Evolutionary transitions in enzyme activity of ant fungus gardens.
De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J
2010-07-01
Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.
Aβ-degrading enzymes: potential for treatment of Alzheimer disease.
Miners, James Scott; Barua, Neil; Kehoe, Patrick Gavin; Gill, Steven; Love, Seth
2011-11-01
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme, and endothelin-converting enzyme reduce Aβ levels and protect against cognitive impairment in mouse models of AD. The activity of several Aβ-degrading enzymes rises with age and increases still further in AD, perhaps as a physiological response to minimize the buildup of Aβ. The age- and disease-related changes in expression of more recently recognized Aβ-degrading enzymes (e.g. NEP-2 and cathepsin B) remain to be investigated, and there is strong evidence that reduced NEP activity contributes to the development of cerebral amyloid angiopathy. Regardless of the role of Aβ-degrading enzymes in the development of AD, experimental data indicate that increasing the activity of these enzymes (NEP in particular) has therapeutic potential in AD, although targeting their delivery to the brain remains a major challenge. The most promising current approaches include the peripheral administration of agents that enhance the activity of Aβ-degrading enzymes and the direct intracerebral delivery of NEP by convection-enhanced delivery. In the longer term, genetic approaches to increasing the intracerebral expression of NEP or other Aβ-degrading enzymes may offer advantages.
Tong, X H; Xu, S H; Liu, Q H; Li, J; Xiao, Z Z; Ma, D Y
2012-06-01
Digestive enzyme activities were analysed in turbot (Scophthalmus maximus) from hatching until 60 days after hatching (DAH). Trypsin sharply increased to the climax at 17 DAH and decreased until 31 DAH followed by a stable level thereafter. Amylase was determined at 4 DAH, reached the maximum value at 19 DAH and declined sharply to 39 DAH and remained at a low level thereafter, suggesting the carbohydrate component should remain at a low level in formulated diets. Pepsin was detected at 9 DAH and increased to 34 DAH and then remained at a stable level. The above results revealed pancreatic enzymes are no longer main enzymes for food digestion after the formation of functional stomach. Leucine-alanine peptidase (Leu-ala) and alkaline phosphatase (AP) and leucine aminopeptidase N (LAP) were found in newly hatched larvae. Both AP and LAP activities markedly increased to 23 DAH, decreased abruptly to 50 DAH and increased gradually to 60 DAH. Leu-ala reached the plateau from 23 to 39 DAH, followed by a decline to 46 DAH and an increase until 60 DAH. The brush border membrane (BBM)-bound enzyme activities increased from 30% at 31 DAH to 81% at 38 DAH of the total activities, indicating the maturation of intestinal tract.
Fishman, William H.; Ghosh, Nimai K.
1967-01-01
1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the ∈-amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This ∈-amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation. PMID:16742542
Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui
Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolasemore » activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific glycosyl hydrolase activities. It remains unclear whether loss of endocellulase activity to lignin binding is problematic for biomass conversion.« less
Tigranian, R A; Nosova, E A; Kolchina, E V; Veresotskaia, N A; Kurkina, L M
1981-01-01
The effect of artificial gravity on protein fractions and their enzyme activity in the myocardium of rats flown on board Cosmos-936 was studied. In weightless rats the content of sarcoplasmic proteins increased at R + O and that of T fraction proteins decreased at R + 25. In centrifuged rats such changes were not seen. In centrifuged rats the enzyme activity of sarcoplasmic proteins did not alter. In weightless rats ATPase activity of myosin decreased significantly, and in centrifuged rats it remained almost unchanged.
Tatsumi, E; Konishi, Y; Tsujiyama, S
2016-11-01
To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.
Physics-based enzyme design: predicting binding affinity and catalytic activity.
Sirin, Sarah; Pearlman, David A; Sherman, Woody
2014-12-01
Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.
Chandrawati, Rona; Olesen, Morten T J; Marini, Thatiane C C; Bisra, Gurpal; Guex, Anne Géraldine; de Oliveira, Marcelo G; Zelikin, Alexander N; Stevens, Molly M
2017-09-01
Enzyme prodrug therapy (EPT) enables localized conversion of inert prodrugs to active drugs by enzymes. Performance of EPT necessitates that the enzyme remains active throughout the time frame of the envisioned therapeutic application. β-glucuronidase is an enzyme with historically validated performance in EPT, however it retains its activity in biomaterials for an insufficiently long period of time, typically not exceeding 7 d. Herein, the encapsulation of β-glucuronidase in liposomal subcompartments within poly(vinyl alcohol) electrospun fibers is reported, leading to the assembly of biocatalytically active materials with activity of the enzyme sustained over at least seven weeks. It is further shown that liposomes provide the highly beneficial stabilization of the enzyme when incubated in cell culture media. The assembled biocatalytic materials successfully produce antiproliferative drugs (SN-38) using externally administered prodrugs (SN-38-glucuronide) and effectively suppress cell proliferation, with envisioned utility in the design of cardiovascular grafts. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si
2017-04-01
The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si
2017-04-01
The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.
Dmochowska-Slezak, Kamila; Zaobidna, Ewa; Domeracka, Joanna; Swiatkowska, Marta; Rusznica, Małgorzata; Zółtowska, Krystyna
2015-01-01
The red mason bee (Osmia bicornis) is a highly effective pollinator that is exposed to various xenobiotics. The organism's potential resistance to the toxic effects of xenobiotics can be determined based on cholinesterase activity. The activity of cholinesterases (ChEs) towards acetylcholine (ACh) and butyrylcholine (BCh) was determined in extracts of diapausing (between October and late March) and flying bees (May). In both males and females, enzyme activity was higher towards ACh than towards BCh. The ratio of ACh/BCh activity was determined in the range of 1.43 to 4.15 in diapausing females and 3.00 to 7.18 in diapausing males. No significant changes in ChE activity towards ACh were observed in females before December and in males before February. Enzyme activity towards ACh increased dynamically in the second half of March. Enzyme activity towards BCh remained stable in both sexes until mid-March, after which it increased significantly. Excluding mid-March, enzyme BCh activity was significantly higher in females than in males. The activity of carboxylesterase towards 4-p-nitrophenyl butyrate was determined in females to assess the involvement of non-specific esterases in the hydrolysis of choline esters. Carboxylesterase activity was low in comparison with cholinesterase activity, and it remained practically unchanged throughout diapause, suggesting that choline esters in female O. bicornis extracts were hydrolyzed mainly by acetylcholinesterases.
NASA Astrophysics Data System (ADS)
Leite, Rodrigo Simões Ribeiro; Bocchini, Daniela Alonso; da Silva Martins, Eduardo; Silva, Dênis; Gomes, Eleni; da Silva, Roberto
This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme remaining 100% active when incubated at 75°C for 1 h.
Li, Tuoping; Li, Suhong; Wang, Na; Tain, Lirui
2008-08-15
Pectinase was immobilized on an activated agar-gel support by multipoint attachment. The maximal activity of immobilized pectinase was obtained at 5°C, pH 3.6, with a 24h reaction time at an enzyme dose of 0.52mg protein/g gel, and the gel was activated with 1.0M glycidol. These conditions increased the thermal stability of the immobilized pectinase 19-fold compared with the free enzyme at 65°C. The optimal temperature for pectinase activity changed from 40 to 50°C after immobilization; however, the optimal pH remained unchanged. The immobilized enzyme also exhibited great operational stability, and an 81% residual activity was observed in the immobilized enzyme after 10 batch reactions. Copyright © 2008 Elsevier Ltd. All rights reserved.
Balsano, Evelyn; Esterhuizen-Londt, Maranda; Hoque, Enamul; Lima, Stephan Pflugmacher
2017-08-01
To investigate antioxidative and biotransformation enzyme responses in Mucor hiemalis towards cyanotoxins considering its use in mycoremediation applications. Catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in M. hiemalis maintained their activities at all tested microcystin-LR (MC-LR) exposure concentrations. Cytosolic glutathione S-transferase (GST) activity decreased with exposure to 100 µg MC-LR l -1 while microsomal GST remained constant. Cylindrospermopsin (CYN) at 100 µg l -1 led to an increase in CAT activity and inhibition of GR, as well as to a concentration-dependent GPx inhibition. Microsomal GST was inhibited at all concentrations tested. β-N-methylamino-L-alanine (BMAA) inhibited GR activity in a concentration-dependent manner, however, CAT, GPx, and GST remained unaffected. M. hiemalis showed enhanced oxidative stress tolerance and intact biotransformation enzyme activity towards MC-LR and BMAA in comparison to CYN, confirming its applicability in bioreactor technology in terms of viability and survival in their presence.
Optimization of covalent immobilization of pectinase on sodium alginate support.
Li, Tuoping; Wang, Na; Li, Suhong; Zhao, Qiancheng; Guo, Mei; Zhang, Cheyun
2007-09-01
Pectinase was immobilized on a sodium alginate support using glutaraldehyde and retained 66% activity. The optimal pH for activity shifted from 3.0 to 3.5 after immobilization; however, the optimum temperature remained unchanged at 40 degrees C. The immobilized enzyme also had a higher thermal stability and reusability than the free enzyme, and retained 80% of initial activity after 11 batch reactions.
Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function
Lisi, George P.; Loria, J. Patrick
2015-01-01
Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function. PMID:26952190
Function and biotechnology of extremophilic enzymes in low water activity
2012-01-01
Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329
Dieter, M.P.; Wiemeyer, Stanley N.
1978-01-01
1. Activities of creatine phosphokinase, glutamic oxalacetic transaminase, glutamic pyruvic transaminase, lactate dehydrogenase, fructose diphosphate aldolase and cholinesterase were measured in plasma of bald eagles.2. There were no sex differences in the plasma enzyme activities.3. An acute dieldrin dosage (10 mg/kg) of a female bald eagle resulted in 400% increases in activities of plasma creatine phosphokinase and glutamic oxalacetic transaminase and 250% increases in activities of lactate dehydrogenase and glutamic pyruvic transaminase.4. At 11 days post-dosage all but one of the plasma enzyme activities had returned to normal; glutamic oxalacetic transaminase activity remained 100% above pre-dosage values.5. Plasma enzyme assays constitute a non-destrcutive procedure that can be used in valuable wildlife species to screen for the presence and prevalence of environmental contaminants.
The SalGI restriction endonuclease. Purification and properties
Maxwell, Anthony; Halford, Stephen E.
1982-01-01
The type II restriction endonuclease SalGI has been purified to near homogeneity. At least 80% of the protein remaining after the final stage of the preparation is SalGI restriction endonuclease; no contaminating nucleases remain detectable. The principal form of the protein under both native and denaturing conditions is a monomer of Mr about 29000. The optimal conditions for both enzyme stability and enzyme activity have been determined. ImagesFig. 1. PMID:6285898
Dridi, Kaouthar; Amara, Sawsan; Bezzine, Sofiane; Rodriguez, Jorge A; Carrière, Frédéric; Gaussier, Hélène
2013-07-01
Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and beta loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of beta9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the beta9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of beta9 loop (GPLRP2-deltabeta9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-deltabeta9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within beta9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-deltabeta9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions.
Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system
Desguin, Benoît; Goffin, Philippe; Viaene, Eric; Kleerebezem, Michiel; Martin-Diaconescu, Vlad; Maroney, Michael J; Declercq, Jean-Paul; Soumillion, Patrice; Hols, Pascal
2014-01-01
Racemases catalyze the inversion of stereochemistry in biological molecules, giving the organism the ability to use both isomers. Among them, lactate racemase remains unexplored due to its intrinsic instability and lack of molecular characterization. Here we determine the genetic basis of lactate racemization in Lactobacillus plantarum. We show that, unexpectedly, the racemase is a nickel-dependent enzyme with a novel α/β fold. In addition, we decipher the process leading to an active enzyme, which involves the activation of the apo-enzyme by a single nickel-containing maturation protein that requires preactivation by two other accessory proteins. Genomic investigations reveal the wide distribution of the lactate racemase system among prokaryotes, showing the high significance of both lactate enantiomers in carbon metabolism. The even broader distribution of the nickel-based maturation system suggests a function beyond activation of the lactate racemase and possibly linked with other undiscovered nickel-dependent enzymes. PMID:24710389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovanova, I.L.; Chuiko, G.M.; Pavlov, D.F.
1994-03-01
Previous research has shown that sublethal concentrations of cadmium, naphthalene and dichlorvos (DDVP) decreased growth rates in bream and Mozambique tilapia. One of the factors known to affect fish growth is the activity of gut digestive enzymes such as of lipases, proteases, carbohydrases. We assumed that toxicant-induced inhibition of the digestive enzyme activity and, consequently, the impaired digestion of food may contribute to the reduction of growth in fish exposed to toxicants. However, the influence of toxicants on digestive enzyme activities is poorly studied. The contribution of toxicant-induced changes of digestive enzymes activity to growth rate retardation in exposed fishmore » remains unknown. The goal of this study was to examine the influence of an organophosphorus insecticide DDVP, a polyaromatic hydrocarbon naphthalene, and a metal cadmium on fish gut carbohydrase (CH) activity. 14 refs., 2 tabs.« less
Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis.
