Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa
2010-03-01
The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.
Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid.
Yin, DeLu Tyler; Jing, Qing; AlDajani, Waleed Wafa; Duncan, Shona; Tschirner, Ulrike; Schilling, Jonathan; Kazlauskas, Romas J
2011-04-01
Release of sugars from lignocellulosic biomass is inefficient because lignin, an aromatic polymer, blocks access of enzymes to the sugar polymers. Pretreatments remove lignin and disrupt its structure, thereby enhancing sugar release. In previous work, enzymatically generated peracetic acid was used to pretreat aspen wood. This pretreatment removed 45% of the lignin and the subsequent saccharification released 97% of the sugars remaining after pretreatment. In this paper, the amount of enzyme needed is reduced tenfold using first, an improved enzyme variant that makes twice as much peracetic acid and second, a two-phase reaction to generate the peracetic acid, which allows enzyme reuse. In addition, the eight pretreatment cycles are reduced to only one by increasing the volume of peracetic acid solution and increasing the temperature to 60 °C and the reaction time to 6h. For the pretreatment step, the weight ratio of peracetic acid to wood determines the amount of lignin removed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production
NASA Astrophysics Data System (ADS)
Teixeira, Lincoln Cambraia
Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid pretreatment improves enzymatic digestibility of hybrid poplar wood and sugar cane bagasse. Based on reduction of acetyl groups in the two lignocellulosic materials, alkaline pre-pretreatments are helpful in reducing peracetic acid requirements in the pretreatment and consequently diminishing growth inhibition of the bacteria that was observed using higher peracetic acid loadings.
Lee, Hyeong Rae; Kazlauskas, Romas J; Park, Tai Hyun
2017-09-22
Pretreatment of biomass with dilute acid requires high temperatures of >160 °C to remove xylan and does not remove lignin. Here we report that the addition of peracetic acid, a strong oxidant, to mild dilute acid pretreatment reduces the temperature requirement to only 120 °C. Pretreatment of yellow poplar with peracetic acid (300 mM, 2.3 wt%) and dilute sulfuric acid (100 mM, 1.0 wt%) at 120 °C for 5 min removed 85.7% of the xylan and 90.4% of the lignin leaving a solid consisting of 75.6% glucan, 6.0% xylan and 4.7% lignin. Low enzyme loadings of 5 FPU/g glucan and 10 pNPGU/g glucan converted this solid to glucose with an 84.0% yield. This amount of glucose was 2.5 times higher than with dilute acid-pretreated solid and 13.8 times higher than with untreated yellow poplar. Thus, the addition of peracetic acid, easily generated from acetic acid and hydrogen peroxide, dramatically increases the effectiveness of dilute acid pretreatment of biomass.
Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass.
Teixeira, L C; Linden, J C; Schroeder, H A
2000-01-01
Previous work in our laboratories has demonstrated the effectiveness of peracetic acid for improving enzymatic digestibility of lignocellulosic materials. The use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increased carbohydrate hydrolysis yields in a synergistic as opposed to additive manner. Deacetylation of xylan is easily achieved using dilute alkali solutions under mild conditions. In this article, we evaluate the effectiveness of peracetic acid combined with an alkaline pre-pretreatment through simultaneous saccharification and cofermentation (SSCF) of pretreated hybrid poplar wood and sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% of theoretical are achieved using 6% NaOH/15% peracetic acid-pretreated substrates and recombinant Zymomonas mobilis CP4/pZB5. Reduction of acetyl groups of the lignocellulosic materials is demonstrated following alkaline pre-pretreatments. Such processing may be helpful in reducing peracetic acid requirements. The influence of deacetylation is more significant in combined pretreatments using lower peracetic acid loadings.
Uju; Abe, Kojiro; Uemura, Nobuyuki; Oshima, Toyoji; Goto, Masahiro; Kamiya, Noriho
2013-06-01
To enhance enzymatic saccharification of pine biomass, the pretreatment reagents peracetic acid (PAA) and ionic liquid (IL) were validated in single reagent pretreatments or combination pretreatments with different sequences. In a 1h saccharification, 5-25% cellulose conversion was obtained from the single pretreatment of PAA or IL. In contrast, a marked enhancement in conversion rates was achieved by PAA-IL combination pretreatments (45-70%). The PAA followed by IL (PAA+IL) pretreatment sequence was the most effective for preparing an enzymatic digestible regenerated biomass with 250-fold higher glucose formation rates than untreated biomass and 2- to 12-fold higher than single pretreatments with PAA or IL alone. Structural analysis confirmed that this pretreatment resulted in biomass with highly porous structural fibers associated with the reduction of lignin content and acetyl groups. Using the PAA+IL sequence, biomass loading in the pretreatment step can be increased from 5% to 15% without significant decrease in cellulose conversion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fundamental factors affecting biomass enzymatic reactivity.
Chang, V S; Holtzapple, M T
2000-01-01
Poplar wood was treated with peracetic acid, KOH, and ball milling to produce 147 model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and crystallinity indices (CrIs), respectively. An empirical model was identified that describes the roles of these three properties in enzymatic hydrolysis. Lignin content and CrI have the greatest impact on biomass digestibility, whereas acetyl content has a minor impact. The digestibility of several lime-treated biomass samples agreed with the empirical model. Lime treatment removes all acetyl groups and a moderate amount of lignin and increases CrI slightly; lignin removal is the dominant benefit from lime treatment.
Evaluation of an automated room decontamination device using aerosolized peracetic acid.
Mana, Thriveen S C; Sitzlar, Brett; Cadnum, Jennifer L; Jencson, Annette L; Koganti, Sreelatha; Donskey, Curtis J
2017-03-01
Because manual cleaning is often suboptimal, there is increasing interest in use of automated devices for room decontamination. We demonstrated that an ultrasonic room fogging system that generates submicron droplets of peracetic acid and hydrogen peroxide eliminated Clostridium difficile spores and vegetative pathogens from exposed carriers in hospital rooms and adjacent bathrooms. Published by Elsevier Inc.
Putt, Karson S; Pugh, Randall B
2013-01-01
Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.
Putt, Karson S.; Pugh, Randall B.
2013-01-01
Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution. PMID:24260173
High yield hydrolysis of seaweed-waste biomass using peracetic acid and ionic liquid treatments
NASA Astrophysics Data System (ADS)
Uju, Wijayanta, Agung Tri; Goto, Masahiro; Kamiya, Noriho
2018-02-01
Seaweed is one of the most promising bioethanol feedstocks. This water plant has high carbohydrate content but low lignin content, as a result it will be easier to be hydrolysed. This paper described hydrolysis of seaweed-waste biomass from the carrageenan (SWBC) industry using enzymatic saccharification or ionic liquids-HCl hydrolysis. In the first work, SWBC pretreated by peracetic acid (PAA) followed by ionic liquid (IL) caused enhance the cellulose conversion of enzymatic saccharification. At 48h saccharification, the value conversion almost reached 100%. In addition, the untreated SWBC also produced the cellulose conversion 77%. In the second work, SWBC or Bagasse with or without pretreated by PAA was hydrolyzed using ILs-HCl hydrolysis. The ILs used were 1-buthyl-3-methylpyridium chloride, [Bmpy][Cl] and 1-butyl-3-metyl imidazolium chloride ([Bmim][Cl]). [Bmpy][Cl]-HCl hydrolysis produced higher cellulose conversion than [Bmim][Cl]-HCl hydrolysis. The phenomenon was clearly observed on the Bagasse, which without pretreated by PAA. Furthermore, SWBC hydrolyzed by both ILs in the presence low concentration of HCl produced cellulose conversion 70-98% at 60-90 min of hydrolysis time. High cellulose conversion of SWBC on the both hydrolysis was caused by SWBC had the low lignin (4%). Moreover, IL treatments caused lowering of cellulose hydrogen bonds or even changed the cellulose characteristics from cellulose I to cellulose II which easily to be hydrolyzed. In the case of [Bmpy][Cl], this IL may reduce the degree polymerization of celluloses.
Antiviral activity of a novel composition of peracetic acid disinfectant on parvoviruses
Dagher, Fadi; Jiang, Jun; Tijssen, Peter; Laliberté, Jean-François
2017-01-01
Porcine parvoviruses (PPV) are known to be particularly resistant to many disinfectants used to control other non-enveloped viruses. However, effective disinfectants used against PPV are harsh and corrosive to animal health facilities and the environment. We propose a noncorrosive “green” disinfectant that generates peracetic acid in-situ and is capable of inactivating PPV completely at a 1% concentration for a 10-minute contact time. PMID:28154460
Wan Azelee, Nur Izyan; Md Jahim, Jamaliah; Rabu, Amir; Abdul Murad, Abdul Munir; Abu Bakar, Farah Diba; Md Illias, Rosli
2014-01-01
The enhancement of lignocellulose hydrolysis using enzyme complexes requires an efficient pretreatment process to obtain susceptible conditions for the enzyme attack. This study focuses on removing a major part of the lignin layer from kenaf (Hibiscus cannabinus) while simultaneously maintaining most of the hemicellulose. A two-stage pretreatment process is adopted using calcium hydroxide, Ca(OH)₂, and peracetic acid, PPA, to break the recalcitrant lignin layer from other structural polysaccharides. An experimental screening of several pretreatment chemicals, concentrations, temperatures and solid-liquid ratios enabled the production of an optimally designed pretreatment process for kenaf. Our results showed that the pretreatment process has provide 59.25% lignin removal while maintaining 87.72% and 96.17% hemicellulose and cellulose, respectively, using 1g of Ca(OH)₂/L and a 8:1 (mL:g) ratio of liquid-Ca(OH)₂ at 50 °C for 1.5 h followed by 20% peracetic acid pretreatment at 75 °C for 2 h. These results validate this mild approach for aiding future enzymatic hydrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jang, Soo-Kyeong; Jeong, Hanseob; Kim, Ho-Yong; Choi, June-Ho; Kim, Jong-Hwa; Koo, Bon-Wook; Choi, In-Gyu
2017-07-01
The main purpose of this study was to investigate the glucan conversion rate after enzymatic hydrolysis depending on the treatment methods and conditions with changes in the chemical composition of treated solid fraction of Jabon Merah. The glucan conversion rate (17.4%) was not significantly improved after liquid hot water treatment (1st step) even though most of the hemicellulose was dissolved into liquid hydrolysate. Subsequently, dilute acid, organosolv, and peracetic acid treatment (2nd step) was conducted under various conditions to enhance glucan conversion. Among the 2nd step treatment, the glucan conversion rate of organosolv (max. 46.0%) and peracetic acid treatment (max. 65.9%) was increased remarkably through decomposition of acid-insoluble lignin (AIL). Finally, the glucan conversion rate and AIL content were highly correlated, which was revealed by the R-squared value (0.84), but inhibitory factors including cellulose crystallinity must be considered for advanced glucan conversion from highly recalcitrant biomasses, such as Jabon Merah. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Determination of peracetic acid and hydrogen peroxide in a preparation].
Bodiroga, Milanka; Ognjanović, Jasminka
2002-01-01
Iodometric and permanganometric titrations were used for determination of peracetic acid and hydrogen peroxide (H2O2) in the mixture. Two procedures were described and compared. Titrations could be done in only one vessel, in the same reaction mixture, when iodometric titration of peracetic acid was continued after the permanganometric titration of H2O2, (procedure A). Peracetic acid and H2O2, as oxidizing agents, reacted with potassium iodide in an acid medium, evolving iodine. This reaction was used for the quantitative iodometric determination of total peroxide in procedure B. H2O2 reacted with potassium permanganate in acid medium, but peracetic acid did not react under the same conditions. That made possible the selective permanganometric determination of H2O2 in the presence of peracetic acid. The procedure B was performed in two titration vessels (KV = 3.4% for peracetic acid, 0.6% for H2O2). The procedure A for iodometric determination of peracetic acid in one titration vessel after permanganometric titration of H2O2 was recommended (KV = 2.5% for peracetic acid, 0.45% for H2O2).
Disinfection of wastewater with peracetic acid: a review.
Kitis, Mehmet
2004-03-01
Peracetic acid is a strong disinfectant with a wide spectrum of antimicrobial activity. Due to its bactericidal, virucidal, fungicidal, and sporicidal effectiveness as demonstrated in various industries, the use of peracetic acid as a disinfectant for wastewater effluents has been drawing more attention in recent years. The desirable attributes of peracetic acid for wastewater disinfection are the ease of implementing treatment (without the need for expensive capital investment), broad spectrum of activity even in the presence of heterogeneous organic matter, absence of persistent toxic or mutagenic residuals or by-products, no quenching requirement (i.e., no dechlorination), small dependence on pH, short contact time, and effectiveness for primary and secondary effluents. Major disadvantages associated with peracetic acid disinfection are the increases of organic content in the effluent due to acetic acid (AA) and thus in the potential microbial regrowth (acetic acid is already present in the mixture and is also formed after peracetic acid decomposition). Another drawback to the use of peracetic acid is its high cost, which is partly due to limited production capacity worldwide. However, if the demand for peracetic acid increases, especially from the wastewater industry, the future mass production capacity might also be increased, thus lowering the cost. In such a case, in addition to having environmental advantages, peracetic acid may also become cost-competitive with chlorine.
Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes?
Kampf, Günter; Fliss, Patricia M; Martiny, Heike
2014-09-16
The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes.
Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes?
Kampf, Günter; Fliss, Patricia M; Martiny, Heike
2014-01-01
The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes. PMID:25228941
Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection.
Akinbobola, A B; Sherry, L; Mckay, W G; Ramage, G; Williams, C
2017-10-01
Biofilm has been suggested as a cause of disinfection failures in flexible endoscopes where no lapses in the decontamination procedure can be identified. To test this theory, the activity of peracetic acid, one of the widely used disinfectants in the reprocessing of flexible endoscopes, was evaluated against both planktonic and sessile communities of Pseudomonas aeruginosa. To investigate the ability of P. aeruginosa biofilm to survive high-level peracetic acid disinfection. The susceptibility of planktonic cells of P. aeruginosa and biofilms aged 24, 48, 96, and 192 h to peracetic acid was evaluated by estimating their viability using resazurin viability and plate count methods. The biomass of the P. aeruginosa biofilms was also quantified using Crystal Violet assay. Planktonic cells of P. aeruginosa were treated with 5-30 ppm concentration of peracetic acid in the presence of 3.0 g/L of bovine serum albumin (BSA) for 5 min. Biofilms of P. aeruginosa were also treated with various peracetic acid concentrations (100-3000 ppm) for 5 min. Planktonic cells of P. aeruginosa were eradicated by 20 ppm of peracetic acid, whereas biofilms showed an age-dependent tolerance to peracetic acid, and 96 h biofilm was only eradicated at peracetic acid concentration of 2500 ppm. Ninety-six-hour P. aeruginosa biofilm survives 5 min treatment with 2000 ppm of peracetic acid, which is the working concentration used in some endoscope washer-disinfectors. This implies that disinfection failure of flexible endoscopes might occur when biofilms build up in the lumens of endoscopes. Copyright © 2017. Published by Elsevier Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... oxidizing agent formed by a reaction of hydrogen peroxide with acetic acid in water. The reaction used to... peracetic acid. Peracetic acid is produced from the in situ reaction of acetic acid, an inert ingredient... annotation for both listings of peracetic acid.\\3\\ A second motion to list peracetic acid without any...
Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma
2016-01-01
Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024
Cadnum, Jennifer L; Jencson, Annette L; O'Donnell, Marguerite C; Flannery, Elizabeth R; Nerandzic, Michelle M; Donskey, Curtis J
2017-03-01
BACKGROUND We investigated an increase in the incidence of healthcare-associated Clostridium difficile infection (CDI) that occurred following a change from a bleach disinfectant to a peracetic acid-based disinfectant. OBJECTIVE To evaluate the efficacy of the peracetic acid-based disinfectant. DESIGN Laboratory-based product evaluation. METHODS The commercial peracetic acid-based product is activated on site by mixing a small volume of concentrated hydrogen peroxide and peracetic acid present in a "SmartCap" reservoir with the remaining contents of the container. We measured concentrations of peracetic acid in newly activated and in-use product and determined the stability of nonactivated and activated product. We tested the efficacy of the product against C. difficile spores using the American Society for Testing and Materials standard quantitative carrier disk test method. RESULTS Measured concentrations of peracetic acid (50-800 parts per million [ppm]) were significantly lower than the level stated on the product label (1,500 ppm), and similar results were obtained for containers from multiple lot numbers and from another hospital. Product with peracetic acid levels below 600 ppm had significantly reduced activity against C. difficile spores. Peracetic acid concentrations were reduced markedly after storage of either activated or nonactivated product for several weeks. The Environmental Protection Agency confirmed the finding of low disinfectant levels and ordered discontinuation of sale of the product. CONCLUSION Use of a defective peracetic acid-based surface disinfectant may have contributed to an increase in healthcare-associated CDI. Our findings highlight the importance of evaluating the efficacy of liquid disinfectants in healthcare settings. Infect Control Hosp Epidemiol 2017;38:300-305.
Evaluation of the effectiveness of peracetic acid in the sterilization of dental equipment.
Ceretta, R; Paula, M M S; Angioletto, Ev; Méier, M M; Mitellstädt, F G; Pich, C T; Junior, S A; Angioletto, E
2008-01-01
To evaluate the effectiveness of peracetic acid in the microbiological sterilisation of dental materials. Peracetic acid solution was evaluated at concentrations of 800, 1500 and 2500 ppm. At these concentrations, it was determined whether peracetic acid caused corrosion to dental instruments and induced cellular mutagenicity and cytotoxicity. In addition, the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC), agar diffusion and diffusion by well method, were also verified. The corrosion rate, calculated from potentiodynamic assays was 10(-6) cm/year, indicating that the product does not damage equipment. The sterilisation capacity of peracetic acid at 2500 ppm was the best. The comet assay indicated genotoxic activity at 2500 ppm. This study demonstrated the effectiveness of peracetic acid for sterilizing dental equipment, providing another alternative for the prevention of infections in clinics.
Suitability of peracetic acid for sterilization of media for mycoplasma cultures.
Wutzler, P; Sprössig, M; Peterseim, H
1975-01-01
The utility of peracetic acid for sterilization of serum and yeast extract additions to mycoplasma medium was studied by culturing six Mycoplasma species. Culture media containing additions that had been sterilized with peracetic acid proved to be as good as filtered components. The use of 0.05 to 0.1% peracetic acid is recommended to sterilize the serum and yeast extract additions since savings in time and equipment can be accomplished. PMID:1100656
Nde, Chantal W; Toghrol, Freshteh; Jang, Hyeung-Jin; Bentley, William E
2011-04-01
Tuberculosis is a leading cause of death worldwide and infects thousands of Americans annually. Mycobacterium bovis causes tuberculosis in humans and several animal species. Peracetic acid is an approved tuberculocide in hospital and domestic environments. This study presents for the first time the transcriptomic changes in M. bovis BCG after treatment with 0.1 mM peracetic acid for 10 and 20 min. This study also presents for the first time a comparison among the transcriptomic responses of M. bovis BCG to three oxidative disinfectants: peracetic acid, sodium hypochlorite, and hydrogen peroxide after 10 min of treatment. Results indicate that arginine biosynthesis, virulence, and oxidative stress response genes were upregulated after both peracetic acid treatment times. Three DNA repair genes were downregulated after 10 and 20 min and cell wall component genes were upregulated after 20 min. The devR-devS signal transduction system was upregulated after 10 min, suggesting a role in the protection against peracetic acid treatment. Results also suggest that peracetic acid and sodium hypochlorite both induce the expression of the ctpF gene which is upregulated in hypoxic environments. Further, this study reveals that in M. bovis BCG, hydrogen peroxide and peracetic acid both induce the expression of katG involved in oxidative stress response and the mbtD and mbtI genes involved in iron regulation/virulence.
Disinfection of septic tank and cesspool wastewater with peracetic acid.
Heinonen-Tanski, Helvi; Savolainen, Ritva
2003-08-01
Wastewaters of private household septic tanks and cesspools have been treated with peracetic acid (1-2 g L(-1)). Adding 1 g L(-1) peracetic acid to wastewaters was easy and has been found to be effective in destroying enteric indicator microorganisms. The careful mixing of peracetic acid and wastewater was found to be important. Winter periods with frozen soil, ice and snow did not constitute extra problems. The bad smell of these wastewaters almost totally disappeared during the treatment. When wastewaters treated with peracetic acid were emptied into animal slurry tanks, hygienization still continued in the mixture of animal slurry and the wastewaters. These wastewaters could thus be released into agricultural soil without risk of microbiological pollution to groundwaters.
Lopes, M S; Ferreira, J R F; da Silva, K B; de Oliveira Bacelar Simplício, I; de Lima, C J; Fernandes, A B
2015-08-01
Medical equipment coming into contact with non-intact skin or mucous membranes is classified as semi-critical material. This equipment requires at least high-level disinfection, as the major risk in all invasive procedures is the introduction of pathogenic microbes causing hospital-associated infections. To evaluate the capacity of ozone gas and ultrasound to disinfect semi-critical, thermally sensitive material. Used corrugated tubing from mechanically ventilated tracheostomized patients in the intensive care unit was obtained. Enzymatic detergent was applied for 15min before different disinfection techniques were evaluated as follows: Group A (0.2% peracetic acid); Group B (ultrasound for 60min); Group C (application of ozone gas at a concentration of 33mg/L for 15min); Group D (ultrasound for 30min and ozone for 15min); Group E (ultrasound for 60min and ozone for 15min). Application of ultrasound for 60min reduced the level of microbial contamination by 4 log10, whereas ozone alone and the other two combined techniques (ultrasound and ozone) and the peracetic acid reduced the level of microbial contamination by 5 log10. Ozone was the most advantageous technique taking into consideration processing time, ease of use, effectiveness, and cost. The use of ozone gas to disinfect semi-critical material proved to be technically feasible and extremely promising. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Zanetti, F; De Luca, G; Sacchetti, R; Stampi, S
2007-11-01
The aim of the study was to assess the efficiency of low doses of peracetic acid against viral and bacterial indicators in wastewater and to evaluate if the treatment allows regulatory requirements to be satisfied. A total of 31 samplings were carried out, each involving the collection of secondary effluent and of effluent disinfected with 1.2 or 1.5 mg l(-1) of peracetic acid (contact time 20 minutes). In each sample were measured: somatic coliphages, F-specific RNA bacteriophages, Escherichia coli, total and faecal coliforms, enterococci. Peracetic acid disinfection showed significant differences between the reductions of the microorganisms tested: E. coli showed the highest reduction (1.78 and 2.43 Log respectively with 1.2 and 1.5 mg l(-1) of peracetic acid) and phages the lowest (ranging between 0.52 and 0.60 Log). Only a concentration of 1.5 mg l(-1) of peracetic acid would enable the effluent to be discharged into surface waters in compliance with Italian regulations. The variability of microbial resistance against the peracetic acid disinfection treatment, underlines the importance of assessing disinfection efficiency by using more than one indicator microorganism. The detection of E. coli could be usefully accompanied by tests for more resistant microorganisms such as enterococci or coliphages. In conclusion, peracetic acid can be used for the disinfection of effluents even at low doses, with the advantage of reducing costs and preventing the formation of significant amounts of genotoxic by-products.
Disinfection of water in recirculating aquaculture systems with peracetic acid (PAA)
USDA-ARS?s Scientific Manuscript database
The disinfection behaviour of peracetic acid (PAA) in recirculating aquaculture systems (RAS) was investigated. Peracetic acid is a strong oxidizing agent found in various concentrations in different products. Three Wofasteril PAA products (E400 (c), Lspecical; AC 150) were tested in vitro for the...
Bounoure, Frederic; Fiquet, Herve; Arnaud, Philippe
2006-03-01
The efficacy of hydrogen peroxide and peracetic acid as isolator sterilization agents was compared. Sterilization and efficacy tests were conducted in a flexible 0.8-m3 transfer isolator using a standard load of glass bottles and sterile medical devices in their packing paper. Bacillus stearothermophilus spores were placed in six critical locations of the isolator and incubated at 55 degrees C in a culture medium for 14 days. Sterilization by 4.25 mL/m3 of 33% vapor-phase hydrogen peroxide and 12.5 mL/m3 of 3.5% peracetic acid was tested in triplicate. Sterility was validated for hydrogen peroxide and peracetic acid at 60, 90, 120, and 180 minutes and at 90, 120, 150, 180, 210, and 240 minutes, respectively. In an efficacy test conducted with an empty isolator, the sterilization time required to destroy B. stearothermophilus spores was 90 minutes for both sterilants, indicating that they have comparable bactericidal properties. During the validation test with a standard load, the sterilization time using hydrogen peroxide was 150 minutes versus 120 minutes with peracetic acid. The glove cuff was particularly difficult for hydrogen peroxide to sterilize, likely due to its slower diffusion time than that of peracetic acid. Hydrogen peroxide is an environmentally safer agent than peracetic acid; however, its bacteriostatic properties, lack of odor, and poor diffusion time may limit its use in sterilizing some materials. Hydrogen peroxide is a useful alternative to peracetic acid for isolator sterilization in a hospital pharmacy or parenteral nutrition preparation unit.
Nakayama, Motokazu; Hosoya, Kouichi; Tomiyama, Daisuke; Tsugukuni, Takashi; Matsuzawa, Tetsuhiro; Imanishi, Yumi; Yaguchi, Takashi
2013-06-01
In the beverage industry, peracetic acid has been increasingly used as a disinfectant for the filling machinery and environment due to merits of leaving no residue, it is safe for humans, and its antiseptic effect against fungi and endospores of bacteria. Recently, Chaetomium globosum and Chaetomium funicola were reported resistant to peracetic acid; however, little is known concerning the detail of peracetic acid resistance. Therefore, we assessed the peracetic acid resistance of the species of Chaetomium and related genera under identical conditions and made a thorough observation of the microstructure of their ascospores by transmission electron microscopy. The results of analyses revealed that C. globosum and C. funicola showed the high resistance to peracetic acid (a 1-D antiseptic effect after 900 s and 3-D antiseptic effect after 900 s) and had thick cell walls of ascospores that can impede the action mechanism of peracetic acid. We also developed specific primers to detect the C. globosum clade and identify C. funicola by using PCR to amplify the β-tubulin gene. PCR with the primer sets designed for C. globosum (Chae 4F/4R) and C. funicola (Cfu 2F/2R) amplified PCR products specific for the C. globosum clade and C. funicola, respectively. PCR with these two primer sets did not detect other fungi involved in food spoilage and environmental contamination. This detection and identification method is rapid and simple, with extremely high specificity.
Effects of chelating agents on the mineral content of root canal dentin.
Cobankara, Funda Kont; Erdogan, Hilal; Hamurcu, Mehmet
2011-12-01
The objective of this in vitro study was to assess the effect of several chelating agents on the mineral content of root dentin. Extracted human mandibular incisor roots were prepared and divided into groups according to the following irrigation protocols: 1) 17% ethylenediaminetetraacetic acid (EDTA); 2) 10% citric acid solution; 3) 18% etidronate; 4) 2.25% peracetic acid; 5) and deionized water (control). Dentin chips were obtained (Gates-Glidden nos. 3, 4, and 5). The levels of different minerals were analyzed with the use of inductively coupled plasma-atomic emission spectrometry (ICP-AES). 1) Peracetic acid significantly decreased P, K, Mg, Na, and S levels compared with the other groups (P < .05). 2) S decreased by different levels in all of the chelating solutions (P < .05), and the greatest decrease was observed in peracetic acid. 3) Ca levels significantly decreased in peracetic acid, citric acid, and EDTA (P < .05). 4) Mn levels significantly decreased in the citric acid and peracetic acid groups (P < .05). 5) Na and Zn levels significantly decreased in the peracetic acid, citric acid, and etidronate groups (P < .05). The chelation agents can create different effects on mineral contents of root dentin, so it is important to know what effects each solution will have on root dentin before their clinical use. In addition, according to the results of this in vitro study, it might be recommended that peracetic acid, in particular, should be used with caution. Copyright © 2011 Mosby, Inc. All rights reserved.
Wagner, Monika; Brumelis, Daina; Gehr, Ronald
2002-01-01
The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are not being used, and the MUCWTP is seeking alternative methods for disinfection to achieve a 2- to 3-log fecal coliform reduction. Liquid chemical disinfectants were attractive options because of their low capital costs. This led to an investigation of the feasibility of using hydrogen peroxide or peracetic acid. A method for measuring peroxycompounds (hydrogen peroxide or peracetic acid plus hydrogen peroxide) was developed using the peroxidase-based oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfuric acid) diammonium salt (ABTS) with hydrogen peroxide. The validity of the method was confirmed using effluent from the MUCWTP. Recovery was higher than 90% for peracetic acid levels as low as 1.0 mg/L. Quenching of hydrogen peroxide was achieved with 50-mg/L catalase; quenching of peracetic acid was achieved with 100 mg/L of sodium thiosulfate, followed by 50 mg/L of catalase. Batch disinfection tests were conducted on MUCWTP effluent. Hydrogen peroxide and peracetic acid in wastewater over time could be modeled as a second-order decay, with the decay "constant" being a function of the initial concentration of peroxycompounds. This function was the same for both hydrogen peroxide and peracetic acid, possibly indicating similar decomposition pathways in wastewater matrices. Disinfection was modeled using a modified Hom equation. Required doses of hydrogen peroxide to reach the target fecal coliform levels ranged from 106 to 285 mg/L, with the higher doses occurring when ferric chloride instead of alum was used as the coagulant. Hence, hydrogen peroxide was infeasible as a disinfectant for this application. On the other hand, the peracetic acid dose needed to achieve the target fecal coliform level was only 0.6 to 1.6 mg/L. Therefore, peracetic acid seems to be a promising disinfectant for physicochemical or primary effluent, or combined sewer overflows.
Kinetic model of water disinfection using peracetic acid including synergistic effects.
Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D
2016-01-01
The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.
Sisti, Maurizio; Brandi, Giorgio; De Santi, Mauro; Rinaldi, Laura; Schiavano, Giuditta F
2012-03-01
The aim of the present study was to evaluate the fungicidal activity of chlorine and peracetic acid in drinking water against various pathogenic Aspergillus spp. and Candida albicans strains. A. nidulans exhibited the greatest resistance, requiring 10 ppm of chlorine for 30 min contact time for a complete inactivation. Under the same experimental conditions, peracetic acid was even less fungicidal. In this case, A. niger proved to be the most resistant species (50 ppm for 60 min for complete inactivation). All Aspergillus spp. were insensitive to 10 ppm even with extended exposure (>5 h). The combination of chlorine and peracetic acid against Aspergillus spp. did not show synergistic effects except in the case of A. flavus. Complete growth inhibition of C. albicans was observed after about 3 h contact time with 0.2 ppm. C. albicans was less sensitive to peracetic acid. Hence the concentrations of chlorine that are usually present in drinking water distribution systems are ineffective against several Aspergillus spp. and peracetic acid cannot be considered an alternative to chlorine for disinfecting drinking water. The combination of the two biocides is not very effective in eliminating filamentous fungi at the concentrations permitted for drinking water disinfection.
Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes.
Radomińska-Pyrek, A; Zimniak, P; Irshaid, Y M; Lester, R; Tephly, T R; St Pyrek, J
1987-01-01
The glucuronidation of 6-hydroxylated bile acids by human liver microsomes has been studied in vitro; for comparison, several major bile acids lacking a 6-hydroxyl group were also investigated. Glucuronidation rates for 6 alpha-hydroxylated bile acids were 10-20 times higher than those of substrates lacking a hydroxyl group in position 6. The highest rates measured were for hyodeoxy- and hyocholic acids, and kinetic analyses were carried out using these substrates. Rigorous product identification by high-field proton nuclear magnetic resonance and by electron impact mass spectrometry of methyl ester/peracetate derivatives revealed that 6-O-beta-D-glucuronides were the exclusive products formed in these enzymatic reactions. These results, together with literature data, indicate that 6 alpha-hydroxylation followed by 6-O-glucuronidation constitutes an alternative route of excretion of toxic hydrophobic bile acids. PMID:3110212
Subha, N; Prabhakar, V; Koshy, Minu; Abinaya, K; Prabu, M; Thangavelu, Lavanya
2013-10-01
The aim of this investigation was to compare the effectiveness of 3% sodium hypochlorite (NaOCl), 2% chlorhexidine, 1% peracetic acid, and 10% povidone-iodine in the rapid disinfection of Resilon (Pentron Clinical Technologies, LLC, Wallingford, CT) and gutta-percha cones contaminated with Enterococcus faecalis and Bacillus subtilis. Two hundred fifty-six samples consisting of 128 gutta-percha cones and 128 Resilon cones were used in this study. The materials were tested for disinfection according to the type of solution (3% NaOCl, 2% chlorhexidine, 1% peracetic acid, or 10% povidone-iodine), the time of exposure to each solution (1 or 5 minutes), and the type of microorganisms (E. faecalis or B. subtilis). Subsequent to the disinfection, samples were placed in test tubes containing 10 mL Mueller-Hinton broth and incubated at 37°C for 7 days. All test tubes were observed at 24-hour intervals and visually checked for turbidity, signifying microbial growth. In this study, 1% peracetic acid showed the best results for both 1 minute and 5 minutes of disinfection, 2% chlorhexidine showed the second best results although it was statistically at par with peracetic acid, and 3% hypochlorite ranked third in disinfection; this was statistically significant when compared with peracetic acid and chlorhexidine. Disinfection by povidone-iodine was the least within all the groups for both contact times although disinfection for 5 minutes showed better results than disinfection for 1 minute for gutta-percha. The outcome of this study confirmed the efficacy of 1% peracetic acid and 2% chlorhexidine in the rapid disinfection of both Resilon and gutta-percha. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.
Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja
2011-09-01
Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.
Influence of a peracetic acid-based immersion on indirect composite resin.
Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos
2011-06-01
The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.
NASA Astrophysics Data System (ADS)
Fang, Ruimei; Huang, Haibao; Huang, Wenjun; Ji, Jian; Feng, Qiuyu; Shu, Yajie; Zhan, Yujie; Liu, Gaoyuan; Xie, Ruijie
2017-10-01
Coal based activated carbon (AC) was pretreated by peracetic acid solution and used for supporting Mn catalyst towards oxidation of gaseous benzene by catalytic ozonation. The as-obtained activated carbon was characterized by XPS, BET, SEM, and TG technologies. It indicates that peracetic acid solution modification not only raised the quantity of chemisorbed oxygen or water, and hydroxyl group on activated carbon material surface, but also increased the specific surface area and benzene adsorption capacity of activated carbon. Benzene could be completely removed in 300 min and CO2 selectivity reached to 61.9% over Mn/AC-modified catalyst. A possible catalytic ozonation mechanism of activated carbon which was treated by peracetic acid solution supported Mn catalyst for oxidation of benzene was proposed.
Saha, Avinandan; Botha, Stefan Louis; Weaving, Paul; Satta, Giovanni
2016-11-01
Peracetic acid sporicidal wipes have been shown to be an effective disinfectant, but in controlled test environments. Their high cost may restrict use. This pilot study investigated the efficacy and compared the costs of routine universal use of peracetic acid sporicidal wipes versus sporicidal quaternary ammonium compound and alcohol wipes in the disinfection of a hospital environment. The routine universal use of peracetic acid wipes (Clinell Sporicidal; GAMA Healthcare Ltd, London, UK) was allocated to a study ward, whereas the control ward continued with the use of quaternary ammonium compound wipes (Tuffie 5; Vernacare, Bolton, UK) and alcohol wipes (PDI Sani-Cloth 70; PDI, Flint, UK). Twenty high-touch areas in the 2 wards were sampled for the presence of indicator organisms. The weekly detection rates of indicator organisms and weekly healthcare associated infection (HCAI) rates in the 2 wards were compared and examined for decreasing trends over the trial period. The detection rates of indicator organisms and HCAI rates were not significantly different in the 2 wards, and did not decrease significantly over the trial period. However, the peracetic acid wipes seem to be more effective against gram-negative organisms but at a significantly higher cost. Further prospective studies are needed to assess the cost-effectiveness of peracetic acid wipes. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Queiroz, Daher Antonio; Peçanha, Marcelo Massaroni; Neves, Ana Christina Claro; Frizzera, Fausto; Tonetto, Mateus Rodrigues; Silva-Concílio, Laís Regiane
2013-11-01
Dental impressions disinfection is important to reduce the risk of cross contamination but this process may produce dimensional distortions. Peracetic acid is a disinfectant agent with several favorable characteristics yet underutilized in Dentistry. The aim of this paper is to compare the dimensional stability of casts obtained from addition silicone and polyether impressions that were immersed for 10 minutes in a solution of 0.2% peracetic acid or 1% sodium hypochlorite. Sixty samples in type IV gypsum were produced after a master cast that simulated a full crown preparation of a maxillary premolar. Samples were divided in 6 groups (n = 10) according to the impression material and disinfection agent: Group AC--addition silicone control (without disinfectant); Group APA--addition silicone + 0.2% peracetic acid; Group AH--addition silicone + 1% sodium hypochlorite; Group PC--polyether control (without disinfectant); Group PPA--polyether + 0.2% peracetic acid; Group PH--polyether + 1% sodium hypochlorite. Cast height, base and top diameter were measured and a mean value was obtained for each sample and group all data was statistically analyzed (ANOVA, p < 0.05). There was not a significant statistical difference between addition silicone and polyether impressions regardless of the disinfectant materials. It can be concluded that disinfection with the proposed agents did not produce significant alterations of the impressions and the peracetic acid could be considered a reliable material to disinfect dental molds.
Evaluation of the efficiency of peracetic acid in the disinfection of sewage effluents.
Stampi, S; De Luca, G; Zanetti, F
2001-11-01
Evaluation of the efficiency of peracetic acid in the disinfection of wastewater in a large treatment plant. Over a period of 18 months 30 sample collections were made, each consisting of three samples taken from: raw incoming sewage, secondary effluent (after 10-12 h) and secondary effluent disinfected with 1.5-2 mg l(-1) of peracetic acid (contact time: 20 min). Total coliforms and Escherichia coli declined from 10(7) MPN 100 ml(-1) in the raw sewage to 10(2) in the disinfected effluent and the enterococci fell from 10(6) MPN 100 ml(-1) to 702 MPN 100 ml(-1). The reduction of bacteria increased with the rise in temperature and decreased with the rise in BOD5. Disinfection with peracetic acid reduced levels of faecal contamination by 97%, thus attaining the limit recommended by current Italian law (Escherichia coli
Hypochlorous and peracetic acid induced oxidation of dairy proteins.
Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno
2011-02-09
Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.
Validating the efficacy of peracetic acid mixture as an antimicrobial in poultry chillers.
Bauermeister, Laura J; Bowers, Jordan W J; Townsend, Julie C; McKee, Shelly R
2008-06-01
Peracetic acid mixture (PAHP), which is a combination of peracetic acid and hydrogen peroxide, has been approved as an antimicrobial for use in poultry chillers. To validate its effectiveness, 85 ppm of PAHP was compared with the 30-ppm chlorine treatment in a commercial setting. In this trial, 100 carcasses were sampled for Salmonella and Campylobacter spp. prior to chilling and 100 carcasses were sampled after chilling. In all, 400 carcasses were sampled using 85 ppm of PAHP in the chiller and 400 carcasses were sampled using the chlorine treatment. PAHP at 85 ppm reduced Salmonella-positive carcasses by 92% exiting the chiller, whereas treatment with 30 ppm of chlorine reduced Salmonella by 57%. Additionally, PAHP reduced Campylobacter species-positive carcasses exiting the chiller by 43% while chlorine resulted in a 13% reduction. These results suggest that peracetic acid in combination with hydrogen peroxide may be an effective antimicrobial in poultry chiller applications.
Could peracetic acid be an alternative treatment in aquaculture?
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) is an antimicrobial disinfectant used in agriculture, food processing and medical facilities. It has recently been tested as a means to control infestations of Ichthyophthirius multifiliis and Saprolegnia parasitica. Free-swimming theronts of I. multifiliis can be eliminated u...
The current study evaluates the effectiveness of the combined application of Peracetic acid and ultraviolet radiation as alternative disinfectant agents to the traditional chlorination of wastewater effluents. Various pathogens (E. coli, enterococci and fecal coliforms) were eval...
de Melo, Edluza Maria Viana Bezerra; Leão, Cristiano de Souza; Andreto, Luciana Marques; de Mello, Maria Júlia Gonçalves
2013-01-01
To determine the frequency of surgical site infection in patients undergoing laparoscopic cholecystectomy with instruments sterilized by peracetic acid. We conducted a retrospective, cohort, descriptive, cross-sectional study. Peracetic acid has been used for sterilization following the protocol recommended by the manufacturer. We observed the criteria and indicators of process and structure for preventing surgical site infection pre and intraoperatively. For epidemiological surveillance, outpatient visits were scheduled for the 15th and between the 30th and 45th days after discharge. Among the 247 patients, there were two cases of surgical site infection (0.8%). One patient was readmitted to systemic antibiotic therapy and percutaneous puncture; in the other the infection was superficial and followed at the clinic. Ethical issues prevent the conduction of a prospective study because of peracetic acid have been banned for the sterilization of instruments that penetrate organs and cavities. Nevertheless, these results encourage prospective case-control studies comparing its use (historical control) with ethylene oxide sterilization.
Marjani, Abdoljalal; Golalipour, Mohammad J.; Gharravi, Anneh M.
2010-01-01
Objectives This study was undertaken to determine the effect of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in Wistar rats. Methods 48 male animals in Treatment Group I, II and III received 0.2%, 2% and 20% peracetic acid daily for 2 and 4 weeks. Results Serum malondialdehyde increased and Alanine Transaminase and Aspartate Transaminase decreased significantly in groups 2 and 3, compared to the control group. The malondialdehyde, Alanine Transaminase and Aspartate Transaminase with 0.2% and 2% doses of peracetic acid for 2 weeks do not lead to the alteration of malondialdehyde and enzyme activities. Conclusion This study demonstrated that the enhancement of malondialdehyde could provide an oxidative damage induced by disinfectant peroxidation at 20% and 2% doses at 2 and 4 weeks. The consumption of peroxidation with 20% for 2 weeks and 2% for 4 weeks can cause the increase of malondialdehyde and the decrease of enzyme activities, respectively. PMID:22043353
Lime pretreatment of lignocellulosic biomass
NASA Astrophysics Data System (ADS)
Chang, Shushien
Lignocellulose is a valuable alternative energy source. The susceptibility of lignocellulosic biomass to enzymatic hydrolysis is constrained due to its structural features, so pretreatment is essential to enhance enzymatic digestibility. Of the chemicals used as pretreatment agents, it has been reported that alkalis improve biomass digestibility significantly. In comparison with other alkalis such as NaOH and ammonia, lime (calcium hydroxide) has many advantages; it is very inexpensive, is safe, and can be recovered by carbonating wash water. The effects of lime pretreatment were explored on switchgrass and poplar wood, representing herbaceous and woody biomass, respectively. The effects of pretreatment conditions (time, temperature, lime loading, water loading, particle size, and oxygen pressure) have been systematically studies. Lime alone enhances the digestibility of switchgrass significantly; under the recommended conditions, the 3-d total sugar (glucose + xylose) yields of lime-treated switchgrass were 7 times that of untreated sample. When treating poplar wood, lime must be combined with oxygen to achieve high digestibility; oxidative lime pretreatment increased the 3-d total sugar yield of poplar wood to 12 times that of untreated sample. In a fundamental study, to determine why lime pretreatment is effective, the effects of three structural features on enzymatic digestibility were studied: lignin content, acetyl content, and crystallinity index (CrI). Poplar wood was treated with peracetic acid, potassium hydroxide, and ball milling to produce model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and CrI, respectively. Enzymatic hydrolysis was performed on the model lignocelluloses to determine the digestibility. Correlations between lignin/carbohydrate ratio, acetyl/carbohydrate ratio, CrI and digestibility were developed. The 95% prediction intervals show that the correlations predict the 1-h and 3-d total sugar conversions of a biomass sample within a precision of 5% and 20%, respectively. The digestibility of a variety of lime-treated biomass and ball-milled alpha-cellulose was compared to the correlations determined from the model compounds. The agreement between the measured and predicted values shows that the correlations are satisfactory and the three structural features---lignin content, acetyl content, and CrI---are the major factors that determine enzymatic digestibility.
Acute toxicity of peracetic acid to fish
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA; also called peroxyacetic acid) is a stabilized mixture of acetic acid, hydrogen peroxide and water that does not leave dangerous residues in the environment when it breaks down as most compounds do. PAA is a promising disinfectant in the US aquaculture industry to control paras...
Disinfection with peracetic acid (PAA), an alternative against fish pathogens
USDA-ARS?s Scientific Manuscript database
Because of the lack of approved substances to treat fish diseases, disinfecting substances are tested to treat fish pathogens. These agents should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. One of these substances is peracetic acid...
Acute toxicity of peracetic acid to various fish species
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA; also called peroxyacetic acid) is a promising disinfectant in the US aquaculture industry to control parasites and fungus. It is a stabilized mixture of acetic acid and hydrogen peroxide that does not leave dangerous residues in the environment when it breaks down as most compo...
Introducing a new disinfectant for U.S. aquaculture - peracetic acid
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It is being increasingly used to ...
MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID
The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...
Disinfection of water in recirculating aquaculture systems with peracetic acid
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) has become a favoured alternative to chlorination in the disinfection of municipal waste water in recent years. It is also commonly used in the food industry as a disinfectant. Based on PAA concentration, the disulfide linkage in enzymes and proteins of microorganisms can be bro...
USDA-ARS?s Scientific Manuscript database
Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...
USDA-ARS?s Scientific Manuscript database
Peracetic acid is a therapeutic agent used for disinfection, but it must be investigated in order to mitigate diseases without harmful effects to the fish. These agents should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of ...
USDA-ARS?s Scientific Manuscript database
Peracetic acid is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harmful effects to fish. These agents should not leave dangerous residues in the environment in order to successfully contribute to sustainable aq...
Sanitizing with peracetic acid (PAA)- An alternative treatment to use in aquaculture ...?
USDA-ARS?s Scientific Manuscript database
Because of the lack of approved treatments for fish disease, disinfectants were tested to treat fish pathogens. One of these substances is peracetic acid (PAA). PAA is an agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harmful ...
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) is an agent used for disinfection in aquaculture. PAA contributes to sustainable aquaculture, because it releases no harmful residue in the environment. However, there is lack of guideline about the effective application of different PAA products against various pathogens in p...
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) is considered an eco-friendly alternative to other disinfectants of common use in aquaculture. Previous studies showing a reduction of the fish corticosteroid response to PAA administration after repeated exposures suggested that fish can habituate to PAA exposure. Therefore, PA...
Peracetic acid: the long road to introduction of this disinfectant into U.S. aquaculture
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It has replaced chlorine in some ...
The introduction of peracetic acid as a new disinfectant for U.S. aquaculture
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It has replaced chlorine in some ...
Use of peracetic acid to disinfect water: toxicity to fish
USDA-ARS?s Scientific Manuscript database
There has been strong interest in aquaculture for the use of peracetic acid (PAA) as a disinfectant to prevent freshwater fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that does not leave dangerous residues in the environment when it breaks down as most com...
USDA-ARS?s Scientific Manuscript database
The parasitic ciliate Ichthyophthirius multifiliis infests all species of freshwater fish and can cause severe economic losses in fish breeding. The most effective treatment, malachite green, has been banned in Europe and North America for use in food-fish production. Peracetic acid (PAA) was foun...
The introduction of peracetic acid as a new disinfectant for U.S. aquaculture
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It is being increasingly used to ...
USDA-ARS?s Scientific Manuscript database
Application of peracetic acid (PAA) at low concentrations has been proved to be a broad functional and eco-friendly prophylaxis/disinfection method against various fish pathogens. Therefore, regular applications of low concentration PAA is sufficient to control (potential) pathogens in recirculatin...
Chu, Kai On; Man, Gene Chi Wai; Chan, Kwok Ping; Chu, Ching Yan; Chan, Tak Hang; Pang, Chi Pui; Wang, Chi Chiu
2014-12-01
A robust method for the quantitation of epigallocatechin gallate peracetate in plasma for pharmacokinetic studies is lacking. We have developed a validated method to quantify this compound using liquid chromatography with quadrupole time-of-flight mass spectrometry with isopropanol and tert-butyl methyl ether (3:10) extraction and thin-layer chromatography purification. The epigallocatechin gallate peracetate-1-(13) C8 isotope was used as an internal standard. The linear range (r(2) > 0.9950) was from 0.05 to 100.00 μg/mL. The lower limit of quantification of the method was 0.05 μg/mL. Reproducibility, coefficient of variation, was between 0.7 and 12.6% (n = 6), accuracy between 83.7 and 104.6% (n = 5), and recovery ranged from 82.4 to 109.0% (n = 4). Ion suppression was approximately 40%. No mass spectral peaks were found to interfere between the standard and internal standard or the blank plasma extracts. Epigallocatechin gallate peracetate in plasma was stably stored at -80°C over three months even after three freeze-thaw cycles. Extracts were stable in the sampler at 4°C for over 48 h. Plasma levels were maintained at 1.36 μg/mL for 360 min after intraorbital intravenous injection at 50 mg/kg in mice. This method can be used to reliably measure epigallocatechin gallate peracetate in plasma for pharmacokinetic studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Costa, Solange Alves da Silva; Paula, Olívia Ferreira Pereira de; Silva, Célia Regina Gonçalves E; Leão, Mariella Vieira Pereira; Santos, Silvana Soléo Ferreira dos
2015-01-01
The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA) or 0.25% Proxitane Alpha (PA), for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001). However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one.
An enzyme cascade synthesis of ε-caprolactone and its oligomers.
Schmidt, Sandy; Scherkus, Christian; Muschiol, Jan; Menyes, Ulf; Winkler, Till; Hummel, Werner; Gröger, Harald; Liese, Andreas; Herz, Hans-Georg; Bornscheuer, Uwe T
2015-02-23
Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1975-02-01
alkyl lauryl sulfate added as a wet^ng agent. Routine sterilization of air locks and material entering the isolators was done with 2.OX peracetic...flexible plastic isolators of the Trexler type (19). The isolators were sterilized with 4.0% peracetic acid in water with a small amount of sodium
Molecular weight profiles of proanthocyanidin polymers
Vincent M. Williams; Lawrence J. Porter; Richard W. Hemingway
1983-01-01
The MW profiles of proanthocyanidin polymers (condensed tannins) from 32 samples representing a wide range of plant tissues of many different species have been obtained by gel permeation chromatography of the peracetate derivatives. The tannins vary widely in MW, with M values for the peracetates in the range 1600-5500. The MW profiles vary greatly from those with...
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) is being introduced to aquaculture as a sustainable disinfectant. It is suitable for recirculating aquaculture systems (RAS) because of the low effective concentrations and its minimal impact on biofilter function. The application of PAA in a RAS has a combined impact on fish an...
USDA-ARS?s Scientific Manuscript database
The application of peracetic acid (PAA) at low concentrations has been proven to be a broad-functioning and eco-friendly prophylaxis/disinfection method against various fish pathogens. However, there is lack of knowledge on how to apply PAA in a recirculating aquaculture system (RAS), and whether th...
Use of copper sulfate and peracetic acid as therapeutants on fish: can these replace formalin?
