spectrometric analysis. A full validation and testing of the method is provided. In addition, the paper discusses issues relevant for regulatory implementation.
ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite
2010-01-01
Background Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. Results Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. Conclusion The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm PMID:20109223
NASA Astrophysics Data System (ADS)
Steffen, S.; Otto, M.; Niewoehner, L.; Barth, M.; Bro¿żek-Mucha, Z.; Biegstraaten, J.; Horváth, R.
2007-09-01
A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.
A review on the determination of isotope ratios of boron with mass spectrometry.
Aggarwal, Suresh Kumar; You, Chen-Feng
2017-07-01
The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
A simple and efficient flow-injection mass spectrometric (FIMS) method was developed to differentiate cinnamon (Cinnamomum) bark (CB) samples of the four major species (C. burmannii, C. verum, C. aromaticum, and C. loureiroi) of cinnamon. Fifty cinnamon samples collected from China, Vietnam, Indon...
NASA Astrophysics Data System (ADS)
Toomsoo, Avo; Jürgens, Meit; Kõlli, Raimo; Künnapas, Allan; Albre, Imbi; Tõnutare, Tõnu; Rodima, Ako
2017-04-01
Only small percentage of soil total phosphorus is easily exchangeable between solid and solution phase. Plants are able to assimilate P from environment only in the form of orthophosphate ions (H2PO4- and HPO42-) from soil solution. Deficit of P in soil solution prevents plant normal growth and decreases yield quantity and quality. The excess of P in soil solution causes the pollution of environment and eutrophication of water bodies. Therefore it is important to give to the plant producers the correct fertilization recommendations. Lot of analytical methods are developed for the determination of plant available P in soils. In the Baltic Sea region seven different soils' P analysis methods in use. Each method has its own gradation and often there is more than one gradation for the same method depending from agroecological conditions. For agricultural soils in Estonia there are soil P status gradations according to Mehlich 3, DL and AL methods. Phosphate content in soil can be determined by molybdate method Vis-spectrometrically. Very often for analysis of soils' P content also ICP-OES, ICP-MS and also MP-AES instrumental methods are used The aim of our work was to investigate the possibility of using MP-AES for determination of plant available P in soil by DL method and also to compare how the analysed soils are distributed to M3, AL and DL fertilizer requirement groups according to the P content.
NMR Studies on the Aqueous Phase Photochemical Degradation of TNT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorn, Kevin A.; Cox, Larry G.
2008-04-06
Aqueous phase photochemical degradation of 2,4,6-trinitrotoluene (TNT) is an important pathway in several environments, including washout lagoon soils, impact craters from partially detonated munitions that fill with rain or groundwater, and shallow marine environments containing unexploded munitions that have corroded. Knowledge of the degradation products is necessary for compliance issues on military firing ranges and formerly used defense sites. Previous laboratory studies have indicated that UV irradiation of aqueous TNT solutions results in a multicomponent product mixture, including polymerization compounds, that has been only partially resolved by mass spectrometric analyses. This study illustrates how a combination of solid and liquidmore » state 1H, 13C, and 15N NMR spectroscopy, including two dimensional analyses, provides complementary information on the total product mixture from aqueous photolysis of TNT, and the effect of reaction conditions. Among the degradation products detected were amine, amide, azoxy, azo, and carboxylic acid compounds.« less
Perdian, D C; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S; Yeung, Edward S; Lee, Young Jin
2010-04-30
Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level. Published in 2010 by John Wiley & Sons, Ltd.
Mass spectrometric profiling of flavonoid glycoconjugates possessing isomeric aglycones.
Abrankó, László; Szilvássy, Blanka
2015-01-01
In fields such as food and nutrition science or plant physiology, interest in untargeted profiling of flavonoids continues to expand. The group of flavonoids encompasses several thousands of chemically distinguishable compounds, among which are a number of isobaric compounds with the same elemental composition. Thus, the mass spectrometric identification of these compounds is challenging, especially when reference standards are not available to support their identification. Many different types of isomers of flavonoid glycoconjugates are known, i.e. compounds that differ in their glycosylation position, glycan sequence or type of interglycosidic linkage. This work focuses on the mass spectrometric identification of flavonoid glycoconjugate isomers possessing the same glycan mass and differing only in their aglycone core. A non-targeted HPLC-ESI-MS/MS profiling method using a triple quadrupole MS is presented herein, which utilizes in-source fragmentation and a pseudo-MS(3) approach for the selective analysis of flavonoid glycoconjugates with isomeric/isobaric aglycones. A selective MRM-based identification of the in-source formed isobaric aglycone fragments was established. Additionally, utilizing the precursor scanning capability of the employed triple quadrupole instrument, the developed method enabled the determination of the molecular weight of the studied intact flavonoid glycoconjugate. The versatility of the method was proven with various types of flavonoid aglycones, i.e. anthocyanins, flavonols, flavones, flavanones and isoflavones, along with their representative glycoconjugates. The developed method was also successfully applied to a commercially available sour cherry sample, in which 16 different glycoconjugates of pelargonidin, genistein, cyanidin, kaempferol and quercetin could be tentatively identified, including a number of compounds containing isomeric/isobaric aglycones. Copyright © 2015 John Wiley & Sons, Ltd.
Mariappan, S V Santhana; Cheng, Xun; van Breemen, Richard B; Silks, Louis A; Gupta, Goutam
2004-11-15
The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.
Müller, Daniel B.; Schubert, Olga T.; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A.
2016-01-01
Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. PMID:27457762
Fragmentation and hydration of tektites and microtektites
Glass, B.P.; Muenow, D.W.; Bohor, B.F.; Meeker, G.P.
1997-01-01
An examination of data collected over the last 30 years indicates that the percent of glass fragments vs. whole splash forms in the Cenozoic microtektite strewn fields increases towards the source crater (or source region). We propose that this is due to thermal stress produced when tektites and larger microtektites fall into water near the source crater while still relatively hot (>1150 ??C). We also find evidence (low major oxide totals, frothing when melted) for hydration of most of the North American tektite fragments and microtektites found in marine sediments. High-temperature mass spectrometry indicates that these tektite fragments and microtektites contain up to 3.8 wt% H2O. The H2O-release behavior during the high-temperature mass-spectrometric analysis, plus high Cl abundances (???0.05 wt%), indicate that the North. American tektite fragments and microtektites were hydrated in the marine environment (i.e., the H2O was not trapped solely on quenching from a melt). The younger Ivory Coast and Australasian microtektites do not exhibit much evidence of hydration (at least not in excess of 0.5 wt% H2O); this suggests that the degree of hydration increases with age. In addition, we find that some glass spherules (with 65 wt% SiO2 can undergo simple hydration in the marine environment, while impact glasses (with <65 wt% SiO2) can also undergo palagonitization.
The analysis of animal faeces as a tool to monitor antibiotic usage.
Berendsen, Bjorn J A; Wegh, Robin S; Memelink, Joost; Zuidema, Tina; Stolker, Linda A M
2015-01-01
The analysis of antibiotics in animal faeces is important to obtain more insight in the possible formation of bacterial resistance in the animals׳ gut, to learn about the dissemination of antibiotics to the environment, to monitor trends in antibiotic usage and to detect the illegal and off-label use of antibiotics. To facilitate these studies a comprehensive method for the analysis of trace levels of 44 antibiotic compounds including tetracyclines, quinolones, macrolides and sulfonamides in animal faeces by liquid chromatography in combination with tandem mass spectrometric (LC-MS/MS) detection is reported. The method is fully validated according to European regulation and showed satisfactory quantitative performance according to the stringent criteria adopted, with the exception of some of the macrolide compounds, which can be analysed with somewhat high measurement uncertainty. A large survey was carried out monitoring swine and cattle faeces and the outcomes were striking. In 55% of the swines, originating from 80% of the swine farms and in 75% of the calves, originating from 95% of the cattle farms, antibiotics were detected. Oxytetracycline, doxycycline and sulfadiazine were the most detected antibiotics, followed by tetracycline, flumequine, lincomycin and tylosin. Over 34% of the faeces samples contained two or more different antibiotics with a maximum of eight. Possible explanations for these findings are given and the effects are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Takeda, Sahori; Morimura, Wataru; Liu, Yi-Hung; Sakai, Tetsuo; Saito, Yuria
2016-08-15
Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Micro-Raman spectroscopy: The analysis of micrometer and submicrometer atmospheric aerosols
NASA Technical Reports Server (NTRS)
Klainer, S. M.; Milanovich, F. P.
1985-01-01
A nondestructive method of molecular analysis which is required to fully utilize the information contained within a collected particle is discussed. Upper atmosphere reaction mechanisms are assessed when the chemical compounds, the use of micro-Raman spectrometric techniques to perform micron and submicron particle analysis was evaluated. The results are favorable and it is concluded that micron and submicron particles can be analyzed by the micron-Raman approach. Completely automatic analysis should be possible to 0.3 micro m. No problems are anticipated with photo or thermal decomposition. Sample and impurity fluorescence are the key source of background as they cannot be completely eliminated.
Ramasamy, Sugumar; Arumugam, Arumugam; Chandran, Preethy
2017-02-01
Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.
Mathias, Patricia I; B'Hymer, Clayton
2014-08-01
High-performance liquid chromatography/mass spectrometry (HPLC/MS) is sensitive and specific for targeted quantitative analysis and is readily utilized for small molecules from biological matrices. This brief review describes recent selected HPLC/MS methods for the determination of urinary mercapturic acids (mercapturates) which are useful as biomarkers in characterizing human exposure to electrophilic industrial chemicals in occupational and environmental studies. Electrophilic compounds owing to their reactivity are used in chemical and industrial processes. They are present in industrial emissions, are combustion products of fossil fuels, and are components in tobacco smoke. Their presence in both the industrial and general environments are of concern for human and environmental health. Urinary mercapturates which are the products of metabolic detoxification of reactive chemicals provide a non-invasive tool to investigate human exposure to electrophilic toxicants. Selected recent mercapturate quantification methods are summarized and specific cases are presented. The biological formation of mercapturates is introduced and their use as biomarkers of metabolic processing of electrophilic compounds is discussed. Also, the use of liquid chromatography/tandem mass spectrometry in simultaneous determinations of the mercapturates of multiple parent compounds in a single determination is considered, as well as future trends and limitations in this area of research. Published by Elsevier B.V.
Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure.
Hradilová, Jana; Rehulka, Pavel; Rehulková, Helena; Vrbová, Miroslava; Griga, Miroslav; Brzobohatý, Bretislav
2010-01-01
Cadmium (Cd) is classified as a serious pollutant due to its high toxicity, high carcinogenicity, and widespread presence in the environment. Phytoremediation represents an effective low-cost approach for removing pollutants from contaminated soils, and a crop with significant phytoremediation potential is flax. However, significant differences in Cd accumulation and tolerance were previously found among commercial flax cultivars. Notably, cv. Jitka showed substantially higher tolerance to elevated Cd levels in soil and plant tissues than cv. Tábor. Here, significant changes in the expression of 14 proteins (related to disease/defense, metabolism, protein destination and storage, signal transduction, energy and cell structure) were detected by image and mass spectrometric analysis of two-dimensionally separated proteins extracted from Cd-treated cell suspension cultures derived from these contrasting cultivars. Further, two proteins, ferritin and glutamine synthetase (a key enzyme in glutathione biosynthesis), were only up-regulated by Cd in cv. Jitka, indicating that Cd tolerance mechanisms in this cultivar may include maintenance of low Cd levels at sensitive sites by ferritin and low-molecular weight thiol peptides binding Cd. The identified changes could facilitate marker-assisted breeding for Cd tolerance and the development of transgenic flax lines with enhanced Cd tolerance and accumulation capacities for phytoremediating Cd-contaminated soils.
NASA Astrophysics Data System (ADS)
Berry, Jamal Ihsan
The desorption of biomolecules from frozen aqueous solutions on metal substrates with femtosecond laser pulses is presented for the first time. Unlike previous studies using nanosecond pulses, this approach produces high quality mass spectra of biomolecules repeatedly and reproducibly. This novel technique allows analysis of biomolecules directly from their native frozen environments. The motivation for this technique stems from molecular dynamics computer simulations comparing nanosecond and picosecond heating of water overlayers frozen on Au substrates which demonstrate large water cluster formation and ejection upon substrate heating within ultrashort timescales. As the frozen aqueous matrix and analyte molecules are transparent at the wavelengths used, the laser energy is primarily absorbed by the substrate, causing rapid heating and explosive boiling of the ice overlayer, followed by the ejection of ice clusters and the entrained analyte molecule. Spectral characteristics at a relatively high fluence of 10 J/cm 2 reveal the presence of large molecular weight metal clusters when a gold substrate is employed, with smaller cluster species observed from frozen aqueous solutions on Ag, Cu, and Pb substrates. The presence of the metal clusters is indicative of an evaporative cooling mechanism which stabiles cluster ion formation and the ejection of biomolecules from frozen aqueous solutions. Solvation is necessary as the presence of metal clusters and biomolecular ion signals are not observed from bare metal substrates in absence of the frozen overlayer. The potential for mass spectrometric imaging with femtosecond LDI of frozen samples is also presented. The initial results for the characterization of peptides and peptoids linked to combinatorial beads frozen in ice and the assay of frozen brain tissue from the serotonin transporter gene knockout mouse via LDI imaging are discussed. Images of very good quality and resolution are obtained with 400 nm, 200 fs pulses at a fluence of 1.25 J/cm2 . An attractive feature of this technique is that images are acquired within minutes for large sample areas. Additionally, the images obtained with femtosecond laser desorption are high in lateral resolution with the laser capable of being focused to a spot size of 30 mum. Femtosecond laser desorption from ice is unique in that unlike matrix assisted laser desorption ionization mass spectrometry, it does not employ an organic UV absorbing matrix to desorb molecular ions. Instead, the laser energy is absorbed by the metal substrate causing explosive boiling and ejection of the frozen overlayer. This approach is significant in that femtosecond laser desorption possess the potential of analyzing and assaying biomolecules directly from their frozen native environments. This technique was developed to compliment existing ToF-SIMS imaging capability for analysis of tissue and cells, as well as other biological systems of interest.
Synthesis and thermal stability of carborane containing phosphazenes
NASA Technical Reports Server (NTRS)
Fewell, L. L.; Basi, R. J.; Parker, J. A.
1983-01-01
Carborane substituted polyphosphazenes were prepared by the thermal polymerization of phenyl-carboranyl penta chlorocyclotriphosphazene. Successive isothermal vacuum pyrolyses were conducted on the polymer and examined for structural changes by infrared spectroscopy. The degradation products were ascertained by gas chromatography-mass spectrometric analysis. It was found that the presence of the carborane group improves the thermal stability of the polymer by retarding the ring chain equilibrium processes of decomposition.
Ultrasound ionization of biomolecules.
Wu, Chen-I; Wang, Yi-Sheng; Chen, Nelson G; Wu, Chung-Yi; Chen, Chung-Hsuan
2010-09-15
To date, mass spectrometric analysis of biomolecules has been primarily performed with either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI). In this work, ultrasound produced by a simple piezoelectric device is shown as an alternative method for soft ionization of biomolecules. Precursor ions of proteins, saccharides and fatty acids showed little fragmentation. Cavitation is considered as a primary mechanism for the ionization of biomolecules. Copyright 2010 John Wiley & Sons, Ltd.
Ye, Hongping; Hill, John; Kauffman, John; Gryniewicz, Connie; Han, Xianlin
2013-01-01
iTRAQ (isotope tags for relative and absolute quantification) reagent coupled with MALDI TOF/TOF mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies, and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, Lantus®) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including Human insulin (P28K29) and Lispro (K28P29), which only differ by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting. PMID:18489896
Sciarrone, Danilo; Costa, Rosaria; Ragonese, Carla; Tranchida, Peter Quinto; Tedone, Laura; Santi, Luca; Dugo, Paola; Dugo, Giovanni; Joulain, Daniel; Mondello, Luigi
2011-01-07
The production and trade of Indian sandalwood oil is strictly regulated, due to the impoverishment of the plantations; for such a reason, Australian sandalwood oil has been evaluated as a possible substitute of the Indian type. International directives report, for both the genuine essential oils, specific ranges for the sesquiterpene alcohols (santalols). In the present investigation, a multidimensional gas chromatographic system (MDGC), equipped with simultaneous flame ionization and mass spectrometric detection (FID/MS), has been successfully applied to the analysis of a series of sandalwood oils of different origin. A detailed description of the system utilized is reported. Three santalol isomers, (Z)-α-trans-bergamotol, (E,E)-farnesol, (Z)-nuciferol, epi-α-bisabolol and (Z)-lanceol have been quantified. LoD (MS) and LoQ (FID) values were determined for (E,E)-farnesol, used as representative of the oxygenated sesquiterpenic group, showing levels equal to 0.002% and 0.003%, respectively. A great advantage of the instrumental configuration herein discussed, is represented by the fact that identification and quantitation of target analytes are carried out in one step, without the need to perform two separate analyses. Copyright © 2010 Elsevier B.V. All rights reserved.
Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M
2018-01-03
Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beals, D.
2011-12-06
Uranium-233 (t{sub 1/2} {approx} 1.59E5 years) is an artificial, fissile isotope of uranium that has significant importance in nuclear forensics. The isotope provides a unique signature in determining the origin and provenance of uranium-bearing materials and is valuable as a mass spectrometric tracer. Alpha spectrometry was employed in the critical evaluation of a {sup 233}U standard reference material (SRM-995) as a dual tracer system based on the in-growth of {sup 229}Th (t{sub 1/2} {approx} 7.34E3 years) for {approx}35 years following radiochemical purification. Preliminary investigations focused on the isotopic analysis of standards and unmodified fractions of SRM-995; all samples were separatedmore » and purified using a multi-column anion-exchange scheme. The {sup 229}Th/{sup 233}U atom ratio for SRM-995 was found to be 1.598E-4 ({+-} 4.50%) using recovery-corrected radiochemical methods. Using the Bateman equations and relevant half-lives, this ratio reflects a material that was purified {approx} 36.8 years prior to this analysis. The calculated age is discussed in contrast with both the date of certification and the recorded date of last purification.« less
Altunay, Nail; Yıldırım, Emre; Gürkan, Ramazan
2018-04-15
In the study, a simple, and efficient microextraction approach, which is termed as vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction (VA-IL-DLLME), was developed for flame atomic absorption spectrometric analysis of aluminum (Al) and chromium (Cr) in vegetables. The method is based on the formation of anionic chelate complexes of Al(III) and Cr(VI) with o-hydroxy azo dye, at pH 6.5, and then extraction of the hydrophobic ternary complexes formed in presence of cetyltrimethylammonium bromide (CTAB) into a 125 μL volume of 1-butyl-3-methylimidazolium bis(trifluorosulfonyl)imide [C 4 mim][Tf 2 N]) as extraction solvent. Under optimum conditions, the detection limits were 0.02 µg L -1 in linear working range of 0.07-100 µg L -1 for Al(III), and 0.05 µg L -1 in linear working range of 0.2-80 µg L -1 for Cr(VI). After the validation by analysis of a certified reference material (CRM), the method was successfully applied to the determination of Al and Cr in vegetables using standard addition method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kukreti, B M; Sharma, G K
2012-05-01
Accurate and speedy estimations of ppm range uranium and thorium in the geological and rock samples are most useful towards ongoing uranium investigations and identification of favorable radioactive zones in the exploration field areas. In this study with the existing 5 in. × 4 in. NaI(Tl) detector setup, prevailing background and time constraints, an enhanced geometrical setup has been worked out to improve the minimum detection limits for primordial radioelements K(40), U(238) and Th(232). This geometrical setup has been integrated with the newly introduced, digital signal processing based MCA system for the routine spectrometric analysis of low concentration rock samples. Stability performance, during the long counting hours, for digital signal processing MCA system and its predecessor NIM bin based MCA system has been monitored, using the concept of statistical process control. Monitored results, over a time span of few months, have been quantified in terms of spectrometer's parameters such as Compton striping constants and Channel sensitivities, used for evaluating primordial radio element concentrations (K(40), U(238) and Th(232)) in geological samples. Results indicate stable dMCA performance, with a tendency of higher relative variance, about mean, particularly for Compton stripping constants. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yuzhuo; DeLaney, Kellen; Hui, Limei; Wang, Junhua; Sturm, Robert M.; Li, Lingjun
2018-02-01
Food intake is regulated by various neuromodulators, including numerous neuropeptides. However, it remains elusive at the molecular and cellular level as to how these important chemicals regulate internal processes and which regions of the neuronal organs are responsible for regulating the behavior. Here we report a comparative neuropeptidomic analysis of the brain and pericardial organ (PO) in response to feeding in two well-studied crustacean physiology model organisms, Callinectes sapidus and Carcinus maenas, using mass spectrometry (MS) techniques. A multifaceted MS-based approach has been developed to obtain complementary information on the expression changes of a large array of neuropeptides in the brain and PO. The method employs stable isotope labeling of brain and PO extracts for relative MS quantitation, capillary electrophoresis (CE)-MS for fractionation and high-specificity analysis, and mass spectrometric imaging (MSI) for in-situ molecular mapping of peptides. A number of neuropeptides, including RFamides, B-type allatostatins (AST-B), RYamides, and orcokinins exhibit significant changes in abundance after feeding in this investigation. Peptides from the AST-B family found in PO tissue were shown to have both altered expression and localization changes after feeding, indicating that they may be a class of vital neuropeptide regulators involved in feeding behavior. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Zhang, Yuzhuo; DeLaney, Kellen; Hui, Limei; Wang, Junhua; Sturm, Robert M.; Li, Lingjun
2018-05-01
Food intake is regulated by various neuromodulators, including numerous neuropeptides. However, it remains elusive at the molecular and cellular level as to how these important chemicals regulate internal processes and which regions of the neuronal organs are responsible for regulating the behavior. Here we report a comparative neuropeptidomic analysis of the brain and pericardial organ (PO) in response to feeding in two well-studied crustacean physiology model organisms, Callinectes sapidus and Carcinus maenas, using mass spectrometry (MS) techniques. A multifaceted MS-based approach has been developed to obtain complementary information on the expression changes of a large array of neuropeptides in the brain and PO. The method employs stable isotope labeling of brain and PO extracts for relative MS quantitation, capillary electrophoresis (CE)-MS for fractionation and high-specificity analysis, and mass spectrometric imaging (MSI) for in-situ molecular mapping of peptides. A number of neuropeptides, including RFamides, B-type allatostatins (AST-B), RYamides, and orcokinins exhibit significant changes in abundance after feeding in this investigation. Peptides from the AST-B family found in PO tissue were shown to have both altered expression and localization changes after feeding, indicating that they may be a class of vital neuropeptide regulators involved in feeding behavior. [Figure not available: see fulltext.
Zhang, Yuzhuo; DeLaney, Kellen; Hui, Limei; Wang, Junhua; Sturm, Robert M; Li, Lingjun
2018-05-01
Food intake is regulated by various neuromodulators, including numerous neuropeptides. However, it remains elusive at the molecular and cellular level as to how these important chemicals regulate internal processes and which regions of the neuronal organs are responsible for regulating the behavior. Here we report a comparative neuropeptidomic analysis of the brain and pericardial organ (PO) in response to feeding in two well-studied crustacean physiology model organisms, Callinectes sapidus and Carcinus maenas, using mass spectrometry (MS) techniques. A multifaceted MS-based approach has been developed to obtain complementary information on the expression changes of a large array of neuropeptides in the brain and PO. The method employs stable isotope labeling of brain and PO extracts for relative MS quantitation, capillary electrophoresis (CE)-MS for fractionation and high-specificity analysis, and mass spectrometric imaging (MSI) for in-situ molecular mapping of peptides. A number of neuropeptides, including RFamides, B-type allatostatins (AST-B), RYamides, and orcokinins exhibit significant changes in abundance after feeding in this investigation. Peptides from the AST-B family found in PO tissue were shown to have both altered expression and localization changes after feeding, indicating that they may be a class of vital neuropeptide regulators involved in feeding behavior. Graphical Abstract ᅟ.
Majhi, Paresh Kumar; Schnakenburg, Gregor; Streubel, Rainer
2014-11-28
Synthesis of the first P(V)-bridged bis(NHC) ligand 7 was achieved via deprotonation of P(V)-functionalized bis(imidazolium) salt 6, which was obtained via oxidative desulfurization of bis(imidazole-2-thion-4-yl)phosphane 2. Bis(imidazolium) salt 6 was also employed to synthesize the corresponding silver complex 8. All new products were firmly established by spectroscopic and spectrometric methods as well as elemental analysis and, in addition, X-ray crystal structure analysis in the case of 3.
The δ2H and δ18O of tap water from 349 sites in the United States and selected territories
Coplen, Tyler B.; Landwehr, Jurate M.; Qi, Haiping; Lorenz, Jennifer M.
2013-01-01
Because the stable isotopic compositions of hydrogen (δ2H) and oxygen (δ18O) of animal (including human) tissues, such as hair, nail, and urine, reflect the δ2H and δ18O of water and food ingested by an animal or a human and because the δ2H and δ18O of environmental waters vary geographically, δ2H and δ18O values of tap water samples collected in 2007-2008 from 349 sites in the United States and three selected U.S. territories have been measured in support of forensic science applications, creating one of the largest databases of tap water δ2H and δ18O values to date. The results of replicate isotopic measurements for these tap water samples confirm that the expanded uncertainties (U = 2μc) obtained over a period of years by the Reston Stable Isotope Laboratory from δ2H and δ18O dual-inlet mass spectrometric measurements are conservative, at ±2‰ and ±0.2 ‰, respectively. These uncertainties are important because U.S. Geological Survey data may be needed for forensic science applications, including providing evidence in court cases. Half way through the investigation, an isotope-laser spectrometer was acquired, enabling comparison of dual-inlet isotope-ratio mass spectrometric results with isotope-laser spectrometric results. The uncertainty of the laser-based δ2H measurement results for these tap water samples is comparable to the uncertainty of the mass spectrometric method, with the laser-based method having a slightly lower uncertainty. However, the δ18O uncertainty of the laser-based method is more than a factor of ten higher than that of the dual-inlet isotoperatio mass spectrometric method.
Trace element analysis of soil type collected from the Manjung and central Perak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul
2015-04-29
Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. Themore » enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.« less
Multiple Cosmic Sources for Meteorite Macromolecules?
Watson, Jonathan S.; Meredith, William; Love, Gordon D.; Gilmour, Iain; Snape, Colin E.
2015-01-01
Abstract The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here, we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in 13C and a refractory fraction made up of large aromatic units depleted in 13C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound-specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter. Key Words: Abiotic organic synthesis—Carbonaceous chondrite—Cosmochemistry—Meteorites. Astrobiology 15, 779–786. PMID:26418568
Fission product release from fuel under LWR accident conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, M.F.; Lorenz, R.A.; Norwood, K.S.
Three tests have provided additional data on fission product release under LWR accident conditions in a temperature range (1400 to 2000/sup 0/C). In the release rate data are compared with curves from a recent NRC-sponsored review of available fission product release data. Although the iodine release in test HI-3 was inexplicably low, the other data points for Kr, I, and Cs fall reasonably close to the corresponding curve, thereby tending to verify the NRC review. The limited data for antimony and silver release fall below the curves. Results of spark source mass spectrometric analyses were in agreement with the gammamore » spectrometric results. Nonradioactive fission products such as Rb and Br appeared to behave like their chemical analogs Cs and I. Results suggest that Te, Ag, Sn, and Sb are released from the fuel in elemental form. Analysis of the cesium and iodine profiles in the thermal gradient tube indicates that iodine was deposited as CsT along with some other less volatile cesium compound. The cesium profiles and chemical reactivity indicate the presence of more than one cesium species.« less
Sun, Yongjiao; Jia, Lingyun; Huang, Zhanbo; Wang, Jing; Lu, Jincai; Li, Jing
2017-11-01
This study is an attempt to evaluate the hepatoprotective activity of Rubus Crataegifolius against carbon tetrachloride-induced liver injury in mice. 70% ethanolic, ethyl acetate and n-BuOH extract of R. crataegifolius were administered daily for 14 days in experimental animals before they were treated with CCl 4 . The hepatoprotective activity of the extracts in this study was compared with the reference drug silymarin. A high-performance liquid chromatography mass spectrometric (HPLC-EIS-MS/MS) method was developed for the determination of the constituents of the extracts. According to the data of HPLC-EIS-MS/MS, the chemical structures of the largely 14 constituents of R. crataegifolius were identified online without time-consuming isolation. Ethyl acetate extracts of R. crataegifolius showed strong antioxidant activities and significant protective effect against acute hepatotoxicity induced by CCl 4 . According to the data of HPLC-EIS-MS/MS, Oleanic acid, Phlorizin dehydrate and Quercetin-3-rhamnoside are considered as the main hepatoprotective factor in ethyl acetate extract.
Mass spectrometric imaging of red fluorescent protein in breast tumor xenografts.
Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T; Greenwood, Tiffany R; Raman, Venu; Bhujwalla, Zaver M; Heeren, Ron M A; Glunde, Kristine
2013-05-01
Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.
Bonaduce, I; Colombini, M P; Degano, I; Di Girolamo, F; La Nasa, J; Modugno, F; Orsini, S
2013-01-01
The molecular structure of three low-molecular-weight resins used as paint varnishes has been characterized by use of an approach based on three different mass spectrometric techniques. We investigated the ketone resin MS2A, the aldehyde resin Laropal A81, and the hydrocarbon resin Regalrez 1094, now commonly used in restoration. To date, the molecular structures of these resins have not been completely elucidated. To improve current knowledge of the chemical composition of these materials, information obtained by gas chromatography-mass spectrometry (GC/MS), pyrolysis-gas chromatography-mass spectrometry (Py/GC/MS), and electrospray ionization mass spectrometry (ESI-Q-ToF) was combined. Analysis, in solution, of the whole polymeric fraction of the resins by flow-injection ESI-Q-ToF, and of the non-polymeric fraction by GC-MS, enabled us to identify previously unreported features of the polymer structures. In addition, the Py-GC/MS profiles that we obtained will help to enhance the databases currently available in the literature. The proposed approach can be extended to other low-molecular-weight resins used as varnishes in conservation.