Wang, Hui; Mochidzuki, Kazuhiro; Kobayashi, Shinichi; Hiraide, Hatsue; Wang, Xiaofen; Cui, Zongjun
2013-06-01
Bovine serum albumin (BSA) was added to filter paper during the hydrolysis of cellulase. Adding BSA before the addition of the cellulase enhances enzyme activity in the solution, thereby increasing the conversion rate of cellulose. After 48 h of BSA treatment, the BSA adsorption quantities are 3.3, 4.6, 7.8, 17.2, and 28.3 mg/g substrate, each with different initial BSA concentration treatments at 50 °C; in addition, more cellulase was adsorbed onto the filter paper at 50 °C compared with 35 °C. After 48 h of hydrolysis, the free-enzyme activity could not be measured without the BSA treatment, whereas the remaining activity of the filter paper activity was approximately 41 % when treated with 1.0 mg/mL BSA. Even after 96 h of hydrolysis, 25 % still remained. Meanwhile, after 48 h of incubation without substrate, the remaining enzyme activities were increased 20.7 % (from 43.7 to 52.7 %) and 94.8 % (from 23.3 to 45.5 %) at 35 and 50 °C, respectively. Moreover, the effect of the BSA was more obvious at 35 °C compared with 50 °C. When using 15 filter paper cellulase units per gram substrate cellulase loading at 50 °C, the cellulose conversion was increased from 75 % (without BSA treatment) to ≥90 % when using BSA dosages between 0.1 and 1.5 mg/mL. Overall, these results suggest that there are promising strategies for BSA treatment in the reduction of enzyme requirements during the hydrolysis of cellulose.
Tripathy, Rajan K; Aggarwal, Geetika; Bajaj, Priyanka; Kathuria, Deepika; Bharatam, Prasad V; Pande, Abhay H
2017-08-01
Human paraoxonase 1 (h-PON1) is a ~45-kDa serum enzyme that can hydrolyze a variety of substrates, including organophosphate (OP) compounds. It is a potential candidate for the development of antidote against OP poisoning in humans. However, insufficient OP-hydrolyzing activity of native enzyme affirms the urgent need to develop improved variant(s) having enhanced OP-hydrolyzing activity. The crystal structure of h-PON1 remains unsolved, and the molecular details of how the enzyme catalyses hydrolysis of different types of substrates are also not clear. Understanding the molecular details of the catalytic mechanism of h-PON1 is essential to engineer better variant(s) of enzyme. In this study, we have used a random mutagenesis approach to increase the OP-hydrolyzing activity of recombinant h-PON1. The mutants not only showed a 10-340-fold increased OP-hydrolyzing activity against different OP substrates but also exhibited differential lactonase and arylesterase activities. In order to investigate the mechanistic details of the effect of observed mutations on the hydrolytic activities of enzyme, molecular docking studies were performed with selected mutants. The results suggested that the observed mutations permit differential binding of substrate/inhibitor into the enzyme's active site. This may explain differential hydrolytic activities of the enzyme towards different substrates.
Strategies for microbial synthesis of high-value phytochemicals
NASA Astrophysics Data System (ADS)
Li, Sijin; Li, Yanran; Smolke, Christina D.
2018-03-01
Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.
Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function.
Lisi, George P; Loria, J Patrick
2016-02-01
Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function. Copyright © 2015 Elsevier B.V. All rights reserved.
Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus
2013-11-01
Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stogios, Peter J; Kuhn, Misty L; Evdokimova, Elena; Law, Melissa; Courvalin, Patrice; Savchenko, Alexei
2017-02-10
Modification of aminoglycosides by N-acetyltransferases (AACs) is one of the major mechanisms of resistance to these antibiotics in human bacterial pathogens. More than 50 enzymes belonging to the AAC(6') subfamily have been identified in Gram-negative and Gram-positive clinical isolates. Our understanding of the molecular function and evolutionary origin of these resistance enzymes remains incomplete. Here we report the structural and enzymatic characterization of AAC(6')-Ig and AAC(6')-Ih from Acinetobacter spp. The crystal structure of AAC(6')-Ig in complex with tobramycin revealed a large substrate-binding cleft remaining partially unoccupied by the substrate, which is in stark contrast with the previously characterized AAC(6')-Ib enzyme. Enzymatic analysis indicated that AAC(6')-Ig and -Ih possess a broad specificity against aminoglycosides but with significantly lower turnover rates as compared to other AAC(6') enzymes. Structure- and function-informed phylogenetic analysis of AAC(6') enzymes led to identification of at least three distinct subfamilies varying in oligomeric state, active site composition, and drug recognition mode. Our data support the concept of AAC(6') functionality originating through convergent evolution from diverse Gcn5-related-N-acetyltransferase (GNAT) ancestral enzymes, with AAC(6')-Ig and -Ih representing enzymes that may still retain ancestral nonresistance functions in the cell as provided by their particular active site properties.
Recyclable Thermoresponsive Polymer-β-Glucosidase Conjugate with Intact Hydrolysis Activity.
Mukherjee, Ishita; Sinha, Sushant K; Datta, Supratim; De, Priyadarsi
2018-06-11
β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose and is a rate-limiting enzyme in the conversion of lignocellulosic biomass to sugars toward biofuels. Since the cost of enzyme is a major contributor to biofuel economics, we report the bioconjugation of a temperature-responsive polymer with the highly active thermophilic β-glucosidase (B8CYA8) from Halothermothrix orenii toward improving enzyme recyclability. The bioconjugate, with a lower critical solution temperature (LCST) of 33 °C withstands high temperatures up to 70 °C. Though the secondary structure of the enzyme in the conjugate is slightly distorted with a higher percentage of β-sheet like structure, the stability and specific activity of B8CYA8 in the conjugate remains unaltered up to 30 °C and retains more than 70% specific activity of the unmodified enzyme at 70 °C. The conjugate can be reused for β-glucosidic bond cleavage of cellobiose for at least four cycles without any significant loss in specific activity.
Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.
Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A
2016-01-01
Stabilizing extracellular enzymes may maintain enzymatic activity while protecting enzymes from proteolysis and denaturation. A study determined whether a fast pyrolysis hardwood biochar (CQuest™) would reduce evaporative losses, subsequently stabilizing soil extracellular enzymes and prohibiting potential enzymatic activity loss following a denaturing stress (microwaving). Soil was incubated in the presence of biochar (0%, 1%, 2%, 5%, or 10% by wt.) for 36 days and then exposed to microwave energies (0, 400, 800, 1600, or 3200 J g(-1) soil). Soil enzymes (β-glucosidase, β-d-cellobiosidase, N-acetyl-β-glucosaminidase, phosphatase, leucine aminopeptidase, β-xylosidase) were analyzed by fluorescence-based assays. Biochar amendment reduced leucine aminopeptidase and β-xylosidase potential activity after the incubation period and prior to stress exposure. The 10% biochar rate reduced soil water loss at the lowest stress level (400 J microwave energy g(-1) soil). Enzyme stabilization was demonstrated for β-xylosidase; intermediate biochar application rates prevented a complete loss of this enzyme's potential activity after soil was exposed to 400 (1% biochar treatment) or 1600 (5% biochar treatment) J microwave energy g(-1) soil. Remaining enzyme potential activities were not affected by biochar, and activities decreased with increasing stress levels. We concluded that biochar has the potential to reduce evaporative soil water losses and stabilize certain extracellular enzymes where activity is maintained after a denaturing stress; this effect was biochar rate and enzyme dependent. While biochar may reduce the potential activity of certain soil extracellular enzymes, this phenomenon was not universal as the majority of enzymes assayed in this study were unaffected by exposure to biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vetchinkina, Elena P; Pozdnyakova, Natalia N; Nikitina, Valentina E
2008-10-01
The white-rot fungus Lentinus edodes produced D-melibiose-specific lectins and two laccase forms in a lignin-containing medium. The maxima of laccase and lectin activities coincided, falling within the period of active mycelial growth. The enzymes and lectins were isolated and purified by gel filtration followed by anion-exchange chromatography. The L. edodes lectins were found to be able to stabilize the activity of the fungus's own laccases. Lectin activity during the formation of lectin-enzyme complexes remained unchanged.
Endopolygalacturonase in Apples (Malus domestica) and Its Expression during Fruit Ripening.
Wu, Q.; Szakacs-Dobozi, M.; Hemmat, M.; Hrazdina, G.
1993-01-01
The activity of polygalacturonase (PG) has been detected in ripe McIntosh apples (Malus domestica Borkh. cv McIntosh) both by enzyme activity measurement and immunoblotting using an anti-tomato-PG antibody preparation. PG activity increased during fruit ripening and remained steady, or decreased slightly, after 5 months of controlled atmospheric storage. The enzyme had a relative molecular weight of 45,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 56,000 to 61,000 when determined by gel filtration. Viscosity and reducing end group measurements with a commercial pectin preparation showed that the enzyme is endo acting. In RNA and DNA blot hybridization experiments, a full-length tomato PG cDNA hybridized with the apple RNA and DNA, showing the identity of genes encoding the activity of the enzyme in tomato and apple. PMID:12231813
El-Refai, Heba A; Shafei, Mona S; Mostafa, Hanan; El-Refai, Abdel-Monem H; Araby, Eman M; El-Beih, Fawkia M; Easa, Saadia M; Gomaa, Sanaa K
2016-01-01
Gamma irradiation is used on Penicillium cyclopium in order to obtain mutant cells of high L-asparaginase productivity. Using gamma irradiation dose of 4 KGy, P. cyclopium cells yielded L-asparaginase with extracellular enzyme activity of 210.8 ± 3 U/ml, and specific activity of 752.5 ± 1.5 U/mg protein, which are 1.75 and 1.53 times, respectively, the activity of the wild strain. The enzyme was partially purified by 40-60% acetone precipitation. L-asparaginase was immobilized onto Amberlite IR-120 by ionic binding. Both free and immobilized enzymes exhibited maximum activity at pH 8 and 40 degrees C. The immobilization process improved the enzyme thermal stability significantly. The immobilized enzyme remained 100% active at temperatures up to 60 degrees C, while the free asparaginase was less tolerant to high temperatures. The immobilized enzyme was more stable at pH 9.0 for 50 min, retaining 70% of its relative activity. The maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) of the free form were significantly changed after immobilization. The K(m) value for immobilized L-asparaginase was about 1.3 times higher than that of free enzyme. The ions K+, Ba2+ and Na+ showed stimulatory effect on enzyme activity with percentages of 110%, 109% and 106% respectively.
Enzyme activity in the aestivating green-striped burrowing frog (Cyclorana alboguttata).
Mantle, Beth L; Guderley, Helga; Hudson, Nicholas J; Franklin, Craig E
2010-10-01
Green-striped burrowing frogs (Cyclorana alboguttata) can depress their resting metabolism by more than 80% during aestivation. Previous studies have shown that this species is able to withstand long periods of immobilisation during aestivation while apparently maintaining whole muscle mass and contractile performance. The aim of this study was to determine the effect of prolonged aestivation on the levels of metabolic enzymes (CCO, LDH and CS) in functionally distinct skeletal muscles (cruralis, gastrocnemius, sartorius, iliofibularis and rectus abdominus) and liver of C. alboguttata. CS activity was significantly reduced in all tissues except for the cruralis, gastrocnemius and the liver. LDH activity was significantly reduced in the sartorius and rectus abdominus, but remained at control (active) levels in the other tissues. CCO activity was significantly reduced in the gastrocnemius and rectus abdominus, and unchanged in the remaining tissues. Muscle protein was significantly reduced in the sartorius and iliofibularis during aestivation, and unchanged in the remaining muscles. The results suggest that the energy pathways involved in the production and consumption of ATP are remodelled during prolonged aestivation but selective. Remodelling and subsequent down-regulation of metabolic activity seem to target the smaller non-jumping muscles, while the jumping muscles retain enzyme activities at control levels during aestivation. These results suggest a mechanism by which aestivating C. alboguttata are able to maintain metabolic depression while ensuring that the functional capacity of critical muscles is not compromised upon emergence from aestivation.
The nature and function of microbial enzymes in subsurface marine sediments
NASA Astrophysics Data System (ADS)
Steen, A. D.; Schmidt, J.
2016-02-01
Isotopic and genomic evidence indicates that marine sediments contain populations of active heterotrophic microorganisms which appear to metabolize old, detrital, apparently recalcitrant organic matter. In surface communities, heterotrophs use extracellular enzymes to access complex organic matter. In subsurface sediments, in which microbial doubling times can be on the order of hundreds or thousands of years, it is not clear whether extracellular enzymes could remain stable and active long enough to constitute a 'profitable' stragtegy for accessing complex organic carbon. Here we present evidence that a wide range of extracellular enzyme are active in subsurface sediments from two different environments: the White Oak River, NC, and deep (up to 80 m) sediments of the Baltic Sea Basin recovered from IODP Expedition 347. In the White Oak River, enzymes from deeper sediments appear to be better-adapted to highly-degraded organic matter than enzymes from surface sediments. In the Baltic Sea, preliminary data suggest that enzymes related to nitrogen acquisition are preferentially expressed. By characterizing the extracellular enzymes present in marine sediments, we hope to achieve a better understanding of the mechanisms that control sedimentary organic matter remineralization and preservation.
ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA
Stine, G. J.