USDA-ARS?s Scientific Manuscript database
Copper sulfate (CuSO4) and peracetic acid (PAA) are compounds that have been found to be useful in several areas of aquaculture around the world. In the United States, CuSO4 is used for treatment of an ectoparasite (Ichthyophthirius multifiliis) on fish (Straus 1993; Tieman and Goodwin 2001), and s...
USDA-ARS?s Scientific Manuscript database
Peracetic acid (PAA) products are being introduced to aquaculture as sustainable disinfectants. Two strategies are used to apply PAA: short term high dose (1-2 mg L-1 PAA) periodic pulse applications or continuous low dose (< 0.2 mg L-1 PAA) applications. In the present study, these strategies and a...
Woon, Colin Y L; Pridgen, Brian C; Kraus, Armin; Bari, Sina; Pham, Hung; Chang, James
2011-03-01
Tissue engineering of human flexor tendons combines tendon scaffolds with recipient cells to create complete cell-tendon constructs. Allogenic acellularized human flexor tendon has been shown to be a useful natural scaffold. However, there is difficulty repopulating acellularized tendon with recipient cells, as cell penetration is restricted by a tightly woven tendon matrix. The authors evaluated peracetic acid treatment in optimizing intratendinous cell penetration. Cadaveric human flexor tendons were harvested, acellularized, and divided into experimental groups. These groups were treated with peracetic acid in varying concentrations (2%, 5%, and 10%) and for varying time periods (4 and 20 hours) to determine the optimal treatment protocol. Experimental tendons were analyzed for differences in tendon microarchitecture. Additional specimens were reseeded by incubation in a fibroblast cell suspension at 1 × 10(6) cells/ml. This group was then analyzed for reseeding efficacy. A final group underwent biomechanical studies for strength. The optimal treatment protocol comprising peracetic acid at 5% concentration for 4 hours produced increased scaffold porosity, improving cell penetration and migration. Treated scaffolds did not show reduced collagen or glycosaminoglycan content compared with controls (p = 0.37 and p = 0.65, respectively). Treated scaffolds were cytotoxic to neither attached cells nor the surrounding cell suspension. Treated scaffolds also did not show inferior ultimate tensile stress or elastic modulus compared with controls (p = 0.26 and p = 0.28, respectively). Peracetic acid treatment of acellularized tendon scaffolds increases matrix porosity, leading to greater reseeding. It may prove to be an important step in tissue engineering of human flexor tendon using natural scaffolds.
Assessment of occupational exposure to gaseous peracetic acid.
Dugheri, Stefano; Bonari, Alessandro; Pompilio, Ilenia; Colpo, Marco; Montalti, Manfredi; Mucci, Nicola; Arcangeli, Giulio
2018-02-07
In order to assess short-term exposure to peracetic acid (PAA) in disinfection processes, the Authors compared 4 industrial hygiene monitoring methods to evaluate their proficiency in measuring airborne PAA concentrations. An active sampling by basic silica gel impregnated with methyl p-tolyl sulfoxide (MTSO), a passive solid phase micro-extraction technique using methyl p-tolyl sulfide (MTS) as on-fiber derivatization reagent, an electrochemical direct-reading PAA monitor, and a novel visual test strip PAA detector doped with 2,2'-azino-bis (3-ethylbenzothiazoline)-6-sulfonate were evaluated and tested over the range of 0.06-16 mg/m3, using dynamically generated PAA air concentrations. The linear regression analysis of linearity and accuracy showed that the 4 methods were suitable for PAA monitoring. Peracetic acid monitoring in several use applications showed that the PAA concentration (1.8 mg/m3) was immediately dangerous to life or health as proposed by the National Institute of Occupational Safety and Health, and was frequently exceeded in wastewater treatment (up to 7.33 mg/m3), and sometimes during food and beverage processes and hospital high-level disinfection operations (up to 6.8 mg/m3). The methods were suitable for the quick assessment of acute exposure in PAA environmental monitoring and can assist in improving safety and air quality in the workplace where this disinfectant is used. These monitoring methods allowed the evaluation of changes to work out practices to reduce PAA vapor concentrations during the operations when workers are potentially overexposed to this strong antioxidant agent. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
USDA-ARS?s Scientific Manuscript database
Ichthyobodo necator is a single celled bi-flagellate parasite, and in high density can causes significant mortality in young fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated con...
Inactivation of stable viruses in cell culture facilities by peracetic acid fogging.
Gregersen, Jens-Peter; Roth, Bernhard
2012-07-01
Looking for a robust and simple method to replace formaldehyde fumigation for the disinfection of virus-handling laboratories and facilities, we tested peracetic acid fogging as a method to inactivate stable viruses under practical conditions. Peracetic acid/hydrogen peroxide (5.8%/27.5%, 2.0 mL/m³) was diluted in sufficient water to achieve ≥ 70% relative humidity and was vaporized as <10 μm droplets in a fully equipped 95 m³ laboratory unit. High titers of reovirus 3, MVM parvovirus and an avian polyomavirus were coated on frosted glass carriers and were exposed to the peracetic acid fog in various positions in the laboratory. After vaporization, a 60 min exposure time, and venting of the laboratory, no residual virus was detected on any of the carriers (detection limit <1 infectious unit/sample volume tested). The log reduction values were 9.0 for reovirus, 6.4 for MVM parvovirus, and 7.65 for the polyomavirus. After more than 10 disinfection runs within 12 months, no damage or functional impairment of electrical and electronic equipment was noted. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Efficacy of sodium hypochlorite and peracetic acid in sanitizing green coconuts.
Walter, E H M; Nascimento, M S; Kuaye, A Y
2009-09-01
To evaluate the efficacy of sanitizing green coconuts (Cocos nucifera L.) through the treatment applied by juice industries using sodium hypochlorite and peracetic acid. The surface of the fruits was inoculated with a mixture of five Listeria monocytogenes strains. The treatments consisted in immersing the fruits for 2 min at room temperature in sodium hypochlorite solution containing 200 mg l(-1) residual chlorine at pH 6.5, and 80 mg l(-1) solution of peracetic acid or sterile water. Bacterial populations were quantified by culturing on trypticase soy agar supplemented with yeast extract and Oxford selective culture medium; however, recovery was higher on the nonselective medium. Immersion in water produced a reduction in the L. monocytogenes population of 1.7 log(10) CFU per fruit, while immersion in sodium hypochlorite and peracetic acid solutions resulted in population reductions of 2.7 and 4.7 log(10) CFU per fruit respectively. The treatments studied are efficient to green coconuts. Sanitation of green coconut is one of the most important control measures to prevent the contamination of coconut water. This article provides information that shows the adequacy of sanitizing treatments applied by the juice industries.
1998-04-01
Two per cent glutaraldehyde is the most commonly used disinfectant in endoscopy units within the UK. Unfortunately adverse reactions to glutaraldehyde are common among endoscopy personnel and the Health and Safety Commission has recommended substantial reductions in atmospheric levels of glutaraldehyde in order to comply with the Control of Substances Hazardous to Health Regulations, 1994. The Working Party addressed ways of eliminating or minimising exposure to glutaraldehyde in endoscopy units by reviewing alternative disinfectants and the use of automated washer/disinfectors. Alternatives to glutaraldehyde must be at least as microbicidal as glutaraldehyde, non-irritating and compatible with endoscope components and decontamination equipment. Peracetic acid is a highly effective disinfectant and may be a suitable alternative to glutaraldehyde. Peracetic acid has a vinegary-like odour and is claimed to be less irritating than glutaraldehyde. Experience with this agent remains relatively limited and the Working Party recommends that peracetic acid should be used in sealed or exhaust ventilated facilities until further experience is obtained. It is considerably more expensive than glutaraldehyde, is less stable and large volumes have to be stored. It causes cosmetic (but not functional) damage to endoscopes and is not compatible with some washer/ disinfectors. Chlorine dioxide is a powerful oxidising agent and highly effective as a disinfectant. Once activated it must be stored in sealed containers with little head space. Fumes cause irritation and sealed or exhaust ventilated facilities are necessary. The agent may damage some metallic and polymer components of endoscopes and automated washer/disinfectors and compatibility should be established with equipment manufacturers before the agent is used. Other disinfectants such as peroxygen compounds and quaternary ammonium derivatives are less suitable because of unsatisfactory mycobactericidal and/or virucidal activity, or incompatibility with endoscopes and automated washer/disinfectors. Alcohol is effective but, on prolonged contact, is damaging to lens cements. It is also flammable and therefore unsuitable for use in large quantities in automated systems. Superoxidised water (Sterilox) is an electrochemical solution (anolyte) containing a mixture of radicals with strong oxidising properties. It is highly microbicidal when freshly generated, provided items are thoroughly clean and strict generation criteria are met--that is, current, pH, redox potential. It seems to be safe for users and provided field trials substantiate laboratory efficacy tests, and the agent is non-damaging, it too may become an alternative to glutaraldehyde. When 2% glutaraldehyde is used for manual and automated disinfection, 10 minutes' immersion is recommended for endoscopes before the session and between patients. This will destroy vegetative bacteria and viruses (including hepatitis B virus (HBV) and HIV). A five minute contact period is recommended for 0.35% peracetic acid and for chlorine dioxide (1100 ppm av ClO2), but if immersed for 10 minutes sporicidal activity will also be achieved. At the end of each session 20 minutes' immersion in glutaraldehyde or five minutes in peracetic acid or chlorine dioxide is recommended. Microbiological studies show that 20 minutes of exposure to 2% glutaraldehyde destroys most organisms, including Mycobacterium tuberculosis. The Working Party concludes therefore that immersion of the endoscope in 2% glutaraldehyde for 20 minutes is sufficient for endoscopy involving patients with AIDS and other immunodeficiency states or pulmonary tuberculosis. Similarly, 20 minutes' immersion is recommended at the start of the list and between cases for endoscopic retrograde cholangiopancreatography (ERCP) when high level disinfection is required. Cleaning and disinfection of endoscopes should be undertaken by trained staff in a dedicated room. Thorough cleaning with detergent
Bigliardi, L; Sansebastiano, G
2006-06-01
The virucidal activity of chlorine-compounds was studied using hepatitis A virus (HAV) and Poliovirus 2 and comparing the disinfectant efficiency of peracetic acid. HAV presented a higher resistance to HClO than Poliovirus did. With ClO2 the inactivation times of HAV were markedly shorter. A comparison between these data and those resulting from the kinetics with peracetic acid (PA) showed that PA is less effective than chlorine. As a preliminary to future research, the PCR-test integrated with cell-cultures was experimentally introduced for a quick evaluation of the HAV-infectiveness, with the aim of possible application in the field of disinfection and of viruses-isolation from environmental and food samples.
Gaddala, Naresh; Veeramachineni, Chandrasekhar; Tummala, Muralidhar
2015-05-01
Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear.
Gaddala, Naresh; Veeramachineni, Chandrasekhar
2015-01-01
Background Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. Aim The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Materials and Methods Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Results Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Conclusion Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear. PMID:26155568
Buschini, Annamaria; Carboni, Pamela; Furlini, Mariangela; Poli, Paola; Rossi, Carlo
2004-03-01
Mutagenicity of drinking water is due not only to industrial, agricultural and urban pollution but also to chlorine disinfection by-products. Furthermore, residual disinfection is used to provide a partial safeguard against low level contamination and bacterial re-growth within the distribution system. The aims of this study were to further evaluate the genotoxic potential of the world wide used disinfectants sodium hypochlorite and chlorine dioxide in human leukocytes by the Comet assay and in Saccharomyces cerevisiae strain D7 (mitotic gene conversion, point mutation and mitochondrial DNA mutability, with and without endogenous metabolic activation) and to compare their effects with those of peracetic acid, proposed as an alternative disinfectant. All three disinfectants are weakly genotoxic in human leukocytes (lowest effective dose 0.2 p.p.m. for chlorine dioxide, 0.5 p.p.m. for sodium hypochlorite and peracetic acid). The results in S.cerevisiae show a genotoxic response on the end-points considered with an effect only at doses higher (5- to 10-fold) than the concentration normally used for water disinfection; sodium hypochlorite and peracetic acid are able to induce genotoxic effects without endogenous metabolic activation (in stationary phase cells) whereas chlorine dioxide is effective in growing cells. The Comet assay was more sensitive than the yeast tests, with effective doses in the range normally used for water disinfection processes. The biological effectiveness of the three disinfectants on S.cerevisiae proved to be strictly dependent on cell-specific physiological/biochemical conditions. All the compounds appear to act on the DNA and peracetic acid shows effectiveness similar to sodium hypochlorite and chlorine dioxide.
Sirri, R; Zaccaroni, A; Di Biase, A; Mordenti, O; Stancampiano, L; Sarli, G; Mandrioli, L
2013-01-01
Doctor fish (Garra rufa) have recently been used for aesthetic purposes and as a medical treatment in patients with psoriasis (ichthyotherapy). For this particular kind of human therapy it is essential to guarantee adequate hygienic conditions for both people and fish. The aim of this study was to test two concentrations of water disinfectants, chloramine T and peracetic acid, on Garra rufa to ascertain possible exposure damage to the epidermis and gills. Fish were exposed to 2 mg/l and 10 mg/l of chloramine T and to 15 microl/l and 45 microl/l of peracetic acid in a 40-minute static bath up to six times a day for one week. The epidermis and gills were checked for histological changes and the number of epidermal mucous cells, club cells and taste buds were quantified; mucous cells were also characterized histochemically to detect alterations in mucin production. No mortality or severe histological changes were found in treated or control fish. Cell count showed a significant increase (p < 0.05) in mucous cells (mean 49.1 +/- 6.7 vs 37.0 +/- 13.1 of controls) in animals treated with peracetic acid independently of the dose. Club cell number showed a significant (p < 0.05) decrease in fish treated with 2 mg/l of chloramine T (mean 74.3 +/- 15.6) and with 45 microl/1 of peracetic acid (mean 78.17 +/- 10.5) compared to controls (mean 107.0 +/- 19.2). Histochemical evaluation of mucous cells did not reveal changes in mucin type in fish exposed to the two disinfectants. The results suggest a good tolerability of Garra rufa to the two disinfectants at the concentrations tested.
Szewczyk, Małgorzata; Grzeszczuk, Karolina; Walski, Tomasz; Suder, Marek; Komorowska, Małgorzata
2013-01-01
The dialysis machine shall be cleaned and disinfected after each patient treatment or after every 72 hours break in working. An acceptable disinfectants such as Puristeril plus or Puristeril 340, Citrosteril, Diasteril and Sporotal are used for decontamination. Puristeril 340 is designed for cold disinfection and due to the low pH value, the necessary decalcification of hemodialysis machines is easily achieved. It can be used for all haemodialysis systems like hemodialysis machines, water treatment devices and circuit pipes. Diluted Puristeril decomposes in a non-toxic way. Degradation products of peracetic acid, which is main component of Puristeril are: hydrogen peroxide and acetic acid. Peracetic acid is widely used for disinfection due to its exceptionally broad spectrum of microbiocidal activity at low concentrations and short exposure times. After use Puristeril is easily removable by rinsing with water. This paper deals with the effect of the Puristeril toxicity on blood as a function of its concentration and incubation time. Concentration range of 3.5-70 ppm was used, with particular emphasis on concentrations close to 5 ppm, a value is the limit of sensitivity of strips of starch potassium iodide, the tests for detection of peracetic acid. There was a strong increase in autohaemolysis and malondialdehyde concentrations with increasing concentration of Puristeril. There were also changes in dependence on the parameters of the incubation time, with the greatest effects obtained after 2 hours incubation with Puristeril. The detection limit of peracetic acid used strips of starch potassium iodide does not guarantee the safety of a patient undergoing hemodialysis. Even the residual concentration of Puristeril plus cause increased lipid peroxidation of membrane, and therefore suggest the routine use of stripes on the lower limit of detection of peracetic acid or implement measurement of hydrogen peroxide residues performed with sensitivity 1 ppm.
USDA-ARS?s Scientific Manuscript database
Commercial peracetic acid (PAA) formulations are acidic mixtures of PAA, hydrogen peroxide (H2O2), acetic acid (AA), H2O and stabilizers to maintain equilibrium of the concentrations. Different PAA formulations show diverse PAA/H2O2 ratios, leading to potentially different toxicities at the same con...
Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.
Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland
2017-02-16
Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.
Beltrame, Cezar A; Kubiak, Gabriela B; Rottava, Ieda; Toniazzo, Geciane; Cansian, Rogério L; Lerin, Lindomar A; de Oliveira, Débora; Treichel, Helen
2013-01-01
The objective of this work was to evaluate the kinetic of inactivation of Listeria monocytogenes using peracetic acid, chlorhexidine, and organic acids as active agent, determining the respective D-, Z-, and F-values. From our knowledge, these important results from an industrial view point are not available in the current literature, mainly for organic acids, pointing out the main contribution of the present work. Lower D-values were obtained for peracetic acid and chlorhexidine, compared with the organic acids. For the reduction of 6 log10 of L. monocytogenes using peracetic acid, at 0.2, 0.1, and 0.05% are necessary 7.08, 31.08, and 130.44 min of contact, respectively. The mathematical models of F-values showed that at concentrations lower than 0.15% one can verify an exponential increase in F-values, for both de chlorhexidine and peracetic acid. The organic acids presented a linear behavior, showing slight variation in F-values, is even more effective in under dosage. The results obtained are of fundamental importance in terms of industrial strategy for sanitization procedure, permitting to choose the best relation product concentration/exposure time, aiming at reducing costs without compromising the disinfectant efficiency. PMID:24804011
Daddiego, Loretta; Bianco, Linda; Capodicasa, Cristina; Carbone, Fabrizio; Dalmastri, Claudia; Daroda, Lorenza; Del Fiore, Antonella; De Rossi, Patrizia; Di Carli, Mariasole; Donini, Marcello; Lopez, Loredana; Mengoni, Alessio; Paganin, Patrizia; Perrotta, Gaetano; Bevivino, Annamaria
2018-01-01
Lettuce is a leafy vegetable that is extensively commercialized as a ready-to-eat product because of its widespread use in human nutrition as salad. It is well known that washing treatments can severely affect the quality and shelf-life of ready-to-eat vegetables. The study presented here evaluated the effect of two washing procedures on fresh-cut lettuce during storage. An omics approach was applied to reveal global changes at molecular level induced by peracetic acid washing in comparison with sodium hypochlorite treatment. Microbiological analyses were also performed to quantify total bacterial abundance and composition. The study revealed wide metabolic alterations induced by the two sanitizers. In particular, transcriptomic and proteomic analyses pointed out a number of transcripts and proteins differentially accumulated in response to peracetic acid washing, mainly occurring on the first day of storage. In parallel, different microbiota composition and significant reduction in total bacterial load following washing were also observed. The results provide useful information for the fresh-cut industry to select an appropriate washing procedure preserving fresh-like attributes as much as possible during storage of the end product. Molecular evidence indicated peracetic acid to be a valid alternative to sodium hypochlorite as sanitizer solution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paul Allen
2017-02-01
The purpose of this report is to identify other disinfection methods to replace the current ozone system and propose a small pilot-scale test. Based on a review of the literature and disinfectants used by other wastewater plants in Tennessee, peracetic acid (PAA) was identified as a leading candidate. This report provides the basis for requesting approval for a pilot-scale study using PAA.
Peracetic acid as an alternative disinfection technology for wet weather flows.
Coyle, Elizabeth E; Ormsbee, Lindell E; Brion, Gail M
2014-08-01
Rain-induced wet weather flows (WWFs) consist of combined sewer overflows, sanitary sewer overflows, and stormwater, all of which introduce pathogens to surface waters when discharged. When people come into contact with the contaminated surface water, these pathogens can be transmitted resulting in severe health problems. As such, WWFs should be disinfected. Traditional disinfection technologies are typically cost-prohibitive, can yield toxic byproducts, and space for facilities is often limited, if available. More cost-effective alternative technologies, requiring less space and producing less harmful byproducts are currently being explored. Peracetic acid (PAA) was investigated as one such alternative and this research has confirmed the feasibility and applicability of using PAA as a disinfectant for WWFs. Peracetic acid doses ranging from 5 mg/L to 15 mg/L over contact times of 2 to 10 minutes were shown to be effective and directly applicable to WWF disinfection.
Vieira, Rosimara Gonçalves Leite; Moraes, Thaís da Silva; Silva, Larissa de Oliveira; Bianchi, Thamires Chiquini; Veneziani, Rodrigo Cassio Sola; Ambrósio, Sérgio Ricardo; Bastos, Jairo Kenupp; Pires, Regina Helena; Martins, Carlos Henrique Gomes
2018-01-01
Patients submitted to hemodialysis therapy are more susceptible to infection, especially to infection by Gram-positive bacteria. Various research works have attempted to discover new antimicrobial agents from plant extracts and other natural products. The present study aimed to assess the antibacterial activities of Copaifera duckei , C. reticulata , and C. oblongifolia oleoresins; sodium hypochlorite; and peracetic acid against clinical and environmental isolates recovered from a Hemodialysis Unit. The Minimum Inhibitory Concentration and the Fractionated Inhibitory Concentration Index were determined; the ability of the tested compounds/extracts to inhibit biofilm formation was evaluated by calculating the MICB 50 and IC 50 . C. duckei was the most efficient among the assayed Copaifera species, and its oleoresin was more effective than peracetic acid and sodium hypochlorite. Copaifera oleoresins and disinfectants did not act synergistically at any of the tested combinations. Certain of C. duckei oleoresin, peracetic acid, and sodium hypochlorite concentrations inhibited biofilm formation and eradicated 50% of the biofilm population. C. duckei oleoresin is a potential candidate for disinfectant formulations. Based on these results and given the high incidence of multi-resistant bacteria in hemodialysis patients, it is imperative that new potential antibacterial agents like C. duckei oleoresin, which is active against Staphylococcus , be included in disinfectant formulations.
Fernandes, Flavio H C N; Orsi, Iara A; Villabona, Camilo A
2013-03-01
This study evaluated the surface roughness (Ra) and color stability of acrylic resin colors (Lucitone 550, QC-20 and Vipi-Wave) used for fabricating bases for complete, removable dentures, overdentures and prosthetic protocol after immersion in chemical disinfectants (1% sodium hypochlorite and 2% peracetic acid) for 30 and 60 minutes. Sixty specimens were made of each commercial brand of resin composite, and divided into 2 groups according to the chemical disinfectants. Specimens had undergone the finishing and polishing procedures, the initial color and roughness measurements were taken (t=0), and after this, ten test specimens of each commercial brand of resin composite were immersed in sodium hypochlorite and ten in peracetic acid, for 30 and 60 minutes, with measurements being taken after each immersion period. These data were submitted to statistical analysis. There was evidence of an increase in Ra after 30 minutes immersion in the disinfectants in all the resins, with QC-20 presenting the highest Ra values, and Vipi-Wave the lowest. After 60 minutes immersion in the disinfectants all the resins presented statistically significant color alteration. Disinfection with 1% sodium hypochlorite and peracetic acid altered the properties of roughness and color of the resins. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Surface fixation of dried blood by glutaraldehyde and peracetic acid.
Kampf, G; Bloss, R; Martiny, H
2004-06-01
The difficulties of successful prion inactivation by chemical agents has led to changes in recommendations regarding the reprocessing of instruments including flexible endoscopes. One of the changes is the preference for peracetic acid instead of glutaraldehyde in order to avoid fixation of organic material, but the surface fixation by various active agents has not been fully investigated. We used a standardized amount of dried blood soil on metal carriers (on average 22 mg). One part of the carriers was exposed to different disinfectants (four based on peracetic acid, three based on glutaraldehyde, two based on quaternary ammonium compounds (QAC), one based on QAC and amines, one based on phenols and one cleaning agent) and air dried. The difference compared with the non-exposed soiled carrier was taken as the measure of blood removal by exposure to the disinfectants. In addition the other part of the carriers was exposed to a cleaning agent and air dried. The cleaning agent itself was capable of removing more than 99% of the dried blood and served as a control for non-fixation. The rate of fixation of dried blood was calculated as the ratio of the weight of residual soil on 'soiled, disinfected and cleaned' carriers and on 'soiled and disinfected' carriers. All experiments were repeated eight times. Blood removal varied between 90.3% +/- 1.5% (phenol-based disinfectant) and < 10% (glutaraldehyde-based preparations). Fixation of the remainder was between 76.9 +/- 8.4% and 102.5 +/- 1.1% with glutaraldehyde and between 19.2% +/- 3.3% and 78.1% +/- 2.4% with peracetic acid. No other preparations showed a potential for blood fixation (< 1.3%). Our findings underline the potential for blood fixation, not only by glutaraldehyde, but also by peracetic acid, and support the evidence that effective cleaning should precede the chemical disinfection. Copyright 2004 The Hospital Infection Society
Supercritical carbon dioxide-based sterilization of decellularized heart valves.
Hennessy, Ryan S; Jana, Soumen; Tefft, Brandon J; Helder, Meghana R; Young, Melissa D; Hennessy, Rebecca R; Stoyles, Nicholas J; Lerman, Amir
2017-02-01
The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile using histology, microbe culture and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide treated valves were higher compared to valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues.
Virucidal efficacy of peracetic acid for instrument disinfection.
Becker, Britta; Brill, Florian H H; Todt, Daniel; Steinmann, Eike; Lenz, Johannes; Paulmann, Dajana; Bischoff, Birte; Steinmann, Jochen
2017-01-01
Various peracetic-acid (PAA)-based products for processing flexible endoscopes on the market are often based on a two-component system including a cleaning step before the addition of PAA as disinfectant. The peracetic acid concentrations in these formulations from different manufacturers are ranging from 400 to 1500 ppm (part per million). These products are used at temperatures between 20 °C and 37 °C. Since information on the virus-inactivating properties of peracetic acid at different concentrations and temperature is missing, it was the aim of the study to evaluate peracetic acid solutions against test viruses using the quantitative suspension test, EN 14476. In addition, further studies were performed with the recently established European pre norm (prEN 17111:2017) describing a carrier assay for simulating practical conditions using frosted glass. In the first step of examination, different PAA solutions between 400 and 1500 ppm were tested at 20 °C, 25 °C, and 35 °C with three test viruses (adenovirus, murine norovirus and poliovirus) necessary for creating a virucidal action according to the European Norm, EN 14476. A second step for simulating practical conditions based on prEN 17111:2017 followed by spreading a test virus together with soil load onto a glass carrier which was immerged into a peracetic acid solution. A fixed exposure time of five minutes was used in all experiments. In the quantitative suspension test 1500 ppm PAA solution was needed at 35 °C for five minutes for the inactivation of poliovirus, whereas only 400 ppm at 20 °C for adeno- and murine norovirus were necessary. In the carrier assay 400 ppm peracetic acid at 20 °C were sufficient for adenovirus inactivation, whereas 600 ppm PAA were needed at 25 °C and 35 °C and 1000 ppm at 20 °C for murine norovirus. A PAA solution with 1000 ppm at 35 °C was required for complete inactivation of poliovirus. However, a dramatically decrease of titer after the drying and immerging could be observed. In consequence, a four log reduction of poliovirus titer could not be achieved in the carrier test. In summary, 1500 ppm PAA at 35 °C was necessary for a virucidal action in the quantitative suspension test. After passing the requirements of the suspension test, additional examinations with adeno- and murine norovirus on glass carriers based on prEN 17111:2017 will not additionally contribute to the final claim of an instrument disinfectant for virucidal efficacy. This is due to the great stability of poliovirus in the preceded quantitative suspension test and the fact that poliovirus could not serve as test virus in the following carrier assay.
Peracetic acid in the disinfection of a hospital water system contaminated with Legionella species.
Ditommaso, Savina; Biasin, Cinzia; Giacomuzzi, Monica; Zotti, Carla Maria; Cavanna, Alberto; Ruggenini Moiraghi, Angela
2005-05-01
To assess the efficacy of an alternative disinfection method for hospital water distribution systems contaminated with Legionella. Disinfection with peracetic acid was performed in a small hospital contaminated with L. pneumophila serotype 1. The disinfectant was used at concentrations of 50 ppm (first three surveillance phases) and 1,000 ppm (fourth surveillance phase) for 30 minutes. Environmental monitoring revealed that disinfection was maintained 1 week after treatment; however, levels of recontamination surpassing baseline values were detected after approximately 1 month. Comparison of water temperatures measured at the distal outlets showed a statistically significant association between temperature and bacterial load. The circulating water temperature was found to be lower in the two wards farthest away from the hot water production plant than in other wards. It was thought that the lower water temperature in the two wards promoted the bacterial growth even after disinfection. Peracetic acid may be useful in emergency situations, but does not provide definitive protection even if used monthly.
Dialyzer Reuse with Peracetic Acid Does Not Impact Patient Mortality
Bond, T. Christopher; Krishnan, Mahesh; Wilson, Steven M.; Mayne, Tracy
2011-01-01
Summary Background and objectives Numerous studies have shown the overall benefits of dialysis filter reuse, including superior biocompatibility and decreased nonbiodegradable medical waste generation, without increased risk of mortality. A recent study reported that dialyzer reprocessing was associated with decreased patient survival; however, it did not control for sources of potential confounding. We sought to determine the effect of dialyzer reprocessing with peracetic acid on patient mortality using contemporary outcomes data and rigorous analytical techniques. Design, setting, participants, & measurements We conducted a series of analyses of hemodialysis patients examining the effects of reuse on mortality using three techniques to control for potential confounding: instrumental variables, propensity-score matching, and time-dependent survival analysis. Results In the instrumental variables analysis, patients at high reuse centers had 16.2 versus 15.9 deaths/100 patient-years in nonreuse centers. In the propensity-score matched analysis, patients with reuse had a lower death rate per 100 patient-years than those without reuse (15.2 versus 15.5). The risk ratios for the time-dependent survival analyses were 0.993 (per percent of sessions with reuse) and 0.995 (per unit of last reuse), respectively. Over the study period, 13.8 million dialyzers were saved, representing 10,000 metric tons of medical waste. Conclusions Despite the large sample size, powered to detect miniscule effects, neither the instrumental variables nor propensity-matched analyses were statistically significant. The time-dependent survival analysis showed a protective effect of reuse. These data are consistent with the preponderance of evidence showing reuse limits medical waste generation without negatively affecting clinical outcomes. PMID:21566107
Botondi, Rinaldo; Moscetti, Roberto; Massantini, Riccardo
2016-05-01
Ozonated water and peracetic acid were tested as sanitizers to enhance the storability of fresh-cut melon cubes. Sanitizers were also combined with suitable packaging materials (polypropylene and polylactic acid based plastic films). Fresh-cut melon cubes were stored at 4 °C for up to 7 days. Ozonated water and peracetic acid treatments were given by dipping cubes into 0.8 ppm O3 and 100 ppm Tsunami 100™ solutions, respectively, for 3 min. Both sanitizers exhibited efficiency in reducing the total microbial counts on melon cubes (< 2 log CFU g(-1)). Respiratory activity and ethylene production were both affected by the interaction between the sanitizer and the packaging used. Carbon dioxide and oxygen reached 9.89 kPa and 12.20 kPa partial pressures, respectively, using peracetic acid treatment in combination with polypropylene film packaging, consequently developing off-odors starting from day 3. Strong color changes were noted in cubes stored in polylactic acid packaging after 7 days of storage, affecting the sensory quality of the melon cubes. Sensory evaluation (overall visual quality) indicated loss in flavor in the polypropylene packaging. The overall visual quality started to decline on 3rd day because of the development of translucency.Overall, the use of ozone in combination with polypropylene packaging provided the best solution to maintain the quality of melon cubes for up to 5 days of storage at 4 °C.
Picón-Camacho, Sara M; Marcos-Lopez, Mar; Beljean, Alexandre; Debeaume, Sylvain; Shinn, Andrew P
2012-02-01
Traditionally, malachite green administrated as in-bath treatment was the most effective and common strategy used in freshwater aquaculture systems to control infections of the ciliate protozoan parasite Ichthyophthirius multifiliis Fouquet, 1876. After the ban of malachite green in the USA and Europe to be used in fish for human consumption, there has been extensive research destined to find efficacious replacements. Recently, peracetic acid-based compounds have demonstrated a strong cytotoxic effect in vitro and in vivo against I. multifiliis. In the present study, we tested the efficacy of a hydrogen peroxide, peracetic, acetic and peroctanoic acid-based formulation (HPPAPA) to eliminate the free-living stages of I. multifiliis (tomonts, cysts and theronts). The results obtained showed that the administration of low doses (8, 12 or 15 mg/l) of a specific HPPAPA-based product during a short window of exposure (60 min) kills nearly all free-living stages of I. multifiliis (theronts, tomonts and cysts) within the window of treatment (∼100% mortality for all the stages; one-way ANOVA, P ≤ 0.001). Of note, even the lowest concentration of HPPAPA tested (8 mg/l) was able to disrupt normal cyst development and therefore theront release. The demonstrated in vitro efficacy of the peracetic acid-based product tested on the present study suggests its great potential to control I. multifiliis infections in commercial aquacultural systems.
Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N
2015-06-16
Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank.
Supercritical carbon dioxide-based sterilization of decellularized heart valves
Hennessy, Ryan S.; Jana, Soumen; Tefft, Brandon J.; Helder, Meghana R.; Young, Melissa D.; Hennessy, Rebecca R.; Stoyles, Nicholas J.; Lerman, Amir
2017-01-01
Objective The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Background Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Methods Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Results Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Conclusions Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Summary Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile using histology, microbe culture and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide treated valves were higher compared to valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. PMID:28337488
Effects of Peracetic Acid on the Corrosion Resistance of Commercially Pure Titanium (grade 4).
Raimundo, Lariça B; Orsi, Iara A; Kuri, Sebastião E; Rovere, Carlos Alberto D; Busquim, Thaís P; Borie, Eduardo
2015-01-01
The aim of this study was to evaluate the corrosion resistance of pure titanium grade 4 (cp-Ti-4), subjected to disinfection with 0.2% and 2% peracetic acid during different immersion periods using anodic potentiodynamic polarization test in acid and neutral artificial saliva. Cylindrical samples of cp-Ti-4 (5 mm x 5 mm) were used to fabricate 24 working electrodes, which were mechanically polished and divided into eight groups (n=3) for disinfection in 2% and 0.2% peracetic acid for 30 and 120 min. After disinfection, anodic polarization was performed in artificial saliva with pH 4.8 and 6.8 to assess the electrochemical behavior of the electrodes. A conventional electrochemical cell, constituting a reference electrode, a platinum counter electrode, and the working electrode (cp-Ti specimens) were used with a scanning rate of 1 mV/s. Three curves were obtained for each working electrode, and corrosion was characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Data of corrosion potential (Ecorr) and passive current (Ipass) obtained by the polarization curves were analyzed statistically by Student's t-test (a=0.05). The statistical analysis showed no significant differences (p>0.05) between artificial saliva types at different concentrations and periods of disinfection, as well as between control and experimental groups. No surface changes were observed in all groups evaluated. In conclusion, disinfection with 0.2% and 2% peracetic acid concentrations did not cause corrosion in samples manufactured with cp-Ti-4.
Ramirez-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X
2018-01-01
The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.
Candeliere, Antonio; Donatiello, Adelia; Pagano, Stefania; Iatarola, Michela; Tolve, Francesco; Antonino, Leonardo; Fasanella, Antonio
2016-01-01
The use of products that can neutralize or significantly reduce the microbial load and that are not harmful to human health and the environment represents a milestone in the fight against the spread of infectious diseases. Peracetic acid, besides being an excellent sterilizing and sporicidal agent, is harmless to humans and the environment when it is used in a common dosage. However, the high costs and loss of efficacy of the product very quickly after its reconstitution limit its use. We evaluated the efficacy and stability of 2 commercial products, based on stabilized peracetic acid (Pathoster® 0.35% and Pathoster® 0.50%) used against spores of Bacillus anthracis and spores of Bacillus cereus and vegetative forms of Yersinia pestis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Brucella abortus, and Brucella melitensis. The efficacy tests were based on the direct contact of the products with a standard suspension of the bacteria. The stability of the products was defined as the period of time during which the biocidal and sporicidal properties remained unchanged. The limit of effectiveness was the period after which the product was unable to exert a complete sterilization after a contact of 5 minutes with at least 1 of the 8 bacteria used in this work. Both formulations showed good efficacy against the microorganisms used in the study, confirming the utility of peracetic acid as a sterilizing product. After the reconstitution, Pathoster® 0.35% was stable until 16±1 days, while Pathoster® 0.50% was stable until 24±1 days. The formulations used in this study showed good performance and a significant stability of peracetic acid. PMID:27482880
Candeliere, Antonio; Campese, Emanuele; Donatiello, Adelia; Pagano, Stefania; Iatarola, Michela; Tolve, Francesco; Antonino, Leonardo; Fasanella, Antonio
2016-01-01
The use of products that can neutralize or significantly reduce the microbial load and that are not harmful to human health and the environment represents a milestone in the fight against the spread of infectious diseases. Peracetic acid, besides being an excellent sterilizing and sporicidal agent, is harmless to humans and the environment when it is used in a common dosage. However, the high costs and loss of efficacy of the product very quickly after its reconstitution limit its use. We evaluated the efficacy and stability of 2 commercial products, based on stabilized peracetic acid (Pathoster(®) 0.35% and Pathoster(®) 0.50%) used against spores of Bacillus anthracis and spores of Bacillus cereus and vegetative forms of Yersinia pestis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Brucella abortus, and Brucella melitensis. The efficacy tests were based on the direct contact of the products with a standard suspension of the bacteria. The stability of the products was defined as the period of time during which the biocidal and sporicidal properties remained unchanged. The limit of effectiveness was the period after which the product was unable to exert a complete sterilization after a contact of 5 minutes with at least 1 of the 8 bacteria used in this work. Both formulations showed good efficacy against the microorganisms used in the study, confirming the utility of peracetic acid as a sterilizing product. After the reconstitution, Pathoster(®) 0.35% was stable until 16±1 days, while Pathoster(®) 0.50% was stable until 24±1 days. The formulations used in this study showed good performance and a significant stability of peracetic acid.
West, Danielle M; Wu, Qihua; Donovan, Ariel; Shi, Honglan; Ma, Yinfa; Jiang, Hua; Wang, Jianmin
2016-06-01
In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.
do Rosário, Denes Kaic Alves; da Silva Mutz, Yhan; Peixoto, Jaqueline Moreira Curtis; Oliveira, Syllas Borburema Silva; de Carvalho, Raquel Vieira; Carneiro, Joel Camilo Souza; de São José, Jackline Freitas Brilhante; Bernardes, Patrícia Campos
2017-01-16
New sanitization methods have been evaluated to improve food safety and food quality and to replace chlorine compounds. However, these new methods can lead to physicochemical and sensory changes in fruits and vegetables. The present study evaluated the effects of acetic acid, peracetic acid, and sodium dodecylbenzenesulfonate isolated or combined with 5min of ultrasound treatment (40kHz, 500W) on strawberry quality over 9days of storage at 8°C. The strawberry natural contaminant microbiota (molds and yeasts, mesophilic aerobic and lactic acid bacteria), physicochemical quality (pH, total titratable acidity, total soluble solids, vitamin C, and color), sensory quality (triangle test) and inactivation of Salmonella enterica subsp. enterica intentionally inoculated onto strawberries were analyzed. Ultrasound increased the effect of all chemical compounds in the reduction of aerobic mesophilic, molds and yeasts. The best treatment for those groups of microorganisms was ultrasound combined with peracetic acid (US+PA) that reduced 1.8 and 2.0logcfu/g during 9days of storage. Bactericidal effect of peracetic acid was also improved by ultrasound inactivation of S. enterica, reaching a decimal reduction of 2.1logcfu/g. Moreover, synergistic effects were observed in contaminant natural microbiota inactivation for all tested compounds during storage, without any major physicochemical or sensory alteration to the strawberries. Therefore, ultrasound treatment can improve the effect of sanitizers that are substitutes of chlorine compounds without altering the quality of strawberries during storage. Acetic acid (PubChem CID: 176); Peracetic acid (PubChem CID: 6585); Sodium dodecylbenzenesulfonate (PubChem CID: 18372154). Copyright © 2016 Elsevier B.V. All rights reserved.
Negative dendritic effect on enzymatic hydrolysis of dendrimer conjugates.
Zhou, Zhengwei; Cong, Mei; Li, Mengyao; Tintaru, Aura; Li, Jia; Yao, Jianhua; Xia, Yi; Peng, Ling
2018-06-08
Dendrimers possess intriguing "dendritic effects", which are unique characteristics that stem from the dendrimer generation and size. Here we report a "negative dendritic effect" observed during enzymatic hydrolysis of dendrimer conjugates. Such negative dendritic effects, though rarely reported, may be explored for tailored and generation-dependent drug release.
Lagacé, L; Jacques, M; Mafu, A A; Roy, D
2006-10-01
The susceptibility of planktonic and biofilm cells of Pseudomonas marginalis toward four commonly used biocides at different temperatures (15 and 30 degrees C) and biofilm growth times (24 and 48 h) was assessed. Using the MBEC biofilm device, biofilm production in maple sap was shown to be highly reproducible for each set of conditions tested. Biofilm formation was influenced by growth temperature and time. A temperature of 15 degrees C and incubation time of 24 h yielded fewer CFU per peg and showed fewer adhered cells and typical biofilm structures, based on scanning electron microscopy observations as compared with other conditions. Minimal biofilm eradication concentration values for P. marginalis were significantly greater (P. < 0.001) than were MBCs for planktonic cells and for every biocide tested, with the exception of minimal biofilm eradication concentration values for peracetic acid at 15 degrees C and 24 h. Sodium hypochlorite and peracetic acid sanitizers were able to eliminate P. marginalis biofilms at lower concentrations as compared with hydrogen peroxide- and quaternary ammonium-based sanitizers (P < 0.001). According to the results obtained, sodium hypochlorite and peracetic acid sanitizers would be more appropriate for maple sap collection system sanitation.
Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguérinel, I; Couvert, O; Carlin, F; Coroller, L
2018-04-12
The recovery at a range of incubation temperatures and pH of spores of Bacillus weihenstephanensis KBAB4 exposed to a peracetic acid-based disinfectant (PABD) or to pulsed light was estimated. Spores of B. weihenstephanensis were produced at 30 °C and pH 7.00, at 30 °C and pH 5.50, or at 12 °C and pH 7.00. The spores were treated with a commercial peracetic acid-based disinfectant at 80 mg·mL -1 for 0 to 200 min at 18 °C or by pulsed light at fluences ranging between 0.4 and 2.3 J·cm -2 for pulsed light treatment. After each treatment, the spores were incubated on nutrient agar at 12 °C, 30 °C or 37 °C, or at pH 5.10, 6.00 or 7.40. Incubation temperature during recovery had a significant impact only near the recovery limits, beyond which surviving spores previously exposed to a PABD or to pulsed light were not able to form colonies. In contrast, a decrease in pH of the recovery nutrient agar had a progressive impact on the ability of spores to form colonies. The time to first log reduction after PABD treatment was 29.5 ± 0.7 min with recovery at pH 7.40, and was tremendously shortened 5.1 ± 0.2 min with recovery at pH 5.10. Concerning the fluence necessary for the first log reduction, it was 1.5 times higher when the spores were recovered at pH 6.00 compared to a recovery at pH 5.10. The impact of recovery temperature and pH can be described with a mathematical model using cardinal temperature and pH as parameters. These effects of temperature and pH on recovery of Bacillus weihenstephanensis spores exposed to a disinfectant combining peracetic acid and hydrogen peroxide, or pulsed light are similar, although these treatments are of different natures. Sporulation temperature or pH did not impact resistance to the peracetic acid-based disinfectant or pulsed light. Copyright © 2018 Elsevier B.V. All rights reserved.
Khodaei, Nastaran; Karboune, Salwa
2016-04-15
Potato pulp by-product rich in galactan-rich rhamnogalacturonan I (RG I) was investigated as a new source of oligosaccharides with potential prebiotic properties. The efficiency of selected monocomponent enzymes and multi-enzymatic preparations to generate oligosaccharides/oligomers from potato RG I was evaluated. These overall results of yield were dependent on the activity profile of the multi-enzymatic preparations. Highest oligo-RG I yield of 93.9% was achieved using multi-enzymatic preparation (Depol 670L) with higher hydrolytic activity toward side chains of RG I as compared to its backbone. Main oligo-RG I products were oligosaccharides with DP of 2-12 (79.8-100%), while the oligomers with DP of 13-70 comprised smaller proportion (0.0-20.2%). Galactose (58.9-91.2%, w/w) was the main monosaccharide of oligo-RG I, while arabinose represented 0.0-12.1%. An understanding of the relationship between the activity profile of multi-enzymatic preparations and the yield/DP of oligo-RG I was achieved. This is expected to provide the capability to generate galacto- and galacto(arabino) oligosaccharides and their corresponding oligomers from an abundant by-product. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Use of enzymatic processing in the food, textile, and bio-fuel applications is becoming increasingly popular, primarily because of rapid introduction of a new variety of highly efficient enzymes. In general, an enzymatic bio-processing generates less toxic and readily biodegradable wastewater efflue...
Lee, Jung Myoung; Jameel, Hasan; Venditti, Richard A
2010-07-01
Two distinct pretreatment technologies, autohydrolysis and AFEX, have been applied to coastal Bermuda grass (CBG) followed by enzymatic hydrolysis in order to compare the effects of pretreatment on the subsequent sugar generation. Furthermore, the influence of structural features from each pretreatment on biomass digestibility was characterized with SEM, ATR-FTIR, and XRD. Enzymatic conversion of pretreated solids from the pretreatments increased with elevated temperature and longer residence times. AFEX pretreatment at 100 degrees C for 30 min produced a sugar yield of 94.8% of theoretical possible with 30 FPU/g enzymatic loading, the maximum achieved with AFEX. It was also shown that with autohydrolysis at 170 degrees C for 60 min that 55.4% sugar yield of the theoretical possible was produced with a 30 FPU/g enzymatic loading, the maximum with autohydrolysis. AFEX pretreatment does not change the chemical composition of CBG but autohydrolysis reduces hemicellulose content in the pretreated solids. Both pretreatments cause re-localization of lignin components. There was no observed correlation between crystallinity and enzyme digestibility of the pretreated solids. AFEX pretreatment developed more enzymatic accessibility to pretreated solids of CBG than did autohydrolysis pretreatment, leading to more sugar generation through the whole process. The total amount of sugars accounted for with autohydrolysis decreases with increasing temperature, consistent with increased byproduct generation via thermal degradation reactions. Published by Elsevier Ltd.
Surface disinfection challenges for Candida auris: an in-vitro study.
Kean, R; Sherry, L; Townsend, E; McKloud, E; Short, B; Akinbobola, A; Mackay, W G; Williams, C; Jones, B L; Ramage, G
2018-04-01
The emerging pathogenic multidrug-resistant yeast Candida auris is an important source of healthcare-associated infections and of growing global clinical concern. The ability of this organism to survive on surfaces and withstand environmental stressors creates a challenge for eradicating it from hospitals. A panel of C. auris clinical isolates was evaluated on different surface environments against the standard disinfectant sodium hypochlorite and high-level disinfectant peracetic acid. C. auris was shown to selectively tolerate clinically relevant concentrations of sodium hypochlorite and peracetic acid in a surface-dependent manner, which may explain its ability to successfully persist within the hospital environment. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Zhang, Kejia; Zhou, Xinyan; Du, Penghui; Zhang, Tuqiao; Cai, Meiquan; Sun, Peizhe; Huang, Ching-Hua
2017-10-15
Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluents and surface waters. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ∼ CFX > AMP ∼ AMX > CFT ∼ CFP ∼ PG and is related to β-lactam's nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions. Copyright © 2017. Published by Elsevier Ltd.
Van Rooij, Pascale; Pasmans, Frank; Coen, Yanaika; Martel, An
2017-01-01
The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal) causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal®, Chloramine-T®, Dettol medical®, Disolol®, ethanol, F10®, Hibiscrub®, potassium permanganate, Safe4®, sodium hypochlorite, and Virkon S®, were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd). For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium), were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S®, 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S® and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus.
[Peracetic acid: alternative to the sterilization of bronchofibroscopes].
Villate, J I; Barrón, J; Zalacaín, R; Urcelay, M I; Hernández, J M; Argumedo, M
1997-03-01
The Steris system for cold sterilization with peracetic acid was evaluated by effecting a series of contaminations of a fiberoptic bronchoscope (FB) with specimens of Pseudomonas aeruginosa, Acinetobacter baumanii and Mycobacterium kansasi. The FB was contaminated 24 times, 8 times by each microorganism, using specimens containing more than 10(8) cfu/ml. After fixing the secretions on the FB and washing it with enzyme soap, the BF was sterilized. Specimens were taken for culturing after contamination of the FB, after washing, immediately after sterilization and 1 hour after sterilization. No microorganism growth of any of the samples was detected either immediately after sterilization or one hour later. Microbiological data confirmed contamination of the FB after aspiration and fixation of the inoculate. Chemical and biological tests with B. stearothermophilus spores as specified by the manufacturer were correct in all cases: 24 contaminations and 52 processes of prior training. The efficacy of washing with enzyme soap before sterilization stands out. In 14 of the 24 samples, culture was negative after washing and in 7 the concentration of microorganisms was less than 500 cfu/ml, which confirms the need for appropriate washing before any disinfection or sterilization process is begun. In conclusion, the Steris system based on peracetic acid is an alternative to other systems for cold sterilization or high level disinfection.
da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta
2014-11-01
The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.
Guiraldo, Ricardo D; Berger, Sandrine B; Siqueira, Ronaldo Mt; Grandi, Victor H; Lopes, Murilo B; Gonini-Júnior, Alcides; Caixeta, Rodrigo V; de Carvalho, Rodrigo V; Sinhoreti, Mário Ac
2017-04-01
This study compared the surface detail reproduction and dimensional accuracy of molds after disinfection using 2% sodium hypochlorite, 2% chlorhexidine digluconate or 0.2% peracetic acid to those of molds that were not disinfected, for four elastomeric impression materials: polysulfide (Light Bodied Permlastic), polyether (Impregum Soft), polydimethylsiloxane (Oranwash L) andpolyvinylsiloxane (Aquasil Ultra LV). The molds were prepared on a matrix by applying pressure, using a perforated metal tray. The molds were removed following polymerization and either disinfected (by soaking in one of the solutions for 15 minutes) or not disinfected. The samples were thus divided into 16 groups (n=5). Surface detail reproduction and dimensional accuracy were evaluated using optical microscopy to assess the 20-μm line over its entire 25 mm length. The dimensional accuracy results (%) were subjected to analysis of variance (ANOVA) and the means were compared by Tukey's test (a=5%). The 20-μm line was completely reproduced by all elastomeric impression materials, regardless of disinfection procedure. There was no significant difference between the control group and molds disinfected with peracetic acid for the elastomeric materials Impregum Soft (polyether) and Aquasil Ultra LV (polyvinylsiloxane). The high-level disinfectant peracetic acid would be the choice material for disinfection. Sociedad Argentina de Investigación Odontológica.