Li, Juan; Tao, Shujuan; Orlando, Ron; Murtaugh, Michael P.
2015-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-sense ssRNA virus whose envelope contains four glycoproteins and three nonglycosylated proteins. Glycans of major envelope glycoprotein 5 (GP5) are proposed as important for virus assembly and entry into permissive cells. Structural characterization of GP5 glycans would facilitate the mechanistic understanding of these processes. Thus, we purified the PRRSV type 2 prototype strain, VR2332, and analyzed the virion-associated glycans by both biochemical and mass spectrometric methods. Endoglycosidase digestion showed that GP5 was the primary protein substrate, and that the carbohydrate moieties were primarily complex-type N-glycans. Mass spectrometric analysis (HPLC-ESI-MS/MS) of GP5 N-glycans revealed an abundance of N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc) oligomers in addition to sialic acids. GlcNAc and LacNAc accessibility to ligands was confirmed by lectin co-precipitation. Our findings help to explain PRRSV infection of cells lacking sialoadhesin and provide a glycan database to facilitate molecular structural studies of PRRSV. PMID:25726973
High-accuracy peak picking of proteomics data using wavelet techniques.
Lange, Eva; Gröpl, Clemens; Reinert, Knut; Kohlbacher, Oliver; Hildebrandt, Andreas
2006-01-01
A new peak picking algorithm for the analysis of mass spectrometric (MS) data is presented. It is independent of the underlying machine or ionization method, and is able to resolve highly convoluted and asymmetric signals. The method uses the multiscale nature of spectrometric data by first detecting the mass peaks in the wavelet-transformed signal before a given asymmetric peak function is fitted to the raw data. In an optional third stage, the resulting fit can be further improved using techniques from nonlinear optimization. In contrast to currently established techniques (e.g. SNAP, Apex) our algorithm is able to separate overlapping peaks of multiply charged peptides in ESI-MS data of low resolution. Its improved accuracy with respect to peak positions makes it a valuable preprocessing method for MS-based identification and quantification experiments. The method has been validated on a number of different annotated test cases, where it compares favorably in both runtime and accuracy with currently established techniques. An implementation of the algorithm is freely available in our open source framework OpenMS.
Chen, Dawei; Zhang, Yiping; Miao, Hong; Zhao, Yunfeng; Wu, Yongning
2015-11-11
A novel dispersive micro solid phase extraction (DMSPE) method based on a polymer cation exchange material (PCX) was applied to the simultaneous determination of the 30 triazine herbicides in drinking water with ultrahigh-performance liquid chromatography-high-resolution mass spectrometric detection. Drinking water samples were acidified with formic acid, and then triazines were adsorbed by the PCX sorbent. Subsequently, the analytes were eluted with ammonium hydroxide/acetonitrile. The chromatographic separation was performed on an HSS T3 column using water (4 mM ammonium formate and 0.1% formic acid) and acetonitrile (0.1% formic acid) as the mobile phase. The method achieved LODs of 0.2-30.0 ng/L for the 30 triazines, with recoveries in the range of 70.5-112.1%, and the precision of the method was better than 12.7%. These results indicated that the proposed method had the advantages of convenience and high efficiency when applied to the analysis of the 30 triazines in drinking water.
Newsome, Andrew G.; Nikolic, Dejan
2014-01-01
The Critical Assessment of Small Molecule Identification (CASMI) contest was initiated in 2012 to evaluate manual and automated strategies for the identification of small molecules from raw mass spectrometric data. The authors participated in both category 1 (molecular formula determination) and category 2 (molecular structure determination) of the second annual CASMI contest (CASMI 2013) using slow but effective manual methods. The provided high resolution mass spectrometric data were interpreted manually using a combination of molecular formula calculators, fragment and neutral loss analysis, literature consultation, manual database searches, deductive logic, and experience. The authors submitted correct formulas as lead candidates for 16 of 16 challenges and submitted correct structure solutions as lead candidates for 14 of 16 challenges. One structure submission (Challenge 3) was very close but not exact (N2-acetylglutaminylisoleucinamide instead of the correct N2-acetylglutaminylleucinamide). A solution for one (Challenge 13) was not submitted due to an inability to reconcile the provided fragmentation pattern with any known structures with the provided molecular composition. PMID:26819877
Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A
2015-01-01
Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.
Lee, Heon-Woo; Seo, Ji-Hyung; Choi, Seung-Ki; Lee, Kyung-Tae
2007-01-30
A simple method using a one-step liquid-liquid extraction (LLE) with butyl acetate followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of itopride in human plasma, using sulpiride as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 359.5>166.1 for itopride and m/z 342.3>111.6 for IS, respectively. Analytes were chromatographed on an YMC C18 reverse-phase chromatographic column by isocratic elution with 1 mM ammonium acetate buffer-methanol (20: 80, v/v; pH 4.0 adjusted with acetic acid). Results were linear (r2=0.9999) over the studied range (0.5-1000 ng mL(-1)) with a total analysis time per run of 2 min for LC-MS/MS. The developed method was validated and successfully applied to bioequivalence studies of itopride hydrochloride in healthy male volunteers.
Steingass, Christof Björn; Glock, Mona Pia; Lieb, Veronika Maria; Carle, Reinhold
2017-10-01
Alterations of volatiles during accelerated light-induced ageing of pineapple juice were assessed by HS-SPME-GC-MS in a non-targeted profiling analysis over a 16-week period. Multivariate statistics permitted to reveal substantial chemical markers generally describing the effect of light storage. Volatiles generated comprised phenylpropenes, carbonyls, 2-methylthiophene, toluene, and furfural, while concentrations of methyl and ethyl esters, terpenes, and furanones decreased. In addition, the qualitative composition of phenolic compounds and glycoside-bound volatiles in selected samples was characterized by HPLC-DAD-ESI-MS n as well as HR-ESI-MS. The fresh juice contained unique pineapple metabolites such as S-p-coumaryl, S-coniferyl, S-sinapylglutathione, and structurally related derivatives. Among others, the presence of p-coumaroyl, feruloyl, and caffeoylisocitrate as well as three 4-hydroxy-2,5-dimethyl-3(2H)-furanone glycosides in pineapples could be substantiated by the HR-ESI-MS experiment. Mass spectrometric assignments of selected metabolites are presented, and putative linkages between volatiles and their precursors are established. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kalb, Suzanne R; Barr, John R
2013-08-01
Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A-G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence and immunogenic properties, and some subtypes are further differentiated into toxin variants. Toxin characterization is important as different types of BoNT can respond differently to medical countermeasures for botulism, and characterization of the toxin can aid in epidemiologic and forensic investigations. Proteomic techniques have been established to determine the serotype, subtype, or toxin variant of BoNT. These techniques involve digestion of the toxin into peptides, tandem mass spectrometric (MS/MS) analysis of the peptides, and database searching to identify the BoNT protein. These techniques demonstrate the capability to detect BoNT and its neurotoxin-associated proteins, and differentiate the toxin from other toxins which are up to 99.9% identical in some cases. This differentiation can be accomplished from toxins present in a complex matrix such as stool, food, or bacterial cultures and no DNA is required.
The application of PGNAA borehole logging for copper grade estimation at Chuquicamata mine.
Charbucinski, J; Duran, O; Freraut, R; Heresi, N; Pineyro, I
2004-05-01
The field trials of a prompt gamma neutron activation (PGNAA) spectrometric logging method and instrumentation (SIROLOG) for copper grade estimation in production holes of a porphyry type copper ore mine, Chuquicamata in Chile, are described. Examples of data analysis, calibration procedures and copper grade profiles are provided. The field tests have proved the suitability of the PGNAA logging system for in situ quality control of copper ore.
Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi
2013-01-01
Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424
NASA Astrophysics Data System (ADS)
Slamnoiu, Stefan; Vlad, Camelia; Stumbaum, Mihaela; Moise, Adrian; Lindner, Kathrin; Engel, Nicole; Vilanova, Mar; Diaz, Mireia; Karreman, Christiaan; Leist, Marcel; Ciossek, Thomas; Hengerer, Bastian; Vilaseca, Marta; Przybylski, Michael
2014-08-01
Bioaffinity analysis using a variety of biosensors has become an established tool for detection and quantification of biomolecular interactions. Biosensors, however, are generally limited by the lack of chemical structure information of affinity-bound ligands. On-line bioaffinity-mass spectrometry using a surface-acoustic wave biosensor (SAW-MS) is a new combination providing the simultaneous affinity detection, quantification, and mass spectrometric structural characterization of ligands. We describe here an on-line SAW-MS combination for direct identification and affinity determination, using a new interface for MS of the affinity-isolated ligand eluate. Key element of the SAW-MS combination is a microfluidic interface that integrates affinity-isolation on a gold chip, in-situ sample concentration, and desalting with a microcolumn for MS of the ligand eluate from the biosensor. Suitable MS- acquisition software has been developed that provides coupling of the SAW-MS interface to a Bruker Daltonics ion trap-MS, FTICR-MS, and Waters Synapt-QTOF- MS systems. Applications are presented for mass spectrometric identifications and affinity (KD) determinations of the neurodegenerative polypeptides, ß-amyloid (Aß), and pathophysiological and physiological synucleins (α- and ß-synucleins), two key polypeptide systems for Alzheimer's disease and Parkinson's disease, respectively. Moreover, first in vivo applications of αSyn polypeptides from brain homogenate show the feasibility of on-line affinity-MS to the direct analysis of biological material. These results demonstrate on-line SAW-bioaffinity-MS as a powerful tool for structural and quantitative analysis of biopolymer interactions.
Pappula, Nagaraju; Kodali, Balaji; Datla, Peda Varma
2018-04-15
Highly selective and fast liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for simultaneous determination of tadalafil (TDL) and finasteride (FNS) in human plasma. The method was successfully applied for analysis of TDL and FNS samples in clinical study. The method was validated as per USFDA (United States Food and Drug Administration), EMA (European Medicines Agency), and ANVISA (Agência Nacional de Vigilância Sanitária-Brazil) bio analytical method validation guidelines. Glyburide (GLB) was used as common internal standard (ISTD) for both analytes. The selected multiple reaction monitoring (MRM) transitions for mass spectrometric analysis were m/z 390.2/268.2, m/z 373.3/305.4 and m/z 494.2/369.1 for TDL, FNS and ISTD respectively. The extraction of analytes and ISTD was accomplished by a simple solid phase extraction (SPE) procedure. Rapid analysis time was achieved on Zorbax Eclipse C18 column (50 × 4.6 mm, 5 μm). The calibration ranges for TDL and FNS were 5-800 ng/ml and 0.2-30 ng/ml respectively. The results of precision and accuracy, linearity, recovery and matrix effect of the method are acceptable. The accuracy was in the range of 92.9%-106.4% and method precision was also good; %CV was less than 8.1%. Copyright © 2018 Elsevier B.V. All rights reserved.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.
Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry
Röst, Hannes L.; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
Motivation In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Results Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Availability Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS. PMID:25927999
Zhang, Chongxu; Nielsen, Maria E. O.; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J.; Andersen, Jens S.; Yao, Gang
2013-01-01
Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1’s defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made. PMID:22836166
Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang
2012-09-01
Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.
Lee, Ju Yeon; Kim, Jin Young; Park, Gun Wook; Cheon, Mi Hee; Kwon, Kyung-Hoon; Ahn, Yeong Hee; Moon, Myeong Hee; Lee, Hyoung–Joo; Paik, Young Ki; Yoo, Jong Shin
2011-01-01
A simple mass spectrometric approach for the discovery and validation of biomarkers in human plasma was developed by targeting nonglycosylated tryptic peptides adjacent to glycosylation sites in an N-linked glycoprotein, one of the most important biomarkers for early detection, prognoses, and disease therapies. The discovery and validation of novel biomarkers requires complex sample pretreatment steps, such as depletion of highly abundant proteins, enrichment of desired proteins, or the development of new antibodies. The current study exploited the steric hindrance of glycan units in N-linked glycoproteins, which significantly affects the efficiency of proteolytic digestion if an enzymatically active amino acid is adjacent to the N-linked glycosylation site. Proteolytic digestion then results in quantitatively different peptide products in accordance with the degree of glycosylation. The effect of glycan steric hindrance on tryptic digestion was first demonstrated using alpha-1-acid glycoprotein (AGP) as a model compound versus deglycosylated alpha-1-acid glycoprotein. Second, nonglycosylated tryptic peptide biomarkers, which generally show much higher sensitivity in mass spectrometric analyses than their glycosylated counterparts, were quantified in human hepatocellular carcinoma plasma using a label-free method with no need for N-linked glycoprotein enrichment. Finally, the method was validated using a multiple reaction monitoring analysis, demonstrating that the newly discovered nonglycosylated tryptic peptide targets were present at different levels in normal and hepatocellular carcinoma plasmas. The area under the receiver operating characteristic curve generated through analyses of nonglycosylated tryptic peptide from vitronectin precursor protein was 0.978, the highest observed in a group of patients with hepatocellular carcinoma. This work provides a targeted means of discovering and validating nonglycosylated tryptic peptides as biomarkers in human plasma, without the need for complex enrichment processes or expensive antibody preparations. PMID:21940909
Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen
2013-01-01
Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422
Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).
Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.
2002-01-01
The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.
Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS).
Morelato, Marie; Beavis, Alison; Kirkbride, Paul; Roux, Claude
2013-03-10
Desorption electrospray ionisation mass spectrometry (DESI-MS) is an emerging analytical technique that enables in situ mass spectrometric analysis of specimens under ambient conditions. It has been successfully applied to a large range of forensically relevant materials. This review assesses and highlights forensic applications of DESI-MS including the analysis and detection of illicit drugs, explosives, chemical warfare agents, inks and documents, fingermarks, gunshot residues and drugs of abuse in urine and plasma specimens. The minimal specimen preparation required for analysis and the sensitivity of detection achieved offer great advantages, especially in the field of forensic science. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Focused analyte spray emission apparatus and process for mass spectrometric analysis
Roach, Patrick J [Kennewick, WA; Laskin, Julia [Richland, WA; Laskin, Alexander [Richland, WA
2012-01-17
An apparatus and process are disclosed that deliver an analyte deposited on a substrate to a mass spectrometer that provides for trace analysis of complex organic analytes. Analytes are probed using a small droplet of solvent that is formed at the junction between two capillaries. A supply capillary maintains the droplet of solvent on the substrate; a collection capillary collects analyte desorbed from the surface and emits analyte ions as a focused spray to the inlet of a mass spectrometer for analysis. The invention enables efficient separation of desorption and ionization events, providing enhanced control over transport and ionization of the analyte.
Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V
2016-02-01
A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analytical techniques for identification and study of organic matter in returned lunar samples
NASA Technical Reports Server (NTRS)
Burlingame, A. L.
1974-01-01
The results of geochemical research are reviewed. Emphasis is placed on the contribution of mass spectrometric data to the solution of specific structural problems. Information on the mass spectrometric behavior of compounds of geochemical interest is reviewed and currently available techniques of particular importance to geochemistry, such as gas chromatograph-mass spectrometer coupling, modern sample introduction methods, and computer application in high resolution mass spectrometry, receive particular attention.
Wershaw, R. L.; Rutherford, D.W.; Rostad, C.E.; Garbarino, J.R.; Ferrer, I.; Kennedy, K.R.; Momplaisir, G.-M.; Grange, A.
2003-01-01
The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound. Published by Elsevier Science B.V.
Al-Dulaymi, M; El-Aneed, A
2017-06-01
Diquaternary ammonium gemini surfactants have emerged as effective gene delivery vectors. A novel series of 11 peptide-modified compounds was synthesized, showing promising results in delivering genetic materials. The purpose of this work is to elucidate the tandem mass spectrometric (MS/MS) dissociation behavior of these novel molecules establishing a generalized MS/MS fingerprint. Exact mass measurements were achieved using a hybrid quadrupole orthogonal time-of-flight mass spectrometer, and a multi-stage MS/MS analysis was conducted using a triple quadrupole-linear ion trap mass spectrometer. Both instruments were operated in the positive ionization mode and are equipped with electrospray ionization. Abundant triply charged [M+H] 3+ species were observed in the single-stage analysis of all the evaluated compounds with mass accuracies of less than 8 ppm in mass error. MS/MS analysis showed that the evaluated gemini surfactants exhibited peptide-related dissociation characteristics because of the presence of amino acids within the compounds' spacer region. In particular, diagnostic product ions were originated from the neutral loss of ammonia from the amino acids' side chain resulting in the formation of pipecolic acid at the N-terminus part of the gemini surfactants. In addition, a charge-directed amide bond cleavage was initiated by the amino acids' side chain producing a protonated α-amino-ε-caprolactam ion and its complimentary C-terminus ion that contains quaternary amines. MS/MS and MS 3 analysis revealed common fragmentation behavior among all tested compounds, resulting in the production of a universal MS/MS fragmentation pathway. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
Ong, Ta-Hsuan; Mendum, Ted; Geurtsen, Geoff; Kelley, Jude; Ostrinskaya, Alla; Kunz, Roderick
2017-06-20
Canines remain the gold standard for explosives detection in many situations, and there is an ongoing desire for them to perform at the highest level. This goal requires canine training to be approached similarly to scientific sensor design. Developing a canine training regimen is made challenging by a lack of understanding of the canine's odor environment, which is dynamic and typically contains multiple odorants. Existing methodology assumes that the handler's intention is an adequate surrogate for actual knowledge of the odors cuing the canine, but canines are easily exposed to unintentional explosive odors through training material cross-contamination. A sensitive, real-time (∼1 s) vapor analysis mass spectrometer was developed to provide tools, techniques, and knowledge to better understand, train, and utilize canines. The instrument has a detection library of nine explosives and explosive-related materials consisting of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), pentaerythritol tetranitrate (PETN), triacetone triperoxide (TATP), hexamethylene triperoxide diamine (HMTD), and cyclohexanone, with detection limits in the parts-per-trillion to parts-per-quadrillion range by volume. The instrument can illustrate aspects of vapor plume dynamics, such as detecting plume filaments at a distance. The instrument was deployed to support canine training in the field, detecting cross-contamination among training materials, and developing an evaluation method based on the odor environment. Support for training material production and handling was provided by studying the dynamic headspace of a nonexplosive HMTD training aid that is in development. These results supported existing canine training and identified certain areas that may be improved.
NASA Astrophysics Data System (ADS)
Tulej, Marek; Wiesendanger, Reto; Neuland, Maike; Meyer, Stefan; Wurz, Peter; Neubeck, Anna; Ivarsson, Magnus; Riedo, Valentine; Moreno-Garcia, Pavel; Riedo, Andreas; Knopp, Gregor
2017-04-01
Investigation of elemental and isotope compositions of planetary solids with high spatial resolution are of considerable interest to current space research. Planetary materials are typically highly heterogenous and such studies can deliver detailed chemical information of individual sample components with the sizes down to a few micrometres. The results of such investigations can yield mineralogical surface context including mineralogy of individual grains or the elemental composition of of other objects embedded in the sample surface such as micro-sized fossils. The identification of bio-relevant material can follow by the detection of bio-relevant elements and their isotope fractionation effects [1, 2]. For chemical analysis of heterogenous solid surfaces we have combined a miniature laser ablation mass spectrometer (LMS) (mass resolution (m/Dm) 400-600; dynamic range 105-108) with in situ microscope-camera system (spatial resolution ˜2um, depth 10 um). The microscope helps to find the micrometre-sized solids across the surface sample for the direct mass spectrometric analysis by the LMS instrument. The LMS instrument combines an fs-laser ion source and a miniature reflectron-type time-of-flight mass spectrometer. The mass spectrometric analysis of the selected on the sample surface objects followed after ablation, atomisation and ionisation of the sample by a focussed laser radiation (775 nm, 180 fs, 1 kHz; the spot size of ˜20 um) [4, 5, 6]. Mass spectra of almost all elements (isotopes) present in the investigated location are measured instantaneously. A number of heterogenous rock samples containing micrometre-sized fossils and mineralogical grains were investigated with high selectivity and sensitivity. Chemical analyses of filamentous structures observed in carbonate veins (in harzburgite) and amygdales in pillow basalt lava can be well characterised chemically yielding elemental and isotope composition of these objects [7, 8]. The investigation can be prepared with high selectivity since the host composition is typically readily different comparing to that of the analysed objects. In depth chemical analysis (chemical profiling) is found in particularly helpful allowing relatively easy isolation of the chemical composition of the host from the investigated objects [6]. Hence, both he chemical analysis of the environment and microstructures can be derived. Analysis of the isotope compositions can be measured with high level of confidence, nevertheless, presence of cluster of similar masses can make sometimes this analysis difficult. Based on this work, we are confident that similar studies can be conducted in situ planetary surfaces delivering important chemical context and evidences on bio-relevant processes. [1] Summons et al., Astrobiology, 11, 157, 2011. [2] Wurz et al., Sol. Sys. Res. 46, 408, 2012. [3] Riedo et al., J. Anal. Atom. Spectrom. 28, 1256, 2013. [4] Riedo et al., J. Mass Spectrom.48, 1, 2013. [5] Tulej et al., Geostand. Geoanal. Res., 38, 423, 2014. [6] Grimaudo et al., Anal. Chem. 87, 2041, 2015 [7] Tulej et al., Astrobiology, 15, 1, 2015. [8] Neubeck et al., Int. J. Astrobiology, 15, 133, 2016.
Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.
Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo
2014-01-01
Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.
Role of capillary electrophoresis in the fight against doping in sports.
Harrison, Christopher R
2013-08-06
At present the role of capillary electrophoresis in the detection of doping agents in athletes is, for the most part, nonexistent. More traditional techniques, namely gas and liquid chromatography with mass spectrometric detection, remain the gold standard of antidoping tests. This Feature will investigate the in-roads that capillary electrophoresis has made, the limitations that the technique suffers from, and where the technique may grow into being a key tool for antidoping analysis.
2007-05-01
Signaling Pathway 5b. GRANT NUMBER W81XWH-05-1-0245 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Yi Yan 5e. TASK NUMBER...negative control to identify proteins non-specifically precipitated. Tandem mass spectrometric analysis of immunoprecipitated samples identified a...immunoprecipitated sample and negative control. It is important to note that, SRAP was present among the remaining specifically precipitated 87 proteins. Using the
2007-08-01
of fluorinated amino acid derivatives under Electron Capture Atmospheric Pressure Chemical Ionization (EC APCI) conditions results in far better...Figure 6). Mass spectrometric analyses indicated that at least for the synthetic reference compound, the fluorinated derivative could be determined... fluorinated amino acid derivatives under EC APCI conditions (vide supra) results in far better detection limits, when compared to normal electrospray MS
Automated position control of a surface array relative to a liquid microjunction surface sampler
Van Berkel, Gary J.; Kertesz, Vilmos; Ford, Michael James
2007-11-13
A system and method utilizes an image analysis approach for controlling the probe-to-surface distance of a liquid junction-based surface sampling system for use with mass spectrometric detection. Such an approach enables a hands-free formation of the liquid microjunction used to sample solution composition from the surface and for re-optimization, as necessary, of the microjunction thickness during a surface scan to achieve a fully automated surface sampling system.
THE DETERMINATION OF URANIUM BURNUP IN MWD/TON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rider, B.F.; Russell, J.L. Jr.; Harris, D.W.
The mass-spectrometric and radiochemical methods for the determination of burn-up in nuclear fuel are compared for reliability in the range of 5000 to 15,000 Mwd/ton. Neither appears to be clearly superior to the other. Each appears to have an uncertainty of approximately 6 to 8%. It is concluded that both methods of analysis should be employed where reliability is of great concern. Agreement between both methods is the best possible indication of reliable results. (auth)
Oran, Paul E.; Trenchevska, Olgica; Nedelkov, Dobrin; Borges, Chad R.; Schaab, Matthew R.; Rehder, Douglas S.; Jarvis, Jason W.; Sherma, Nisha D.; Shen, Luhui; Krastins, Bryan; Lopez, Mary F.; Schwenke, Dawn C.; Reaven, Peter D.; Nelson, Randall W.
2014-01-01
Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify the costs of analyses, and robust industrial platforms that are reproducible across laboratories. Presented here is an MS-based quantitative IGF1 assay with performance rating of >1,000 samples/day, and a capability of quantifying IGF1 point mutations and posttranslational modifications. The throughput of the IGF1 mass spectrometric immunoassay (MSIA) benefited from a simplified sample preparation step, IGF1 immunocapture in a tip format, and high-throughput MALDI-TOF MS analysis. The Limit of Detection and Limit of Quantification of the resulting assay were 1.5 μg/L and 5 μg/L, respectively, with intra- and inter-assay precision CVs of less than 10%, and good linearity and recovery characteristics. The IGF1 MSIA was benchmarked against commercially available IGF1 ELISA via Bland-Altman method comparison test, resulting in a slight positive bias of 16%. The IGF1 MSIA was employed in an optimized parallel workflow utilizing two pipetting robots and MALDI-TOF-MS instruments synced into one-hour phases of sample preparation, extraction and MSIA pipette tip elution, MS data collection, and data processing. Using this workflow, high-throughput IGF1 quantification of 1,054 human samples was achieved in approximately 9 hours. This rate of assaying is a significant improvement over existing MS-based IGF1 assays, and is on par with that of the enzyme-based immunoassays. Furthermore, a mutation was detected in ∼1% of the samples (SNP: rs17884626, creating an A→T substitution at position 67 of the IGF1), demonstrating the capability of IGF1 MSIA to detect point mutations and posttranslational modifications. PMID:24664114
[EXPRESS IDENTIFICATION OF POSITIVE BLOOD CULTURES USING DIRECT MALDI-TOF MASS SPECTROMETRY].
Popov, D A; Ovseenko, S T; Vostrikova, T Yu
2015-01-01
To evaluate the effectiveness of direct identification of pathogens of bacteremia by direct matrix assisted laser desorption ionization time-flight mass spectrometry (mALDI-TOF) compared to routine method. A prospective study included 211 positive blood cultures obtained from 116 patients (106 adults and 10 children, aged from 2 weeks to 77 years old in the ICU after open heart surgery. Incubation was carried out under aerobic vials with a sorbent for antibiotics Analyzer BacT/ALERT 3D 120 (bioMerieux, France) in parallel with the primary sieving blood cultures on solid nutrient media with subsequent identification of pure cultures using MALDI-TOF mass spectrometry analyzer Vitek MS, bioMerieux, France routine method), after appropriate sample preparation we carried out a direct (without screening) MALDI-TOF mass spectrometric study of monocomponental blood cultures (n = 201). using a routine method in 211 positive blood cultures we identified 23 types of microorganisms (Staphylococcus (n = 87), Enterobacteria- ceae (n = 71), Enterococci (n = 20), non-fermentative Gram-negative bacteria (n = 18), others (n = 5). The average time of incubation of samples to obtain a signal of a blood culture growth was 16.2 ± 7.4 h (from 3.75 to 51 hours.) During the first 12 hours of incubation, growth was obtained in 32.4% of the samples, and on the first day in 92.2%. In the direct mass spectrometric analysis mnonocomponental blood cultures (n = 201) is well defined up to 153 species of the sample (76.1%), while the share of successful identification of Gram-negative bacteria was higher than that of Gram-positive (85.4 and 69, 1%, respectively p = 0.01). The high degree of consistency in the results of standard and direct method of identifying blood cultures using MALDI-TOF mass spectrometry (κ = 0.96, p < 0.001; the samples included in the calculation for which both option given result). Duration of the direct mass spectrometric analysis, including sample preparation, was no longer than 1 hour: The method of direct MALDI-TOF mass spectrometry allows to significantly speed up the identification of blood cultures that may contribute as much as possible early appointment effective regimes of starting antibiotic therapy.
Mateescu, Cristina; Popescu, Anca Mihaela; Radu, Gabriel Lucian; Onisei, Tatiana; Raducanu, Adina Elena
2017-01-01
Purpose: This study was carried out in order to find a reliable method for the fast detection of adulterated herbal food supplements with sexual enhancement claims. As some herbal products are advertised as "all natural", their "efficiency" is often increased by addition of active pharmaceutical ingredients such as PDE-5 inhibitors, which can be a real health threat for the consumer. Methodes: Adulterants, potentially present in 50 herbal food supplements with sexual improvement claims, were detected using 2 spectroscopic methods - Raman and Fourier Transform Infrared - known for reliability, reproductibility, and an easy sample preparation. GC-MS technique was used to confirm the potential adulterants spectra. Results: About 22% (11 out of 50 samples) of herbal food supplements with sexual enhancement claims analyzed by spectroscopic and spectrometric methods proved to be "enriched" with active pharmaceutical compounds such as: sildenafil and two of its analogues, tadalafil and phenolphthalein. The occurence of phenolphthalein could be the reason for the non-relevant results obtained by FTIR method in some samples. 91% of the adulterated herbal food supplements were originating from China. Conclusion: The results of this screening highlighted the necessity for an accurate analysis of all alleged herbal aphrodisiacs on the Romanian market. This is a first such a screening analysis carried out on herbal food supplements with sexual enhancement claims. PMID:28761827
Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2.