1968-01-01
Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627
Laforgue, R; Lonvaud-Funel, A
2012-12-01
Brettanomyces bruxellensis populations have been correlated with an increase in phenolic off-flavors in wine. The volatile phenols causing the olfactory defect result from the successive decarboxylation and reduction of hydroxycinnamic acids that are normal components of red wines. The growth of B. bruxellensis is preventable by adding sulfur dioxide (SO(2)), with variable effectiveness. Moreover, it was hypothesized that SO(2) was responsible for the entry of B. bruxellensis into a viable but non-culturable (VBNC) state. The aim of this project was to investigate the effects of SO(2) on the remaining enzyme activities of B. bruxellensis populations according to their viability and cultivability, focusing on the hydroxycinnamate decarboxylase enzyme, the first enzyme needed, rather than the metabolites produced. Enzyme activity was determined both in cell-free extracts and resting cells after various SO(2) treatments in synthetic media. After slight sulfiting (around 50 mg/L total SO(2)), the yeasts had lost part of their enzyme activity but not their cultivability. At higher doses (at least 75 mg/L total SO(2)) the majority of yeasts had lost their cultivability but still retained part of their enzyme activity. These results suggested that non culturable cells retained some enzyme activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evans, Rhiannon M; Armstrong, Fraser A
2014-01-01
Protein film electrochemistry is a technique which allows the direct control of redox-active enzymes, providing particularly detailed information on their catalytic properties. The enzyme is deposited onto a working electrode tip, and through control of the applied potential the enzyme activity is monitored as electrical current, allowing for direct study of inherent activity as electrons are transferred to and from the enzyme redox center(s). No mediators are used. Because the only enzyme present in the experiment is bound at the electrode surface, gaseous and liquid phase inhibitors can be introduced and removed whilst the enzyme remains in situ. Potential control means that kinetics and thermodynamics are explored simultaneously; the kinetics of a reaction can be studied as a function of potential. Steady-state catalytic rates are observed directly as current (for a given potential) and non-steady-state rates (such as interconversions between different forms of the enzyme) are observed from the change in current with time. The more active the enzyme, the higher the current and the better the signal-to-noise. In this chapter we outline the practical aspects of PFE for studying electroactive enzymes, using the Escherichia coli [NiFe]-hydrogenase 1 (Hyd-1) as an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson
Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanismmore » was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.« less
Pandey, Jitendra Kumar; Dash, Sidhartha Kumar; Biswal, Basanti
2017-07-01
The precise nature of the developmental modulation of the activity of cell wall hydrolases that breakdown the wall polysaccharides to maintain cellular sugar homeostasis under sugar starvation environment still remains unclear. In this work, the activity of β-galactosidase (EC 3.2.1.23), a cell-wall-bound enzyme known to degrade the wall polysaccharides, has been demonstrated to remarkably enhance during senescence-induced loss in photosynthesis in Arabidopsis thaliana. The enhancement in the enzyme activity reaches a peak at the terminal phase of senescence when the rate of photosynthesis is at its minimum. Although the precise nature of chemistry of the interface between the decline in photosynthesis and enhancement in the activity of the enzyme could not be fully resolved, the enhancement in its activity in dark and its suppression in light or with exogenous sugars may indicate the involvement of loss of photosynthetic production of sugars as a key factor that initiates and stimulates the activity of the enzyme. The hydrolase possibly participates in the catabolic network of cell wall polysaccharides to produce sugars for execution of energy-dependant senescence program in the background of loss of photosynthesis. Drought stress experienced by the senescing leaves accelerates the decline in photosynthesis with further stimulation in the activity of the enzyme. The stress recovery of photosynthesis and suppression of the enzyme activity on withdrawal of stress support the proposition of photosynthetic modulation of the cell-wall-bound enzyme activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.
Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates didmore » not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.« less
Baek, Dae Heoun; Kwon, Seok-Joon; Hong, Seung-Pyo; Kwak, Mi-Sun; Lee, Mi-Hwa; Song, Jae Jun; Lee, Seung-Goo; Yoon, Ki-Hong; Sung, Moon-Hee
2003-01-01
A gene encoding a new thermostable d-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards d-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards l-amino acid amides, d-amino acid-containing peptides, and NH2-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85°C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co2+ and Mn2+. The kcat/Km for d-alaninamide was measured as 544.4 ± 5.5 mM−1 min−1 at 50°C with 1 mM Co2+. PMID:12571020
Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao
2014-05-01
Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.
Furné, Miriam; García-Gallego, Manuel; Hidalgo, M Carmen; Morales, Amalia E; Domezain, Alberto; Domezain, Julio; Sanz, Ana
2008-04-01
The digestive enzyme activities were determined in Adriatic sturgeon and rainbow trout during starvation and refeeding period. Overall, the digestive enzyme activities are affected in the same sense in both species. The protease and lipase activities were decreased later than amylase activity. Even after 1 month of starvation, both species would be prepared to digest protein and lipids in an effective way. After 72 days of starvation, the digestive machinery of the sturgeon and of the trout shows an altered capacity to digest macronutrients. The capacity to digest proteins and lipids, after 60 days of refeeding, begins to become re-established in sturgeon and trout. In contrast, in this period, the capacity to digest carbohydrates remains depressed in both species.
Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.
Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L; Hinchman, Meleana M; Travis, Alexander J
2013-01-01
Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.
Biomimicry Enhances Sequential Reactions of Tethered Glycolytic Enzymes, TPI and GAPDHS
Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L.; Hinchman, Meleana M.; Travis, Alexander J.
2013-01-01
Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices. PMID:23626684
Finding Sequences for over 270 Orphan Enzymes
Shearer, Alexander G.; Altman, Tomer; Rhee, Christine D.
2014-01-01
Despite advances in sequencing technology, there are still significant numbers of well-characterized enzymatic activities for which there are no known associated sequences. These ‘orphan enzymes’ represent glaring holes in our biological understanding, and it is a top priority to reunite them with their coding sequences. Here we report a methodology for resolving orphan enzymes through a combination of database search and literature review. Using this method we were able to reconnect over 270 orphan enzymes with their corresponding sequence. This success points toward how we can systematically eliminate the remaining orphan enzymes and prevent the introduction of future orphan enzymes. PMID:24826896
An oxalyl-CoA synthetase is important for oxalate metabolism in Saccharomyces cerevisiae
USDA-ARS?s Scientific Manuscript database
Although oxalic acid is common in nature, our understanding of the mechanism(s) regulating its turnover remains incomplete. In this study we identify Saccharomyces cerevisiae acyl-activating enzyme 3 (ScAAE3) as an enzyme capable of catalyzing the conversion of oxalate to oxalyl-CoA. Based on our fi...
A reusable multipurpose magnetic nanobiocatalyst for industrial applications.
Perwez, Mohammad; Ahmad, Razi; Sardar, Meryam
2017-10-01
A multipurpose magnetic nanobiocatalyst is developed by conjugating Pectinex 3XL (a commercial enzyme containing pectinase, xylanase and cellulase activities) on 3-aminopropyl triethoxysilane activated magnetic nanoparticles. The nanobiocatalyst retained 87% of pectinase, 69% of xylanase and 58% of cellulase activity after conjugation on modified nanoparticles as compared to their soluble counterparts. Thermal stability data at 70°C showed increase in enzyme stability after conjugation to nanoparticles and the kinetic parameters (K m and V max ) remain unaltered after immobilization. The immobilized enzyme system can be successfully used upto 5th cycle after that slight decrease in enzyme activities was observed. The nanobiocatalyst retained high pectinase activities in organic solvents and chemical reagents as compared to free enzymes. DLS data shows that the nanoparticles size increases from 63nm to 86nm after immobilization. Atomic Force Microscopy data confirms the deposition of enzymes on the nanoparticles. The nanobiocatalyst was used for the clarification of pine apple and orange juice and was also used for the production of bioethanol. Hydrolysis of pretreated wheat straw produced 1.39g/l and 1.59g/l after treatment with free Pectinex 3xL and nanobiocatalyst respectively. The concentration of bioethanol also increases by 1.4 fold as compared to the free enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.
Solovyev, Mikhail; Gisbert, Enric
2016-10-01
In this study, we tested the effects of long-term storage (2 years) at -20 °C and short-term storage (several hours) in ice and freeze/thaw cycles on the activities of pancreatic, gastric and intestinal (brush border and cytosolic) digestive enzymes in a teleost fish species. The results revealed a significant lose in activity of pancreatic (trypsin, chymotrypsin, total alkaline proteases and α-amylase) and intestinal cytosolic (leucine-alanine peptidase) enzymes between 140 and 270 days of storage at -20 °C, whereas in contrast, the activity of all the assayed brush border enzymes remained constant during the first 2 years of storage at -20 °C. During short-term storage conditions, the most stable enzymes assayed were those of the enterocytes of the brush border, which did not show any change in activity after being held for 5 h in ice. Five freezing and thawing cycles did not affect the activity of the intestinal brush border enzymes and the cytosolic ones, whereas the activity of trypsin, α-amylase and bile-salt-activated lipase was significantly affected by the number of freezing and thawing cycles. No changes in pepsin activity were found in samples exposed to 1 and 2 freezing and thawing cycles.
Rodrigues, Ana Cristina; Haven, Mai Østergaard; Lindedam, Jane; Felby, Claus; Gama, Miguel
2015-11-01
The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic(®) CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes - cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and β-glucosidase - of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied. The efficiency of hydrolysis with an enzyme load of 10 FPU/g cellulose reached >98% using Cellic(®) CTec2, while for Celluclast a conversion of 52% and 81%, was observed without and with β-glucosidase supplementation, respectively. The decrease of Cellic(®) CTec2 activity observed along the process was related to deactivation of Cel7A rather than of Cel7B and β-glucosidase. The adsorption/desorption profiles during hydrolysis/fermentation revealed that a large fraction of active enzymes remained adsorbed to the solid residue throughout the process. Surprisingly, this was the case of Cel7A and β-glucosidase from Cellic, which remained adsorbed to the solid fraction along the entire process. Alkaline washing was used to recover the enzymes from the solid residue. This method allowed efficient recovery of Celluclast enzymes; however, this may be achieved only when minor amounts of cellulose remain present. Regarding the Cellic formulation, neither the presence of cellulose nor lignin restricted an efficient desorption of the enzymes at alkaline pH. This work shows that the recycling strategy must be customized for each particular formulation, since the enzymes found e.g. in Cellic and Celluclast bear quite different behaviour regarding the solid-liquid distribution, stability and cellulose and lignin affinity. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hosseinipour, Seyyedeh Leila; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Salehi, Roya
2015-09-01
Enzymes play an essential role in catalyzing various reactions. However, their instability upon repetitive/prolonged use, elevated temperature, acidic or alkaline pH remains an area of concern. α-Amylase, a widely used enzyme in food industries for starch hydrolysis, was covalently immobilized on the surface of two developed matrices, amino-functionalized silica-coated magnetite nanoparticles (AFSMNPs) alone and covered with chitosan. The synthesis steps and characterizations of NPs were examined by FT-IR, VSM, and SEM. Modified nanoparticles with average diameters of 20-80 nm were obtained. Enzyme immobilization efficiencies of 89 and 74 were obtained for AFSMNPs and chitosan-coated AFSMNPs, respectively. The optimum pH obtained was 6.5 and 8.0 for the enzyme immobilized on AFSMNPs and chitosan-coated AFSMNPs, respectively. Optimum temperature for the immobilized enzyme shifted toward higher temperatures. Considerable enhancements in thermal stabilities were observed for the immobilized enzyme at elevated temperatures up to 80 °C. A frequent use experiment demonstrated that the immobilized enzyme retained 74 and 85 % of its original activity even after 20 times of repeated use in AFSMNPs and chitosan-coated AFSMNPs, respectively. Storage stability demonstrated that free enzyme lost its activity completely within 30 days. But, immobilized enzyme on AFSMNPs and chitosan-coated AFSMNPs preserved 65.73 and 78.63 % of its initial activity, respectively, after 80 days of incubation. In conclusion, a substantial improvement in the performance of the immobilized enzyme with reference to the free enzyme was obtained. Furthermore, the relative activities of immobilized enzyme are superior than free enzyme over the broader pH and temperature ranges.
Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis.
Alftrén, Johan; Hobley, Timothy John
2013-04-01
β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter. The performance and recyclability of immobilized β-glucosidase on more complex substrate (pretreated spruce) was also studied. It was shown that adding immobilized β-glucosidase (16 U/g dry matter) to free cellulases (8 FPU/g dry matter) increased the hydrolysis yield of pretreated spruce from ca. 44 % to ca. 65 %. In addition, it was possible to re-use the immobilized β-glucosidase in the spruce and retain activity for at least four cycles. The immobilized enzyme thus shows promise for lignocellulose hydrolysis.
Droux, M; Miginiac-Maslow, M; Jacquot, J P; Gadal, P; Crawford, N A; Kosower, N S; Buchanan, B B
1987-07-01
The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with [14C]iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.
The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn,more » reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.« less
Salehi, Mahmoud; Aghamaali, Mahmoud Reza; Sajedi, Reza H; Asghari, S Mohsen; Jorjani, Eisa
2017-05-01
Withania coagulans fruit has traditionally been used as milk coagulant. The present study reports the purification and characterization of an aspartic protease from W. coagulans fruit. The enzyme was purified via fractional ammonium sulfate precipitation and cation exchange chromatography. SDS-PAGE analysis revealed the presence of a monomeric protein with molecular weight of 31kDa. Proteolytic activity (PA) of the protease was evaluated using casein, and the milk-clotting activity (MCA) was analyzed by skim milk. The K m and V max values of the enzyme for casein were obtained to be 1.29mg/ml and 0.035μmol Tyr/min, respectively. Optimal temperature and pH were 65°C and 5.5, respectively. After incubation of enzyme at 65°C for 1h, 73% of PA was remained which demonstrated high thermal stability of the enzyme. Mass spectrometry analysis of the purified protease and enzyme assays in the presence of protease inhibitors indicated that aspartic protease was the only responsible enzyme in milk coagulation. Furthermore, by investigating the effect of salts on enzyme activity, it was observed that both NaCl and CaCl 2 reduced enzyme activity. These characteristics of the protease suggest that the enzyme may be suitable for producing low salt content cheeses. Copyright © 2017 Elsevier B.V. All rights reserved.
Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.
Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise
2012-11-01
Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.
Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti
2011-01-01
The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.