Dagher, Fadi
2017-01-01
Traditional surface disinfectants that have long been applied in medicine, animal husbandry, manufacturing and institutions are inconvenient at best and dangerous at worst. Moreover, some of these substances have adverse environmental impacts: for example, quaternary ammonium compounds (“quats”) are reproductive toxicants in both fish and mammals. Halogens are corrosive both to metals and living tissues, are highly reactive, can be readily neutralized by metals, and react with organic matter to form toxic, persistent by-products such as dioxins and furans. Aldehydes may be carcinogenic to both human and animals upon repeated exposures, are corrosive, cross-link living tissues and many synthetic materials, and may lose efficacy when pathogens enzymatically adapt to them. Alcohols are flammable and volatile and can be enzymatically degraded by certain bacterial pathogens. Quats are highly irritating to mucous membranes and over time can induce pathogen resistance, especially if they are not alternated with functionally different disinfectants. In contrast, peracetic acid (PAA), a potent oxidizer, liberates hydrogen peroxide (itself a disinfectant), biodegrades to carbon dioxide, water and oxygen, and is at least as efficacious as contact biocides e.g., halogens and aldehydes. Nevertheless, the standard form of liquid PAA is highly corrosive, is neutralized by metals and organic matter, gives off noxious odours and must be stored in vented containers. For the reasons stated above, Bioxy formulations were developed, a series of powder forms of PAA, which are odourless, stable in storage and safe to transport and handle. They generate up to 10% PAA in situ when dissolved in water. A 0.2% aqueous solution of Bioxy (equivalent to 200 ppm PAA) effected a 6.76 log reduction in Methicillin-resistant Staphylococcus aureus (MRSA) within 2 minutes after application. A 5% aqueous solution of Bioxy achieved a 3.93 log reduction in the bovine tuberculosis bacillus Mycobacterium bovis, within 10 minutes after contact. A 1% solution of Bioxy reduced vancomycin-resistant enterococci (VRE) and Pseudomonas aeruginosa by 6.31 and 7.18 logs, respectively, within 3 minutes after application. A 0.5% solution of Bioxy inactivated porcine epidemic diarrhea virus (PEDV) within 15 minutes of contact, and a 5% solution of Bioxy realized a 5.36 log reduction in the spores of Clostridium difficile within 10 minutes of application. In summary, Bioxy is safe and easy to transport and store, poses negligible human, animal and environmental health risks, shows high levels of pathogen control efficacy and does not induce microbial resistance. Further investigations are recommended to explore its use as an industrial biocide. PMID:28207828
Dagher, Dori; Ungar, Ken; Robison, Richard; Dagher, Fadi
2017-01-01
Traditional surface disinfectants that have long been applied in medicine, animal husbandry, manufacturing and institutions are inconvenient at best and dangerous at worst. Moreover, some of these substances have adverse environmental impacts: for example, quaternary ammonium compounds ("quats") are reproductive toxicants in both fish and mammals. Halogens are corrosive both to metals and living tissues, are highly reactive, can be readily neutralized by metals, and react with organic matter to form toxic, persistent by-products such as dioxins and furans. Aldehydes may be carcinogenic to both human and animals upon repeated exposures, are corrosive, cross-link living tissues and many synthetic materials, and may lose efficacy when pathogens enzymatically adapt to them. Alcohols are flammable and volatile and can be enzymatically degraded by certain bacterial pathogens. Quats are highly irritating to mucous membranes and over time can induce pathogen resistance, especially if they are not alternated with functionally different disinfectants. In contrast, peracetic acid (PAA), a potent oxidizer, liberates hydrogen peroxide (itself a disinfectant), biodegrades to carbon dioxide, water and oxygen, and is at least as efficacious as contact biocides e.g., halogens and aldehydes. Nevertheless, the standard form of liquid PAA is highly corrosive, is neutralized by metals and organic matter, gives off noxious odours and must be stored in vented containers. For the reasons stated above, Bioxy formulations were developed, a series of powder forms of PAA, which are odourless, stable in storage and safe to transport and handle. They generate up to 10% PAA in situ when dissolved in water. A 0.2% aqueous solution of Bioxy (equivalent to 200 ppm PAA) effected a 6.76 log reduction in Methicillin-resistant Staphylococcus aureus (MRSA) within 2 minutes after application. A 5% aqueous solution of Bioxy achieved a 3.93 log reduction in the bovine tuberculosis bacillus Mycobacterium bovis, within 10 minutes after contact. A 1% solution of Bioxy reduced vancomycin-resistant enterococci (VRE) and Pseudomonas aeruginosa by 6.31 and 7.18 logs, respectively, within 3 minutes after application. A 0.5% solution of Bioxy inactivated porcine epidemic diarrhea virus (PEDV) within 15 minutes of contact, and a 5% solution of Bioxy realized a 5.36 log reduction in the spores of Clostridium difficile within 10 minutes of application. In summary, Bioxy is safe and easy to transport and store, poses negligible human, animal and environmental health risks, shows high levels of pathogen control efficacy and does not induce microbial resistance. Further investigations are recommended to explore its use as an industrial biocide.
An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.
Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela
2002-09-01
EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.
Wood, Joseph P; Calfee, Michael Worth; Clayton, Matthew; Griffin-Gatchalian, Nicole; Touati, Abderrahmane; Egler, Kim
2013-04-15
The purpose of this study was to evaluate the sporicidal (inactivation of bacterial spores) effectiveness and operation of a fogging device utilizing peracetic acid/hydrogen peroxide (PAA). Experiments were conducted in a pilot-scale 24 m(3) stainless steel chamber using either biological indicators (BIs) or bacterial spores deposited onto surfaces via aerosolization. Wipe sampling was used to recover aerosol-deposited spores from chamber surfaces and coupon materials before and after fogging to assess decontamination efficacy. Temperature, relative humidity, and hydrogen peroxide vapor levels were measured during testing to characterize the fog environment. The fog completely inactivated all BIs in a test using a 60 mL solution of PAA (22% hydrogen peroxide/4.5% peracetic acid). In tests using aerosol-deposited bacterial spores, the majority of the post-fogging spore levels per sample were less than 1 log colony forming units, with a number of samples having no detectable spores. In terms of decontamination efficacy, a 4.78 log reduction of viable spores was achieved on wood and stainless steel. Fogging of PAA solutions shows potential as a relatively easy to use decontamination technology in the event of contamination with Bacillus anthracis or other spore-forming infectious disease agents, although additional research is needed to enhance sporicidal efficacy. Published by Elsevier B.V.
Bore, E; Langsrud, S
2005-01-01
To characterize micro-organisms isolated from Norwegian dairy production plants after cleaning and fogging disinfection with alkyl amine/peracetic acid and to indicate reasons for survival. Microbial samples were collected from five dairy plants after cleaning and fogging disinfection. Isolates from two of these production plants, which used fogging with alkylamino acetate (plant A), and peracetic acid (plant B), were chosen for further characterization. The sequence of the 16S ribosomal DNA, fatty acid analysis and biochemical characteristics were used to identify isolates. Three isolates identified as Rhodococcus erythropolis, Methylobacterium rhodesianum and Rhodotorula mucilaginosa were isolated from plant A and one Sphingomonas sp. and two M. extorquens from plant B. Different patterns of resistance to seven disinfectants in a bactericidal suspension test and variable degree of attachment to stainless steel were found. The strains with higher disinfectant resistance showed lower degree of attachment than susceptible strains. The study identifies and characterizes micro-organisms present after cleaning and fogging disinfection. Both surface attachment and resistance were shown as possible reasons for the presence of the isolates after cleaning and disinfection. These results contribute to the awareness of disinfectant resistance as well as attachment as mechanisms of survival in dairy industry. It also strengthens the argument of frequent alternation of disinfectants in the food processing industry to avoid the establishment of resistant house strains.
De Luca, Giovanna; Sacchetti, Rossella; Zanetti, Franca; Leoni, Erica
2008-01-01
A comparison was made between the efficiency of low doses of peracetic acid (PAA: 1.5 mg/l) and chlorine dioxide (ClO(2): 1.5 and 2.0 mg/l) in the disinfection of secondary effluents of a wastewater treatment plant. Peracetic acid was seen to be more active than chlorine dioxide and less influenced by the organic content of the waste. Both PAA and ClO(2) (2.0 mg/l) lead to a higher reduction in total and faecal coliforms and E. coli than in phages (somatic coliphages and F-specific RNA bacteriophages) and enterococci. Detection of faecal coliforms and E. coli should therefore be accompanied by a search for these more resistant microorganisms when assessing the conformity of wastewater for irrigation use, or for discharge into surface waters. Coliphages are also considered suitable indicators of the presence of enteric viruses. Although the application of low doses of both disinfectants offers advantages in terms of costs and produces not significant quantities of byproducts, it is not sufficient to obtain wastewater suitable for irrigation according to the Italian norms (E. coli < 10/100 ml in 80 % of samples and <100/100 ml in the remaining samples). Around 65 % of the samples, however, presented concentrations of E. coli lower than the limit of 5,000/100 ml established by Italian norms for discharge into surface waters.
Ceragioli, Mara; Mols, Maarten; Moezelaar, Roy; Ghelardi, Emilia; Senesi, Sonia; Abee, Tjakko
2010-01-01
Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of Bacillus cereus ATCC 14579 exposed to four different disinfectants (benzalkonium chloride, sodium hypochlorite, hydrogen peroxide, and peracetic acid) were analyzed. For each disinfectant, concentrations leading to the attenuation of growth, growth arrest, and cell death were determined. The transcriptome analysis revealed that B. cereus, upon exposure to the selected concentrations of disinfectants, induced common and specific responses. Notably, the common response included genes involved in the general and oxidative stress responses. Exposure to benzalkonium chloride, a disinfectant known to induce membrane damage, specifically induced genes involved in fatty acid metabolism. Membrane damage induced by benzalkonium chloride was confirmed by fluorescence microscopy, and fatty acid analysis revealed modulation of the fatty acid composition of the cell membrane. Exposure to sodium hypochlorite induced genes involved in metabolism of sulfur and sulfur-containing amino acids, which correlated with the excessive oxidation of sulfhydryl groups observed in sodium hypochlorite-stressed cells. Exposures to hydrogen peroxide and peracetic acid induced highly similar responses, including the upregulation of genes involved in DNA damage repair and SOS response. Notably, hydrogen peroxide- and peracetic acid-treated cells exhibited high mutation rates correlating with the induced SOS response. PMID:20348290
Ghotaslou, Reza; Bahrami, Nashmil
2012-01-01
Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely. PMID:24312771
Nongonierma, Alice B; FitzGerald, Richard J
2018-06-01
Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.
Xu, Enbo; Li, Hongyan; Wu, Zhengzong; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan
2015-01-01
Volatile compounds in enzymatic extruded rice, produced under different conditions of varying barrel temperature (BT), α-amylase concentration (AC) and moisture content (MC), were extracted and identified by headspace solid phase microextraction (HS-SPME) and gas chromatography-linked mass spectrometry (GC-MS). Statistical analyses reflected that the Maillard reaction could be inhibited both by the mild extrusion conditions and the enhanced hydrolysis caused by thermostable α-amylase. Relative amounts of total volatiles in enzymatic extruded rice were far less than those in severe processed extruded rice. Reverse-phase high-performance liquid chromatography (RP-HPLC) showed that the amino acids (AAs) involved in Maillrad reaction were utmostly preserved in extruded rice with highest amylase concentration by comparison of total AA content of different extrudates. These results suggest that enzymatic extrusion liquefaction is an effective way to control the generation of volatiles from extruded rice for Chinese rice wine production. © 2014 Institute of Food Technologists®
21 CFR 177.2500 - Polyphenylene sulfone resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sanction or approval. (c) Specifications. The glass transition temperature of the polymer is 360±5 °C as...
21 CFR 177.2500 - Polyphenylene sulfone resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sanction or approval. (c) Specifications. The glass transition temperature of the polymer is 360±5 °C as...
Choi, Jiyoung; Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu
2015-08-15
A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.
Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria
2015-11-01
To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p < 0.05). A total of 2.5% NaOCl with or without agitation showed the higher tissue dissolution (between 64.5 and 67% of mass reduction) (p < 0.005). By comparing the PA solutions, the concentrations of 1 and 2% with or without agitation and the concentration of 0.5% with agitation showed similar dissolution activity (between 35.4 and 44% of mass reduction). The use of the ultrasonic agitation promoted an increase of the dissolution ability only for 0.5% PA. Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.
Hébert, N; Gagné, F; Cejka, P; Bouchard, B; Hausler, R; Cyr, D G; Blaise, C; Fournier, M
2008-08-01
Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.
Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M
2010-11-01
To evaluate the impact of the mode of contamination in relation with the nature of solid substrates on the resistance of spores of Bacillus atrophaeus -selected as surrogates of Bacillus anthracis- to a disinfectant, peracetic acid. Six materials confronted in urban and military environments were selected for their different structural and physicochemical properties. In parallel, two modes of contamination were examined, i.e. deposition and immersion. Deposition was used to simulate contamination by an aerosol and immersion by an extended contact with liquids. A pronounced difference in the biocontamination levels and spatial organization of spores was observed depending on the mode of contamination and the nature of the solid substrate considered, with consequences on decontamination. Contamination by immersion led to lower efficiency of peracetic acid decontamination than contamination by deposition. Infiltration of spores into porous materials after immersion is one reason. In contrast, the deposition mode aggregates cells at the surface of materials, explaining the similar disinfecting behaviour of porous and nonporous substrates when considering this inoculation route. The inoculation route was shown to be as influential a parameter as material characteristics (porosity and wettability) for decontamination efficacy. These results provide comparative information for the decontamination of B. atrophaeus spores in function of the mode of contamination and the nature of solid substrates. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to French government works.
Iñiguez-Moreno, Maricarmen; Gutiérrez-Lomelí, Melesio; Guerrero-Medina, Pedro Javier; Avila-Novoa, María Guadalupe
The aim of this study was evaluated the biofilm formation by Staphylococcus aureus 4E and Salmonella spp. under mono and dual-species biofilms, onto stainless steel 316 (SS) and polypropylene B (PP), and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. The biofilms were developed by immersion of the surfaces in TSB by 10 d at 37°C. The results showed that in monospecies biofilms the type of surface not affected the cellular density (p>0.05). However, in dual-species biofilms on PP the adhesion of Salmonella spp. was favored, 7.61±0.13Log 10 CFU/cm 2 , compared with monospecies biofilms onto the same surface, 5.91±0.44Log 10 CFU/cm 2 (p<0.05). The mono and dual-species biofilms were subjected to disinfection treatments; and the most effective disinfectant was peracetic acid (3500ppm), reducing by more than 5Log 10 CFU/cm 2 , while the least effective was cetrimonium bromide. In addition, S. aureus 4E and Salmonella spp. were more resistant to the disinfectants in mono than in dual-species biofilms (p<0.05). Therefore, the interspecies interactions between S. aureus 4E and Salmonella spp. had a negative effect on the antimicrobial resistance of each microorganism, compared with the monospecies biofilms. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Mercanti, D J; Guglielmotti, D M; Patrignani, F; Reinheimer, J A; Quiberoni, A
2012-02-01
Temperate bacteriophages ф iLp84 and ф iLp1308, previously isolated from mitomycin C-induction of Lactobacillus paracasei strains 84 and CNRZ1308, respectively, were tested for their resistance to several physical and chemical treatments applied in dairy industry. Long-term survival at 4 °C, -20 °C and -80 °C, resistance to either thermal treatments of 63 °C, 72 °C and 90 °C, high pressure homogenization (HPH, 100 MPa) or classic (ethanol, sodium hypochlorite and peracetic acid) and new commercial sanitizers, namely A (quaternary ammonium chloride), B (hydrogen peroxide, peracetic acid and peroctanoic acid), C (alkaline chloride foam), D (p-toluensulfonchloroamide, sodium salt) and E (ethoxylated nonylphenol and phosphoric acid), were determined. Phages were almost completely inactivated after eight months of storage at 25 °C, but viability was not affected at 4 °C, -20 °C or -80 °C. Both phages tolerated well HPH treatments. Phage iLp1308 showed higher thermal resistance than ф iLp84, but neither resisted 90 °C for 2 min. Best chemical inactivation was accomplished using peracetic acid or biocides A, C and E, whereas biocides B and D were completely ineffective. These results help to improve selection of chemical agents and physical treatments to effectively fight against phage infections in dairy plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alfa, M J; DeGagne, P; Olson, N; Hizon, R
1998-10-01
The aim of this study was to determine how well peracetic acid liquid chemical sterilization (LCPAS) killed test organisms in the presence of 10% fetal bovine serum and 0.65% salt challenge (RPMI-S) compared with a 100% ethylene oxide (ETO) sterilizer and an ETO hydrochlorofluorocarbon (ETO-HCFC) sterilization method with long (125 cm), narrow (3-mm internal diameter) flexible lumens as the test carrier. The inoculated lumens were dried overnight before processing. The test organisms included Mycobacterium chelonei, Enterococcus faecalis, and Bacillus subtilis. For all 3 organisms tested, the LCPAS process resulted in a 6 log10 reduction in bacterial load compared with a 2.5 log10 to 6 log10 reduction for the 100% ETO and ETO-HCFC sterilizers. Sterilization was achieved for 100%, 61%, and 67% of the lumen test carriers for the LCPAS, 100% ETO, and ETO-HCFC sterilizers, respectively. The data indicate that of the sterilization methods evaluated, LCPAS was the most effective for sterilizing narrow flexible lumens in the presence of residual inorganic and organic soil. This effectiveness was achieved through a combination of organism wash-off and peracetic acid sterilant killing of organisms. Salt was the major compounding factor for effective ETO gas sterilization, because carriers inoculated with organisms in 10% fetal bovine serum alone all were sterilized by both 100% ETO and ETO-HCFC sterilization methods. Our data support the critical need to ensure adequate precleaning of narrow flexible lumen endoscopes before any sterilization method.
Virucides in apiculture: persistence of surrogate enterovirus under simulated field conditions.
Prodělalová, Jana; Malenovská, Hana; Moutelíková, Romana; Titěra, Dalibor
2017-12-01
Honeybee viruses have been recognized as being among the most important factors leading to colony losses worldwide. Colony food and faeces are regarded as possible sources of infectious viruses able to contaminate the environment and equipment of apiaries. Thus, methods for elimination of viruses are required. No cell culture assay for testing the effect of disinfectants on honeybee viruses is yet available. Therefore, surrogate virus was employed for testing of the efficacy of iodophor- and peracetic acid-based disinfectants in combination with six organic contaminants at +6 °C and +22 °C. Moreover, we evaluated the persistence of the surrogate in honey at +6 °C, +22 °C, and +50 °C. Iodophor-based disinfectant showed a maximum reduction of virus titre of 3.4 log 10 . Peracetic acid reduced the titre (≥4 log 10 ) only at 22 °C and without yeast extract/bovine serum albumin. After 25 days of incubation of the virus - honey mix, no decrease of virus titre was observed at +6 °C, whereas a significant reduction (3.5 log 10 ) was found at +50 °C already after 1 day. Both tested disinfectants can serve as appropriate virucides in apiaries. The effect of peracetic acid significantly depended on temperature and organic contaminants. The iodophor-based disinfectant showed a stable antiviral effect at different temperatures and with different contaminants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Ethanol is a renewable oxygenated fuel. Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Generation of fermentable sugars from corn stover involves pretreatment and enzymatic saccharification. Pretreatment is crucial as nat...
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that th...
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that th...
21 CFR 177.2500 - Polyphenylene sulfone resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
... polyphenylene sulfide with peracetic acid such that the finished resins meet the specifications set forth in... glass transition temperature of the polymer is 360±5 °C as determined by the use of differential...
Howell, Jahna; Niu, Fengui; McCabe, Shannon E; Zhou, Wei; Decedue, Charles J
2012-06-01
A process is described using supercritical carbon dioxide to extract organic solvents from drug solutions contained in 30-mL serum vials. We report drying times of less than 1 h with quantitative recovery of sterile drug. A six-log reduction of three spore types used as biological indicators is achieved with direct addition of peracetic acid to a final concentration of approximately 5 mM (~0.04 %) to the drug solution in the vial. Analysis of two drugs, acetaminophen and paclitaxel, indicated no drug degradation as a result of the treatment. Furthermore, analysis of the processed drug substance showed that no residual peracetic acid could be detected in the final product. We have demonstrated an effective means to simultaneously dry and sterilize active pharmaceutical ingredients from organic solvents directly in a dispensing container.
Carpatizine, a novel bridged oxazine derivative generated by non-enzymatic reactions.
Fu, Peng; MacMillan, John B
2017-06-27
Carpatizine (1), a new bridged oxazine derivative, was isolated from a marine-derived Streptomyces strain SNE-011. The structure was fully determined by spectroscopic analysis, ECD calculations and chemical methods. A plausible non-enzymatic reaction mechanism from daryamide D leading to carpatizine was presented, which was confirmed by chemical transformation.
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that t...
Abandoning peracetic acid-based dialyzer reuse is associated with improved survival.
Lacson, Eduardo; Wang, Weiling; Mooney, Ann; Ofsthun, Norma; Lazarus, J Michael; Hakim, Raymond M
2011-02-01
Higher mortality risk reported with reuse versus single use of dialyzers is potentially related to reuse reagents that modify membrane surface characteristics and the blood-membrane interface. A key mechanism may involve stimulation of an inflammatory response. In a prospective crossover design, laboratory markers and mortality from 23 hemodialysis facilities abandoning reuse with peracetic acid mixture were tracked. C-reactive protein (CRP), white blood cell (WBC) count, albumin, and prealbumin were measured for 2 consecutive months before abandoning reuse and subsequently within 3 and 6 months on single use. Survival models were utilized to compare the 6-month period before abandoning reuse (baseline) and the 6-month period on single use of dialyzers after a 3-month "washout period." Patients from baseline and single-use periods had a mean age of approximately 63 years; 44% were female, 54% were diabetic, 60% were white, and the mean vintage was approximately 3.2 years. The unadjusted hazard ratio for death was 0.70 and after case-mix adjustment was 0.74 for single use compared with reuse. Patients with CRP≥5 mg/L during reuse (mean CRP=26.6 mg/ml in April) declined on single use to 20.2 mg/L by August and 20.4 mg/L by November. WBC count declined slightly during single use, but nutritional markers were unchanged. Abandonment of peracetic-acid-based reuse was associated with improved survival and lower levels of inflammatory but not nutritional markers. Further study is needed to evaluate a potential link between dialyzer reuse, inflammation, and mortality.
Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus
2017-05-01
Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO 2 ) as well as two by-products of their use: hydrogen peroxide (H 2 O 2 ) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC 50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO 2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water. Copyright © 2016 Elsevier GmbH. All rights reserved.
Inactivation of an enterovirus by airborne disinfectants
2013-01-01
Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 30 minutes at a concentration of 7.5 mL.m-3. Poliovirus inoculum, supplemented with 5%, heat inactivated non fat dry organic milk, were applied into the middle of the stainless steel disc and were dried under the air flow of a class II biological safety cabinet at room temperature. The Viral preparations were recovered by using flocked swabs and were titered on Vero cells using the classical Spearman-Kärber CPE reading method, the results were expressed as TCID50.ml-1. Results The infectious titer of dried poliovirus inocula was kept at 105 TCID50.mL-1 up to 150 minutes at room temperature. Dried inocula exposed to airborne peracetic acid containing disinfectants were recovered at 60 and 120 minutes post-exposition and suspended in culture medium again. The cytotoxicity of disinfectant containing medium was eliminated through gel filtration columns. A 4 log reduction of infectious titer of dried poliovirus inocula exposed to peracetic-based airborne disinfectant was obtained. Conclusion This study demonstrates that the virucidal activity of airborne disinfectants can be tested on dried poliovirus. PMID:23587047
Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D
2016-03-01
Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.
Borah, Arup Jyoti; Agarwal, Mayank; Poudyal, Manisha; Goyal, Arun; Moholkar, Vijayanand S
2016-08-01
This study has assessed four invasive weeds, viz. Saccharum spontaneum (SS), Mikania micrantha (MM), Lantana camara (LC) and Eichhornia crassipes (EC) for enzymatic hydrolysis prior to bioalcohol fermentation. Enzymatic hydrolysis of pretreated biomasses of weeds has been conducted with mechanical agitation and sonication under constant (non-optimum) conditions. Profiles of total reducible sugar release have been fitted to HCH-1 model of enzymatic hydrolysis using Genetic Algorithm. Trends in parameters of this model reveal physical mechanism of ultrasound-induced enhancement of enzymatic hydrolysis. Sonication accelerates hydrolysis kinetics by ∼10-fold. This effect is contributed by several causes, attributed to intense micro-convection generated during sonication: (1) increase in reaction velocity, (2) increase in enzyme-substrate affinity, (3) reduction in product inhibition, and (4) enhancement of enzyme activity due to conformational changes in its secondary structure. Enhancement effect of sonication is revealed to be independent of conditions of enzymatic hydrolysis - whether optimum or non-optimum. Copyright © 2016 Elsevier Ltd. All rights reserved.
HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW
This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...
Sansoë-Bourget, Emmanuelle
2006-01-01
The use of biological indicators is integral to the validation of isolator decontamination cycles. The difficulty in setting up the initial qualification of the decontamination cycle and especially the successive requalifications may vary as a function of not only the installation to be qualified and the sterilizing agent and generator used, but also as a function of the type of biological indicators used. In this article the manufacture and control of biological indicators are analyzed using the hazard analysis and critical control point (HACCP) approach. The HACCP risk analysis, which must take into account the application of the isolator being qualified or requalified, is an efficient simplification tool for performing a decontamination cycle using either hydrogen peroxide gas or peracetic acid in a reliable, economical, and reproducible way.
Decontamination of Bacillus spores adhered to iron and ...
Journal Article This study examines the effectiveness of decontaminating Bacillus globigii spores attached to corroded iron and cement-mortar coupons with free chlorine at two pH levels, monochloramine, chlorine dioxide, ozone, peracetic acid (PAA) and acidified nitrite, followed by flushing.
Green methods of lignocellulose pretreatment for biorefinery development.
Capolupo, Laura; Faraco, Vincenza
2016-11-01
Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.
The Impact of Marine Enzymatic Activity on Sea Spray Aerosol Properties
NASA Astrophysics Data System (ADS)
Ryder, O. S.; Michaud, J. M.; Sauer, J. S.; Lee, C.; Förster, J. D.; Pöhlker, C.; Andreae, M. O.; Prather, K. A.
2016-12-01
The composition of sea spray aerosol (SSA) and the relationship between its organic fraction and biological ocean conditions is not well understood, resulting in considerable disagreement in the literature linking biological markers to SSA chemical composition. Recent work suggests that enzymatic activity in seawater may play a key role in dictating aerosol composition by changing the organic pool from which SSA is formed. Here we investigate the role of enzymatic activity on SSA spatial chemical composition, aerosol phase and morphological microstructure. In these experiments, SSA was generated using a novel mini-Marine Aerosol Reference Tank system. SSA collected onto substrates was generated from artificial salt water that had been doped with either 1) unsaturated triglycerides or 2) diatom cellular lysate, both followed by lipase. Results from analysis including morphological studies via atomic force microscopy, and chemical composition investigations both under dry and RH conditions via STXM-NEXAFS are presented.
Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease
Uderhardt, Stefan; Ackermann, Jochen A.; Fillep, Tobias; Hammond, Victoria J.; Willeit, Johann; Stark, Konstantin; Rossaint, Jan; Schubert, Irene; Mielenz, Dirk; Dietel, Barbara; Raaz-Schrauder, Dorette; Ay, Cihan; Thaler, Johannes; Heim, Christian; Collins, Peter W.; Schabbauer, Gernot; Mackman, Nigel; Voehringer, David; Nadler, Jerry L.; Lee, James J.; Massberg, Steffen; Rauh, Manfred; O’Donnell, Valerie B.
2017-01-01
Blood coagulation is essential for physiological hemostasis but simultaneously contributes to thrombotic disease. However, molecular and cellular events controlling initiation and propagation of coagulation are still incompletely understood. In this study, we demonstrate an unexpected role of eosinophils during plasmatic coagulation, hemostasis, and thrombosis. Using a large-scale epidemiological approach, we identified eosinophil cationic protein as an independent and predictive risk factor for thrombotic events in humans. Concurrent experiments showed that eosinophils contributed to intravascular thrombosis by exhibiting a strong endogenous thrombin-generation capacity that relied on the enzymatic generation and active provision of a procoagulant phospholipid surface enriched in 12/15-lipoxygenase–derived hydroxyeicosatetraenoic acid–phosphatidylethanolamines. Our findings reveal a previously unrecognized role of eosinophils and enzymatic lipid oxidation as regulatory elements that facilitate both hemostasis and thrombosis in response to vascular injury, thus identifying promising new targets for the treatment of thrombotic disease. PMID:28566277
Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase.
Mathew, Sam; Nadarajan, Saravanan Prabhu; Sundaramoorthy, Uthayasuriya; Jeon, Hyunwoo; Chung, Taeowan; Yun, Hyungdon
2017-04-01
To enzymatically synthesize enantiomerically pure β-amino acids from β-keto nitriles using nitrilase and ω-transaminase. An enzyme cascade system was designed where in β-keto nitriles are initially hydrolyzed to β-keto acids using nitrilase from Bradyrhizobium japonicum and subsequently β-keto acids were converted to β-amino acids using ω-transaminases. Five different ω-transaminases were tested for this cascade reaction, To enhance the yields of β-amino acids, the concentrations of nitrilase and amino donor were optimized. Using this enzymatic reaction, enantiomerically pure (S)-β-amino acids (ee > 99%) were generated. As nitrilase is the bottleneck in this reaction, molecular docking analysis was carried out to depict the poor affinity of nitrilase towards β-keto acids. A novel enzymatic route to generate enantiomerically pure aromatic (S)-β-amino acids from β-keto nitriles is demonstrated for the first time.
High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)
This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...
Peracetic Acid as a Green Disinfectant for Combined Sewer Overflows
This cooperative research and development agreement between U.S. EPA, Solvay, MSDGC, and CB&I is evaluating the potential of PAA for disinfection of Muddy Creek CSO wastewater and comparing that with sodium hypochlorite disinfection. This presentation will document the effectiven...
Enzymatic Transition States, Transition-State Analogs, Dynamics, Thermodynamics, and Lifetimes
Schramm, Vern L.
2017-01-01
Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination of experimental and computational access to transition-state information permits (a) the design of transition-state analogs as powerful enzymatic inhibitors, (b) exploration of protein features linked to transition-state structure, (c) analysis of ensemble atomic motions involved in achieving the transition state, (d) transition-state lifetimes, and (e) separation of ground-state (Michaelis complexes) from transition-state effects. Transition-state analogs with picomolar dissociation constants have been achieved for several enzymatic targets. Transition states of closely related isozymes indicate that the protein’s dynamic architecture is linked to transition-state structure. Fast dynamic motions in catalytic sites are linked to transition-state generation. Enzymatic transition states have lifetimes of femtoseconds, the lifetime of bond vibrations. Binding isotope effects (BIEs) reveal relative reactant and transition-state analog binding distortion for comparison with actual transition states. PMID:21675920
Tendon allograft sterilized by peracetic acid/ethanol combined with gamma irradiation.
Zhou, Mo; Zhang, Naili; Liu, Xiaoming; Li, Youchen; Zhang, Yumin; Wang, Xusheng; Li, Baoming; Li, Baoxing
2014-07-01
Research and clinical applications have demonstrated that the effects of tendon allografts are comparable to those of autografts when reconstructing injured tendons or ligaments, but allograft safety remains problematic. Sterilisation could eliminate or decrease the possibility of disease transmission, but current methods seldom achieve satisfactory sterilisation without affecting the mechanical properties of the tendon. Peracetic acid-ethanol in combination with low-dose gamma irradiation (PE-R) would inactivate potential deleterious microorganisms without affecting mechanical and biocompatible properties of tendon allograft. Controlled laboratory design. HIV, PPV, PRV and BVDV inactivation was evaluated. After verifying viral inactivation, the treated tendon allografts were characterised by optical microscopy, scanning electron microscopy and tensile testing, and the cytocompatibility was assessed with an MTT assay and by subcutaneous implantation. Effective and efficient inactivation of HIV, PPV, PRV and BVDV was observed. Histological structure and ultrastructure were unchanged in the treated tendon allograft, which also exhibited comparable biomechanical properties and good biocompatibility. The preliminary results confirmed our hypothesis and demonstrated that the PE-R tendon allograft has significant potential as an alternative to ligament/tendon reconstruction. Tendon allografts have been extensively used in ligament reconstruction and tendon repair. However, current sterilisation methods have various shortcomings, so PE-R has been proposed. This study suggests that PE-R tendon allograft has great potential as an alternative for ligament/tendon reconstruction. Sterilisation has been a great concern for tendon allografts. However, most sterilisation methods cannot inactivate viruses and bacteria without impairing the mechanical properties of the tendon allograft. Peracetic acid/ethanol with gamma irradiation can effectively inactivate viruses and bacteria. Meanwhile, tendon allografts sterilised by this method maintain their physiological tendon structure, biomechanical integrity and good compatibility.
Pithon, Matheus Melo; dos Santos, Rogerio Lacerda; Judice, Renata Lima Pasini; de Assuncao, Paulo Sergio; Restle, Luciana
2013-11-01
Sterilisation using peracetic acid (PAA) has been advocated for orthodontic elastic bands. However, cane-loaded elastomeric ligatures can also become contaminated during processing, packaging, and manipulation before placement in the oral cavity and are therefore susceptible, and possible causes, of cross-contamination. To test the hypothesis that 0.25% peracetic acid (PAA), following the sterilisation of elastomers, influences the cytotoxicity of elastomeric ligatures on L929 cell lines. Four hundred and eighty silver elastomeric ligatures were divided into 4 groups of 120 ligatures to produce, Group TP (latex natural, bulk pack, TP Orthodontics), Group M1 (Polyurethane, bulk pack, Morelli), Group M2 (Polyurethane, cane-loaded, Morelli) and Group U (Polyurethane, cane-loaded, Uniden). Of the 120 ligatures in each group, 100 were sterilised in 0.25% PAA at time intervals (N = 20) of 1 hour, 2 hours, 3 hours, 4 hours and 5 hours. The 20 remaining elastomeric ligatures in each group were not sterilised and served as controls. Cytotoxicity was assessed using L929 cell lines and a dye-uptake method. Analysis of variance (ANOVA), followed by the Tukey post hoc test (p < 0.05) determined statistical relevance. There was a significant difference between TP, Morelli and Uniden elastomerics (p < 0.05), but no difference between the two types of Morelli elastomerics at the 1 hour time interval. In addition, there was a significant difference between Group CC and the other groups assessed, except between Groups CC and TP at the 1 hour time interval. The non-sterilised elastomeric ligatures showed similar cell viability to that observed after 1 hour of standard sterilisation. PAA did not significantly influence the cytotoxicity of elastomeric ligatures after a sterilisation time of 1 hour and is therefore recommended for clinical use.
Effectiveness of 2% peracetic acid for the disinfection of gutta-percha cones.
Salvia, Ana Carolina Rodrigues Danzi; Teodoro, Guilherme Rodrigues; Balducci, Ivan; Koga-Ito, Cristiane Yumi; Oliveira, Simone Helena Gonçalves de
2011-01-01
The aim of this study was to evaluate the effectiveness of 2% peracetic acid for the disinfection of gutta-percha cones contaminated in vitro with Escherichia coli, Staphylococcus aureus, Streptococcus mutans, Candida albicans and Bacillus subtilus (in spore form). Two hundred and twenty-five gutta-percha cones were contaminated with standardized suspensions of each microorganism and incubated at 37°C for 24 h. The cones were divided into 10 experimental groups (n = 15), according to the microorganism tested and disinfection testing times. The disinfection procedure consisted of immersing each cone in a plastic tube containing the substance. The specimens remained in contact with the substance for 1 or 2.5 minutes. Afterwards, each cone was transferred to a 10% sodium thiosulphate solution (Na(2)S(2)O(3)) to neutralize the disinfectant. Microbial biofilms adhering to the cones were dispersed by agitation. Aliquots of 0.1 ml of the suspensions obtained were plated on Sabouraud dextrose agar, or brain and heart infusion agar, and incubated at 37°C for 24 h. The results were expressed in colony forming units (CFU/ml) and the data were submitted to the Wilcoxon Signed Rank Test (level of significance at 0.05). A significant reduction was observed, after 1 minute of exposure, in the test solution for C. albicans (p = 0.0190), S. aureus (p = 0.0001), S. mutans (p = 0.0001), B. subtilis (p = 0.0001), and E. coli (p = 0.0001). After 2.5 minutes of exposure, 100% of the microbial inocula were eliminated. It was concluded that the 2% peracetic acid solution was effective against the biofilms of the tested microorganisms on gutta-percha cones at 1 minute of exposure.
Abandoning Peracetic Acid-Based Dialyzer Reuse Is Associated with Improved Survival
Wang, Weiling; Mooney, Ann; Ofsthun, Norma; Lazarus, J. Michael; Hakim, Raymond M.
2011-01-01
Summary Background and objectives Higher mortality risk reported with reuse versus single use of dialyzers is potentially related to reuse reagents that modify membrane surface characteristics and the blood-membrane interface. A key mechanism may involve stimulation of an inflammatory response. Design, setting, participants, & measurements In a prospective crossover design, laboratory markers and mortality from 23 hemodialysis facilities abandoning reuse with peracetic acid mixture were tracked. C-reactive protein (CRP), white blood cell (WBC) count, albumin, and prealbumin were measured for 2 consecutive months before abandoning reuse and subsequently within 3 and 6 months on single use. Survival models were utilized to compare the 6-month period before abandoning reuse (baseline) and the 6-month period on single use of dialyzers after a 3-month “washout period.” Results Patients from baseline and single-use periods had a mean age of approximately 63 years; 44% were female, 54% were diabetic, 60% were white, and the mean vintage was approximately 3.2 years. The unadjusted hazard ratio for death was 0.70 and after case-mix adjustment was 0.74 for single use compared with reuse. Patients with CRP ≥ 5 mg/L during reuse (mean CRP = 26.6 mg/ml in April) declined on single use to 20.2 mg/L by August and 20.4 mg/L by November. WBC count declined slightly during single use, but nutritional markers were unchanged. Conclusions Abandonment of peracetic-acid-based reuse was associated with improved survival and lower levels of inflammatory but not nutritional markers. Further study is needed to evaluate a potential link between dialyzer reuse, inflammation, and mortality. PMID:20947788
Ebrecht, Ana C; Guglielmotti, Daniela M; Tremmel, Gustavo; Reinheimer, Jorge A; Suárez, Viviana B
2010-06-01
The aim of this work was to study the efficiency of diverse chemical and thermal treatments usually used in dairy industries to control the number of virulent and temperate Lactobacillus delbrueckii bacteriophages. Two temperate (Cb1/204 and Cb1/342) and three virulent (BYM, YAB and Ib3) phages were studied. The thermal treatments applied were: 63 degrees C for 30 min (low temperature--long time, LTLT), 72 degrees C for 15 s (high temperature--short time, HTST), 82 degrees C for 5 min (milk destined to yogurt elaboration) and 90 degrees C for 15 min (FIL-IDF). The chemical agents studied were: sodium hypochlorite, ethanol, isopropanol, peracetic acid, biocides A (quaternary ammonium chloride), B (hydrogen peroxide, peracetic acid and peroctanoic acid), C (alkaline chloride foam), D (p-toluensulfonchloroamide, sodium salt) and E (ethoxylated nonylphenol and phosphoric acid). The kinetics of inactivation were drew and T(99) (time necessary to eliminate the 99% of phage particles) calculated. Results obtained showed that temperate phages revealed lower resistance than the virulent ones to the treatment temperatures. Biocides A, C, E and peracetic acid showed a notable efficiency to inactivate high concentrations of temperate and virulent L. delbrueckii phages. Biocide B evidenced, in general, a good capacity to eliminate the phage particles. Particularly for this biocide virulent phage Ib3 showed the highest resistance in comparison to the rest of temperate and virulent ones. On the contrary, biocide D and isopropanol presented a very low capacity to inactivate all phages studied. The efficiency of ethanol and hypochlorite was variable depending to the phages considered. These results allow a better knowledge and give useful information to outline more effective treatments to reduce the phage infections in dairy plants. 2009 Elsevier Ltd. All rights reserved.
Material Testing in Support of the ISS Electrochemical Disinfection Feasibility Study
NASA Technical Reports Server (NTRS)
Clements, Anna; Shindo, David; Modica, Cathy
2011-01-01
The International Space Station Program recognizes the risk of microbial contamination in their potable and non-potable water sources. With the end of the Space Shuttle Program, the ability to send up shock-kits of biocides in the event of an outbreak becomes even more difficult. Currently, the US Segment water system relies primarily on iodine to mitigate contamination concerns. To date, several small cases of contamination have occurred which have been remediated. NASA, however, realizes that having a secondary method of combating a microbial outbreak is a prudent investment. NASA is looking into developing hardware that can generate biocides electrochemically, and potentially deploying that hardware. The specific biocides that the technology could generate include: hydrogen peroxide, oxone, hypochlorite and peracetic acid. In order to use these biocides on deployed water systems, the project must determine that all the materials in the potential application are compatible with the biocides at their anticipated administered concentrations. This paper will detail the materials test portion of the feasibility assessment including the plan for both metals and non-metals along with results to date.
Thomas-Porch, Caasy; Li, Jie; Zanata, Fabiana; Martin, Elizabeth C; Pashos, Nicholas; Genemaras, Kaylynn; Poche, J Nicholas; Totaro, Nicholas P; Bratton, Melyssa R; Gaupp, Dina; Frazier, Trivia; Wu, Xiying; Ferreira, Lydia Masako; Tian, Weidong; Wang, Guangdi; Bunnell, Bruce A; Flynn, Lauren; Hayes, Daniel; Gimble, Jeffrey M
2018-04-25
Decellularized human adipose tissue has potential clinical utility as a processed biological scaffold for soft tissue cosmesis, grafting and reconstruction. Adipose tissue decellularization has been accomplished using enzymatic-, detergent-, and/or solvent-based methods. To examine the hypothesis that distinct decellularization processes may yield scaffolds with differing compositions, the current study employed mass spectrometry to compare the proteomes of human adipose-derived matrices generated through three independent methods combining enzymatic-, detergent-, and/or solvent-based steps. In addition to protein content, bioscaffolds were evaluated for DNA depletion, ECM composition, and physical structure using optical density, histochemical staining, and scanning electron microscopy (SEM). Mass spectrometry (MS) based proteomic analyses identified 25 proteins (having at least two peptide sequences detected) in the scaffolds generated with an enzymatic approach, 143 with the detergent approach, and 102 with the solvent approach, as compared to 155 detected in unprocessed native human fat. Immunohistochemical detection confirmed the presence of the structural proteins actin, collagen type VI, fibrillin, laminin, and vimentin. Subsequent in vivo analysis of the predominantly enzymatic- and detergent-based decellularized scaffolds following subcutaneous implantation in GFP + transgenic mice demonstrated that the matrices generated with both approaches supported the ingrowth of host-derived adipocyte progenitors and vasculature in a time dependent manner. Together, these results determine that decellularization methods influence the protein composition of adipose tissue-derived bioscaffolds. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li
2016-07-09
In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors.
Comparing Peracetic Acid with Sodium Hypochlorite for Disinfection of Combined Sewer Overflows
This cooperative research and development agreement between U.S. EPA, Solvay, MSDGC, and CB&I is evaluating the potential of PAA for disinfection of Muddy Creek CSO wastewater and comparing that with sodium hypochlorite disinfection. This presentation will document the effective...
Havard, Laurent; Fellous-Jerome, Joelle; Bonan, Brigitte; Pradeau, Dominique; Prognon, Patrice
2005-01-01
Peracetic acid (PAA) permeation in flash sterilization was studied using three different plastic infusion bags made of polypropylene and polyethylene, filled with glucose 5% or NaCl 0.9%. The pH was measured and acetic acid (AA) and PAA concentrations were made by reverse phase high-performance liquid chromatography (RP-HPLC). PAA was derivatized by oxidation of methyl tolyl sulfide (MTS) into methyl tolyl sulfoxide (MTSO) detected by ultraviolet (UV) absorbance at 230 nm. The technique has a sensitivity of 0.3 microg x L(-1) and was highly specific. Results showed that pH measurements remain constant and demonstrated the absence of PAA permeation, which was confirmed by the absence of AA permeation regardless of the brand tested, with both unwrapped and overwrapped infusion bags, when flash sterilization is applied. These results allow flash sterilization to be performed with unwrapped infusion bags without any risk of drug degradation by PAA. This makes compounding safer and easier, which improves productivity.
Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee
2018-06-01
Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.
Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf
2011-03-01
Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Remodeling of ACL Allografts is Inhibited by Peracetic Acid Sterilization
Gonnermann, Johannes; Kamp, Julia; Przybilla, Dorothea; Pruss, Axel
2008-01-01
Sterilization of allografts for anterior cruciate ligament (ACL) reconstruction has become an important prerequisite to prevent disease transmission. However, current sterilization techniques impair the biological or mechanical properties of such treated grafts. Peracetic acid (PAA) has been successfully used to sterilize bone allografts without these disadvantages and does not impair the mechanical properties of soft tissue grafts in vitro. We asked whether PAA sterilization would influence recellularization, restoration of crimp length and pattern, and revascularization of ACL grafts during early healing. We used an in vivo sheep model for open ACL reconstruction. We also correlated the histologic findings with the restoration of anteroposterior stability and structural properties during load-to-failure testing. PAA slowed remodeling activity at 6 and 12 weeks compared to nonsterilized allografts and autografts. The mechanical properties of PAA grafts were also reduced compared to these control groups at both time points. We conclude PAA sterilization currently should not be used to sterilize soft tissue grafts typically used in ACL reconstruction. PMID:18491201
Wassilew, Georgi I; Janz, Viktor; Renner, Lisa; Perka, Carsten; Pruss, Axel
2016-12-01
The objective of the present study was to analyze the clinical and radiological results of periacetabular osteotomies (PAO) using Kirschner wire fixation and an allogeneic cancellous bone graft. This retrospective cohort study included 73 patients (85 PAOs). The allografts were processed from distal femur of cadaveric donors, defatted, sterilized with a peracetic-acid ethanol solution and freeze-dried. The clinical outcome, as measured by the Harris Hip Scores (HHS), the complication rate and the acetabular correction, as measured by radiological parameters, were compared. The postoperative femoral head coverage and HSS were significantly improved. Major complications occurred in five cases (6 %), but in no case did we observe a non-union or a graft-associated adverse effect. Fixation of the acetabular fragment with Kirschner wires in combination with an allogeneic cancellous bone graft is a safe method, with a low complication rate, no loss of correction and can prevent the occurrence of non-union with a high degree of probability.
Santoro, Domenico; Gehr, Ronald; Bartrand, Timothy A; Liberti, Lorenzo; Notarnicola, Michele; Dell'Erba, Adele; Falsanisi, Dario; Haas, Charles N
2007-07-01
With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.
A simple method for decomposition of peracetic acid in a microalgal cultivation system.
Sung, Min-Gyu; Lee, Hansol; Nam, Kibok; Rexroth, Sascha; Rögner, Matthias; Kwon, Jong-Hee; Yang, Ji-Won
2015-03-01
A cost-efficient process devoid of several washing steps was developed, which is related to direct cultivation following the decomposition of the sterilizer. Peracetic acid (PAA) is known to be an efficient antimicrobial agent due to its high oxidizing potential. Sterilization by 2 mM PAA demands at least 1 h incubation time for an effective disinfection. Direct degradation of PAA was demonstrated by utilizing components in conventional algal medium. Consequently, ferric ion and pH buffer (HEPES) showed a synergetic effect for the decomposition of PAA within 6 h. On the contrary, NaNO3, one of the main components in algal media, inhibits the decomposition of PAA. The improved growth of Chlorella vulgaris and Synechocystis PCC6803 was observed in the prepared BG11 by decomposition of PAA. This process involving sterilization and decomposition of PAA should help cost-efficient management of photobioreactors in a large scale for the production of value-added products and biofuels from microalgal biomass.
McFadden, M; Loconsole, J; Schockling, A J; Nerenberg, R; Pavissich, J P
2017-12-01
Peracetic acid (PAA) is an alternative disinfectant that may be effective for combined sewer overflow (CSO) disinfection, but little is known about the effect of particle size on PAA disinfection efficiency. In this work, PAA and hypochlorite were compared as disinfectants, with a focus on the effect of wastewater particles. Inactivation experiments were conducted on suspended cultures of Escherichia coli and wastewater suspended solids. Tested size fractions included particle diameters <10μm, <100μm, and raw wastewater. Chlorine disinfection efficiency decreased with increasing solids size. However, solids size had little effect on PAA disinfection. The PAA disinfection efficiency decreased at pH values above 7.5. Live/dead staining revealed that PAA disinfection leaves most cells in a viable but non-culturable condition. Fourier transform infrared spectroscopy (FTIR) analyses suggests that PAA and hypochlorite may inactivate E. coli bacteria by similar mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Meinelt, T; Staaks, J; Staaks, G; Stüber, A; Bräunig, I
2007-10-01
White spot disease, caused by the protozoan parasite Ichthyophthirius multifiliis (I. multifiliis), invades nearly all fresh water fish species and causes huge economic losses. In Germany no protocide substance is legal for the treatment of I. multifilis. As an alternative substance the peracetic acid (PAA) was tested to treat the free invasive stage (theront) of the parasite. PAA concentrations of 0.3 ppm were able to kill all theronts in 120 min in our investigations. As a result of these investigations we recommend an interval-application of 0.3 to 0.5 ppm PAA for 30 to 150 min. This application should be prolonged for two life cycles of the parasite. Biotic parameters as e. g. fish species, and age as well as abiotic parameters as e. g. temperature, pH and organic load of the water could possibly influence the efficiency of the PAA application and should therefore be taken into account while picking the dosage and length of the PAA exposure.
Acute toxicity of peracetic acid (PAA) formulations to Ichthyophthirius multifiliis theronts.
Straus, David L; Meinelt, Thomas
2009-04-01
Peracetic acid (PAA) is an antimicrobial disinfectant used in agriculture, food processing, and medical facilities. It has recently been suggested as a means to control infestations of Ichthyophthirius multifiliis. The purpose of this study was to determine the acute toxicity of two products containing 4.5% and 40% PAA to I. multifiliis theronts from two geographically separate isolates. Theronts were exposed to concentrations of PAA in 96-well plates containing groundwater at 23 degrees C. Acute toxicity was observed over a 4-h period. No significant difference in the median lethal concentration (LC(50)) estimates was evident between the two isolates at 4 h with the 4.5% PAA product (0.146 versus 0.108 mg/l PAA), while there was a statistical difference between the 4 h LC(50) with the 40% PAA product (0.274 versus 0.158 mg/l PAA). These results suggest that PAA is toxic to I. multifiliis theronts at low concentrations and that one of the isolates was more resistant to this compound.
Xie, Yuliang; Ahmed, Daniel; Lapsley, Michael Ian; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Wang, Lin; Huang, Tony Jun
2012-09-04
In this work we present an acoustofluidic approach for rapid, single-shot characterization of enzymatic reaction constants K(m) and k(cat). The acoustofluidic design involves a bubble anchored in a horseshoe structure which can be stimulated by a piezoelectric transducer to generate vortices in the fluid. The enzyme and substrate can thus be mixed rapidly, within 100 ms, by the vortices to yield the product. Enzymatic reaction constants K(m) and k(cat) can then be obtained from the reaction rate curves for different concentrations of substrate while holding the enzyme concentration constant. We studied the enzymatic reaction for β-galactosidase and its substrate (resorufin-β-D-galactopyranoside) and found K(m) and k(cat) to be 333 ± 130 μM and 64 ± 8 s(-1), respectively, which are in agreement with published data. Our approach is valuable for studying the kinetics of high-speed enzymatic reactions and other chemical reactions.