Preisitsch, Michael; Harmrolfs, Kirsten; Pham, Hang T L; Heiden, Stefan E; Füssel, Anna; Wiesner, Christoph; Pretsch, Alexander; Swiatecka-Hagenbruch, Monika; Niedermeyer, Timo H J; Müller, Rolf; Mundt, Sabine
2015-03-01
The methanol extract of the Vietnamese freshwater cyanobacterium Nostoc sp. CAVN2 exhibited cytotoxic effects against MCF-7 and 5637 cancer cell lines as well as against nontumorigenic FL and HaCaT cells and was active against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. High-resolution mass spectrometric analysis indicated the presence of over 60 putative cyclophane-like compounds in an antimicrobially active methanol extract fraction. A paracyclophanes-focusing extraction and separation methodology led to the isolation of 5 new carbamidocyclophanes (1-5) and 11 known paracyclophanes (6-16). The structures and their stereochemical configurations were elucidated by a combination of spectrometric and spectroscopic methods including HRMS, 1D and 2D NMR analyses and detailed comparative CD analysis. The newly described monocarbamoylated [7.7]paracyclophanes (1, 2, 4 and 5) differ by a varying degree of chlorination in the side chains. Carbamidocyclophane J (3) is the very first reported carbamidocyclophane bearing a single halogenation in both butyl residues. Based on previous studies a detailed phylogenetic examination of cyclophane-producing cyanobacteria was carried out. The biological evaluation of 1-16 against various clinical pathogens highlighted a remarkable antimicrobial activity against MRSA with MICs of 0.1-1.0 μM, and indicated that the level of antibacterial activity is related to the presence of carbamoyl moieties.
Gouveia, Sandra C; Castilho, Paula C
2009-12-01
A simple and rapid method has been used for the screening and identification of the main phenolic compounds from Helichrysum devium using high-performance liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection (LC-DAD/ESI-MS(n)). The total aerial parts and different morphological parts of the plant, namely leaves, flowers and stems, were analyzed separately. A total of 34 compounds present in the methanolic extract from Helichrysum devium were identified or tentatively characterized based on their UV and mass spectra and retention times. Three of these compounds were positively identified by comparison with reference standards. The phenolic compounds included derivatives of quinic acid, O-glycosylated flavonoids, a caffeic acid derivative and a protocatechuic acid derivative. The characteristic loss of 206 Da from malonylcaffeoyl quinic acid was used to confirm the malonyl linkage to the caffeoyl group. This contribution presents one of the first reports on the analysis of phenolic compounds from Helichrysum devium using LC-DAD/ESI-MS(n) and highlights the prominence of quinic acid derivatives as the main group of phenolic compounds present in these extracts. We also provide evidence that the methanolic extract from the flowers was significantly more complex when compared to that of other morphological parts. Copyright 2009 John Wiley & Sons, Ltd.
Mateescu, Cristina; Popescu, Anca Mihaela; Radu, Gabriel Lucian; Onisei, Tatiana; Raducanu, Adina Elena
2017-06-01
Purpose: This study was carried out in order to find a reliable method for the fast detection of adulterated herbal food supplements with sexual enhancement claims. As some herbal products are advertised as "all natural", their "efficiency" is often increased by addition of active pharmaceutical ingredients such as PDE-5 inhibitors, which can be a real health threat for the consumer. Methodes: Adulterants, potentially present in 50 herbal food supplements with sexual improvement claims, were detected using 2 spectroscopic methods - Raman and Fourier Transform Infrared - known for reliability, reproductibility, and an easy sample preparation. GC-MS technique was used to confirm the potential adulterants spectra. Results: About 22% (11 out of 50 samples) of herbal food supplements with sexual enhancement claims analyzed by spectroscopic and spectrometric methods proved to be "enriched" with active pharmaceutical compounds such as: sildenafil and two of its analogues, tadalafil and phenolphthalein. The occurence of phenolphthalein could be the reason for the non-relevant results obtained by FTIR method in some samples. 91% of the adulterated herbal food supplements were originating from China. Conclusion: The results of this screening highlighted the necessity for an accurate analysis of all alleged herbal aphrodisiacs on the Romanian market. This is a first such a screening analysis carried out on herbal food supplements with sexual enhancement claims.
A Portable and Autonomous Mass Spectrometric System for On-Site Environmental Gas Analysis.
Brennwald, Matthias S; Schmidt, Mark; Oser, Julian; Kipfer, Rolf
2016-12-20
We developed a portable mass spectrometric system ("miniRuedi") for quantificaton of the partial pressures of He, Ne (in dry gas), Ar, Kr, N 2 , O 2 , CO 2 , and CH 4 in gaseous and aqueous matrices in environmental systems with an analytical uncertainty of 1-3%. The miniRuedi does not require any purification or other preparation of the sampled gases and therefore allows maintenance-free and autonomous operation. The apparatus is most suitable for on-site gas analysis during field work and at remote locations due to its small size (60 cm × 40 cm × 14 cm), low weight (13 kg), and low power consumption (50 W). The gases are continuously sampled and transferred through a capillary pressure reduction system into a vacuum chamber, where they are analyzed using a quadrupole mass spectrometer with a time resolution of ≲1 min. The low gas consumption rate (<0.1 mL/min) minimizes interference with the natural mass balance of gases in environmental systems, and allows the unbiased quantification of dissolved-gas concentrations in water by gas/water equilibration using membrane contractors (gas-equilibrium membrane-inlet mass spectrometry, GE-MIMS). The performance of the miniRuedi is demonstrated in laboratory and field tests, and its utility is illustrated in field applications related to soil-gas formation, lake/atmosphere gas exchange, and seafloor gas emanations.
Müller, Daniel B; Schubert, Olga T; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A
2016-10-01
Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Kaniu, M. I.; Angeyo, K. H.; Darby, I. G.
2018-05-01
Characterized by a variety of rock formations, namely alkaline, igneous and sedimentary that contain significant deposits of monazite and pyrochlore ores, the south coastal region of Kenya may be regarded as highly heterogeneous with regard to its geochemistry, mineralogy as well as geological morphology. The region is one of the several alkaline carbonatite complexes of Kenya that are associated with high natural background radiation and therefore radioactivity anomaly. However, this high background radiation (HBR) anomaly has hardly been systematically assessed and delineated with regard to the spatial, geological, geochemical as well as anthropogenic variability and co-dependencies. We conducted wide-ranging in-situ gamma-ray spectrometric measurements in this area. The goal of the study was to assess the radiation exposure as well as determine the underlying natural radioactivity levels in the region. In this paper we report the occurrence, exploratory analysis and modeling to assess the multivariate geo-dependence and spatial variability of the radioactivity and associated radiation exposure. Unsupervised principal component analysis and ternary plots were utilized in the study. It was observed that areas which exhibit HBR anomalies are located along the south coast paved road and in the Mrima-Kiruku complex. These areas showed a trend towards enhanced levels of 232Th and 238U and low 40K. The spatial variability of the radioactivity anomaly was found to be mainly constrained by anthropogenic activities, underlying geology and geochemical processes in the terrestrial environment.
Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster.
Yu, Kate E; Kim, Do-Hyoung; Kim, Yong-In; Jones, Walton D; Lee, J Eugene
2018-02-28
Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster . From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo . Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.
Photooxidation products of polycyclic aromatic compounds containing sulfur.
Bobinger, Stefan; Andersson, Jan T
2009-11-01
Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.
Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell
2014-01-01
Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823
Raftery, Mark J; Saldanha, Rohit G; Geczy, Carolyn L; Kumar, Rakesh K
2003-01-01
Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis), rye grass (Lolium perenne) and Bermuda grass (Cynodon dactylon) were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense) group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1. PMID:14577842
Shou, Wilson Z; Naidong, Weng
2003-01-01
It has become increasingly popular in drug development to conduct discovery pharmacokinetic (PK) studies in order to evaluate important PK parameters of new chemical entities (NCEs) early in the discovery process. In these studies, dosing vehicles are typically employed in high concentrations to dissolve the test compounds in dose formulations. This can pose significant problems for the liquid chromatography/tandem mass spectrometric (LC/MS/MS) analysis of incurred samples due to potential signal suppression of the analytes caused by the vehicles. In this paper, model test compounds in rat plasma were analyzed using a generic fast gradient LC/MS/MS method. Commonly used dosing vehicles, including poly(ethylene glycol) 400 (PEG 400), polysorbate 80 (Tween 80), hydroxypropyl beta-cyclodextrin, and N,N-dimethylacetamide, were fortified into rat plasma at 5 mg/mL before extraction. Their effects on the sample analysis results were evaluated by the method of post-column infusion. Results thus obtained indicated that polymeric vehicles such as PEG 400 and Tween 80 caused significant suppression (> 50%, compared with results obtained from plasma samples free from vehicles) to certain analytes, when minimum sample cleanup was used and the analytes happened to co-elute with the vehicles. Effective means to minimize this 'dosing vehicle effect' included better chromatographic separations, better sample cleanup, and alternative ionization methods. Finally, a real-world example is given to illustrate the suppression problem posed by high levels of PEG 400 in sample analysis, and to discuss steps taken in overcoming the problem. A simple but effective means of identifying a 'dosing vehicle effect' is also proposed. Copyright 2003 John Wiley & Sons, Ltd.
Urinary Amino Acid Analysis: A Comparison of iTRAQ®-LC-MS/MS, GC-MS, and Amino Acid Analyzer
Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L.; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J.
2009-01-01
Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ® derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ® tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ®-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27±5.22, 21.18±10.94, and 18.34±14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39±5.35, 6.23±3.84, and 35.37±29.42. Both GC-MS and iTRAQ®-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines. PMID:19481989
Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer.
Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J
2009-07-01
Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27+/-5.22, 21.18+/-10.94, and 18.34+/-14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39+/-5.35, 6.23+/-3.84, and 35.37+/-29.42. Both GC-MS and iTRAQ-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.
Kobayashi, Ryuji; Patenia, Rebecca; Ashizawa, Satoshi; Vykoukal, Jody
2009-07-21
Alternative translation initiation is a mechanism whereby functionally altered proteins are produced from a single mRNA. Internal initiation of translation generates N-terminally truncated protein isoforms, but such isoforms observed in immunoblot analysis are often overlooked or dismissed as degradation products. We identified an N-terminally truncated isoform of human Dok-1 with N-terminal acetylation as seen in the wild-type. This Dok-1 isoform exhibited distinct perinuclear localization whereas the wild-type protein was distributed throughout the cytoplasm. Targeted analysis of blocked N-terminal peptides provides rapid identification of protein isoforms and could be widely applied for the general evaluation of perplexing immunoblot bands.
Ito, Shinya; Tsukada, Katsuo
2002-01-11
An evaluation of the feasibility of liquid chromatography-mass spectrometry (LC-MS) with atmospheric pressure ionization was made for quantitation of four diarrhetic shellfish poisoning toxins, okadaic acid, dinophysistoxin-1, pectenotoxin-6 and yessotoxin in scallops. When LC-MS was applied to the analysis of scallop extracts, large signal suppressions were observed due to coeluting substances from the column. To compensate for these matrix signal suppressions, the standard addition method was applied. First, the sample was analyzed and then the sample involving the addition of calibration standards is analyzed. Although this method requires two LC-MS runs per analysis, effective correction of quantitative errors was found.
Malá, Zdena; Gebauer, Petr
2017-10-06
Capillary isotachophoresis (ITP) is an electrophoretic technique offering high sensitivity due to permanent stacking of the migrating analytes. Its combination with electrospray-ionization mass-spectrometric (ESI-MS) detection is limited by the narrow spectrum of ESI-compatible components but can be compensated by experienced system architecture. This work describes a methodology for sensitive analysis of hydroxyderivatives of s-triazine herbicides, based on implementation of the concepts of moving-boundary isotachophoresis and of H + as essential terminating component into cationic ITP with ESI-MS detection. Theoretical description of such kind of system is given and equations for zone-related boundary mobilities are derived, resulting in a much more general definition of the effective mobility of the terminating H + zone than used so far. Explicit equations allowing direct calculation for selected simple systems are derived. The presented theory allows prediction of stacking properties of particular systems and easy selection of suitable electrolyte setups. A simple ESI-compatible system composed of acetic acid and ammonium with H + and ammonium as a mixed terminator was selected for the analysis of 2-hydroxyatrazine and 2-hydroxyterbutylazine, degradation products of s-triazine herbicides. The proposed method was tested with direct injection without any sample pretreatment and provided excellent linearity and high sensitivity with limits of detection below 100ng/L (0.5nM). Example analyses of unspiked and spiked drinking and river water are shown. Copyright © 2017 Elsevier B.V. All rights reserved.
Zaman, Uzma; Richter, Florian M.; Hofele, Romina; Kramer, Katharina; Sachsenberg, Timo; Kohlbacher, Oliver; Lenz, Christof; Urlaub, Henning
2015-01-01
Protein–RNA cross-linking by UV irradiation at 254 nm wavelength has been established as an unbiased method to identify proteins in direct contact with RNA, and has been successfully applied to investigate the spatial arrangement of protein and RNA in large macromolecular assemblies, e.g. ribonucleoprotein-complex particles (RNPs). The mass spectrometric analysis of such peptide-RNA cross-links provides high resolution structural data to the point of mapping protein–RNA interactions to specific peptides or even amino acids. However, the approach suffers from the low yield of cross-linking products, which can be addressed by improving enrichment and analysis methods. In the present article, we introduce dithiothreitol (DTT) as a potent protein–RNA cross-linker. In order to evaluate the efficiency and specificity of DTT, we used two systems, a small synthetic peptide from smB protein incubated with U1 snRNA oligonucleotide and native ribonucleoprotein complexes from S. cerevisiae. Our results unambiguously show that DTT covalently participates in cysteine-uracil crosslinks, which is observable as a mass increment of 151.9966 Da (C4H8S2O2) upon mass spectrometric analysis. DTT presents advantages for cross-linking of cysteine containing regions of proteins. This is evidenced by comparison to experiments where (tris(2-carboxyethyl)phosphine) is used as reducing agent, and significantly less cross-links encompassing cysteine residues are found. We further propose insertion of DTT between the cysteine and uracil reactive sites as the most probable structure of the cross-linking products. PMID:26450613
Other notable protein blotting methods: a brief review.
Kurien, Biji T; Scofield, R Hal
2015-01-01
Proteins have been transferred from the gel to the membrane by a variety of methods. These include vacuum blotting, centrifuge blotting, electroblotting of proteins to Teflon tape and membranes for N- and C-terminal sequence analysis, multiple tissue blotting, a two-step transfer of low- and high-molecular-weight proteins, acid electroblotting onto activated glass, membrane-array method for the detection of human intestinal bacteria in fecal samples, protein microarray using a new black cellulose nitrate support, electrotransfer using square wave alternating voltage for enhanced protein recovery, polyethylene glycol-mediated significant enhancement of the immunoblotting transfer, parallel protein chemical processing before and during western blot and the molecular scanner concept, electronic western blot of matrix-assisted laser desorption/ionization mass spectrometric-identified polypeptides from parallel processed gel-separated proteins, semidry electroblotting of peptides and proteins from acid-urea polyacrylamide gels, transfer of silver-stained proteins from polyacrylamide gels to polyvinylidene difluoride (PVDF) membranes, and the display of K(+) channel proteins on a solid nitrocellulose support for assaying toxin binding. The quantification of proteins bound to PVDF membranes by elution of CBB, clarification of immunoblots on PVDF for transmission densitometry, gold coating of nonconductive membranes before matrix-assisted laser desorption/ionization tandem mass spectrometric analysis to prevent charging effect for analysis of peptides from PVDF membranes, and a simple method for coating native polysaccharides onto nitrocellulose are some of the methods involving either the manipulation of membranes with transferred proteins or just a passive transfer of antigens to membranes. All these methods are briefly reviewed in this chapter.
Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing
2008-02-01
Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.
Zakaria, Rosita; Allen, Katrina J; Koplin, Jennifer J; Roche, Peter; Greaves, Ronda F
2016-12-01
Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; "blood spot" and "mass spectrometry"; while excluding "newborn"; and "neonate". In addition, databases were restricted to English language and human specific. There was no time period limit applied. As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required.
Würtinger, Philipp; Oberacher, Herbert
2012-01-01
MSforID represents a database of tandem mass spectral data obtained from (quasi-)molecular ions produced by atmospheric pressure ionization methods. At the current stage of development the library contains 12 122 spectra of 1208 small (bio-)organic molecules. The present work was aimed to evaluate the performance of the MSforID library in terms of accuracy and transferability with a collection of fragment ion mass spectra from various compounds acquired on multiple instruments. A literature survey was conducted to collect the set of sample spectra. A total number of 554 spectra covering 291 compounds were extracted from 109 publications. The majority of spectra originated from publications on applications of LC/MS/MS in drug monitoring, pharmacokinetics, environmental analysis, forensic analysis as well as food analysis. Almost all types of tandem mass spectrometric instruments distributed by the five most important instrument vendors were included in the study. The overall sensitivity of library search was found to be 96.4%, which clearly proves that the MSforID library can successfully handle data from a huge variety of mass spectrometric instruments to allow accurate compound identification. Only for spectra containing three or more fragment ions, however, the rate of classified matches (= matches with a relative average match probability (ramp) score > 40.0) was 95%. Ambiguous or unclassified results were mainly obtained for searches with single precursor-to-fragment ion transitions due to the insufficient specificity of such a low amount of structural information to unequivocally define a single compound. Copyright © 2011 John Wiley & Sons, Ltd.
Aging and behavior of functional TiO2 nanoparticles in aqueous environment.
Lu, Huiting; Dong, Haifeng; Fan, Wenhong; Zuo, Jinxing; Li, Xiaomin
2017-03-05
Nanoparticles are usually functionalized with various surface capping moieties in practical applications. Understand the behavior and fate of them is critical to evaluate or even predict their risk to environment. However, little attention has been denoted on this issue until now. Using three commercial TiO 2 nanoparticles with different capping moieties, their aging procedures and corresponding change as well as their byproducts were systematically studied. Comprehensive microscopic and spectrometric measurements demonstrated a capping agent-dependent with the aging procedure. All the aging agents exhibited sharp change in morphologies compared to the fresh counterparts. The degraded degree and surface properties including surface charge and hydrophobicity of the functional TiO 2 nanoparticles were varied depended on the capping moieties. Furthermore, the behaviors of these byproducts in various background media had also been investigated. Contrastively, environment factors such as pH, electrolyte valence, and humic acid regardless of capping moieties govern the behavior of these byproducts, despite of the capping moieties slightly affect the point of zero charge. This study highlights the influence of the capping moieties and environmental factors to the transformation progress of functional nanomaterials in environment exposure, which contributes to design and assess the environmental risk of other analogous functional nanoparticles in practical application. Copyright © 2016 Elsevier B.V. All rights reserved.
2012-08-01
separated on 12% SDS PAGE gels and transferred to nitrocellulose membranes. After blocking with 5% non- fat milk (Labscientific, Inc) in TBS-Tween buffer... Raw mass spectrometric data were processed and analyzed for variations in the spectral counts of peptides between sample sets and bioinformatics was...accomplished using Ingenuity Pathways Analysis (IPA). Results: The total numbers of proteins and peptides identified are listed in the table
Analysis of Low-Pressure Gas-Phase Pyrolytic Reactions by Mass Spectrometric Techniques,
1989-01-01
temperatures and pressures known only as a polymeric substance, is similarly obtained in high purity by heating the polymer to its melting point (105-110’ C...filaments for Curie- point pyrolysis’ J.Anal.Appl.Pyrolysis. 5 (1983) 1-7 (with Helge Egsgaard) 4) ’Heterogeneous catalysis in gas phase reactions studied...by Curie- point pyrolysis. Gas phase pyrolysis of methyl dithio- acetat’ J.Anal.Appl.Pyrolysis. 5 (1983) 257-259 (with Helge Egsgaard) 5) ’Continuous
Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters
Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.
1977-01-01
The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.
2011-01-01
Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform. PMID:21247462
Spectrometric Characterization of Active Geosynchronous Satellites
NASA Astrophysics Data System (ADS)
Bedard, D.; Monin, D.; Scott, R.; Wade, G.
2012-09-01
Spectrometric characterization of artificial space objects for the purposes of Space Situational Awareness (SSA) has demonstrated great potential since this technique was first reported at this conference over a decade ago. Yet, much scientific work remains to be done before this tool can be used reliably in an operational context. For example, a detailed study of the impacts of a dynamic illumination-object-sensor geometry during individual spectrometric observations has yet to be described. A thorough understanding of this last problem is considered critical if reflectance spectroscopy will be used to characterize active low Earth orbiting spacecraft, in which the Sun-object-sensor geometry varies considerably over the course of a few seconds, or to study space debris that have uncontrolled and varying attitude. It is with the above questions in mind that two observation campaigns were conducted. The first consisted in using small-aperture telescopes to obtain multi-color photometric light curves of active geosynchronous satellites over a wide range of phase angles. The second observation campaign was conducted at the Dominion Astrophysical Observatory (DAO) using the 1.8-metre Plaskett telescope and its Cassegrain spectrograph. The objective of this experiment was to gather time-resolved spectrometric measurements of active geosynchronous satellites as a function of phase angle. This class of satellites was selected because their attitude is controlled and can be estimated to a high level of confidence. This paper presents the two observation campaigns and provides a summary of the key results of this experiment.
Croley, Timothy R; White, Kevin D; Wong, Jon; Callahan, John H; Musser, Steven M; Antler, Margaret; Lashin, Vitaly; McGibbon, Graham A
2013-03-01
Increasing importation of food and the diversity of potential contaminants have necessitated more analytical testing of these foods. Historically, mass spectrometric methods for testing foods were confined to monitoring selected ions (SIM or MRM), achieving sensitivity by focusing on targeted ion signals. A limiting factor in this approach is that any contaminants not included on the target list are not typically identified and retrospective data mining is limited. A potential solution is to utilize high-resolution MS to acquire accurate mass full-scan data. Based on the instrumental resolution, these data can be correlated to the actual mass of a contaminant, which would allow for identification of both target compounds and compounds that are not on a target list (nontargets). The focus of this research was to develop software algorithms to provide rapid and accurate data processing of LC/MS data to identify both targeted and nontargeted analytes. Software from a commercial vendor was developed to process LC/MS data and the results were compared to an alternate, vendor-supplied solution. The commercial software performed well and demonstrated the potential for a fully automated processing solution. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim; ...
2018-02-20
Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim
Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less
Takino, Masahiko; Daishima, Shigeki; Nakahara, Taketoshi
2003-01-01
This paper describes a comparison between atmospheric pressure chemical ionization (APCI) and the recently introduced atmospheric pressure photoionization (APPI) technique for the liquid chromatography/mass spectrometric (LC/MS) determination of patulin in clear apple juice. A column switching technique for on-line extraction of clear apple juice was developed. The parameters investigated for the optimization of APPI were the ion source parameters fragmentor voltage, capillary voltage, and vaporizer temperature, and also mobile phase composition and flow rate. Furthermore, chemical noise and signal suppression of analyte signals due to sample matrix interference were investigated for both APCI and APPI. The results indicated that APPI provides lower chemical noise and signal suppression in comparison with APCI. The linear range for patulin in apple juice (correlation coefficient >0.999) was 0.2-100 ng mL(-1). Mean recoveries of patulin in three apple juices ranged from 94.5 to 103.2%, and the limit of detection (S/N = 3), repeatability and reproducibility were 1.03-1.50 ng mL(-1), 3.9-5.1% and 7.3-8.2%, respectively. The total analysis time was 10.0 min. Copyright 2003 John Wiley & Sons, Ltd.
von Bargen, Christoph; Dojahn, Jörg; Waidelich, Dietmar; Humpf, Hans-Ulrich; Brockmeyer, Jens
2013-12-11
The accidental or fraudulent blending of meat from different species is a highly relevant aspect for food product quality control, especially for consumers with ethical concerns against species, such as horse or pork. In this study, we present a sensitive mass spectrometrical approach for the detection of trace contaminations of horse meat and pork and demonstrate the specificity of the identified biomarker peptides against chicken, lamb, and beef. Biomarker peptides were identified by a shotgun proteomic approach using tryptic digests of protein extracts and were verified by the analysis of 21 different meat samples from the 5 species included in this study. For the most sensitive peptides, a multiple reaction monitoring (MRM) method was developed that allows for the detection of 0.55% horse or pork in a beef matrix. To enhance sensitivity, we applied MRM(3) experiments and were able to detect down to 0.13% pork contamination in beef. To the best of our knowledge, we present here the first rapid and sensitive mass spectrometrical method for the detection of horse and pork by use of MRM and MRM(3).
Lijia, Xu; Guo, Jianru; Chen, QianQian; Baoping, Jiang; Zhang, Wei
2014-06-01
A sensitive and selective ultra high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) method for the determination of phlorizin and phloretin in human plasma has been firstly developed. Samples were prepared after protein precipitation and analyzed on a C18 column interfaced with a triple quadrupole tandem mass spectrometer. Negative electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile-water (0.02% formic acid), using a gradient procedure. The analytes and internal standard dihydroquercetin were both detected by use of multiple reaction monitoring mode. The method was linear in the concentration range of 2.5-1000.0 ng/mL. The lower limit of quantification (LLOQ) was 2.5 ng/mL. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 9.2%. The accuracy determined at three concentrations was within ± 7.3% in terms of relative error. The total run time was 12.0 min. This assay offers advantages in terms of expediency, and suitability for the analysis of phlorizin and phloretin in various biological fluids. Copyright © 2014 Elsevier B.V. All rights reserved.
Meng, Xiaoli; Jenkins, Rosalind E.; Berry, Neil G.; Maggs, James L.; Farrell, John; Lane, Catherine S.; Stachulski, Andrew V.; French, Neil S.; Naisbitt, Dean J.; Pirmohamed, Munir
2011-01-01
Covalent binding to proteins to form neoantigens is thought to be central to the pathogenesis of penicillin hypersensitivity reactions. We have undertaken detailed mass spectrometric studies to define the mechanism and protein chemistry of hapten formation from benzylpenicillin (BP) and its rearrangement product, benzylpenicillenic acid (PA). Mass spectrometric analysis of human serum albumin exposed to BP and PA in vitro revealed that at low concentrations (drug protein molar ratio 0.001:1) and during short time incubations BP and PA selectively target different residues, Lys199 and Lys525, respectively. Molecular modeling showed that the selectivity was a function of noncovalent interaction before covalent modification. With increased exposure to higher concentrations of BP and PA, multiple epitopes were detected on albumin, demonstrating that the multiplicity of hapten formation is a function of time and concentration. More importantly, we have demonstrated direct evidence that PA is a hapten accounting for the diastereoisomeric BP antigen formation in albumin isolated from the blood of patients receiving penicillin. Furthermore, PA was found to be more potent than BP with respect to stimulation of T cells from patients with penicillin hypersensitivity, illustrating the functional relevance of diastereoisomeric hapten formation. PMID:21680886
Mandal, Amit Kumar; Ramasamy, Mani Ramakrishnan Santhana; Sabareesh, Varatharajan; Openshaw, Matthew E; Krishnan, Kozhalmannom S; Balaram, Padmanabhan
2007-08-01
De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH(2), and Vi1361, ZCCPTMPECCRI-NH(2), which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation of w(n)- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Chatterjee, Amarnath; Khedkar, Anand P.; Kusumanchi, Mutyalasetty; Adhikary, Laxmi
2013-02-01
Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.
Abidi, S.L.; Ha, S.C.; Rosen, R.T.
1990-01-01
Reversed-phase high-performance liquid chromatography—thermospray mass spectrometric (HPLC—MS) characteristics of four sets of lactonic complexes (one 4-butyrolactones and three dilactone complexes) derived from antimycin A were investigated. Three types of 8-hydroxy analogues were also included in the study. Pairs of a–b structures isomeric at the 8-acyloxy ester side-chains were best separated with a high-efficiency octadecylsilica column prior to analysis by HPLC—MS. Mass spectra of the a–b pairs each with identical molecular weights exhibited virtually indistinguishable fragmentation patterns, although their relative intensities were not superimposable. In some cases, HPLC—MS of the title compounds yielded mass chromatograms showing the minor components more easily recognizable than the HPLC—UV counter parts because of the apparent higher ionization efficiency of the minor isomers and increased resolution of subcomponents in the MS system. Under the mobile phase conditions employed, analyte ionization occurred with variable degrees of gas phase ammonolysis depending upon the ammonia concentration of the buffer. Potential applicability of the on-line HPLC—MS technique for the characterization of components in mixtures of antimycin analogues and isomers is demonstrated.
The wind of the M-type AGB star RT Virginis probed by VLTI/MIDI
NASA Astrophysics Data System (ADS)
Sacuto, S.; Ramstedt, S.; Höfner, S.; Olofsson, H.; Bladh, S.; Eriksson, K.; Aringer, B.; Klotz, D.; Maercker, M.
2013-03-01
Aims: We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical prediction that the winds of M-type AGB objects can be driven by photon scattering on iron-free silicate grains located in the close environment (about 2 to 3 stellar radii) of the star. Methods: We interpreted spectro-interferometric data, first using wavelength-dependent geometric models. We then used a self-consistent dynamic model atmosphere containing a time-dependent description of grain growth for pure forsterite dust particles to reproduce the photometric, spectrometric, and interferometric measurements of RT Vir. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort was first made to determine these parameters. Results: MIDI differential phases reveal the presence of an asymmetry in the stellar vicinity. Results from the geometrical modeling give us clues to the presence of aluminum and silicate dust in the close circumstellar environment (<5 stellar radii). Comparison between spectro-interferometric data and a self-consistent dust-driven wind model reveals that silicate dust has to be present in the region between 2 to 3 stellar radii to reproduce the 59 and 63 m baseline visibility measurements around 9.8 μm. This gives additional observational evidence in favor of winds driven by photon scattering on iron-free silicate grains located in the close vicinity of an M-type star. However, other sources of opacity are clearly missing to reproduce the 10-13 μm visibility measurements for all baselines. Conclusions: This study is a first attempt to understand the wind mechanism of M-type AGB stars by comparing photometric, spectrometric, and interferometric measurements with state-of-the-art, self-consistent dust-driven wind models. The agreement of the dynamic model atmosphere with interferometric measurements in the 8-10 μm spectral region gives additional observational evidence that the winds of M-type stars can be driven by photon scattering on iron-free silicate grains. Finally, a larger statistical study and progress in advanced self-consistent 3D modeling are still required to solve the remaining problems. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 083.D-0234 and 086.D-0737 (Open Time Observations).