Visser, Franziska; Müller, Boje; Rose, Judith; Prüfer, Dirk; Noll, Gundula A
2016-08-09
The immobilisation of enzymes plays an important role in many applications, including biosensors that require enzyme activity, stability and recyclability in order to function efficiently. Here we show that forisomes (plant-derived mechanoproteins) can be functionalised with enzymes by translational fusion, leading to the assembly of structures designated as forizymes. When forizymes are expressed in the yeast Saccharomyces cerevisiae, the enzymes are immobilised by the self-assembly of forisome subunits to form well-structured protein bodies. We used glucose-6-phosphate dehydrogenase (G6PDH) and hexokinase 2 (HXK2) as model enzymes for the one-step production and purification of catalytically active forizymes. These structures retain the typical stimulus-response reaction of the forisome and the enzyme remains active even after multiple assay cycles, which we demonstrated using G6PDH forizymes as an example. We also achieved the co-incorporation of both HXK2 and G6PDH in a single forizyme, facilitating a two-step reaction cascade that was 30% faster than the coupled reaction using the corresponding enzymes on different forizymes or in solution. Our novel forizyme immobilisation technique therefore not only combines the sensory properties of forisome proteins with the catalytic properties of enzymes but also allows the development of multi-enzyme complexes for incorporation into technical devices.
Laccase produced by a thermotolerant strain of Trametes trogii LK13
Yan, Jinping; Chen, Yuhui; Niu, Jiezhen; Chen, Daidi; Chagan, Irbis
2015-01-01
Thermophilic and thermotolerant micro-organisms strains have served as the natural source of industrially relevant and thermostable enzymes. Although some strains of the Trametes genus are thermotolerant, few Trametes strains were studied at the temperature above 30 °C until now. In this paper, the laccase activity and the mycelial growth rate for Trametes trogii LK13 are superior at 37 °C. Thermostability and organic cosolvent tolerance assays of the laccase produced at 37 °C indicated that the enzyme possessed fair thermostability with 50% of its initial activity at 80 °C for 5 min, and could remain 50% enzyme activity treated with organic cosolvent at the concentration range of 25%–50% (v/v). Furthermore, the test on production of laccase and lignocellulolytic enzymes showed the crude enzymes possessed high laccase level (1000 U g −1 ) along with low cellulose (2 U g −1 ) and xylanase (140 U g −1 ) activity. Thus, T. trogii LK13 is a potential strain to be applied in many biotechnological processes. PMID:26221089
Iron-mediated soil carbon response to water-table decline in an alpine wetland
NASA Astrophysics Data System (ADS)
Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan
2017-06-01
The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic `enzyme latch' theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an `iron gate' against the `enzyme latch' in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate.
Picazo, Alejandra; Jiménez-Osorio, Angélica S; Zúñiga-Mejía, Porfirio; Pedraza-Chaverri, José; Monroy, Adriana; Rodríguez-Arellano, M Eunice; Barrera-Oviedo, Diana
2017-04-05
The antioxidant system results essential to control and prevent lipid peroxidation due to stress damage in type 2 diabetes. An example is aldehyde dehydrogenase (ALDH), an enzyme that is involved in the detoxification of aldehydes formed during lipid peroxidation. This study was conducted to evaluate ALDH activity and to determine their association with hypoglycemic treatment in type 2 diabetes patients. The study population consisted of 422 Mexican subjects: a control group and type 2 diabetes patients. Type 2 diabetes patients were re-classified as those with or without hypoglycemic treatment and those with or without glycemic control (according to glycated hemoglobin (HbA1c)). Clinical parameters, antioxidant enzyme activities (ALDH, superoxide dismutase (SOD), catalase and glutathione peroxidase) and oxidative markers (reactive oxygen species and thiobarbituric acid reactive substances (TBARS)) were evaluated. The activity of antioxidant enzymes and oxidative stress markers were higher in type 2 diabetes patients with hypoglycemic treatment and without glycemic control than control group. The activity of ALDH and SOD remained high in type 2 diabetes patients with moderate glycemic control while only ALDH's remained high in type 2 diabetes patients with tight glycemic control. Increased ALDH and SOD activities were associated with hypoglycemic therapy. TBARS levels were associated with glycemic control. The persistence of high ALDH and SOD activities in type 2 diabetes patients with glycemic control may be to avoid a significant damage due to the increase in reactive oxygen species and TBARS. It is possible that this new oxidative status prevented the development the classical complications of diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.
Exploring the specific features of interfacial enzymology based on lipase studies.
Aloulou, Ahmed; Rodriguez, Jorge A; Fernandez, Sylvie; van Oosterhout, Dirk; Puccinelli, Delphine; Carrière, Frédéric
2006-09-01
Many enzymes are active at interfaces in the living world (such as in the signaling processes at the surface of cell membranes, digestion of dietary lipids, starch and cellulose degradation, etc.), but fundamental enzymology remains largely focused on the interactions between enzymes and soluble substrates. The biochemical and kinetic characterization of lipolytic enzymes has opened up new paths of research in the field of interfacial enzymology. Lipases are water-soluble enzymes hydrolyzing insoluble triglyceride substrates, and studies on these enzymes have led to the development of specific interfacial kinetic models. Structure-function studies on lipases have thrown light on the interfacial recognition sites present in the molecular structure of these enzymes, the conformational changes occurring in the presence of lipids and amphiphiles, and the stability of the enzymes present at interfaces. The pH-dependent activity, substrate specificity and inhibition of these enzymes can all result from both "classical" interactions between a substrate or inhibitor and the active site, as well as from the adsorption of the enzymes at the surface of aggregated substrate particles such as oil drops, lipid bilayers or monomolecular lipid films. The adsorption step can provide an alternative target for improving substrate specificity and developing specific enzyme inhibitors. Several data obtained with gastric lipase, classical pancreatic lipase, pancreatic lipase-related protein 2 and phosphatidylserine-specific phospholipase A1 were chosen here to illustrate these specific features of interfacial enzymology.
Induction of antioxidant enzyme activities by a phenylurea derivative, EDU.
Stevens, T M; Boswell, G A; Adler, R; Ackerman, N R; Kerr, J S
1988-10-01
Oxygen free radicals have the potential to mediate cell injury. Defenses against such radicals include the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). The purposes of this study were (1) to develop an in vitro model using human cells in which to investigate a potential pharmacologic agent as an inducer of these antioxidant enzymes; (2) to investigate the phenylurea derivative N-[2-(2-oxo-1-imidazolindinyl)ethyl]-N-phenylurea (EDU) in this model with paraquat (PQ) serving as the positive control; and (3) to determine if induction of the antioxidant enzymes by EDU occurs in vivo. Human gingival fibroblasts (Gin-1) were used as the target cell in vitro; PQ and EDU, an inducer of SOD and CAT activities in plants, were evaluated as antioxidant enzyme inducers. Total SOD activity in Gin-1 cells increased 2-fold (p less than 0.05) in the presence of 1.0 mM PQ for 18-48 hr compared with untreated controls. Gin-1 cells incubated with 0.25-2.0 mM PQ for 24 hr had significantly increased total SOD (1.5 to 2.0-fold; p less than 0.05). CAT activity increased with 1.0 and 2.0 mM PQ (p less than 0.05). In the presence of PQ, GSH-PX activity decreased (p less than 0.05) in a concentration-dependent manner, indicating inactivation of this enzyme. No toxicity, indicated by lactate dehydrogenase released into the incubation medium, was noted at PQ concentrations below 5.0 mM. In the presence of 0.125-2.0 mM EDU, total SOD activity in Gin-1 cells significantly increased (1.5 to 2.0-fold; p less than 0.05). CAT activity significantly increased in a dose-dependent manner (p less than 0.05), while GSH-PX activity remained constant following exposure to 0.125-2.0 mM EDU. Intraperitoneal administration of EDU to rats twice a day for 2 days at 100 mg/kg induced SOD activity in heart, liver, and lung compared to controls (p less than 0.05). CAT activity increased in the liver 56% and in the lung 36% (p less than 0.05). GSH-PX activity remained constant. Our findings indicate that Gin-1 cells are a useful model in which to study inducers of antioxidant enzymes in vitro and that the phenylurea compound EDU induces SOD and CAT activities both in vitro and in vivo.
van der Linden, Eddy; Burgdorf, Tanja; de Lacey, Antonio L; Buhrke, Thorsten; Scholte, Marcel; Fernandez, Victor M; Friedrich, Bärbel; Albracht, Simon P J
2006-03-01
Infrared (IR) spectra in combination with chemical analyses have recently shown that the active Ni-Fe site of the soluble NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanide groups and one carbon monoxide as ligands. Experiments presented here confirm this result, but show that a variable percentage of enzyme molecules loses one or two of the cyanide ligands from the active site during routine purification. For this reason the redox conditions during the purification have been optimized yielding hexameric enzyme preparations (HoxFUYHI(2)) with aerobic specific H(2)-NAD(+) activities of 150-185 mumol/min/mg of protein (up to 200% of the highest activity previously reported in the literature). The preparations were highly homogeneous in terms of the active site composition and showed superior IR spectra. IR spectro-electrochemical studies were consistent with the hypothesis that only reoxidation of the reduced enzyme with dioxygen leads to the inactive state, where it is believed that a peroxide group is bound to nickel. Electron paramagnetic resonance experiments showed that the radical signal from the NADH-reduced enzyme derives from the semiquinone form of the flavin (FMN-a) in the hydrogenase module (HoxYH dimer), but not of the flavin (FMN-b) in the NADH-dehydrogenase module (HoxFU dimer). It is further demonstrated that the hexameric enzyme remains active in the presence of NADPH and air, whereas NADH and air lead to rapid destruction of enzyme activity. It is proposed that the presence of NADPH in cells keeps the enzyme in the active state.
Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko
2016-01-01
Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. PMID:26620560
Torda, T; Kvetnansky, R; Tigranian, R A; Chulman, J; Genin, A M
1981-01-01
In the hypothalamus of the weightless and centrifuged rats flown for 18.5 days on board the biosatellite Cosmos-936 the noradrenaline concentration and activity of the enzymes involved in the catecholamine synthesis and degradation were measured. It was found that under the space flight influence the noradrenaline concentration and tyrosine hydroxylase, dopamine-beta-hydroxylase and monoamine oxidase activities remained unaltered. These findings indicate that a prolonged exposure to weightlessness was not a stressogenic agent that could activate the adrenergic system in the rat hypothalamus.
Soil Minerals Affect Extracellular Enzyme Activities in Cold and Warm Environments
NASA Astrophysics Data System (ADS)
Yang, Z.; Morin, M. M.; Graham, D. E.; Wullschleger, S. D.; Gu, B.
2017-12-01
Extracellular enzymes are mainly responsible for degrading and cycling soil organic matter (SOM) in both cold and warm terrestrial ecosystems. Minerals can play important roles in affecting soil enzyme activities, however, the interactions between enzyme and soil minerals remain poorly understood. In this study, we developed a model soil-enzyme system to examine the mineral effects on a hydrolytic enzyme (i.e., β-glucosidase) under both cold (4°C) and relatively warm (20 and 30°C) conditions. Minerals including iron oxides and clays (e.g., kaolinite and montmorillonite) were used to mimic different types of soils, and enzyme adsorption experiments were conducted to determine the enzyme interactions with different mineral surfaces. Time-series experiments were also carried out to measure enzymatic degradation of the organic substrates, such as cellobiose and indican. We observed that fractions of adsorbed enzyme and the hydrolytic activity were higher on iron oxides (e.g., hematite) compared to kaolinite and montmorillonite at given experimental conditions. The degradation of cellobiose was significantly faster than that of indican in the presence of minerals. We also found that the adsorption of enzyme was not dependent on the mineral surface areas, but was controlled by the mineral surface charge. In addition, temperature increase from 4 to 30°C enhanced mineral-assisted glucosidase hydrolysis by 2 to 4 fold, suggesting greater degradation under warmer environments. The present work demonstrates that the enzyme activity is influenced not only by the soil temperature but also by the surface chemistry of soil minerals. Our results highlight the need to consider the physical and chemical properties of minerals in biogeochemical models, which could provide a better prediction for enzyme-facilitated SOM transformations in terrestrial ecosystems.
Buhler, Donald R.; Benville, P.
1969-01-01
The specific activity of liver glucose 6-phosphate dehydrogenase in yearling rainbow trout remained unchanged when the fish were starved for periods as long as 8 weeks and when starved animals were fed diets of various compositions. Injection of insulin concurrently with refeeding also failed to alter the specific activity of the enzyme in trout. The absence of a dietary or insulin influence on the teleost enzyme system is to be contrasted with studies in mammals in which the activity of hepatic glucose 6-P dehydrogenase was markedly stimulated after refeeding starved animals or injection of insulin.Ingestion of the pesticide DDT by juvenile coho salmon or adult rainbow trout also had no effect on the specific activity of liver glucose 6-P dehydrogenase and DDT failed to inhibit the rainbow trout enzyme in vitro. These results also differ considerably from those found in higher animals.These results suggest that the glucose 6-P dehydrogenase enzyme in teleosts may be under a different type of regulatory control from that found in mammals.
The inhibitory effect of convulsant agents on the enzyme in brain which inactivates nerveside.
Toh, C C
1969-07-01
1. An enzyme which can be extracted from brain inactivates nerveside in the optimum pH range 5.8-7.0.2. The polybasic acids trypan blue and its analogue trypan red, bromphenol blue and its analogue bromthymol blue at concentrations of 0.22 mM and ethylenediaminetetra-acetic acid (EDTA) at a concentration of 1 mM are strong inhibitors of the enzyme.3. Penicillin which is a monobasic carboxylic acid also inhibits the enzyme but only if concentrations as high as 3.6 mM are used. The antibiotic streptomycin which is a basic substance does not inhibit the enzyme.4. Caffeine at a concentration of 7.2 mM only weakly inhibits the enzyme.5. Chymotrypsin and wheat germ acid phosphatase also inactivate nerveside at pH 5.9 and are inhibited by the acidic dyes and penicillin. EDTA inhibits wheat germ phosphatase but activates chymotrypsin.6. Inactivation of nerveside by the brain enzyme and by wheat germ phosphatase is different from the action of chymotrypsin. Nerveside solutions incubated with chymotrypsin completely lose all biological activity whereas if incubation is carried out with either the brain enzyme or wheat germ acid phosphatase a residual biological activity remains even when the concentration of these two enzymes is increased. This residual biological activity is due to a peptide as it is destroyed by chymotrypsin.7. The manner in which nerveside is inactivated by the brain enzyme is uncertain as the preparation of the latter contained phosphodiesterase and protease activities which were similarly inhibited by the acid dyes, penicillin and EDTA.8. Pentylenetetrazole, picrotoxin, strychnine and tetanus toxin do not inhibit the brain enzyme.9. The nerveside-inactivating enzyme is not identical with the Substance P-inactivating enzyme in brain as the former is inhibited by EDTA while the latter is not.