Efficacy of Peracetic acid and Zinc in reducing Campylobacter jejuni on chicken skin
USDA-ARS?s Scientific Manuscript database
Campylobacter jejuni is a leading cause of bacterial foodborne disease in humans worldwide, largely associated with the consumption of contaminated poultry products. With increasing consumer demand for natural and minimally processed foods, the use of Generally Recognized as Safe status antimicrobia...
Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O.
2015-01-01
Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw). PMID:25866776
Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.
Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek
2016-05-01
Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preliminary studies on the activities of spin traps as scavengers of free radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunbiyi, P.O.; Washington, I.
1991-03-15
The spin trapping agents, N-t-Butyl-a-phenyl-nitrone (PBN) and 5,5-Dimethyl-1-pyroline-N-oxide (DMPO) have been used to investigate the primary free radicals involved in various tissue injuries. Also, PBN and DMPO can provide some protection against free radical-induced lung injuries. However, their therapeutic potentials as free radical scavengers remained unexamined. In this study, the effects of PBN and DMPO on guinea pig lung microsomal lipid peroxidation were investigated using thiobarbituric acid-reactive substance assay. Superoxide anions (O{sup 2}{minus}) were generated in an enzymatic and a non-enzymatic system. PBN and DMPO each, significantly inhibited NADPH-stimulated lipid peroxidation irrespective of the presence of Fe{sup 3+}. Cytochrome cmore » reduction by the enzymatic and nitro blue tetrazolium reduction by the non-enzymatic O{sup 2}{minus} generating systems were both inhibited by PBN and DMPO as well as superoxide dismutase and dimethyl sulfoxide when compared with the controls. The spin traps exhibited lower potencies in these systems than the reference compounds, SOD and DMSO, which are well established as O{sup 2}{minus} and hydroxyl radical scavengers respectively. Results demonstrate the free radical scavenging properties of PBN and DMPO. This is an indication of their possible usefulness as antioxidants.« less
USDA-ARS?s Scientific Manuscript database
Integrated multi-trophic aquaculture is a promising direction for the sustainable development of aquaculture. Instead of releasing nutrition-rich waste to the environment or decomposition of nutrients via the biofilter, the ‘waste’ from fish can be recycled to produce byproducts (e.g., algae, plants...
Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water
Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...
USDA-ARS?s Scientific Manuscript database
A novel group of carbohydrate derivatives is described that uniquely assign cis/trans-2,3 aldose stereoisomers at low nanomolar concentrations. Aldopentoses or aldohexoses, or component aldoses from hydrolysis of polysaccharides or oligosaccharides, react with cysteamine in pyridine to give quantita...
Berron, Brad J; Johnson, Leah M; Ba, Xiao; McCall, Joshua D; Alvey, Nicholas J; Anseth, Kristi S; Bowman, Christopher N
2011-01-01
We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)–avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 µg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta. Biotechnol. Bioeng. 2011; 108:1521–1528. © 2011 Wiley Periodicals, Inc. PMID:21337335
Xu, Enbo; Long, Jie; Wu, Zhengzong; Li, Hongyan; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan
2015-07-01
Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well. © 2015 Institute of Food Technologists®
Chen, G; Fournier, R L; Varanasi, S
1998-02-20
An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. Copyright 1998 John Wiley & Sons, Inc.
A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation.
Seth, Divya; Hess, Douglas T; Hausladen, Alfred; Wang, Liwen; Wang, Ya-Juan; Stamler, Jonathan S
2018-02-01
S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Use of Copper Sulfate and a New Disinfectant called Peracetic Acid in Aquaculture
USDA-ARS?s Scientific Manuscript database
Copper sulfate treatments are currently used for water treatments to control algae and snails, but also to control parasites (mainly Ich) on fish and fungus (Saprolegnia) on fish eggs. This compound has also been used in the past to control columnaris on fish, although antibiotics are the common tr...
USDA-ARS?s Scientific Manuscript database
Land-based closed containment facilities, utilizing recirculation aquaculture system (RAS) technologies, can reduce or eliminate the introduction of obligate fish pathogens. Regardless, the presence of opportunistic pathogens must be assumed, and these agents can cause disease during unfavorable con...
USDA-ARS?s Scientific Manuscript database
Water clarifying and disinfection techniques such as ozonation and ultraviolet irradiation are commonly used in recirculation aquaculture systems (RAS); however, the capital and operating costs of these technologies are expensive. Cost-effective treatment options that maintain fish health and simult...
Uju; Goto, Masahiro; Kamiya, Noriho
2016-08-01
The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meinelt, Thomas; Phan, Thy-My; Behrens, Sascha; Wienke, Andreas; Pedersen, Lars-Flemming; Liu, Dibo; Straus, David L
2015-04-08
Peracetic acid (PAA) is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harming the fish. Successful disinfectants (like PAA) should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of our study was to compare the effectiveness of 6 commercial PAA products with different molecular PAA:H2O2 ratios to reduce bacterial growth of Aeromonas salmonicida and Yersinia ruckeri and to determine effective concentrations and exposure times. All products reduced colony-forming units (CFUs) of A. salmonicida and Y. ruckeri. Products with higher molecular PAA:H2O2 ratios inhibited growth better than products with lower molecular PAA:H2O2 ratios at the same PAA concentration; this indicates that H2O2 is not the driving force in the reduction of A. salmonicida and Y. ruckeri growth by PAA in vitro. The practical application of the products with high molecular PAA:H2O2 ratios should be prioritized if these pathogens are diagnosed.
Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.
Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus
2014-08-15
We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. Copyright © 2014 Elsevier B.V. All rights reserved.
Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light.
Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C
2007-11-01
Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.
Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David
2013-01-01
This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater.
Assessment of peracetic acid disinfected effluents by microbiotests.
Antonelli, M; Mezzanotte, V; Panouillères, M
2009-09-01
Bioassays were performed by commercially available kits on peracetic acid (PAA) solutions, at different concentrations, and on secondary effluents (from two different wastewater treatment plants) after disinfection at bench-scale, considering both samples containing residual active PAA and the same samples where residual PAA was quenched. Four indicator organisms were used: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, and Selenastrum capricornutum. The experiments lead to conclude that Thamnocephalus platyurus is a very sensitive organism, probably not adequate to perform a reliable toxicity assessment of effluents for monitoring purposes. The presence of specific organic compounds deriving from human metabolism and urban pollution, even at very low concentrations, can affect the results of bioassays, especially those performed on Vibrio fischeri. PAA is toxic for bacteria and crustaceans even at concentrations lower than the ones commonly used in wastewater disinfection (2-5 mg/L), while its effect on algae is smaller. The toxic effect on bacteria was expected, as PAA is used for disinfection, but its possible influence on biological processes in the receiving aquatic environment should be considered. Toxicity on crustaceans would confirm the fact that discharging disinfected effluents could raise some environmental problems.
Bacteria-free water for automatic washer-disinfectors: an impossible dream?
Cooke, R P; Whymant-Morris, A; Umasankar, R S; Goddard, S V
1998-05-01
The ability of a new automatic washer-disinfector system (AWDS), fitted with a water filtration system to provide bacteria-free water and so avoid the risk of mycobacterial contamination of fibreoptic bronchoscopes, was examined. Four new Astec 'MP' Safescope washer-disinfectors, with coarse and fine (0.2 micron) filters attached close to the outlet taps, were supplied with non-softened mains water. Water samples from the tank supply and outlet taps were regularly assessed for bacterial quality over a six-month period. Outlet samples were also analysed after fine filter change and purgation with peracetic acid. All bronchoalveolar lavage specimens (BALS) were stained and cultured for mycobacteria. Only 13 out of 53 outlet samples (24%) were culture-negative. There was no improvement after filter change. Residual anti-bacterial effect of peracetic acid lasted up to 48 h following AWDS purgation. No tank samples were bacteria-free. Sixty BALS were processed, two samples were culture-positive and grew M. tuberculosis and one was also smear-positive. Though mycobacterial contamination of bronchoscopes was not evident, the water filtration system was unable to reliably provide sterile rinse water.
Samrakandi, M M; Roques, C; Michel, G
1994-05-01
In order to assess the sporocidal activity of chlorine and peracetic acid (PAA), alone and in combination, against a spored biofilm, the biofilms of two species (Bacillus subtilis ATCC 6633 and Bacillus megaterium ATCC 8245) were formed on inert support (tygon). A sporulation kinetic of these bacteria in biofilm was established. Sporocidal properties of chlorine and PAA were compared against free spores, spores fixed by drying and spores in biofilm. The combination of these two products was also tested. Minimal sporocidal concentrations (MSC) of the two products towards free spores were determined (contact time 5 mn). The efficacy of these MSC were evaluated in terms of contact time on adhered spores and on spores in biofilm. Chlorine and PAA exhibited an excellent sporocidal activity. The combination of PAA and chlorine, tested by checkerboard micromethod, was found to be synergistic in case of free or adhered spores. The spored biofilm showed a high resistance. The combination of these two products revealed then only an additive effect.
Silveira, Luiza Oliveira; do Rosário, Denes Kaic Alves; Giori, Ana Carolina Garcia; Oliveira, Syllas Borburema Silva; da Silva Mutz, Yhan; Marques, Clara Suprani; Coelho, Jussara Moreira; Bernardes, Patrícia Campos
2018-04-01
Salmonella outbreaks related to fruits and vegetables have been reported being lettuce one of the most contaminated. Peracetic acid (PA) at 50 mg/L, sodium dichloroisocyanurate (SD) at 100 mg/L, and the combination of SD at 100 mg/L and babaçu coconut ( Attalea speciosa ) oil detergent at 100 mg/L were applied to fresh lettuce. Natural contaminant microbiota, physicochemical characteristics, and sensory attributes were evaluated. PA and SD reduced mesophilic aerobic counts by 2.1 and 1.5 log cfu/g, respectively. The most efficient treatment in reducing natural microbiota (i.e., PA) was applied alone and in combination with ultrasound (US). It reduced Salmonella enterica Typhimurium counts to undetectable levels (< 1 log cfu/g). US further reduced S. Typhimurium counts by 0.6 log cfu/g in relation to PA, treatment which lessened the pH but increased the titratable acidity of lettuce, but did not cause total color difference. Therefore, the combination of PA and US holds a potential industrial application for sanitization purposes.
Wang, Guang-Li; Yuan, Fang; Gu, Tiantian; Dong, Yuming; Wang, Qian; Zhao, Wei-Wei
2018-02-06
Herein we report a general and novel strategy for high-throughput photoelectrochemical (PEC) enzymatic bioanalysis on the basis of enzyme-initiated quinone-chitosan conjugation chemistry (QCCC). Specifically, the strategy was illustrated by using a model quinones-generating oxidase of tyrosinase (Tyr) to catalytically produce 1,2-bezoquinone or its derivative, which can easily and selectively be conjugated onto the surface of the chitosan deposited PbS/NiO/FTO photocathode via the QCCC. Upon illumination, the covalently attached quinones could act as electron acceptors of PbS quantum dots (QDs), improving the photocurrent generation and thus allowing the elegant probing of Tyr activity. Enzyme cascades, such as alkaline phosphatase (ALP)/Tyr and β-galactosidase (Gal)/Tyr, were further introduced into the system for the successful probing of the corresponding targets. This work features not only the first use of QCCC in PEC bioanalysis but also the separation of enzymatic reaction from the photoelectrode as well as the direct signal recording in a split-type protocol, which enables quite convenient and high-throughput detection as compared to previous formats. More importantly, by using numerous other oxidoreductases that involve quinones as reactants/products, this protocol could serve as a common basis for the development of a new class of QCCC-based PEC enzymatic bioanalysis and further extended for general enzyme-labeled PEC bioanalysis of versatile targets.
Gurtler, Joshua B; Bailey, Rebecca B; Jin, Tony Z; Fan, Xuetong
2014-10-17
A 2011 outbreak of hemorrhagic colitis, which resulted in the death of two individuals, was associated with contaminated strawberries. A study was conducted to identify antimicrobial washes effective at reducing E. coli O157:H7 and Salmonella enterica from the surface of fresh whole strawberries during two-minute immersion washes. Twenty-seven antimicrobial treatments were tested. Vacuum perfusion was applied to strawberries during chlorine and peracetic acid treatments to promote infiltration of sanitizer into porous strawberry tissue. Strawberries were inoculated to 7.1logCFU/strawberry with a seven-strain bacterial composite, consisting of three strains of E. coli O157:H7 and four serovars of Salmonella enterica. Berries were air-dried for 2h and immersed in circulating antimicrobial solutions for 120s at 22°C. Four treatments reduced ≥3.0logCFU/strawberry, including (a) 1% acetic acid+1% H2O2, (b) 30% ethanol+1% H2O2, (c) 90ppm peracetic acid, and (d) 1% lactic acid+1% H2O2. Two additional treatments that reduced 2.8logCFU/strawberry were (a) 40% ethanol, and (b) 1% each of phosphoric+fumaric acids. Eight treatments reduced 2.0-2.6logCFU/strawberry. Five treatments reduced <1.45CFU/strawberry, including (a) 1% citric acid, (b) 1% lactic acid, (c) 1% acetic acid, (d) 0.5% each of acetic+citric acids and (e) 0.5% each of acetic+lactic acids. The use of vacuum perfusion with 200ppm chlorine or 90ppm peracetic acid did not reduce greater populations of pathogens than did the same treatments without vacuum perfusion. Fourteen treatments reduced no more pathogens (p<0.05) than did sterile deionized water. Results from this study provide some options for end-point decontamination of strawberries for retail operations just prior to serving to customers. Published by Elsevier B.V.
Tong Thi, Anh Ngoc; Sampers, Imca; Van Haute, Sam; Samapundo, Simbarashe; Ly Nguyen, Binh; Heyndrickx, Marc; Devlieghere, Frank
2015-09-02
This study evaluated the decontamination of Pangasius fillets in chlorine or peracetic acid treated wash water. First, the decontamination efficacy of the washing step with chlorinated water applied by a Vietnamese processing company during trimming of Pangasius fillets was evaluated and used as the basis for the experiments performed on a laboratory scale. As chlorine was only added at the beginning of the batch and used continuously without renewal for 239min; a rapid increase of the bacterial counts and a fast decrease of chlorine in the wash water were found. This could be explained by the rapid accumulation of organic matter (ca. 400mg O2/L of COD after only 24min). Secondly, for the experiments performed on a laboratory scale, a single batch approach (one batch of wash water for treating a fillet) was used. Chlorine and PAA were evaluated at 10, 20, 50 and 150ppm at contact times of 10, 20 and 240s. Washing with chlorine and PAA wash water resulted in a reduction of Escherichia coli on Pangasius fish which ranged from 0-1.0 and 0.4-1.4logCFU/g, respectively while less to no reduction of total psychrotrophic counts, lactic acid bacteria and coliforms on Pangasius fish was observed. However, in comparison to PAA, chlorine was lost rapidly. As an example, 53-83% of chlorine and 15-17% of PAA were lost after washing for 40s (COD=238.2±66.3mg O2/L). Peracetic acid can therefore be an alternative sanitizer. However, its higher cost will have to be taken into consideration. Where (cheaper) chlorine is used, the processors have to pay close attention to the residual chlorine level, pH and COD level during treatment for optimal efficacy. Copyright © 2015. Published by Elsevier B.V.
Orta De Velásquez, M T; Yáñez-Noguez, I; Jiménez-Cisneros, B; Luna Pabello, V M
2008-11-01
This paper evaluates the efficacy of hydrogen peroxide (HP) and peracetic acid (PAA) in the disinfection of an Advanced Primary Treatment (APT) effluent, and how said disinfection capacities can be enhanced by combining the oxidants with copper (Cu2+) and silver (Ag). The treatment sequence consisted of APT (adding chemicals to water to remove suspended solids by coagulation and flocculation), followed by disinfection with various doses of HP, HP+Cu2+, HP+Ag, PAA and PAA+Ag. Microbiological quality was determined by monitoring concentrations of fecal coliforms (FC), pathogenic bacteria (PB) and helminth eggs (HE) throughout the sequence. The results revealed that APT effluent still contains very high levels of bacteria as the treatment only removes 1-2 log of FC and PB, but the reduction in the number of viable helminth eggs was 83%. Subsequent disinfection stages demonstrated that both HP+Cu2+ and HP+Ag have a marked disinfection capacity for bacteria (3.9 and 3.4 log-inactivation, respectively). Peracetic acid on its own was already extremely efficient at disinfecting for bacteria, and the effect was enhanced when combining PAA with silver (PAA+Ag). The best result for HE removal was achieved by combining PAA with silver (PAA+Ag) at doses of 20 + 2.0 mg l(-1), respectively. The study concluded that the PAA+Ag and HP+Ag combinations were good alternatives for APT effluent disinfection, because the disinfected effluents met the standards in NOM-001-SEMARNAT-1996, Mexico's regulation governing the microbiological quality required in treated wastewater destined for unrestricted reuse in agricultural irrigation (< or =1 helminths per litre). Combining either of these disinfection treatments with a primary method such as APT, therefore, offers an effective and practical way of reducing the health risks normally associated with the reuse of wastewaters.
Peracetic acid disinfection: a feasible alternative to wastewater chlorination.
Rossi, S; Antonelli, M; Mezzanotte, V; Nurizzo, C
2007-04-01
The paper summarizes the results of a bench-scale study to evaluate the feasibility of using peracetic acid (PAA) as a substitute for sodium hypochlorite both for discharge into surface water and for agricultural reuse. Trials were carried out with increasing doses (1, 2, 3, 5, 10, and 15 mg/L) and contact times (6, 12, 18, 36, 42, and 54 minutes) to study disinfectant decay and bacterial removal and regrowth, using fecal coliform and Escherichia coli (E. coli) as process efficiency indicators. Peracetic acid decay kinetics was evaluated in tap water and wastewater; in both cases, PAA decays according to first-order kinetics with respect to time, and a correlation was found between PAA oxidative initial consumption and wastewater characteristics. The PAA disinfection efficiency was correlated with operating parameters (active concentration and contact time), testing different kinetic models. Two data groups displaying a different behavior on the basis of initial active concentration ranges (1 to 2 mg/L and 5 to 15 mg/L, respectively) can be outlined. Both groups had a "tailing-off" inactivation curve with respect to time, but the second one showed a greater inactivation rate. Moreover, the effect of contact time was greater at the lower doses. Hom's model, used separately for the two data groups, was found to best fit experimental data, and the disinfectant active concentration appears to be the main factor affecting log-survival ratios. Moreover, the S-model better explains the initial resistance of E. coli, especially at low active concentrations (< 2 mg/L) and short contact times (< 12 minutes). Microbial counts, performed by both traditional methods and flow cytometry, immediately and 5 hours after sample collection (both with or without residual PAA inactivation), showed that no appreciable regrowth took place after 5 hours, neither for coliform group bacteria, nor for total heterotrophic bacteria.
De Sanctis, Marco; Del Moro, Guido; Levantesi, Caterina; Luprano, Maria Laura; Di Iaconi, Claudio
2016-02-01
In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli<1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8±0.4 log units of Giardia lamblia, 2.8±0.8 log units of E. coli, 2.5±0.7 log units of total coliforms, 2.0±0.3 log units of Clostridium perfringens, 2.0±0.4 log units of Cryptosporidium parvum and 1.7±0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm(2) and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. Copyright © 2015 Elsevier B.V. All rights reserved.
2014-01-01
Background Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Results Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H2O2, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H2O2 synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. Conclusions These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress. PMID:25091029
Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng
2014-08-05
Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.
Salat, Marc; Petkova, Petya; Hoyo, Javier; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko
2018-06-01
An important preventive measure for providing a bacteria-free environment for the patients is the introduction of highly efficient and durable antibacterial textiles in hospitals. This work describes a single step sono-enzymatic process for coating of cotton medical textiles with antibacterial ZnO nanoparticles (NPs) and gallic acid (GA) to produce biocompatible fabrics with durable antibacterial properties. Cellulose substrates, however, need pre-activation to achieve sufficient stability of the NPs on their surface. Herein, this drawback is overcome by the simultaneous sonochemical deposition of ZnO NPs and the synthesis of a bio-based adhesive generated by the enzymatic cross-linking of GA in which the NPs were embedded. GA possesses the multiple functions of an antibacterial agent, a building block of the cross-linked phenolic network, and as a compound providing the safe contact of the coated materials with human skin. The ZnO NPs-GA coated fabrics maintained above 60% antibacterial efficacy even after 60 washing cycles at 75 °C hospital laundry regime. Copyright © 2018 Elsevier Ltd. All rights reserved.
Attri, Pankaj; Park, Ji Hoon; Gaur, Jitender; Kumar, Naresh; Park, Dae Hoon; Jeon, Su Nam; Park, Bong Sang; Chand, Suresh; Uhm, Han Sup; Choi, Eun Ha
2014-09-14
In this work, we demonstrated the action of nanosecond pulsed plasma (NPP) on the generation of nitric oxide (NO) from the non-enzymatic pathway and on the modification of graphite oxide (GO) sheets to increase polymer solar cells (PSCs) efficiency. NO is an important signal and an effector molecule in animals, which is generated from the enzyme-catalyzed oxidation of L-arginine to NO and L-citrulline. Hence, L-arginine is an important biological precursor for NO formation. Therefore, we developed a new non-enzymatic pathway for the formation of NO and L-citrulline using NPP and characterized the pathway using NO detection kit, NMR, liquid chromatography/capillary electrophoresis-mass spectrometry (LC/CE-MS) for both quantitative and qualitative bioanalysis. We then synthesized and modified the functional groups of GO using NPP, and it was characterised by X-ray photoelectron spectroscopy (XPS), confocal Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) imaging, cathodoluminescence (CL) and work function using γ-FIB. Further, we also tested the power conversion efficiency of the PSCs devices with modified GO that is similar to the one obtained with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as HTL. This work is perceived to have great implications for inexpensive and efficient methodology for NO generation and modification of GO, which are applicable in materials from nanomaterials to biomolecules.
USDA-ARS?s Scientific Manuscript database
In a research rainbow trout (Oncorhynchus mykiss) RAS, two different sized raceways were operated with one common biofilter unit. The larger raceway was stocked with food fish, while the smaller raceway was stocked with juvenile trout. After removal of the food fish, juveniles were moved into free s...
USDA-ARS?s Scientific Manuscript database
A new type of carbohydrate derivative is described that is suitable for analysis by GC/MS. Reaction of free aldoses (pentoses or hexoses), or the component aldoses arising from acid hydrolysis of polysaccharides or oligosaccharides, with excess cysteamine hydrochloride in pyridine, results in the qu...
USDA-ARS?s Scientific Manuscript database
Closed containment operations utilizing recirculation aquaculture systems (RAS) can provide critical barriers to the introduction of obligate fish pathogens (Timmons and Ebeling, 2010); however, opportunistic pathogens will be present and can cause disease when conditions favor these agents. One par...
USDA-ARS?s Scientific Manuscript database
Disease is a major barrier to aquaculture production worldwide, and within the salmon industry it is responsible for the majority of market supply fluctuation. Ubiquitous oomycetes of the Saprolegnia genus are particularly problematic disease agents, associated with an estimated 10% mortality among ...
USDA-ARS?s Scientific Manuscript database
There are very few therapeutic agents against aquaculture ectoparasites in Germany. Peracetic Acid (PAA) has been referred to as the best disinfective agent in the world, but it has not been used much here in aquaculture. We currently use this compound in ‘treatment crisis’ situations because ther...
Assignment of EC Numbers to Enzymatic Reactions with Reaction Difference Fingerprints
Hu, Qian-Nan; Zhu, Hui; Li, Xiaobing; Zhang, Manman; Deng, Zhe; Yang, Xiaoyan; Deng, Zixin
2012-01-01
The EC numbers represent enzymes and enzyme genes (genomic information), but they are also utilized as identifiers of enzymatic reactions (chemical information). In the present work (ECAssigner), our newly proposed reaction difference fingerprints (RDF) are applied to assign EC numbers to enzymatic reactions. The fingerprints of reactant molecules minus the fingerprints of product molecules will generate reaction difference fingerprints, which are then used to calculate reaction Euclidean distance, a reaction similarity measurement, of two reactions. The EC number of the most similar training reaction will be assigned to an input reaction. For 5120 balanced enzymatic reactions, the RDF with a fingerprint length at 3 obtained at the sub-subclass, subclass, and main class level with cross-validation accuracies of 83.1%, 86.7%, and 92.6% respectively. Compared with three published methods, ECAssigner is the first fully automatic server for EC number assignment. The EC assignment system (ECAssigner) is freely available via: http://cadd.whu.edu.cn/ecassigner/. PMID:23285222
Enzymatic transformation of nonfood biomass to starch
You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival
2013-01-01
The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840
Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches.
Sporck, Daniele; Reinoso, Felipe A M; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, José C; Ferraz, André; Milagres, Adriane M F
2017-01-01
New biorefinery concepts are necessary to drive industrial use of lignocellulose biomass components. Xylan recovery before enzymatic hydrolysis of the glucan component is a way to add value to the hemicellulose fraction, which can be used in papermaking, pharmaceutical, and food industries. Hemicellulose removal can also facilitate subsequent cellulolytic glucan hydrolysis. Sugarcane bagasse was pretreated with an alkaline-sulfite chemithermomechanical process to facilitate subsequent extraction of xylan by enzymatic or alkaline procedures. Alkaline extraction methods yielded 53% (w/w) xylan recovery. The enzymatic approach provided a limited yield of 22% (w/w) but produced the xylan with the lowest contamination with lignin and glucan components. All extracted xylans presented arabinosyl side groups and absence of acetylation. 2D-NMR data suggested the presence of O -methyl-glucuronic acid and p -coumarates only in enzymatically extracted xylan. Xylans isolated using the enzymatic approach resulted in products with molecular weights (Mw) lower than 6 kDa. Higher Mw values were detected in the alkali-isolated xylans. Alkaline extraction of xylan provided a glucan-enriched solid readily hydrolysable with low cellulase loads, generating hydrolysates with a high glucose/xylose ratio. Hemicellulose removal before enzymatic hydrolysis of the cellulosic fraction proved to be an efficient manner to add value to sugarcane bagasse biorefining. Xylans with varied yield, purity, and structure can be obtained according to the extraction method. Enzymatic extraction procedures produce high-purity xylans at low yield, whereas alkaline extraction methods provided higher xylan yields with more lignin and glucan contamination. When xylan extraction is performed with alkaline methods, the residual glucan-enriched solid seems suitable for glucose production employing low cellulase loadings.
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle; Shindo, David; Montgomery, Eliza
2013-01-01
The International Space Station (ISS) Program recognizes the risk of microbial contamination in their potable and non-potable water sources. The end of the Space Shuttle Program limited the ability to send up shock kits of biocides in the event of an outbreak. Currently, the United States Orbital Segment water system relies primarily on iodine to mitigate contamination concerns, which has been successful in remediating the small cases of contamination documented. However, a secondary method of disinfection is a necessary investment for future space flight. Over the past year, NASA Johnson Space Center has investigated the development of electrochemically generated systems for use on the ISS. These systems include: hydrogen peroxide, ozone, sodium hypochlorite, and peracetic acid. To use these biocides on deployed water systems, NASA must understand of the effect these biocides have on current ISS materials prior to proceeding forward with possible on-orbit applications. This paper will discuss the material testing that was conducted to assess the effects of the biocides on current ISS materials.
Decontamination of Drinking Water Infrastructure ...
Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...
2015-12-04
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions.
Liu, Xiaoling; Formanek, Petr; Voit, Brigitte; Appelhans, Dietmar
2017-12-18
Next-generation therapeutic approaches are expected to rely on the engineering of biomimetic cellular systems that can mimic specific cellular functions. Herein, we demonstrate a highly effective route for constructing structural and functional eukaryotic cell mimics by loading pH-sensitive polymersomes as membrane-associated and free-floating organelle mimics inside the multifunctional cell membrane. Metabolism mimicry has been validated by performing successive enzymatic cascade reactions spatially separated at specific sites of cell mimics in the presence and absence of extracellular organelle mimics. These enzymatic reactions take place in a highly controllable, reproducible, efficient, and successive manner. Our biomimetic approach to material design for establishing functional principles brings considerable enrichment to the fields of biomedicine, biocatalysis, biotechnology, and systems biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.
Industrial enzymatic production of cephalosporin-based beta-lactams.
Barber, Michael S; Giesecke, Ulrich; Reichert, Arno; Minas, Wolfgang
2004-01-01
Cephalosporins are chemically closely related to penicillins both work by inhibiting the cell wall synthesis of bacteria. The first generation cephalosporins entered the market in 1964. Second and third generation cephalosporins were subsequently developed that were more powerful than the original products. Fourth generation cephalosporins are now reaching the market. Each newer generation of cephalosporins has greater Gram-negative antimicrobial properties than the preceding generation. Conversely, the 'older' generations of cephalosporins have greater Gram-positive (Staphylococcus and Streptococcus) coverage than the 'newer' generations. Frequency of dosing decreases and palatability generally improve with increasing generations. The advent of fourth generation cephalosporins with the launch of cefepime extended the spectrum against Gram-positive organisms without a significant loss of activity towards Gram-negative bacteria. Its greater stability to beta-lactamases increases its efficacy against drug-resistant bacteria. In this review we present the current situation of this mature market. In addition, we present the current state of the technologies employed for the production of cephalosporins, focusing on the new and environmentally safer 'green' routes to the products. Starting with the fermentation and purification of CPC, enzymatic conversion in conjunction with aqueous chemistry will lead to some key intermediates such as 7-ACA, TDA and TTA, which then can be converted into the active pharmaceutical ingredient (API), again applying biocatalytic technologies and aqueous chemistry. Examples for the costing of selected products are provided as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paul Allen
The purpose of this report is to present the results of a small pilot-scale test using PAA to disinfect a side stream of the effluent from the ORNL STP. These results provide the basis for requesting approval for full-scale use of PAA at the ORNL STP.
Smither, Sophie J.; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M. Stephen; Miller, David M.; Mitzel, Dana; Noah, James W.; Reddick-Elick, Mary S.; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B.; Hevey, Michael
2018-01-01
Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification. PMID:29261093
Smither, Sophie J; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M Stephen; Miller, David M; Mitzel, Dana; Noah, James W; Reddick-Elick, Mary S; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B; Hevey, Michael; Wahl-Jensen, Victoria
2018-01-01
Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.
USDA-ARS?s Scientific Manuscript database
Whole fresh blueberries were treated using a parallel pulsed electric field (PEF) treatment chamber and a sanitizer solution (60 ppm peracetic acid [PAA]) as PEF treatment medium with square wave bipolar pulses at 2 kV/cm electric field strength, 1us pulse width, and 100 pulses per second for 2, 4, ...
Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.
Danilo Scordia; Salvatore L. Consentino; Thomas W. Jeffries
2010-01-01
Saccharum (Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.), is a rapidly growing, wide ranging high-yield perennial, suitable for second generation bioethanol production. This study evaluated oxalic acid as a pretreatment for bioconversion. Overall sugar yields, sugar degradation products, enzymatic glucan hydrolysis and ethanol production were studied as...
Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao
2016-07-25
Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resistance to and killing by the sporicidal microbicide peracetic acid.
Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; Mcdonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves
2015-03-01
To elucidate the mechanisms of spore resistance to and killing by the oxidizing microbicide peracetic acid (PAA). Mutants of Bacillus subtilis lacking specific spore structures were used to identify resistance properties in spores and to understand the mechanism of action of PAA. We also assessed the effect of PAA treatment on a number of spore properties including heat tolerance, membrane integrity and germination. The spore coat is essential for spore PAA resistance as spores with defective coats were greatly sensitized to PAA treatment. Small acid-soluble spore proteins apparently provide no protection against PAA. Defects in spore germination, specifically in germination via the GerB and GerK but not the GerA germination receptors, as well as leakage of internal components suggest that PAA is active at the spore inner membrane. It is therefore likely that the inner membrane is the major site of PAA's sporicidal activity. PAA treatment targets the spore membrane, with some of its activity directed specifically against the GerB and GerK germination receptors. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ulusoy, Özgür İlke; Zeyrek, Salev; Çelik, Bülent
2017-07-01
The purpose of this study was to investigate the effects of different irrigation solutions on the smear layer removal and marginal adaptation of a resin-based sealer to root canal dentine. A total of 152 instrumented roots were irrigated with the following irrigants: 9,18% etidronic acid (HEBP), 0.5, 1,2% peracetic acid (PAA), 17% ethylenediaminetetraacetic acid (EDTA), saline. The amount of smear layer was evaluated using scanning electron microscope (SEM) in seventy root samples. Eighty-two roots were filled with AH Plus and gutta-percha. Slices obtained from apical third of each specimen were viewed with SEM to assess marginal adaptation. Use of 9% and 18% HEBP resulted in more efficient smear layer removal in the apical third than the other chelators (p < 0.05). Higher smear layer scores in the coronal and middle thirds were obtained from 0.5%, 1% PAA groups. Regarding marginal adaptation, 18% HEBP group showed the lowest gap size values (p < 0.05), and better marginal adaptation. Etidronic acid is a promising candidate for final irrigation of root canals. © 2017 Wiley Periodicals, Inc.
Lomas, R J; Jennings, L M; Fisher, J; Kearney, J N
2004-01-01
Patellar tendon allografts, retrieved from cadaveric human donors, are widely used for replacement of damaged cruciate ligaments. In common with other tissue allografts originating from cadaveric donors, there are concerns regarding the potential for disease transmission from the donor to the recipient. Additionally, retrieval and subsequent processing protocols expose the graft to the risk of environmental contamination. For these reasons, disinfection or sterilisation protocols are necessary for these grafts before they are used clinically. A high-level disinfection protocol, utilising peracetic acid (PAA), has been developed and investigated for its effects on the biocompatibility and biomechanics of the patellar tendon allografts. PAA disinfection did not render the grafts either cytotoxic or liable to provoke an inflammatory response as assessed in vitro . However, the protocol was shown to increase the size of gaps between the tendon fibres in the matrix and render the grafts more susceptible to digestion with collagenase. Biomechanical studies of the tendons showed that PAA treatment had no effect on the ultimate tensile stress or Young's modulus of the tendons, and that ultimate strain was significantly higher in PAA treated tendons.
Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment.
Antonelli, M; Turolla, A; Mezzanotte, V; Nurizzo, C
2013-01-01
The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent.
Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Gelinsky, Michael; Günther, Klaus-Peter; Stiehler, Maik
2014-01-01
Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at -20 °C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.
Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M
2005-03-01
Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.
Thermodynamic properties of an emerging chemical disinfectant, peracetic acid.
Zhang, Chiqian; Brown, Pamela J B; Hu, Zhiqiang
2018-04-15
Peracetic acid (PAA or CH 3 COOOH) is an emerging disinfectant with a low potential to form carcinogenic disinfection by-products (DBPs). Basic thermodynamic properties of PAA are, however, absent or inconsistently reported in the literature. This review aimed to summarize important thermodynamic properties of PAA, including standard Gibbs energy of formation and oxidation-reduction (redox) potential. The standard Gibbs energies of formation of CH 3 COOOH (aq) , CH 3 COOOH (g) , CH 3 COOOH (l) , and CH 3 COOO (aq) - are -299.41kJ·mol -1 , -283.02kJ·mol -1 , -276.10kJ·mol -1 , and -252.60kJ·mol -1 , respectively. The standard redox potentials of PAA are 1.748V and 1.005V vs. standard hydrogen electrode (SHE) at pH 0 and pH 14, respectively. Under biochemical standard state conditions (pH 7, 25°C, 101,325Pa), PAA has a redox potential of 1.385V vs. SHE, higher than many disinfectants. Finally, the environmental implications of the thermodynamic properties of PAA were systematically discussed. Those properties can be used to predict the physicochemical and biological behavior of aquatic systems exposed to PAA. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting
Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) includingmore » 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.« less
Yamada, Kazunori; Inoue, Tomoaki; Akiba, Yuji; Kashiwada, Ayumi; Matsuda, Kiyomi; Hirata, Mitsuo
2006-10-01
Enzymatic removal of p-alkylphenols from aqueous solutions was investigated through the two-step approach, the quinone conversion of p-alkylphenols with mushroom tyrosinase (EC 1.14.18.1) and the subsequent adsorption of quinone derivatives enzymatically generated on chitosan beads at pH 7.0 and 45 degrees C as the optimum conditions. This technique is quite effective for removal of various p-alkylphenols from an aqueous solution. The % removal values of 97-100% were obtained for p-n-alkylphenols with carbon chain lengths of 5 to 9. In addition, removal of other p-alkylphenols was enhanced by increasing either the tyrosinase concentration or the amount of added chitosan beads, and their % removal values reached >93 except for 4-tert-pentylphenol. This technique was also applicable to remove 4-n-octylphenol (4NOP) and 4-n-nonylphenol (4NNP) as suspected endocrine disrupting chemicals. The reaction of quinone derivatives enzymatically generated with the chitosan's amino groups was confirmed by the appearance of peaks for UV-visible spectrum measurements of the chitosan films incubated in the p-alkylphenol and tyrosinase mixture solutions. In addition, 4-tert-pentylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide.
Pennacchio, Angela; Mandrich, Luigi; Manco, Giuseppe; Trincone, Antonio
2015-09-01
The enzymatic regioselective hydrolysis of (a) acetylated mono- to tetrasaccharides of different nature, (b) of acetylated aryl glycosides and (c) of different acetylated nucleosides was studied enlarging the portfolio of substrates that can be employed by the thermophilic esterase EST2 from Alicyclobacillus acidocaldarius. The reactions were optimised to the extent that the amount of enzyme needed was lowered of two orders of magnitude with respect to the previously reported reactions, namely from 4000 to 40 U of enzyme per reaction. New additional solvents were screened and dramatic changes in regioselectivity were observed depending on the amount and type of solvent used. For example, in the presence of 10 % DMF, only two α-D-glucose products 6-OH and 4,6-OH (in a 76:24 ratio) were detected, whereas with 25 % DMF, at least four products of similar amount were observed. This versatility adds specific value to the biocatalyst making possible the design of biocatalytic reactions with different hydrophobic ester substrates. As an additional remarkable example, EST2 catalysed with a good yield and high regioselectivity the hydrolysis of p-nitrophenyl β-D-xylopyranoside triacetate producing only the monoacetylated derivative with acetyl group in 3-O-position, in 2 min. The results with nucleosides as substrates are particularly interesting. The peracetates of 3',5'-di-O-acetylthymidine are converted almost quantitatively (95 %) to the monoacetylated derivative possessing free secondary OH; this regioselectivity is complementary to hydrolysis/alcoholysis reactions catalysed by CAL-B lipase or to other microbial hydrolytic biocatalysts, generally giving products with free primary OH groups. A docking analysis was undertaken with all analysed substrates suggesting a structural interpretation of the results. In most of cases, the best pose of the selected substrate was in line with the observed regioselectivity.
Li, Qing; Subbulakshmi, Venkita; Oldfield, Claudine M; Aamir, Rozina; Weyman, Crystal M; Wolfman, Alan; Cathcart, Martha K
2007-02-01
Phospholipases A(2) (PLA(2)) are potent regulators of the inflammatory response. We have observed that Group IV cPLA(2) activity is required for the production of superoxide anion (O(2)(-)) in human monocytes [Li Q., Cathcart M.K. J. Biol. Chem. 272 (4) (1997) 2404-2411.]. We have previously identified PKCalpha as a kinase pathway required for monocyte O(2)(-) production [Li Q., Cathcart M.K. J. Biol. Chem. 269 (26) (1994) 17508-17515.]. We therefore investigated the potential interaction between PKCalpha and cPLA(2) by evaluating the requirement for specific PKC isoenzymes in the process of activating cPLA(2) enzymatic activity and protein phosphorylation upon monocyte activation. We first showed that general PKC inhibitors and antisense oligodeoxyribonucleotides (ODN) to the cPKC group of PKC enzymes inhibited cPLA(2) activity. To distinguish between PKCalpha and PKCbeta isoenzymes in regulating cPLA(2) protein phosphorylation and enzymatic activity, we employed our previously characterized PKCalpha or PKCbeta isoenzyme-specific antisense ODN [Li Q., Subbulakshmi V., Fields A.P., Murray, N.R., Cathcart M.K., J. Biol. Chem. 274 (6) (1999) 3764-3771]. Suppression of PKCalpha expression, but not PKCbeta expression, inhibited cPLA(2) protein phosphorylation and enzymatic activity. Additional studies ruled out a contribution by Erk1/2 to cPLA(2) phosphorylation and activation. We also found that cPLA(2) co-immunoprecipitated with PKCalpha and vice versa. In vitro studies demonstrated that PKCalpha could directly phosphorylate cPLA(2).and enhance enzymatic activity. Finally, we showed that addition of arachidonic acid restored the production of O(2)(-) in monocytes defective in either PKCalpha or cPLA(2) expression. Taken together, our data suggest that PKCalpha, but not PKCbeta, is the predominant cPKC isoenzyme required for cPLA(2) protein phosphorylation and maximal induction of cPLA(2) enzymatic activity upon activation of human monocytes. Our data also support the concept that the requirements for PKCalpha and cPLA(2) in O(2)(-) generation are solely due to their seminal role in generating arachidonic acid.
Reactive oxygen species, essential molecules, during plant-pathogen interactions.
Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander
2016-06-01
Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Wang, Wen; Wang, Qiong; Tan, Xuesong; Qi, Wei; Yu, Qiang; Zhou, Guixiong; Zhuang, Xinshu; Yuan, Zhenhong
2016-10-01
The generation of a great quantity of black liquor (BL) and waste wash water (WWW) has been key problems of the alkaline pretreatment. This work tried to build a sustainable way to recycle the BL for pretreating sugarcane bagasse (SCB) and the WWW for washing the residual solid (RS) of alkali-treated SCB which would be subsequently hydrolysed and fermented. The enzymatic hydrolysis efficiency of the washed RS decreased with the recycling times of BL and WWW increasing. Tween80 at the loading of 0.25% (V/V) could notably improve the enzymatic hydrolysis and had no negative impact on the downstream fermentation. Compared with the non-recycling and BL recycling ways based on alkaline pretreatment, the BL-WWW recycling way could not only maintain high conversion of carbohydrate into monosaccharides and save alkali amount of 45.5%, but also save more than 80% water and generate less than 15% waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Sung Bong; Kim, Dong Sup; Yang, Ji Hyun; Lee, Junyoung; Kim, Seung Wook
2016-04-01
The waste hydrolysate after dilute acid pretreatment (DAP) of lignocellulosic biomass was utilized to generate electricity using an enzymatic fuel cell (EFC) system. During DAP, the components of biomass containing hemicellulose and other compounds are hydrolyzed, and glucose is solubilized into the dilute acid solution, called as the hydrolysate liquid. Glucose oxidase (GOD) and laccase (Lac) were assembled on the electrode of the anode and cathode, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured, and the maximum power density was found to be 1.254×10(3) μW/cm(2). The results indicate that the hydrolysate from DAP is a reliable electrolyte containing the fuel of EFC. Moreover, the impurities in the hydrolysate such as phenols and furans slightly affected the charge transfer on the surface of the electrode, but did not affect the power generation of the EFC system in principal. Copyright © 2016 Elsevier Inc. All rights reserved.
Isobe, Yosuke; Kawashima, Yusuke; Ishihara, Tomoaki; Watanabe, Kenji; Ohara, Osamu; Arita, Makoto
2018-04-20
The 12/15-lipoxygenase (12/15-LOX) enzyme introduces peroxyl groups, in a position-specific manner, into polyunsaturated fatty acids to form various kinds of bioactive lipid metabolites, including lipid-derived electrophiles (LDE). The resident peritoneal macrophage is the site of highest 12/15-LOX expression in the mouse. However, the role of the enzyme in the regulation of resident macrophages is not fully understood. Here, we describe a chemoproteomic method to identify the targets of enzymatically generated LDE. By treating mouse peritoneal macrophages with omega-alkynyl arachidonic acid (aAA), we identified a series of proteins adducted by LDE generated through a 12/15-LOX catalyzed reaction. Pathway analysis revealed a dramatic enrichment of proteins involved in energy metabolism and found that glycolytic flux and mitochondrial respiration were significantly affected by the expression of 12/15-LOX. Our findings thus highlight the utility of chemoproteomics using aAA for identifying intracellular targets of enzymatically generated LDE.
Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway
NASA Astrophysics Data System (ADS)
Zhu, Zhiguang; Wang, Yiran; Minteer, Shelley D.; Percival Zhang, Y.-H.
Enzymatic fuel cells (EFCs) use a variety of fuels to generate electricity through oxidoreductase enzymes, such as oxidases or dehydrogenases, as catalysts on electrodes. We have developed a novel synthetic enzymatic pathway containing two free enzymes (maltodextrin phosphorylase and phosphoglucomutase) and one immobilized glucose-6-phosphate dehydrogenase that can utilize an oligomeric substrate maltodextrin for producing electrons mediated via a diaphorase and vitamin K 3 electron shuttle system. Three different enzyme immobilization approaches were compared based on electrostatic force entrapment, chemical cross-linking, and cross-linking with the aid of carbon nanotubes. At 10 mM glucose-6-phosphate (G6P) as a substrate concentration, the maximum power density of 0.06 mW cm -2 and retaining 42% of power output after 11 days were obtained through the method of chemical cross-linking with carbon nanotubes, approximately 6-fold and 3.5-fold better than those of the electrostatic force-based method, respectively. When changed to maltodextrin (degree of polymerization = 19) as the substrate, the EFC achieved a maximum power density of 0.085 mW cm -2. With the advantages of stable, low cost, high energy density, non-inhibitor to enzymes, and environmental friendly, maltodextrin is suggested to be an ideal fuel to power enzymatic fuel cells.
Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F
2015-07-30
Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.
Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase.
Lin, Hsin Hung; Pan, Yih Jiuan; Hsu, Shen Hsing; Van, Ru Chuan; Hsiao, Yi Yuong; Chen, Jiun Hsien; Pan, Rong Long
2005-10-15
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.
A heating-superfusion platform technology for the investigation of protein function in single cells.
Xu, Shijun; Ainla, Alar; Jardemark, Kent; Jesorka, Aldo; Jeffries, Gavin D M
2015-01-06
Here, we report on a novel approach for the study of single-cell intracellular enzyme activity at various temperatures, utilizing a localized laser heating probe in combination with a freely positionable microfluidic perfusion device. Through directed exposure of individual cells to the pore-forming agent α-hemolysin, we have controlled the membrane permeability, enabling targeted delivery of the substrate. Mildly permeabilized cells were exposed to fluorogenic substrates to monitor the activity of intracellular enzymes, while adjusting the local temperature surrounding the target cells, using an infrared laser heating system. We generated quantitative estimates for the intracellular alkaline phosphatase activity at five different temperatures in different cell lines, constructing temperature-response curves of enzymatic activity at the single-cell level. Enzymatic activity was determined rapidly after cell permeation, generating five-point temperature-response curves within just 200 s.
González, Abelardo; Gehr, Ronald; Vaca, Mabel; López, Raymundo
2012-03-01
Disinfection of an advanced primary effluent using a continuous-flow combined peracetic acid/ultraviolet (PAA/UV) radiation system was evaluated. The purpose was to determine whether the maximum microbial content, established under Mexican standards for treated wastewaters meant for reuse--less than 240 most probable number fecal coliforms (FC)/100 mL--could be feasibly accomplished using either disinfectant individually, or the combined PAA/UV system. This meant achieving reduction of up to 5 logs, considering initial concentrations of 6.4 x 10(+6) to 5.8 x 10(+7) colony forming units/100 mL. During the tests performed under these experiments, total coliforms (TC) were counted because FC, at the most, will be equal to TC. Peracetic acid disinfection achieved less than 1.5 logs TC reduction when the C(t) x t product was less than 2.26 mg x minimum (min)/L; 3.8 logs for C(t) x t 4.40 mg x min/L; and 5.9 logs for C(t) x t 24.2 mg x min/L. In continuous-flow UV irradiation tests, at a low-operating flow (21 L/min; conditions which produced an average UV fluence of 13.0 mJ/cm2), the highest TC reduction was close to 2.5 logs. The only condition that produced a disinfection efficiency of approximately 5 logs, when both disinfection agents were used together, was the combined process dosing 30 mg PAA/L at a pilot plant flow of 21 L/min and contact time of 10 minutes to attain an average C(t) x t product of 24.2 mg x min/L and an average UV fluence of 13 mJ/cm2. There was no conclusive evidence of a synergistic effect when both disinfectants were employed in combination as compared to the individual effects achieved when used separately, but this does not take into account the nonlinearity (tailing-off) of the dose-response curve.
USDA-ARS?s Scientific Manuscript database
Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...
Sattar, Syed A; Kibbee, Richard J; Tetro, Jason A; Rook, Tony A
2006-11-01
To evaluate the effectiveness of a high-level disinfection solution generated inside an endoscope processing system for decontaminating external and internal surfaces of experimentally contaminated heat-sensitive medical devices. The American Society for Testing and Materials Simulated-Use Test protocol (E1837-02), which incorporates a soil load in each inoculum, was used to evaluate the efficacy of the system when processing 4 common types of endoscopes contaminated separately with 5 types of nosocomial pathogens: Pseudomonas aeruginosa (ATCC 15442), spores of Clostridium difficile (ATCC 9689), a glutaraldehyde-resistant strain of Mycobacterium chelonae, a vancomycin-resistant strain of Enterococcus faecalis, and a methicillin-resistant strain of Staphylococcus aureus. Rinse solution samples from channels and from surfaces of the processed endoscopes were tested for any microbicidal residues. For all organisms tested, the baseline level of contamination of the endoscopes ranged from 5 log(10) to greater than 7 log(10) at each external surface site and internal channel. All tests showed reductions in viability of the test organisms to undetectable levels. All rinse solution samples from external and internal sites of the endoscopes proved to be free of any residual microbicidal activity. The endoscope reprocessor, with its processor-generated high-level disinfection solution, successfully reduced the numbers of selected, clinically relevant pathogens to undetectable levels both in the channels and on the outside surfaces of the 4 representative endoscopes tested in this study.