Hoffmann, William D.; Kertesz, Vilmos; Srijanto, Bernadeta R.; ...
2017-02-20
The use of atomic force microscopy controlled nano-thermal analysis probes for reproducible spatially resolved thermally-assisted sampling of micrometer-sized areas (ca. 11 m 17 m wide 2.4 m deep) from relatively low number average molecular weight (M n < 3000) polydisperse thin films of poly(2-vinylpyridine) (P2VP) is presented. Following sampling, the nano-thermal analysis probes were moved up from the surface and the probe temperature ramped to liberate the sampled materials into the gas phase for atmospheric pressure chemical ionization and mass spectrometric analysis. Furthermore, the procedure and mechanism for material pickup, the sampling reproducibility and sampling size are discussed and themore » oligomer distribution information available from slow temperature ramps versus ballistic temperature jumps is presented. For the M n = 970 P2VP, the Mn and polydispersity index determined from the mass spectrometric data were in line with both the label values from the sample supplier and the value calculated from the simple infusion of a solution of polymer into the commercial atmospheric pressure chemical ionization source on this mass spectrometer. With a P2VP sample of higher Mn (M n = 2070 and 2970), intact oligomers were still observed (as high as m/z 2793 corresponding to the 26-mer), but a significant abundance of thermolysis products were also observed. In addition, the capability for confident identification of the individual oligomers by slowly ramping the probe temperature and collecting data dependent tandem mass spectra was also demonstrated. We also discuss the material type limits to the current sampling and analysis approach as well as possible improvements in nano-thermal analysis probe design to enable smaller area sampling and to enable controlled temperature ramps beyond the present upper limit of about 415°C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, William D.; Kertesz, Vilmos; Srijanto, Bernadeta R.
The use of atomic force microscopy controlled nano-thermal analysis probes for reproducible spatially resolved thermally-assisted sampling of micrometer-sized areas (ca. 11 m 17 m wide 2.4 m deep) from relatively low number average molecular weight (M n < 3000) polydisperse thin films of poly(2-vinylpyridine) (P2VP) is presented. Following sampling, the nano-thermal analysis probes were moved up from the surface and the probe temperature ramped to liberate the sampled materials into the gas phase for atmospheric pressure chemical ionization and mass spectrometric analysis. Furthermore, the procedure and mechanism for material pickup, the sampling reproducibility and sampling size are discussed and themore » oligomer distribution information available from slow temperature ramps versus ballistic temperature jumps is presented. For the M n = 970 P2VP, the Mn and polydispersity index determined from the mass spectrometric data were in line with both the label values from the sample supplier and the value calculated from the simple infusion of a solution of polymer into the commercial atmospheric pressure chemical ionization source on this mass spectrometer. With a P2VP sample of higher Mn (M n = 2070 and 2970), intact oligomers were still observed (as high as m/z 2793 corresponding to the 26-mer), but a significant abundance of thermolysis products were also observed. In addition, the capability for confident identification of the individual oligomers by slowly ramping the probe temperature and collecting data dependent tandem mass spectra was also demonstrated. We also discuss the material type limits to the current sampling and analysis approach as well as possible improvements in nano-thermal analysis probe design to enable smaller area sampling and to enable controlled temperature ramps beyond the present upper limit of about 415°C.« less
1986-09-01
analysis ’" methods in environmental samples. The hepatotoxins from laboratory cultures of M. aeruginosa Strain 7820,15 Anabena flos- aguae (A. 4flos...flos- aguae S-23-g-1l (8 lug) F1 The results from the amino acid analysis using the Llqui-Mat Analyzer are listed in Table 2. The elution times of the...Runnegar, M.T.C., and Huynh, V.L. Effec- tiveness of Activated Carbon in the Removal of Algal Toxin from Potable Water Supplies: A Pilot Plant
The life sciences mass spectrometry research unit.
Hopfgartner, Gérard; Varesio, Emmanuel
2012-01-01
The Life Sciences Mass Spectrometry (LSMS) research unit focuses on the development of novel analytical workflows based on innovative mass spectrometric and software tools for the analysis of low molecular weight compounds, peptides and proteins in complex biological matrices. The present article summarizes some of the recent work of the unit: i) the application of matrix-assisted laser desorption/ionization (MALDI) for mass spectrometry imaging (MSI) of drug of abuse in hair, ii) the use of high resolution mass spectrometry for simultaneous qualitative/quantitative analysis in drug metabolism and metabolomics, and iii) the absolute quantitation of proteins by mass spectrometry using the selected reaction monitoring mode.
Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry
Morris, Howard R.; Williams, Dudley H.; Ambler, Richard P.
1971-01-01
Micro-quantities of protein-derived peptides have been converted into N-acetylated permethyl derivatives, and their sequences determined by low-resolution mass spectrometry without prior knowledge of their amino acid compositions or lengths. A new strategy is suggested for the mass spectrometric sequencing of oligopeptides or proteins, involving gel filtration of protein hydrolysates and subsequent sequence analysis of peptide mixtures. Finally, results are given that demonstrate for the first time the use of mass spectrometry for the analysis of a protein-derived peptide mixture, again without prior knowledge of the protein or components within the mixture. PMID:5158904
Du, Lijuan; Lu, Weiying; Cai, Zhenzhen Julia; Bao, Lei; Hartmann, Christoph; Gao, Boyan; Yu, Liangli Lucy
2018-02-01
Flow injection mass spectrometry (FIMS) combined with chemometrics was evaluated for rapidly detecting economically motivated adulteration (EMA) of milk. Twenty-two pure milk and thirty-five counterparts adulterated with soybean, pea, and whey protein isolates at 0.5, 1, 3, 5, and 10% (w/w) levels were analyzed. The principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and support vector machine (SVM) classification models indicated that the adulterated milks could successfully be classified from the pure milks. FIMS combined with chemometrics might be an effective method to detect possible EMA in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Haug, P.; Schnoes, H. K.; Burlingame, A. L.
1971-01-01
Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.
Gates, Paul M.; Furlong, E.T.; Dorsey, T.F.; Burkhardt, M.R.
1996-01-01
Mass spectrometry and tandem mass spectrometry, coupled by a thermospray interface to a high-performance liguid chromatography system and equipped with a photodiode array detector, were used to determine the presence of nitroaromatic explosives and their degradation products in USA unsaturated-zone water samples. Using this approach, the lower limits of quantitation for explosives determined by mass spectrometry in this study typically ranged from 10 to 100 ng/l.
Siddiqui, Masoom Raza; Wabaidur, Saikh Mohammad; Khan, Moonis Ali; ALOthman, Zeid A; Rafiquee, M Z A; Alqadami, Ayoub Abdullah
2018-01-01
Quantitative assessment of nitrite (NO 2 - ) anion was performed using a newly developed high throughput ultra performance liquid chromatography-mass spectrometric (UPLC-MS) method. The nitrite determination with the proposed method using micellar mobile phase was unknown. Selected ion reaction mode using negative electrospray ionization was adopted for the identification and quantitative analysis of nitrite. The chromatographic separation was performed using BEH C-18 column and a micellar mobile phase consisted of sodium dodecyl sulphate and acetonitrile in ratio 30:70 was used. The elution of nitrite anion was accomplished in less than 1 min. Under the optimal analysis conditions, the linearity of the developed method was checked in the concentration range of 0.5-20 mg kg -1 NO 2 - with an excellent correlation coefficient of 0.996. The precisions of the method with relative standard deviation <2% was observed when standard at concentration of 1 mg kg -1 was used. The limit of detection and limit of quantitation of the developed mass spectrometric method was found to be 0.114 and 0.346 mg kg -1 , respectively. The developed UPLC/MS method was applied to quantify this anion in processed meats and poultries from various super market of Saudi Arabia (Riyadh region). The recoveries of the nitrite in the various samples were found in the range of 100.03-103.5%.
Qin, Yuhong; Zhang, Jingru; Zhang, Yuan; Li, Fangbing; Han, Yongtao; Zou, Nan; Xu, Haowei; Qian, Meiyuan; Pan, Canping
2016-09-02
An automated multi-plug filtration cleanup (m-PFC) method on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. The automatic device was aimed to reduce labor-consuming manual operation workload in the cleanup steps. It could control the volume and the speed of pulling and pushing cycles accurately. In this work, m-PFC was based on multi-walled carbon nanotubes (MWCNTs) mixed with other sorbents and anhydrous magnesium sulfate (MgSO4) in a packed tip for analysis of pesticide multi-residues in crop commodities followed by liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection. It was validated by analyzing 25 pesticides in six representative matrices spiked at two concentration levels of 10 and 100μg/kg. Salts, sorbents, m-PFC procedure, automated pulling and pushing volume, automated pulling speed, and pushing speed for each matrix were optimized. After optimization, two general automated m-PFC methods were introduced to relatively simple (apple, citrus fruit, peanut) and relatively complex (spinach, leek, green tea) matrices. Spike recoveries were within 83 and 108% and 1-14% RSD for most analytes in the tested matrices. Matrix-matched calibrations were performed with the coefficients of determination >0.997 between concentration levels of 10 and 1000μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation.
Mirza, Munazza Raza; Rainer, Matthias; Güzel, Yüksel; Choudhary, Iqbal M; Bonn, Günther K
2012-08-01
Reversible phosphorylation of proteins is a common theme in the regulation of important cellular functions such as growth, metabolism, and differentiation. The comprehensive understanding of biological processes requires the characterization of protein phosphorylation at the molecular level. Although, the number of cellular phosphoproteins is relatively high, the phosphorylated residues themselves are generally of low abundance due to the sub-stoichiometric nature. However, low abundance of phosphopeptides and low degree of phosphorylation typically necessitates isolation and concentration of phosphopeptides prior to mass spectrometric analysis. In this study, we used trivalent lanthanide ions (LaCl(3), CeCl(3), EuCl(3), TbCl(3), HoCl(3), ErCl(3), and TmCl(3)) for phosphopeptide enrichment and cleaning-up. Due to their low solubility product, lanthanide ions form stable complexes with the phosphate groups of phosphopeptides and precipitate out of solution. In a further step, non-phosphorylated compounds can easily be removed by simple centrifugation and washing before mass spectrometric analysis using Matrix-assisted laser desorption/ionisation-time of flight. The precipitation method was applied for the isolation of phosphopeptides from standard proteins such as ovalbumin, α-casein, and β-casein. High enrichment of phosphopeptides could also be achieved for real samples such as fresh milk and egg white. The technology presented here represents an excellent and highly selective tool for phosphopeptide recovery; it is easily applicable and shows several advantages as compared with standard approaches such as TiO(2) or IMAC.
Ye, Hongping; Hill, John; Kauffman, John; Gryniewicz, Connie; Han, Xianlin
2008-08-15
Isotope tags for relative and absolute quantification (iTRAQ) reagent coupled with matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, and Lantus) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI-TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including human insulin (P28K29) and Lispro insulin (K28P29), which differ only by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting.
Whitaker, Paul; Meng, Xiaoli; Lavergne, Sidonie N.; El-Ghaiesh, Sabah; Monshi, Manal; Earnshaw, Caroline; Peckham, Daniel; Gooi, Jimmy; Conway, Steve; Pirmohamed, Munir; Jenkins, Rosalind E.; Naisbitt, Dean J.; Park, B. Kevin
2011-01-01
A mechanistic understanding of the relationship between the chemistry of drug antigen formation and immune function is lacking. Thus, mass spectrometric methods were employed to detect and fully characterize circulating antigens derived from piperacillin in patients undergoing therapy and the nature of the drug derived-epitopes on protein which can function as an antigen to stimulate T-cells. Albumin modification with piperacillin in vitro resulted in the formation of two distinct haptens, one formed directly from piperacillin and a second in which the dioxopiperazine ring had undergone hydrolysis. Modification was time- and concentration-dependent, with selective modification of Lys541 observed at low concentrations, whereas at higher concentrations up to 13/59 lysine residues were modified, four of which (Lys190, 195, 432 and 541) were detected in patients’ plasma. Piperacillin-specific T-lymphocyte responses (proliferation, cytokines and granzyme-B release) were detected ex vivo with cells from hypersensitive patients, and analysis of incubation medium showed that modification of the same lysine residues in albumin occurred in situ. The antigenicity of piperacillin-modified albumin was confirmed by stimulation of T-cells with characterized synthetic conjugates. Analysis of minimally-modified T-cell stimulatory albumin conjugates revealed peptide sequences incorporating Lys190, 432 and 541 as principal functional epitopes for T-cells. This study has characterized the multiple haptenic structures on albumin in patients, and showed that they constitute functional antigenic determinants for T-cells. PMID:21606251
Headley, John V; Peru, Kerry M; Barrow, Mark P
2016-01-01
There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all C(c)H(h)N(n)O(o)S(s), species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (<20,000 resolving power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine the correlation with toxicity or corrosion, (ii) verification of characterization studies based on authentic reference standards and reference materials, and (iii) integrated approaches based on multiple-methods and ionization methods for more-reliable oil sands environmental forensics. © 2015 Wiley Periodicals, Inc.
Tsybizova, Alexandra; Tarábek, Ján; Buchta, Michal; Holý, Petr; Schröder, Detlef
2012-10-15
Heavy metals are both a problem for the environment and an important resource for industry. Their selective extraction by means of organic ligands therefore is an attractive topic. The coordination of three thiacrown ethers to late 3d-metal ions was investigated by a combination of electrospray ionization mass spectrometry (ESI-MS) and electron paramagnetic resonance (EPR). The mass spectrometric experiments were carried out in an ion trap mass spectrometer with an ESI source. Absolute binding constants were estimated by comparison with data for 18-crown-6/Na(+). EPR spectroscopy was used as a complementary method for investigating the Cu(I) /Cu(II) redox couple. The study found that thiacrown ethers preferentially bind traces of copper even at an excess of other metal ions (Co(II), Ni(II), and Zn(II)). The absolute association constants of the Cu(I) complexes were about 10(8) M(-1), and about two orders of magnitude lower for the other 3d-metal cations. The EPR spectra demonstrated that the reduction from Cu(II) to Cu(I) upon formation of the [(thiacrown)Cu](+) species takes place in solution. ESI-MS demonstrated that the three thiacrown ligands examined had high binding constants as well as good selectivities for copper(I) at low concentrations, and in the presence of other metal ions. By a combination of ESI-MS and EPR spectrometry it was shown that the reduction from Cu(II) to Cu(I) occurred in solution. Copyright © 2012 John Wiley & Sons, Ltd.
Bajpai, Vikas; Sharma, Deepty; Kumar, Brijesh; Madhusudanan, K P
2010-12-01
Piper betle Linn. is a traditional plant associated with the Asian and southeast Asian cultures. Its use is also recorded in folk medicines in these regions. Several of its medicinal properties have recently been proven. Phytochemical analysis showed the presence of mainly terpenes and phenols in betel leaves. These constituents vary in the different cultivars of Piper betle. In this paper we have attempted to profile eight locally available betel cultivars using the recently developed mass spectral ionization technique of direct analysis in real time (DART). Principal component analysis has also been employed to analyze the DART MS data of these betel cultivars. The results show that the cultivars of Piper betle could be differentiated using DART MS data. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.
2015-06-01
Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.
NASA Technical Reports Server (NTRS)
Mahaffy, Paul
2012-01-01
The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks.
2014-01-01
This review aims to highlight the recent advances and methodological improvements in instrumental techniques applied for the analysis of different brominated flame retardants (BFRs). The literature search strategy was based on the recent analytical reviews published on BFRs. The main selection criteria involved the successful development and application of analytical methods for determination of the target compounds in various environmental matrices. Different factors affecting chromatographic separation and mass spectrometric detection of brominated analytes were evaluated and discussed. Techniques using advanced instrumentation to achieve outstanding results in quantification of different BFRs and their metabolites/degradation products were highlighted. Finally, research gaps in the field of BFR analysis were identified and recommendations for future research were proposed. PMID:27433482
Schwaninger, Andrea E; Meyer, Markus R; Maurer, Hans H
2012-12-21
This paper reviews analytical approaches published in 2002-2012 for chiral drug analysis and their relevance in research and practice in the field of clinical and forensic toxicology. Separation systems such as gas chromatography, high performance liquid chromatography, capillary electromigration, and supercritical fluid chromatography, all coupled to mass spectrometry, are discussed. Typical applications are reviewed for relevant chiral analytes such as amphetamines and amphetamine-derived designer drugs, methadone, tramadol, psychotropic and other CNS acting drugs, anticoagulants, cardiovascular drugs, and some other drugs. Usefulness of chiral drug analysis in the interpretation of analytical results in clinical and forensic toxicology is discussed as well. Copyright © 2012 Elsevier B.V. All rights reserved.
Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor
2012-04-01
An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Irradiation of Population in the Surrounding Area of Nuclear Power Plant Temelin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thinova, Lenka; Kluson, Jaroslav
In monitoring the impact of nuclear facilities operation on ecosystem, it is necessary to consider, what part of biota irradiation can be caused by an artificial source. For the estimation of an effective dose from natural sources were used measurements of dosimetric and gamma spectrometric characteristics of photon fields, (performed in the area of NPP Temelin since year 2000) and data from the Czech Republic radiometric chart, including the results from radon volume activity measurements in dwellings. For gamma spectrometric measurements in situ were selected two methodologies and for measurement were used corresponding types of equipment (Tesla NB3201 and spectrometermore » NaI(TI) 3''x3'') at selected locations within the monitored area: i) determination of air kerma rate (through direct measurement and by calculationfrom spectrometric data); ii) measurement of photon spectra by an scintillating spectrometer. For a dose assessment from artificial sources resulting from past or present operation of NPP Temelin, were used records from all so far performed laboratory and field measurements of NPP releases, food baskets and also results of a 6 year ecosystem monitoring in the surrounding area of NPP Temelin. The ecosystem monitoring is based on studying the contamination of the following bioindicators: forest humus, Pine bark, Schreber's Moss, the Bay Bolete (mushroom) and forest berries. Each year 220 samples are collected and mass activity (Bq/kg) for eventual contaminants is determined using laboratory gamma spectroscopy. For measurements is used a coaxial HPGe detector, with samples in the geometry of 'Marinelli' container. For evaluation of the laboratory results obtained is used trend analysis. The above described monitoring has been performed from the year 2000 until now (the year 2000 is pre-operational). In all measured laboratory spectra, of all analyzed samples, were not identified any non-natural radionuclides, with the exception of {sup 137}Cs, for which maesured activities correspond, within allowed measurement error, to the conditions before the start of NPP Temelin operation.« less
LC–MS/MS determination of carbamathione in microdialysis samples from rat brain and plasma
Kaul, Swetha; Williams, Todd D.; Lunte, Craig E.; Faiman, Morris D.
2009-01-01
A selective liquid chromatography–tandem mass spectrometric (LC–MS/MS) method was developed for the determination of S-(N, N-diethylcarbamoyl) glutathione (carbamathione) in microdialysis samples from rat brain and plasma. S-(N, N-Diethylcarbamoyl) glutathione (carbamathione) is a metabolite of disulfiram. This metabolite may be responsible for disulfiram’s effectiveness in the treatment of cocaine dependence. An analytical method using liquid chromatography–tandem mass spectrometric (LC–MS/MS) was developed to determine carbamathione in vivo using microdialysis sampling from rat brain and plasma. Chromatographic separations were carried out on an Alltech Altima C-18 (50 mm long × 2.1 mm i.d., 3 μm particles) analytical column at a flow rate of 0.3 ml/min. Solvent A consisted of 10 mM ammonium formate, methanol, and formic acid (99:1:0.06, v/v/v). Solvent B consisted of methanol, 10 mM ammonium formate and formic acid (99:1:0.06, v/v/v). A 20 min linear gradient from 95% aqueous to 95% organic was used. Tandem mass spectra were acquired on a Micromass Quattro Ultima “triple” quadrupole mass spectrometer equipped with an ESI interface. Quantitative mass spectrometric analysis was conducted in positive ion mode selected reaction monitoring (SRM) mode looking at the transition of m/z 407–100 and 175 for carbamathione and m/z 392–263 for the internal standard S-hexyl glutathione. The simultaneous collection of microdialysate from blood and brain was used to monitor carbamathione concentrations centrally and peripherally. Good linearity was obtained over a concentration range of 0.25–10,000 nM. The lowest limit of quantification (LLOQ) was determined to be 1 nM and the lowest limit of detection (LLOD) was calculated to be 0.25 nM. Intra- and inter-day accuracy and precision were determined and for all the samples evaluated, the variability was less that 10% (R.S.D.). PMID:19709836
A high pressure modulated molecular beam mass spectrometric sampling system
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.
1977-01-01
The current state of understanding of free-jet high pressure sampling is critically reviewed and modifications of certain theoretical and empirical considerations are presented. A high pressure, free-jet expansion, modulated molecular beam, mass spectrometric sampling apparatus was constructed and this apparatus is described in detail. Experimental studies have demonstrated that the apparatus can be used to sample high temperature systems at pressures up to one atmosphere. Condensible high temperature gaseous species have been routinely sampled and the mass spectrometric detector has provided direct identification of sampled species. System sensitivity is better than one tenth of a part per million. Experimental results obtained with argon and nitrogen beams are presented and compared to theoretical predictions. These results and the respective comparison are taken to indicate acceptable performance of the sampling apparatus. Results are also given for two groups of experiments related to hot corrosion studies. The formation of gaseous sodium sulfate in doped methane-oxygen flames was characterized and the oxidative vaporization of metals was studied in an atmospheric pressure flowing gas system to which gaseous salt partial pressures were added.
NASA Astrophysics Data System (ADS)
Bédard, Donald; Wade, Gregg A.
2017-01-01
Time-resolved spectrometric measurements of the Galaxy 11 geostationary satellite were collected on three consecutive nights in July 2014 with the 1.6-m telescope at the Observatoire du Mont-Mégantic in Québec, Canada. Approximately 300 low-resolution spectra (R ≈ 700 , where R = λ / Δλ) of the satellite were collected each night, covering a spectral range between 425 and 850 nm. The two objectives of the experiment were to conduct material-type identification from the spectra and to study how the spectral energy distribution inferred from these measurements varied as the illumination and observation geometry changed on nightly timescales. We present results that indicate the presence of a highly reflective aluminized surface corresponding to the solar concentrator arrays of the Galaxy 11 spacecraft. Although other material types could not be identified using the spectra, the results showed that the spectral energy distribution of the reflected sunlight from the Galaxy 11 spacecraft varied significantly, in a systematic manner, over each night of observation. The variations were quantified using colour indices calculated from the time-resolved spectrometric measurements.
Frisvad, Jens C.; Kocev, Dragi; Džeroski, Sašo; Gunde-Cimerman, Nina
2016-01-01
The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone. PMID:28036382
Health risk assessment of semi-volatile organic pollutants in Lhasa River China.
Liu, Feng; Liu, Yan; Jiang, Dongsheng; Zhang, Rongfei; Cui, Yibin; Li, Mei
2014-05-01
The semi-volatile organic compounds in Lhasa River were determined qualitatively and quantitatively by gas chromatography method with mass spectrometric detection. Total concentrations of 23 organic pollutants in samples from five sites ranged from 1.56 to 2.78 μg/L. The average concentrations for ΣPAEs, ΣPAHs and ΣBTEXs obtained in this study were 1.53, 0.33 and 0.51 μg/L, respectively. Moreover, the results of analysis of variable showed that there were significant differences (P < 0.05) among the sites for levels of ΣPAHs, ΣPAEs and ΣBTEXs. Cluster analysis was applied to detect spatial similarity for grouping of sites under the monitoring network. The results indicated that the five sites in this study could be divided into two significant groups, i.e. low and high pollutant groups. Health risk assessment was conducted by multimedia environmental goals (MEG), risk quotient (RQ) for each pollutant and hazard quotient (HQ) approach from USA ecological risk assessment (ERA) for screening stage. Calculated both total ambient severity and RQ were less than 1 and therefore minimal risk to human and ecological health. For analysis results of HQ, whether for the ingestion exposure or dermal adsorption pathway were all less than 1, the results also agreed with the RQ model and MEG model for evaluating the potential for adverse health effects due to exposure semi-volatile organic compounds from surface water. Therefore, SVOCs in Lhasa River posed little or no threat to the health of local consumers and ecological environment.
Zakaria, Rosita; Allen, Katrina J.; Koplin, Jennifer J.; Roche, Peter
2016-01-01
Introduction Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. Methods To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; “blood spot” and “mass spectrometry”; while excluding “newborn”; and “neonate”. In addition, databases were restricted to English language and human specific. There was no time period limit applied. Results As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. Conclusions DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required. PMID:28149263
Krajicek, Jan; Havlikova, Martina; Bursova, Miroslava; Ston, Martin; Cabala, Radomir; Exnerova, Alice; Stys, Pavel; Bosakova, Zuzana
2016-01-01
The true bugs (Hemiptera: Heteroptera) have evolved a system of well-developed scent glands that produce diverse and frequently strongly odorous compounds that act mainly as chemical protection against predators. A new method of non-lethal sampling with subsequent separation using gas chromatography with mass spectrometric detection was proposed for analysis of these volatile defensive secretions. Separation was performed on Rtx-200 column containing fluorinated polysiloxane stationary phase. Various mechanical irritation methods (ultrasonics, shaking, pressing bugs with plunger of syringe) were tested for secretion sampling with a special focus on non-lethal irritation. The preconcentration step was performed by sorption on solid phase microextraction (SPME) fibers with different polarity. For optimization of sampling procedure, Pyrrhocoris apterus was selected. The entire multi-parameter optimization procedure of secretion sampling was performed using response surface methodology. The irritation of bugs by pressing them with a plunger of syringe was shown to be the most suitable. The developed method was applied to analysis of secretions produced by adult males and females of Pyrrhocoris apterus, Pyrrhocoris tibialis and Scantius aegyptius (all Heteroptera: Pyrrhocoridae). The chemical composition of secretion, particularly that of alcohols, aldehydes and esters, is species-specific in all three pyrrhocorid species studied. The sexual dimorphism in occurrence of particular compounds is largely limited to alcohols and suggests their epigamic intraspecific function. The phenetic overall similarities in composition of secretion do not reflect either relationship of species or similarities in antipredatory color pattern. The similarities of secretions may be linked with antipredatory strategies. The proposed method requires only a few individuals which remain alive after the procedure. Thus secretions of a number of species including even the rare ones can be analyzed and broadly conceived comparative studies can be carried out. PMID:27997627
Amin, Mohamed O; Madkour, Metwally; Al-Hetlani, Entesar
2018-05-17
We explored the applicability of different metal oxide nanoparticles (NPs; ZnO, TiO 2 , Fe 2 O 3 , and CeO 2 ) for the optical imaging and mass spectrometric determination of small drug molecules in latent fingerprints (LFPs). Optical imaging was achieved using a dry method-simply dusting the LFPs with a minute amount of NP powder-and still images were captured using a digital microscope and a smartphone camera. Mass spectrometric determination was performed using the NPs as substrates for surface-assisted laser desorption ionization/mass spectrometry (SALDI-MS), which enabled the detection of small drug molecules with high signal intensities. The reproducibility of the results was studied by calculating the % error, SD, and RSD in the results obtained with the various metal oxide NPs. Collectively, the findings showed that using NPs can boost the intensity of the detected signal while minimizing background noise which is an issue predominantly associated with conventional organic matrices of MALDI-MS. Among the four metal oxide NPs, utilization of the Fe 2 O 3 NPs led to the best SALDI performance and the highest detection sensitivity for the analytes of interest. The study was then extended by investigating the influence of time elapsed since the generation of the LFP on the detection of drug molecules in the LFP. The results demonstrated that this method allows the analysis of drug molecules after as long as one week at low and intermediate temperatures (0 and 25 °C). Therefore, the SALDI analysis of small molecules using inorganic NPs, which can be implemented in forensic laboratories for screening and detection purposes, as a powerful alternative to the use of organic matrices. Graphical abstract ᅟ.
Calcium isotope analysis by mass spectrometry.
Boulyga, Sergei F
2010-01-01
The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use of biological isotope fractionation in medical studies, paleoclimatic and paleoceanographic, and other terrestrial as well as extraterrestrial investigations. 2009 Wiley Periodicals, Inc.
Catalytic reduction of carbonyl groups in oxidized PAPC by Kvβ2 (AKR6)
Xie, Zhengzhi; Barski, Oleg A.; Cai, Jian; Bhatnagar, Aruni; Tipparaju, Srinivas M.