Satar, Rukhsana; Husain, Qayyum
2009-03-01
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40 degrees C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The K(m) values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower V(max) as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.
The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.
Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro
2013-12-01
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.
Preparation of cellulase concoction using differential adsorption phenomenon.
Birhade, Sachinkumar; Pednekar, Mukesh; Sagwal, Shilpa; Odaneth, Annamma; Lali, Arvind
2017-05-28
Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.
Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.
Jiang, Peng; Du, Wenjing; Mancuso, Anthony; Wellen, Kathryn E; Yang, Xiaolu
2013-01-31
Cellular senescence both protects multicellular organisms from cancer and contributes to their ageing. The pre-eminent tumour suppressor p53 has an important role in the induction and maintenance of senescence, but how it carries out this function remains poorly understood. In addition, although increasing evidence supports the idea that metabolic changes underlie many cell-fate decisions and p53-mediated tumour suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a new mechanism by which p53 links these functions. We show that p53 represses the expression of the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2 in human and mouse cells. Both malic enzymes are important for NADPH production, lipogenesis and glutamine metabolism, but ME2 has a more profound effect. Through the inhibition of malic enzymes, p53 regulates cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activates p53 through distinct MDM2- and AMP-activated protein kinase-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulates the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppresses senescence. Our findings define physiological functions of malic enzymes, demonstrate a positive-feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.
Virgen-Ortíz, Jose J; Tacias-Pascacio, Veymar G; Hirata, Daniela B; Torrestiana-Sanchez, Beatriz; Rosales-Quintero, Arnulfo; Fernandez-Lafuente, Roberto
2017-01-01
Lipase B from Candida antarctica (CALB) has been physically immobilized on octyl-agarose via interfacial activation. The incubation of the enzyme in 80% ethanol at pH 5 and 25°C has not significant effect on enzyme activity. Moreover, the hydrolysis of 100mM tributyrin catalyzed by this biocatalyst exhibited a quite linear reaction course. However, a new cycle of tributyrin hydrolysis showed a drastic drop in the activity. SDS-PAGE gels of the supernatant and the biocatalyst showed a significant enzyme desorption after the reaction. Similar results could be appreciated using triacetin or sunflower oil, while using 300mM methyl phenyl acetate, butyl butyrate or ethyl butyrate most enzyme molecules remained immobilized. The results show that the detergent properties of some reaction products increase the enzyme release from the hydrophobic support, and this problem increased if the concentration of the reactants increased. Using 500mM tributyrin, even in fully aqueous medium, some enzyme desorption from the support may be observed. Thus, the results show a limitation of this kind of biocatalysts that should be considered in the selection of an industrial lipase biocatalyst. Copyright © 2016 Elsevier Inc. All rights reserved.
Rejón, Juan D; Zienkiewicz, Agnieszka; Rodríguez-García, María Isabel; Castro, Antonio J
2012-10-01
A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized. The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods. Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles. In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of the stigma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xu; Wang, Dapeng; Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou
Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuousmore » low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite exposure enhances Nrf2-mediated antioxidant levels. • Knockdown of Nrf2 reduces malignant degree of arsenite-transformed cells.« less
Zhang, K. Y.; Cascio, D.; Eisenberg, D.
1994-01-01
The crystal structure of unactivated ribulose 1,5-bisphosphate carboxylase/oxygenase from Nicotiana tabacum complexed with a transition state analog, 2-carboxy-D-arabinitol 1,5-bisphosphate, was determined to 2.7 A resolution by X-ray crystallography. The transition state analog binds at the active site in an extended conformation. As compared to the binding of the same analog in the activated enzyme, the analog binds in a reverse orientation. The active site Lys 201 is within hydrogen bonding distance of the carboxyl oxygen of the analog. Loop 6 (residues 330-339) remains open and flexible upon binding of the analog in the unactivated enzyme, in contrast to the closed and ordered loop 6 in the activated enzyme complex. The transition state analog is exposed to solvent due to the open conformation of loop 6. PMID:8142899
Schmid-Schönbein, Geert W.
2017-01-01
Transformation of circulating leukocytes from a dormant into an activated state with changing rheological properties leads to a major shift of their behavior in the microcirculation. Low levels of pseudopod formation or expression of adhesion molecules facilitate relatively free passage through microvessels while activated leukocytes with pseudopods and enhanced levels of adhesion membrane proteins become trapped in microvessels, attach to the endothelium and migrate into the tissue. The transformation of leukocytes into an activated state is seen in many diseases. While mechanisms for activation due to infections, tissue trauma, as well as non-physiological biochemical or biophysical exposures are well recognized, the mechanisms for activation in many diseases have not been conclusively liked to these traditional mechanisms and remain unknown. We summarize our recent evidence suggesting a major and surprising role of digestive enzymes in the small intestine as root causes for leukocyte activation and microvascular disturbances. During normal digestion of food digestive enzymes are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. When permeability of this barrier increases, these powerful degrading enzymes leak into the wall of the intestine and into the systemic circulation. Leakage of digestive enzymes occurs for example in physiological shock and multi-organ failure. Entry of digestive enzymes into the wall of the small intestine leads to degradation of the intestinal tissue in an autodigestion process. The digestive enzymes and tissue/food fragments generate not only activate leukocytes but also cause numerous cell dysfunctions. For example, proteolytic destruction of membrane receptors, plasma proteins and other biomolecules occurs. We conclude that escape of digestive enzymes from the intestinal track serves as a major source of cell dysfunction, morbidity and even mortality, including abnormal leukocyte activation seen in rheological studies. PMID:28269737
New perspective on glycoside hydrolase binding to lignin from pretreated corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth
Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less
New perspective on glycoside hydrolase binding to lignin from pretreated corn stover
Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; ...
2015-12-18
Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less
Arikan, Burhan
2008-05-01
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.
Doucet, Nicolas
2011-04-01
Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed evolution and computational methods have paved the way to exciting engineering examples and are now offering a new perspective on the structural requirements of enzyme activity. However, these structure-function analyses are usually guided by the time-averaged static models offered by enzyme crystal structures, which often fail to describe the functionally relevant 'invisible states' adopted by proteins in space and time. To alleviate such limitations, NMR relaxation dispersion experiments coupled to mutagenesis studies have recently been applied to the study of enzyme catalysis, effectively complementing 'structure-function' analyses with 'flexibility-function' investigations. In addition to offering quantitative, site-specific information to help characterize residue motion, these NMR methods are now being applied to enzyme engineering purposes, providing a powerful tool to help characterize the effects of controlling long-range networks of flexible residues affecting enzyme function. Recent advancements in this emerging field are presented here, with particular attention to mutagenesis reports highlighting the relevance of NMR relaxation dispersion tools in enzyme engineering.
Iron-mediated soil carbon response to water-table decline in an alpine wetland
Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan
2017-01-01
The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic ‘enzyme latch’ theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an ‘iron gate’ against the ‘enzyme latch’ in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate. PMID:28649988
Heterologous expression of an active chitin synthase from Rhizopus oryzae.
Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José
2016-12-01
Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly. Copyright © 2016. Published by Elsevier Inc.
Prado, R A; Santos, C R; Kato, D I; Murakami, M T; Viviani, V R
2016-05-11
Beetle luciferases, the enzymes responsible for bioluminescence, are special cases of CoA-ligases which have acquired a novel oxygenase activity, offering elegant models to investigate the structural origin of novel catalytic functions in enzymes. What the original function of their ancestors was, and how the new oxygenase function emerged leading to bioluminescence remains unclear. To address these questions, we solved the crystal structure of a recently cloned Malpighian luciferase-like enzyme of unknown function from Zophobas morio mealworms, which displays weak luminescence with ATP and the xenobiotic firefly d-luciferin. The three dimensional structure of the N-terminal domain showed the expected general fold of CoA-ligases, with a unique carboxylic substrate binding pocket, permitting the binding and CoA-thioesterification activity with a broad range of carboxylic substrates, including short-, medium-chain and aromatic acids, indicating a generalist function consistent with a xenobiotic-ligase. The thioesterification activity with l-luciferin, but not with the d-enantiomer, confirms that the oxygenase activity emerged from a stereoselective impediment of the thioesterification reaction with the latter, favoring the alternative chemiluminescence oxidative reaction. The structure and site-directed mutagenesis support the involvement of the main-chain amide carbonyl of the invariant glycine G323 as the catalytic base for luciferin C4 proton abstraction during the oxygenase activity in this enzyme and in beetle luciferases (G343).
Protein Surface Softness Is the Origin of Enzyme Cold-Adaptation of Trypsin
Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav
2014-01-01
Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles) express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less sensitive to falling temperature. Despite significant efforts since the early 1970s, the important question of the origin of this effect still largely remains unanswered. Here we use cold- and warm-active trypsins as model systems to investigate the temperature dependence of the reaction rates with extensive molecular dynamics free energy simulations. The calculations quantitatively reproduce the catalytic rates of the two enzymes and further yield high-precision Arrhenius plots, which show the characteristic trends in activation enthalpy and entropy. Detailed structural analysis indicates that the relationship between these parameters and the 3D structure is reflected by significantly different internal protein energy changes during the reaction. The origin of this effect is not localized to the active site, but is found in the outer regions of the protein, where the cold-active enzyme has a higher degree of softness. Several structural mechanisms for softening the protein surface are identified, together with key mutations responsible for this effect. Our simulations further show that single point-mutations can significantly affect the thermodynamic activation parameters, indicating how these can be optimized by evolution. PMID:25165981
Activation of olefins via asymmetric Bronsted acid catalysis
Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas; ...
2018-03-30
The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less
Activation of olefins via asymmetric Bronsted acid catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas
The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less
Mayerhoff, Zea D V L; Roberto, Inês C; Franco, Telma T
2006-05-01
A central composite experimental design leading to a set of 16 experiments with different combinations of pH and temperature was performed to attain the optimal activities of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes from Candida mogii cell extract. Under optimized conditions (pH 6.5 and 38 degrees C), the XR and XDH activities were found to be 0.48 U/ml and 0.22 U/ml, respectively, resulting in an XR to XDH ratio of 2.2. Stability, cofactor specificity and kinetic parameters of the enzyme XR were also evaluated. XR activity remained stable for 3 h under 4 and 38 degrees C and for 4 months of storage at -18 degrees C. Studies on cofactor specificity showed that only NADPH-dependent XR was obtained under the cultivation conditions employed. The XR present in C. mogii extracts showed a superior Km value for xylose when compared with other yeast strains. Besides, this parameter was not modified after enzyme extraction by aqueous two-phase system.
Principles for circadian orchestration of metabolic pathways.
Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O
2017-02-14
Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo.
Principles for circadian orchestration of metabolic pathways
Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim
2017-01-01
Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888
Maruthamuthu, Mukil; van Elsas, Jan Dirk
2017-01-01
Enzyme discovery is a promising approach to aid in the deconstruction of recalcitrant plant biomass in an industrial process. Novel enzymes can be readily discovered by applying metagenomics on whole microbiomes. Our goal was to select, examine, and characterize eight novel glycoside hydrolases that were previously detected in metagenomic libraries, to serve biotechnological applications with high performance. Here, eight glycosyl hydrolase family candidate genes were selected from metagenomes of wheat straw-degrading microbial consortia using molecular cloning and subsequent gene expression studies in Escherichia coli. Four of the eight enzymes had significant activities on either p NP-β-d-galactopyranoside, p NP-β-d-xylopyranoside, p NP-α-l-arabinopyranoside or p NP-α-d-glucopyranoside. These proteins, denoted as proteins 1, 2, 5 and 6, were his-tag purified and their nature and activities further characterized using molecular and activity screens with the p NP-labeled substrates. Proteins 1 and 2 showed high homologies with (1) a β-galactosidase (74%) and (2) a β-xylosidase (84%), whereas the remaining two (5 and 6) were homologous with proteins reported as a diguanylate cyclase and an aquaporin, respectively. The β-galactosidase- and β-xylosidase-like proteins 1 and 2 were confirmed as being responsible for previously found thermo-alkaliphilic glycosidase activities of extracts of E. coli carrying the respective source fosmids. Remarkably, the β-xylosidase-like protein 2 showed activities with both p NP-Xyl and p NP-Ara in the temperature range 40-50 °C and pH range 8.0-10.0. Moreover, proteins 5 and 6 showed thermotolerant α-glucosidase activity at pH 10.0. In silico structure prediction of protein 5 revealed the presence of a potential "GGDEF" catalytic site, encoding α-glucosidase activity, whereas that of protein 6 showed a "GDSL" site, encoding a 'new family' α-glucosidase activity. Using a rational screening approach, we identified and characterized four thermo-alkaliphilic glycosyl hydrolases that have the potential to serve as constituents of enzyme cocktails that produce sugars from lignocellulosic plant remains.
Lowell, Cadance A.; Tomlinson, Patricia T.; Koch, Karen E.