Pereira da Silva Neves, Marta Maria; González-García, María Begoña; Pérez-Junquera, Alejandro; Hernández-Santos, David; Fanjul-Bolado, Pablo
2018-05-01
In this work, a turn-off photoluminescent sensing proof-of-concept based on blue luminescent graphene quantum dots (GQDs) as the fluorescent probe was developed. For that purpose, GQDs optical response was related with the catalytic enzymatic activity of alkaline phosphatase (ALP), in the presence of hydroquinone diphosphate (HQDP). The hydrolysis of HQDP by ALP generated hydroquinone (HQ). The oxidation of HQ, enzymatically produced, to p-benzoquinone (BQ) resulted in the quenching of GQDs fluorescence (FL). Therefore, the developed luminescent sensing mechanism allowed the FL quenching with ALP activity to be related and thus quantified the concentration of ALP down to 0.5 nM of enzyme. This innovative design principle appears as a promising tool for the development of enzymatic sensors based on ALP labeling with fluorescent detection or even for direct ALP luminescent quantification in an easy, fast and sensitive manner. Copyright © 2018 John Wiley & Sons, Ltd.
de Araujo, Anna Erika Vieira; de Souza, Natalia Plinio; de Sousa, Alvaro Paiva Braga; Lara, Flavio Alves; Senna, Jose Procopio Moreno
2018-05-01
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a worldwide health problem. In a previous study, a murine monoclonal antibody (mMAB), capable of binding to PBP2a within MRSA strains, was generated. F(ab') 2 antibody fragments are widely described in the literature as immunochemical tools and reagents for diagnostics and therapeutics, particularly because of their low immunogenicity and rapid pharmacokinetics. In this study, F(ab') 2 fragments from mMAB were generated by enzymatic digestion, using pepsin. They were purified by affinity chromatography using protein A and concentrated by a MWCO 50 kDa filtration unit. The results indicate that it is possible to obtain F(ab') 2 fragments by pepsin digestion. ELISA, western blotting, and fluorescence microscopy data demonstrated that F(ab') 2 affinity for PBP2a is not lost even after the enzymatic digestion process. As expected, in the pharmacokinetics tests, F(ab') 2 presented a faster elimination (between 12 and 18 h) compared to IgG. These F(ab') 2 fragments could be used in future immunodiagnostic applications, including in vitro or in situ radiolabeling and in the treatment of infections caused by this important pathogen.
Liang, Wenbin; Zhuo, Ying; Xiong, Chengyi; Zheng, Yingning; Chai, Yaqin; Yuan, Ruo
2017-08-15
A sensitive electrochemiluminescent (ECL) sandwich immunosensor was proposed herein based on the tris (2-phenylpyridine) iridium [Ir(ppy) 3 ] doped silica nanoparticles (SiO 2 @Ir) with improved ECL emission as signal probes and glucose oxidase (GOD)-based in situ enzymatic reaction to generate H 2 O 2 for efficiently quenching the ECL emission of SiO 2 @Ir. Typically, the SiO 2 @Ir not only increased the loading amount of Ir(ppy) 3 as ECL indicators with high ECL emission, but also improved their water-solubility, which efficiently enhanced the ECL emission. Furthermore, by the efficient quench effect of H 2 O 2 from in situ glucose oxidase (GOD)-based enzymatic reaction on the ECL emission of SiO 2 @Ir, a signal-off ECL immunsensor could be established for sensitive assay. With N-terminal of the prohormone brain natriuretic peptide (BNPT) as a model, the proposed ECL assay performed high sensitivity and low detection limit. Importantly, the proposed sensitive ECL strategy was not only suitable for the detection of BNPT for acute myocardial infarction, but also revealed a new avenue for early diagnosis of various diseases via proteins, nucleotide sequence, microRNA and cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Takeda, Shuso; Hirayama, Akari; Urata, Shino; Mano, Nobutaka; Fukagawa, Keiko; Imamura, Midori; Irii, Ayumi; Kitajima, Satomi; Masuyama, Tomoko; Nomiyama, Mai; Tatei, Sachiko; Tomita, Saari; Kudo, Taichi; Noguchi, Momoko; Yamaguchi, Yasuhiro; Okamoto, Yoshiko; Amamoto, Toshiaki; Fukunishi, Yoshifumi; Watanabe, Kazuhito; Omiecinski, Curtis John; Aramaki, Hironori
2011-01-01
15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis. Both enzymatic (15-LOX) and non-enzymatic (Cu(2+)) mechanisms have been proposed for the production of ox-LDL. We have recently reported that cannabidiol-2',6'-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation (Takeda et al., Drug Metab. Dispos., 37, 1733-1737 (2009)). In the LDL, linoleic acid is present as cholesteryl linoleate, the major fatty acid esterified to cholesterol, and is susceptible to oxidative modification by 15-LOX or Cu(2+). In this investigation, we examined the efficacy of CBDD on i) 15-LOX-catalyzed oxygenation of cholesteryl linoleate, and ii) ox-LDL formation catalyzed by 15-LOX versus Cu(2+)-mediated non-enzymatic generation of this important mediator. The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway. These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis.
Takeda, Shuso; Hirayama, Akari; Urata, Shino; Mano, Nobutaka; Fukagawa, Keiko; Imamura, Midori; Irii, Ayumi; Kitajima, Satomi; Masuyama, Tomoko; Nomiyama, Mai; Tatei, Sachiko; Tomita, Saari; Kudo, Taichi; Noguchi, Momoko; Yamaguchi, Yasuhiro; Okamoto, Yoshiko; Amamoto, Toshiaki; Fukunishi, Yoshifumi; Watanabe, Kazuhito; Omiecinski, Curtis John; Aramaki, Hironori
2014-01-01
15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis. Both enzymatic (15-LOX) and non-enzymatic (Cu2+) mechanisms have been proposed for the production of ox-LDL. We have recently reported that cannabidiol-2′,6′-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation (Takeda et al., Drug Metab. Dispos., 37, 1733–1737 (2009)). In the LDL, linoleic acid is present as cholesteryl linoleate, the major fatty acid esterified to cholesterol, and is susceptible to oxidative modification by 15-LOX or Cu2+. In this investigation, we examined the efficacy of CBDD on i) 15-LOX-catalyzed oxygenation of cholesteryl linoleate, and ii) ox-LDL formation catalyzed by 15-LOX versus Cu2+-mediated non-enzymatic generation of this important mediator. The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway. These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis. PMID:21804214
Fu, Peng; Legako, Aaron; La, Scott; MacMillan, John B
2016-03-01
Dibohemamines A-C (5-7), three new dimeric bohemamine analogues dimerized through a methylene group, were isolated from a marine-derived Streptomyces spinoverrucosus. The structures determined by spectroscopic analysis were confirmed through the semi-synthetic derivatization of monomeric bohemamines and formaldehyde. These reactions, which could occur under mild conditions, together with the detection of formaldehyde in the culture, revealed that this dimerization is a non-enzymatic process. In addition to the unique dimerization of the dibohemamines, dibohemamines B and C were found to have nm cytotoxicity against the non-small cell-lung cancer cell line A549. In view of the potent cytotoxicity of compounds 6 and 7, a small library of bohemamine analogues was generated for biological evaluation by utilizing a series of aryl and alkyl aldehydes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hadadi, Noushin; Hafner, Jasmin; Shajkofci, Adrian; Zisaki, Aikaterini; Hatzimanikatis, Vassily
2016-10-21
Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We constructed the ATLAS of Biochemistry, a database of all theoretical biochemical reactions based on known biochemical principles and compounds. ATLAS includes more than 130 000 hypothetical enzymatic reactions that connect two or more KEGG metabolites through novel enzymatic reactions that have never been reported to occur in living organisms. Moreover, ATLAS reactions integrate 42% of KEGG metabolites that are not currently present in any KEGG reaction into one or more novel enzymatic reactions. The generated repository of information is organized in a Web-based database ( http://lcsb-databases.epfl.ch/atlas/ ) that allows the user to search for all possible routes from any substrate compound to any product. The resulting pathways involve known and novel enzymatic steps that may indicate unidentified enzymatic activities and provide potential targets for protein engineering. Our approach of introducing novel biochemistry into pathway design and associated databases will be important for synthetic biology and metabolic engineering.
Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C
2013-08-01
To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Cytotoxicity of peracetic acid: evaluation of effects on metabolism, structure and cell death.
Viola, K S; Rodrigues, E M; Tanomaru-Filho, M; Carlos, I Z; Ramos, S G; Guerreiro-Tanomaru, J M; Faria, G
2017-01-30
To evaluate the cytotoxicity and the mechanism of cell aggression of peracetic acid (PA) in comparison with sodium hypochlorite (NaOCl). L929 fibroblasts were exposed to 1% PA and 2.5% NaOCl, at several dilutions for 10 min. The following parameters were evaluated: cell metabolism by methylthiazol tetrazolium assay, external morphology by scanning electron microscopy, ultrastructure by transmission electron microscopy, the cytoskeleton by means of actin and α-tubulin labelling, and the type of cell death by flow cytometry (apoptosis/necrosis). The data were analysed by two-way anova and the Bonferroni post-test (α = 0.05). The PA group had lower cell viability and a higher percentage of necrotic cells than the NaOCl group (P < 0.05). Both solutions diminished cell metabolism, led to destructuring of the cytoskeleton, created changes in the external morphology, resulted in the accumulation of proteins in the rough endoplasmic reticulum and induced cell death predominantly by necrosis. However, these changes were observed in lower doses of PA when compared with NaOCl. Although they had the same mechanism of cytotoxicity, 1% PA had greater cytotoxic potential than 2.5% NaOCl. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Suzuki, Ippei; Kubota, Hiroki; Ohtsuki, Takashi; Tatebe, Chiye; Tada, Atsuko; Yano, Takeo; Akiyama, Hiroshi; Sato, Kyoko
2016-01-01
A rapid, sensitive, and specific analytical method for the determination of 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) on uncooked foods after treatment with a peracetic acid-based sanitizer (PAS) was developed. The method involves simple sample preparation steps and analysis using ion chromatography (IC) coupled with tandem mass spectrometry (MS/MS). The quantification limits of HEDP on uncooked foods are 0.007 mg/kg for vegetables and fruits and 0.2 mg/kg for meats. The recovery and relative standard deviation (RSD) of HEDP analyses of uncooked foods ranged from 73.9 to 103.8% and 1.9 to 12.6%, respectively. The method's accuracy and precision were evaluated by inter-day recovery tests. The recovery for all samples ranged from 93.6 to 101.2%, and the within-laboratory repeatability and reproducibility were evaluated based on RSD values, which were less than 6.9 and 11.5%, respectively. Analyses of PAS-treated fruits and vegetables using the developed method indicated levels of HEDP ranging from 0.008 to 0.351 mg/kg. Therefore, the results of the present study suggest that the proposed method is an accurate, precise, and reliable way to determine residual HEDP levels on PAS-treated uncooked foods.
Lee, S H I; Cappato, L P; Corassin, C H; Cruz, A G; Oliveira, C A F
2016-03-01
This research investigated the removal of adherent cells of 4 strains of Staphylococcus aureus and 1 Listeria monocytogenes strain (previously isolated from dairy plants) from polystyrene microtiter plates using peracetic acid (PAA, 0.5%) for 15, 30, 60, and 120 s, and the inactivation of biofilms formed by those strains on stainless steel coupons using the same treatment times. In the microtiter plates, PAA removed all S. aureus at 15 s compared with control (no PAA treatment). However, L. monocytogenes biofilm was not affected by any PAA treatment. On the stainless steel surface, epifluorescence microscopy using LIVE/DEAD staining (BacLight, Molecular Probes/Thermo Fisher Scientific, Eugene, OR) showed that all strains were damaged within 15 s, with almost 100% of cells inactivated after 30 s. Results of this trial indicate that, although PAA was able to inactivate both S. aureus and L. monocytogenes monospecies biofilms on stainless steel, it was only able to remove adherent cells of S. aureus from polystyrene microplates. The correct use of PAA is critical for eliminating biofilms formed by S. aureus strains found in dairy plants, although further studies are necessary to determine the optimal PAA treatment for removing biofilms of L. monocytogenes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Günther, Klaus-Peter; Stiehler, Maik
2014-01-01
Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG. PMID:24678514
Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds
Yoganarasimha, Suyog; Trahan, William R.; Best, Al M.; Bowlin, Gary L.; Kitten, Todd O.; Moon, Peter C.
2014-01-01
Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350
Lemmer, K; Howaldt, S; Heinrich, R; Roder, A; Pauli, G; Dorner, B G; Pauly, D; Mielke, M; Schwebke, I; Grunow, R
2017-11-01
The work aimed at developing and evaluating practically relevant methods for testing of disinfectants on contaminated personal protective equipment (PPE). Carriers were prepared from PPE fabrics and contaminated with Bacillus subtilis spores. Peracetic acid (PAA) was applied as a suitable disinfectant. In method 1, the contaminated carrier was submerged in PAA solution; in method 2, the contaminated area was covered with PAA; and in method 3, PAA, preferentially combined with a surfactant, was dispersed as a thin layer. In each method, 0·5-1% PAA reduced the viability of spores by a factor of ≥6 log 10 within 3 min. The technique of the most realistic method 3 proved to be effective at low temperatures and also with a high organic load. Vaccinia virus and Adenovirus were inactivated with 0·05-0·1% PAA by up to ≥6 log 10 within 1 min. The cytotoxicity of ricin was considerably reduced by 2% PAA within 15 min of exposure. PAA/detergent mixture enabled to cover hydrophobic PPE surfaces with a thin and yet effective disinfectant layer. The test methods are objective tools for estimating the biocidal efficacy of disinfectants on hydrophobic flexible surfaces. © 2017 The Society for Applied Microbiology.
Schiavano, G F; Sisti, M; De Santi, M; Brandi, G
2006-01-01
Peracetic acid (PAA) is a disinfectant with a wide spectrum of antimicrobial activity, but little is known about the feasibility of using it in the field of drinking water treatment. The aim of this study has been assess disinfectant efficacy of PAA, alone or in combination with hypochlorite, against M. avium in drinking water M. avium is a common opportunistic pathogen in immunocompromised subjects that is able to survive and grow in drinking water distribution systems. In this study PAA did not show appreciable activity against the greater number of tested strains (16/21) up to 5 ppm of PAA, a weak activity was seen on 4 strains, while a significant reduction in viable cells (about 50%) was seen only on 1 strain after 48 h of treatment with 5 ppm of PAA. We also evidenced that M. avium was unaffected by chlorine concentration usually present in drinking water distribution system. Finally, the combination of PAA and sodium hypochlorite did not promote enhanced antimicrobial efficacy respect to the single disinfectants. In conclusion, our result would indicate that PAA is an unlikely candidate for the disinfection of drinking water from M. avium and further strategies are required to eliminate M. avium from drinking water system.
Van de Velde, Franco; Vaccari, María Celia; Piagentini, Andrea Marcela; Pirovani, María Élida
2016-09-01
The fogging of strawberries using a environmentally friendly sanitizer mixture of peracetic acid (5%) and hydrogen peroxide (20%) was performed in a model chamber and modeled as a function of the concentration (3.4, 20.0, 60.0, 100.0 and 116.6 µL sanitizer L(-) (1) air chamber) and the treatment time (5.7, 15.0, 37.5, 60.0 and 69.3 min). The sanitizer fogging was adequate for reducing total mesophilic microbial and yeasts and moulds counts of fruits until seven days of storage at 2℃. However, sanitizer oxidant properties adversely affected the content of total anthocyanins, total phenolics, vitamin C, and antioxidant capacity to various degrees, with some deleterious changes in the fruits color, depending on the fogging conditions. A multiple numeric response optimization was developed based on 2.0 log microbiological reduction, maximum phytochemicals and antioxidant capacity retentions, with no changes in the fruits color, being the optimal fogging conditions achieved: 10.1 µL sanitizer L(-1) air chamber and 29.6 min. The fogging of strawberries at these conditions may represent a promising postharvest treatment option for extending their shelf-life without affecting their sensory quality and bioactive properties. © The Author(s) 2016.
Julio, Flores R; Hilario, Terres-Peña; Mabel, Vaca M; Raymundo, López C; Arturo, Lizardi-Ramos; Ma Neftalí, Rojas-Valencia
2015-03-01
The disinfection of a continuous flow of an effluent from an advanced primary treatment (coagulation-flocculation-sedimentation) with or without posterior filtration, using either peracetic acid (PAA) or ultraviolet (UV) radiation was studied. We aimed to obtain bacteriological quality to comply with the microbiological standard established in the Mexican regulations for treated wastewater reuse (NOM-003-SEMARNAT-1997), i.e., less than 240 MPN (most probable number) FC/100 mL. The concentrations of PAA were 10, 15, and 20 mg/L, with contact times of 10, and 15 min. Fecal coliforms (FC) inactivation ranged from 0.93 up to 6.4 log units, and in all cases it reached the limits set by the mentioned regulation. Water quality influenced the PAA disinfection effectiveness. An efficiency of 91% was achieved for the unfiltered effluent, as compared to 99% when wastewater was filtered. UV radiation was applied to wastewater flows of 21, 30 and 39 L/min, with dosages from 1 to 6 mJ/cm². This treatment did not achieve the bacteriological quality required for treated wastewater reuse, since the best inactivation of FC was 1.62 log units, for a flow of 21 L/min of filtered wastewater and a UV dosage of 5.6 mJ/cm².
Kauppinen, Ari; Ikonen, Jenni; Pursiainen, Anna; Pitkänen, Tarja; Miettinen, Ilkka T
2012-09-01
A contaminated drinking water distribution network can be responsible for major outbreaks of infections. In this study, two chemical decontaminants, peracetic acid (PAA) and chlorine, were used to test how a laboratory-scale pipeline system can be cleaned after simultaneous contamination with human adenovirus 40 (AdV40) and Escherichia coli. In addition, the effect of the decontaminants on biofilms was followed as heterotrophic plate counts (HPC) and total cell counts (TCC). Real-time quantitative polymerase chain reaction (qPCR) was used to determine AdV40 and plate counting was used to enumerate E. coli. PAA and chlorine proved to be effective decontaminants since they decreased the levels of AdV40 and E. coli to below method detection limits in both water and biofilms. However, without decontamination, AdV40 remained present in the pipelines for up to 4 days. In contrast, the concentration of cultivable E. coli decreased rapidly in the control pipelines, implying that E. coli may be an inadequate indicator for the presence of viral pathogens. Biofilms responded to the decontaminants by decreased HPCs while TCC remained stable. This indicates that the mechanism of pipeline decontamination by chlorine and PAA is inactivation rather than physical removal of microbes.
Toxicity of peracetic acid (PAA) to tomonts of IIchthyophthirius multifiliis.
Meinelt, T; Matzke, S; Stübert, A; Pietrock, M; Wienke, A; Mitchell, A J; Strauss, D L
2009-09-07
The free-living infective theront of Ichthyophthirius multifiliis historically has been thought to be the only stage susceptible to treatment. Here we introduce a technique to determine the toxicity of compounds to the newly released tomont, the encysted tomont and the developing tomites within the tomont that emerge as theronts. The toxicity of Wofasteril E400 (40% peracetic acid, PAA) to free-living forms of I. multifiliis was determined shortly after tomonts were physically removed from the surface of the fish and at 2.5 and 24 h after removal. Results indicate that 0.6 to 0.9 mg l(-1) PAA killed 39 to 82% of the newly released tomonts within 48 h when treated immediately. In a second experiment, tomonts were allowed to settle for 2.5 h after sampling from the skin and then treated for 12 h; concentrations > or =0.5 mg l(-1) PAA produced significantly fewer theronts than the controls. In a third experiment, encysted tomonts that were exposed to PAA 24 h after sampling from the skin and treated for 2 or 4 h produced a variable amount of theronts, but the concentrations tested (0.5 to 3.0 mg l(-1)) did not halt theront production. This research demonstrates that encysted I. multifiliis are less susceptible to chemical treatments.
Sudová, Eliska; Straus, David L; Wienke, Andreas; Meinelt, Thomas
2010-01-01
The parasitic ciliate Ichthyophthirius multifiliis infests all species of freshwater fish and can cause severe economic losses in fish breeding. The most effective treatment, malachite green, has been banned in Europe and North America for use in food fish production. Peracetic acid (PAA) was found to be toxic to I. multifiliis theronts at low concentrations. I. multifiliis-infested carp were exposed to 1 mg/l PAA in a dynamic exposure by means of peristaltic pumps. Five days after infestation, gills, tail fins, and skin below the dorsal fin were observed microscopically for I. multifiliis abundance. After PAA exposure, PAA-treated fish showed lower infestation of I. multifiliis in all investigated tissues than the unexposed control fish. The infestation increased in the control group whereas the infestation in the PAA-exposed groups significantly decreased (p = 0.0083, Bonferroni correction). The fish in the two exposure groups showed a slight reinfestation with I. multifiliis. This might be caused by a peroxide degradation (hydrolysis) and/or reduction of the delivered PAA concentration. Thus, PAA concentrations were possibly too low to be effective on the released trophonts and/or the infective theronts. This hypothesis is corroborated by the fact that the I. multifiliis in the gills, skin, and fins of the PAA-exposed carp were in an early developmental stage.
Arias-Moliz, M T; Ordinola-Zapata, R; Baca, P; Ruiz-Linares, M; García García, E; Hungaro Duarte, M A; Monteiro Bramante, C; Ferrer-Luque, C M
2015-12-01
To evaluate the antimicrobial effect of 2.5% sodium hypochlorite alone (NaOCl) and associated with 9% HEBP (NaOCl/HEBP), 2% peracetic acid (PAA) and 2% chlorhexidine (CHX), on the viability of Enterococcus faecalis biofilms attached to dentine. Biofilms of E. faecalis were grown on the surface of dentine blocks for 5 days and then exposed to the irrigating solutions for 3 min. Distilled water was used as the control. The total biovolume and the percentage of dead cells of the infected dentine were measured by means of confocal microscopy and the live/dead technique. Nonparametric tests were used to determine statistical differences (P < 0.05). NaOCl and the NaOCl/HEBP mixture were associated with a significantly greater percentage of dead cells, followed by PAA (P < 0.05). No significant antimicrobial effect of CHX was observed in comparison with the control group. Total biovolume decreased significantly in NaOCl, NaOCl/HEBP and PAA solutions in comparison with the CHX and control groups. NaOCl alone or associated with HEBP were the most effective irrigant solutions in dissolving and killing E. faecalis biofilms. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Synthetic generation of influenza vaccine viruses for rapid response to pandemics.
Dormitzer, Philip R; Suphaphiphat, Pirada; Gibson, Daniel G; Wentworth, David E; Stockwell, Timothy B; Algire, Mikkel A; Alperovich, Nina; Barro, Mario; Brown, David M; Craig, Stewart; Dattilo, Brian M; Denisova, Evgeniya A; De Souza, Ivna; Eickmann, Markus; Dugan, Vivien G; Ferrari, Annette; Gomila, Raul C; Han, Liqun; Judge, Casey; Mane, Sarthak; Matrosovich, Mikhail; Merryman, Chuck; Palladino, Giuseppe; Palmer, Gene A; Spencer, Terika; Strecker, Thomas; Trusheim, Heidi; Uhlendorff, Jennifer; Wen, Yingxia; Yee, Anthony C; Zaveri, Jayshree; Zhou, Bin; Becker, Stephan; Donabedian, Armen; Mason, Peter W; Glass, John I; Rappuoli, Rino; Venter, J Craig
2013-05-15
During the 2009 H1N1 influenza pandemic, vaccines for the virus became available in large quantities only after human infections peaked. To accelerate vaccine availability for future pandemics, we developed a synthetic approach that very rapidly generated vaccine viruses from sequence data. Beginning with hemagglutinin (HA) and neuraminidase (NA) gene sequences, we combined an enzymatic, cell-free gene assembly technique with enzymatic error correction to allow rapid, accurate gene synthesis. We then used these synthetic HA and NA genes to transfect Madin-Darby canine kidney (MDCK) cells that were qualified for vaccine manufacture with viral RNA expression constructs encoding HA and NA and plasmid DNAs encoding viral backbone genes. Viruses for use in vaccines were rescued from these MDCK cells. We performed this rescue with improved vaccine virus backbones, increasing the yield of the essential vaccine antigen, HA. Generation of synthetic vaccine seeds, together with more efficient vaccine release assays, would accelerate responses to influenza pandemics through a system of instantaneous electronic data exchange followed by real-time, geographically dispersed vaccine production.
A Cell surface β-Hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma
Aihara, Arihiro; Huang, Chiung-Kuei; Olsen, Mark J.; Lin, Qiushi; Chung, Waihong; Tang, Qi; Dong, Xiaoqun; Wands, Jack R.
2014-01-01
Hepatocellular carcinoma (HCC) has a poor prognosis due to widespread intrahepatic and extrahepatic metastases. There is an urgent need to understand signaling cascades that promote disease progression. Aspartyl-(Asparaginyl)-β-hydroxylase (ASPH) is a cell surface enzyme that generates enhanced cell motility, migration, invasion and metastatic spread in HCC. We hypothesize that inhibition of its enzymatic activity could have antitumor effects. Small molecule inhibitors (SMIs) were developed based on the crystal structure of the ASPH catalytic site followed by computer assisted drug design. Candidate compounds were tested for inhibition of β-hydroxylase activity and selected for their capability to modulate cell proliferation, migration, invasion and colony formation in vitro and to inhibit HCC tumor growth in vivo using orthotopic and subcutaneous murine models. The biologic effects of SMIs on the Notch signaling cascade were evaluated. The SMI inhibitor MO-I-1100 was selected since it reduced ASPH enzymatic activity by 80% and suppressed HCC cell migration, invasion and anchorage independent growth. Furthermore, substantial inhibition of HCC tumor growth and progression was observed in both animal models. The mechanism(s) for this antitumor effect was associated with reduced activation of Notch signaling both in vitro and in vivo. Conclusions These studies suggest that the enzymatic activity of ASPH was important for hepatic oncogenesis. Reduced β-hydroxylase activity generated by the SMI MO-I-1100 led to antitumor effects through inhibiting Notch signaling cascade in HCC. ASPH promotes the generation of an HCC malignant phenotype and represents an attractive molecular target for therapy of this fatal disease. PMID:24954865
Nazima, B; Manoharan, V; Miltonprabu, S
2016-04-01
The present study has been designed to investigate the ameliorative effect of grape seed proanthocyanidins (GSP) on cadmium (Cd)-induced oxidative damage in rat erythrocytes. Twenty four male Wistar rats were divided into four groups: control, GSP-treated group (100 mg kg(-1) body weight (BW)), Cd-treated group (cadmium chloride, 5 mg kg(-1) BW), and GSP + Cd-treated group in which GSP was orally pre-administered 90 min before Cd intoxication for 4 weeks. At the end of the experimental period, blood samples were collected by cardiac puncture and were processed for various biochemical estimations. The extent of oxidative damage in isolated rat erythrocyte membrane was assessed by measuring lipid peroxidation, enzymatic and non-enzymatic content, calcium ion (Ca(2+))/magnesium ion (Mg(2+))-ATPase and sodium ion (Na(+))/potassium ion (K(+))-ATPase activities, free iron, calcium, hydrogen peroxide (H2O2) concentration, and osmotic fragility. Our results unveiled that Cd intoxication significantly increased the erythrocyte lipid peroxidation markers and decreased the activity of enzymatic and non-enzymatic markers in erythrocytes. Conversely, GSP pretreatment significantly prevented the decrease in the activities of antioxidant enzymes and membrane-bound ATPases. GSP also restored the levels of iron, calcium, and H2O2 in Cd-treated rats. Conformational changes in erythrocytes of various groups were also determined using morphological and ultrastructural electron microscopic analysis. The findings of our study clearly revealed that GSP affords superior protection against Cd-induced reactive oxygen species generation, lipid peroxidation, and free radical generation in Cd-treated rats, which presumably reflects the ability of this flavonoid to protect erythrocytes and lymphocytes of rats from the toxic effects of Cd. © The Author(s) 2015.
Cultured astrocytes do not release adenosine during hypoxic conditions
Fujita, Takumi; Williams, Erika K; Jensen, Tina K; Smith, Nathan A; Takano, Takahiro; Tieu, Kim; Nedergaard, Maiken
2012-01-01
Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine from cultured astrocytes. Similar results were obtained using a chemiluminescent enzymatic assay. Moreover, since the chemiluminescent enzymatic assay relies on hydrogen peroxide generation, release of free-radical scavengers from hypoxic cells can interfere with the assay. Accordingly, adenosine added to samples collected from hypoxic cultures could not be detected using the chemiluminescent enzymatic assay. Furthermore, addition of free-radical scavengers sharply reduced the sensitivity of adenosine detection. Conversely, use of a single-step assay inflated measured values due to the inability of the assay to distinguish adenosine and its metabolite inosine. These results show that cultured astrocytes do not release adenosine during mild hypoxia, an observation consistent with their high resistance to hypoxia. PMID:21989480
A scalable lysyl hydroxylase 2 expression system and luciferase-based enzymatic activity assay
Guo, Hou-Fu; Cho, Eun Jeong; Devkota, Ashwini K.; Chen, Yulong; Russell, William; Phillips, George N.; Yamauchi, Mitsuo; Dalby, Kevin; Kurie, Jonathan M.
2017-01-01
Hydroxylysine aldehyde-derived collagen cross-links (HLCCs) accumulate in fibrotic tissues and certain types of cancer and are thought to drive the progression of these diseases. HLCC formation is initiated by lysyl hydroxylase 2 (LH2), an Fe(II) and α-ketoglutarate (αKG)-dependent oxygenase that hydroxylates telopeptidyl lysine residues on collagen. Development of LH2 antagonists for the treatment of these diseases will require a reliable source of recombinant LH2 protein and a non-radioactive LH2 enzymatic activity assay that is amenable to high throughput screens of small molecule libraries. However, LH2 protein generated previously using E coli– or insect-based expression systems was either insoluble or enzymatically unstable, and LH2 enzymatic activity assays have measured radioactive CO2 released from 14C-labeled αKG during its conversion to succinate. To address these deficiencies, we have developed a scalable process to purify human LH2 protein from Chinese hamster ovary cell-derived conditioned media samples and a luciferase-based assay that quantifies LH2-dependent conversion of αKG to succinate. These methodologies may be applicable to other Fe(II) and αKG-dependent oxygenase systems. PMID:28216326
Hasegawa, Ryoichi; Kurosawa, Kanako; Maeda, Allyn H.; Koizumi, Toshio; Nishimura, Hiroshi; Okada, Hitomi; Qu, Chen; Saito, Kaori; Watanabe, Takashi; Hatada, Yuji
2016-01-01
Abstract Enzymatic catalysis is an ecofriendly strategy for the production of high‐value low‐molecular‐weight aromatic compounds from lignin. Although well‐definable aromatic monomers have been obtained from synthetic lignin‐model dimers, enzymatic‐selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of β‐O‐4‐cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate‐binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio‐based industries, we chemically generate value‐added GHP derivatives for bio‐based polymers. Together with these chemical conversions for the valorization of lignin‐derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in “white biotechnology” for sustainable biorefineries. PMID:27878983
Lyu, Jian; Liu, Xuan; Bi, Jinfeng; Wu, Xinye; Zhou, Linyan; Ruan, Weihong; Zhou, Mo; Jiao, Yi
2018-03-01
Kinetics of non-enzymatic browning and loss of free amino acids during different storage temperature (4, 25, 37 °C) were investigated. Changes of browning degree ( A 420 ), color parameters, Vitamin C ( V c ), free amino acids and 5-hydroxymethylfurfural (5-HMF) were analyzed to evaluate the non-enzymatic browning reactions, which were significantly affected by storage temperature. The lower temperature (4 °C) decreased the loss of V c and the generation of 5-HMF, but induce the highest loss of serine. At the end of storage, loss of serine, alanine and aspartic acid were mainly lost. Results showed that zero-order kinetic model ( R 2 > 0.859), the first-order model ( R 2 > 0.926) and the combined kinetic model ( R 2 > 0.916) were the most appropriate to describe the changes of a * and b * values, the degradation of V c and the changes of A 420 , L * and 5-HMF during different storage temperatures. These kinetic models can be applied for predicting and minimizing the non-enzymatic browning of fresh peach juice during storage.
Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes
USDA-ARS?s Scientific Manuscript database
Second generation feedstock, especially nonfood lignocellulosic biomass, has been seen as a potential source for biofuel production. Cost intensive pretreatment operations, including physical, chemical, biological, and slow enzymatic hydrolysis, make the overall process of lignocellulosic conversio...
A colorimetric sensor array for detection of triacetone triperoxide vapor.
Lin, Hengwei; Suslick, Kenneth S
2010-11-10
Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).
Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening
Lane, Andrew B.; Strzelecka, Magdalena; Ettinger, Andreas; Grenfell, Andrew W.; Wittmann, Torsten; Heald, Rebecca
2015-01-01
Summary CRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency. PMID:26212133
Enzymatic added extraction and clarification of fruit juices-A review.
Sharma, Harsh P; Patel, Hiral; Sugandha
2017-04-13
Enzymatic treatment for juice extraction is most commonly used now a days. The enzymatic process is claimed to offer a number of advantages over mechanical-thermal comminution of several fruit pulps. Enzymes are an integral component of modern fruit juice manufacturing and are highly suitable for optimizing processes. Their main purposes are: increase extraction of juice from raw material, increase processing efficiency (pressing, solid settling or removal), and generate a final product that is clear and visually attractive. Juice extraction can be done by using various mechanical processes, which may be achieved through diffusion extraction, decanter centrifuge, screw type juice extractor, fruit pulper and by different types of presses. Enzymatic treatment prior to mechanical extraction significantly improves juice recovery compared to any other extraction process. Enzymatic hydrolysis of the cell walls increases the extraction yield, reducing sugars, soluble dry matter content and galacturonic acid content and titrable acidity of the products. Enzymatic degradation of the biomaterial depends upon the type of enzyme, incubation time, incubation temperature, enzyme concentration, agitation, pH and use of different enzyme combinations. We can conclude from the technical literature that use of the enzymes i.e. cellulases, pectinases, amylases and combination of these enzymes can give better juice yield with superior quality of the fruit juice. Pectinase enzyme can give maximum juice yield i.e. 92.4% at 360 minutes incubation time, 37°C incubation temperature and 5 mg/100 g of enzyme concentration. Whereas the combination of two enzymes i.e. pectin methyl esterase (PME) and polygalacturonase (PG) at 120 minutes of incubation time, 50°C of incubation temperature and 0.05 mg/100 gm of enzymatic concentration can give the maximum yield of 96.8% for plum fruits. This paper discusses the use of enzymes in fruit juice production focusing on the juice recovery, clarity and effect of the particular enzyme on the biochemical properties of the fruit juices.
Mycotoxins: A fungal genomics perspective
USDA-ARS?s Scientific Manuscript database
The chemical and enzymatic diversity in the fungal kingdom is staggering. Large-scale fungal genome sequencing projects are generating a massive catalog of secondary metabolite biosynthetic genes and pathways. Fungal natural products are a boon and bane to man as valuable pharmaceuticals and harmful...
Pirota, Rosangela D P B; Baleeiro, Flávio C F; Farinas, Cristiane S
2013-01-01
The enzymatic hydrolysis of steam-exploded sugarcane bagasse (SESB) was investigated using enzymatic extracts (EE) and whole fermentation media (WM), produced in-house, from Aspergillus niger 3T5B8 and Trichoderma reesei Rut-C30 cultivated on wheat bran under solid-state fermentation (SSF). A detailed and quantitative comparison of the different hydrolysis conditions tested was carried out using the Chrastil approach for modeling enzymatic reactions by fitting the experimental data of total reducing sugar (TRS) released according to hydrolysis time. Conversion of SESB using A. niger enzymatic complex were up to 3.2-fold higher (in terms of TRS) than T. reesei at similar enzyme loadings, which could be correlated to the higher β-glucosidase levels (up to 35-fold higher) of A. niger enzymatic complex. Conversion yields after 72 h exceeded 40% in terms of TRS when the WM was supplemented with a low dosage of a commercial enzyme preparation. When the combination of WM (from either T. reesei or A. niger) and commercial cellulase was used, the dosage of the commercial enzyme could be reduced by half, while still providing a hydrolysis that was up to 36% more efficient. Furthermore, SESB hydrolysis using either EE or WM resulted in similar yields, indicating that the enzyme extraction/filtration steps could be eliminated from the overall process. This procedure is highly advantageous in terms of reduced enzyme and process costs, and also avoids the generation of unnecessary effluent streams. Thus, the enzymatic conversion of SESB using the WM from SSF is cost-effective and compatible with the biorefinery concept. © 2013 American Institute of Chemical Engineers.
Jiang, Yu; Tao, Rongsheng; Shen, Zhengquan; Sun, Liangdong; Zhu, Fuyun; Yang, Sheng
2016-12-01
Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) is a pharmaceutical compound often used in food additives and the cosmetics industry. GSH can be produced biologically from L-glutamic acid, L-cysteine, and glycine through an enzymatic process traditionally involving two sequential adenosine triphosphate (ATP)-dependent reactions catalyzed by γ-glutamylcysteine synthetase (γ-GCS or GSHI, EC 6.3.2.2) and GSH synthetase (GS or GSHII, EC 6.3.2.3). Here, we report the enzymatic production of GSH by recombinant cell-free bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (γ-GCS-GS or GshF) coupled with in vitro acetate kinase-based ATP generation. GSH production by an acetate kinase-integrated Escherichia coli Rosetta(DE3) mutant expressing Streptococcus thermophilus GshF reached 18.3 ± 0.1 g l -1 (59.5 ± 0.3 mM) within 3 h, with a molar yield of 0.75 ± 0.00 mol mol -1 added cysteine and a productivity of 6.1 ± 0.0 g l -1 h -1 . This is the highest GSH titer reported to date. This newly developed biocatalytic process offers a promising approach for meeting the industrial requirements for GSH production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Ceccanti, Stefano; Giampieri, Simona; Burgalassi, Susi
2011-01-01
The aim of the present investigation was to evaluate the microbial efficacy against highly resistant bacterial spores on different substrates using the lowest effective concentration of a market liquid sporicide based on peracetic acid. The validation was carried out following modified European regulatory agencies procedures or test methods and USP guidelines, employing carriers of materials usually treated with the sporicidal solution and present in grade A cleanrooms and spores of four different microorganisms: Bacillus subtilis and Clostridium sporogenes, both from the ATCC collection, and Bacillus cereus and Bacillus sphaericus as environmental isolates. A statistical evaluation of data was made to estimate the variance for different study conditions. The experiments highlighted that 70% suitable dilution of the ready-to-use peracetic acid solution was effective in both clean and dirty conditions, showing at least 2 log spore reduction after treatment. To obtain effective sporicidal action on the surfaces in cleanrooms it is sufficient to use a sporicidal solution with a ready-to-use concentration of 70% while ensuring a contact time of 10 min. In any case, the reduction of sporicide concentration ensures a high degree of disinfection and provides a consumption savings. Wide-spectrum disinfectants are used in the pharmaceutical industry for the decontamination of work surfaces and equipment, but these products have some degree of toxicity for operators. This work arises from the needs of pharmaceutical companies to find the lowest effective concentration of sanitizers in order to reduce toxicity to personnel. The sanitizer used in the study was a market liquid sporicide based on peracetic acid. When we started our work no similar studies were reported in the literature, so we took European regulatory agencies and USP guidelines as a starting point, employing carriers of hard, non-porous materials usually treated with the sporicidal solution and present in sterile rooms and spores of four different microorganisms. The experiments highlighted that it is sufficient to use a 70% sporicidal solution concentration with a contact time of 10 min to reduce the number of spores to acceptable values for medicinal production. The reduction of sporicide concentration both ensures a high degree of disinfection and provides a safer working environment and consumption savings.
Mazzola, Priscila G; Martins, Alzira MS; Penna, Thereza CV
2006-01-01
Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10). PMID:16914053
Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation.
Wang, Wen; Chen, Xiaoyan; Tan, Xuesong; Wang, Qiong; Liu, Yunyun; He, Minchao; Yu, Qiang; Qi, Wei; Luo, Yu; Zhuang, Xinshu; Yuan, Zhenhong
2017-03-01
The black liquor (BL) generated in the alkaline pretreatment process is usually thought as the environmental pollutant. This study found that the pure alkaline lignin hardly inhibited the enzymatic hydrolysis of cellulose (EHC), which led to the investigation on the feasibility of reusing BL as the buffer via pH adjustment for the subsequent enzymatic hydrolysis and fermentation. The pH value of BL was adjusted from 13.23 to 4.80 with acetic acid, and the alkaline lignin was partially precipitated. It deposited on the surface of cellulose and negatively influenced the EHC via blocking the access of cellulase to cellulose and adsorbing cellulase. The supernatant separated from the acidified BL scarcely affected the EHC, but inhibited the ethanol fermentation. The 4-times diluted supernatant and the last-time waste wash water of the alkali-treated sugarcane bagasse didn't inhibit the EHC and ethanol production. This work gives a clue of saving water for alkaline pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Castoldi, Rafael; Correa, Vanesa G; de Morais, Gutierrez Rodrigues; de Souza, Cristina G M; Bracht, Adelar; Peralta, Rosely A; Peralta-Muniz Moreira, Regina F; Peralta, Rosane M
2017-01-01
In this work, liquid nitrogen was used for the first time in the pretreatment of plant biomasses for purposes of enzymatic saccharification. After treatment (cryocrushing), the initial rates of the enzymatic hydrolysis of eucalyptus sawdust and rice hull were increased more than ten-fold. Cryocrushing did not modify significantly the contents of cellulose, hemicellulose and lignin in both eucalyptus sawdust and rice hulls. However, substantial disorganization of the lignocellulosic materials in consequence of the pretreatment could be observed by electron microscopy. Cryocrushing was highly efficient in improving the saccharification of the holocellulose component of the plant biomasses (from 4.3% to 54.1% for eucalyptus sawdust and from 3.9% to 40.6% for rice hull). It is important to emphasize that it consists in a simple operation with low requirements of water and chemicals, no corrosion, no release of products such as soluble phenolics, furfural and hydroxymethylfurfural and no waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Second-generation ethanol production from elephant grass at high total solids.
Menegol, Daiane; Fontana, Roselei Claudete; Dillon, Aldo José Pinheiro; Camassola, Marli
2016-07-01
The enzymatic hydrolysis of Pennisetum purpureum (elephant grass) was evaluated at high total solid levels (from 4% to 20% (w/v)) in a concomitant ball milling treatment in a rotating hydrolysis reactor (RHR). The greatest glucose yield was 20.17% when 4% (w/v) untreated biomass was employed. When sugars obtained from enzymatic hydrolysis were submitted to fermentation with Saccharomyces cerevisiae, the greatest ethanol yield was 22.61% when 4% (w/v) untreated biomass was employed; however, the highest glucose concentration (12.47g/L) was obtaining using 20% (w/v) solids and highest ethanol concentration (6.1g/L) was obtained using 16% (w/v) solids. When elephant grass was hydrolyzed in the rotating hydrolysis reactor, ethanol production was about double that was produced when the biomass was hydrolyzed in a static reactor (SR). These data indicate that it is possible to produce ethanol from elephant grass when milling treatment and enzymatic hydrolysis are performed at the same time. Copyright © 2016. Published by Elsevier Ltd.
Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S
2011-04-15
New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.
Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R
2016-01-01
Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prunescu, Remus Mihail; Sin, Gürkan
2013-12-01
The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process on a demonstration scale reactor. The following novel features are included: the application of the Convection-Diffusion-Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable tool to support process optimization, performance monitoring, diagnosis and process control at full-scale studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Excited singlet molecular O2 (1Δg) is generated enzymatically from excited carbonyls in the dark
Mano, Camila M.; Prado, Fernanda M.; Massari, Júlio; Ronsein, Graziella E.; Martinez, Glaucia R.; Miyamoto, Sayuri; Cadet, Jean; Sies, Helmut; Medeiros, Marisa H. G.; Bechara, Etelvino J. H.; Di Mascio, Paolo
2014-01-01
In mammalian tissues, ultraweak chemiluminescence arising from biomolecule oxidation has been attributed to the radiative deactivation of singlet molecular oxygen [O2 (1Δg)] and electronically excited triplet carbonyl products involving dioxetane intermediates. Herein, we describe evidence of the generation of O2 (1Δg) in aqueous solution via energy transfer from excited triplet acetone. This involves thermolysis of 3,3,4,4-tetramethyl-1,2-dioxetane, a chemical source, and horseradish peroxidase-catalyzed oxidation of 2-methylpropanal, as an enzymatic source. Both sources of excited carbonyls showed characteristic light emission at 1,270 nm, directly indicative of the monomolecular decay of O2 (1Δg). Indirect analysis of O2 (1Δg) by electron paramagnetic resonance using the chemical trap 2,2,6,6-tetramethylpiperidine showed the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl. Using [18O]-labeled triplet, ground state molecular oxygen [18O2 (3Σg-)], chemical trapping of 18O2 (1Δg) with disodium salt of anthracene-9,10-diyldiethane-2,1-diyl disulfate yielding the corresponding double-[18O]-labeled 9,10-endoperoxide, was detected through mass spectrometry. This corroborates formation of O2 (1Δg). Altogether, photoemission and chemical trapping studies clearly demonstrate that chemically and enzymatically nascent excited carbonyl generates 18O2 (1Δg) by triplet-triplet energy transfer to ground state oxygen O2 (3Σg−), and supports the long formulated hypothesis of O2 (1Δg) involvement in physiological and pathophysiological events that might take place in tissues in the absence of light. PMID:25087485
Zapata-Linares, Natalia; Rodriguez, Saray; Mazo, Manuel; Abizanda, Gloria; Andreu, Enrique J; Barajas, Miguel; Prosper, Felipe; Rodriguez-Madoz, Juan R
2016-01-01
In this work, mesenchymal stem cells derived from adipose tissue (ADSCs) were used for the generation of the human-induced pluripotent stem cell line G15.AO. Cell reprogramming was performed using retroviral vectors containing the Yamanaka factors, and the generated G15.AO hiPSC line showed normal karyotype, silencing of the exogenous reprogramming factors, induction of the typical pluripotency-associated markers, alkaline phosphatase enzymatic activity, and in vivo and in vitro differentiation ability to the three germ layers. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
1999-10-01
under pressure, dry heat, ethylene oxide gas, and liquid chemicals such as peracetic acid. Disinfection. A process that eliminates many or all...Laryngoscope Blade. Portion of the laryngoscope that is inserted into the patient s mouth . Blades vary in size and can be curved (Macintosh) or straight...established SOP s by units such as the Medical/Surgical ICU staff most likely explains the reduced overall prevalence of occult blood. Recommendations
Assaying the Stability and Inactivation of AAV Serotype 1 Vectors
Howard, Douglas B.; Harvey, Brandon K.
2017-01-01
Adeno-associated virus (AAV) vectors are a commonplace tool for gene delivery ranging from cell culture to human gene therapy. One feature that makes AAV a desirable vector is its stability, in regard to both the duration of transgene expression and retention of infectivity as a viral particle. This study examined the stability of AAV serotype 1 (AAV1) vectors under different conditions. First, transducibility after storage at 4°C decreased 20% over 7 weeks. Over 10 freeze–thaw cycles, the resulting transduction efficiency became variable at 60–120% of a single thaw. Using small stainless steel slugs to mimic a biosafety cabinet or metal lab bench surface, it was found that an AAV1 vector can be reconstituted after 6 days of storage at room temperature. The stability of AAV is a desired feature, but effective decontamination procedures must be available for safety and experimental integrity. Multiple disinfectants commonly used in the laboratory for ability to inactivate an AAV1 vector were tested, and it was found that autoclaving, 0.25% peracetic acid, iodine, or 10% Clorox bleach completely prevented AAV-mediated transgene expression. These data suggest that peracetic acid should be used for inactivating AAV1 vectors on metal-based surfaces or instruments in order to avoid inadvertent transgene expression in human cells or cross-contamination of instruments. PMID:28192678
Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves
2016-02-15
There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. Copyright © 2016 Leggett et al.
Sudhaus, Nadine; Pina-Pérez, Maria Consuelo; Martínez, Antonio; Klein, Günter
2012-05-01
The purpose of this study was to assess the effect of a commercial peracetic acid-based disinfectant against spores of Bacillus cereus, to identify the most influential factor for the final number of microorganisms after different disinfection procedures, and to evaluate the nature of the inactivation kinetics. The spores of four different strains of B. cereus (DSM 318, 4312, 4313, and 4384) were treated with five different disinfectant concentrations (0.25%, 0.5%, 1.0%, 1.5%, and 2.0% [w/v]) at three different temperatures (10°C, 15°C, and 20°C) with or without protein load. A higher temperature and PES 15/23 concentration resulted in a higher inactivation. Inactivation of B. cereus strain 4312 was around 2 log₁₀ cycles at 10°C and around 7 log₁₀ at 20°C (conc=1% [w/v] PAA; t=60 min; without protein). The protein load at higher concentrations did not significantly reduce the efficacy of the disinfectant (p>0.05). This article indicates the applicability of the Weibull model to fit the B. cereus disinfectant survival curves. A Monte Carlo simulation was used to carry out a sensitivity analysis, which revealed the most influential factors affecting the final number of microorganisms after the disinfection process.
Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung
2014-03-01
The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.
Trujillo, J; Barrios, J A; Jimenez, B
2008-01-01
Water supply for human consumption requires certain quality that reduces health risks to consumers. In this sense, the process of disinfection plays an important role in the elimination of pathogenic microorganisms. Even though chlorination is the most applied process based on its effectiveness and cost, its application is being questioned considering the formation of disinfection by-products (DBPs). Therefore, alternative disinfectants are being evaluated and some treatment processes have been proposed to remove DBPs precursors (organic matter. This paper reports the results of disinfection of a non conventional source of water (aquifer recharged unintentionally with raw wastewater) with peracetic acid (PAA) and ultraviolet radiation (UV) as well as nanofiltration (NF) followed by chlorination to produce safe drinking water. The results showed that a dose of 2 mg/L PAA was needed to eliminate total and faecal coliforms. For UV light, a dose of 12.40 mWs/cm2 reduced total and faecal coliforms below the detection limit. On the other hand, chlorine demand of water before NF was 1.1-1.3 mg/L with a trihalomethane formation potential (THMFP) of 118.62 microg/L, in contrast with chlorination after NF where the demand was 0.5 mg/L and THMFP of 17.64 microg/L. The recommended scheme is nanofiltration + chlorination.
In-Use Evaluation of Peracetic Acid for High-Level Disinfection of Endoscopes.
Chenjiao, Wu; Hongyan, Zhang; Qing, Gu; Xiaoqi, Zhong; Liying, Gu; Ying, Fang
2016-01-01
Many high-level disinfectants have been used for disinfection of endoscopes such as 2% glutaraldehyde (GA), 0.55% ortho-phthalaldehyde (OPA), and peracetic acid (PAA). Both GA and OPA are widely used in disinfection of endoscopes and have been previously discussed, but there is little research on the practical use of PAA as an endoscope disinfectant. An experimental model of a flexible gastrointestinal endoscope being contaminated with 9 strains of microorganism was designed. After the cleaning and disinfecting procedure was completed, we evaluated the biocidal activity (850 ppm PAA, 2% GA, and 0.55% OPA) on our flexible gastrointestinal endoscope model. We also evaluated sterilization effectiveness of PAA on other bacteria, including some antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile). The residual bacterial colony count number of the PAA-disinfected endoscope was significantly lower than that of the GA- and OPA-disinfected endoscopes. The biocidal effect and efficiency of the endoscope disinfection by PAA appeared to be better than either the GA- or OPA-disinfected endoscope. PAA has demonstrated a good sterilization effect on other bacterial species; of particular note are common antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile. The results of this study demonstrate that PAA is a fast and effective high-level disinfectant for use in the reprocessing of flexible endoscopes.
Dunkin, Nathan; Weng, ShihChi; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G
2017-03-07
Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log 10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log 10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.