2011-01-01
The β-subunits of the voltage-gated potassium channel (Kvβ) belong to the aldo-keto reductase superfamily. The Kvβ-subunits dock with the pore-forming Kv α-subunits and impart or accelerate the rate of inactivation in Kv channels. Inactivation of Kv currents by Kvβ is differentially regulated by oxidized and reduced pyridine nucleotides. In mammals, AKR6 family is comprised of 3 different genes Kvβ1-3. We have shown previously that Kvβ2 catalyzes the reduction of a broad range of carbonyls including aromatic carbonyls, electrophilic aldehydes and prostaglandins. However, the endogenous substrates for Kvβ have not been identified. To determine whether products of lipid oxidation are substrates of Kvβs, we tested the enzymatic activity of Kvβ2 with oxidized phospholipids generated during the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). Electrospray ionization mass spectrometric analysis showed that Kvβ2 catalyzed the NADPH-dependent reduction of several products of oxPAPC, including 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC), 1-palmitoyl-2-(epoxycyclopentenone)-sn-glycero-3-phosphorylcholine (PECPC), 1-palmitoyl-2-(5,6)- epoxyisoprostane E2-sn-glycero-3-phosphocholine (PEIPC). These results were validated using high resolution mass spectrometric analysis. Time course analysis revealed that the reduced products reached significant levels for ions at m/z 594/596 (POVPC/PHVPC), 810/812 (PECPC/2H-PECPC) and 828/830 (PEIPC/2H-PEIPC) in the oxPAPC + Kvβ2 mixture (p < 0.01). These results suggest that Kvβ could serve as a sensor of lipid oxidation via its catalytic activity and thereby alter Kv currents under conditions of oxidative stress. PMID:21296056
Eganhouse, R.P.; Dorsey, T.F.; Phinney, C.S.; Westcott, A.M.
1993-01-01
A method is described for the determination of the C6-C10 aromatic hydrocarbons in water based on purge-and-trap capillary gas chromatography with flame ionization and mass spectrometric detection. Retention time data and 70 eV mass spectra were obtained for benzene and all 35 C7-C10 aromatic hydrocarbons. With optimized chromatographic conditions and mass spectrometric detection, benzene and 33 of the 35 alkylbenzenes can be identified and measured in a 45-min run. Use of a flame ionization detector permits the simultaneous determination of benzene and 26 alkylbenzenes.
Sandra, Koen; Vandenheede, Isabel; Sandra, Pat
2014-03-28
Protein biopharmaceuticals such as monoclonal antibodies and therapeutic proteins are currently in widespread use for the treatment of various life-threatening diseases including cancer, autoimmune disorders, diabetes and anemia. The complexity of protein therapeutics is far exceeding that of small molecule drugs; hence, unraveling this complexity represents an analytical challenge. The current review provides the reader with state-of-the-art chromatographic and mass spectrometric tools available to dissect primary and higher order structures, post-translational modifications, purity and impurity profiles and pharmacokinetic properties of protein therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.
Challenges and recent advances in mass spectrometric imaging of neurotransmitters
Gemperline, Erin; Chen, Bingming; Li, Lingjun
2014-01-01
Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355
Measurement techniques for trace metals in coal-plant effluents: A brief review
NASA Technical Reports Server (NTRS)
Singh, J. J.
1979-01-01
The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.
Storage and retrieval of mass spectral information
NASA Technical Reports Server (NTRS)
Hohn, M. E.; Humberston, M. J.; Eglinton, G.
1977-01-01
Computer handling of mass spectra serves two main purposes: the interpretation of the occasional, problematic mass spectrum, and the identification of the large number of spectra generated in the gas-chromatographic-mass spectrometric (GC-MS) analysis of complex natural and synthetic mixtures. Methods available fall into the three categories of library search, artificial intelligence, and learning machine. Optional procedures for coding, abbreviating and filtering a library of spectra minimize time and storage requirements. Newer techniques make increasing use of probability and information theory in accessing files of mass spectral information.
1976-04-01
spectra are obtained for each peak detected in the CC effluent stream. In this mode of operation, the "total ion current" is usually used as a guide...correcting drift for both magnetic field and electrical field instruments. The peak setting is usually made to the 47 nearest 0.1 amu, and adjustments...su stances by charge transfer from nitric oxide ions (No ), however, the M14 ions are the base peak . This obser- vation by Jardine and Fenselau (44
Characteristic gamma-lactone odor production of the genus Pityrosporum.
Labows, J N; McGinley, K J; Leyden, J J; Webster, G F
1979-01-01
Mass spectrometric-gas chromatographic analysis of culture headspaces revealed that members of the genous Pityrosporum produce volatile gamma-lactones during growth on lipid-containing media. Representative members of other yeast genera found on humans failed to produce these compounds. Addition of lecithin, oleic acids, triolein, or human sebum to the culture media stimulated gamma-lactone production by Pityrosporum species. All yeasts tested produced isopentanol and phenylethanol. Production of gamma-lactones may serve as a valuable characteristic in the identification of organisms of the genus Pityrosporum. PMID:533274
[Latest development in mass spectrometry for clinical application].
Takino, Masahiko
2013-09-01
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.
MassSieve: Panning MS/MS peptide data for proteins
Slotta, Douglas J.; McFarland, Melinda A.; Markey, Sanford P.
2010-01-01
We present MassSieve, a Java-based platform for visualization and parsimony analysis of single and comparative LC-MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC-MS/MS-based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral assignments. PMID:20564260
Application of remote sensing to reconnaissance geologic mapping and mineral exploration
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Dykstra, J. D.
1978-01-01
A method of mapping geology at a reconnaissance scale and locating zones of possible hydrothermal alteration has been developed. This method is based on principal component analysis of Landsat digital data and is applied to the desert area of the Chagai Hills, Baluchistan, Pakistan. A method for airborne spectrometric detection of geobotanical anomalies associated with prophyry Cu-Mo mineralization at Heddleston, Montana has also been developed. This method is based on discriminants in the 0.67 micron and 0.79 micron region of the spectrum.
Low pressure gas flow analysis through an effusive inlet using mass spectrometry
NASA Technical Reports Server (NTRS)
Brown, David R.; Brown, Kenneth G.
1988-01-01
A mass spectrometric method for analyzing flow past and through an effusive inlet designed for use on the tethered satellite and other entering vehicles is discussed. Source stream concentrations of species in a gaseous mixture are determined using a calibration of measured mass spectral intensities versus source stream pressure for standard gas mixtures and pure gases. Concentrations are shown to be accurate within experimental error. Theoretical explanations for observed mass discrimination effects as they relate to the various flow situations in the effusive inlet and the experimental apparatus are discussed.
Kim, Sylvia Jeewon; Hellerstein, Marc K
2007-10-01
Although curcumin has preventive actions in animal models of colon cancer, whether the mechanism of action is through anti-proliferation in normal environment is not clearly understood. Here, we studied the effects of chemopreventive doses of curcumin on the proliferation rate of colon epithelial cells (CEC), using a recently developed stable isotope-mass spectrometric method for measuring DNA synthesis rate. Adult male F344 rats were given diets containing 0, 2 and 4% curcumin for 5 weeks. 4% (2)H(2)O was given in drinking water to label DNA, after a priming bolus, for 4 days prior to sacrifice. The isotopic enrichment of the deoxyribose moiety of deoxyadenosine from DNA was measured by gas chromatography - mass spectrometry. Cell cycle analysis was performed after propidium iodide staining of CECs. Curcumin administration did not reduce but instead resulted in dose-dependent increases in CEC proliferation rate (p < 0.05) for 2% and 4% curcumin vs 0%). The length of the colon crypts and the fraction of cells in S-phase were also increased in the 2% and 4% curcumin groups (p < 0.05). Thus, pharmacological doses of curcumin increase CEC proliferation rate and pool size in normal rats. Reduction of CEC proliferation therefore cannot explain the proposed chemopreventive actions of curcumin in colon cancer.
Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth.
Klose, Julia; Aistleitner, Karin; Horn, Matthias; Krenn, Liselotte; Dirsch, Verena; Zehl, Martin; Bright, Monika
2016-01-01
The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm's trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains.
Gonsior, Constantin; Binamé, Fabien; Frühbeis, Carsten; Bauer, Nina M.; Hoch-Kraft, Peter; Luhmann, Heiko J.; Trotter, Jacqueline; White, Robin
2014-01-01
Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Purification and mass-spectrometric analysis of tyrosine-phosphorylated proteins in response to overexpressed active Fyn in the oligodendrocyte precursor cell line Oli-neu, yielded the adaptor molecule p130Cas. We analyzed the function of this Fyn target in oligodendroglial cells and observed that reduction of p130Cas levels by siRNA affects process outgrowth, the thickness of cellular processes and migration behavior of Oli-neu cells. Furthermore, long term p130Cas reduction results in decreased cell numbers as a result of increased apoptosis in cultured primary oligodendrocytes. Our data contribute to understanding the molecular events taking place during oligodendrocyte migration and morphological differentiation and have implications for myelin formation. PMID:24586768
Li, Jian; Ma, Li-Yun; Li, Lu-Shuang; Xu, Li
2017-12-01
Photodegradation of 3 commonly used nonsteroidal anti-inflammatory drugs, ketoprofen, carprofen, and diclofenac acid, was conducted under ultraviolet (UV) irradiation. The kinetic results showed that the 3 pharmaceuticals obeyed the first-order reaction with decreasing rate constants of 1.54 × 10 -4 , 5.91 × 10 -5 , and 7.78 × 10 -6 s -1 for carprofen, ketoprofen, and diclofenac acid, respectively. Moreover, the main transformation products were identified by ion-pair liquid-liquid extraction combined with injection port derivatization-gas chromatography-mass spectrometry and high-performance liquid chromatography-quadrupole-time of flight mass spectrometric analysis. There were 8, 3, and 6 transformation products identified for ketoprofen, carprofen, and diclofenac acid, respectively. Decarboxylation, dechlorination, oxidation, demethylation, esterification, and cyclization were proposed to be associated with the transformation of the 3 pharmaceuticals. Toxicity prediction of the transformation products was conducted on the EPI Suite software based on ECOSAR model, and the results indicate that some of the transformation products were more toxic than the parent compounds. The present study provides the foundation to understand the transformation behavior of the studied pharmaceuticals under UV irradiation. Environ Toxicol Chem 2017;36:3232-3239. © 2017 SETAC. © 2017 SETAC.
Dai, Lulu; Yeh, Geoffrey K; Ran, Yingqing; Yehl, Peter; Zhang, Kelly
2017-04-15
Polyethylene glycol (PEG) based formulation and polyvinylchloride (PVC) tubing are frequently used for drug delivery and administration. The compatibility of a parenteral drug microdose formulation in intravenous infusion (IV) devices was studied to support the clinical determination of absolute bioavailability by the microdosing method. The investigational microdose formulation containing PEG was found prone to significant loss of potency within hours of storage in the PVC IV tubing due to degradation. Degradation occurred only when both PEG and PVC tubing were present. The degradation product could not be detected by LC/MS due to the significant interference from the high concentration of PEG (4%) matrix and the extremely low level of drug (0.6ppm). To obtain structural information of the degradation impurity and understand the cause of the degradation, a simple heart-cutting 2D-LC/MS approach was utilized to effectively separate the impurity from the complex PEG oligomers and overcome the matrix interference, enabling mass spectrometric analysis of the impurity. An oxidation- dominated mechanism was proposed in which the combination of PEG auto-oxidation and dehydrochlorination of the PVC tubing yielded an oxidative environment that enhanced radical propagation and accelerated degradation of the investigational parent drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
NASA Technical Reports Server (NTRS)
Attar, A.; Corcoran, W. H.
1977-01-01
The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.
Mass spectrometry. [in organic chemistry
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.
1978-01-01
A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Burlingame, A. L.
1972-01-01
The mirror and middle shroud were extracted for organics by washing the surfaces with solvents. The techniques are discussed. Ion microprobe analyses of the primarily atomic species are presented. The sources of the organic contaminants are: (1) hydrocarbons from lubricating oils and general terrestrial contamination, (2) dioctyl phthalate, probably from polyethylene bagging material (the plasticizer), (3) carboxylic acids from decomposition of grease and general terrestrial contamination, (4) silicones from sources such as lubricating oil, (5) outgassing of electronics and plasticizer, (6) vinyl alcohol and styrene copolymer, probably from electronic insulation, and (7) nitrogenous compounds from the lunar module and possibly Surveyor 3 engine exhaust.
In-injection port thermal desorption for explosives trace evidence analysis.
Sigman, M E; Ma, C Y
1999-10-01
A gas chromatographic method utilizing thermal desorption of a dry surface wipe for the analysis of explosives trace chemical evidence has been developed and validated using electron capture and negative ion chemical ionization mass spectrometric detection. Thermal desorption was performed within a split/splitless injection port with minimal instrument modification. Surface-abraded Teflon tubing provided the solid support for sample collection and desorption. Performance was characterized by desorption efficiency, reproducibility, linearity of the calibration, and method detection and quantitation limits. Method validation was performed with a series of dinitrotoluenes, trinitrotoluene, two nitroester explosives, and one nitramine explosive. The method was applied to the sampling of a single piece of debris from an explosion containing trinitrotoluene.
Van Berkel, Gary J.; Kertesz, Vilmos
2011-08-09
A system and method utilizes an image analysis approach for controlling the collection instrument-to-surface distance in a sampling system for use, for example, with mass spectrometric detection. Such an approach involves the capturing of an image of the collection instrument or the shadow thereof cast across the surface and the utilization of line average brightness (LAB) techniques to determine the actual distance between the collection instrument and the surface. The actual distance is subsequently compared to a target distance for re-optimization, as necessary, of the collection instrument-to-surface during an automated surface sampling operation.
A MASS-SPECTROMETRIC INVESTIGATION OF SULFUR VAPOR AS A FUNCTION OF TEMPERATURE (thesis)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zietz, M.C.
1960-06-15
A mass-spectrometric investigation was performed on sulfur vapor in equilibrium with the condensed phase at 120 to 210 gas-cooled C. It was found that, in this temperature range, equilibrium sulfur vapor contains appreciable quantities of S/sub 8/, S/sub 7/, S/sub 6/, and S/sub 5/ only. The sulfur vapor emanated as a small well-collimated molecular beam from a specially constructed source into an ionization chamber which was designed to exclude from analysis any sulfur vapor that had impinged on the walls or the hot electron filament. Essential identical ionization potentials were determined for S/sub 8/ , S/sub 7/, S/sub 6/, andmore » S/sub 5/ of 9.8 0.4 ev. The heat of vaporizati on of S/sub 7/ was calculated to be approximately 2.5 kcal greater than that of S/ sub 8/. Upper limits for S/sub 8/ and S/sub 7/ composition in S vapor at 120 gas- cooled C were determined to be 86% and 14%, respectively. It is proposed thst S/sub 8/ is the vaporizing species, that S/sub 7/, S/sub 6/, and S/sub 5/ result from dissociation of S/sub 8/. and that all four molecules have a ring configuration. (auth)« less
Ma, Huiying; Zhang, Keke; Jiang, Qing; Dai, Diya; Li, Hongli; Bi, Wentao; Chen, David Da Yong
2018-04-27
Plant polysaccharides have numerous medicinal functions. Due to the differences in their origins, regions of production, and cultivation conditions, the quality and the functions of polysaccharides can vary significantly. They are macromolecules with large molecular weight (MW) and complex structure, and pose great challenge for the analytical technology used. Taking Dendrobium officinale (DO) from various origins and locations as model samples. In this investigation, mechanochemical extraction method was used to successfully extract polysaccharides from DO using water as solvent, the process is simple, fast (40 s) and with high yield. The MWs of the intact saccharides from calibration curve and light scattering measurement were determined and compared after separation with size exclusion chromatography (SEC). The large polysaccharide was acid hydrolyzed to oligosaccharides and the products were efficiently separated and identified using liquid chromatography coupled to a high resolution tandem mass spectrometry (LC-MS 2 ). Obvious differences were observed among LC-MS 2 chromatograms of digested products, and the chemical structures for the products were proposed based on accurate mass values. More importantly, isomeric digested carbohydrate compounds were explored and characterized. All the chromatographic and mass spectrometric results in this study provided a multi-dimensional characterization, fingerprint analysis, and molecular structure level assessment of plant polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.
Wei, Shih-Chun; Fan, Shen; Lien, Chia-Wen; Unnikrishnan, Binesh; Wang, Yi-Sheng; Chu, Han-Wei; Huang, Chih-Ching; Hsu, Pang-Hung; Chang, Huan-Tsung
2018-03-20
A graphene oxide (GO) nanosheet-modified N + -nylon membrane (GOM) has been prepared and used as an extraction and spray-ionization substrate for robust mass spectrometric detection of malachite green (MG), a highly toxic disinfectant in liquid samples and fish meat. The GOM is prepared by self-deposition of GO thin film onto an N + -nylon membrane, which has been used for efficient extraction of MG in aquaculture water samples or homogenized fish meat samples. Having a dissociation constant of 2.17 × 10 -9 M -1 , the GOM allows extraction of approximately 98% of 100 nM MG. Coupling of the GOM-spray with an ion-trap mass spectrometer allows quantitation of MG in aquaculture freshwater and seawater samples down to nanomolar levels. Furthermore, the system possesses high selectivity and sensitivity for the quantitation of MG and its metabolite (leucomalachite green) in fish meat samples. With easy extraction and efficient spray ionization properties of GOM, this membrane spray-mass spectrometry technique is relatively simple and fast in comparison to the traditional LC-MS/MS methods for the quantitation of MG and its metabolite in aquaculture products. Copyright © 2017 Elsevier B.V. All rights reserved.
UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, M; S Crump, S; Robert02 Ray, R
2006-08-28
The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research wasmore » to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, M; S Crump, S; Robert02 Ray, R
2007-04-13
The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolvedmore » radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less
NASA Astrophysics Data System (ADS)
Ribeiro, Vanessa Biondo; Mantovani, Marta Silvia Maria
2016-12-01
The Cabaçal Au-Zn-Cu Deposit, Mato Grosso, Brazil, was explored between 1987 and 1991, when 869,279 tons of ore rich in Au and Cu have been extracted. The hydrothermal alteration in the Cabaçal mine suggests a volcanogenic genetic model in which hydrothermal centers generated sericitization, chloritization and silicification alterations at different stages. The hydrothermal alteration affects the radioelements in different ways, generating a characteristic gamma spectrometric signature for the affected area. The eTh/K ratio map evidenced that the hydrothermalized area extends beyond south limits of the Cabaçal gabbro dykes formation, which host Cabaçal and Santa Helena mines. Magnetic data over the region show the same behavior for this formation, indicating that the magnetic source extends in subsurface. This behavior was recovered by the 3D model inverted for the region, which recovered a positive apparent magnetic contrast associated with this body, with an increasing deepness to south. It is possible that the south subsurface portion of the magnetic source may contain economic concentrations of Au remobilized by hydrothermal fluids. However, to confirm this hypothesis it is necessary to develop geochemical and borehole analysis of the area.
Schmarr, Hans-Georg; Wacker, Michael; Mathes, Maximilian
2017-01-20
An isotopic separation of acetaldehyde and acetaldehyde-2,2,2-d3 was achieved in a temperature programmed run on a porous layer open tubular (PLOT) capillary column coated with particles of divinylbenzene ethylene glycol/dimethylacrylate (Rt ® -U-BOND). This is the prerequisite for the development of quantitative analytical methods based on a stable isotope dilution assay (SIDA) without a mass spectrometric detection (non-MS SIDA). For routine analysis a flame ionization detector (FID) can thus be applied as a robust and low-cost alternative. In a preliminary study, static headspace extraction and gas chromatographic separation (HS-GC-FID) of acetaldehyde in aqueous solutions was shown as an application. Good linearity was obtained in a calibration range from 0.4 to 40mgL -1 , with peak integration benefitting from the inverse isotope effect encountered on the specific porous polymer. Furthermore, separation of methanol and deuterated methanol (d3) could also be achieved under the same chromatographic conditions. The achieved isotopic separation of these important volatile compounds now allows non-MS SIDA-based methods that are still to be developed. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultra-Low Level Plutonium Isotopes in the NIST SRM 4355A (Peruvian Soil-1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inn, Kenneth G.; LaRosa, Jerome; Nour, Svetlana
2009-05-31
For more than 20 years, countries and their agencies which monitor discharge sites and storage facilities have relied on the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 4355 Peruvian Soil reference material. Its low fallout contamination makes it an ideal soil blank for measurements associated with terrestrial pathway to man studies. Presently, SRM 4355 is out of stock, and a new batch of the Peruvian soil is currently under development as future NIST SRM 4355A. Both environmental radioanalytical laboratories and mass spectrometry communities will benefit from this SRM. The former must assess their laboratory contamination andmore » measurement detection limits by measurement of blank sample material. The Peruvian Soil is so low in anthropogenic radionuclides that it is a suitable virtual blank. On the other hand, mass spectrometric laboratories have high sensitivity instruments that are capable of quantitative isotopic measurements at low plutonium levels of the SRM 4355 (first Peruvian Soil SRM) that provided the mass spectrometric community with the calibration, quality control, and testing material needed for methods development, and legal defensibility. The quantification of the ultra-low plutonium content in the SRM 4355A was a considerable challenge for the mass spectrometric laboratories. Careful blank control and correction, isobaric interferences, instrument stability, peak assessment, and detection assessment were necessary. Furthermore, a systematic statistical evaluation of the measurement results and considerable discussions with the mass spectroscopy metrologists were needed to derive the certified values and uncertainties. SRM 4355A will provide the mass spectrometric community with the quality control and testing material needed for higher sensitivity methods development, and legal defensibility.« less
Monoyios, Andreas; Patzl, Martina; Schlosser, Sarah; Hess, Michael; Bilic, Ivana
2018-02-01
The current study focused on Histomonas meleagridis, a unicellular protozoan, responsible for histomonosis in poultry. Recently, the occurrence of the disease increased due to the ban of effective chemotherapeutic drugs. Basic questions regarding the molecular biology, virulence mechanisms or even life cycle of the flagellate are still puzzling. In order to address some of these issues, we conducted a comparative proteomic analysis of a virulent and an attenuated H. meleagridis strain traced back to a single cell and propagated in vitro as monoxenic mono-eukaryotic cultures. Using two-dimensional electrophoresis (2-DE) for proteome visualization with computational 2-DE gel image and statistical analysis, upregulated proteins in either of the two H. meleagridis strains were detected. Statistical analysis fulfilling two criteria (≥threefold upregulation and P < 0.05) revealed 119 differentially expressed protein spots out of which 62 spots were noticed in gels with proteins from the virulent and 57 spots in gels with proteins from the attenuated culture. Mass spectrometric analysis of 32 protein spots upregulated in gels of the virulent strain identified 17 as H. meleagridis-specific. The identification revealed that these spots belonged to eight different proteins, with the majority related to cellular stress management. Two ubiquitous cellular proteins, actin and enolase, were upregulated in multiple gel positions in this strain, indicating either post-translational modification or truncation, or even both. Additionally, a known virulence factor named legumain cysteine peptidase was also detected. In contrast to this, mass spectrometric analysis of 49 protein spots, upregulated in gels of the attenuated strain, singled out 32 spots as specific for the flagellate. These spots were shown to correspond to 24 different proteins that reflect the increased metabolism, in vitro adaptation of the parasite, and amoeboid morphology. In addition to H. meleagridis proteins, the analysis identified differential expression of Escherichia coli DH5α proteins that could have been influenced by the co-cultivated H. meleagridis strain, indicating a reciprocal interaction of these two organisms during monoxenic cultivation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Karras, Gabriel; Lockyer, Nicholas P.
2014-05-01
A systematic mass spectrometric study of two of the most common analgesic drugs, paracetamol and ibuprofen, is reported. The drugs were studied by means of secondary ion mass spectrometry (SIMS) and secondary neutral mass spectrometry (SNMS) using laser post-ionization (LPI) both in pure samples and in a two-component mixture. Ion suppression within the two-component system observed in SIMS mode is ameliorated using LPI under room temperature analysis. However, suppression effects are apparent in LPI mode on performing the analysis at cryogenic temperatures, which we attribute to changes in the desorption characteristics of sputtered molecules, which influences the subsequent post-ionization efficiency. This suggests different mechanisms of ion suppression in SIMS and LPI modes.
Real-Time Food Authentication Using a Miniature Mass Spectrometer.
Gerbig, Stefanie; Neese, Stephan; Penner, Alexander; Spengler, Bernhard; Schulz, Sabine
2017-10-17
Food adulteration is a threat to public health and the economy. In order to determine food adulteration efficiently, rapid and easy-to-use on-site analytical methods are needed. In this study, a miniaturized mass spectrometer in combination with three ambient ionization methods was used for food authentication. The chemical fingerprints of three milk types, five fish species, and two coffee types were measured using electrospray ionization, desorption electrospray ionization, and low temperature plasma ionization. Minimum sample preparation was needed for the analysis of liquid and solid food samples. Mass spectrometric data was processed using the laboratory-built software MS food classifier, which allows for the definition of specific food profiles from reference data sets using multivariate statistical methods and the subsequent classification of unknown data. Applicability of the obtained mass spectrometric fingerprints for food authentication was evaluated using different data processing methods, leave-10%-out cross-validation, and real-time classification of new data. Classification accuracy of 100% was achieved for the differentiation of milk types and fish species, and a classification accuracy of 96.4% was achieved for coffee types in cross-validation experiments. Measurement of two milk mixtures yielded correct classification of >94%. For real-time classification, the accuracies were comparable. Functionality of the software program and its performance is described. Processing time for a reference data set and a newly acquired spectrum was found to be 12 s and 2 s, respectively. These proof-of-principle experiments show that the combination of a miniaturized mass spectrometer, ambient ionization, and statistical analysis is suitable for on-site real-time food authentication.
New evidence for chemical fractionation of radioactive xenon precursors in fission chains
NASA Astrophysics Data System (ADS)
Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.
2016-04-01
Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, 136Xe and 134Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth's and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites.
Combustion of solid carbon rods in zero and normal gravity
NASA Technical Reports Server (NTRS)
Spuckler, C. M.; Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Dewitt, K. J.
1979-01-01
In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen environment in normal and zero gravity. Direct mass spectrometric sampling was used in the normal gravity tests to obtain concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.
Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits.
van Veen, Harrie A; Koiter, Jaco; Vogelezang, Carla J M; van Wessel, Noucha; van Dam, Tijtje; Velterop, Ingeborg; van Houdt, Kristina; Kupers, Luc; Horbach, Danielle; Salaheddine, Mourad; Nuijens, Jan H; Mannesse, Maurice L M
2012-12-31
C1 inhibitor (C1INH) is a single-chain glycoprotein that inhibits activation of the contact system of coagulation and the complement system. C1INH isolated from human blood plasma (pd-hC1INH) is used for the management of hereditary angioedema (HAE), a disease caused by heterozygous deficiency of C1INH, and is a promise for treatment of ischemia-reperfusion injuries like acute myocardial or cerebral infarction. To obtain large quantities of C1INH, recombinant human C1INH (rhC1INH) was expressed in the milk of transgenic rabbits (12 g/l) harboring genomic human C1INH sequences fused to 5' bovine αS(1) casein promoter sequences. Recombinant hC1INH was isolated from milk to a specific activity of 6.1 U/mg and a purity of 99%; by size-exclusion chromatography the 1% impurities consisted of multimers and N-terminal cleaved C1INH species. Mass spectrometric analysis of purified rhC1INH revealed a relative molecular mass (M(r)) of 67,200. Differences in M(r) on SDS PAGE and mass spectrometric analysis between rhC1INH and pd-hC1INH are explained by differential glycosylation (calculated carbohydrate contents of 21% and 28%, respectively), since protein sequencing analysis of rhC1INH revealed intact N- and C-termini. Host-related impurity analysis by ELISA revealed trace amounts of rabbit protein (approximately 10 ppm) in purified batches, but not endogenous rabbit C1INH. The kinetics of inhibition of the target proteases C1s, Factor XIIa, kallikrein and Factor XIa by rhC1INH and pd-hC1INH, indicated comparable inhibitory potency and specificity. Recently, rhC1INH (Ruconest(®)) has been approved by the European Medicines Agency for the treatment of acute attacks of HAE. Copyright © 2012 Elsevier B.V. All rights reserved.
Copley, M S; Bland, H A; Rose, P; Horton, M; Evershed, R P
2005-06-01
Man's use of illuminants in lamps or as torches to extend the working day and range of environments accessible to him would have been a major technological advance in human civilisation. The most obvious evidence for this in the archaeological record comes from pottery and stone vessels showing sooting due to the use of a wick in conjunction with a lipid-based fuel or illuminant. A wide range of potential fuels would have been exploited depending upon availability and burning requirements. Reported herein are the results of chemical investigations of a number of lamps recovered from excavations of the site of Qasr Ibrim, Egypt. Gas chromatographic, mass spectrometric and stable carbon isotopic analyses of both free (solvent extractable) and 'bound'(released from solvent extracted pottery by base treatment) lipids have revealed a wide range of saturated fatty acids, hydroxy fatty acids and alpha, omega-dicarboxylic acids. Examination of the distributions of compounds and comparisons with the fatty acid compositions of modern plant oils have allowed a range of fats and oils to be recognised. Specific illuminants identified include Brassicaceae (Cruciferae) seed oil (most likely radish oil, Raphanus sativus), castor oil (from Ricinus communis), animal fat, with less diagnostic distributions and delta(13)C values being consistent with low stearic acid plant oils, such as linseed (Linum usitatissimum) or sesame (Sesamum indicum) oils. The identifications of the various oils and fats are supported by parallel investigations of illuminant residues produced by burning various oils in replica pottery lamps. The findings are entirely consistent with the classical writers including Strabo, Pliny and Theophrastrus.
Qualitative and quantitative studies of chemical composition of sandarac resin by GC-MS.
Kononenko, I; de Viguerie, L; Rochut, S; Walter, Ph
2017-01-01
The chemical composition of sandarac resin was investigated qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS). Six compounds with labdane and pimarane skeletons were identified in the resin. The obtained mass spectra were interpreted and the mass spectrometric behaviour of these diterpenoids under EI conditions was described. Quantitative analysis by the method of internal standard revealed that identified diterpenoids represent only 10-30% of the analysed sample. The sandarac resin from different suppliers was analysed (from Kremer, Okhra, Color Rare, La Marchande de Couleurs, L'Atelier Montessori, Hevea). The analysis of different lumps of resins showed that the chemical composition differs from one lump to another, varying mainly in the relative distributions of the components.
Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya
2015-08-12
A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. Copyright © 2015 Elsevier B.V. All rights reserved.
Antifungal isopimaranes from Hypoestes serpens.
Rasoamiaranjanahary, L; Guilet, D; Marston, A; Randimbivololona, F; Hostettmann, K
2003-09-01
Five isopimarane diterpenes (7beta-hydroxyisopimara-8,15-dien-14-one, 14alpha-hydroxyisopimara-7,15-dien-1-one, 1beta,14alpha-dihydroxyisopimara-7,15-diene, 7beta-hydroxyisopimara-8(14),15-dien-1-one and 7beta-acetoxyisopimara-8(14),15-dien-1-one) have been isolated from the leaves of Hypoestes serpens (Acanthaceae). All compounds exhibited antifungal activity against both the plant pathogenic fungus Cladosporium cucumerinum and the yeast Candida albicans; two of them also displayed an acetylcholinesterase inhibition. The structures of the compounds were determined by means of spectrometric methods, including 1D and 2D NMR experiments and MS analysis.
Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, a new chemotype from Montenegro.
Garzoli, Stefania; Božović, Mijat; Baldisserotto, Anna; Andreotti, Elisa; Pepi, Federico; Tadić, Vanja; Manfredini, Stefano; Ragno, Rino
2018-05-01
A study on essential oil fractions of the Western Balkan endemic Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood collected in Montenegro is reported. The 24-h systematic steam distillation extraction procedure was performed. The gas chromatographic/mass spectrometric (GC/MS) analysis of the fractions showed γ-elemene and spathulenol as two main constituents, revealing a new chemotype of this plant species. Although varying in the content of these two main compounds, which makes the fractions quite different between each other, evaluation of the anti-Candida activity showed the lack of any significant efficacy.
NASA Technical Reports Server (NTRS)
Cocks, T. D.; Green, A. A.
1986-01-01
Analysis of Airborne Imaging Spectrometer (AIS) data acquired in Australia has revealed a number of operational problems. Horizontal striping in AIS imagery and spectral distortions due to order overlap were investigated. Horizontal striping, caused by grating position errors can be removed with little or no effect on spectral details. Order overlap remains a problem that seriously compromises identification of subtle mineral absorption features within AIS spectra. A spectrometric model of the AIS was developed to assist in identifying spurious spectral features, and will be used in efforts to restore the spectral integrity of the data.
1987-01-01
due to interferences in the pollen. However, the identity of the interferents is presently unknown. A dried papaya leaf was treated with 10 ml of warm...Known amounts of DON, DAS, and T-2 were spiked on a blank (trichothecene-free) papaya leaf and left exposed in a bottle for 1 year. At the end of the year...Simple Trichothecenes from Leaf Sample after Prolonged Exposure ............... 35 12 Sample Analysis .............................. .... 37 6 MASS
Analysis of arsenical metabolites in biological samples.
Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J
2009-11-01
Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [(73)As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic.
Identification of Fungal T Cell Epitopes by Mass Spectrometry-Based Proteomics.
Roschitzki, Bernd; LeibundGut-Landmann, Salomé
2017-01-01
CD4 + T cells play a key role in host defense against many fungal infections. T cells are also implicated in vaccine immunity to fungi. To date, only a small number of fungal antigens have been identified. Knowing the antigenic determinants of fungi-specific T cells greatly facilitates the detection, enumeration and characterizes the antifungal T cells and it constitutes an important step toward the design and development of vaccination strategies. This chapter describes a method of MHC-II ligand elution and mass spectrometric analysis to identify naturally processed and presented fungal peptide epitopes.
Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L
1990-06-01
The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol.
Peter, Jochen F; Otto, Angela M
2010-02-01
The effective isolation and purification of proteins from biological fluids is the most crucial step for a successful protein analysis when only minute amounts are available. While conventional purification methods such as dialysis, ultrafiltration or protein precipitation often lead to a marked loss of protein, SPE with small-sized particles is a powerful alternative. The implementation of particles with superparamagnetic cores facilitates the handling of those particles and allows the application of particles in the nanometer to low micrometer range. Due to the small diameters, magnetic particles are advantageous for increasing sensitivity when using subsequent MS analysis or gel electrophoresis. In the last years, different types of magnetic particles were developed for specific protein purification purposes followed by analysis or screening procedures using MS or SDS gel electrophoresis. In this review, the use of magnetic particles for different applications, such as, the extraction and analysis of DNA/RNA, peptides and proteins, is described.
The role of mass spectrometry to study the Oklo-Bangombé natural reactors.
De Laeter, J R; Hidaka, H
2007-01-01
The discovery of the existence of chain reactions at the Oklo natural reactors in Gabon, Central Africa in 1972 was a triumph for the accuracy of mass spectrometric measurements, in that a 0.5% anomaly in the (235)U/(238)U ratio of certain U ore samples indicated a depletion in (235)U. Mass spectrometric techniques thereafter played a dominant role in determining the nuclear parameters of the reactor zones themselves, and in deciphering the geochemical characteristics of various elements in the U-rich ore and in the surrounding rock strata. The variations in the isotopic composition of a large number of elements, caused by a combination of nuclear fission, neutron capture and radioactive decay, provide a powerful tool for investigating this unique geological environment. Mass spectrometry can be used to measure the present-day elemental and isotopic abundances of numerous elements, so as to decipher the past history of the reactors and examine the retentivity/mobility of these elements. Many of the fission products have a radioactive decay history that have been used to date the age and duration of the reactor zones, and to provide insight into their nuclear and geochemical behavior as a function of time. The Oklo fission reactors and their near neighbor at Bangombé, some 30 km to the south-east of Oklo, are unique in that not only did they become critical some 2 x 10(9) years ago, but also the deposits have been preserved over this period of geological time. The long-term geochemical behavior of actinides and fission products have been extensively studied by a variety of mass spectrometric techniques over the past 30 years to provide us with significant information on the mobility/retentivity of this material in a natural geological repository. The Oklo-Bangombé natural reactors are therefore geological analogs that can be evaluated in terms of possible radioactive waste containment sites. As more reactor zones were discovered, it was realized that they could be classified into two groups according to their burial depth in the Oklo mine-site. Reactor Zones 10, 13, and 16 were buried more deeply, and were therefore less weathered than the other zones. The less-weathered zones are of great importance in mobility/retentivity studies and therefore to the question of radioactive waste containment. Isotopic studies of these natural reactors are also of value in physics to examine possible variations in fundamental constants over the past 2 billion years.
NASA Technical Reports Server (NTRS)
Podosek, Frank A.; Zinner, Ernst K.; Lundberg, Laura L.; Brannon, Joyce C.; Macpherson, Glenn J.
1991-01-01
The abundance and the distribution of Al-26, and the initial Sr-87/Sr-86 ratios were determined in a suite of six coarse-grained Ca-Al-rich inclusions from the Allende meteorite, using, respectively, petrographic and chemical characterizations and ion-probe mass spectrometric analyses of the Al-Mg isotopic system, and thermal emission spectrometric analyses of the Rb-Sr system. Results establish a firm association between primitive Al-26/Al-27 and primitive Sr-87/Sr-86 found in each of these inclusions. None of the results required interpretation in terms of heterogeneously distributed Al-26.
NASA Astrophysics Data System (ADS)
Morimoto, Takashi; Ansari, S. G.; Yoneyama, Koji; Nakajima, Teppei; Masuda, Atsushi; Matsumura, Hideki; Nakamura, Megumi; Umemoto, Hironobu
2006-02-01
The mechanism of catalytic chemical vapor deposition (Cat-CVD) processes for hexamethyldisilazane (HMDS) and trisdimethylaminosilane (TDMAS), which are used as source gases to prepare SiNx or SiCxNy films, was studied using three different mass spectrometric techniques: ionization by Li+ ion attachment, vacuum-ultraviolet radiation and electron impact. The results for HMDS show that Si-N bonds dissociate selectively, although Si-C bonds are weaker, and (CH3)3SiNH should be one of the main precursors of deposited films. This decomposition mechanism did not change when NH3 was introduced, but the decomposition efficiency was slightly increased. Similar results were obtained for TDMAS.
Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.
1994-01-01
The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.
Foudeil, S; Hassoun, H; Lamhasni, T; Ait Lyazidi, S; Benyaich, F; Haddad, M; Choukrad, M; Boughdad, A; Bounakhla, M; Bounouira, H; Duarte, R M B O; Cachada, A; Duarte, A C
2015-05-01
The purpose of this research is to develop a direct spectrometric approach to monitor soils and waters, at a lower cost than the widely used chromatographic techniques; a spectrometric approach that is effective, reliable, fast, easy to implement, and without any use of organic solvents whose utilization is subject to law limitation. It could be suitable at least as an alert method in case of massive contamination. Here, we present for the first time a catalog of excitation-emission and total synchronous fluorescence maps that may be considered as fingerprints of a series of homologated pesticides, in large use in Morocco, aiming at a direct detection of their remains in agricultural soils and neighboring waters. After a large survey among farmers, agricultural workers and product distributors in two important agricultural regions of Morocco (Doukkala-Abda and Sebou basin), 48 commercial pesticides, which are fluorescent, were chosen. A multi-component spectral database of these targeted commercial pesticides was elaborated. For each pesticide, dissolved in water at the lowest concentration giving a no-noise fluorescence spectrum, the total excitation-emission matrix (TEEM), the total synchronous fluorescence matrix (TSFM) in addition to synchronous fluorescence spectra (SFS) at those offsets giving the highest fluorescence intensity were recorded. To test this preliminary multi-component database, two real soil samples, collected at a wheat field and at a vine field in the region of Doukkala, were analyzed. Remains of the commercial Pirimor (Carbamate) and Atlantis (Sulfonylurea) were identified by comparison of the recorded TEEM, TSFM, and SFS to those of the preliminary catalog at one hand, and on the basis of the results of a field pre-survey. The developed approach seems satisfactory, and the fluorimetric fingerprint database is under extension to a higher number of fluorescent pesticides in common use among the Moroccan agricultural regions.
Fu, Jinfeng; Wang, Min; Guo, Huimin; Tian, Yuan; Zhang, Zunjian; Song, Rui
2015-01-01
Rhizoma et Radix Polygoni Cuspidati (Huzhang in Chinese, HZ) is a traditional medicinal plant in China. Many of the components of HZ have been proved to be bioactive while it is difficult to conduct a comprehensive chemical profiling of HZ as a consequence of the absence of efficient separation system and sensitive detective means. We developed a simple and effective method for comprehensive characterization of constituents in HZ. To develop a simple and effective method to characterize the components in HZ and provide useful information for subsequent metabolic studies of HZ. The components in HZ aqueous extract were characterized by using high performance liquid chromatography with UV diode-array detector (HPLC-DAD) and ion trap/time-of-flight mass spectrometric detection (HPLC-IT/TOF). Stilbenes, anthraquinones, gallates and tannins, naphthalenes and some other compounds were identified and confirmed by diagnostic fragment ions with accurate mass measurements, characteristic fragmentation pathways and relevant published literatures. Among the 238 constituents detected in HZ, a total number of 74 constituents were identified unambiguously or tentatively, including 29 compounds reported for the first time in HZ. The identification and structure elucidation of these chemicals provided essential data for quality control and further in vivo metabolic studies of HZ. Key words: Polygonum cuspidatum, HPLC-DAD, HPLC-IT/TOF, qualitative analysis.
Moore, Christine; Coulter, Cynthia; Crompton, Katherine
2007-11-15
A quantitative analytical procedure for the determination of cocaine, benzoylecgonine and cocaethylene and norcocaine in hair has been developed and validated. The hair samples were washed, incubated, and any drugs present were quantified using mixed mode solid-phase extraction and liquid chromatography with tandem mass spectrometric detection in positive atmospheric pressure chemical ionization mode. For confirmation, two transitions were monitored and one ion ratio was determined, which was within 20% of that of the known calibration standards. The monitoring of the qualifying transition and requirement for its presence within a specific ratio to the primary ion limited the sensitivity of the assay, particularly for benzoylecgonine, however, the additional confidence in the final result as well as forensic defensibility were considered to be of greater importance. Even with simultaneous monitoring, the concentrations proposed by the United States Federal guidelines for hair analysis were achieved. The limits of quantitation were 50 pg/mg; the limit of detection was 25 pg/mg. The intra-day precision of the assays at 100 pg/mg (n=5) was 1.3%, 8.1%, 0.8% and 0.4%; inter-day precision 4.8%, 9.2%, 15.7% and 12.6% (n=10) for cocaine, benzoylecgonine, cocaethylene and norcocaine, respectively. The methods were applied to both proficiency specimens and to samples obtained during research studies in the USA.
Meng, Xiangpeng; Tong, Tong; Wang, Lianrong; Liu, Hanxia; Chan, Wan
2016-05-01
2-Alkylcyclobutanones (2-ACBs) are uniquely formed when triglycerides-containing food products are exposed to ionizing radiation. Thus, 2-ACBs have been used as marker molecules to identify irradiated food. Most methods to determine 2-ACBs involve mass spectrometric detection after chromatographic separation. The spectrofluorometer is rarely used to determine 2-ACBs because these molecules do not fluoresce. In this study, we developed an ultra-performance liquid chromatography (UPLC) method to determine 2-ACBs. 2-ACBs were converted into fluorophores after reacting with 1-naphthalenyl hydrazine to facilitate their sensitive and selective detection using a fluorescence detector (FLD). Analysis of 2-ACBs using our developed UPLC-FLD method allows sensitive determination of 2-ACBs at a detection limit of 2 ng 2-ACBs per g of fat (30 pg/injection), which is significantly lower than that of existing analytical methods. After validation for trueness and precision, the method was applied to γ-irradiated chicken samples to determine their 2-ACB content. Comparative studies employing liquid chromatography-tandem mass spectrometric method revealed no systematic difference between the two methods, thereby demonstrating that the proposed UPLC-FLD method can be suitably used to determine 2-ACBs in irradiated foodstuffs. Graphical Abstract Determination of radiation-induced food-borne 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone by combining 1-naphthalenyl hydrazine derivatization and ultra-performance liquid chromatography with fluorescence detection.
Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fjodorov, V.; Ivanov, V.; Loutchanski, A.
It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity andmore » direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)« less
Digital imaging mass spectrometry.
Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas
2011-06-01
Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm(2). Extended laser spots of ~5 mm(2) on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.
NASA Astrophysics Data System (ADS)
Letarte, Sylvain
Dans le but d'ameliorer la precision avec laquelle le rapport isotopique de l'hydrogene peut etre determine, un spectrometre de masse a ionisation Penning a ete construit pour provoquer l'ionisation selective de l'hydrogene moleculaire et de l'hydrure de deuterium a partir d'un melange gazeux. L'utilisation d'atomes dans des etats d'excitation metastable s'est averee une solution adequate pour reponde a cette attente. L'emploi de l'helium, a l'interieur d'une source d'atomes metastables construit specifiquement pour ce travail, ne permet pas d'obtenir un spectre de masse compose uniquement des deux molecules d'interet. L'ionisation de ces dernieres provient de deux processus distincts, soient l'ionisation Penning et l'ionisation par bombardement electronique. Contrairement a l'helium, il a ete demontre que le neon metastable est un candidat ideal pour produire l'ionisation selective de type Penning. Le nombre d'ions produits est directement proportionnel au courant de la decharge electrique et de la pression d'operation de la source d'atomes metastables. Ces resultats demontrent le potentiel d'un tel spectrometre de masse pour ameliorer la precision a laquelle le rapport isotopique peut etre determine comparativement aux autres techniques existantes.
Fast and Selective Modification of Thiol Proteins/Peptides by N-(Phenylseleno)phthalimide
NASA Astrophysics Data System (ADS)
Wang, Zhengfang; Zhang, Yun; Zhang, Hao; Harrington, Peter B.; Chen, Hao
2012-03-01
We previously reported that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used to selectively derivatize thiols for mass spectrometric analysis, and the introduced selenium tags are useful as they could survive or removed with collision-induced dissociation (CID). Described herein is the further study of the reactivity of various protein/peptide thiols toward NPSP and its application to derivatize thiol peptides in protein digests. With a modified protocol (i.e., dissolving NPSP in acetonitrile instead of aqueous solvent), we found that quantitative conversion of thiols can be obtained in seconds, using NPSP in a slight excess amount (NPSP:thiol of 1.1-2:1). Further investigation shows that the thiol reactivity toward NPSP reflects its chemical environment and accessibility in proteins/peptides. For instance, adjacent basic amino acid residues increase the thiol reactivity, probably because they could stabilize the thiolate form to facilitate the nucleophilic attack of thiol on NPSP. In the case of creatine phosphokinase, the native protein predominately has one thiol reacted with NPSP while all of four thiol groups of the denatured protein can be derivatized, in accordance with the corresponding protein conformation. In addition, thiol peptides in protein/peptide enzymatic digests can be quickly and effectively tagged by NPSP following tri- n-butylphosphine (TBP) reduction. Notably, all three thiols of the peptide QCCASVCSL in the insulin peptic digest can be modified simultaneously by NPSP. These results suggest a novel and selective method for protecting thiols in the bottom-up approach for protein structure analysis.
NASA Astrophysics Data System (ADS)
Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.
2016-09-01
Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.
Analysis of poly-beta-hydroxybutyrate in environmental samples by GC-MS/MS.
Elhottová, D; Tríska, J; Petersen, S O; Santrůcková, H
2000-05-01
Application of gas chromatography-mass spectrometry (GC-MS) can significantly improve trace analyses of compounds in complex matrices from natural environments compared to gas chromatography only. A GC-MS/MS technique for determination of poly-beta-hydroxybutyrate (PHB), a bacterial storage compound, has been developed and used for analysis of two soils stored for up to 319 d, fresh samples of sewage sludge, as well as a pure culture of Bacillus megaterium. Specific derivatization of beta-hydroxybutyrate (3-OH C4:0) PHB monomer units by N-tert-butyl-dimethylsilyl-N-methyltrifluoracetamide (MTBSTFA) improved chromatographic and mass spectrometric properties of the analyte. The diagnostic fragmentation scheme of the derivates tert-butyldimethylsilyl ester and ether of beta-hydroxybutyric acid (MTBSTFA-HB) essential for the PHB identification was shown. The ion trap MS was used, therefore the scan gave the best sensitivity and with MS/MS the noise decreased, so the S/N was better and also with second fragmentation the amount of ions increased compared to SIM. The detection limit for MTBSTFA-HB by GC-MS/MS was about 10(-13) g microL(-1) of injected volume, while by GC (FID) and GC-MS (scan) it was around 10(-10) g microL(-1) of injected volume. Sensitivity of GC-MS/MS measurements of PHB in arable soil and activated sludge samples was down to 10 pg of PHB g(-1) dry matter. Comparison of MTBSTFA-HB detection in natural soil sample by GC (FID), GC-MS (scan) and by GC-MS/MS demonstrated potentials and limitations of the individual measurement techniques.
Volatile organic compounds in Gulf of Mexico sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, T.J.
1988-01-01
Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, andmore » benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.« less
New evidence for chemical fractionation of radioactive xenon precursors in fission chains
Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.
2017-01-01
Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, 136Xe and 134Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth’s and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites. PMID:29177205
Neutron dosimetry at a high-energy electron-positron collider
NASA Astrophysics Data System (ADS)
Bedogni, Roberto
Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.
A deviation display method for visualising data in mobile gamma-ray spectrometry.
Kock, Peder; Finck, Robert R; Nilsson, Jonas M C; Ostlund, Karl; Samuelsson, Christer
2010-09-01
A real time visualisation method, to be used in mobile gamma-spectrometric search operations using standard detector systems is presented. The new method, called deviation display, uses a modified waterfall display to present relative changes in spectral data over energy and time. Using unshielded (137)Cs and (241)Am point sources and different natural background environments, the behaviour of the deviation displays is demonstrated and analysed for two standard detector types (NaI(Tl) and HPGe). The deviation display enhances positive significant changes while suppressing the natural background fluctuations. After an initialization time of about 10min this technique leads to a homogeneous display dominated by the background colour, where even small changes in spectral data are easy to discover. As this paper shows, the deviation display method works well for all tested gamma energies and natural background radiation levels and with both tested detector systems.
Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa
2018-01-25
A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2 = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Moorthy, Balakrishnan S; Schultz, Steven G; Kim, Sherry G; Topp, Elizabeth M
2014-06-02
Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products.
Driffield, M; Bradley, E L; Harmer, N; Castle, L; Klump, S; Mottier, P
2010-10-01
Polyadipate plasticizers can be present in the polyvinylchloride (PVC) gaskets used to seal the lids of glass jars. As the gaskets can come into direct contact with the foodstuffs inside the jar, the potential exists for polyadipate migration into the food. The procedure and performance characteristics of a test method for the analysis of polyadipates in food simulants (3% aqueous acetic acid and 10% aqueous ethanol) and the volatile test media used in substitute fat tests (isooctane and 95% aqueous ethanol) are described. The PVC gaskets were exposed to the food simulants or their substitutes under standard test conditions. Studies were initially carried out using direct measurement of the polyadipate oligomers by liquid chromatography with time-of-flight mass spectrometric detection (LC-TOF-MS) but this was not practical due to the number of peaks detected. Instead, the migrating polyadipates were hydrolysed to adipic acid and measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). The amount of polyadipate that this measurement of adipic acid represents was then calculated. Method performance was assessed by analysis of gaskets from two types of jar lids by single-laboratory validation. Linearity, sensitivity, repeatability, intermediate reproducibility and recovery were determined to be suitable for checking compliance with the 30 mg/kg specific migration limits for polyesters of 1,2-propane diol and/or 1,3- and/or 1,4-butanediol and/or polypropylene-glycol with adipic acid, which may be end-capped with acetic acid or fatty acids C(12)-C(18) or n-octanol and/or n-decanol. The method was found to be much quicker than previous methods involving extraction, clean-up, hydrolysis, esterification, derivatisation and GC measurement, consequently saving time and money.
Masci, Maurizio; Orban, Elena; Nevigato, Teresina
2015-01-02
A simple instrumental procedure was developed to carry out the not simple analysis of PCBs in fish samples. PCBs with the same degree of chlorination (the isomers) are expected to be totally indistinguishable among them by all existing detectors and by all existing mass spectrometers, and there is no apparent solution in those frequent cases where two isomers chromatographically coelute. Generally such coelutions are solved by means of multidimensional GC, but it is a complex technique impractical for most laboratories. The present research focuses on the seven important "indicator PCBs" by using the mass spectrometer in an innovative way. The "mass spectrometric ortho effect" was usefully exploited in addressing coelutions between isomers. Other new important observations on mass spectra were decisive in solving the apparent problem arising from coelutions between higher chlorinated PCBs with the lower chlorinated ones when low-resolution MS is used. With the proposed procedure, the seven indicators are analyzed in a simple way and with a degree of accuracy never observed with the conventional gas chromatography. The method was applied to some Bluefin Tuna fish samples of big size suspected to have not negligible levels of PCBs due to the high position of this species in the food chain. The supposition was partly confirmed. On the basis of the results here obtained, the recently introduced EU Regulation on six of the seven indicators shows one critical point: in the present paper, an amendment to the Regulation is proposed. A number of important validation measures are reported. Copyright © 2014 Elsevier B.V. All rights reserved.
Mazzarino, Monica; de la Torre, Xavier; Di Santo, Roberto; Fiacco, Ilaria; Rosi, Federica; Botrè, Francesco
2010-03-01
Different liquid chromatographic/tandem mass spectrometric (LC/MS/MS) scanning techniques were considered for the characterization of tamoxifene metabolites in human urine for anti-doping purpose. Five different LC/MS/MS scanning methods based on precursor ion scan (precursor ion scan of m/z 166, 152 and 129) and neutral loss scan (neutral loss of 72 Da and 58 Da) in positive ion mode were assessed to recognize common ions or common losses of tamoxifene metabolites. The applicability of these methods was checked first by infusion and then by the injection of solution of a mixture of reference standards of four tamoxifene metabolites available in our laboratory. The data obtained by the analyses of the mixture of the reference standards showed that the five methods used exhibited satisfactory results for all tamoxifene metabolites considered at a concentration level of 100 ng/mL, whereas the analysis of blank urine samples spiked with the same tamoxifene metabolites at the same concentration showed that the neutral loss scan of 58 Da lacked sufficient specificity and sensitivity. The limit of detection in urine of the compounds studied was in the concentration range 10-100 ng/mL, depending on the compound structure and on the selected product ion. The suitability of these approaches was checked by the analysis of urine samples collected after the administration of a single dose of 20 mg of tamoxifene. Six metabolites were detected: 4-hydroxytamoxifene, 3,4-dihydroxytamoxifene, 3-hydroxy-4-methoxytamoxifene, N-demethyl-4-hydroxytamoxifene, tamoxifene-N-oxide and N-demethyl-3-hydroxy-4-methoxytamoxifene, which is in conformity to our previous work using a time-of-flight (TOF) mass spectrometer in full scan acquisition mode. Copyright (c) 2010 John Wiley & Sons, Ltd.
Schnöller, Johannes; Pittenauer, Ernst; Hutter, Herbert; Allmaier, Günter
2009-12-01
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS), matrix-assisted laser desorption/ionization reflectron time-of-flight (TOF) mass spectrometry (MALDI-RTOF-MS) and reflectron TOF secondary ion mass spectrometry (RTOF-SIMS). The samples were analyzed either directly without any treatment (RTOF-SIMS) or after a simple liquid/liquid extraction step (ESI-IT-MS, MALDI-RTOF-MS and RTOF-SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF-SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI-IT- and MALDI-RTOF-MS-generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI-IT-MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so-called 'soft' desorption/ionization techniques exhibited intense fragmentation only by applying low-energy collision-induced dissociation (CID) tandem MS on a multistage ion trap-instrument and high-energy CID on a tandem TOF-instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT-instrument (collision energy in the very low eV range) or the TOF/RTOF-instrument (collision energy 20 keV), but both delivered important structural information. Copyright 2009 John Wiley & Sons, Ltd.
Lau, Hollis; Pace, Danielle; Yan, Boxu; McGrath, Theresa; Smallwood, Scott; Patel, Ketaki; Park, Jihea; Park, Sungae S; Latypov, Ramil F
2010-04-01
A new cation-exchange high-performance liquid chromatography (HPLC) method that separates fragment antigen-binding (Fab) and fragment crystallizable (Fc) domains generated by the limited proteolysis of monoclonal antibodies (mAbs) was developed. This assay has proven to be suitable for studying complex degradation processes involving various immunoglobulin G1 (IgG1) molecules. Assignment of covalent degradations to specific regions of mAbs was facilitated by using Lys-C and papain to generate Fab and Fc fragments with unique, protease-dependent elution times. In particular, this method was useful for characterizing protein variants formed in the presence of salt under accelerated storage conditions. Two isoforms that accumulated during storage were readily identified as Fab-related species prior to mass-spectrometric analysis. Both showed reduced biological activity likely resulting from modifications within or in proximity of the complementarity-determining regions (CDRs). Utility of this assay was further illustrated in the work to characterize light-induced degradations in mAb formulations. In this case, a previously unknown Fab-related species which populated upon light exposure was observed. This species was well resolved from unmodified Fab, allowing for direct and high-purity fractionation. Mass-spectrometric analysis subsequently identified a histidine-related degradation product associated with the CDR2 of the heavy chain. In addition, the method was applied to assess the structural organization of a noncovalent IgG1 dimer. A new species corresponding to a Fab-Fab complex was found, implying that interactions between Fab domains were responsible for dimerization. Overall, the data presented demonstrate the suitability of this cation-exchange HPLC method for studying a wide range of covalent and noncovalent degradations in IgG1 mAbs. 2010 Elsevier B.V. All rights reserved.
Du, Fuying; Liu, Ting; Liu, Tian; Wang, Yongwei; Wan, Yakun; Xing, Jie
2011-10-30
Triptolide (TP), the primary active component of the herbal medicine Tripterygium wilfordii Hook F, has shown promising antileukemic and anti-inflammatory activity. The pharmacokinetic profile of TP indicates an extensive metabolic elimination in vivo; however, its metabolic data is rarely available partly because of the difficulty in identifying it due to the absence of appropriate ultraviolet chromophores in the structure and the presence of endogenous interferences in biological samples. In the present study, the biotransformation of TP was investigated by improved data-dependent accurate mass spectrometric analysis, using an LTQ/Orbitrap hybrid mass spectrometer in conjunction with the online hydrogen (H)/deuterium (D) exchange technique for rapid structural characterization. Accurate full-scan MS and MS/MS data were processed with multiple post-acquisition data-mining techniques, which were complementary and effective in detecting both common and uncommon metabolites from biological matrices. As a result, 38 phase I, 9 phase II and 8 N-acetylcysteine (NAC) metabolites of TP were found in rat urine. Accurate MS/MS data were used to support assignments of metabolite structures, and online H/D exchange experiments provided additional evidence for exchangeable hydrogen atoms in the structure. The results showed the main phase I metabolic pathways of TP are hydroxylation, hydrolysis and desaturation, and the resulting metabolites subsequently undergo phase II processes. The presence of NAC conjugates indicated the capability of TP to form reactive intermediate species. This study also demonstrated the effectiveness of LC/HR-MS(n) in combination with multiple post-acquisition data-mining methods and the online H/D exchange technique for the rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Vater, Joachim; Niu, Ben; Dietel, Kristin; Borriss, Rainer
2015-09-01
Paenibacillus polymyxa-M1 is a potent producer of bioactive compounds, such as lipopeptides, polyketides, and lantibiotics of biotechnological and medical interest. Genome sequencing revealed nine gene clusters for nonribosomal biosynthesis of such agents. Here we report on the investigation of the fusaricidins, a complex of cyclic lipopeptides containing 15-guanidino-3-hydroxypentadecanoic acid (GHPD) as fatty acid component by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). More than 20 variants of these compounds were detected and characterized in detail. Mass spectrometric sequence analysis was performed by MALDI-LIFT-TOF/TOF fragment analysis. The obtained product ion spectra show a specific processing in the fatty acid part. GHPD is cleaved between the α- and ß-position yielding two fragments a and b, one bearing the end-standing guanidine group and another one comprising the residual two C-atoms of GHPD with the attached peptide moiety. The complete sequence of all fusaricidins was derived from sets of bn- and yn-ions. The fusaricidin complex can be divided into four lipopeptide families, three of them showing variations of the amino acid in position 3, Val or Ile for the first and Tyr or Phe for families 2 and 3, respectively. A collection of novel fusaricidins was detected differing from those of families 1-3 by an additional residue of 71 Da (family 4). LIFT-TOF/TOF fragment spectra of these species imply that in their peptide moiety, an Ala-residue is attached by an ester bond to the free hydroxyl group of Thr4. More than 10 novel fusaricidins were characterized mass spectrometrically.