1989-01-01
Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import remains to be determined. PMID:16666942
Rajkumar, Renganathan; Jayappriyan, Kothilmozhian Ranishree; Rengasamy, Ramasamy
2011-12-01
An alkaline serine protease produced by Bacillus megaterium RRM2 isolated from the red alga, Kappaphycus alvarezii (Doty) Doty ex Silva was studied for the first time and the same analyzed for the production of protease in the present study. Identification of the bacterium was done on the basis of both biochemical analysis and by 16S rDNA sequence analysis. The extracellular protease obtained from B. megaterium RRM2 was purified by a three-step process involving ammonium sulphate precipitation, gel filtration (Sephadex G100) and Q-Sepharose column chromatography. The purity was found to be 30.6-fold with a specific activity of 3591.5 U/mg protein with a molecular weight of 27 kDa. The metal ions Ca(2+), Mg(2+), K(+) and Na(+) marginally enhanced the activity of the purified enzyme while Hg(2+), Cu(2+), Fe(2+), CO(2+) and Zn(2+), had reduced the activity. The enzyme was found to be active in the pH range of 9.0-10.0 and remained active up to 60 °C. Phenyl Methyl Sulfonyl Fluoride (PMSF) inhibited the enzyme activity, thus, confirming that this enzyme is an alkaline serine protease. Likewise, DTT also inhibited the enzyme thus confirming the disulfide nature of the enzyme. The enzyme exhibited a high degree of tolerance to Sodium Dodecyl Sulphate (SDS). The partially purified protease when used as an additive in the commercial detergents was found to be a suitable source for washing clothes especially those stained with blood. Further, it showed good dehairing activity within a short duration in goat skin without affecting its collagen component. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro
2014-06-01
Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*
Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.
2013-01-01
The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628
Purification and Characterization of the Crown Gall-specific Enzyme, Octopine Synthase 1
Hack, Ethan; Kemp, John D.
1980-01-01
A single enzyme catalyzes the synthesis of all four N2-(1-carboxyethyl)-amino acid derivatives found in a crown gall tumor tissue induced by Agrobacterium tumefaciens (E. F. Sm. and Town.) Conn strain B6 on sunflower (Helianthus annuus L.). This enzyme, octopine synthase, has been purified by ammonium sulfate fractionation and chromatography on diethylaminoethylcellulose, blue agarose, and hydroxylapatite. The purified enzyme has all the N2-(1-carboxyethyl)-amino acid synthesizing activities found in crude preparations, and the relative activities with six amino acids remain nearly constant during purification. Although the maximum velocities (V) and Michaelis constants (Km) differ, the ratio V/Km is the same for all amino acid substrates. Thus an equimolar mixture of amino acids will give rise to an equimolar mixture of products. The kinetic properties of the enzyme are consistent with a partially ordered mechanism with arginine (NADPH, then arginine or pyruvate). Octopine synthase is a monomeric enzyme with a molecular weight of 39,000 by gel filtration and 38,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:16661312
Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.
Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui
2014-10-01
As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.
Daily, Michael D; Yu, Haibo; Phillips, George N; Cui, Qiang
2013-01-01
The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In "simple" enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for "cracking" in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again hinting at the intimate connection between protein stability and functional flexibility. Finally, a number of topics of considerable future interest are briefly discussed.
Sinha, Rajeshwari; Khare, Sunil K
2014-01-01
Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants.
Sinha, Rajeshwari; Khare, Sunil K.
2014-01-01
Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants. PMID:24782853
Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions.
Nijland, Philip G; Molenaar, Remco J; van der Pol, Susanne M A; van der Valk, Paul; van Noorden, Cornelis J F; de Vries, Helga E; van Horssen, Jack
2015-12-04
Demyelinated axons in multiple sclerosis (MS) lesions have an increased energy demand in order to maintain conduction. However, oxidative stress-induced mitochondrial dysfunction likely alters glucose metabolism and consequently impairs neuronal function in MS. Imaging and pathological studies indicate that glucose metabolism is altered in MS, although the underlying mechanisms and its role in neurodegeneration remain elusive. We investigated expression patterns of key enzymes involved in glycolysis, tricarboxylic acid (TCA) cycle and lactate metabolism in well-characterized MS tissue to establish which regulators of glucose metabolism are involved in MS and to identify underlying mechanisms. Expression levels of glycolytic enzymes were increased in active and inactive MS lesions, whereas expression levels of enzymes involved in the TCA cycle were upregulated in active MS lesions, but not in inactive MS lesions. We observed reduced expression and production capacity of mitochondrial α-ketoglutarate dehydrogenase (αKGDH) in demyelinated axons, which correlated with signs of axonal dysfunction. In inactive lesions, increased expression of lactate-producing enzymes was observed in astrocytes, whereas lactate-catabolising enzymes were mainly detected in axons. Our results demonstrate that the expression of various enzymes involved in glucose metabolism is increased in both astrocytes and axons in active MS lesions. In inactive MS lesions, we provide evidence that astrocytes undergo a glycolytic shift resulting in enhanced astrocyte-axon lactate shuttling, which may be pivotal for the survival of demyelinated axons. In conclusion, we show that key enzymes involved in energy metabolism are differentially expressed in active and inactive MS lesions. Our findings imply that, in addition to reduced oxidative phosphorylation activity, other bioenergetic pathways are affected as well, which may contribute to ongoing axonal degeneration in MS.
Zhou, Ying; Yang, Zhenming; Gao, Lingling; Liu, Wen; Liu, Rongkun; Zhao, Junting; You, Jiangfeng
2017-07-01
Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H 2 O 2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione- S -transferase activity remained constant. Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.
Azevedo, Helena S; Reis, Rui L
2009-10-01
This paper reports the effect of alpha-amylase encapsulation on the degradation rate of a starch-based biomaterial. The encapsulation method consisted in mixing a thermostable alpha-amylase with a blend of corn starch and polycaprolactone (SPCL), which were processed by compression moulding to produce circular disks. The presence of water was avoided to keep the water activity low and consequently to minimize the enzyme activity during the encapsulation process. No degradation of the starch matrix occurred during processing and storage (the encapsulated enzyme remained inactive due to the absence of water), since no significant amount of reducing sugars was detected in solution. After the encapsulation process, the released enzyme activity from the SPCL disks after 28days was found to be 40% comparatively to the free enzyme (unprocessed). Degradation studies on SPCL disks, with alpha-amylase encapsulated or free in solution, showed no significant differences on the degradation behaviour between both conditions. This indicates that alpha-amylase enzyme was successfully encapsulated with almost full retention of its enzymatic activity and the encapsulation of alpha-amylase clearly accelerates the degradation rate of the SPCL disks, when compared with the enzyme-free disks. The results obtained in this work show that degradation kinetics of the starch polymer can be controlled by the amount of encapsulated alpha-amylase into the matrix.
Michaelidis, Basile; Kyriakopoulou-Sklavounou, Pasqualina; Staikou, Alexandra; Papathanasiou, Ioanna; Konstantinou, Kiriaki
2008-12-01
The present work aimed to contribute to the understanding of the adaptation of the glycolytic pathway in tissues of frog Rana ridibunda and land snail species Helix lucorum during seasonal hibernation. Moreover responses of glycolytic enzymes from cold acclimated R. ridibunda and H. lucorum were studied as well. The drop in Po(2) in the blood of hibernated frogs and land snails indicated lower oxygen consumption and a decrease in their metabolic rate. The activities of glycolytic enzymes indicated that hibernation had a differential effect on the glycolyis in the two species studied and also in the tissues of the same species. The activity of l-LDH decreased significantly in the skeletal muscle and heart of hibernated R. ridibunda indicating a low glycolytic potential. Similar biochemical responses were observed in the same tissues during cold acclimation. The continuous increase in the activities of glycolytic enzymes studied, except for HK, might indicate a compensation for the impacts of low temperature on the enzymatic activities. In contrast to R. ridibunda, the activities of the enzymes increased and remained at higher levels than those of the prehibernation controls indicating maintenance of glycolytic potential in the tissues of hibernating land snails.
The Secretion and Action of Brush Border Enzymes in the Mammalian Small Intestine.
Hooton, Diane; Lentle, Roger; Monro, John; Wickham, Martin; Simpson, Robert
2015-01-01
Microvilli are conventionally regarded as an extension of the small intestinal absorptive surface, but they are also, as latterly discovered, a launching pad for brush border digestive enzymes. Recent work has demonstrated that motor elements of the microvillus cytoskeleton operate to displace the apical membrane toward the apex of the microvillus, where it vesiculates and is shed into the periapical space. Catalytically active brush border digestive enzymes remain incorporated within the membranes of these vesicles, which shifts the site of BB digestion from the surface of the enterocyte to the periapical space. This process enables nutrient hydrolysis to occur adjacent to the membrane in a pre-absorptive step. The characterization of BB digestive enzymes is influenced by the way in which these enzymes are anchored to the apical membranes of microvilli, their subsequent shedding in membrane vesicles, and their differing susceptibilities to cleavage from the component membranes. In addition, the presence of active intracellular components of these enzymes complicates their quantitative assay and the elucidation of their dynamics. This review summarizes the ontogeny and regulation of BB digestive enzymes and what is known of their kinetics and their action in the peripheral and axial regions of the small intestinal lumen.
Sakamoto, Hiroaki; Uchii, Toshiki; Yamaguchi, Kayo; Koto, Ayako; Takamura, Ei-Ichiro; Satomura, Takenori; Sakuraba, Haruhiko; Ohshima, Toshihisa; Suye, Shin-Ichiro
2015-07-01
The life of biobatteries remains an issue due to loss of enzyme activity over time. In this study, we sought to develop a biobattery with a long life using a hyperthermophilic enzyme. We hypothesized that use of such hyperthermophilic enzymes would allow for the biofuel cells to have a long battery life. Using pyrroloquinoline quinone-glucose dehydrogenase and the multicopper oxidase from Pyrobaculum aerophilum, we constructed an anode and cathode. The maximum output was 11 μW at 0.2 V, and the stability of the both electrode was maintained at 70 % after 14 days. The biofuel cells that use hyperthermophilic enzymes may prolong their life.
A six-year longitudinal study of phosphorus enrichment on soil enzymes in acidic forest soils.
NASA Astrophysics Data System (ADS)
Deforest, J. L.; Freedman, Z.
2017-12-01
Acidic nitrogen (N) deposition may be shifting the nutrient economies of forest soils from one dominated by N more towards phosphorus (P) limitation. While the short-term responses of nutrient enrichment experiments are reported, there is a lack of information on the longer-term response mediating ecosystem nutrient dynamics, especially for P. We hypothesized that long-term soil P amendments should result in the persistent suppression of P-acquiring extracellular enzymes when compared with ambient soils. Alternatively, vegetation and/or the microbial community may have acclimated to require more P (i.e., communities more suitable to the altered nutrient economy) resulting in an increase in the activity of P-acquiring enzymes relative to carbon (C) and N-acquiring enzyme activity. To test the hypothesis, P availability was indirectly and/or directly increased by raising soil pH and/or the addition of phosphate fertilizer and maintained for six years. Study sites were in two North American eastern deciduous forest regions on glaciated soils with modest P availability and unglaciated with low P availability. For the glaciated sites, C:N acquiring enzyme activity remained stable and was insensitive to 6 years of elevated pH and/or P in the, but there was modest increases in the unglaciated site. Phosphorus-acquiring enzyme activity was insensitive to the treatments in the glaciated sites. For unglaciated sites, P-acquiring enzyme activity was suppressed under P addition in year one, rebounded in the second year, and was suppressed in the subsequent years. These results suggest that the basal nutrient resources of an ecosystem will have a very strong influence on its response to nutrient enrichment. Likewise, the second-year recovery of P-acquiring enzyme activity might be evidence of acclimation, but the gradual yearly suppression of these enzymes suggests the system has not reach a steady state.
Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko
2016-01-15
Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Mao, Shurui; Lu, Zhaoxin; Zhang, Chong; Lu, Fengxia; Bie, Xiaomei
2013-02-01
Purification, characterization, gene cloning, and heterologous expression in Escherichia coli of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9 have been investigated in this paper. The donor strain B. altitudinis YC-9 was isolated from spring silt. The native enzyme was purified by ammonium sulfate precipitation, diethylaminoethyl-cellulose anion exchange chromatography, and Sephadex G-100 gel filtration. The purified β-1,3-1,4-glucanase was observed to be stable at 60 °C and retain more than 90% activity when incubated for 2 h at 60 °C and remain about 75% and 44% activity after incubating at 70 °C and 80 °C for 10 min, respectively. Acidity and temperature optimal for this enzyme was pH 6 and 65 °C. The open reading frame of the enzyme gene was measured to be 732 bp encoding 243 amino acids, with a predicted molecular weight of 27.47 kDa. The gene sequence of β-1,3-1,4-glucanase showed a homology of 98% with that of Bacillus licheniformis. After being expressed in E. coli BL21, active recombinant enzyme was detected both in the supernatants of the culture and the cell lysate, with the activity of 102.7 and 216.7 U/mL, respectively. The supernatants of the culture were used to purify the recombinant enzyme. The purified recombinant enzyme was characterized to show almost the same properties to the wild enzyme, except that the specific activity of the recombinant enzyme reached 5392.7 U/mg, which was higher than those ever reported β-1,3-1,4-glucanase from Bacillus strains. The thermal stability and high activity make this enzyme broad prospect for industry application. This is the first report on β-1,3-1,4-glucanase produced by B. altitudinis.