Turolla, Andrea; Sabatino, Raffaella; Fontaneto, Diego; Eckert, Ester M; Colinas, Noemi; Corno, Gianluca; Citterio, Barbara; Biavasco, Francesca; Antonelli, Manuela; Mauro, Alessandro; Mangiaterra, Gianmarco; Di Cesare, Andrea
2017-10-01
Peracetic acid (PAA) is an organic compound used efficiently as disinfectant in wastewater treatments. Yet, at low doses it may cause selection; thus, the effect of low doses of PAA on Enterococcus faecium as a proxy of human-related microbial waste was evaluated. Bacteria were treated with increasing doses of PAA (from 0 to 25 mg L -1 min) and incubated in regrowth experiments under non-growing, limiting conditions and under growing, favorable conditions. The changes in bacterial abundance, in bacterial phenotype (number and composition of small cell clusters), and in the abundance of an antibiotic resistance gene (ARG) was evaluated. The experiment demonstrated that the selected doses of PAA efficiently removed enterococci, and induced a long-lasting effect after PAA inactivation. The relative abundance of small clusters increased during the experiment when compared with that of the inoculum. Moreover, under growing favorable conditions the relative abundance of small clusters decreased and the number of cells per cluster increased with increasing PAA doses. A strong stability of the measured ARG was found, not showing any effect during the whole experiment. The results demonstrated the feasibility of low doses of PAA to inactivate bacteria. However, the stress induced by PAA disinfection promoted a bacterial adaptation, even if potentially without affecting the abundance of the ARG. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis.
Muniesa, A; Escobar-Dodero, J; Silva, N; Henríquez, P; Bustos, P; Perez, A M; Mardones, F O
2018-03-08
This short communication investigated in vitro differences between commercial disinfectants types (n = 36), doses of application, and time of action in the elimination of Piscirickettsia salmonis, the most important bacterium affecting farmed salmon in Chile. Seven different treatments were examined, including active and inactive chlorine dioxides, glutaraldehyde, hypochlorite disinfectants and detergents, peracetic acid, peroxides and other miscellaneous methods A 3 replicate set of each of the sample groups was stored at 20 °C and 95% relative humidity and retested after 1, 5 and 30 min with varying doses (low, recommended and high doses). Multiple comparison tests were performed for the mean log CFU/ml among different disinfectant types, dose (ppm) and time of exposure (minutes) on the reduction of P. salmonis. Overall, disinfection using peracetic acid, peroxides, and both active and inactive chlorine dioxides caused significantly higher reduction of >7.5 log CFU/ml in samples, compared to other tested sanitizers. The lowest reduction was obtained after disinfection with hypochlorite detergents. As expected, as doses and time of action increase, there was a significant reduction of the overall counts of P. salmonis. However, at lowest doses, only use of paracetic acids resulted in zero counts. Implementation of effective protocols, making use of adequate disinfectants, may enhance biosecurity, and ultimately, mitigate the impact of P. salmonis in farmed salmon. Copyright © 2018. Published by Elsevier B.V.
Leggett, Mark J.; Schwarz, J. Spencer; Burke, Peter A.; McDonnell, Gerald; Denyer, Stephen P.
2015-01-01
There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. PMID:26637595
Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures
de la Fuente, Ildefonso Martínez
2010-01-01
One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111
Sista, Ramakrishna S; Wang, Tong; Wu, Ning; Graham, Carrie; Eckhardt, Allen; Winger, Theodore; Srinivasan, Vijay; Bali, Deeksha; Millington, David S; Pamula, Vamsee K
2013-09-23
New therapies for lysosomal storage diseases (LSDs) have generated interest in screening newborns for these conditions. We present performance validation data on a digital microfluidic platform that performs multiplex enzymatic assays for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases. We developed an investigational disposable digital microfluidic cartridge that uses a single dried blood spot (DBS) punch for performing a 5-plex fluorometric enzymatic assay on up to 44 DBS samples. Precision and linearity of the assays were determined by analyzing quality control DBS samples; clinical performance was determined by analyzing 600 presumed normal and known affected samples (12 for Pompe, 7 for Fabry and 10 each for Hunter, Gaucher and Hurler). Overall coefficient of variation (CV) values between cartridges, days, instruments, and operators ranged from 2 to 21%; linearity correlation coefficients were ≥0.98 for all assays. The multiplex enzymatic assay performed from a single DBS punch was able to discriminate presumed normal from known affected samples for 5 LSDs. Digital microfluidic technology shows potential for rapid, high-throughput screening for 5 LSDs in a newborn screening laboratory environment. Sample preparation to enzymatic activity on each cartridge is less than 3h. Copyright © 2013 Elsevier B.V. All rights reserved.
The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice
NASA Astrophysics Data System (ADS)
Lee, Ju-Woon; Oh, Sang-Hee; Kim, Jae-Hun; Byun, Eui-Hong; Ree Kim, Mee; Baek, Min; Byun, Myung-Woo
2007-05-01
The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring.
Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices.
Arakawa, Takahiro; Xie, Rui; Seshima, Fumiya; Toma, Koji; Mitsubayashi, Kohji
2018-04-30
Powering future generations of medical and health care devices mandates the transcutaneous transfer of energy or harvesting energy from the human body fluid. Glucose-driven bio fuel cells (bio-batteries) demonstrate promise as they produce electrical energy from glucose, which is a substrate presents in physiological fluids. Enzymatic biofuel cells can convert chemical energy into electrical energy using enzymes as catalysts. In this study, an air bio-battery was developed for healthcare and medical applications, consisting of a glucose-driven enzymatic biofuel cell using a direct gas-permeable membrane or a gas/liquid porous diaphragm. The power generation characteristics included a maximum current density of 285μA/cm 2 and maximum power density of 70.7μW/cm 2 in the presence of 5mmol/L of glucose in solution. In addition, high-performance, long-term-stabilized power generation was achieved using the gas/liquid porous diaphragm for the reactions between oxygen and enzyme. This system can be powered using 5mmol/L of glucose, the value of which is similar to that of the blood sugar range in humans. Copyright © 2017 Elsevier B.V. All rights reserved.
Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening.
Lane, Andrew B; Strzelecka, Magdalena; Ettinger, Andreas; Grenfell, Andrew W; Wittmann, Torsten; Heald, Rebecca
2015-08-10
CRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency. Copyright © 2015 Elsevier Inc. All rights reserved.
Gao, Jing; Chen, Li; Zhang, Jian; Yan, Zongcheng
2014-11-01
A comprehensive research on plasma electrolysis as pretreatment method for water hyacinth (WH) was performed based on lignin content, crystalline structure, surface property, and enzymatic hydrolysis. A large number of active particles, such as HO and H2O2, generated by plasma electrolysis could decompose the lignin of the biomass samples and reduce the crystalline index. An efficient pretreatment process made use of WH pretreated at a load of 48 wt% (0.15-0.18 mm) in FeCl3 solution for 30 min at 450 V. After the pretreatment, the sugar yield of WH was increased by 126.5% as compared with unpretreated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Putzbach, William; Ronkainen, Niina J.
2013-01-01
The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene. PMID:23580051
Scullin, Chessa; Cruz, Alejandro G.; Chuang, Yi -De; ...
2015-07-04
Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype.
Reactions of inorganic free radicals with liver protecting drugs
NASA Astrophysics Data System (ADS)
György, I.; Blázovics, A.; Fehér, J.; Földiák, G.
Liver protecting drugs, silibinin, a flavonolignane, and the dihydroquinoline derivates, CH 402 and MTDQ-DA, were shown to inhibit processes in which enzymatically or non-enzymatically generated free radicals were involved. Inorganic free radicals (N 3, (SCN) -2, OH, Trp, CO -2, O -2) produced by pulse radiolysis readily react with the compounds, which transform into exceptionally long-lived, unreactive transients. Time evolution of the UV and visible spectra indicate that oxidising radicals form a phenoxyl type radical from silibinin, while OH forms an adduct by attacking, simultaneously, at various sites of the molecule. Superoxide radicals reduce silibinin and oxidise CH 402 and MTDQ-DA. It is concluded that the drugs might exhibit antioxidant behavior in living systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scullin, Chessa; Cruz, Alejandro G.; Chuang, Yi -De
Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype.
Putzbach, William; Ronkainen, Niina J
2013-04-11
The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.
Pérez-Mitta, Gonzalo; Peinetti, Ana S; Cortez, M Lorena; Toimil-Molares, María Eugenia; Trautmann, Christina; Azzaroni, Omar
2018-05-09
Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties. The integrated approach is demonstrated by electrostatically assembling poly(allylamine) on the anionic pore walls followed by the assembly of urease. We show that the cationic weak polyelectrolyte acts as a "reactive signal amplifier" in the presence of local pH changes induced by the enzymatic reaction. These bioinduced variations in proton concentration ultimately alter the protonation degree of the polyamine resulting in amplifiable, controlled, and reproducible changes in the surface charge of the pore walls, and consequently on the generated ionic signals. The "iontronic" response of the as-obtained devices is fully reversible, and nanopores are reused and assayed with different urea concentrations, thus ensuring reliable design. The limit of detection (LOD) was 1 nM. To the best of our knowledge, this value is the lowest LOD reported to date for enzymatic urea detection. In this context, we envision that this approach based on the use of "reactive signal amplifiers" into solid-state nanochannels will provide new alternatives for the molecular design of highly sensitive nanopore biosensors as well as (bio)chemically addressable nanofluidic elements.
Shiga, Tânia M.; Xiao, Weihua; Yang, Haibing; ...
2017-12-27
The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiga, Tânia M.; Xiao, Weihua; Yang, Haibing
The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less
Tucker, Mark D [Albuquerque, NM
2011-09-20
A reduced weight decontamination formulation that utilizes a solid peracid compound (sodium borate peracetate) and a cationic surfactant (dodecyltrimethylammonium chloride) that can be packaged with all water removed. This reduces the packaged weight of the decontamination formulation by .about.80% (as compared to the "all-liquid" DF-200 formulation) and significantly lowers the logistics burden on the warfighter. Water (freshwater or saltwater) is added to the new decontamination formulation at the time of use from a local source.
Enzymatic analysis of α-ketoglutaramate—A biomarker for hyperammonemia
Halámková, Lenka; Mailloux, Shay; Halámek, Jan; Cooper, Arthur J.L.; Katz, Evgeny
2012-01-01
Two enzymatic assays were developed for the analysis of α-ketoglutaramate (KGM)—an important biomarker of hepatic encephalopathy and other hyperammonemic diseases. In both procedures, KGM is first converted to α-ketoglutarate (KTG) via a reaction catalyzed by ω-amidase (AMD). In the first procedure, KTG generated in the AMD reaction initiates a biocatalytic cascade in which the concerted action of alanine transaminase and lactate dehydrogenase results in the oxidation of NADH. In the second procedure, KTG generated from KGM is reductively aminated, with the concomitant oxidation of NADH, in a reaction catalyzed by L-glutamic dehydrogenase. In both assays, the decrease in optical absorbance (λ=340 nm) corresponding to NADH oxidation is used to quantify concentrations of KGM. The two analytical procedures were applied to 50% (v/v) human serum diluted with aqueous solutions containing the assay components and spiked with concentrations of KGM estimated to be present in normal human plasma and in plasma from hyperammonemic patients. Since KTG is the product of AMD-catalyzed hydrolysis of KGM, in a separate study, this compound was used as a surrogate for KGM. Statistical analyses of samples mimicking the concentration of KGM assumed to be present in normal and pathological concentration ranges were performed. Both enzymatic assays for KGM were confirmed to discriminate between the predicted normal and pathophysiological concentrations of the analyte. The present study is the first step toward the development of a clinically useful probe for KGM analysis in biological fluids. PMID:23141304
Chaichi, M J; Alijanpour, S O
2014-11-01
A novel glucose biosensor based on the chemiluminescence (CL) detection of enzymatically generated hydrogen peroxide (H₂O₂) was constructed by one covalent immobilization of glucose oxidase (GOD) in glutaraldehyde-functionalized glass cell. In following, chitosan-induced Au/Ag nanoparticles dispersed in ion liquid (IL) were synthesised and immobilized on it. Herein, chitosan molecules acted as both the reducing and stabilizing agent for the preparation of NPs and also, as a coupling agent GOD and Au/Ag alloy NPs. In addition to catalyze luminol CL reaction, these NPs offered excellent catalytic activity toward hydrogen peroxide generation in enzymatic reaction between GOD and glucose. The used IL in fabrication of biosensor increased its stability. Also, IL alongside Cu(2+) accelerated enzymatic and CL reaction kinetic, and decreased luminol CL reaction optimum pH to 7.5 which would enable sensitive and precision determination of glucose. Under optimum condition, linear response range of glucose was found to be 1.0 × 10(-6)-7.5 × 10(-3)M, and detection limit was 4.0 × 10(-7)M. The CL biosensor exhibited good storage stability, i.e., 90% of its initial response was retained after 2 months storage at pH 7.0. The present CL biosensor has been applied satisfactory to analysis of glucose in real serum and urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.
A direct biocombinatorial strategy toward next generation, mussel-glue inspired saltwater adhesives.
Wilke, Patrick; Helfricht, Nicolas; Mark, Andreas; Papastavrou, Georg; Faivre, Damien; Börner, Hans G
2014-09-10
Biological materials exhibit remarkable, purpose-adapted properties that provide a source of inspiration for designing new materials to meet the requirements of future applications. For instance, marine mussels are able to attach to a broad spectrum of hard surfaces under hostile conditions. Controlling wet-adhesion of synthetic macromolecules by analogue processes promises to strongly impact materials sciences by offering advanced coatings, adhesives, and glues. The de novo design of macromolecules to mimic complex aspects of mussel adhesion still constitutes a challenge. Phage display allows material scientists to design specifically interacting molecules with tailored affinity to material surfaces. Here, we report on the integration of enzymatic processing steps into phage display biopanning to expand the biocombinatorial procedure and enable the direct selection of enzymatically activable peptide adhesion domains. Adsorption isotherms and single molecule force spectroscopy show that those de novo peptides mimic complex aspects of bioadhesion, such as enzymatic activation (by tyrosinase), the switchability from weak to strong binders, and adsorption under hostile saltwater conditions. Furthermore, peptide-poly(ethylene oxide) conjugates are synthesized to generate protective coatings, which possess anti-fouling properties and suppress irreversible interactions with blood-plasma protein cocktails. The extended phage display procedure provides a generic way to non-natural peptide adhesion domains, which not only mimic nature but also improve biological sequence sections extractable from mussel-glue proteins. The de novo peptides manage to combine several tasks in a minimal 12-mer sequence and thus pave the way to overcome major challenges of technical wet glues.
Shih, Chien-Ju; Smith, Emily A
2009-10-27
Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L(-1). The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86+/-4%) was compared to the result obtained using an enzymatic reaction with UV-vis spectrophotometry detection (78+/-8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L(-1). Comparison of the fermentation efficiencies measured by Raman spectroscopy (80+/-10%) and gas chromatography-mass spectrometry (87+/-9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to generate lignocellulosic ethanol.
Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J
2016-12-15
Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
EXPRESSION OF AS3MT ALTERS TRANSCRIPTIONAL PROFILES IN HUMAN UROTHELIAL CELLS EXPOSED TO ARSENITE
Inorganic arsenic (iAs) is an environmental toxin and human carcinogen. The enzymatic methylation of iAs that is catalyzed by arsenic (+3 oxidation state)-methyltransferase (AS3MT) generates reactive methylated intermediates that contribute to the toxic and carcinogenic effects ...
USDA-ARS?s Scientific Manuscript database
Oxylipins, including eicosanoids, affect a broad range of biological processes, such as the initiation and resolution of inflammation. These compounds, also referred to as lipid mediators, are (non-) enzymatically generated by oxidation of polyunsaturated fatty acids such as arachidonic acid (AA). A...
Chronic exposure to inorganic arsenic (iAs), a toxic metalloid sometimes present in drinking water, is associated with increased prevalences of various cancers and other disorders. Humans and many other species enzymatically convert iAs into methylated metabolites. The major meta...
Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G; Jian Liu, Ke
2013-08-01
Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity. Copyright © 2013 Elsevier Inc. All rights reserved.
Abernethy, Grant A
2015-01-01
This paper proposes a mechanism to explain the trace levels of natural semicarbazide occasionally observed in foods. The analytical derivative of semicarbazide, 2-nitrobenzaldehyde semicarbazone, is often measured as a metabolite marker to detect the widely banned antibiotic nitrofurazone. However, this marker is not specific as semicarbazide may be present in foods for several reasons other than exposure to nitrofurazone. In some cases, an entirely natural origin of semicarbazide is suspected, although up until now there was no explanation about how semicarbazide could occur naturally. In this work, semicarbazide is proposed as being generated from natural food compounds via an azine intermediate. Hydrazine, in the form of azines or hydrazones, may be generated in dilute aqueous solution from the natural food compounds ammonia, hydrogen peroxide and acetone, following known oxidation chemistry. When this mixture was prepared in the presence of ureas such as allantoin, urea, biuret or hydroxyurea, and then analysed by the standard method for the determination of semicarbazide, 2-nitrobenzaldehyde semicarbazone was detected. 2-Nitrobenzaldehyde aldazine was also found, and it may be a general marker for azines in foods. This proposal, that azine formation is central to semicarbazide development, provides a convergence of the published mechanisms for semicarbazide. The reaction starts with hydrogen peroxide, peracetic acid, atmospheric oxygen or hypochlorite; generates hydrazine either by an oxaziridine intermediate or via the chlorination of ammonia; and then either route may converge on azine formation, followed by reaction with a urea compound. Additionally, carbamate ion may speculatively generate semicarbazide by reaction with hydrazine, which might be a significant route in the case of the hypochlorite treatment of foods or food contact surfaces. Significantly, detection of 2-nitrobenzaldehyde semicarbazone may be somewhat artefactual because semicarbazide can form during the acid conditions of analysis, which can free hydrazine in the presence of urea compounds.
Mathy-Hartert, M; Hogge, L; Sanchez, C; Deby-Dupont, G; Crielaard, J M; Henrotin, Y
2008-07-01
Beside matrix metalloproteinases, reactive oxygen species (ROS) are the main biochemical factors of cartilage degradation. To prevent ROS toxicity, chondrocytes possess a well-coordinated enzymatic antioxidant system formed principally by superoxide dismutases (SODs), catalase (CAT) and glutathione peroxidase (GPX). This work was designed to assess the effects of interleukin (IL)-1beta and IL-6 on the enzymatic activity and gene expression of SODs, CAT and GPX in bovine chondrocytes. Bovine chondrocytes were cultured in monolayer for 4-96 h in the absence or in the presence of IL-1beta (0.018-1.8ng/ml) or IL-6 (10-100 ng/ml). To study signal transduction pathway, inhibitors of mitogen-activated protein kinases (MAPK) (PD98059, SB203580 and SP600125) (5-20 microM) and nuclear factor (NF)-kappaB inhibitors [BAY11-7082 (1-10 microM) and MG132 (0.1-10 microM)] were used. SODs, CAT and GPX enzymatic activities were evaluated in cellular extract by using colorimetric enzymatic assays. Mn SODs, Cu/Zn SOD, extracellular SOD (EC SOD), CAT and GPX gene expressions were quantified by real-time and quantitative polymerase chain reaction (PCR). Mn SOD and GPX activities were dose and time-dependently increased by IL-1beta. In parallel, IL-1beta markedly enhanced Mn SOD and GPX gene expressions, but decreased Cu/Zn SOD, EC SOD and CAT gene expressions. Induction of SOD enzymatic activity and Mn SOD mRNA expression were inhibited by NF-kappaB inhibitors but not by MAPK inhibitors. IL-6 effects were similar but weaker than those of IL-1beta. In conclusion, IL-1beta, and to a lesser extend IL-6, dysregulates enzymatic antioxidant defenses in chondrocyte. These changes could lead to a transient accumulation of H(2)O(2) in mitochondria, and consequently to mitochondria damage. These changes contribute to explain the mitochondrial dysfunction observed in osteoarthritis chondrocytes.
Partial oxidation of alkanes by dioxiranes formed in situ at low temperature.
Yacob, Sara; Caulfield, Michael J; Barckholtz, Timothy A
2018-01-13
Partial oxidation catalysts capable of efficiently operating at low temperatures may limit the over-oxidation of alkane substrates and thereby improve selectivity. This work focuses on examining alkane oxidation using completely metal-free organocatalysts, dioxiranes. The dioxiranes employed here are synthesized by oxidation of a ketone using a terminal oxidant, such as hydrogen peroxide. Our work generates the dioxirane in situ , so that the process can be catalytic with respect to the ketone. To date, we have demonstrated selective partial oxidation of adamantane using ketone catalysts resulting in yields upwards of 60% towards 1-adamantanol with greater than 99% selectivity. Furthermore, we have demonstrated that changing the electrophilic character of the ketone R groups to contain more electron-donating ligands facilitates the dioxirane ring formation and improves overall oxidation yields. Isotopic labelling studies using H 2 18 O 2 show the preferential incorporation of an 18 O label into the parent ketone, providing evidence for a dioxirane intermediate formed in situ The isotopic labelling studies, along with solvent effect studies, suggest the formation of peracetic acid as a reactive intermediate.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'. © 2017 The Author(s).
Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus.
Ko, F N; Cheng, Z J; Lin, C N; Teng, C M
1998-07-15
The antioxidant properties of prenylflavones, isolated from Artocarpus heterophyllus Lam., was evaluated in this study. Among them, artocarpine, artocarpetin, artocarpetin A, and cycloheterophyllin diacetate and peracetate had no effect on iron-induced lipid peroxidation in rat brain homogenate. They also did not scavenge the stable free radical 1,1-diphenyl-2-picrylhydrazyl. In contrast, cycloheterophyllin and artonins A and B inhibited iron-induced lipid peroxidation in rat brain homogenate and scavenged 1,1-diphenyl-2-picrylhydrazyl. They also scavenged peroxyl radicals and hydroxyl radicals that were generated by 2,2'-azobis(2-amidinopropane) dihydrochloride and the Fe3+-ascorbate-EDTA-H2O2 system, respectively. However, they did not inhibit xanthine oxidase activity or scavenge superoxide anion, hydrogen peroxide, carbon radical, or peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) in hexane. Moreover, cycloheterophyllin and artonins A and B inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity, thiobarbituric acid-reactive substance and conjugated-diene formations and electrophoretic mobility. It is concluded that cycloheterophyllin and artonins A and B serve as powerful antioxidants against lipid peroxidation when biomembranes are exposed to oxygen radicals.
Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine.
Normark, Monica; Winestrand, Sandra; Lestander, Torbjörn A; Jönsson, Leif J
2014-03-19
Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass.
Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry.
Zhou, Xiao-Ming; Shimanovich, Ulyana; Herling, Therese W; Wu, Si; Dobson, Christopher M; Knowles, Tuomas P J; Perrett, Sarah
2015-06-23
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.
Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.
López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J
2014-12-15
A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Zhiyang; Chen, Zhaopeng; Cheng, Fangbin; Zhang, Yaowen; Chen, Lingxin
2017-03-15
Based on enzymatic-like reaction mediated etching of gold nanorods (GNRs), an ultrasensitive visual method was developed for on-site detection of urine glucose. With the catalysis of MoO 4 2 - , GNRs were efficiently etched by H 2 O 2 which was generated by glucose-glucose oxidase enzymatic reaction. The etching of GNRs lead to a blue-shift of logitudinal localized surface plasmon resonance of GNRs, accompanied by an obvious color change from blue to red. The peak-shift and the color change can be used for detection of glucose by the spectrophotometer and the naked eyes. Under optimal condition, an excellent sensitivity toward glucose is obtained with a detection limit of 0.1μM and a visual detection limit of 3μM in buffer solution. Benefiting from the high sensitivity, the successful colorimetric detection of glucose in original urine samples was achieved, which indicates the practical applicability to the on-site determination of urine glucose. Copyright © 2016 Elsevier B.V. All rights reserved.
Harnessing surface-bound enzymatic reactions to organize microcapsules in solution
Shklyaev, Oleg E.; Shum, Henry; Sen, Ayusman; Balazs, Anna C.
2016-01-01
By developing new computational models, we examine how enzymatic reactions on an underlying surface can be harnessed to direct the motion and organization of reagent-laden microcapsules in a fluid-filled microchannel. In the presence of appropriate reagents, surface-bound enzymes can act as pumps, which drive large-scale fluid flows. When the reagents diffuse through the capsules’ porous shells, they can react with enzymatic sites on the bottom surface. The ensuing reaction generates fluid density variations, which result in fluid flows. These flows carry the suspended microcapsules and drive them to aggregate into “colonies” on and near the enzyme-covered sites. This aggregation continues until the reagent has been depleted and the convection stops. We show that the shape of the assembled colonies can be tailored by patterning the distribution of enzymes on the surface. This fundamental physicochemical mechanism could have played a role in the self-organization of early biological cells (protocells) and can be used to regulate the autonomous motion and targeted delivery of microcarriers in microfluidic devices. PMID:27034990
Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; da Silva, Mateus Ribeiro; Azzoni, Sindelia Freitas; Pradella, José Geraldo da Cruz
2012-03-01
The on-site production of cellulases is an important strategy for the development of sustainable second-generation ethanol production processes. This study concerns the use of a specific cellulolytic enzyme complex for hydrolysis of pretreated sugar cane bagasse. Glycosyl hydrolases (FPase, xylanase, and β-glucosidase) were produced using a new strain of Trichoderma harzianum, isolated from the Amazon rainforest and cultivated under different conditions. The influence of the carbon source was first investigated using shake-flask cultures. Selected carbon sources were then further studied under different pH conditions using a stirred tank bioreactor. Enzymatic activities up to 121 FPU/g, 8000 IU/g, and 1730 IU/g of delignified steam-exploded bagasse+sucrose were achieved for cellulase, xylanase and β-glucosidase, respectively. This enzymatic complex was used to hydrolyze pretreated sugar cane bagasse. A comparative evaluation, using an enzymatic extract from Trichoderma reesei RUTC30, indicated similar performance of the T. harzianum enzyme complex, being a potential candidate for on-site production of enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.
2015-01-01
A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component. PMID:26463274
Management of enzyme diversity in high-performance cellulolytic cocktails.
Reyes-Sosa, Francisco Manuel; López Morales, Macarena; Platero Gómez, Ana Isabel; Valbuena Crespo, Noelia; Sánchez Zamorano, Laura; Rocha-Martín, Javier; Molina-Heredia, Fernando P; Díez García, Bruno
2017-01-01
Modern biorefineries require enzymatic cocktails of improved efficiency to generate fermentable sugars from lignocellulosic biomass. Cellulolytic fungi, among other microorganisms, have demonstrated the highest potential in terms of enzymatic productivity, complexity and efficiency. On the other hand, under cellulolytic-inducing conditions, they often produce a considerable diversity of carbohydrate-active enzymes which allow them to adapt to changing environmental conditions. However, industrial conditions are fixed and adjusted to the optimum of the whole cocktail, resulting in underperformance of individual enzymes. One of these cellulolytic cocktails from Myceliophthora thermophila has been analyzed here by means of LC-MS/MS. Pure GH6 family members detected have been characterized, confirming previous studies, and added to whole cocktails to compare their contribution in the hydrolysis of industrial substrates. Finally, independent deletions of two GH6 family members, as an example of the enzymatic diversity management, led to the development of a strain producing a more efficient cellulolytic cocktail. These data indicate that the deletion of noncontributive cellulases (here EG VI) can increase the cellulolytic efficiency of the cocktail, validating the management of cellulase diversity as a strategy to obtain improved fungal cellulolytic cocktails.
Weng, Yejing; Sui, Zhigang; Jiang, Hao; Shan, Yichu; Chen, Lingfan; Zhang, Shen; Zhang, Lihua; Zhang, Yukui
2015-04-22
Due to the important roles of N-glycoproteins in various biological processes, the global N-glycoproteome analysis has been paid much attention. However, by current strategies for N-glycoproteome profiling, peptides with glycosylated Asn at N-terminus (PGANs), generated by protease digestion, could hardly be identified, due to the poor deglycosylation capacity by enzymes. However, theoretically, PGANs occupy 10% of N-glycopeptides in the typical tryptic digests. Therefore, in this study, we developed a novel strategy to identify PGANs by releasing N-glycans through the N-terminal site-selective succinylation assisted enzymatic deglycosylation. The obtained PGANs information is beneficial to not only achieve the deep coverage analysis of glycoproteomes, but also discover the new biological functions of such modification.
Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
Zeng, Yining; Zhao, Shuai; Yang, Shihui; Ding, Shi-You
2014-06-01
A biochemical platform holds the most promising route toward lignocellulosic biofuels, in which polysaccharides are hydrolyzed by cellulase enzymes into simple sugars and fermented to ethanol by microbes. However, these polysaccharides are cross-linked in the plant cell walls with the hydrophobic network of lignin that physically impedes enzymatic deconstruction. A thermochemical pretreatment process is often required to remove or delocalize lignin, which may also generate inhibitors that hamper enzymatic hydrolysis and fermentation. Here we review recent advances in understanding lignin structure in the plant cell walls and the negative roles of lignin in the processes of converting biomass to biofuels. Perspectives and future directions to improve the biomass conversion process are also discussed. Copyright © 2013. Published by Elsevier Ltd.
Totaro, M; Casini, B; Valentini, P; Miccoli, M; Giorgi, S; Porretta, A; Privitera, G; Lopalco, P L; Baggiani, A
2017-10-01
Patients receiving haemodialysis are exposed to a large volume of dialysis fluid. The Italian Society of Nephrology (ISN) has published guidelines and microbial quality standards on dialysis water (DW) and solutions to ensure patient safety. To identify microbial and chemical hazards, and evaluate the quality of disinfection treatment in DW plants. In 2015 and 2016, water networks and DW plants (closed loop and online monitors) of nine dialysis wards of Italian hospitals, hosting 162 dialysis beds overall, were sampled on a monthly basis to determine the parameters provided by ISN guidelines. Chlorinated drinking water was desalinated by reverse osmosis and distributed to the closed loop which feeds all online monitors. Disinfection with peracetic acid was performed in all DW plants on a monthly basis. Over the 24-month study period, seven out of nine DW plants (78%) recorded negative results for all investigated parameters. Closed loop contamination with Burkholderia cepacia was detected in a DW plant from January 2015 to March 2015. Pseudomonas aeruginosa was isolated from March 2016 to May 2016 in the closed loop of another DW plant. These microbial contaminations were eradicated by shock disinfection with sodium hypochlorite and peracetic acid, followed by water flushing. These results highlight the importance of chemical and physical methods of DW disinfection. The maintenance of control measures in water plants hosted in dialysis wards ensures a microbial risk reduction for all dialysis patients. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Buhr, T L; Young, A A; Johnson, C A; Minter, Z A; Wells, C M
2014-08-01
The aim of the study was to develop test methods and evaluate survival of Francisella philomiragia cells and MS2 bacteriophage after exposure to PES-Solid (a solid source of peracetic acid) formulations with or without surfactants. Francisella philomiragia cells (≥7·6 log10 CFU) or MS2 bacteriophage (≥6·8 log10 PFU) were deposited on seven different test materials and treated with three different PES-Solid formulations, three different preneutralized samples and filter controls at room temperature for 15 min. There were 0-1·3 log10 CFU (<20 cells) of cell survival, or 0-1·7 log10 (<51 PFU) of bacteriophage survival in all 21 test combinations (organism, formulation and substrate) containing reactive PES-Solid. In addition, the microemulsion (Dahlgren Surfactant System) showed ≤2 log10 (100 cells) of viable F. philomiragia cells, indicating the microemulsion achieved <2 log10 CFU on its own. Three PES-Solid formulations and one microemulsion system (DSS) inactivated F. philomiragia cells and/or MS2 bacteriophage that were deposited on seven different materials. A test method was developed to show that reactive PES-Solid formulations and a microemulsion system (DSS) inactivated >6 log10 CFU/PFU F. philomiragia cells and/or MS2 bacteriophage on different materials. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
[Decontamination of dental unit waterlines using disinfectants and filters].
Monarca, S; Garusi, G; Gigola, P; Spampinato, L; Zani, C; Sapelli, P L
2002-10-01
Bacterial contamination of the dental unit water system can become a health problem for patients, particularly if they are immunodepressed. The present study has had the purpose of evaluating the effectiveness of methods of chemical decontamination using different disinfectants (peracetic acid, hydrogen peroxide, silver salts, chloramine T, glutaraldehyde T4) and methods of physical decontamination using synthetic membranes for the filtration of water. A preliminary removal procedure of the biofilm present in the waterline has been followed in a dental unit prepared on purpose for the research; subsequently different 2-week long maintenance procedures were applied using disinfectants injected by a pump and finally the bacterial contamination of the water flowing from the waterline was evaluated. The physical decontamination was performed using 0.22 mm membrane filters, which have been installed also in another dental unit, and the filtered water was analyzed to detect bacterial contamination. The preliminary procedure of biofilm removal succeeded obtaining germ-free water. Among the disinfectants used for the maintenance of the water quality only glutaraldehyde T4 was able to reduce the bacterial contamination under the limit suggested by the ADA. The membrane filter system was not able to purify the water, but when a disinfectant (peracetic acid) was used in the last part of the waterline good results were obtained. At present no decontamination system of dental waterline is available, and glutaraldehyde T4 seems to be the best disinfectant only if integrated with periodic biofilm removal for the maintenance of the water quality.
Teodoro-Morrison, Tracy; Janssen, Marcel J W; Mols, Jasper; Hendrickx, Ben H E; Velmans, Mathieu H; Lotz, Johannes; Lackner, Karl; Lennartz, Lieselotte; Armbruster, David; Maine, Gregory; Yip, Paul M
2015-01-01
The utility of HbA1c for the diagnosis of type 2 diabetes requires an accurate, precise and robust test measurement system. Currently, immunoassay and HPLC are the most popular methods for HbA1c quantification, noting however the limitations associated with some platforms, such as imprecision or interference from common hemoglobin variants. Abbott Diagnostics has introduced a fully automated direct enzymatic method for the quantification of HbA1c from whole blood on the ARCHITECT chemistry system. Here we completed a method evaluation of the ARCHITECT HbA1c enzymatic assay for imprecision, accuracy, method comparison, interference from hemoglobin variants and specimen stability. This was completed at three independent clinical laboratories in North America and Europe. The total imprecision ranged from 0.5% to 2.2% CV with low and high level control materials. Around the diagnostic cut-off of 48 mmol/mol, the total imprecision was 0.6% CV. Mean bias using reference samples from IFCC and CAP ranged from -1.1 to 1.0 mmol/mol. The enzymatic assay also showed excellent agreement with HPLC methods, with slopes of 1.01 and correlation coefficients ranging from 0.984 to 0.996 compared to Menarini Adams HA-8160, Bio-Rad Variant II and Variant II Turbo instruments. Finally, no significant effect was observed for erythrocyte sedimentation or interference from common hemoglobin variants in patient samples containing heterozygous HbS, HbC, HbD, HbE, and up to 10% HbF. The ARCHITECT enzymatic assay for HbA1c is a robust and fully automated method that meets the performance requirements to support the diagnosis of type 2 diabetes.
Muthulakshmi, Shanmugam; Saravanan, Ramalingam
2013-05-01
Excess fat intake induces hyperinsulinaemia, increases nutrient uptake and lipid accumulation, amplifies ROS generation, establishes oxidative stress and morphological changes leading to tissue injury in the liver, kidney and heart of high-fat diet (HFD)-fed mice. The effect of azelaic acid (AzA), a C9 α,ω-dicarboxylic acid, against HFD-induced oxidative stress was investigated by assaying the activities and levels of antioxidants and oxidative stress markers in the liver, kidney and heart of C57BL/6J mice. Mice were segregated into two groups, one fed standard diet (NC) and the other fed high-fat diet (HFD) for 15 weeks. HFD-fed mice were subjected to intragastric administration of AzA (80 mg/kg BW)/RSG (10 mg/kg BW) during 11-15 weeks. Glucose, insulin, triglycerides, hepatic and nephritic markers were analysed in the plasma and the activity of enzymatic, non-enzymatic antioxidants and lipid peroxidation markers were examined in the plasma/erythrocytes, liver, kidney and heart of normal and experimental mice. We inferred significant decrease in enzymatic and non-enzymatic antioxidants along with significant increase in glucose, insulin, hepatic and nephritic markers, triglycerides and lipid peroxidation markers in HFD-fed mice. Administration of AzA could positively restore the levels of plasma glucose, insulin, triglycerides, hepatic and nephritic markers to near normal. AzA increased the levels of enzymatic and nonenzymatic antioxidants with significant reduction in the levels of lipid peroxidation markers. Histopathological examination of liver, kidney and heart substantiated these results. Hence, we put forward that AzA could counteract the potential injurious effects of HFD-induced oxidative stress in C57BL/6J mice.
Cordovil, Cláudia Marques-Dos-Santos; de Varennes, Amarilis; Pinto, Renata Machado Dos Santos; Alves, Tiago Filipe; Mendes, Pedro; Sampaio, Sílvio César
2017-05-01
Biofuel crops are gaining importance because of the need to replace non-renewable sources. Also, due to the increasing amounts of wastes generated, there is the need to recycle them to the soil, both to fertilize crops and to improve soil physical properties through organic matter increase and microbiological changes in the rhizosphere. We therefore studied the influence of six biofuel crops (elephant grass, giant cane, sugarcane, blue gum, black cottonwood, willow) on the decomposition rate and enzymatic activity of composted municipal solid waste and poultry manure. Organic amendments were incubated in the field (litterbag method), buried near each plant or bare soil. Biomass decrease and dehydrogenase, urease and acid phosphatase level in amendments was monitored over a 180-day period. Soil under the litterbags was analysed for the same enzymatic activity and organic matter fractions (last sampling). After 365 days, a fractionation of organic matter was carried out in both amendments and soil under the litterbags. For compost, willow and sugarcane generally led to the greatest enzymatic activity, at the end of the experiment. For manure, dehydrogenase activity decreased sharply with time, the smallest value near sugarcane, while phosphatase and urease generally presented the highest values, at the beginning or after 90 days' incubation. Clustering showed that plant species could be grouped based on biomass and enzymes measured over time. Plant species influenced the decomposition rate and enzymatic activities of the organic amendments. Overall, mineralization of both amendments was associated with a greater urease activity in soils. Dehydrogenase activity in manure was closely associated with urease activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Oxidation Inhibits Iron-Induced Blood Coagulation
Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw
2013-01-01
Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793
Destructive effect of non-enzymatic glycation on catalase and remediation via curcumin.
Mofidi Najjar, Fayezeh; Taghavi, Fereshteh; Ghadari, Rahim; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar
2017-09-15
Non-enzymatic glycation of proteins is a post-translational modification that is produced by a covalent binding between reducing sugars and amino groups of lysine and arginine residues. In this paper the effect of pathological conditions, derived from hyperglycemia on bovine liver catalase (BLC) as a model protein was considered by measuring enzyme activity, reactive oxygen species (ROS) generation, and changes in catalase conformational properties. We observed that in the presence of glucose, the catalase activity gradually decreased. ROS generation was also involved in the glycation process. Thus, decreased BLC activity was partly considered as a result of ROS generation through glycation. However, in the presence of curcumin the amount of ROS was reduced resulting in increased activity of the glycated catalase. The effect of high glucose level and the potential inhibitory effect of curcumin on aggregation and structural changes of catalase were also investigated. Molecular dynamic simulations also showed that interaction of catalase with curcumin resulted in changes in accessible surface area (ASA) and pKa, two effective parameters of glycation, in potential glycation lysine residues. Thus, the decrease in ASA and increase in pKa of important lysine residues were considered as predominant factors in decreased glycation of BLC by curcumin. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of different peracetic acid formulations on post space radicular dentin.
Belizário, Lauriê Garcia; Kuga, Milton Carlos; Castro-Núñez, Gabriela Mariana; Escalante-Otárola, Wilfredo Gustavo; Só, Marcus Vinicius Reis; Pereira, Jefferson Ricardo
2018-01-05
The optimal irrigating solution with antimicrobial and dentin cleansing properties for post space preparation for fiber posts is unclear. Peracetic acid is one option but is available in various chemical formulations that require evaluation. The purpose of this in vitro study was to evaluate dentin surface cleanliness based on the presence of a smear layer and the number of open dentin tubules. It also investigates the chemical composition of residues after canal irrigation with a 1% peracetic acid solution (PA) at low or high concentration of hydrogen peroxide during the preparation of intracanal fiber posts. After filling the root canals of 40 mandibular incisors, a rotary instrument was used for intracanal preparation to place fiber posts. The teeth were divided into 4 groups (n=10) according to the post space irrigation protocol as follows: CG (control): distilled water; NA (NaOCl): 2.5% sodium hypochlorite; LH: PA with low concentration of hydrogen peroxide; and HH: PA with high concentrations of hydrogen peroxide. After irrigation, the teeth were sectioned, and the intracanal dentin surface was subjected to analysis using energy dispersive spectroscopy to evaluate chemical composition and to scanning electron microscopy (×500) to evaluate the presence of the smear layer. The number of open dentin tubules was measured by scanning electron microscopy analysis (×2000) using photo-editing software. ANOVA and the Tukey test (α=.05) were used to evaluate the data, except for the presence of a smear layer, for which the Kruskal-Wallis and Dunn tests were used (α=.05). The highest concentrations of oxygen in the dentin residues were detected in LH and HH (P<.05); CG and NA showed similar oxygen concentrations (P>.05). NA had a higher concentration of chlorine (P<.05), whereas LH had a lower amount of smear layer and a larger number of open dentin tubules than the other groups (P<.05). These were equivalent to each other (P>.05), except for HH, which also had a larger number of open dentin tubules than CG and NA (P<.05). PA 1% with a low concentration of hydrogen peroxide yielded a lower amount of smear layer and a larger number of open dentin tubules in the dentin of the post space when compared with PA 1% with a high concentration of hydrogen peroxide, despite maintaining a similar oxygen concentration in these dentin residues. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Enzymatic catalysts, such as lipases, have advantages over chemical catalysts for transesterification of triglycerides to produce biodiesel. A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western b...
A liposome-based energy conversion system for accelerating the multi-enzyme reactions.
Matsumoto, Ryuhei; Kakuta, Masaya; Sugiyama, Taiki; Goto, Yoshio; Sakai, Hideki; Tokita, Yuichi; Hatazawa, Tsuyonobu; Tsujimura, Seiya; Shirai, Osamu; Kano, Kenji
2010-11-14
We report the first example of a liposome-based energy conversion system that is useful for entrapping enzymes and NAD coenzyme to accelerate multi-step enzymatic reactions. The liposome generates a much higher catalytic current compared with the non-liposome system, which is in good consistency with numerical simulations.
EXPRESSON OF AS3MT ALTERS TRANSCRIPTIONAL PROFILES IN HUMAN UROTHELIAL CELLS EXPOSED TO ARSENITE
Inorganic arsenic (iAs) is an environmental toxin and human carcinogen. The enzymatic methylation of iAs that is catalyzed by As (3+ oxidation state)-methyltransferase (AS3MT) generates reactive methyl-As intermediates that may contribute to the toxic or carcinogenic effects of i...
Proline dehydrogenase promotes senescence through the generation of reactive oxygen species.
Nagano, Taiki; Nakashima, Akio; Onishi, Kengo; Kawai, Kosuke; Awai, Yuto; Kinugasa, Mizuki; Iwasaki, Tetsushi; Kikkawa, Ushio; Kamada, Shinji
2017-04-15
Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by TP53 ) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene ( PRODH ) to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined. Here, we conducted functional analyses to explore the relationship between PRODH and the senescence program. We found that genetic and pharmacological inhibition of PRODH suppressed senescent phenotypes induced by DNA damage. Furthermore, ectopic expression of wild-type PRODH, but not enzymatically inactive forms, induced senescence associated with the increase in reactive oxygen species (ROS) and the accumulation of DNA damage. Treatment with N-acetyl-L-cysteine, a ROS scavenger, prevented senescence induced by PRODH overexpression. These results indicate that PRODH plays a causative role in DNA damage-induced senescence through the enzymatic generation of ROS. © 2017. Published by The Company of Biologists Ltd.
A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.
Fischer, Christopher; Fraiwan, Arwa; Choi, Seokheun
2016-05-15
In this work, we demonstrate a novel low-cost, self-powered paper-based biosensor for glucose monitoring. The device operating mechanism is based on a glucose/oxygen enzymatic fuel cell using an electrochemical energy conversion as a transducing element for glucose monitoring. The self-powered glucose biosensor features (i) a 3D origami paper-based structure for easy system integration onto paper, (ii) an air-cathode on paper for low-cost production and easy operation, and (iii) a screen printed chitosan/glucose oxidase anode for stable current generation as an analytical signal for glucose monitoring. The sensor showed a linear range of output current at 1-5mM glucose (R(2)=0.996) with a sensitivity of 0.02 µA mM(-1). The advantages offered by such a device, including a low cost, lack of external power sources/sophisticated external transducers, and the capacity to rapidly generate reliable results, are well suited for the clinical and social settings of the developing world. Copyright © 2015 Elsevier B.V. All rights reserved.
Pandeeti, Emmanuel Vijay Paul; Pitchika, Gopi Krishna; Jotshi, Jyotsna; Nilegaonkar, Smita S.; Kanekar, Pradnya P.; Siddavattam, Dayananda
2011-01-01
Conventional leather processing involving depilation of animal hide by lime and sulphide treatment generates considerable amounts of chemical waste causing severe environmental pollution. Enzymatic depilation is an environmentally friendly process and has been considered to be a viable alternative to the chemical depilation process. We isolated an extracellular protease from Pseudomonas aeruginosa strain MCM B-327 with high depilation activity using buffalo hide as a substrate. This 33 kDa protease generated a peptide mass fingerprint and de novo sequence that matched perfectly with LasB (elastase), of Pseudomonas aeruginosa. In support of this data a lasB mutant of MCM B-327 strain lacked depilatory activity and failed to produce LasB. LasB heterologously over-produced and purified from Escherichia coli also exhibited high depilating activity. Moreover, reintroduction of the lasB gene to the P. aeruginosa lasB mutant via a knock-in strategy also successfully restored depilation activity thus confirming the role of LasB as the depilating enzyme. PMID:21347249
Trypanosoma brucei Metacaspase 4 Is a Pseudopeptidase and a Virulence Factor*
Proto, William R.; Castanys-Munoz, Esther; Black, Alana; Tetley, Laurence; Moss, Catherine X.; Juliano, Luiz; Coombs, Graham H.; Mottram, Jeremy C.
2011-01-01
Metacaspases are caspase family cysteine peptidases found in plants, fungi, and protozoa but not mammals. Trypanosoma brucei is unusual in having five metacaspases (MCA1–MCA5), of which MCA1 and MCA4 have active site substitutions, making them possible non-enzymatic homologues. Here we demonstrate that recombinant MCA4 lacks detectable peptidase activity despite maintaining a functional peptidase structure. MCA4 is expressed primarily in the bloodstream form of the parasite and associates with the flagellar membrane via dual myristoylation/palmitoylation. Loss of function phenotyping revealed critical roles for MCA4; rapid depletion by RNAi caused lethal disruption to the parasite's cell cycle, yet the generation of MCA4 null mutant parasites (Δmca4) was possible. Δmca4 had normal growth in axenic culture but markedly reduced virulence in mice. Further analysis revealed that MCA4 is released from the parasite and is specifically processed by MCA3, the only metacaspase that is both palmitoylated and enzymatically active. Accordingly, we have identified that the multiple metacaspases in T. brucei form a membrane-associated proteolytic cascade to generate a pseudopeptidase virulence factor. PMID:21949125
Transglutaminase-mediated protein immobilization to casein nanolayers created on a plastic surface.
Kamiya, Noriho; Doi, Satoshi; Tominaga, Jo; Ichinose, Hirofumi; Goto, Masahiro
2005-01-01
An enzymatic method for covalent and site-specific immobilization of recombinant proteins on a plastic surface was explored. Using Escherichia coli alkaline phosphatase (AP) with a specific peptide tag (MKHKGS) genetically incorporated at the N-terminus as a model (NK-AP), microbial transglutaminase (MTG)-mediated protein immobilization was demonstrated. To generate a reactive surface for MTG, a 96-well polystyrene microtiter plate was physically coated with casein, a good MTG substrate. Successful immobilization of recombinant AP to the nanolayer of casein on the surface of the microtiter plate was verified by the detection of enzymatic activity. Since little activity was observed when wild-type AP was used, immobilization of NK-AP was likely directed by the specific peptide tag. When polymeric casein prepared by MTG was used as a matrix on the plate, the loading capacity of AP was increased about 2-fold compared to when casein was used as the matrix. Transglutaminase-mediated site-specific posttranslational modification of proteins offers one way of generating a variety of protein-based solid formulations for biotechnological applications.
Mütze, Ulrike; Bürger, Friederike; Hoffmann, Jessica; Tegetmeyer, Helmut; Heichel, Jens; Nickel, Petra; Lemke, Johannes R; Syrbe, Steffen; Beblo, Skadi
2017-03-01
Lysosomal storage diseases (LSD) often manifest with cherry red macular spots. Diagnosis is based on clinical features and specific biochemical and enzymatic patterns. In uncertain cases, genetic testing with next generation sequencing can establish a diagnosis, especially in milder or atypical phenotypes. We report on the diagnostic work-up in a boy with sialidosis type I, presenting initially with marked cherry red macular spots but non-specific urinary oligosaccharide patterns and unusually mild excretion of bound sialic acid. Biochemical, enzymatic and genetic tests were performed in the patient. The clinical and electrophysiological data was reviewed and a genotype-phenotype analysis was performed. In addition a systematic literature review was carried out. Cherry red macular spots were first noted at 6 years of age after routine screening myopia. Physical examination, psychometric testing, laboratory investigations as well as cerebral MRI were unremarkable at 9 years of age. So far no clinical myoclonic seizures occurred, but EEG displays generalized epileptic discharges and visual evoked potentials are prolonged bilaterally. Urine thin layer chromatography showed an oligosaccharide pattern compatible with different LSD including sialidosis, galactosialidosis, GM1 gangliosidosis or mucopolysaccharidosis type IV B. Urinary bound sialic acid excretion was mildly elevated in spontaneous and 24 h urine samples. In cultured fibroblasts, α-sialidase activity was markedly decreased to < 1%; however, bound and free sialic acid were within normal range. Diagnosis was eventually established by multigene panel next generation sequencing of genes associated to LSD, identifying two novel, compound heterozygous variants in NEU1 gene (c.699C > A, p.S233R in exon 4 and c.803A > G; p.Y268C in Exon 5 in NEU1 transcript NM_000434.3), leading to amino acid changes predicted to impair protein function. Sialidosis should be suspected in patients with cherry red macular spots, even with non-significant urinary sialic acid excretion. Multigene panel next generation sequencing can establish a definite diagnosis, allowing for counseling of the patient and family.
Li, Wen-Yan; Chen, Bing-Xian; Chen, Zhong-Jian; Gao, Yin-Tao; Chen, Zhuang; Liu, Jun
2017-01-01
Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS) regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs) are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI), a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the regulation of NOX family gene expression in germinating seeds of monocot cereals. PMID:28098759
Wu, Alex Chi; Morell, Matthew K.; Gilbert, Robert G.