Park, Min-Ho; Lee, Yun Young; Cho, Kyung Hee; La, Sookie; Lee, Hee Joo; Yim, Dong-Seok; Ban, Sooho; Park, Moon-Young; Kim, Yong-Chul; Kim, Yoon-Gyoon; Shin, Young G
2016-03-01
A liquid chromatography-triple quadrupole mass spectrometric (LC-MS/MS) method was developed and validated for the determination of 5-nitro-5'-hydroxy-indirubin-3'-oxime (AGM-130) in human plasma to support a microdose clinical trial. The method consisted of a liquid-liquid extraction for sample preparation and LC-MS/MS analysis in the positive ion mode using TurboIonSpray(TM) for analysis. d3 -AGM-130 was used as the internal standard. A linear regression (weighted 1/concentration) was used to fit calibration curves over the concentration range of 10-2000 pg/mL for AGM-130. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 96.6% with a precision (coefficient of variation, CV) of 4.4%. For quality control samples at 30, 160 and 1600 pg/mL, the between run CV was ≤5.0 %. Between-run accuracy ranged from 98.1 to 101.0%. AGM-130 was stable in 50% acetonitrile for 168 h at 4°C and 6 h at room temperature. AGM-130 was also stable in human plasma at room temperature for 6 h and through three freeze-thaw cycles. The variability of selected samples for the incurred sample reanalysis was ≤12.7% when compared with the original sample concentrations. This validated LC-MS/MS method for determination of AGM-130 was used to support a phase 0 microdose clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.
Visualizing the kinetic power stroke that drives proton-coupled Zn(II) transport
Gupta, Sayan; Chai, Jin; Cheng, Jie; D'Mello, Rhijuta; Chance, Mark R.; Fu, Dax
2014-01-01
The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of E. coli, and the transport-site of YiiP receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux1,2. This membrane protein is a well characterized member3-7 of the protein family of cation diffusion facilitators (CDFs) that occurs at all phylogenetic levels8-10. X-ray mediated hydroxyl radical labeling of YiiP and mass spectrometric analysis showed that Zn(II) binding triggered a highly localized, all-or-none change of water accessibility to the transport-site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics revealed a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical reorientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport-site enables a stationary proton gradient to facilitate the conversion of zinc binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active transport reaction. PMID:25043033
Hosseini, Mohammad Saeid; Chamsaz, Mahmoud; Raissi, Heidar; Naseri, Yousef
2006-01-01
The proposed method is a simple process for the determination of trace amount of thallium(I) in the environmental wastewater samples by electrothermal atomic absorption spectrometry. The wastewater samples were obtained from the environment of a cement plant and subjected to a simple treatment, such as adjusting pH and masking the interfering ions, to prepare for the flotation process in which the thallium(I) content was floated as an ion-association complex using iodide and Rhodamine B at the interface of aqueous/cyclohexane layers. The floated layer was then separated and dissolved in 2 ml of a solution, which was 1% to H2SO4 and 50% to methanol, respectively. Aliquots of 10-microl of this solution were subjected to the graphite furnace to determine the thallium(I) content. The flotation process can be carried in a weak acidic medium in which the interfering effects owing to certain metal ions were eliminated by masking them as neutral citrate chelates. The dynamic range for the determination was found to be 1.0 x 10(-8) - 1.0 x 10(-7) mol l(-1). The RSD was 3.2% and the DL was 2.5 x 10(-9) mol l(-1) (calculated as 3SD of the blank). The reliability of the method is demonstrated by the analysis of a synthetic wastewater in which the recovery was found to be 94%.
Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo
2015-08-10
Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.
Petrovskaya, Lada E; Novototskaya-Vlasova, Ksenia A; Spirina, Elena V; Durdenko, Ekaterina V; Lomakina, Galina Yu; Zavialova, Maria G; Nikolaev, Evgeny N; Rivkina, Elizaveta M
2016-05-01
As a result of construction and screening of a metagenomic library prepared from a permafrost-derived microcosm, we have isolated a novel gene coding for a putative lipolytic enzyme that belongs to the hormone-sensitive lipase family. It encodes a polypeptide of 343 amino acid residues whose amino acid sequence displays maximum likelihood with uncharacterized proteins from Sphingomonas species. A putative catalytic serine residue of PMGL2 resides in a new variant of a recently discovered GTSAG sequence in which a Thr residue is replaced by a Cys residue (GCSAG). The recombinant PMGL2 was produced in Escherichia coli cells and purified by Ni-affinity chromatography. The resulting protein preferably utilizes short-chain p-nitrophenyl esters (C4 and C8) and therefore is an esterase. It possesses maximum activity at 45°C in slightly alkaline conditions and has limited thermostability at higher temperatures. Activity of PMGL2 is stimulated in the presence of 0.25-1.5 M NaCl indicating the good salt tolerance of the new enzyme. Mass spectrometric analysis demonstrated that N-terminal methionine in PMGL2 is processed and cysteine residues do not form a disulfide bond. The results of the study demonstrate the significance of the permafrost environment as a unique genetic reservoir and its potential for metagenomic exploration. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Hang; Wang, Ying
2017-07-04
Segmental hair analysis offers a longer period for retrospective drug detection than blood or urine. Hair is a keratinous fiber and is strongly hydrophobic. The embedding of drugs in hydrophobic hair at low concentrations makes it difficult for extraction and detection with matrix-assisted laser desorption/ionization (MALDI) coupled with mass spectrometric imaging (MSI). In this study, a single scalp hair was longitudinally cut with a cryostat section to a length of 4 mm and fixed onto a stainless steel MALDI plate. Umbelliferone was used as a new hydrophobic matrix to enrich and assist the ionization efficiency of methamphetamine in the hair sample. MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS profiling and imaging were performed for direct detection and mapping of methamphetamine on the longitudinal sections of the single hair sample in positive ion mode. Using MALDI-MSI, the distribution of methamphetamine was observed throughout five longitudinally sectioned hair samples from a drug abuser. The changes of methamphetamine were also semi-quantified by comparing the ratios of methamphetamine/internal standard (I.S). This method improves the detection sensitivity of target drugs embedded in a hair matrix for imaging with mass spectrometry. The method could provide a detection level of methamphetamine down to a nanogram per milligram incorporated into hair. The results were also compared with the conventional high performance liquid chromatography -tandem mass spectrometry (HPLC-MS/MS) method. Changes in the imaging results over time by the MSI method showed good semi-quantitative correlation to the results from the HPLC-MS/MS method. This study provides a powerful tool for drug abuse control and forensic medicine analysis in a narrow time frame, and a reduction in the sample amount required. Copyright © 2017 Elsevier B.V. All rights reserved.
Dial, Angela R; Misra, Sambuddha; Landing, William M
2015-04-30
Accurate determination of trace metals has many applications in environmental and life sciences, such as constraining the cycling of essential micronutrients in biological production and employing trace metals as tracers for anthropogenic pollution. Analysis of elements such as Fe, As, Se, and Cd is challenged by the formation of polyatomic mass spectrometric interferences, which are overcome in this study. We utilized an Octopole Collision/Reaction Cell (CRC)-equipped Quadrupole-Inductively Coupled Plasma Mass Spectrometer for the rapid analysis of small volume samples (~250 μL) in a variety of matrices containing HNO3 and/or HCl. Efficient elimination of polyatomic interferences was demonstrated by the use of the CRC in Reaction Mode (RM; H2 gas) and in Collision-Reaction Mode (CRM; H2 and He gas), in addition to hot plasma (RF power 1500 W) and cool plasma (600 W) conditions. It was found that cool plasma conditions with RM achieved the greatest signal sensitivity while maintaining low detection limits (i.e. (56) Fe in 0.44 M HNO3 has a sensitivity of 160,000 counts per second (cps)-per-1 µg L(-1) and a limit of detection (LoD) of 0.86 ng L(-1) ). The average external precision was ≤ ~10% for minor (≤10 µg L(-1) ) elements measured in a 1:100 dilution of NIST 1643e and for iron in rainwater samples under all instrumental operating conditions. An improved method has been demonstrated for the rapid multi-element analysis of trace metals that are challenged by polyatomic mass spectrometric interferences, with a focus on (56) Fe, (75) As, (78) Se and (111) Cd. This method can contribute to aqueous environmental geochemistry and chemical oceanography, as well as other fields such as forensic chemistry, agriculture, food chemistry, and pharmaceutical sciences. Copyright © 2015 John Wiley & Sons, Ltd.
Phosphatase activities as biosignatures of extant life
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Itoh, Y.; Edazawa, Y.; Moroi, A.; Takano, Y.
It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere high temperature hot springs and stratosphere Possible extraterrestrial biospheres in Mars Europa and Titan are being discussed Many biosignatures or biomarkers have been proposed to detect microbial activities in such extreme environments Phosphate esters are essential for the terrestrial life since they are constituents of nucleic acids and cell mebranes Thus all the terrestrial organisms have phosphatases that are enzymes catalyzing hydrolysis of phosphate esters We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and discussed whether they can be used as biosignatures for extant life Core samples and chimney samples were collected at the Suiyo Seamount Izu-Bonin Arc the Pacific Ocean in 2001 and 2002 and in South Mariana hydrothermal systems the Pacific Oceanas in 2003 both in a part of the Archaean Park Project Phosphatase activity in solid rock samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate pH 8 0 or pH 6 5 as a substrate as follows Pulverized samples were incuvated with substrate solution for an hour and then production rate of p-nitrophenol was calculated with absorbance at 410 nm Phosphatase activity in extracts was measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate Concentration of amino acids and their enantiomeric ratio were determined by HPLC after HF digestion of the
NASA Astrophysics Data System (ADS)
Liang, Lijiao; Zhen, Shujun; Huang, Chengzhi
2017-02-01
A highly selective method was presented for colorimetric determination of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles (UTP-Au NPs) in this paper. Specific hydrogen-bonding interaction between uracil base (U) and melamine resulted in the aggregation of AuNPs, displaying variations of localized surface plasmon resonance (LSPR) features such as color change from red to blue and enhanced localized surface plasmon resonance light scattering (LSPR-LS) signals. Accordingly, the concentration of melamine could be quantified based on naked eye or a spectrometric method. This method was simple, inexpensive, environmental friendly and highly selective, which has been successfully used for the detection of melamine in pretreated liquid milk products with high recoveries.
Discourse for slide presentation: An overview of chemical detection systems
NASA Technical Reports Server (NTRS)
Peters, Randy Alan; Galen, Theodore J.; Pierson, Duane L.
1990-01-01
A brief overview of some of the analytical techniques currently used in monitoring and analyzing permanent gases and selected volatile organic compound in air are presented. Some of the analytical considerations in developing a specific method are discussed. Four broad groups of hardware are discussed: compound class specific personal monitors, gas chromatographic systems, infrared spectroscopic systems, and mass spectrometric residual gas analyzer systems. Three types of detectors are also discussed: catalytic sensor based systems, photoionization detectors, and wet or dry chemical reagent systems. Under gas chromatograph based systems five detector systems used in combination with a GC are covered: thermal conductivity detectors, photoionization detectors, Fourier transform infrared spectrophotometric systems, quadrapole mass spectrometric systems, and a relatively recent development, a surface acoustic wave vapor detector.
Kawata, K; Ibaraki, T; Tanabe, A; Yagoh, H; Shinoda, A; Suzuki, H; Yasuhara, A
2001-03-09
Simple gas chromatographic-mass spectrometric determination of hydrophilic organic compounds in environmental water was developed. A cartridge containing activated carbon fiber felt was made by way of trial and was evaluated for solid-phase extraction of the compounds in water. The hydrophilic compounds investigated were acrylamide, N,N-dimethylacetamide, N,N-dimethylformamide, 1,4-dioxane, furfural, furfuryl alcohol, N-nitrosodiethylamine and N-nitrosodimethylamine. Overall recoveries were good (80-100%) from groundwater and river water. The relative standard deviations ranged from 4.5 to 16% for the target compounds. The minimum detectable concentrations were 0.02 to 0.03 microg/l. This method was successfully applied to several river water samples.
Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L.
Beck, Sebastian; Stengel, Julia
2016-10-01
Ginkgo biloba L. is known to be rich in flavonoids and flavonoid glycosides. However, the distribution within specific plant organs (e.g. within leaves) is not known. By using HPLC-MS and MS/MS we have identified a number of previously known G. biloba flavonoid glycosides and biflavonoids from leaves. Namely, kaempferol, quercetin, isorhamnetin, myricetin, laricitrin/mearnsetin and apigenin glycosides were identified. Furthermore, biflavonoids like ginkgetin/isoginkgetin were also detected. The application of MALDI mass spectrometric imaging, enabled the compilation of concentration profiles of flavonoid glycosides and biflavonoids in G. biloba L. leaves. Both, flavonoid glycosides and biflavonoids show a distinct distribution in leaf thin sections of G. biloba L. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of glow discharges for understanding the process of film formation
NASA Technical Reports Server (NTRS)
Venugopalan, M.; Avni, R.
1984-01-01
The physical and chemical processes which occur during the formation of different types of films in a variety of glow discharge plasmas are discussed. Emphasis is placed on plasma diagnostic experiments using spectroscopic methods, probe analysis, mass spectrometric sampling and magnetic resonance techniques which are well suited to investigate the neutral and ionized gas phase species as well as some aspects of plasma surface interactions. The results on metallic, semi-conducting and insulating films are reviewed in conjunction with proposed models and the problem encountered under film deposition conditions. It is concluded that the understanding of film deposition process requires additional experimental information on plasma surface interactions of free radicals and the synergetic effects where photon, electron and ion bombardment change the reactivity of the incident radical with the surface.
NASA Astrophysics Data System (ADS)
Zheng, Zhikun; Yang, Menglong; Liu, Yaqing; Zhang, Bailin
2006-11-01
Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.
Distinct sesquiterpene pyridine alkaloids from in Salvadoran and Peruvian Celastraceae species.
Callies, Oliver; Núñez, Marvin J; Perestelo, Nayra R; Reyes, Carolina P; Torres-Romero, David; Jiménez, Ignacio A; Bazzocchi, Isabel L
2017-10-01
As part of a bioprospecting program aimed at the discovery of undescribed natural products from Salvadoran and Peruvian flora, the phytochemical investigations of four Celastraceae species, Celastrus vulcanicola, Maytenus segoviarum, Maytenus jeslkii, and Maytenus cuzcoina, were performed. The current study reports the isolation and structural characterization of five previously undescribed macrolide sesquiterpene pyridine alkaloids, named vulcanicoline-A, cuzcoinine, vulcanicoline-B, jelskiine, and vulcanicoline-C, along with sixteen known alkaloids. The structures of the alkaloids were established by spectrometric and extensive 1D and 2D NMR spectroscopic analysis, including COSY, HSQC, HMBC, and ROESY experiments. The absolute configurations of alkaloids were proposed based on optical rotation sign, and biogenetic considerations. This study represents the first phytochemical analysis of Maytenus segoviarum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal inactivation of enzymes and pathogens in biosamples for MS analysis.
Ahnoff, Martin; Cazares, Lisa H; Sköld, Karl
2015-01-01
Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.
Arukwe, Augustine; Eggen, Trine; Möder, Monika
2012-11-01
In developing countries, there are needs for scientific basis to sensitize communities on the problems arising from improper solid waste deposition and the acute and long-term consequences for areas receiving immobilized pollutants. In Nigeria, as in many other African countries, solid waste disposal by way of open dumping has been the only management option for such wastes. Herein, we have highlighted the challenges of solid waste deposit and management in developing countries, focusing on contaminants of emerging concern and leaching into the environment. We have analyzed sediments and run-off water samples from a solid waste dumping site in Owerri, Nigeria for organic load and compared these with data from representative world cities. Learning from previous incidents, we intend to introduce some perspective for awareness of contaminants of emerging concerns such as those with potential endocrine disrupting activities in wildlife and humans. Qualitative and quantitative data obtained by gas chromatography and mass spectrometric analysis (GC-MS) provide an overview on lipophilic and semi-polar substances released from solid waste, accumulated in sediments and transported via leachates. The chromatograms of the full scan analyses of the sediment extracts clearly point to contamination related to heavy oil. The homologous series of n-alkanes with chain lengths ranging between C16 and C30, as well as detected polyaromatic hydrocarbon (PAH) compounds such as anthracene, phenanthrene, fluoranthene and pyrene support the assumption that diesel fuel or high boiling fractions of oil are deposited on the site. Targeted quantitative analysis for selected compounds showed high concentration of substances typically released from man-made products such as plastics, textiles, household and consumer products. Phthalate, an integral component of plastic products, was the dominant compound group in all sediment samples and run-off water samples. Technical nonylphenols (mixture of isomers), metabolites of non-ionic surfactants (nonylphenol-polyethoxylates), UV-filter compound ethyl methoxy cinnamate (EHMC) and bisphenol A (BPA) were particularly determined in the sediment samples at high μg/kg dry weight concentration. Measuring contaminants in such areas will help in increasing governmental, societal and industrial awareness on the extent and seriousness of the contamination both at waste disposal sites and surrounding terrestrial and aquatic environments. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Byrne, A. R.; Benedik, L.
1999-01-01
Neutron activation analysis (NAA), being essentially an isotopic and not an elemental method of analysis, is capable of determining a number of important radionuclides of radioecological interest by transformation into another, more easily quantifiable radionuclide. The nuclear characteristics which favour this technique may be summarized in an advantage factor relative to radiometric analysis of the original radioanalyte. Well known or hardly known examples include235U,238U,232Th,230Th,129I,99Tc,237Np and231Pa; a number of these are discussed and illustrated in analysis of real samples of environmental and biological origin. In particular, determination of231Pa by RNAA was performed using both postirradiation and preseparation methods. Application of INAA to enable the use of238U and232Th as endogenous (internal) radiotracers in alpha spectrometric analyses of uranium and thorium radioisotopes in radioecological studies is described, also allowing independent data sets to be obtained for quality control.
NASA Astrophysics Data System (ADS)
Manicke, Nicholas E.; Belford, Michael
2015-05-01
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.
Recent marine deposits reconstruction of two depositional environments of the French Atlantic coast
NASA Astrophysics Data System (ADS)
Pouzet, Pierre; Maanan, Mohamed; Schmidt, Sabine; Athimon, Emmanuelle; Robin, Marc
2017-04-01
This work provides a 300-yr high-resolution record of past storm and/or tsunami events using a multi-proxy analysis (137Cs and 210Pb dating, chemical composition and grain size) of sedimentary deposits from two coastal depositional environments of the French Atlantic coast. We analyse two wetland areas situated just behind a narrow coastal sand strip: 1) the Mer Blanche and 2) the Turballe. Evidence for strong extratropical storms and /or tsunamis events can be identified in this central part of the Bay of Biscay from the XIXth to the XXth century. Nine short sediment cores were collected in August 2016 using gravity type corer of 10 inner diameter and 100 cm length. Each core was longitudinally sliced, each half section photographed and described. High-resolution elemental analyses of split sediment cores were done using an Avaatech XRF core scanner. Then sediment cores were sampled every 0.5 cm. Grain size analysis was done using a Malvern 2600 laser beam grain sizer; organic carbon was measured by Leco induction furnace. 137Cs, 210Pb and 226Ra activities were measured on about 2 g dried sediment using a low background, well-type γ spectrometer (Canberra). The 210Pb in excess, which is used for dating, was calculated as the difference of measured 210Pb and of its supported activities (226Ra). The history information is performed using historical documents including narrative sources, ancient maps, records of cities repairs, surveys conducted after a disaster, newspaper from different departmental and national archives, and meteorological data. Coastal depositional environments were affected hardest by extreme environmental and climatological events during the last century. In the Mer Blanche core, three extreme episodes can be observed: i) at 36 cm, sediment is characterized by coarser sand and higher Sr/Al ratio, this episode coincides with a high tidal wave in spring 1937; ii) at 55 cm, we observe the presence of many gravels, they dates back to the high tidal wave of 1924 and iii) at 65 cm, the presence of another coarse pebble layer is attributed to a series of severe storms associated with coastal flooding episodes between 1910 and 1913. Acknowledgements The authors gratefully acknowledge Isabelle Billy (EPOC, University of Bordeaux 1) for XRF spectrometric core scanner analysis. This work was supported by grants from the Fondation de France through the research program « Quels littoraux pour demain? » and OR2C PDL regional framework.
Gulbakan, Basri; Yasun, Emir; Shukoor, M. Ibrahim; Zhu, Zhi; You, Mingxu; Tan, Xiaohong; Sanchez, Hernan; Powell, David H.; Dai, Hongjie; Tan, Weihong
2010-01-01
This study demonstrates the use of aptamer-conjugated graphene oxide as an affinity extraction and detection platform for analytes from complex biological media. We have shown that cocaine and adenosine can be selectively enriched from plasma samples and that direct mass spectrometric readout can be obtained without a matrix and with greatly improved signal-to-noise ratios. The aptamer conjugated graphene oxide has clear advantages in target enrichment and in generating highly efficient ionization of target molecules for mass spectrometry. These results demonstrate the utility of the approach for analysis of small molecules in real biological samples. PMID:21090719
NASA Astrophysics Data System (ADS)
Khare, B. N.; Thompson, W. R.; Cheng, L.; Chyba, C.; Sagan, C.; Arakawa, E. T.; Meisse, C.; Tuminello, P. S.
1993-06-01
Fifty separate irradiations of a 6:1 mixture of H2O/C2H6 ice conducted over a 5-month period have yielded sufficient tholin for the determination of its physical constants in the 0.06 to 40 micron range. While the imaginary part of the refractive index k was obtained by transmission measurements on thin-film samples and Kramers-Kronig analysis (KKA), the real part of the refractive index was obtained by KKA and ellipsometry; these data may prove useful in cometary and outer solar system spectrometric interpretation.
Mechanistic Analysis of the C-H Amination Reaction of Menthol by CuBr2 and Selectfluor.
Sathyamoorthi, Shyam; Lai, Yin-Hung; Bain, Ryan M; Zare, Richard N
2018-05-18
The mechanism of the Ritter-type C-H amination reaction of menthol with acetonitrile using CuBr 2 , Selectfluor, and Zn(OTf) 2 , first disclosed by Baran and coworkers in 2012, was studied using a combination of online electrospray ionization mass spectrometry, continuous UV/vis spectrometric monitoring, and density functional theory calculations. In addition to corroborating Baran's original mechanistic proposal, these studies uncovered a second pathway to product formation, which likely only occurs in microdroplets. DFT calculations show that neither pathway has a barrier that is greater than 6.8 kcal/mol, suggesting that both mechanisms are potentially operative under ambient conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellin, M. J.; Veryovkin, I. V.; Levine, J.
2010-01-01
There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.
Kane, J.S.
1988-01-01
A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.
Meyer, M.T.; Mills, M.S.; Thurman, E.M.
1993-01-01
An automated solid-phase extraction (SPE) method was developed for the pre-concentration of chloroacetanilide and triazine herbicides, and two triazine metabolites from 100-ml water samples. Breakthrough experiments for the C18 SPE cartridge show that the two triazine metabolites are not fully retained and that increasing flow-rate decreases their retention. Standard curve r2 values of 0.998-1.000 for each compound were consistently obtained and a quantitation level of 0.05 ??g/l was achieved for each compound tested. More than 10,000 surface and ground water samples have been analyzed by this method.
Duval, J.S.
1987-01-01
A detailed aerial gamma-ray spectrometric survey of the Jabal Ashirah area in the southeastern Arabian Shield has been analyzed using computer-classification algorithms. The analysis resulted in maps that show radiometric map units and gamma-ray anomalies indicating the presence of possible concentrations of potassium and uranium. The radiometric-unit map was interpreted to 'produce a simplified radiolithic map that was correlated with the mapped geology. The gamma-ray data show uranium anomalies that coincide with a tin-bearing granite, but known gold and nickel mineralization do not have any associated gamma-ray signatures.
NASA Astrophysics Data System (ADS)
Shirafuji, Tatsuru; Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Goto, Motonobu
2016-01-01
Methylene blue can be degraded in three-dimensionally integrated microsolution plasma. The degradation products have been analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry to understand the degradation mechanisms. The results of MALDI TOF mass spectrometry have shown that sulfoxide is formed at the first stage of the oxidation. Then, partial oxidation proceeds on the methyl groups left on the sulfoxide. The sulfoxide is subsequently separated to two benzene derivatives. Finally, weak functional groups are removed from the benzene derivatives.
Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review.
Zou, Zhirong; Deng, Yujia; Hu, Jing; Jiang, Xiaoming; Hou, Xiandeng
2018-08-17
Atomic fluorescence spectrometry (AFS), as one of the common atomic spectrometric techniques with high sensitivity, simple instrumentation, and low acquisition and running cost, has been widely used in various fields for trace elemental analysis, notably the determination of hydride-forming elements by hydride generation atomic fluorescence spectrometry (HG-AFS). In recent years, the soaring demand of field analysis has significantly promoted the miniaturization of analytical atomic spectrometers or at least instrumental components. Various techniques have also been developed to approach the goal of portable/miniaturized AFS instrumentation for field analysis. In this review, potentially portable/miniaturized AFS techniques, primarily involving advanced instrumental components and whole instrumentation with references since 2000, are summarized and discussed. The discussion mainly includes five aspects: radiation source, atomizer, detector, sample introduction, and miniaturized atomic fluorescence spectrometer/system. Copyright © 2018 Elsevier B.V. All rights reserved.
Estrella, Ruby P; Whitelock, John M; Roubin, Rebecca H; Packer, Nicolle H; Karlsson, Niclas G
2009-01-01
Structural characterization of oligosaccharides from proteoglycans and other glycoproteins is greatly enhanced through the use of mass spectrometry and gel electrophoresis. Sample preparation for these sensitive techniques often requires enzymatic treatments to produce oligosaccharide sequences for subsequent analysis. This chapter describes several small-scale methods for in-gel, on-blot, and in-solution enzymatic digestions in preparation for graphitized carbon liquid chromatography-mass spectrometry (LC-MS) analysis, with specific applications indicated for glycosaminoglycans (GAGs) and N-linked oligosaccharides. In addition, accompanying procedures for oligosaccharide reduction by sodium borohydride, sample desalting via carbon microcolumn, desialylation by sialidase enzyme treatment, and small-scale oligosaccharide species fractionation are included. Fluorophore-assisted carbohydrate electrophoresis (FACE) is another useful method to isolate derivatized oligosaccharides. Overall, the modularity of these techniques provides ease and flexibility for use in conjunction with mass spectrometric and electrophoretic tools for glycomic research studies.
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Nagy, Lajos; Nagy, Tibor; Zsuga, Miklós; Kéki, Sándor
2015-01-01
The residual tobacco smoke contamination (thirdhand smoke, THS) on the clothes of a smoker was examined by direct analysis in real time (DART) mass spectrometry. DART-MS enabled sensitive and selective analysis of nicotine as the indicator of tobacco smoke pollution. Tandem mass spectrometric (MS/MS) experiments were also performed to confirm the identification of nicotine. Transferred thirdhand smoke originated from the fingers of a smoker onto other objects was also detected by DART mass spectrometry. DART-MS/MS was utilized for monitoring the secondhand tobacco smoke (SHS) in the air of the laboratory using nicotine as an indicator. To the best of our knowledge, this is the first report on the application of DART-MS and DART-MS/MS to the detection of thirdhand smoke and to the monitoring of secondhand smoke.
Typification of cider brandy on the basis of cider used in its manufacture.
Rodríguez Madrera, Roberto; Mangas Alonso, Juan J
2005-04-20
A study of typification of cider brandies on the basis of the origin of the raw material used in their manufacture was conducted using chemometric techniques (principal component analysis, linear discriminant analysis, and Bayesian analysis) together with their composition in volatile compounds, as analyzed by gas chromatography with flame ionization to detect the major volatiles and by mass spectrometric to detect the minor ones. Significant principal components computed by a double cross-validation procedure allowed the structure of the database to be visualized as a function of the raw material, that is, cider made from fresh apple juice versus cider made from apple juice concentrate. Feasible and robust discriminant rules were computed and validated by a cross-validation procedure that allowed the authors to classify fresh and concentrate cider brandies, obtaining classification hits of >92%. The most discriminating variables for typifying cider brandies according to their raw material were 1-butanol and ethyl hexanoate.
Inutan, Ellen D.; Trimpin, Sarah
2013-01-01
The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551
Tools for phospho- and glycoproteomics of plasma membranes.
Wiśniewski, Jacek R
2011-07-01
Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.
MASS SPECTROMETRY-BASED METABOLOMICS
Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.