Bechman, Allison; Phillips, Robert D; Chen, Jinru
2012-06-01
Koji are solid-state fermentation products made by inoculating steamed grains with the spores of fungi, particularly Aspergillus spp. This research was undertaken to identify the fermentation and storage conditions optimal for the production and maintenance of selected hydrolytic enzymes, such as α-amlyase and protease, in koji. Steamed rice and barley were inoculated with 2 × 10 ¹¹ Aspergillus oryzae spores per kilogram of grains and fermented for 118 h in a growth chamber at 28 to 32 °C with controlled relative humidities. Samples were drawn periodically during fermentation and storage at -20, 4, or 32 °C, and α-amylase and protease activity, mold counts, a(w), moisture contents, and pH of collected samples were determined. It was observed that the a(w), moisture contents, and pH of the koji were influenced by the duration of fermentation and temperature of storage. The α-amylase activity of both koji increased as the populations of A. oryzae increased during the exponential growth phase. The enzyme activity of barley koji was significantly higher than that of rice koji, reaching a peak activity of 211.87 or 116.57 U at 46 and 58 h, respectively, into the fermentation process. The enzyme activity in both products started to decrease once the mold culture entered the stationary growth phase. The protease activities of both koji were low and remained relatively stable during fermentation and storage. These results suggest that rice and barley koji can be used as sources of α-amylase and desired enzyme activity can be achieved by controlling the fermentation and storage conditions. Amylases and proteases are 2 important hydrolytic enzymes. In the food industry, these enzymes are used to break down starches and proteins while reducing the viscosity of foods. Although amylases and proteases are found in plants and animals, commercial enzymes are often produced using bacteria or molds through solid state fermentation, which is designed to use natural microbial process to produce enzymes in a controlled environment. A properly produced and maintained koji with a high hydrolytic enzyme activity can serve as an important source of the enzymes for the food industry. © 2012 Institute of Food Technologists®
Chen, Weiguo; Druhan, Lawrence J.; Chen, Chun-An; Hemann, Craig; Chen, Yeong-Renn; Berka, Vladimir; Tsai, Ah-Lim; Zweier, Jay L.
2010-01-01
Endothelial nitric oxide synthase (eNOS) is an important regulator of vascular and cardiac function. Peroxynitrite (ONOO−) inactivates eNOS, but questions remain regarding the mechanisms of this process. It has been reported that inactivation is due to oxidation of the eNOS zinc-thiolate cluster, rather than the cofactor tetrahydrobiopterin (BH4); however, this remains highly controversial. Therefore, we investigated the mechanisms of ONOO−-induced eNOS dysfunction and their dose-dependence. Exposure of human eNOS to ONOO− resulted in a dose-dependent loss of activity with a marked destabilization of the eNOS dimer. HPLC analysis indicated that both free and eNOS-bound BH4 were oxidized during exposure to ONOO−; however, full oxidation of protein bound biopterin required higher ONOO− levels. Additionally, ONOO− triggered changes in UV/Visible spectrum and heme content of the enzyme. Pre-incubation of eNOS with BH4 decreased dimer destabilization and heme alteration. Addition of BH4 to the ONOO−-destabilized eNOS dimer only partially rescued enzyme function. In contrast to ONOO− treatment, incubation with the zinc chelator TPEN with removal of enzyme-bound zinc did not change the eNOS activity or stability of the SDS-resistant eNOS dimer, demonstrating that the dimer stabilization induced by BH4 does not require zinc occupancy of the zinc-thiolate cluster. While ONOO− treatment was observed to induce loss of Zn-binding this can not account for the loss of enzyme activity. Therefore, ONOO−-induced eNOS inactivation is primarily due to oxidation of BH4 and irreversible destruction of the heme/heme-center. PMID:20184376
Dioxygenase Activity of Epidermal Lipoxygenase-3 Unveiled
Zheng, Yuxiang; Brash, Alan R.
2010-01-01
Epidermal lipoxygenase-3 (eLOX3) exhibits hydroperoxide isomerase activity implicated in epidermal barrier formation, but its potential dioxygenase activity has remained elusive. We identified herein a synthetic fatty acid, 9E,11Z,14Z-20:3ω6, that was oxygenated by eLOX3 specifically to the 9S-hydroperoxide. Reaction showed a pronounced lag phase, which suggested that eLOX3 is deficient in its activation step. Indeed, we found that high concentrations of hydroperoxide activator (e.g. 65 μm) overcame a prolonged lag phase (>1 h) and unveiled a dioxygenase activity with arachidonic acid; the main products were the 5-, 9-, and 7-hydroperoxyeicosatetraenoic acids (HPETEs). These were R/S mixtures (ranging from ∼50:50 to 73:27), and as the bis-allylic 7-HPETE can be formed only inside the enzyme active site, the results indicate there is oxygen availability along either face of the reacting fatty acid radical. That the active site oxygen supply is limited is implied from the need for continuous re-activation, as carbon radical leakage leaves the enzyme in the unactivated ferrous state. An Ala-to-Gly mutation, known to affect the positioning of O2 in the active site of other lipoxygenase enzymes, led to more readily activated reaction and a significant increase in the 9R- over the 5-HPETE. Activation and cycling of the ferric enzyme are thus promoted using the 9E,11Z,14Z-20:3ω6 substrate, by continuous hydroperoxide activation, or by the Ala-to-Gly mutation. We suggest that eLOX3 represents one end of a spectrum among lipoxygenases where activation is inefficient, favoring hydroperoxide isomerase cycling, with the opposite end represented by readily activated enzymes in which dioxygenase activity is prominent. PMID:20921226
Ascorbic acid metabolism during bilberry (Vaccinium myrtillus L.) fruit development.
Cocetta, Giacomo; Karppinen, Katja; Suokas, Marko; Hohtola, Anja; Häggman, Hely; Spinardi, Anna; Mignani, Ilaria; Jaakola, Laura
2012-07-15
Bilberry (Vaccinium myrtillus L.) possesses a high antioxidant capacity in berries due to the presence of anthocyanins and ascorbic acid (AsA). Accumulation of AsA and the expression of the genes encoding the enzymes of the main AsA biosynthetic route and of the ascorbate-glutathione cycle, as well as the activities of the enzymes involved in AsA oxidation and recycling were investigated for the first time during the development and ripening of bilberry fruit. The results showed that the AsA level remained relatively stable during fruit maturation. The expression of the genes encoding the key enzymes in the AsA main biosynthetic route showed consistent trends with each other as well as with AsA levels, especially during the first stages of fruit ripening. The expression of genes and activities of the enzyme involved in the AsA oxidation and recycling route showed more prominent developmental stage-dependent changes during the ripening process. Different patterns of activity were found among the studied enzymes and the results were, for some enzymes, in accordance with AsA levels. In fully ripe berries, both AsA content and gene expression were significantly higher in skin than in pulp. Copyright © 2012 Elsevier GmbH. All rights reserved.
Kuttiyawong, K; Nakapong, S; Pichyangkura, R
2008-11-03
Mutations of the tryptophan residues in the tryptophan-track of the N-terminal domain (W33F/Y and W69F/Y) and in the catalytic domain (W245F/Y) of Serratia sp. TU09 Chitinase 60 (CHI60) were constructed, as single and double point substitutions to either phenylalanine or tyrosine. The enzyme-substrate interaction and mode of catalysis, exo/endo-type, of wild type CHI60 and mutant enzymes on soluble (partially N-acetylated chitin), amorphous (colloidal chitin), and crystalline (β-chitin) substrates were studied. All CHI60 mutants exhibited a reduced substrate binding activity on colloidal chitin. CHI60 possesses a dual mode of catalysis with both exo- and endo-type activities allowing the enzyme to work efficiently on various substrate types. CHI60 preferentially uses the endo-type mode on soluble and amorphous substrates and the exo-type mode on crystalline substrate. However, the prevalent mode of hydrolysis mediated by CHI60 is regulated by ionic strength. Slightly elevated ionic strength, 0.1-0.2M NaCl, which promotes enzyme-substrate interactions, enhances CHI60 hydrolytic activity on amorphous substrate and, interestingly, on partially N-acetylated chitin. High ionic strength, 0.5-2.0M NaCl, prevents the enzyme from dissociating from amorphous substrate, occupying the enzyme in an enzyme-substrate non-productive complex. However, on crystalline substrates, the activity of CHI60 was only inhibited approximately 50% at high ionic strength, suggesting that the enzyme hydrolyzes crystalline substrates with an exo-type mode processively while remaining tightly bound to the substrate. Moreover, substitution of Trp-33 to either phenylalanine or tyrosine reduced the activity of the enzyme at high ionic strength, suggesting an important role of Trp-33 on enzyme processivity.
Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.
Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio
2017-11-28
The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes for single as well as multi-step reactions.
Gao, Yu-Fei; Li, Bi-Qing; Cai, Yu-Dong; Feng, Kai-Yan; Li, Zhan-Dong; Jiang, Yang
2013-01-27
Identification of catalytic residues plays a key role in understanding how enzymes work. Although numerous computational methods have been developed to predict catalytic residues and active sites, the prediction accuracy remains relatively low with high false positives. In this work, we developed a novel predictor based on the Random Forest algorithm (RF) aided by the maximum relevance minimum redundancy (mRMR) method and incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility to predict active sites of enzymes and achieved an overall accuracy of 0.885687 and MCC of 0.689226 on an independent test dataset. Feature analysis showed that every category of the features except disorder contributed to the identification of active sites. It was also shown via the site-specific feature analysis that the features derived from the active site itself contributed most to the active site determination. Our prediction method may become a useful tool for identifying the active sites and the key features identified by the paper may provide valuable insights into the mechanism of catalysis.
Dong, G; Vieille, C; Zeikus, J G
1997-01-01
The gene encoding the Pyrococcus furiosus hyperthermophilic amylopullulanase (APU) was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a single 827-residue polypeptide with a 26-residue signal peptide. The protein sequence had very low homology (17 to 21% identity) with other APUs and enzymes of the alpha-amylase family. In particular, none of the consensus regions present in the alpha-amylase family could be identified. P. furiosus APU showed similarity to three proteins, including the P. furiosus intracellular alpha-amylase and Dictyoglomus thermophilum alpha-amylase A. The mature protein had a molecular weight of 89,000. The recombinant P. furiosus APU remained folded after denaturation at temperatures of < or = 70 degrees C and showed an apparent molecular weight of 50,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Denaturating temperatures of above 100 degrees C were required for complete unfolding. The enzyme was extremely thermostable, with an optimal activity at 105 degrees C and pH 5.5. Ca2+ increased the enzyme activity, thermostability, and substrate affinity. The enzyme was highly resistant to chemical denaturing reagents, and its activity increased up to twofold in the presence of surfactants. PMID:9293009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, Gilson C.N.; Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP; Kajiya, Mikihito
2011-06-10
Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography andmore » Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.« less
Age-dependent denaturation of enzymes in the human lens: a paradigm for organismic aging?
Zhu, Xiangjia; Korlimbinis, Anastasia; Truscott, Roger J W
2010-10-01
Little is known about the rate of denaturation of proteins within the human body. To monitor this decline, human eye lenses were dissected into discrete regions that were formed at different stages of life and assayed for activity of lactate dehydrogenase (LDH) and a particularly stable enzyme, glutathione reductase (GR). Activity was highest for both enzymes in the most recently synthesized outer part of the lens, decreased further into the lens, and, for LDH, was barely detectable in nuclear regions that consist of proteins that were synthesized in utero. For LDH, 95% of total lens activity was found in the outer half of the adult lens at all ages. Activity was unchanged in the outermost part of the lens as a function of age, suggesting that the ability of humans to synthesize the two enzymes is not impaired, even up to the tenth decade. After age of 40, LDH activity declined steadily in the interior of the lens at the rate of 8.3% per decade. GR activity diminished more slowly, and western blotting indicated that both denaturation of the enzyme and truncation were responsible. These data support the view that few, if any, metabolic pathways remain in the center of older lenses. Exposure of the enzymes to physiological pH and temperature over a period of decades is presumably sufficient to cause denaturation. The center of older human lenses is a unique environment in which the accumulation of untoward posttranslational modifications to proteins can be studied in the absence of significant enzymatic amelioration.
Stock, Roberto P; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A
2012-01-01
The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.
Protective effect of poly (α- L-glutamate) against UV and γ-irradiation
NASA Astrophysics Data System (ADS)
Furuta, Masakazu; Huy, Nguyen Quang; Tsuchiya, Akihito; Nakatsuka, Hiroshige; Hayashi, Toshio
2004-09-01
We occasionally found that poly (α- L-glutamate) showed a superior protective effect on enzymes against UV and 60Co-γ irradiation. We selected papain and α-amylase as a model enzyme and irradiated the aqueous solution (10 mg/ml) of each enzyme with UV and 60Co-γ rays in the presence of poly (α- L-glutamate) (α-PGA), poly (glucosyl oxyethyl methacrylate (GEMA)), and glucose (1.25% w/v each). The mixture of the three compounds has a significant protective effect on the activity of papain solution showing 40% of remaining activity twice as much as the control containing no additive at the dose of 15 kGy. Among them, α-PGA showed the highest protecting effect on the both papain and α-amylase even after 10-kGy irradiation at which 50% of the activity was retained. α-PGA also showed significant protective activity on α-amylase against UV both in solution and under dried state.
Ubarretxena-Belandia, I; Cox, R C; Dijkman, R; Egmond, M R; Verheij, H M; Dekker, N
1999-03-01
The reaction of a novel active-site-directed phospholipase A1 inhibitor with the outer-membrane phospholipase A (OMPLA) was investigated. The inhibitor 1-p-nitrophenyl-octylphosphonate-2-tridecylcarbamoyl-3-et hanesulfonyl -amino-3-deoxy-sn-glycerol irreversibly inactivated OMPLA. The inhibition reaction did not require the cofactor calcium or an unprotonated active-site His142. The inhibition of the enzyme solubilized in hexadecylphosphocholine micelles was characterized by a rapid (t1/2 = 20 min) and complete loss of enzymatic activity, concurrent with the covalent modification of 50% of the active-site serines, as judged from the amount of p-nitrophenolate (PNP) released. Modification of the remaining 50% occurred at a much lower rate, indicative of half-of-the-sites reactivity against the inhibitor of this dimeric enzyme. Inhibition of monomeric OMPLA solubilized in hexadecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate resulted in an equimolar monophasic release of PNP, concurrent with the loss of enzymatic activity (t1/2 = 14 min). The half-of-the-sites reactivity is discussed in view of the dimeric nature of this enzyme.