2013-01-01
A core set of genes involved in starch synthesis has been defined by genetic studies, but the complexity of starch biosynthesis has frustrated attempts to elucidate the precise functional roles of the enzymes encoded. The chain-length distribution (CLD) of amylopectin in cereal endosperm is modeled here on the basis that the CLD is produced by concerted actions of three enzyme types: starch synthases, branching and debranching enzymes, including their respective isoforms. The model, together with fitting to experiment, provides four key insights. (1) To generate crystalline starch, defined restrictions on particular ratios of enzymatic activities apply. (2) An independent confirmation of the conclusion, previously reached solely from genetic studies, of the absolute requirement for debranching enzyme in crystalline amylopectin synthesis. (3) The model provides a mechanistic basis for understanding how successive arrays of crystalline lamellae are formed, based on the identification of two independent types of long amylopectin chains, one type remaining in the amorphous lamella, while the other propagates into, and is integral to the formation of, an adjacent crystalline lamella. (4) The model provides a means by which a small number of key parameters defining the core enzymatic activities can be derived from the amylopectin CLD, providing the basis for focusing studies on the enzymatic requirements for generating starches of a particular structure. The modeling approach provides both a new tool to accelerate efforts to understand granular starch biosynthesis and a basis for focusing efforts to manipulate starch structure and functionality using a series of testable predictions based on a robust mechanistic framework. PMID:23762422
2010-04-01
PAB 17 2.5.2 PAB/SPC Mixtures 17 2.5.3 PAB/SPC Mixtures with Ethylene Carbonate 19 2.5.4 Peroxydone/PAB Mixtures 19 2.5.4.1 Chem Agent Testing 19...Effect of Surfactant and Ethylene Carbonate (EC) Penetrant on Decontamination of HD on CARC Painted Panels 20 5. Effect of Surfactant, Alone, on...previous peroxide-based decontaminants7 (i.e., Triton® X-100 (non-ionic surfactant) and propylene carbonate [PC]) could not be used. However, there
Qu, Chengke; Zhao, Wenshan; Zhang, Lei; Cui, Yuanchen
2014-04-01
Phenolic L-prolinamide was allowed to participate in enzymatic polymerization with horseradish peroxidase as the catalyst, generating immobilized L-prolinamide. The catalytic performance of the resultant polymer-supported L-prolinamide for direct asymmetric aldol reaction between aromatic aldehyde and cyclohexanone was studied. The results show that as prepared L-prolinamide can catalyze the aldol reaction at room temperature in the presence of H2O. Relevant aldol addition products are obtained with good yields (up to 91%), high diastereoselectivities (up to 6:94 dr), and medium enantioselectivities (up to 87% ee). Moreover, the title polymer-supported catalyst can be recovered and reused for at least five cycles while the activity remains almost unchanged. Copyright © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Stasyuk, Nataliya; Gayda, Galina; Zakalskiy, Andriy; Zakalska, Oksana; Errachid, Abdelhamid; Gonchar, Mykhailo
2018-03-01
A novel enzymatic method of manganese (II) and cobalt (II) ions assay, based on using apo-enzyme of Mn2 +-dependent recombinant arginase I (arginase) and 2,3-butanedione monoxime (DMO) as a chemical reagent is proposed. The principle of the method is the evaluation of the activity of L-arginine-hydrolyzing of arginase holoenzyme after the specific binding of Mn2 + or Co2 + with apo-arginase. Urea, which is the product of enzymatic hydrolysis of L-arginine (Arg), reacts with DMO and the resulted compound is detected by both fluorometry and visual spectrophotometry. Thus, the content of metal ions in the tested samples can be determined by measuring the level of urea generated after enzymatic hydrolysis of Arg by reconstructed arginase holoenzyme in the presence of tested metal ions. The linearity range of the fluorometric apo-arginase-DMO method in the case of Mn2 + assay is from 4 pM to 1.10 nM with a limit of detection of 1 pM Mn2 +, whereas the linearity range of the present method in the case of Co2 + assay is from 8 pM to 45 nM with a limit of detection of 2.5 pM Co2 +. The proposed method being highly sensitive, selective, valid and low-cost, may be useful to monitor Mn2 + and Co2 + content in clinical laboratories, food industry and environmental control service.
Fast Enzymatic Processing of Proteins for MS Detection with a Flow-through Microreactor
Lazar, Iulia M.; Deng, Jingren; Smith, Nicole
2016-01-01
The vast majority of mass spectrometry (MS)-based protein analysis methods involve an enzymatic digestion step prior to detection, typically with trypsin. This step is necessary for the generation of small molecular weight peptides, generally with MW < 3,000-4,000 Da, that fall within the effective scan range of mass spectrometry instrumentation. Conventional protocols involve O/N enzymatic digestion at 37 ºC. Recent advances have led to the development of a variety of strategies, typically involving the use of a microreactor with immobilized enzymes or of a range of complementary physical processes that reduce the time necessary for proteolytic digestion to a few minutes (e.g., microwave or high-pressure). In this work, we describe a simple and cost-effective approach that can be implemented in any laboratory for achieving fast enzymatic digestion of a protein. The protein (or protein mixture) is adsorbed on C18-bonded reversed-phase high performance liquid chromatography (HPLC) silica particles preloaded in a capillary column, and trypsin in aqueous buffer is infused over the particles for a short period of time. To enable on-line MS detection, the tryptic peptides are eluted with a solvent system with increased organic content directly in the MS ion source. This approach avoids the use of high-priced immobilized enzyme particles and does not necessitate any aid for completing the process. Protein digestion and complete sample analysis can be accomplished in less than ~3 min and ~30 min, respectively. PMID:27078683
Fast Enzymatic Processing of Proteins for MS Detection with a Flow-through Microreactor.
Lazar, Iulia M; Deng, Jingren; Smith, Nicole
2016-04-06
The vast majority of mass spectrometry (MS)-based protein analysis methods involve an enzymatic digestion step prior to detection, typically with trypsin. This step is necessary for the generation of small molecular weight peptides, generally with MW < 3,000-4,000 Da, that fall within the effective scan range of mass spectrometry instrumentation. Conventional protocols involve O/N enzymatic digestion at 37 ºC. Recent advances have led to the development of a variety of strategies, typically involving the use of a microreactor with immobilized enzymes or of a range of complementary physical processes that reduce the time necessary for proteolytic digestion to a few minutes (e.g., microwave or high-pressure). In this work, we describe a simple and cost-effective approach that can be implemented in any laboratory for achieving fast enzymatic digestion of a protein. The protein (or protein mixture) is adsorbed on C18-bonded reversed-phase high performance liquid chromatography (HPLC) silica particles preloaded in a capillary column, and trypsin in aqueous buffer is infused over the particles for a short period of time. To enable on-line MS detection, the tryptic peptides are eluted with a solvent system with increased organic content directly in the MS ion source. This approach avoids the use of high-priced immobilized enzyme particles and does not necessitate any aid for completing the process. Protein digestion and complete sample analysis can be accomplished in less than ~3 min and ~30 min, respectively.
Max, Jean-Joseph; Meddeb-Mouelhi, Fatma; Beauregard, Marc; Chapados, Camille
2012-12-01
Enzymatic assays need robust, rapid colorimetric methods that can follow ongoing reactions. For this, we developed a highly accurate, multi-wavelength detection method that could be used for several systems. Here, it was applied to the detection of para-nitrophenol (pNP) in basic and acidic solutions. First, we confirmed by factor analysis that pNP has two forms, with unique spectral characteristics in the 240 to 600 nm range: Phenol in acidic conditions absorbs in the lower range, whereas phenolate in basic conditions absorbs in the higher range. Thereafter, the method was used for the determination of species concentration. For this, the intensity measurements were made at only two wavelengths with a microtiter plate reader. This yielded total dye concentration, species relative abundance, and solution pH value. The method was applied to an enzymatic assay. For this, a chromogenic substrate that generates pNP after hydrolysis catalyzed by a lipase from the fungus Yarrowia lipolytica was used. Over the pH range of 3-11, accurate amounts of acidic and basic pNP were determined at 340 and 405 nm, respectively. This method surpasses the commonly used single-wavelength assay at 405 nm, which does not detect pNP acidic species, leading to activity underestimations. Moreover, alleviation of this pH-related problem by neutralization is not necessary. On the whole, the method developed is readily applicable to rapid high-throughput of enzymatic activity measurements over a wide pH range.
Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine
2014-01-01
Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769
The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.
Briones-Martin-Del-Campo, Marcela; Orta-Zavalza, Emmanuel; Juarez-Cepeda, Jacqueline; Gutierrez-Escobedo, Guadalupe; Cañas-Villamar, Israel; Castaño, Irene; De Las Peñas, Alejandro
2014-01-01
Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry
2015-01-01
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507
Microbial Enzymatic Degradation of Biodegradable Plastics.
Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch
2017-01-01
The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Tomasino, Stephen F; Samalot-Freire, Luisa C
2007-01-01
AOAC Method 966.04, the Sporicidal Activity of Disinfectants Test, is a carrier-based test that provides a qualitative measure of product efficacy against spores of Bacillus subtilis and Clostridium sporogenes. For regulatory purposes, Method 966.04 is accepted by the U.S. Environmental Protection Agency (EPA) and the U.S. Food and Drug Administration (FDA) for the generation of product performance data for sporicides and sterilants. In this study, we report on findings associated with proposed improvements (modifications) to the Clostridium component of the method. Egg meat medium (EMM), the culture medium for C. sporogenes currently specified in the method, is no longer commercially available and finding a suitable replacement is critical. In addition, the use of a nonstandardized extract of raw soil as an amendment to EMM, as stipulated in the current method, may result in a highly variable spore suspension. The primary focus of this study was to find replacements for EMM and soil extract. A carrier count procedure, the establishment of target carrier counts (spores/carrier), and a neutralization confirmation procedure were also evaluated. The study was limited to liquid products tested against Clostridium on a hard surface carrier (porcelain penicylinder). Spore suspensions of C. sporogenes were generated using: (1) EMM with soil extract (EMM/SE), (2) cooked meat medium with soil extract (CMM/SE), and (3) cooked meat medium with 5 microg/mL manganese sulfate (CMM/MnSO4). The titer of the spore suspension, carrier counts, resistance to hydrochloric acid (HCI), and efficacy against 3 liquid sporicidal agents were used to evaluate the potential of CMM and MnSO4 as replacements. The study was performed by the EPA Office of Pesticide Programs Microbiology Laboratory, Fort Meade, MD. Use of CMM/SE and CMM/MnSO4 resulted in comparable results for titer of spore suspensions (approximately 10(8) spores/mL) and carrier counts (approximately 3 x 10(6) spores/carrier). The carrier counts for the EMM/SE were approximately 1 log lower than CMM-based treatments; however, no attempt was made to dilute the CMM spore suspensions prior to carrier inoculation to reduce the carrier counts for CMM. Resistance of spores to 2.5 M HCI was acceptable across the 3 media types. Treatments for comparative efficacy testing were designed to provide a range of sporicidal activity, i.e., high and low efficacy treatments. Sodium hypochlorite (bleach), hydrogen peroxide/peracetic acid, and glutaraldehyde were used as test chemicals. The number of carriers resulting in growth (positive) for the low treatments for all 3 chemicals ranged from 9 to 59 out of 60 across the 3 media types--EMM exhibited fewer positives overall. The high efficacy treatments for sodium hypochlorite and hydrogen peroxide/peracetic acid yielded a range of 0 to 2 positives out of 60 across the 3 media. However, the high glutaraldehyde treatment generated 3, 20, and 20 positives out of 60 for the EMM/SE, CMM/SE, and CMM/MnSO4, respectively. The lower number of positive carriers for EMM/SE may be due to the reduced carrier counts. CMM, either with SE or MnSO4, appears to be a suitable replacement for EMM/SE. On the basis of the results of this study, the Study Director recommends that CMM/MnSO4 and the spore enumeration target carrier count and neutralization procedures be considered for collaborative study to officially modify the Clostridium x porcelain component of Method 966.04.
New efforts in eastern cottonwood biomass production through breeding and clonal refinement
Jason W. Cromer; Randall J. Rousseau; B. Landis Herrin
2014-01-01
First generation biofuels (also known as traditional biofuels) primarily use corn to produce ethanol. Newer techniques and knowledge are now allowing ethanol production from renewable resources such as trees that have more complex molecular structures that inhibit access to sugars. Ethanol production is through an enzymatic process which uses cellulose, or pyrolosis...
Surface modification of lignocellulosic fibers using high-frequency ultrasound
Jayant B. Gadhe; Ram B. Gupta; Thomas Elder
2005-01-01
Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...
Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production
NASA Astrophysics Data System (ADS)
Jiang, Jinxue
Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.
Vargas, E; Ruiz, M A; Campuzano, S; Reviejo, A J; Pingarrón, J M
2016-03-31
A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h(-1)) and ease of automation. Copyright © 2016 Elsevier B.V. All rights reserved.
Haburcak, Richard; Shi, Junfeng; Du, Xuewen; Yuan, Dan; Xu, Bing
2016-11-30
The concurrence of enzymatic reaction and ligand-receptor interactions is common for proteins, but rare for small molecules and has yet to be explored. Here we show that ligand-receptor interaction modulates the morphology of molecular assemblies formed by enzyme-instructed assembly of small molecules. While the absence of ligand-receptor interaction allows enzymatic dephosphorylation of a precursor to generate the hydrogelator that self-assembles to form long nanofibers, the presence of the ligand-receptor interaction biases the pathway to form precipitous aggregates containing short nanofibers. While the hydrogelators self-assemble to form nanofibers or nanoribbons that are unable to bind with the ligand (i.e., vancomycin), the addition of surfactant breaks up the assemblies to restore the ligand-receptor interaction. In addition, an excess amount of the ligands can disrupt the nanofibers and result in the precipitates. As the first example of the use of ligand-receptor interaction to modulate the kinetics of enzymatic self-assembly, this work not only provides a solution to evaluate the interaction between aggregates and target molecules but also offers new insight for understanding the emergent behavior of sophisticated molecular systems having multiple and parallel processes.
Sohn, Il-Yung; Kim, Duck-Jin; Jung, Jin-Heak; Yoon, Ok Ja; Thanh, Tien Nguyen; Quang, Trung Tran; Lee, Nae-Eung
2013-07-15
Solution-gated reduced graphene oxide field-effect transistors (R-GO FETs) were investigated for pH sensing and biochemical sensing applications. A channel of a networked R-GO film formed by self-assembly was incorporated as a sensing layer into a solution-gated FET structure for pH sensing and the detection of acetylcholine (Ach), which is a neurotransmitter in the nerve system, through enzymatic reactions. The fabricated R-GO FET was sensitive to protons (H(+)) with a pH sensitivity of 29 mV/pH in terms of the shift of the charge neutrality point (CNP), which is attributed to changes in the surface potential caused by the interaction of protons with OH surface functional groups present on the R-GO surface. The R-GO FET immobilized with acetylcholinesterase (AchE) was used to detect Ach in the concentration range of 0.1-10mM by sensing protons generated during the enzymatic reactions. The results indicate that R-GO FETs provide the capability to detect protons, demonstrating their applicability as a biosensing device for enzymatic reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M
2013-02-01
Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Phuah, Eng-Tong; Lee, Yee-Ying; Tang, Teck-Kim
2018-01-01
Diacylglycerol (DAG) and monoacylglycerol (MAG) are two natural occurring minor components found in most edible fats and oils. These compounds have gained increasing market demand owing to their unique physicochemical properties. Enzymatic glycerolysis in solvent-free system might be a promising approach in producing DAG and MAG-enriched oil. Understanding on glycerolysis mechanism is therefore of great importance for process simulation and optimization. In this study, a commercial immobilized lipase (Lipozyme TL IM) was used to catalyze the glycerolysis reaction. The kinetics of enzymatic glycerolysis reaction between triacylglycerol (TAG) and glycerol (G) were modeled using rate equation with unsteady-state assumption. Ternary complex, ping-pong bi-bi and complex ping-pong bi-bi models were proposed and compared in this study. The reaction rate constants were determined using non-linear regression and sum of square errors (SSE) were minimized. Present work revealed satisfactory agreement between experimental data and the result generated by complex ping-pong bi-bi model as compared to other models. The proposed kinetic model would facilitate understanding on enzymatic glycerolysis for DAG and MAG production and design optimization of a pilot-scale reactor. PMID:29401481
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.
A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.
A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less
Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; ...
2015-10-14
A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less
Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts.
Zykwinska, Agata; Boiffard, Marie-Hélène; Kontkanen, Hanna; Buchert, Johanna; Thibault, Jean-François; Bonnin, Estelle
2008-10-08
Green labeled pectins were extracted by an environmentally friendly way using proteases and cellulases being able to act on proteins and cellulose present in cell walls. Pectins were isolated from different plant byproducts, i.e., chicory roots, citrus peel, cauliflower florets and leaves, endive, and sugar beet pulps. Enzymatic extraction was performed at 50 degrees C for 4 h, in order to fulfill the conditions required for microbiological safety of extracted products. High methoxy (HM) pectins of high molar mass were extracted with three different enzyme mixtures. These pectins were subsequently demethylated with two pectin methyl esterases (PMEs), either the fungal PME from Aspergillus aculeatus or the orange PME. It was further demonstrated that high molar mass low methoxy (LM) pectins could also be extracted directly from cell walls by adding the fungal PME to the mixture of protease and cellulase. Moreover, health benefit pectic oligosaccharides, the so-called modified hairy regions, were obtained after enzymatic treatment of the residue recovered after pectin extraction. The enzymatic method demonstrates that it is possible to convert vegetable byproducts into high-added value compounds, such as pectins and pectic oligosaccharides, and thus considerably reduce the amount of these residues generated by food industries.
Enzymatically Controlled Vacancies in Nanoparticle Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.
In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemicalmore » nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.« less
Lu, F S H; Nielsen, N S; Baron, C P; Diehl, B W K; Jacobsen, C
2013-11-15
The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic standards (phosphatidylcholine and phosphatidylethanolamine) and two purified PL from marine sources with and without addition of amino acids (leucine, methionine and lysine). Samples were incubated at 60°C for 0, 2, 4 and 6days. Non-enzymatic browning reactions were investigated through measurement of (i) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Parab, Pankaj; Khandeparker, Rakhee; Amberkar, Ujwala; Khodse, Vishwas
2017-10-01
Enzymatic hydrolysis of seaweed biomass was studied using xylanase produced from marine bacteria Bacillus sp. strain BT21 through solid-state fermentation of wheat bran. Three types of seaweeds, Ahnfeltia plicata , Padina tetrastromatica and Ulva lactuca , were selected as representatives of red, brown, and green seaweeds, respectively. Seaweed biomass was pretreated with hot water. The efficiency of pretreated biomass to release reducing sugar by the action of xylanase as well as the type of monosaccharide released during enzyme saccharification of seaweed biomass was studied. It was seen that pretreated biomass of seaweed A. plicata, U. lactuca , and P. tetrastroma , at 121 °C for 45 min, followed by incubation with 50 IU xylanase released reducing sugars of 233 ± 5.3, 100 ± 6.1 and 73.3 ± 4.1 µg/mg of seaweed biomass, respectively. Gas chromatography analysis illustrated the release of xylose, glucose, and mannose during the treatment process. Hot water pre-treatment process enhanced enzymatic conversion of biomass into sugars. This study revealed the important role of xylanase in saccharification of seaweed, a promising feedstock for third-generation bioethanol production.
Goodell, Barry; Zhu, Yuan; Kim, Seong; Kafle, Kabindra; Eastwood, Daniel; Daniel, Geoffrey; Jellison, Jody; Yoshida, Makoto; Groom, Leslie; Pingali, Sai Venkatesh; O'Neill, Hugh
2017-01-01
Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a "pretreatment" used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability.
Enzymatic reaction paths as determined by transition path sampling
NASA Astrophysics Data System (ADS)
Masterson, Jean Emily
Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.
Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos
2013-01-01
Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L−1/10 min), peracetic acid (100 mg L−1/15 min) and ozonated water (1.2 mg L−1 /1 min) as alternative sanitizers to sodium hypochlorite (150 mg L−1 free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days. PMID:24516433
Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos
2013-01-01
Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L(-1)/10 min), peracetic acid (100 mg L(-1)/15 min) and ozonated water (1.2 mg L(-1)/1 min) as alternative sanitizers to sodium hypochlorite (150 mg L(-1) free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days.
Taneja, Sonali; Kumari, Manju; Anand, Surbhi
2014-01-01
Objectives: The objective of this in vitro study was to assess the effect of different chelating agents on the calcium loss and its subsequent effect on the microhardness of the root dentin. Materials and Methods: Ten single rooted lower premolars were selected. The teeth were decoronated and thick transverse sections of 2 mm were obtained from the coronal third of the root. Each section was then divided into four quarters, each part constituting a sample specimen from the same tooth for each group. The treatment groups were: Group 1 (Control): 5% Sodium hypochlorite (NaOCl) for 5 min + distilled water for 5 min; Group 2: 5% NaOCl for 5 min + 17% ethylenediaminetetraacetic acid (EDTA) for 5 min; Group 3: 5% NaOCl for 5 min + 2.25% Peracetic acid (PAA) for 5 min and Group 4: 5% NaOCl for 5 min + QMix for 5 min respectively. The calcium loss of the samples was evaluated using the Atomic Absorption Spectrophotometer followed by determination of their microhardness using Vickers Hardness Tester. Data was analyzed using one-way ANOVA, Post hoc Tukey test and Pearson correlation. Results: The maximum calcium loss and minimum microhardness was observed in Group 3 followed by Group 2, Group 4 and Group 1. There was a statistically significant difference between all the groups except between Groups 2 and 4. Conclusions: Irrigation with NaOCl + 2.25% PAA caused the maximum calcium loss from root dentin and reduced microhardness. A negative correlation existed between the calcium loss and reduction in the microhardness of root dentin. PMID:24778513
The effect of peracetic acid on removing calcium hydroxide from the root canals.
Sağsen, Burak; Ustün, Yakup; Aslan, Tuğrul; Canakçi, Burhan Can
2012-09-01
The goal of this study was to evaluate the efficiencies of different irrigation solutions in the removal of calcium hydroxide (CH). Forty-eight maxillary central incisor teeth were used. Root canals were prepared with the ProTaper system (Dentsply Maillefer, Baillagues, Switzerland). Five milliliters 2% NaOCl, 5 mL 17% EDTA, and 10 mL saline were used for final irrigation. The canals were filled with CH paste. Specimens were randomly divided into 4 experimental groups (n = 10) according to irrigation protocols. Positive and negative control groups (n = 4) were used. Group 1 used 2.5 mL 17% EDTA, group 2 used 2.5 mL 2.5% NaOCl + 2.5 mL 17% EDTA, group 3 used 2.5 mL 1% peracetic acid (PAA), and group 4 used 2.5 mL 0.5% PAA. The specimens were evaluated with scanning electron microscope analysis and scored. Kruskal-Wallis and Student Newman-Keuls post hoc tests were used for statistical analysis. In the apical thirds, 1% PAA was superior to the other groups (P < .05); however, there were no significant differences among the other groups (P > .05). In the middle thirds, no significant differences were found among the groups (P > .05). In the coronal thirds, 1% PAA was superior to the other groups. There were significant differences among all the other groups (P < .05). According to the findings of the present study, 1% PAA could be recommended for the removal of CH from the root canals. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Description and evaluation of a peracetic acid air sampling and analysis method.
Nordling, John; Kinsky, Owen R; Osorio, Magdalena; Pechacek, Nathan
2017-12-01
Peracetic acid (PAA) is a corrosive chemical with a pungent odor, which is extensively used in occupational settings and causes various health hazards in exposed workers. Currently, there is no US government agency recommended method that could be applied universally for the sampling and analysis of PAA. Legacy methods for determining airborne PAA vapor levels frequently suffered from cross-reactivity with other chemicals, particularly hydrogen peroxide (H 2 O 2 ). Therefore, to remove the confounding factor of cross-reactivity, a new viable, sensitive method was developed for assessment of PAA exposure levels, based on the differential reaction kinetics of PAA with methyl p-tolylsulfide (MTS), relative to H 2 O 2 , to preferentially derive methyl p-tolysulfoxide (MTSO). By quantifying MTSO concentration produced in the liquid capture solution from an air sampler, using an internal standard, and utilizing the reaction stoichiometry of PAA and MTS, the original airborne concentration of PAA is determined. After refining this liquid trap high-performance liquid chromatography (HPLC) method in the laboratory, it was tested in five workplace settings where PAA products were used. PAA levels ranged from the detection limit of 0.013 parts per million (ppm) to 0.4 ppm. The results indicate a viable and potentially dependable method to assess the concentrations of PAA vapors under occupational exposure scenarios, though only a small number of field measurements were taken while field testing this method. However, the low limit of detection and precision offered by this method makes it a strong candidate for further testing and validation to expand the uses of this liquid trap HPLC method.
Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J
2016-01-01
Background. Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods. We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results. Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions. Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin.
Cord, Caroline Berwanger; Velasco, Rafael Vidal Cortez; Ribeiro Melo Lima, Laíla Fernanda; Rocha, Daniel Guimarães Pedro; da Silveira Bueno, Carlos Eduardo; Pinheiro, Sérgio Luiz
2014-08-01
The aim of this study was to evaluate the effectiveness of peracetic acid (PAA) in cleaning root canals contaminated with Enterococcus faecalis. Sixty first and second mandibular molars were used. Their mesiobuccal canals were prepared with the Reciproc System (VDW, Munich, Germany). The canals were irrigated with 10 mL saline during instrumentation. The teeth were randomly divided into 3 groups (n = 20), according to the irrigation solution to be used after instrumentation: group PAA (5 mL 1% PAA), group EDTA/sodium hypochlorite (NaOCl) (5 mL 17% EDTA followed by 5 mL 2.5% sodium hypochlorite), and group S (5 mL saline). Microbiological samples were collected before instrumentation and after final irrigation. Bacterial quantification was performed by counting the number of colony-forming units (CFUs/mL). The results were analyzed by the nonparametric Wilcoxon and Kruskal-Wallis tests. The 3 groups showed a significant reduction (P < .05) in CFUs/mL after final irrigation. PAA and NaOCl associated with EDTA produced a significantly higher reduction in CFUs/mL (P < .05) compared with saline. There was no statistically significant difference between PAA and EDTA + 2.5% NaOCl (P > .05). According to the results of the present study, the effectiveness of 1% PAA was similar to that of 17% EDTA + 2.5% NaOCl in cleaning curved root canals contaminated with E. faecalis. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke; Frigon, Dominic
2014-06-01
Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm(2) and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.
Evaluation of Combined Peracetic acid and UV treatment for ...
The current study evaluates the effectiveness of the combined application of Peracetic acid and ultraviolet radiation as alternative disinfectant agents to the traditional chlorination of wastewater effluents. Various pathogens (E. coli, enterococci and fecal coliforms) were evaluated in the study. Four experiments were conducted using low to high PAA levels and UV dosages. E. coli and enterococci were resistant to low to moderate PAA dosage (0.5- 1 mg/L). These microbes can be removed effectively at high PAA dosage (2.5 mg/L) with 30 min contact time. Fecal coliforms were completely inactivated even at a low PAA dose of 0.7 mg/L. E. coli was more susceptible to UV disinfection than enterococci at low UV dosages. Enterococci required at least 40 mJ/cm2 for 2.5 log inactivation. In combined PAA + UV treatment, low UV intensities between 7 – 40 mJ/cm2 showed poor disinfection performance at a low PAA concentration of 1.5 mg/L. High UV intensities of 120 and 60 mJ/cm2 inactivated all the pathogens to below detection levels even at low to moderate PAA (0.7 mg/L and 1 mg/L) pretreatment concentration. Combined PAA + UV treatment at 1 mg/L (for 15 and 30 min contact time) + 120 and 60 mJ/cm2 did not show any regrowth of microbes, whereas PAA only disinfection with 15 min contact time showed regrowth of enterococci and fecal coliforms. UV only disinfection showed E. coli regrowth. • This pilot scale study was designed for providing necessary parameter optimization
Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke
2014-01-01
Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters. PMID:24727265
Bauermeister, L J; Bowers, J W J; Townsend, J C; McKee, S R
2008-11-01
Salmonella spp. and Campylobacter spp. continue to be prominent food safety concerns for the poultry industry and consumers alike. Peracetic acid (PAA) has been approved as an antimicrobial for use in poultry chillers. To validate its effectiveness, 100 poultry carcasses (per replication x 2) were inoculated with Salmonella (10(6) cfu) or Campylobacter (10(6) cfu) and were randomly allocated into chill water containing chlorine (0.003%) or PAA (0.0025%, 0.01%, or 0.02%). Results indicated that PAA concentrations as low as 0.0025% were effective in decreasing Salmonella spp., whereas PAA levels of 0.02% were effective in decreasing Campylobacter spp. when compared with the chlorine treatment. A sensory study was also conducted with another set of 500 carcasses (not inoculated). Birds were treated with water, chlorine (0.003%), or PAA (0.01%, 0.015%, or 0.02%). Sensory panels and microbial data were collected weekly on randomly sampled carcasses that were stored at 4 degrees C for 21 d. The PAA-treated carcasses at 0.015% and 0.02% had an extended shelf-life compared with those treated with water or chlorine. Specifically, on d 15, the only treatments that could be served to sensory panelists were the carcasses treated with 0.015% or 0.02% PAA. The carcasses treated with water, chlorine, or 0.01% PAA had off-colors, off-odors, and high microbial counts. These results suggest that PAA may be an effective antimicrobial when used in poultry chiller applications and greater levels (>or=0.015%) may extend product shelf-life.
Oie, Shigeharu; Obayashi, Akiko; Yamasaki, Hirofumi; Furukawa, Hiroyuki; Kenri, Tsuyoshi; Takahashi, Motohide; Kawamoto, Keiko; Makino, Sou-ichi
2011-01-01
To evaluate disinfection methods for environments contaminated with bioterrorism-associated microorganism (Bacillus anthracis), we performed the following experiments. First, the sporicidal effects of sodium hypochlorite on spores of five bacterial species were evaluated. Bacillus atrophaeus was the most resistant to hypochlorite, followed in order by B. anthracis, Clostridium botulinum and Clostridium tetani, and Clostridium difficile. Subsequently, using B. atrophaeus spores that were the most resistant to hypochlorite, the sporicidal effects of hypochlorite at lower pH by adding vinegar were evaluated. Hypochlorite containing vinegar had far more marked sporicidal effects than hypochlorite alone. Cleaning with 0.5% (5000 ppm) hypochlorite containing vinegar inactivated B. atrophaeus spores attached to vinyl chloride and plywood plates within 15 s, while that not containing vinegar did not inactivate spores attached to cement or plywood plates even after 1 h. Therefore, the surfaces of cement or plywood plates were covered with gauze soaked in 0.5% hypochlorite containing vinegar, and the sporicidal effects were evaluated. B. atrophaeus spores attached to plywood plates were not inactivated even after 6 h, but those attached to cement plates were inactivated within 5 min. On the other hand, covering the surfaces of plywood plates with gauze soaked in 0.3% peracetic acid and gauze soaked in 2% glutaral inactivated B. atrophaeus spores within 5 min and 6 h, respectively. These results suggest that hypochlorite containing vinegar is effective for disinfecting vinyl chloride, tile, and cement plates contaminated with B. anthracis, and peracetic acid is effective for disinfecting plywood plates contaminated with such microorganism.
Domínguez-Henao, Laura; Turolla, Andrea; Monticelli, Damiano; Antonelli, Manuela
2018-06-01
The recent growing interest in peracetic acid (PAA) as disinfectant for wastewater treatment demands reliable and readily-available methods for its measurement. In detail, the monitoring of PAA in wastewater treatment plants requires a simple, accurate, rapid and inexpensive measurement procedure. In the present work, a method for analyzing low concentrations of PAA, adapted from the US EPA colorimetric method for total chlorine, is assessed. This method employs N,N-diethyl-p-phenylelnediamine (DPD) in the presence of an excess of iodide in a phosphate buffer system. Pink colored species are produced proportionally to the concentration of PAA in the sample. Considering that PAA is available commercially as an equilibrium solution of PAA and hydrogen peroxide (H 2 O 2 ), a measurement method for H 2 O 2 is also investigated. This method, as the one for the determination of PAA, is also based on the oxidation of iodide to iodine, with the difference that ammonium molybdate Mo(VI) is added to catalyze the oxidation reaction between H 2 O 2 and iodide, quantifying the total peroxides (PAA+ H 2 O 2 ). The two methods are suitable for concentration ranges from about 0.1-1.65 mg L -1 and from about 0.3-3.3 mg L -1 , respectively for PAA and H 2 O 2 . Moreover, the work elucidates some relevant aspects related to the operational conditions, kinetics and the possible interference of H 2 O 2 on PAA measurement. Copyright © 2018 Elsevier B.V. All rights reserved.
Lottanti, S; Gautschi, H; Sener, B; Zehnder, M
2009-04-01
To evaluate the effects of ethylenediaminetetraacetic (EDTA), etidronic (EA) and peracetic acid (PA) when used in conjunction with sodium hypochlorite (NaOCl) as root canal irrigants on calcium eluted from canals, smear layer, and root dentine demineralization after instrumentation/irrigation. Single-rooted human premolars were irrigated as follows (n = 12 per group): (1) 1% NaOCl during instrumentation, deionized water after instrumentation, (2) 1% NaOCl during, 17% EDTA after instrumentation, (3) a 1 : 1-mixture of 2% NaOCl and 18% EA during and after instrumentation, and (4) 1% NaOCl during, 2.25% PA after instrumentation. Irrigant volumes and contact times were 10 mL/15 min during and 5 mL/3 min after instrumentation. The evaluated outcomes were eluted calcium by atomic absorption spectroscopy, smear-covered areas by scanning electron microscopy in secondary electron mode and apparent canal wall decalcifications on root transsections in backscatter mode. For the smear layer analysis, sclerotic dentine was taken into consideration. Results were compared using appropriate parametric and nonparametric tests, alpha = 0.05. The statistical comparison of the protocols regarding calcium elution revealed that protocol (1) yielded less calcium than (3), which yielded less than protocols (2) and (4). Most of the instrumented canal walls treated with one of the decalcifying agents were free of smear layer. Protocols (1) and (3) caused no decalcification of root dentine, whilst (2) and (4) showed substance typical demineralization patterns. The decalcifying agents under investigation were all able to remove or prevent a smear layer. However, they eroded the dentine wall differently.
Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A
Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.
Estabrook, R W; Shet, M S; Faulkner, K; Fisher, C W
1996-11-01
A method has been developed for the commercial application of the unique oxygen chemistry catalyzed by various cytochrome P450s. This is illustrated here for the synthesis of hydroxylated steroids. This method requires the preparation of large amounts of enzymatically functional P450 proteins that can serve as catalysts and a technique for providing electrons at an economically acceptable cost. To generate large amounts of enzymatically active recombinant P450s we have engineered the cDNAs for various P450s, including bovine adrenal P450c17, by linking them to a modified cDNA for rat NADPH-P450 reductase and placing them in the plasmid pCWori+. Transformation of E. coli results in the high level expression of an enzymatically active protein that can be easily purified by affinity chromatography. Incubation of the purified enzyme with steroid in a reaction vessel containing a platinum electrode and a Ag/AgCl electrode couple poised at -650 mV, together with the electromotively active redox mediator, cobalt sepulchrate, results in the 17 alpha-hydroxylation of progesterone at rates as high as 25 nmoles of progesterone hydroxylated/min/nmole of P450. Thus, high concentrations of hydroxylated steroids can be produced with incubation conditions of hours duration without the use of costly NADPH. Similar experiments have been carried out for the generation of the 6 beta-hydroxylation product of testosterone (using a fusion protein containing human P450 3A4). It is apparent that this method is applicable to many other P450 catalyzed reactions for the synthesis of large amounts of hydroxylated steroid metabolites. The electrochemical system is also applicable to drug discovery studies for the characterization of drug metabolites.
Cobucci-Ponzano, Beatrice; Strazzulli, Andrea; Iacono, Roberta; Masturzo, Giuseppe; Giglio, Rosa; Rossi, Mosè; Moracci, Marco
2015-10-01
The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2h vs 12h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Smith, Adam Alexander Thil; Belda, Eugeni; Viari, Alain; Medigue, Claudine; Vallenet, David
2012-05-01
Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.
A Sensitive and Versatile Fluorescent Activity Assay for ABHD6.
Savinainen, Juha R; Navia-Paldanius, Dina; Laitinen, Jarmo T
2016-01-01
The α/β-hydrolase domain-containing 6 (ABHD6) enzyme is a newly found serine hydrolase whose substrate profile resembles that of monoacylglycerol lipase (MAGL), the major 2-arachidonoyl glycerol (2-AG) hydrolase in the brain. Here, we describe a sensitive fluorescent assay of ABHD6 activity in a 96-well-plate format that allows parallel testing of inhibitor activities of up to 40 compounds in a single assay. The method utilizes lysates of HEK293 cells transiently overexpressing human ABHD6 as the enzymatic source, and kinetically monitors glycerol liberated in the hydrolysis of 1(3)-AG, the preferred arachidonoyl glycerol isomer. Glycerol output is coupled to an enzymatic cascade generating the fluorescent end-product resorufin. The approach has major benefits compared to laborious traditional mass spectrometric methods and liquid scintillation-based assays, or approaches using unnatural substrates.
Seo, Dong-Ho; Jung, Jong-Hyun; Lee, Jae-Eun; Jeon, Eun-Jung; Kim, Wooki; Park, Cheon-Seok
2012-09-01
Arbutins (α- and β-arbutins) are glycosylated hydroquinones that are commercially used in the cosmetic industry. These compounds have an inhibitory function against tyrosinase, a critical enzyme for generating pigments, which leads to the prevention of melanin formation, resulting in a whitening effect on the skin. Although β-arbutin is found in various plants including bearberry, wheat, and pear, α-arbutin and other arbutin derivatives are synthesized by chemical and enzymatic methods. This article presents a mini-review of recent studies on the production of α-arbutin and other α- and β-arbutin derivatives via enzymatic bioconversion methods. In addition, the structures of α- and β-arbutin derivatives and their biological activities are discussed. The catalytic characteristics of various enzymes used in the biosynthesis of arbutin derivatives are also reviewed.
Environmental biocatalysis: from remediation with enzymes to novel green processes.
Alcalde, Miguel; Ferrer, Manuel; Plou, Francisco J; Ballesteros, Antonio
2006-06-01
Modern biocatalysis is developing new and precise tools to improve a wide range of production processes, which reduce energy and raw material consumption and generate less waste and toxic side-products. Biocatalysis is also achieving new advances in environmental fields, from enzymatic bioremediation to the synthesis of renewable and clean energies and biochemical cleaning of 'dirty' fossil fuels. Despite the obvious benefits of biocatalysis, the major hurdles hindering the exploitation of the repertoire of enzymatic processes are, in many cases, the high production costs and the low yields obtained. This article will discuss these issues, pinpointing specific new advances in recombinant DNA techniques amenable to future biocatalyst development, in addition to drawing the attention of the biotechnology community to the active pursuit and development of environmental biocatalysis, from remediation with enzymes to novel green processes.
USDA-ARS?s Scientific Manuscript database
A process was developed to fractionate and isolate the hemicellulose B component of corn fiber generated by corn wet milling. The process consisted of pretreatment by soaking in aqueous ammonia (SAA) followed by enzymatic cellulose hydrolysis, during which the hemicellulose B was solubilized by cle...
Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby
2012-01-01
Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...
USDA-ARS?s Scientific Manuscript database
A pretreatment strategy for dilute H2SO4 pretreatment of corn stover was developed for the purpose of reducing the generation of inhibitory substances during pretreatment so that a detoxification step is not required prior to fermentation while maximizing the sugar yield. We have optimized dilute su...
USDA-ARS?s Scientific Manuscript database
Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Corn stover (supplied by a local farmer) used in this study contained 37.0±0.4% cellulose, 31.3±0.6% hemicelluloses, and 17.8±0.2% lignin. Generation of fermentable sugars from ...
Anaerobic ammonia removal in presence of organic matter: a novel route.
Sabumon, P C
2007-10-01
This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP=-248+/-25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO(2)(-), NO(3)(-) and SO(4)(2-)) studied, NO(2)(-) was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH(4)(+) to NO(3)(-), followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation.
Thiomers and thiomer-based nanoparticles in protein and DNA drug delivery.
Hauptstein, Sabine; Bernkop-Schnürch, Andreas
2012-09-01
Thanks to advances in biotechnology, more and more highly efficient protein- and DNA-based drugs have been developed. Unfortunately, these kinds of drugs underlie poor non-parental bioavailability. To overcome hindrances like low mucosal permeability and enzymatic degradation polymeric excipients are utilized as drug carrier whereat thiolated excipients showed several promising qualities in comparison to the analogical unmodified polymer. The article deals with the comparatively easy modification of well-established polymers like chitosan or poly(acrylates) to synthesize thiomers. Further, the recently developed "next generation" thiomers e.g. preactivated or S-protected thiomers are introduced. Designative properties like mucoadhesion, uptake and permeation enhancement, efflux pump inhibition and protection against enzymatic degradation will be discussed and differences between first and next generation thiomers will be pointed out. Additionally, nanoparticles prepared with thiomers will be dealt with regarding to protein and DNA drug delivery as thiomers seem to be a promising approach to avoid parenteral application. Properties of thiomers per se and results of in vivo studies carried out so far for peptide and DNA drugs demonstrate their potential as multifunctional excipients. However, further investigations and optimizations have to be done before establishing a carrier system ready for clinical approval.
Rodriguez-Rivera, Veronica; Weidner, John W.; Yost, Michael J.
2016-01-01
Tissue scaffolds play a crucial role in the tissue regeneration process. The ideal scaffold must fulfill several requirements such as having proper composition, targeted modulus, and well-defined architectural features. Biomaterials that recapitulate the intrinsic architecture of in vivo tissue are vital for studying diseases as well as to facilitate the regeneration of lost and malformed soft tissue. A novel biofabrication technique was developed which combines state of the art imaging, three-dimensional (3D) printing, and selective enzymatic activity to create a new generation of biomaterials for research and clinical application. The developed material, Bovine Serum Albumin rubber, is reaction injected into a mold that upholds specific geometrical features. This sacrificial material allows the adequate transfer of architectural features to a natural scaffold material. The prototype consists of a 3D collagen scaffold with 4 and 3 mm channels that represent a branched architecture. This paper emphasizes the use of this biofabrication technique for the generation of natural constructs. This protocol utilizes a computer-aided software (CAD) to manufacture a solid mold which will be reaction injected with BSA rubber followed by the enzymatic digestion of the rubber, leaving its architectural features within the scaffold material. PMID:26967145
Rodriguez-Rivera, Veronica; Weidner, John W; Yost, Michael J
2016-02-12
Tissue scaffolds play a crucial role in the tissue regeneration process. The ideal scaffold must fulfill several requirements such as having proper composition, targeted modulus, and well-defined architectural features. Biomaterials that recapitulate the intrinsic architecture of in vivo tissue are vital for studying diseases as well as to facilitate the regeneration of lost and malformed soft tissue. A novel biofabrication technique was developed which combines state of the art imaging, three-dimensional (3D) printing, and selective enzymatic activity to create a new generation of biomaterials for research and clinical application. The developed material, Bovine Serum Albumin rubber, is reaction injected into a mold that upholds specific geometrical features. This sacrificial material allows the adequate transfer of architectural features to a natural scaffold material. The prototype consists of a 3D collagen scaffold with 4 and 3 mm channels that represent a branched architecture. This paper emphasizes the use of this biofabrication technique for the generation of natural constructs. This protocol utilizes a computer-aided software (CAD) to manufacture a solid mold which will be reaction injected with BSA rubber followed by the enzymatic digestion of the rubber, leaving its architectural features within the scaffold material.
Genetic engineering including superseding microinjection: new ways to make GM pigs.
Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco
2010-01-01
Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.
Tiwari, Rameshwar; Nain, Lata; Labrou, Nikolaos E; Shukla, Pratyoosh
2018-03-01
Second generation biofuel production has been appeared as a sustainable and alternative energy option. The ultimate aim is the development of an industrially feasible and economic conversion process of lignocellulosic biomass into biofuel molecules. Since, cellulose is the most abundant biopolymer and also represented as the photosynthetically fixed form of carbon, the efficient hydrolysis of cellulose is the most important step towards the development of a sustainable biofuel production process. The enzymatic hydrolysis of cellulose by suites of hydrolytic enzymes underlines the importance of cellulase enzyme system in whole hydrolysis process. However, the selection of the suitable cellulolytic enzymes with enhanced activities remains a challenge for the biorefinery industry to obtain efficient enzymatic hydrolysis of biomass. The present review focuses on deciphering the novel and effective cellulases from different environmental niches by unculturable metagenomic approaches. Furthermore, a comprehensive functional aspect of cellulases is also presented and evaluated by assessing the structural and catalytic properties as well as sequence identities and expression patterns. This review summarizes the recent development in metagenomics based approaches for identifying and exploring novel cellulases which open new avenues for their successful application in biorefineries.
Nakanishi, Simone C; Soares, Lauren B; Biazi, Luiz Eduardo; Nascimento, Viviane M; Costa, Aline C; Rocha, George Jackson M; Ienczak, Jaciane L
2017-10-01
Alcoholic fermentation of released sugars in pretreatment and enzymatic hydrolysis of biomass is a central feature for second generation ethanol (E2G) production. Saccharomyces cerevisiae used industrially in the production of first generation ethanol (E1G) convert sucrose, fructose, and glucose into ethanol. However, these yeasts have no ability to ferment pentose (xylose). Therefore, the present work has focused on E2G production by Scheffersomyces stipitis and Spathaspora passalidarum. The fermentation strategy with high pitch, cell recycle, fed-batch mode, and temperature decrease for each batch were performed in a hydrolyzate obtained from a pretreatment at 130°C with NaOH solution (1.5% w/v) added with 0.15% (w/w) of anthraquinone (AQ) and followed by enzymatic hydrolysis. The process strategy has increased volumetric productivity from 0.35 to 0.38 g · L -1 · h -1 (first to third batch) for S. stipitis and from 0.38 to 0.81 g · L -1 · h -1 for S. passalidarum (first to fourth batch). Mass balance for the process proposed in this work showed the production of 177.33 kg ethanol/ton of sugar cane bagasse for S. passalidarum compared to 124.13 kg ethanol/ton of sugar cane bagasse for S. stipitis fermentation. The strategy proposed in this work can be considered as a promising strategy in the production of second generation ethanol. Biotechnol. Bioeng. 2017;114: 2211-2221. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The effects of storage and sterilization on de-cellularized and re-cellularized whole lung.
Bonenfant, Nicholas R; Sokocevic, Dino; Wagner, Darcy E; Borg, Zachary D; Lathrop, Melissa J; Lam, Ying Wai; Deng, Bin; Desarno, Michael J; Ashikaga, Taka; Loi, Roberto; Weiss, Daniel J
2013-04-01
Despite growing interest on the potential use of de-cellularized whole lungs as 3-dimensional scaffolds for ex vivo lung tissue generation, optimal processing including sterilization and storage conditions, are not well defined. Further, it is unclear whether lungs need to be obtained immediately or may be usable even if harvested several days post-mortem, a situation mimicking potential procurement of human lungs from autopsy. We therefore assessed effects of delayed necropsy, prolonged storage (3 and 6 months), and of two commonly utilized sterilization approaches: irradiation or final rinse with peracetic acid, on architecture and extracellular matrix (ECM) protein characteristics of de-cellularized mouse lungs. These different approaches resulted in significant differences in both histologic appearance and in retention of ECM and intracellular proteins as assessed by immunohistochemistry and mass spectrometry. Despite these differences, binding and proliferation of bone marrow-derived mesenchymal stromal cells (MSCs) over a one month period following intratracheal inoculation was similar between experimental conditions. In contrast, significant differences occurred with C10 mouse lung epithelial cells between the different conditions. Therefore, delayed necropsy, duration of scaffold storage, sterilization approach, and cell type used for re-cellularization may significantly impact the usefulness of this biological scaffold-based model of ex vivo lung tissue regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Disinfection Pilot Trial for Little Miami WWTP | Science ...
There is a serious interest growing nationally towards the use of PAA at various stages of public waste water treatment facilities; one of such use is secondary waste water treatment. MSDGC is currently interested in improving efficiency and economic aspects of waste water treatment. MSDGC requested for ORD’s support to evaluate alternative cost-effective disinfectants. This report herein is based on the data generated from the field pilot test conducted at the Little Miami Wastewater Treatment Plant. Chlorine assisted disinfection of wastewaters created the concern regarding the formation of high levels of toxic halogenated disinfection byproducts (DBPs) detrimental to aquatic life and public health. Peracetic acid is emerging as a green alternative to chlorine and claimed to have economic and social benefits. In addition, it is a relatively simple retrofit to the existing chlorine treated wastewater treatment facilities. PAA is appealed to possess a much lower aquatic toxicity profile than chlorine and decays rapidly in the environment, even if overdosed. As a result, PAA generally does not need a quenching step, such as dechlorination, reducing process complexity, sodium pollution and cost. PAA treatment does not result in the formation of chlorinated disinfection by-products such as trihalomethanes (THMs), haloacetic acids and other byproducts such as cyanide and n-Nitrosodimethylamine (NDMA).
Ae Kim, Sun; Hong Park, Si; In Lee, Sang; Owens, Casey M.; Ricke, Steven C.
2017-01-01
The purpose of this study was to 1) identify microbial compositional changes on chicken carcasses during processing, 2) determine the antimicrobial efficacy of peracetic acid (PAA) and Amplon (blend of sulfuric acid and sodium sulfate) at a poultry processing pilot plant scale, and 3) compare microbial communities between chicken carcass rinsates and recovered bacteria from media. Birds were collected from each processing step and rinsates were applied to estimate aerobic plate count (APC) and Campylobacter as well as Salmonella prevalence. Microbiome sequencing was utilized to identify microbial population changes over processing and antimicrobial treatments. Only the PAA treatment exhibited significant reduction of APC at the post chilling step while both Amplon and PAA yielded detectable Campylobacter reductions at all steps. Based on microbiome sequencing, Firmicutes were the predominant bacterial group at the phyla level with over 50% frequency in all steps while the relative abundance of Proteobacteria decreased as processing progressed. Overall microbiota between rinsate and APC plate microbial populations revealed generally similar patterns at the phyla level but they were different at the genus level. Both antimicrobials appeared to be effective on reducing problematic bacteria and microbiome can be utilized to identify optimal indicator microorganisms for enhancing product quality. PMID:28230180
[Enzymatic degradation of organophosphorus insecticide chlorpyrifos by fungus WZ-I].