2007-01-01
This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475
Role of Carbonyl Modifications on Aging-Associated Protein Aggregation
Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura
2016-01-01
Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680
Remote hydrogen sensing techniques
NASA Technical Reports Server (NTRS)
Perry, Cortes L.
1992-01-01
The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2013-02-01
The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.
Radiation hardness study of semi-insulating GaAs detectors against 5 MeV electrons
NASA Astrophysics Data System (ADS)
Šagátová, A.; Zaťko, B.; Nečas, V.; Sedlačková, K.; Boháček, P.; Fülöp, M.; Pavlovič, M.
2018-01-01
A radiation hardness study of Semi-Insulating (SI) GaAs detectors against 5 MeV electrons is described in this paper. The influence of two parameters, the accumulative absorbed dose (from 1 to 200 kGy) and the applied dose rate (20, 40 or 80 kGy/h), on detector spectrometric properties were studied. The accumulative dose has influenced all evaluated spectrometric properties and also negatively affected the detector CCE (Charge Collection Efficiency). We have observed its systematic reduction from an initial 79% before irradiation down to about 51% at maximum dose of 200 kGy. Relative energy resolution was also influenced by electron irradiation. Its degradation was obvious in the range of doses from 24 up to a maximum dose of 200 kGy, where an increase from 19% up to 31% at 200 V reverse voltage was noticed. On the other hand, a global increase of detection efficiency with accumulative absorbed dose was observed for all samples. Concerning the actual detector degradation we can assume that the tested SI GaAs detectors will be able to operate up to a dose of 300 kGy at least, when irradiated by 5 MeV electrons. The second investigated parameter of irradiation, the dose rate of chosen ranges, did not greatly alter the spectrometric properties of studied detectors.
Hewavitharana, Amitha K; Abu Kassim, Nur Sofiah; Shaw, Paul Nicholas
2018-06-08
With mass spectrometric detection in liquid chromatography, co-eluting impurities affect the analyte response due to ion suppression/enhancement. Internal standard calibration method, using co-eluting stable isotope labelled analogue of each analyte as the internal standard, is the most appropriate technique available to correct for these matrix effects. However, this technique is not without drawbacks, proved to be expensive because separate internal standard for each analyte is required, and the labelled compounds are expensive or require synthesising. Traditionally, standard addition method has been used to overcome the matrix effects in atomic spectroscopy and was a well-established method. This paper proposes the same for mass spectrometric detection, and demonstrates that the results are comparable to those with the internal standard method using labelled analogues, for vitamin D assay. As conventional standard addition procedure does not address procedural errors, we propose the inclusion of an additional internal standard (not co-eluting). Recoveries determined on human serum samples show that the proposed method of standard addition yields more accurate results than the internal standardisation using stable isotope labelled analogues. The precision of the proposed method of standard addition is superior to the conventional standard addition method. Copyright © 2018 Elsevier B.V. All rights reserved.
The use of mass spectrometry to analyze dried blood spots.
Wagner, Michel; Tonoli, David; Varesio, Emmanuel; Hopfgartner, Gérard
2016-01-01
Dried blood spots (DBS) typically consist in the deposition of small volumes of capillary blood onto dedicated paper cards. Comparatively to whole blood or plasma samples, their benefits rely in the fact that sample collection is easier and that logistic aspects related to sample storage and shipment can be relatively limited, respectively, without the need of a refrigerator or dry ice. Originally, this approach has been developed in the sixties to support the analysis of phenylalanine for the detection of phenylketonuria in newborns using bacterial inhibition test. In the nineties tandem mass spectrometry was established as the detection technique for phenylalanine and tyrosine. DBS became rapidly recognized for their clinical value: they were widely implemented in pediatric settings with mass spectrometric detection, and were closely associated to the debut of newborn screening (NBS) programs, as a part of public health policies. Since then, sample collection on paper cards has been explored with various analytical techniques in other areas more or less successfully regarding large-scale applications. Moreover, in the last 5 years a regain of interest for DBS was observed and originated from the bioanalytical community to support drug development (e.g., PK studies) or therapeutic drug monitoring mainly. Those recent applications were essentially driven by improved sensitivity of triple quadrupole mass spectrometers. This review presents an overall view of all instrumental and methodological developments for DBS analysis with mass spectrometric detection, with and without separation techniques. A general introduction to DBS will describe their advantages and historical aspects of their emergence. A second section will focus on blood collection, with a strong emphasis on specific parameters that can impact quantitative analysis, including chromatographic effects, hematocrit effects, blood effects, and analyte stability. A third part of the review is dedicated to sample preparation and will consider off-line and on-line extractions; in particular, instrumental designs that have been developed so far for DBS extraction will be detailed. Flow injection analysis and applications will be discussed in section IV. The application of surface analysis mass spectrometry (DESI, paper spray, DART, APTDCI, MALDI, LDTD-APCI, and ICP) to DBS is described in section V, while applications based on separation techniques (e.g., liquid or gas chromatography) are presented in section VI. To conclude this review, the current status of DBS analysis is summarized, and future perspectives are provided. © 2014 Wiley Periodicals, Inc.
Podhorniak, Lynda V; Schenck, Frank J; Krynitsky, Alexander; Griffith, Francis
2004-01-01
A reversed-phase liquid chromatographic method with both fluorescence and mass spectrometric detection is presented for the determination of 13 parent N-methyl carbamate pesticides and their metabolites, as well as piperonyl butoxide, for a total of 24 compounds in selected fruits and vegetables. The commodities chosen were of special concern to the U.S. Environmental Protection Agency (EPA) because they had the least amount of monitoring data for dietary exposure estimates used in risk assessment. The method is based on a judicious selection of procedures from U.S. Food and Drug Administration sources such as the Pesticide Analytical Manual (Volume I), and Laboratory Information Bulletins, plus additional material from the chemical literature combined in a manner to recover the N-methyl carbamates and their metabolites at the 1 microg/kg or 1 part-per-billion level. The method uses an acetone extraction, followed by an aminopropyl solid-phase extraction cleanup. Determination of residues is by RP-LC, in which the liquid chromatograph is interfaced with either a fluorescence or a mass spectrometric detector. The method is designed so that a set of 6 samples can be prepared in 1 working day for overnight instrumental analysis. Recovery data are presented from analyses of selected commodities in some of EPA's fruit and vegetable crop groupings. A table listing relative retention times is presented for the N-methyl carbamates and their metabolites.
Lee, Byeong Ill; Park, Min-Ho; Heo, Soon Chul; Park, Yuri; Shin, Seok-Ho; Byeon, Jin-Ju; Kim, Jae Ho; Shin, Young G
2018-03-01
A liquid chromatographic-electrospray ionization-time-of-flight/mass spectrometric (LC-ESI-TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro-elution solid-phase extraction (SPE) for sample preparation and LC-ESI-TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro-elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration 2 ), with the equation y = ax 2 + bx + c was used to fit calibration curves over the concentration range of 3.02-2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within-run and the between-run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC-ESI-TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma. Copyright © 2017 John Wiley & Sons, Ltd.
Hrdlickova Kuckova, Stepanka; Rambouskova, Gabriela; Hynek, Radovan; Cejnar, Pavel; Oltrogge, Doris; Fuchs, Robert
2015-11-01
Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry is commonly used for the identification of proteinaceous binders and their mixtures in artworks. The determination of protein binders is based on a comparison between the m/z values of tryptic peptides in the unknown sample and a reference one (egg, casein, animal glues etc.), but this method has greater potential to study changes due to ageing and the influence of organic/inorganic components on protein identification. However, it is necessary to then carry out statistical evaluation on the obtained data. Before now, it has been complicated to routinely convert the mass spectrometric data into a statistical programme, to extract and match the appropriate peaks. Only several 'homemade' computer programmes without user-friendly interfaces are available for these purposes. In this paper, we would like to present our completely new, publically available, non-commercial software, ms-alone and multiMS-toolbox, for principal component analyses of MALDI-TOF MS data for R software, and their application to the study of the influence of heterogeneous matrices (organic lakes) for protein identification. Using this new software, we determined the main factors that influence the protein analyses of artificially aged model mixtures of organic lakes and fish glue, prepared according to historical recipes that were used for book illumination, using MALDI-TOF peptide mass mapping. Copyright © 2015 John Wiley & Sons, Ltd.
Yassine, Hussein; Borges, Chad R; Schaab, Matthew R; Billheimer, Dean; Stump, Craig; Reaven, Peter; Lau, Serrine S; Nelson, Randall
2013-08-01
Type 2 diabetes mellitus (T2DM) is an important risk factor for cardiovascular disease (CVD)--the leading cause of death in the United States. Yet not all subjects with T2DM are at equal risk for CVD complications; the challenge lies in identifying those at greatest risk. Therapies directed toward treating conventional risk factors have failed to significantly reduce this residual risk in T2DM patients. Thus newer targets and markers are needed for the development and testing of novel therapies. Herein we review two complementary MS-based approaches--mass spectrometric immunoassay (MSIA) and MS/MS as MRM--for the analysis of plasma proteins and PTMs of relevance to T2DM and CVD. Together, these complementary approaches allow for high-throughput monitoring of many PTMs and the absolute quantification of proteins near the low picomolar range. In this review article, we discuss the clinical relevance of the high density lipoprotein (HDL) proteome and Apolipoprotein A-I PTMs to T2DM and CVD as well as provide illustrative MSIA and MRM data on HDL proteins from T2DM patients to provide examples of how these MS approaches can be applied to gain new insight regarding cardiovascular risk factors. Also discussed are the reproducibility, interpretation, and limitations of each technique with an emphasis on their capacities to facilitate the translation of new biomarkers into clinical practice. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hao, Chunyan; Zhao, Xiaoming; Morse, David; Yang, Paul; Taguchi, Vince; Morra, Franca
2013-08-23
Liquid chromatography tandem mass spectrometry (LC-MS/MS) determination of quaternary ammonium herbicides diquat (DQ) and paraquat (PQ) can be very challenging due to their complicated chromatographic and mass spectrometric behaviors. Various multiple reaction monitoring (MRM) transitions from radical cations M(+) and singly charged cations [M-H](+), have been reported for LC-MS/MS quantitation under different chromatographic and mass spectrometric conditions. However, interference peaks were observed for certain previously reported MRM transitions in our study. Using a Dionex Acclaim(®) reversed-phase and HILIC mixed-mode LC column, we evaluated the most sensitive MRM transitions from three types of quasi-molecular ions of DQ and PQ, elucidated the cross-interference phenomena, and demonstrated that the rarely mentioned MRM transitions from dications M(2+) offered the best selectivity for LC-MS/MS analysis. Experimental parameters, such as IonSpray (IS) voltage, source temperature, declustering potential (DP), column oven temperature, collision energy (CE), acid and salt concentrations in the mobile phases were also optimized and an uncommon electrospray ionization (ESI) capillary voltage of 1000V achieved the highest sensitivity. Employing the proposed dication transitions 92/84.5 for DQ and 93/171 for PQ, the direct aqueous injection LC-MS/MS method developed was able to provide a method detection limit (MDL) of 0.1μg/L for the determination of these two herbicides in drinking water. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Sample handling for mass spectrometric proteomic investigations of human sera.
West-Nielsen, Mikkel; Høgdall, Estrid V; Marchiori, Elena; Høgdall, Claus K; Schou, Christian; Heegaard, Niels H H
2005-08-15
Proteomic investigations of sera are potentially of value for diagnosis, prognosis, choice of therapy, and disease activity assessment by virtue of discovering new biomarkers and biomarker patterns. Much debate focuses on the biological relevance and the need for identification of such biomarkers while less effort has been invested in devising standard procedures for sample preparation and storage in relation to model building based on complex sets of mass spectrometric (MS) data. Thus, development of standardized methods for collection and storage of patient samples together with standards for transportation and handling of samples are needed. This requires knowledge about how sample processing affects MS-based proteome analyses and thereby how nonbiological biased classification errors are avoided. In this study, we characterize the effects of sample handling, including clotting conditions, storage temperature, storage time, and freeze/thaw cycles, on MS-based proteomics of human serum by using principal components analysis, support vector machine learning, and clustering methods based on genetic algorithms as class modeling and prediction methods. Using spiking to artificially create differentiable sample groups, this integrated approach yields data that--even when working with sample groups that differ more than may be expected in biological studies--clearly demonstrate the need for comparable sampling conditions for samples used for modeling and for the samples that are going into the test set group. Also, the study emphasizes the difference between class prediction and class comparison studies as well as the advantages and disadvantages of different modeling methods.
Kutscher, Daniel J; Sanz-Medel, Alfredo; Bettmer, Jörg
2012-08-01
In this study, the binding behaviour of methylmercury (MeHg(+)) towards proteins is investigated. Free sulfhydryl groups in cysteine residues are known to be the most likely binding partners, due to the high affinity of mercury to sulphur. However, detailed knowledge about discrete binding sites in living organisms has been so far scarce. A metallomics approach using different methods like size-exclusion chromatography (SEC) and liquid chromatography (LC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) as well as complementary mass spectrometric techniques (electrospray ionisation-tandem mass spectrometry, ESI-MS/MS) are combined to sequence and identify possible target proteins or peptides after enzymatic digestion. Potential targets for MeHg(+) in tuna fish muscle tissue are investigated using the certified reference material CRM464 as a model tissue. Different extraction procedures appropriate for the extraction of proteins are evaluated for their efficiency using isotope dilution analysis for the determination of total Hg in the extracts. Due to the high chemical stability of the mercury-sulphur bond, the bioconjugate can be quantitatively extracted with a combination of tris(hydroxymethyl)aminomethane (TRIS) and sodium dodecyl sulphate (SDS). Using different separation techniques such as SEC and SDS-polyacrylamide gel electrophoresis (SDS-PAGE) it can be shown that major binding occurs to a high-molecular weight protein (M(w) > 200 kDa). A potential target protein, skeletal muscle myosin heavy chain, could be identified after tryptic digestion and capillary LC-ESI-MS/MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, M; Keisha Martin, K; S Crump, S
2007-03-23
The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work inmore » facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.« less
Prospects of In/CdTe X- and γ-ray detectors with MoO Ohmic contacts
NASA Astrophysics Data System (ADS)
Maslyanchuk, Olena L.; Solovan, Mykhailo M.; Maistruk, Eduard V.; Brus, Viktor V.; Maryanchuk, Pavlo D.; Gnatyuk, Volodymyr A.; Aoki, Toru
2018-01-01
The present paper analyzes the charge transport mechanisms and spectrometric properties of In/CdTe/MoOx heterojunctions prepared by magnetron sputtering of indium and molybdenum oxide thin films onto semi-insulating p-type single-crystal CdTe semiconductor, produced by Acrorad Co. Ltd. Current-voltage characteristics of the detectors at different temperatures were investigated. The charge transport mechanisms in the heterostructures under investigation were determined: the generation-recombination in the space charge region (SCR) at relatively low voltages and the space charge limited currents at high voltages. The spectra of 137Cs and 241Am isotopes taken at different applied bias voltages are presented. It is shown that the In/CdTe/MoOx structures can be used as X/γ-ray detectors in the spectrometric mode.
de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Héctor Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino
2018-05-01
This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Published by Elsevier B.V.
Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann
2017-05-01
In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.
[The progress in speciation analysis of trace elements by atomic spectrometry].
Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin
2013-12-01
The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.
Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.
Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin
2015-01-01
Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Tang, Weijuan; Sheng, Huaming; Jin, Chunfen; Riedeman, James S; Kenttämaa, Hilkka I
2016-04-15
The chemistry of desulfurization involved in processing crude oil is greatly dependent on the forms of sulfur in the oil. Sulfur exists in different chemical bonding environments in fossil fuels, including those in thiophenes and benzothiophenes, thiols, sulfides, and disulfides. In this study, the fragmentation behavior of the molecular ions of 17 aromatic organosulfur compounds with various functionalities was systematically investigated by using high-resolution tandem mass spectrometry. Multiple-stage tandem mass spectrometric experiments were carried out using a linear quadrupole ion trap (LQIT) equipped with an atmospheric pressure chemical ionization (APCI) source. (+)APCI/CS2 was used to generate stable dominant molecular ions for all the compounds studied except for three sulfides that also showed abundant fragment ions. The LQIT coupled with an orbitrap mass spectrometer was used for elemental composition analysis, which facilitated the identification of the neutral molecules lost during fragmentation. The characteristic fragment ions generated in MS(2) and MS(3) experiments provide clues for the chemical bonding environment of sulfur atoms in the examined compounds. Upon collision-induced dissociation (CID), the molecular ions can lose the sulfur atom in a variety of ways, including as S (32 Da), HS(•) (33 Da), H2 S (34 Da), CS (44 Da), (•) CHS (45 Da) and CH2 S (46 Da). These neutral fragments are not only indicative of the presence of sulfur, but also of the type of sulfur present in the compound. Generally, losses of HS(•) and H2 S were found to be associated with compounds containing saturated sulfur functionalities, while losses of S, CS and (•) CHS were more common for heteroaromatic sulfur compounds. High-resolution tandem mass spectrometry with APCI/CS2 ionization is a viable approach to determining the types of organosulfur compounds. It can potentially be applied to analysis of complex mixtures, which is beneficial to improving the desulfurization process of fossil fuels. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Comprehensive proteomic analysis of Penicillium verrucosum.
Nöbauer, Katharina; Hummel, Karin; Mayrhofer, Corina; Ahrens, Maike; Setyabudi, Francis M C; Schmidt-Heydt, Markus; Eisenacher, Martin; Razzazi-Fazeli, Ebrahim
2017-05-01
Mass spectrometric identification of proteins in species lacking validated sequence information is a major problem in veterinary science. In the present study, we used ochratoxin A producing Penicillium verrucosum to identify and quantitatively analyze proteins of an organism with yet no protein information available. The work presented here aimed to provide a comprehensive protein identification of P. verrucosum using shotgun proteomics. We were able to identify 3631 proteins in an "ab initio" translated database from DNA sequences of P. verrucosum. Additionally, a sequential window acquisition of all theoretical fragment-ion spectra analysis was done to find differentially regulated proteins at two different time points of the growth curve. We compared the proteins at the beginning (day 3) and at the end of the log phase (day 12). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anion binding by bambus[6]uril probed in the gas phase and in solution.
Révész, Agnes; Schröder, Detlef; Svec, Jan; Wimmerová, Michaela; Sindelar, Vladimir
2011-10-20
Electrospray ionization mass spectrometry (ESI-MS) is used to probe the binding of small anions to the macrocycle of bambus[6]uril. For the halide ions, the experimental patterns suggest F(-) < Cl(-) < Br(-) < I(-), which is consistent with the order of anion binding found in the condensed phase. Parallel equilibrium studies in the condensed phase establish the association constants of halide anions and bambus[6]uril in mixed solvents. A detailed analysis of the mass spectrometric data is used to shed light on the correlations between the binding constants in the condensed phase and the ion abundances observed using ESI-MS. From the analysis it becomes apparent that ESI-MS can indeed represent the situation in solution to some extent, but the sampling in the gas-phase experiment is not 1:1 compared to that in solution.
Recent findings and technological advances in phosphoproteomics for cells and tissues.
von Stechow, Louise; Francavilla, Chiara; Olsen, Jesper V
2015-01-01
Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins - termed phosphoproteomics - strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.
Diagnostics of wear in aeronautical systems
NASA Technical Reports Server (NTRS)
Wedeven, L. D.
1979-01-01
The use of appropriate diagnostic tools for aircraft oil wetted components is reviewed, noting that it can reduce direct operating costs through reduced unscheduled maintenance, particularly in helicopter engine and transmission systems where bearing failures are a significant cost factor. Engine and transmission wear modes are described, and diagnostic methods for oil and wet particle analysis, the spectrometric oil analysis program, chip detectors, ferrography, in-line oil monitor and radioactive isotope tagging are discussed, noting that they are effective over a limited range of particle sizes but compliment each other if used in parallel. Fine filtration can potentially increase time between overhauls, but reduces the effectiveness of conventional oil monitoring techniques so that alternative diagnostic techniques must be used. It is concluded that the development of a diagnostic system should be parallel and integral with the development of a mechanical system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, S., E-mail: ratnakaramsvu@gmail.com; Balakrishna, A., E-mail: ratnakaramsvu@gmail.com; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com
2014-04-24
Optical properties of Sm{sup 3+} doped different fluorophosphate glasses have been synthesized and discussed. The J- O intensity parameters Ω{sub λ} (λ= 2, 4, 6) from absorption spectra have been evaluated. No sharp edges are found in the absorption spectra, which confirm amorphous nature of present glass matrices. Various radiative parameters have been obtained from luminescence spectra for excited states to corresponding {sup 4}G{sub 5/2}→{sup 6}H{sub 5/2}, {sup 6}H{sub 7/2}, {sup 6}H{sub 9/2} and {sup 6}H{sub 11/2} transitions. The nature of decay curve analysis was performed for the {sup 4}G{sub 5/2} level. These glasses are expected to give interesting applicationmore » in field of optical devices.« less
78 FR 76987 - Mandipropamid; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-20
... screening battery. No systemic or dermal toxicity was observed following dermal exposure for 28 days, up to... mass spectrometric detection (LC/MS/MS), is available to enforce the tolerance expression. The method...
Hogenboom, A C; van Leerdam, J A; de Voogt, P
2009-01-16
The European Reach legislation will possibly drive producers to develop newly designed chemicals that will be less persistent, bioaccumulative or toxic. If this innovation leads to an increased use of more hydrophilic chemicals it may result in higher mobilities of chemicals in the aqueous environment. As a result, the drinking water companies may face stronger demands on removal processes as the hydrophilic compounds inherently are more difficult to remove. Monitoring efforts will also experience a shift in focus to more water-soluble compounds. Screening source waters on the presence of (emerging) contaminants is an essential step in the control of the water cycle from source to tap water. In this article, some of our experiences are presented with the hybrid linear ion trap (LTQ) FT Orbitrap mass spectrometer, in the area of chemical water analysis. A two-pronged strategy in mass spectrometric research was employed: (i) exploring effluent, surface, ground- and drinking-water samples searching for accurate masses corresponding to target compounds (and their product ions) known from, e.g. priority lists or the scientific literature and (ii) full-scan screening of water samples in search of 'unknown' or unexpected masses, followed by MS(n) experiments to elucidate the structure of the unknowns. Applications of both approaches to emerging water contaminants are presented and discussed. Results are presented for target analysis search for pharmaceuticals, benzotriazoles, illicit drugs and for the identification of unknown compounds in a groundwater sample and in a polar extract of a landfill soil sample (a toxicity identification evaluation bioassay sample). The applications of accurate mass screening and identification described in this article demonstrate that the LC-LTQ FT Orbitrap MS is well equipped to meet the challenges posed by newly emerging polar contaminants.
Light Curve Simulation Using Spacecraft CAD Models and Empirical Material Spectral BRDFS
NASA Astrophysics Data System (ADS)
Willison, A.; Bedard, D.
This paper presents a Matlab-based light curve simulation software package that uses computer-aided design (CAD) models of spacecraft and the spectral bidirectional reflectance distribution function (sBRDF) of their homogenous surface materials. It represents the overall optical reflectance of objects as a sBRDF, a spectrometric quantity, obtainable during an optical ground truth experiment. The broadband bidirectional reflectance distribution function (BRDF), the basis of a broadband light curve, is produced by integrating the sBRDF over the optical wavelength range. Colour-filtered BRDFs, the basis of colour-filtered light curves, are produced by first multiplying the sBRDF by colour filters, and integrating the products. The software package's validity is established through comparison of simulated reflectance spectra and broadband light curves with those measured of the CanX-1 Engineering Model (EM) nanosatellite, collected during an optical ground truth experiment. It is currently being extended to simulate light curves of spacecraft in Earth orbit, using spacecraft Two-Line-Element (TLE) sets, yaw/pitch/roll angles, and observer coordinates. Measured light curves of the NEOSSat spacecraft will be used to validate simulated quantities. The sBRDF was chosen to represent material reflectance as it is spectrometric and a function of illumination and observation geometry. Homogeneous material sBRDFs were obtained using a goniospectrometer for a range of illumination and observation geometries, collected in a controlled environment. The materials analyzed include aluminum alloy, two types of triple-junction photovoltaic (TJPV) cell, white paint, and multi-layer insulation (MLI). Interpolation and extrapolation methods were used to determine the sBRDF for all possible illumination and observation geometries not measured in the laboratory, resulting in empirical look-up tables. These look-up tables are referenced when calculating the overall sBRDF of objects, where the contribution of each facet is proportionally integrated.
Pickens, C L; Milliron, A R; Fussner, A L; Dversdall, B C; Langenstroer, P; Ferguson, S; Fu, X; Schmitz, F J; Poole, E C
1999-07-01
Several urinary calculi were submitted to our institution for compositional analysis. The typical techniques of analysis, polarized light microscopy, electron microprobe analysis, and infrared spectroscopy proved inadequate for a definitive identification. As a result, a more detailed organic analysis was conducted to determine the exact chemical structure of the material. Infrared spectroscopy and mass spectrometric analysis were carried out on the solid material, providing information concerning the functional groups and the molecular mass of the organic constituent and its components. The stone was solubilized in deuterated solvents and analyzed by nuclear magnetic resonance spectroscopy, which resulted in a definitive chemical structure. The spectroscopic analysis indicated that the stones were composed of a calcium salt of beta-(2-methoxyphenoxy)-lactic acid, a metabolite of the pharmaceutical guaifenesin, which is used as an expectorant. Guaifenesin, an expectorant common in over-the-counter cold and allergy remedies, can cause urolithiasis if taken in excess. Discussions with physicians and their patients confirmed that most patients admitted to taking large doses of guaifenesin-containing medications.
Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M; Wanas, Amira S; Mehmedic, Zlatko; van Antwerp, John; ElSohly, Mahmoud A; Khan, Ikhlas A
2017-05-01
Ultra-high-performance supercritical fluid chromatography (UHPSFC) is an efficient analytical technique and has not been fully employed for the analysis of cannabis. Here, a novel method was developed for the analysis of 30 cannabis plant extracts and preparations using UHPSFC/PDA-MS. Nine of the most abundant cannabinoids, viz. CBD, ∆ 8 -THC, THCV, ∆ 9 -THC, CBN, CBG, THCA-A, CBDA, and CBGA, were quantitatively determined (RSDs < 6.9%). Unlike GC methods, no derivatization or decarboxylation was required prior to UHPSFC analysis. The UHPSFC chromatographic separation of cannabinoids displayed an inverse elution order compared to UHPLC. Combining with PDA-MS, this orthogonality is valuable for discrimination of cannabinoids in complex matrices. The developed method was validated, and the quantification results were compared with a standard UHPLC method. The RSDs of these two methods were within ±13.0%. Finally, chemometric analysis including principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to differentiate between cannabis samples. © 2016 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.
2016-12-01
Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site-specific thermometer; these experiments also provide a reference frame for reporting mass spectrometric data. Differential H-exchange rates of the two molecular sites in propane could be a new tool to constrain thermal history of sub-surface propane. Our experimental and mass spectrometric approaches should be generalizable to other hydrocarbon compounds.
Mass spectrometric screening of ligands with lower off-rate from a clicked-based pooled library.
Arai, Satoshi; Hirosawa, Shota; Oguchi, Yusuke; Suzuki, Madoka; Murata, Atsushi; Ishiwata, Shin'ichi; Takeoka, Shinji
2012-08-13
This paper describes a convenient screening method using ion trap electrospray ionization mass spectrometry to classify ligands to a target molecule in terms of kinetic parameters. We demonstrate this method in the screening of ligands to a hexahistidine tag from a pooled library synthesized by click chemistry. The ion trap mass spectrometry analysis revealed that higher stabilities of ligand-target complexes in the gas phase were related to lower dissociation rate constants, i.e., off-rates in solution. Finally, we prepared a fluorescent probe utilizing the ligand with lowest off-rate and succeeded in performing single molecule observations of hexahistidine-tagged myosin V walking on actin filaments.
HPLC-electrospray mass spectrometric assay for the determination of (R,R)-fenoterol in rat plasma.
Siluk, Danuta; Kim, Hee Seung; Cole, Tyler; Wainer, Irving W
2008-11-04
A fast and specific liquid chromatography-mass spectrometry method for the determination of (R,R)-fenoterol ((R,R)-Fen) in rat plasma has been developed and validated. (R,R)-Fen was extracted from 125 microl of plasma using solid phase extraction and analyzed on Atlantis HILIC Silica 3 microm column. The mobile phase was composed of acetonitrile:ammonium acetate (pH 4.1; 20mM) (85:15, v/v), at a flow rate of 0.2 ml/min. The lower limit of detection (LLOD) was 2 ng/ml . The procedure was validated and applied to the analysis of plasma samples from rats previously administered (R,R)-Fen in an intravenous bolus.
Identification of novel phosphatidic acid-binding proteins in the rat brain.
Park, ChiHu; Kang, Du-Seock; Shin, Geon-Hoon; Seo, Jeongkon; Kim, Hyein; Suh, Pann-Ghill; Bae, Chang-Dae; Shin, Joo-Ho
2015-05-19
Phosphatidic acid (PA) is an abundant negatively-charged phospholipid and has long been considered to be an important signaling molecule in diverse cellular events. Thus, the identification of proteins that specifically interact with PA is of considerable interest to understand the regulatory roles of PA. Herein, lipid-affinity purification and mass spectrometric analysis reveals 43 proteins, 19 known and 24 novel, as PA-binding proteins. A lipid-protein overlay assay confirmed that GDI1, PACSIN1, and DPYSL2 interact with not only with PA but also with other phospholipids. These results might be helpful for deciphering the functional effect of PA in the brain. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Garbarino, J.R.; Jones, B.E.; Stein, G.P.
1985-01-01
In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.