Xie, Hui; Zhu, Lu-sheng; Wang, Jun; Wang, Xiu-guo; Liu, Wei; Qian, Bo; Wang, Qian
2005-11-01
Degradation characteristics of chlorpyrifos insecticides was determined by the crude enzyme extracted from the isolated strain WZ-I ( Fusarium LK. ex Fx). The best separating condition and the degrading characteristic of chlorpyrifos were studied. Rate of degradation for chlorpyrifos by its intracellular enzyme, extracellular enzyme and cell fragment was 60.8%, 11.3% and 48%, respectively. The degrading enzyme was extracted after this fungus was incubated for 8 generations in the condition of noninducement, and its enzymic activity lost less, the results show that this enzyme is an intracellular and connatural enzyme. The solubility protein of the crude enzyme was determined with Albumin (bovine serum) as standard protein and the solubility protein of the crude enzyme was 3.36 mg x mL(-1). The pH optimum for crude enzyme was 6.8 for enzymatic degradation of chlorpyrifos, and it had comparatively high activity in the range of pH 6.0 - 9.0. The optimum temperature for enzymatic activity was at 40 degrees C, it still had comparatively high activity in the range of temperature 20-50 degrees C, the activity of enzyme rapidly reduced at 55 degrees C, its activity was 41% of the maximal activity. The crude enzyme showed Km value for chlorpyrifos of 1.049 26 mmol x L(-1), and the maximal enzymatic degradation rate was 0.253 5 micromol x (mg x min)(-1). Additional experimental evidence suggests that the enzyme had the stability of endure for temperature and pH, the crude enzyme of fungus WZ-I could effectively degrade chlorpyrifos.
Muneeruddin, K; Bobst, C E; Frenkel, R; Houde, D; Turyan, I; Sosic, Z; Kaltashov, I A
2017-01-16
Detailed profiling of both enzymatic (e.g., glycosylation) and non-enzymatic (e.g., oxidation and deamidation) post-translational modifications (PTMs) is frequently required for the quality assessment of protein-based drugs. Challenging as it is, this task is further complicated for the so-called second-generation biopharmaceuticals, which also contain "designer PTMs" introduced to either enhance their pharmacokinetic profiles (e.g., PEGylated proteins) or endow them with therapeutic activity (e.g., protein-drug conjugates). Such modifications of protein covalent structure can dramatically increase structural heterogeneity, making the very notion of "molecular mass" meaningless, as ions representing different glycoforms of a PEGylated protein may have nearly identical distributions of ionic current as a function of m/z, making their contributions to the mass spectrum impossible to distinguish. In this work we demonstrate that a combination of ion exchange chromatography (IXC) with on-line detection by electrospray ionization mass spectrometry (ESI MS) and methods of ion manipulation in the gas phase (limited charge reduction and collision-induced dissociation) allows meaningful structural information to be obtained on a structurally heterogeneous sample of PEGylated interferon β-1a. IXC profiling of the protein sample gives rise to a convoluted chromatogram with several partially resolved peaks which can represent both deamidation and different glycosylation patterns within the protein, as well as varying extent of PEGylation. Thus, profiling the protein with on-line IXC/ESI/MS/MS allows it to be characterized by providing information on three different types of PTMs (designer, enzymatic and non-enzymatic) within a single protein therapeutic.
Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.; ...
2016-04-01
Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In thismore » work, we achieved approximately 230 g L -1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L -1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. As a result, the potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.« less
Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah
2017-09-01
In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.
Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In thismore » work, we achieved approximately 230 g L -1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L -1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. As a result, the potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.« less
Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun
2016-05-01
Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.
NASA Astrophysics Data System (ADS)
Stolov, Andrei A.; Warych, Edward T.; Smith, William P.; Fournier, Paula L.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve
2014-02-01
Optical fibers and terminations were subjected to different sterilization techniques, including multiple autoclaving and treatments with peracetic acid, E-beam and UV radiation. Effects of different sterilization techniques on key optical and mechanical properties of the fibers and the terminations were revealed. The primary attention was given to behavior of the coatings on the fibers and adhesives used in the terminations in harsh sterilization environments. The optical fibers with following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.
The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes
Dimitrios Floudas; Manfred Binder; Robert Riely; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Angel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. deVries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Pawe³ Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten; Annegret Kohler; Ursula Kües; T. K. ArunKumar; Alan Kuo; Kurt LaButti; Luis F. Larrondo; Erika Lindquist; Albee Ling; Vincent Lombard; Susan Lucas; Taina Lundell; Rachael Martin; David J. McLaughlin; Ingo Morgenstern; Emanuelle Morin; Claude Murat; Laszlo G. Nagy; Matt Nolan; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Antonis Rokas; Francisco J. Ruiz-Dueñas; Grzegorz Sabat; Asaf Salamov; Masahiro Samejima; Jeremy Schmutz; Jason C. Slot; Franz St. John; Jan Stenlid; Hui Sun; Sheng Sun; Khajamohiddin Syed; Adrian Tsang; Ad Wiebenga; Darcy Young; Antonio Pisabarro; Daniel C. Eastwood; Francis Martin; Dan Cullen; Igor V. Grigoriev; David S. Hibbett
2012-01-01
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains nonâlignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study)...
Kaur, Navdeep; Dhawan, Manish; Sharma, Isha; Pati, Pratap Kumar
2016-06-10
Salinity stress is a major constrain in the global rice production and hence serious efforts are being undertaken towards deciphering its remedial strategies. The comparative analysis of differential response of salt sensitive and salt tolerant lines is a judicious approach to obtain essential clues towards understanding the acquisition of salinity tolerance in rice plants. However, adaptation to salt stress is a fairly complex process and operates through different mechanisms. Among various mechanisms involved, the reactive oxygen species mediated salinity tolerance is believed to be critical as it evokes cascade of responses related to stress tolerance. In this background, the present paper for the first time evaluates the ROS generating and the scavenging system in tandem in both salt sensitive and salt tolerant cultivars of rice for getting better insight into salinity stress adaptation. Comparative analysis of ROS indicates the higher level of hydrogen peroxide (H2O2) and lower level of superoxide ions (O(2-)) in the salt tolerant as compared to salt sensitive cultivars. Specific activity of ROS generating enzyme, NADPH oxidase was also found to be more in the tolerant cultivars. Further, activities of various enzymes involved in enzymatic and non enzymatic antioxidant defence system were mostly higher in tolerant cultivars. The transcript level analysis of antioxidant enzymes were in alignment with the enzymatic activity. Other stress markers like proline were observed to be higher in tolerant varieties whereas, the level of malondialdehyde (MDA) equivalents and chlorophyll content were estimated to be more in sensitive. The present study showed significant differences in the level of ROS production and antioxidant enzymes activities among sensitive and tolerant cultivars, suggesting their possible role in providing natural salt tolerance to selected cultivars of rice. Our study demonstrates that the cellular machinery for ROS production and scavenging system works in an interdependent manner to offer better salt stress adaptation in rice. The present work further highlights that the elevated level of H2O2 which is considered as a key determinant for conferring salt stress tolerance to rice might have originated through an alternative route of photocatalytic activity of chlorophyll.
Lin, Sen; Sun, Shiyong; Wang, Ke; Shen, Kexuan; Ma, Biaobiao; Ren, Yuquan; Fan, Xiaoyu
2018-02-24
The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH) was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO₂ nanoparticles (NPs) as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO₂ NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD) coenzyme between NADH and NAD⁺ was realized by enzymatic regeneration of NADH from NAD⁺ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD⁺ under visible light. This bioinspired ADH@TiO₂ NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD⁺/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.
Riebel, Matthias; Sabel, Andrea; Claus, Harald; Fronk, Petra; Xia, Ning; Li, Huige; König, Helmut; Decker, Heinz
2015-09-18
Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO), including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells) delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xianzhi; Sun, Qining; Kosa, Matyas
Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less
Meng, Xianzhi; Sun, Qining; Kosa, Matyas; ...
2016-07-27
Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less
NASA Technical Reports Server (NTRS)
Chueh, Pin-Ju; Kim, Chinpal; Cho, NaMi; Morre, Dorothy M.; Morre, D. James
2002-01-01
NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit prion-like properties. The two enzymatic activities alternate to generate a regular period length of about 24 min. Here we report the expression, cloning, and characterization of a tumor-associated NADH oxidase (tNOX). The cDNA sequence of 1830 bp is located on gene Xq25-26 with an open reading frame encoding 610 amino acids. The activities of the bacterially expressed tNOX oscillate with a period length of 22 min as is characteristic of tNOX activities in situ. The activities are inhibited completely by capsaicin, which represents a defining characteristic of tNOX activity. Functional motifs identified by site-directed mutagenesis within the C-terminal portion of the tNOX protein corresponding to the processed plasma membrane-associated form include quinone (capsaicin), copper and adenine nucleotide binding domains, and two cysteines essential for catalytic activity. Four of the six cysteine to alanine replacements retained enzymatic activity, but the period lengths of the oscillations were increased. A single protein with two alternating enzymatic activities indicative of a time-keeping function is unprecedented in the biochemical literature.
Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation and utilization
Srivatsan, Seergazhi G.
2008-01-01
Fluorescent nucleobase analogs that respond to changes in their microenvironment are valuable for studying RNA structure, dynamics and recognition. The most commonly used fluorescent ribonucleoside is 2-aminopurine, a highly responsive purine analog. Responsive isosteric fluorescent pyrimidine analogs are, however, rare. Appending 5-membered aromatic heterocycles at the 5-position on a pyrimidine core has recently been found to provide a family of responsive fluorescent nucleoside analogs with emission in the visible range. To explore the potential utility of this chromophore for studying RNA–ligand interactions, an efficient incorporation method is necessary. Here we describe the synthesis of the furan-containing ribonucleoside and its triphosphate, as well as their basic photophysical characteristics. We demonstrate that T7 RNA polymerase accepts this fluorescent ribonucleoside triphosphate as a substrate in in vitro transcription reactions and very efficiently incorporates it into RNA oligonucleotides, generating fluorescent constructs. Furthermore, we utilize this triphosphate for the enzymatic preparation of a fluorescent bacterial A-site, an RNA construct of potential therapeutic utility. We show that the binding of this RNA target to aminoglycoside antibiotics, its cognate ligands, can be effectively monitored by fluorescence spectroscopy. These observations are significant since isosteric emissive U derivatives are scarce and the trivial synthesis and effective enzymatic incorporation of the furan-containing U triphosphate make it accessible to the biophysical community. PMID:17256858
Schlager, Stefanie; Dumitru, Liviu Mihai; Haberbauer, Marianne; Fuchsbauer, Anita; Neugebauer, Helmut; Hiemetsberger, Daniela; Wagner, Annika; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar
2016-03-21
We present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent. The method reported here in this paper operates without the co-enzyme NADH by directly injecting electrons from electrodes into immobilized enzymes. We demonstrate the immobilization of formate, formaldehyde, and alcohol dehydrogenases on one-and-the-same electrode for direct CO2 reduction. Carbon felt is used as working electrode material. An alginate-silicate hybrid gel matrix is used for the immobilization of the enzymes on the electrode. Generation of methanol is observed for the six-electron reduction with Faradaic efficiencies of around 10%. This method of immobilization of enzymes on electrodes offers the opportunity for electrochemical application of enzymatic electrodes to many reactions in which a substitution of the expensive sacrificial co-enzyme NADH is desired. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice
Burns, David P.; Ali, Izza; Rieux, Clement; Healy, James; Jasionek, Greg; O’Halloran, Ken D.
2017-01-01
Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease. PMID:29210997
Activation of dioxygen by copper metalloproteins and insights from model complexes
Quist, David A.; Diaz, Daniel E.; Liu, Jeffrey J.; Karlin, Kenneth D.
2017-01-01
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing met-alloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O2-activation in copper proteins are addressed. PMID:27921179
Biological Fuel Cells and Membranes.
Ghassemi, Zahra; Slaughter, Gymama
2017-01-17
Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.
Fungal biodegradation and enzymatic modification of lignin
Dashtban, Mehdi; Schraft, Heidi; Syed, Tarannum A.; Qin, Wensheng
2010-01-01
Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed. PMID:21968746
Wi, Seung Gon; Kim, Hyun Joo; Mahadevan, Shobana Arumugam; Yang, Duck-Joo; Bae, Hyeun-Jong
2009-12-01
Sea weed (Ceylon moss) possesses comparable bioenergy production potential to that of land plants. Ceylon moss has high content of carbohydrates, typically galactose (23%) and glucose (20%). We have explored the possibility of sodium chlorite in Ceylon moss pretreatment that can ultimately increase the efficiency of enzymatic saccharification. In an acidic medium, chlorite generates ClO(2) molecules that transform lignin into soluble compounds without any significant loss of carbohydrate content and this procedure is widely used as an analytical method for holocellulose determination. Sodium chlorite-pretreated samples resulted in glucose yield up to 70% with contrast of only 5% was obtained from non-pretreated samples. The efficiency of enzymatic hydrolysis is significantly improved by sodium chlorite pretreatment, and thus sodium chlorite pretreatment is potentially a very useful tool in the utilisation of Ceylon moss biomass for ethanol production or bioenergy purposes.
Koffi, Grokoré Yvonne; Remaud-Simeon, Magali; Due, Ahipo Edmond; Combes, Didier
2017-04-01
The estimation of glycoalkaloids in the flesh of different types of decayed potatoes was evaluated. The results showed that turned green and also sprouting or rotting potato flesh contain high amounts of toxic solanine and chaconine, exceeding by 2-5-fold the recommended limit, and ranging from 2578±86mg/kg to 5063±230mg/kg of dry weight potato flesh. For safety consideration, these decayed potatoes should be systematically set aside. To avoid a net economic loss and encourage the removal of this hazardous food, a recycling process was investigated to generate added-value compounds from the toxic glycoalkaloids. A simple chemo-enzymatic protocol comprising a partial acidic hydrolysis followed by an enzymatic treatment with the β-glycosidase from Periplaneta americana allowed the efficient conversion of α-chaconine to solanidine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran
2013-04-19
Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.
Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants.
Kühnel, Lisa C; Nestl, Bettina M; Hauer, Bernhard
2017-11-16
Squalene-hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl-farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modification of enzymes by use of high-pressure homogenization.
Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi
2018-07-01
High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biological Fuel Cells and Membranes
Ghassemi, Zahra; Slaughter, Gymama
2017-01-01
Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells. PMID:28106711
Activation of dioxygen by copper metalloproteins and insights from model complexes.
Quist, David A; Diaz, Daniel E; Liu, Jeffrey J; Karlin, Kenneth D
2017-04-01
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O 2 -activation in copper proteins are addressed.
Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G
2017-04-06
Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.
Galano, Jean-Marie; Lee, Jetty Chung-Yung; Gladine, Cecile; Comte, Blandine; Le Guennec, Jean-Yves; Oger, Camille; Durand, Thierry
2015-04-01
Cyclic oxygenated metabolites are formed in vivo through non-enzymatic free radical reaction of n-6 and n-3 polyunsaturated fatty acids (PUFAs) such as arachidonic (ARA C20:4 n-6), adrenic (AdA 22:4 n-6), α-linolenic (ALA 18:3 n-3), eicosapentaenoic (EPA 20:5 n-3) and docosahexaenoic (DHA 22:6 n-3) acids. These cyclic compounds are known as isoprostanes, neuroprostanes, dihomo-isoprostanes and phytoprostanes. Evidence has emerged for their use as biomarkers of oxidative stress and, more recently, the n-3PUFA-derived compounds have been shown to mediate bioactivities as secondary messengers. Accordingly, this review will focus on the cyclic oxygenated metabolites generated from AdA, ALA, EPA and DHA. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance". Copyright © 2014 Elsevier B.V. All rights reserved.
Luciferase Protein Complementation Assays for Bioluminescence Imaging of Cells and Mice
Luker, Gary D.; Luker, Kathryn E.
2015-01-01
Summary Protein fragment complementation assays (PCAs) with luciferase reporters currently are the preferred method for detecting and quantifying protein-protein interactions in living animals. At the most basic level, PCAs involve fusion of two proteins of interest to enzymatically inactive fragments of luciferase. Upon association of the proteins of interest, the luciferase fragments are capable of reconstituting enzymatic activity to generate luminescence in vivo. In addition to bi-molecular luciferase PCAs, unimolecular biosensors for hormones, kinases, and proteases also have been developed using target peptides inserted between inactive luciferase fragments. Luciferase PCAs offer unprecedented opportunities to quantify dynamics of protein-protein interactions in intact cells and living animals, but successful use of luciferase PCAs in cells and mice involves careful consideration of many technical factors. This chapter discusses the design of luciferase PCAs appropriate for animal imaging, including construction of reporters, incorporation of reporters into cells and mice, imaging techniques, and data analysis. PMID:21153371
Vázquez-Sánchez, Daniel; Galvão, Juliana Antunes; Oetterer, Marília
2017-11-01
The major contamination sources, serogroups, biofilm-forming ability and biocide resistance of Listeria monocytogenes persistent in tilapia-processing facilities were assessed. Twenty-five processing-control points were examined twice in two factories, including whole tilapias, frozen fillets, water and food-contact surfaces. L. monocytogenes were detected in 4 and 20% of points of Factory A and B respectively, but at low concentrations. Contamination was due to inadequate handling of tilapias in the slaughter room of Factory A and to the application of ineffective sanitizing procedures in Factory B. Seven strains were characterized by RAPD-PCR using primers HLWL85, OPM-01 and DAF4. Genotypic similarity allowed tracing the contamination source of tilapia fillets in Factory B and detecting a prevalent strain in Brazilian tilapia-processing facilities. The serogroup II (including the serotype 1/2c) was the most frequently found, followed by serogroup I (1/2a) and III (1/2b), whereas the serotype 4b was not detected. All strains showed high biofilm-forming ability on stainless steel and polystyrene, but biofilm formation was positively correlated with the type of origin surface. Biofilms were highly resistant to peracetic acid and sodium hypochlorite, being required doses higher than those recommended by manufacturers to be eradicated. Peracetic acid was more effective than sodium hypochlorite, but the use of disinfectants with similar mechanisms of action increases the risk of cross-resistance. Case-by-case approaches are thus recommended to determine the sources and degree of contamination present in each factory, which would allow applying precise responses to control the persistence of bacterial pathogens such as L. monocytogenes .
Turolla, A; Cattaneo, M; Marazzi, F; Mezzanotte, V; Antonelli, M
2018-01-01
The presence of antibiotic resistant bacteria (ARB) in wastewater was investigated and the role of wastewater treatment plants (WWTPs) in promoting or limiting antibiotic resistance was assessed. Escherichia coli (E. coli) and total heterotrophic bacteria (THB) resistance to ampicillin, chloramphenicol and tetracycline was monitored in three WWTPs located in Milan urban area (Italy), differing among them for the operating parameters of biological process, for the disinfection processes (based on sodium hypochlorite, UV radiation, peracetic acid) and for the discharge limits to be met. Wastewater was collected from three sampling points along the treatment sequence (WWTP influent, effluent from sand filtration, WWTP effluent). Antibiotic resistance to ampicillin was observed both for E. coli and for THB. Ampicillin resistant bacteria in the WWTP influents were 20-47% of E. coli and 16-25% of THB counts. A limited resistance to chloramphenicol was observed only for E. coli, while neither for E. coli nor for THB tetracycline resistance was observed. The biological treatment and sand filtration led to a decrease in the maximum percentage of ampicillin-resistant bacteria (20-29% for E. coli, 11-21% for THB). However, the conventionally adopted parameters did not seem adequate to support an interpretation of WWTP role in ARB spread. Peracetic acid was effective in selectively acting on antibiotic resistant THB, unlike UV radiation and sodium hypochlorite. The low counts of E. coli in WWTP final effluents in case of agricultural reuse did not allow to compare the effect of the different disinfection processes on antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khater, Hanem F; Seddiek, Shaker A; El-Shorbagy, Mohamed M; Ali, Ali M
2013-01-01
The fowl tick, Argas persicus (Oken), is of veterinary importance as a parasite of poultry and wild birds. The antitick efficacy, in vitro and in vivo, of peracetic acid (PAA) and deltamethrin (DMT) was tested separately against A. persicus through the dipping technique. PAA (0.5 %) was highly efficient against soft tick larvae (A. persicus), resulting in 100 % mortality after 2 min. The lethal concentrations LC(50) and LC(95) were 0.310 and 0.503 %, respectively. The lethal time values LT(50) and LT(95) were 5.34 and 40.00 min, respectively, after treatment with PAA (0.25 %). Two minutes after exposure to DMT, LC(50) and LC(95) values were 0.033 and 0.052 % (33.204 and 51.527 mg/L), respectively. The LT(50) and LT(95) values were 27.03 and 305.46 min, respectively, after treatment with 0.025 % DMT (25 mg/L). After dipping in PAA (0.5 %), the chickens did not show respiratory signs or inflammation on the eyes and/or skin. By contrast, temporary coughing, sneezing, and ocular inflammations without dermatitis were observed in chickens dipped in DMT (0.05 % or 50 mg /L). Seven days posttreatment (PT), the reduction in the percentages of A. persicus infesting laying hens were 99.15 and 63.42 % after dipping in PAA and DMT, respectively. However, complete elimination of the number of ticks occurred after 28 days PT with DMT. PAA inhibits molting effectively (28 %) when compared with that of DMT (52 %). Results indicated that PAA is a more potent and promising acaricide against A. persicus (in vitro and in vivo) than DMT.
Khater, Hanem F; Seddiek, Shaker A; El-Shorbagy, Mohamed M; Ali, Ali M
2013-10-01
The fowl tick, Argas persicus (Oken), is of veterinary importance as a parasite of poultry and wild birds. The antitick efficacy, in vitro and in vivo, of peracetic acid (PAA) and deltamethrin (DMT) was tested separately against A. persicus through the dipping technique. PAA (0.5%) was highly efficient against soft tick larvae (A. persicus), resulting in 100 % mortality after 2 min. The lethal concentrations LC₅₀ and LC₉₅ were 0.310 and 0.503 %, respectively. The lethal time values LT₅₀ and LT₉₅ were 5.34 and 40.00 min, respectively, after treatment with PAA (0.25%). Two minutes after exposure to DMT, LC₅₀ and LC₉₅ values were 0.0033 and 0.0052% (33.204 and 51.527 mg/L), respectively. The LT₅₀ and LT₉₅ values were 27.03 and 305.46 min, respectively, after treatment with 0.0025% DMT (25 mg/L). After dipping in PAA (0.5%), the chickens did not show respiratory signs or inflammation on the eyes and/or skin. By contrast, temporary coughing, sneezing, and ocular inflammations without dermatitis were observed in chickens dipped in DMT (0.005 % or 50 mg /L). Seven days posttreatment (PT), the reduction in the percentages of A. persicus infesting laying hens were 99.15 and 63.42% after dipping in PAA and DMT, respectively. However, complete elimination of the number of ticks occurred after 28 days PT with DMT. PAA inhibits molting effectively (28%) when compared with that of DMT (52%). Results indicated that PAA is a more potent and promising acaricide against A. persicus (in vitro and in vivo) than DMT.
Chino, T; Nukui, Y; Morishita, Y; Moriya, K
2017-01-01
The bactericidal effect of disinfectants against biofilms is essential to reduce potential endoscopy-related infections caused by contamination. Here, we investigated the bactericidal effect of a high-level disinfectant, peracetic acid (PAA), against Staphylococcus aureus and Pseudomonas aeruginosa biofilm models in vitro. S. aureus and P. aeruginosa biofilms were cultured at 35 °C for 7 days with catheter tubes. The following high-level disinfectants (HLDs) were tested: 0.3% PAA, 0.55% ortho-phthalaldehyde (OPA), and 2.0% alkaline-buffered glutaraldehyde (GA). Biofilms were exposed to these agents for 1-60 min and observed after 5 min and 30 min by transmission and scanning electron microscopy. A Student's t test was performed to compare the exposure time required for bactericidal effectiveness of the disinfectants. PAA and GA were active within 1 min and 5 min, respectively, against S. aureus and P. aeruginosa biofilms. OPA took longer than 10 min and 30 min to act against S. aureus and P. aeruginosa biofilms, respectively ( p < 0.01). Treatment with PAA elicited changes in cell shape after 5 min and structural damage after 30 min. Amongst the HLDs investigated, PAA elicited the most rapid bactericidal effects against both biofilms. Additionally, treatment with PAA induced morphological alterations in the in vitro biofilm models, suggesting that PAA exerts fast-acting bactericidal effects against biofilms associated with endoscopy-related infections. These findings indicate that the exposure time for bactericidal effectiveness of HLDs for endoscope reprocessing in healthcare settings should be reconsidered.
Setlow, Barbara; Korza, George; Blatt, Kelly M.S.; Fey, Julien P.; Setlow, Peter
2015-01-01
Aims Determine how supercritical CO2 (scCO2) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2-PAA, and if spores inactivated by scCO2-PAA are truly dead. Methods and Results Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2-PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2-PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2-PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2-PAA sensitive. Conclusions These findings suggest that scCO2-PAA inactivates spores by damaging spores’ inner membrane. The spore coat provided scCO2-PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2-PAA resistance only for dry spores. Significance and Impact of Study These results provide information on mechanisms of spore inactivation of and resistance to scCO2-PAA, an agent with increasing use in sterilization applications. PMID:26535794
Pechacek, Nathan; Osorio, Magdalena; Caudill, Jeff; Peterson, Bridget
2015-02-17
Peracetic acid (PAA) is a peroxide-based chemistry that is highly reactive and can produce strong local effects upon direct contact with the eyes, skin and respiratory tract. Given its increasing prominence in industry, attention has focused on health hazards and associated risks for PAA in the workplace. Occupational exposure limits (OEL) are one means to mitigate risks associated with chemical hazards in the workplace. A mini-review of the toxicity data for PAA was conducted in order to determine if the data were sufficient to derive health-based OELs. The available data for PAA frequently come from unpublished studies that lack sufficient study details, suffer from gaps in available information and often follow unconventional testing methodology. Despite these limitations, animal and human data suggest sensory irritation as the most sensitive endpoint associated with inhalation of PAA. Rodent RD50 data (the concentration estimated to cause a 50% depression in respiratory rate) were selected as the critical studies in deriving OELs. Based on these data, a range of 0.36-0.51mg/m(3) (0.1-0.2ppm) was calculated for a time-weighted average (TWA), and 1.2-1.7mg/m(3) (0.4-0.5ppm) as a range for a short-term exposure limit (STEL). These ranges compare favorably to other published OELs for PAA. Considering the applicable health hazards for this chemistry, a joint TWA/STEL OEL approach for PAA is deemed the most appropriate in assessing workplace exposures to PAA, and the selection of specific values within these proposed ranges represents a risk management decision. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid.
Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie
2016-01-01
Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 10(4) spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites.
Setlow, B; Korza, G; Blatt, K M S; Fey, J P; Setlow, P
2016-01-01
Determine how supercritical CO2 (scCO2 ) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2 -PAA, and if spores inactivated by scCO2 -PAA are truly dead. Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2 -PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2 -PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2 -PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2 -PAA sensitive. These findings suggest that scCO2 -PAA inactivates spores by damaging spores' inner membrane. The spore coat provided scCO2 -PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2 -PAA resistance only for dry spores. These results provide information on mechanisms of spore inactivation of and resistance to scCO2 -PAA, an agent with increasing use in sterilization applications. © 2015 The Society for Applied Microbiology.
The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid
Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie
2016-01-01
Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 104 spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699
Doan, L; Forrest, H; Fakis, A; Craig, J; Claxton, L; Khare, M
2012-10-01
Clostridium difficile spores can survive in the environment for months or years, and contaminated environmental surfaces are important sources of nosocomial C. difficile transmission. To compare the clinical and cost effectiveness of eight C. difficile environmental disinfection methods for the terminal cleaning of hospital rooms contaminated with C. difficile spores. This was a novel randomized prospective study undertaken in three phases. Each empty hospital room was disinfected, then contaminated with C. difficile spores and disinfected with one of eight disinfection products: hydrogen peroxide vapour (HPV; Bioquell Q10) 350-700 parts per million (ppm); dry ozone at 25 ppm (Meditrox); 1000 ppm chlorine-releasing agent (Actichlor Plus); microfibre cloths (Vermop) used in combination with and without a chlorine-releasing agent; high temperature over heated dry atomized steam cleaning (Polti steam) in combination with a sanitizing solution (HPMed); steam cleaning (Osprey steam); and peracetic acid wipes (Clinell). Swabs were inoculated on to C. difficile-selective agar and colony counts were performed pre and post disinfection for each method. A cost-effectiveness analysis was also undertaken comparing all methods to the current method of 1000 ppm chlorine-releasing agent (Actichlor Plus). Products were ranked according to the log(10) reduction in colony count from contamination phase to disinfection. The three statistically significant most effective products were hydrogen peroxide (2.303); 1000 ppm chlorine-releasing agent (2.223) and peracetic acid wipes (2.134). The cheaper traditional method of using a chlorine-releasing agent for disinfection was as effective as modern methods. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil
2014-10-01
To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.
Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M
2011-09-01
The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the "damaged/undamaged" status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures.
Vinnerås, B; Holmqvist, A; Bagge, E; Albihn, A; Jönsson, H
2003-09-01
No efficient, reliable, and scale independent disinfection methods for toilet waste are available today for safe recycling of plant nutrients. Therefore, two chemical treatment methods, addition of urea or of PAA (a quaternary mixture of 15% peracetic acid, 15% hydrogen peroxide and 30% acetic acid), were evaluated for disinfection of faecal matter.Degradation of the added urea resulted in 30 g of ammonia nitrogen per kilogram of treated matter and a pH increase to approximately 9.3. This produced an efficient disinfection of E. coli, Enterococcus spp., and Salmonella spp. within 3 weeks (>6log(10) reduction) and a reduction of the chemical resistant Salmonella typhimurium 28b phage, corresponding to a decimal reduction within 7.5 days. No viable Ascaris suum eggs were found after 50 days of treatment. No reduction of spore forming Clostridia spp. was observed. Urea treatment proved to be efficient for disinfection of source separated faecal matter in a scale independent method used for safe recycling of nutrients found in the faecal matter.PAA reduced all of the above indicator organisms within 12 h after application. For this faecal material, with a dry matter content of approximately 10%, an addition of 0.5-1% of PAA (active substance, corresponding to 3.3-6.7% of the Proxitane 15 used) was required before no viable organisms were found in the material. However, this was not tested for the A. suum. No viable spore-forming bacteria or phages were detected. A high rate of bacteria regrowth occurred at 0.15% dosage and 5 days of treatment. PAA is an efficient alternative for disinfection of separated faeces if a rapid treatment is needed.
Peracetic acid is effective for controlling fungus on channel catfish eggs.
Straus, D L; Meinelt, T; Farmer, B D; Mitchell, A J
2012-07-01
Peracetic acid (PAA) is a relatively new compound suggested for use to treat pathogens in aquaculture. It is approved for use in Europe, but not in the United States. This study determined the effectiveness of PAA for fungus control on channel catfish, Ictalurus punctatus (Rafinesque), eggs. The study consisted of five PAA concentrations (2.5, 5, 10, 15 and 20mgL(-1) ) and an untreated control in a flow-through system. A single spawn was used for each replication (N =4). Eggs were treated twice daily until the embryos developed eyes. When hatching was complete for all viable eggs, fry were counted to determine the percent survival in each treatment. Fungal growth was severe in the untreated controls resulting in 11% survival. Treatments of 2.5, 5 and 10mgL(-1) PAA were significantly different from the controls (P<0.05). The highest percent survival of hatched fry was with 5mgL(-1) PAA administered twice daily; the 2.5mgL(-1) PAA treatment had slightly less survival, but gives a higher margin of safety in case of treatment error. Very little fungus was present in treatments receiving 2.5mgL(-1) PAA or higher, and concentrations of 15 and 20mgL(-1) PAA were toxic to the eggs. The mean survivals in the 0, 2.5, 5, 10, 15 and 20mgL(-1) PAA treatments were 11%, 60%, 63%, 62%, 32% and 0%, respectively. Therefore, PAA may be a compound that merits further investigations regarding its use in U.S. aquaculture. Published 2012. This article is a US Government work and is in the public domain in the USA.
Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil
2014-01-01
Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737
Lomas, R J; Huang, Q; Pegg, D E; Kearney, J N
2004-01-01
Skin allografts, derived from cadaveric donors, are widely used for the treatment of burns and ulcers. Prior to use in clinical situations, these allografts are disinfected using a cocktail of antibiotics and then cryopreserved. Unfortunately, this antibiotic disinfection procedure fails to decontaminate a significant proportion and these contaminated grafts can not be used clinically. We have investigated whether it is possible to apply a second, more potent disinfection procedure to these contaminated grafts and effectively to re-process them for clinical use. Cadaveric skin grafts, treated with antibiotics and cryopreserved, were thawed and a peracetic acid (PAA) disinfection protocol applied. The grafts were then preserved in a high concentration of glycerol or propylene glycol, and properties thought to be essential for successful clinical performance assessed. The cytotoxicity of the grafts was assessed using both extract and contact assays; damage to the skin collagen was assessed using a collagenase susceptibility assay and the capacity of the grafts to elicit an inflammatory response in vitro was assessed by quantifying the production of the pro-inflammatory cytokine TNF-alpha by human peripheral blood mononuclear phagocytes. PAA disinfection, in conjunction with either glycerol or propylene glycol preservation, did not render the grafts cytotoxic, pro-inflammatory, or increase their susceptibility to collagenase digestion. The rates of penetration of glycerol and propylene glycol into the re-processed skin were comparable to those of fresh skin. This study has demonstrated that PAA disinfection combined with immersion in high concentrations of either glycerol or propylene glycol was an effective method for re-processing contaminated skin allografts, and may justify their clinical use.
Martin, H; Soumet, C; Fresnel, R; Morin, T; Lamaudière, S; Le Sauvage, A L; Deleurme, K; Maris, P
2013-10-01
The virucidal activity of peroxy-products was evaluated and compared with sodium hypochlorite using the EN 14675 European suspension test and a surface test developed in our laboratory. The classical approach on infectivity of viruses was complemented with a prospective approach on virus genomes. Both infectivity tests were adapted and/or developed to determine the activity of disinfectants against reference bovine enterovirus type 1 [enteric cytopathogenic bovine orphan virus (ECBO)] and resistant hepatitis A virus (HAV) in conditions simulating practical use. Similar concentrations of active chlorine were virucidal against both viruses, either at 0·062% using the suspension test or at 0·50-1% using the surface test. However, for potassium monopersulfate and peracetic acid products, concentrations of approximately three times (3%) to 72 times (9%) higher were necessary against HAV than ECBO when determined with the suspension test. With the surface test, 4-8% peroxy-products were virucidal against HAV, either 16 times more peroxy-products concentrations than against ECBO. No significant impact on the targeted area of the viral genome measured by real-time RT-PCRs was obtained for ECBO and HAV suspensions treated with disinfectants, even with doses higher than the minimal virucidal concentrations. Sodium hypochlorite, but not peroxy-products, had similar activity against ECBO and HAV. No relation could be established between infectivity tests and genome destruction. This is the first comparative study that investigates with novel suspension and surface tests the reduction of infectivity and genome destruction of two resistant viruses by peroxy-compounds. The results and conclusions collected with European standards are discussed. © 2013 The Society for Applied Microbiology.
Dunkin, Nathan; Weng, ShihChi; Coulter, Caroline G; Jacangelo, Joseph G; Schwab, Kellogg J
2017-10-17
The objective of this study was to characterize human norovirus (hNoV) GI and GII reductions during disinfection by peracetic acid (PAA) and monochloramine in secondary wastewater (WW) and phosphate buffer (PB) as assessed by reverse transcription-qPCR (RT-qPCR). Infectivity and RT-qPCR reductions are also presented for surrogate viruses murine norovirus (MNV) and bacteriophage MS2 under identical experimental conditions to aid in interpretation of hNoV molecular data. In WW, RT-qPCR reductions were less than 0.5 log 10 for all viruses at concentration-time (CT) values up to 450 mg-min/L except for hNoV GI, where 1 log 10 reduction was observed at CT values of less than 50 mg-min/L for monochloramine and 200 mg-min/L for PAA. In PB, hNoV GI and MNV exhibited comparable resistance to PAA and monochloramine with CT values for 2 log 10 RT-qPCR reduction between 300 and 360 mg-min/L. Less than 1 log 10 reduction was observed for MS2 and hNoV GII in PB at CT values for both disinfectants up to 450 mg-min/L. Our results indicate that hNoVs exhibit genogroup dependent resistance and that disinfection practices targeting hNoV GII will result in equivalent or greater reductions for hNoV GI. These data provide valuable comparisons between hNoV and surrogate molecular signals that can begin the process of informing regulators and engineers on WW treatment plant design and operational practices necessary to inactivate hNoVs.
Grand, I.; Bellon-Fontaine, M.-N.; Herry, J.-M.; Hilaire, D.; Moriconi, F.-X.; Naïtali, M.
2011-01-01
The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the “damaged/undamaged” status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures. PMID:21742922
Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters.
Koivunen, J; Heinonen-Tanski, H
2005-11-01
The efficiency of peracetic acid (PAA) disinfection against enteric bacteria and viruses in municipal wastewaters was studied in pilot-scale. Disinfection pilot-plant was fed with the primary or secondary effluent of Kuopio municipal wastewater treatment plant or tertiary effluent from the pilot-scale dissolved air flotation (DAF) unit. Disinfectant doses ranged from 2 to 7 mg/l PAA in the secondary and tertiary effluents, and from 5 to 15 mg/l PAA in the primary effluents. Disinfection contact times were 4-27 min. Disinfection of secondary and tertiary effluents with 2-7 mg/l PAA and 27 min contact time achieved around 3 log reductions of total coliforms (TC) and enterococci (EC). PAA disinfection also significantly improved the hygienic quality of the primary effluents: 10-15 mg/l PAA achieved 3-4 log reductions of TC and EC, 5 mg/l PAA resulting in below 2 log reductions. F-RNA coliphages were more resistant against the PAA disinfection and around 1 log reductions of these enteric viruses were typically achieved in the disinfection treatments of the primary, secondary and tertiary effluents. Most of the microbial reductions occurred during the first 4-18 min of contact time, depending on the PAA dose and microorganism. The PAA disinfection efficiency remained relatively constant in the secondary and tertiary effluents, despite of small changes of wastewater quality (COD, SS, turbidity, 253.7 nm transmittance) or temperature. The disinfection efficiency clearly decreased in the primary effluents with substantially higher microbial, organic matter and suspended solids concentrations. The results demonstrated that PAA could be a good alternative disinfection method for elimination of enteric microbes from different wastewaters.
Andrade, N J; Bridgeman, T A; Zottola, E A
1998-07-01
Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P < 0.05) using Statview software. The adhered cells were more resistant (P < 0.05) than nonadherent cells. The DR averages for all of the sanitizers for 30 s of exposure were 6.4, 2.2, and 2.5 for the AOAC suspension test, plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P < 0.05) after 30 s of sanitizer exposure but not after 2 min. The impedance measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P < 0.05, T = impedance detection time in hours. This method showed that the sanitizers PAS and PA were more effective against E. faecium than the other sanitizers. At 30 s, the impedance method recovered about 25 times more cells than the plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.
Kostaki, Maria; Chorianopoulos, Nikos; Braxou, Elli; Nychas, George-John
2012-01-01
This study aimed to investigate the possible influence of bacterial intra- and interspecies interactions on the ability of Listeria monocytogenes and Salmonella enterica to develop mixed-culture biofilms on an abiotic substratum, as well as on the subsequent resistance of sessile cells to chemical disinfection. Initially, three strains from each species were selected and left to attach and form biofilms on stainless steel (SS) coupons incubated at 15°C for 144 h, in periodically renewable tryptone soy broth (TSB), under either monoculture or mixed-culture (mono-/dual-species) conditions. Following biofilm formation, mixed-culture sessile communities were subjected to 6-min disinfection treatments with (i) benzalkonium chloride (50 ppm), (ii) sodium hypochlorite (10 ppm), (iii) peracetic acid (10 ppm), and (iv) a mixture of hydrogen peroxide (5 ppm) and peracetic acid (5 ppm). Results revealed that both species reached similar biofilm counts (ca. 105 CFU cm−2) and that, in general, interspecies interactions did not have any significant effect either on the biofilm-forming ability (as this was assessed by agar plating enumeration of the mechanically detached biofilm bacteria) or on the antimicrobial resistance of each individual species. Interestingly, pulsed-field gel electrophoresis (PFGE) analysis clearly showed that the three L. monocytogenes strains did not contribute at the same level either to the formation of mixed-culture sessile communities (mono-/dual species) or to their antimicrobial recalcitrance. Additionally, the simultaneous existence inside the biofilm structure of S. enterica cells seemed to influence the occurrence and resistance pattern of L. monocytogenes strains. In sum, this study highlights the impact of microbial interactions taking place inside a mixed-culture sessile community on both its population dynamics and disinfection resistance. PMID:22307304
In-Vitro Archaeacidal Activity of Biocides against Human-Associated Archaea
Khelaifia, Saber; Michel, Jean Brunel; Drancourt, Michel
2013-01-01
Background Several methanogenic archaea have been detected in the human intestinal microbiota. These intestinal archaea may contaminate medical devices such as colonoscopes. However, no biocide activity has been reported among these human-associated archaea. Methodology The minimal archaeacidal concentration (MAC) of peracetic acid, chlorhexidine, squalamine and twelve parent synthetic derivatives reported in this study was determined against five human-associated methanogenic archaea including Methanobrevibacter smithii, Methanobrevibacter oralis, Methanobrevibacter arboriphilicus, Methanosphaera stadtmanae, Methanomassiliicoccus luminyensis and two environmental methanogens Methanobacterium beijingense and Methanosaeta concilii by using a serial dilution technique in Hungates tubes. Principal Findings MAC of squalamine derivative S1 was 0.05 mg/L against M. smithii strains, M. oralis, M. arboriphilicus, M. concilii and M. beijingense whereas MAC of squalamine and derivatives S2–S12 varied from 0.5 to 5 mg/L. For M. stadtmanae and M. luminyensis, MAC of derivative S1 was 0.1 mg/L and varied from 1 to ≥10 mg/L for squalamine and its parent derivatives S2–S12. Under the same experimental conditions, chlorhexidine and peracetic acid lead to a MAC of 0.2 and 1.5 mg/L, respectively against all tested archaea. Conclusions/Significance Squalamine derivative S1 exhibited a 10–200 higher archaeacidal activity than other tested squalamine derivatives, on the majority of human-associated archaea. As previously reported and due to their week corrosivity and their wide spectrum of antibacterial and antifungal properties, squalamine and more precisely derivative S1 appear as promising compounds to be further tested for the decontamination of medical devices contaminated by human-associated archaea. PMID:23658767
Van Haute, S; López-Gálvez, F; Gómez-López, V M; Eriksson, Markus; Devlieghere, F; Allende, Ana; Sampers, I
2015-09-02
A methodology to i) assess the feasibility of water disinfection in fresh-cut leafy greens wash water and ii) to compare the disinfectant efficiency of water disinfectants was defined and applied for a combination of peracetic acid (PAA) and lactic acid (LA) and comparison with free chlorine was made. Standardized process water, a watery suspension of iceberg lettuce, was used for the experiments. First, the combination of PAA+LA was evaluated for water recycling. In this case disinfectant was added to standardized process water inoculated with Escherichia coli (E. coli) O157 (6logCFU/mL). Regression models were constructed based on the batch inactivation data and validated in industrial process water obtained from fresh-cut leafy green processing plants. The UV254(F) was the best indicator for PAA decay and as such for the E. coli O157 inactivation with PAA+LA. The disinfection efficiency of PAA+LA increased with decreasing pH. Furthermore, PAA+LA efficacy was assessed as a process water disinfectant to be used within the washing tank, using a dynamic washing process with continuous influx of E. coli O157 and organic matter in the washing tank. The process water contamination in the dynamic process was adequately estimated by the developed model that assumed that knowledge of the disinfectant residual was sufficient to estimate the microbial contamination, regardless the physicochemical load. Based on the obtained results, PAA+LA seems to be better suited than chlorine for disinfecting process wash water with a high organic load but a higher disinfectant residual is necessary due to the slower E. coli O157 inactivation kinetics when compared to chlorine. Copyright © 2015 Elsevier B.V. All rights reserved.
Long-term effects of disinfectants on the community composition of drinking water biofilms.
Roeder, Rosemarie S; Lenz, Johannes; Tarne, Peter; Gebel, Jürgen; Exner, Martin; Szewzyk, Ulrich
2010-06-01
Numerous investigations have demonstrated efficiencies of different disinfection methods, but until now only little is known about long-term effects on community compositions of drinking water biofilms. Changes in the community structure, especially regrowth of hygienically relevant microorganisms could be critical for the drinking water quality. In this study the long-term effect of disinfection methods on biofilm communities in drinking water systems was analysed. Old drinking water biofilms grown in silicone tubes were exposed to different preparations of disinfectants (free chlorine, chlorine dioxide, hydrogen peroxide combined with fruit acid, silver and silver with peracetic acid, respectively) and subsequently further exposed in the original drinking water. The comparison of the treated and regrown biofilm populations with untreated ones by the DNA-fingerprinting method denaturing gradient gel electrophoresis (DGGE) revealed a considerable population shift caused by the disinfectants. The disinfection methods induced a selection pressure on the biofilm populations depending on the composition and concentrations. The similarities between the treated and untreated biofilms were generally low. Compared to preparations with peracetic acid the disinfection with hydrogen peroxide and silver resulted in higher similarities of the treated and untreated biofilms, but the microbial diversity increased. It can be concluded that the disinfectants have a major impact on the drinking water biofilm communities and that possibly the intervention selects persisters and microorganisms, which can live on the residuals of the dead biofilm cells. For the evaluation of the efficiency of disinfection methods in drinking water installations it is necessary not only to consider reduction of certain bacteria but also to pay attention to the biofilm community. Copyright 2010 Elsevier GmbH. All rights reserved.
Xue, Runmiao; Shi, Honglan; Ma, Yinfa; Yang, John; Hua, Bin; Inniss, Enos C; Adams, Craig D; Eichholz, Todd
2017-12-01
Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H 2 O 2 ) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H 2 O 2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H 2 O 2 , no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H 2 O 2 , low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nerandzic, Michelle M.; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J.
2016-01-01
Background. Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5–2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods. We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results. Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200–2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions. Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539
Richter, William R; Wood, Joseph P; Wendling, Morgan Q S; Rogers, James V
2018-01-15
The inactivation of Bacillus anthracis spores on subway and used subway railcar materials was evaluated using fogged peracetic acid/hydrogen peroxide (PAA) and hydrogen peroxide (H 2 O 2 ). A total of 21 separate decontamination tests were conducted using bacterial spores of both B. anthracis Ames (B.a.) and Bacillus atrophaeus (B.g.) inoculated onto several types of materials. Tests were conducted using commercial off-the-shelf fogging equipment filled with either PAA or H 2 O 2 to fumigate a ∼15 cubic meter chamber under uncontrolled ambient relative humidity and controlled temperature (10 or 20 °C) from 8 to 168 h. For the present study, no conditions were found that resulted in complete inactivation of either B.a. Ames or B.g. on all test materials. Approximately 41% and 38% of the decontamination efficacies for B.a. and B.g., respectively, exhibited ≥6 log 10 reduction (LR); efficacy depended greatly on the material. When testing at 10 °C, the mean LR was consistently lower for both B.a. and B.g. as compared to 20 °C. Based on the statistical comparison of the LR results, B.g. exhibited equivalent or greater resistance than B.a. for approximately 92% of the time across all 21 tests. The efficacy data suggest that B.g. may be a suitable surrogate for B.a. Ames when assessing the decontamination efficacy of fogged PAA or H 2 O 2 . Moreover, the results of this testing indicate that in the event of B.a. spore release into a subway system, the fogging of PAA or H 2 O 2 represents a decontamination option for consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ramaiyan, Breetha; Bettadahalli, Sadashivaiah; Talahalli, Ramaprasad Ravichandra
2016-09-02
Maternal nutrition modulates fetal metabolic programming and development later. Maternal dyslipidemia effects on oxidative stress (OS) in offsprings and its modulation by dietary fatty acids over generations remains to be elucidated. The objective of present study was to assess the long-term (three generations) effect of omega-3 fatty acids on OS under dyslipidemia. Weanling female Wistar rats were fed with control diet (7% lard), high fat diet (35% lard, HFL), high fat with fish oil (21% fish oil + 14% lard, HFF), high fat with canola oil (21% canola oil + 14% lard, HFC) and high fat with sunflower oil (21% sunflower oil + 14% lard, HFS). Following 60 days feeding, the female rats were mated with sexually matured males (fed normal chow diet) and continued with the above diet regimen during pregnancy and lactation. The pups after lactation were continued with their maternal diet for 60 days and subjected to mating and feeding trial as above for two generations. Serum lipid profiles, OS markers (lipid peroxidation, nitric oxide release and protein carbonyl) and antioxidant defence enzymes (catalase, SOD, glutathione peroxidase and glutathione transferase) were assessed in serum, liver and uterus of rats fed on experimental and control diets for three generations. Feeding HFL diet increased blood lipids, OS and lowered the antioxidant enzymes activity in serum, liver and uterus (p < 0.05). The reduction in the antioxidant enzymes in HFL group were higher in third followed by second generation compared to first generation (p < 0.05). Omega-3 fatty acids prevented the dyslipidemia induced loss of antioxidant enzyme activities in serum, liver and uterus. Our data show for the first time that offsprings born to dyslipidemic mothers' exhibit diminished enzymatic antioxidant defence and its progressive reduction in future generation, and dietary omega-3 fatty acids restore the enzymatic antioxidant defence in offsprings and suppress the markers of OS. Copyright © 2016 Elsevier Inc. All rights reserved.
Cold enzymatic bleaching of fluid whey.
Campbell, R E; Drake, M A
2013-01-01
Chemical bleaching of fluid whey and retentate with hydrogen peroxide (HP) alone requires high concentrations (100-500 mg of HP/kg) and recent studies have demonstrated that off-flavors are generated during chemical bleaching that carry through to spray-dried whey proteins. Bleaching of fluid whey and retentate with enzymes such as naturally present lactoperoxidase or an exogenous commercial peroxidase (EP) at cold temperatures (4°C) may be a viable alternative to traditional chemical bleaching of whey. The objective of this study was to determine the optimum level of HP for enzymatic bleaching (both lactoperoxidase and EP) at 4°C and to compare bleaching efficacy and sensory characteristics to HP chemical bleaching at 4°C. Selected treatments were subsequently applied for whey protein concentrate with 80% protein (WPC80) manufacture. Fluid Cheddar whey and retentate (80% protein) were manufactured in triplicate from pasteurized whole milk. The optimum concentration of HP (0 to 250 mg/kg) to activate enzymatic bleaching at 4°C was determined by quantifying the loss of norbixin. In subsequent experiments, bleaching efficacy, descriptive sensory analysis, and volatile compounds were monitored at selected time points. A control with no bleaching was also evaluated. Enzymatic bleaching of fluid whey and retentate at 4°C resulted in faster bleaching and higher bleaching efficacy (color loss) than bleaching with HP alone at 250 mg/kg. Due to concentrated levels of naturally present lactoperoxidase, retentate bleached to completion (>80% norbixin destruction in 30 min) faster than fluid whey at 4°C (>80% norbixin destruction in 12h). In fluid whey, the addition of EP decreased bleaching time. Spray-dried WPC80 from bleached wheys, regardless of bleaching treatment, were characterized by a lack of sweet aromatic and buttery flavors, and the presence of cardboard flavor concurrent with higher relative abundance of 1-octen-3-ol and 1-octen-3-one. Among enzymatically bleached WPC80, lactoperoxidase-bleached WPC80 contained higher relative abundance of 2,3-octadienone, 2-pentyl furan, and hexanal than those bleached with added EP. Bleach times, bleaching efficacy, and flavor results suggest that enzymatic bleaching may be a viable and desirable alternative to HP bleaching of fluid whey or retentate. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.