Isolation of cold-active, acidic endocellulase from Ladakh soil by functional metagenomics.
Bhat, Archana; Riyaz-Ul-Hassan, Syed; Ahmad, Nasier; Srivastava, Nidhi; Johri, Sarojini
2013-03-01
Mining of soil sample from cold desert of Ladakh by functional metagenomics led to the isolation of cold-adapted endocellulase (CEL8M) that hydrolyses carboxymethyl cellulose (CMC). Mature CEL8M, a 347-residue polypeptide with a molecular mass of 38.9 kDa showed similarity to β-1,3-1,4 D-glucanase from Klebsiella sp. The enzyme contains the catalytic module of glycosyl hydrolase family 8 but does not possess a carbohydrate-binding domain. 3D structural model of the enzyme built by homology modeling showed an architecture of (α/α)6-barrel fold. The purified enzyme was found to be active against CMC, xylan, colloidal chitosan and lichenan but not active against avicel. Glucose was not among the initial hydrolysis products, indicating an endo mode of action. CEL8M displayed maximal activity at pH 4.5 and remained significantly active (~28 %) when the temperature decreased to 10 °C. Cold-active endocellulase CEL8M may find applications in textile industry at low temperature which can result in energy savings.
Ouyang, Jia; Dong, Zhenwei; Song, Xiangyang; Lee, Xin; Chen, Mu; Yong, Qiang
2010-09-01
The effects of additives on hydrolysis of microcrystalline cellulose (Avicel PH101) were examined using commercial cellulose-degrading enzymes (Celluclast 1.5L and Novozyme 188). Polyethylene glycol 4000 (PEG4000) was the most effective additive tested. When PEG4000 was added at 0.05 g/g glucan, the conversion of Avicel PH101 increased 91% (from 41.1% to 78.9%). The cellulase activity of Celluclast 1.5L increased 27.5% with PEG4000 addition. A positive effect on enzyme stabilities of Celluclast 1.5L and Novozyme 188 also occurred with PEG4000 addition. During hydrolysis process, significant changes in free protein concentration and cellulase activity were observed on Avicel PH101. More than 90% of the original enzyme activity remained in the solution after 48 h hydrolysis. Thus, PEG4000 addition is an efficient method to enhance digestibility of cellulosic materials and make enzyme recovery possible and valuable. This provides an opportunity of decreasing the operational cost of the hydrolysis process. (c) 2010 Elsevier Ltd. All rights reserved.
High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.
Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru
2018-02-01
Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland
NASA Astrophysics Data System (ADS)
Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.
2015-12-01
Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly resilient even after five years of drought.
Versatile de novo enzyme activity in capsid proteins from an engineered M13 bacteriophage library.
Casey, John P; Barbero, Roberto J; Heldman, Nimrod; Belcher, Angela M
2014-11-26
Biocatalysis has grown rapidly in recent decades as a solution to the evolving demands of industrial chemical processes. Mounting environmental pressures and shifting supply chains underscore the need for novel chemical activities, while rapid biotechnological progress has greatly increased the utility of enzymatic methods. Enzymes, though capable of high catalytic efficiency and remarkable reaction selectivity, still suffer from relative instability, high costs of scaling, and functional inflexibility. Herein, we developed a biochemical platform for engineering de novo semisynthetic enzymes, functionally modular and widely stable, based on the M13 bacteriophage. The hydrolytic bacteriophage described in this paper catalyzes a range of carboxylic esters, is active from 25 to 80 °C, and demonstrates greater efficiency in DMSO than in water. The platform complements biocatalysts with characteristics of heterogeneous catalysis, yielding high-surface area, thermostable biochemical structures readily adaptable to reactions in myriad solvents. As the viral structure ensures semisynthetic enzymes remain linked to the genetic sequences responsible for catalysis, future work will tailor the biocatalysts to high-demand synthetic processes by evolving new activities, utilizing high-throughput screening technology and harnessing M13's multifunctionality.
Design, characterisation and application of alginate-based encapsulated pig liver esterase.
Pauly, Jan; Gröger, Harald; Patel, Anant V
2018-06-05
Encapsulation of hydrolases in biopolymer-based hydrogels often suffers from low activities and encapsulation efficiencies along with high leaching and unsatisfactory recycling properties. Exemplified for the encapsulation of pig liver esterase the coating of alginate and chitosan beads have been studied by creating various biopolymer hydrogel beads. Enzyme activity and encapsulation efficiency were notably enhanced by chitosan coating of alginate beads while leaching remained nearly unchanged. This was caused by the enzymatic reaction acidifying the matrix, which increased enzyme retention through enhanced electrostatic enzyme-alginate interaction but decreased activity through enzyme deactivation. A practical and ready-to-use method for visualising pH in beads during reaction by co-encapsulation of a conventional pH indicator was also found. Our method proves that pH control inside the beads can only be realised by buffering. The resulting beads provided a specific activity of 0.267 μmol ∙ min -1 ∙ mg -1 , effectiveness factor 0.88, encapsulation efficiency of 88%, 5% leaching and good recycling properties. This work will contribute towards better understanding and application of encapsulated hydrolases for enzymatic syntheses. Copyright © 2018 Elsevier B.V. All rights reserved.
Enzymatic Removal of Diacetyl from Beer 1
Thompson, Janet W.; Shovers, J.; Sandine, W. E.; Elliker, P. R.
1970-01-01
Use of diacetyl reductase, a reduced nicotinamide adenine dinucleotide (NADH)-requiring enzyme, to eliminate diacetyl off-flavor in beer was studied. The crude enzyme was extracted from Aerobacter aerogenes and partially purified by ammonium sulfate precipitation or Sephadex chromatography. In the semipure state, the enzyme was inactivated by lyophilization; in a crude state, the lyophilized extract remained stable for at least 4 months at — 20 C. A 50% reduction in specific activity within 5 min was observed when crude diacetyl reductase was suspended (5 mg of protein/ml) in phosphate buffer at pH 5.5 or below; a similar inactivation rate was observed when the crude enzyme was dissolved in a 5% aqueous ethyl alcohol solution. Effective crude enzyme activity in beer at a natural pH of 4.1 required protection of the enzyme in 10% gelatin. Incorporation of yeast cells with the gel-protected enzyme provided regeneration of NADH. Combinations of yeast, enzyme, and gelatin were tested to obtain data analyzed by regression analysis to determine the optimal concentration of each component of the system required to reduce the level of diacetyl in spiked (0.5 ppm) beer to less than 0.12 ppm within 48 hr at 5 C. The protected enzyme system was also effective in removing diacetyl from orange juice (pH 3.8) and some distilled liquors. PMID:4318450
Xie, Xuefeng; Pu, Lijie; Wang, Qiqi; Zhu, Ming; Xu, Yan; Zhang, Meng
2017-12-31
Soil enzyme activity during different years of reclamation and land use patterns could indicate changes in soil quality. The objective of this research is to explore the dynamics of 5 soil enzyme activities (dehydrogenase, amylase, urease, acid phosphatase and alkaline phosphatase) involved in C, N, and P cycling and their responses to changes in soil physicochemical properties resulting from long-term reclamation of coastal saline soil. Soil samples from a total of 55 sites were collected from a coastal reclamation area with different years of reclamation (0, 7, 32, 40, 63a) in this study. The results showed that both long-term reclamation and land use patterns have significant effects on soil physicochemical properties and enzyme activities. Compared with the bare flat, soil water content, soil bulk density, pH and electrical conductivity showed a decreasing trend after reclamation, whereas soil organic carbon, total nitrogen and total phosphorus tended to increase. Dehydrogenase, amylase and acid phosphatase activities initially increased and then decreased with increasing years of reclamation, whereas urease and alkaline phosphatase activities were characterized by an increase-decrease-increase trend. Moreover, urease, acid phosphatase and alkaline phosphatase activities exhibited significant differences between coastal saline soil with 63years of reclamation and bare flat, whereas dehydrogenase and amylase activities remained unchanged. Aquaculture ponds showed higher soil water content, pH and EC but lower soil organic carbon, total nitrogen and total phosphorus than rapeseed, broad bean and wheat fields. Rapeseed, broad bean and wheat fields displayed higher urease and alkaline phosphatase activities and lower dehydrogenase, amylase and acid phosphatase activities compared with aquaculture ponds. Redundancy analysis revealed that the soil physicochemical properties explained 74.5% of the variation in soil enzyme activities and that an obvious relationship existed between soil nutrients and soil enzyme activities. These results will assist governmental evaluation of the quality of reclaimed coastal soil. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Vanessa L.; Fansler, Sarah J.; Smith, Jeffery L.
2011-02-01
Applying biochar to soils as an ameliorative substance and mechanism for C sequestration has received a great deal of interest in light of the sustained fertility observed in the Terra Preta soils of Brazil. The effects of synthetic biochars on biochemical processes needs to be better understood in order to determine if this is a reasonable practice in managed systems. The biochar studied was formed from the fast-pyrolysis of a switchgrass feedstock. Four soil enzymes were studied: β-glucosidase, β-N-acetylglucosaminidase, lipase, and leucine aminopeptidase. Both colorimetric and fluorescent assays were used for β-glucosidase and β-N-acetylglucosaminidase. Seven days after biochar was addedmore » to microcosms of a Palouse silt loam, the fluorescence-based assays indicated increased activities of the four enzymes, compared to non-amended soil. To clarify the mechanisms of the observed effects,in the absence of soil, purified enzymes or substrates were briefly exposed to biochar and then assayed. Except for β-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the remaining three enzymes in vitro, suggesting that sorption reactions between the substrate and biochar either removed the substrate from the assays or impeded the enzyme binding. The activity of purified β-N-acetylglucosaminidase increased significantly following biochar exposure, suggesting a chemical stimulation of enzyme functioning. We conclude that biochar added to soil acts as a substrate that can stimulate the soil microbial biomass and its activity. Our in vitro study suggests that biochar is not biochemically inert. Biochar amendments are likely to have effects that are currently difficult to predict, and that could impact overall soil function.« less
Effects of chlorpyrifos on soil carboxylesterase activity at an aggregate-size scale.
Sanchez-Hernandez, Juan C; Sandoval, Marco
2017-08-01
The impact of pesticides on extracellular enzyme activity has been mostly studied on the bulk soil scale, and our understanding of the impact on an aggregate-size scale remains limited. Because microbial processes, and their extracellular enzyme production, are dependent on the size of soil aggregates, we hypothesized that the effect of pesticides on enzyme activities is aggregate-size specific. We performed three experiments using an Andisol to test the interaction between carboxylesterase (CbE) activity and the organophosphorus (OP) chlorpyrifos. First, we compared esterase activity among aggregates of different size spiked with chlorpyrifos (10mgkg -1 wet soil). Next, we examined the inhibition of CbE activity by chlorpyrifos and its metabolite chlorpyrifos-oxon in vitro to explore the aggregate size-dependent affinity of the pesticides for the active site of the enzyme. Lastly, we assessed the capability of CbEs to alleviate chlorpyrifos toxicity upon soil microorganisms. Our principal findings were: 1) CbE activity was significantly inhibited (30-67% of controls) in the microaggregates (<0.25mm size) and smallest macroaggregates (<1.0 - 0.25mm), but did not change in the largest macroaggregates (>1.0mm) compared with the corresponding controls (i.e., pesticide-free aggregates), 2) chlorpyrifos-oxon was a more potent CbE inhibitor than chlorpyrifos; however, no significant differences in the CbE inhibition were found between micro- and macroaggregates, and 3) dose-response relationships between CbE activity and chlorpyrifos concentrations revealed the capability of the enzyme to bind chlorpyrifos-oxon, which was dependent on the time of exposure. This chemical interaction resulted in a safeguarding mechanism against chlorpyrifos-oxon toxicity on soil microbial activity, as evidenced by the unchanged activity of dehydrogenase and related extracellular enzymes in the pesticide-treated aggregates. Taken together, these results suggest that environmental risk assessments of OP-polluted soils should consider the fractionation of soil in aggregates of different size to measure the CbE activity, and other potential soil enzyme activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Faber-Barata, Joana; Sola-Penna, Mauro
2005-01-01
Trehalose and glycerol are known as good stabilizers of function and structure of several macromolecules against stress conditions. We previously reported that they have comparable effectiveness on protecting two yeast cytosolic enzymes against thermal inactivation. However, enzyme protection has always been associated to a decrease in catalytic activity at the stabilizing conditions i.e., the presence of the protective molecule. In the present study we tested trehalose and glycerol on thermal protection of the mammalian cytosolic enzyme phosphofructokinase. Here we found that trehalose was able to protect phosphofructokinase against thermal inactivation as well as to promote an activation of its catalytic activity. The enzyme incubated in the presence of 1 M trehalose did not present any significant inactivation within 2 h of incubation at 50 degrees C, contrasting to control experiments where the enzyme was fully inactivated during the same period exhibiting a t0.5 for thermal inactivation of 56+/-5 min. On the other hand, enzyme incubated in the presence of 37.5% (v/v) glycerol was not protected against incubation at 50 degrees C. Indeed, when phosphofructokinase was incubated for 45 min at 50 degrees C in the presence of lower concentrations of glycerol (7.5-25%, v/v), the remaining activity was 2-4 times lower than control. These data show that the compatibility of effects previously shown for trehalose and glycerol with some yeast cytosolic enzymes can not be extended to all globular enzyme system. In the case of phosphofructokinase, we believe that its property of shifting between several different complex oligomers configurations can be influenced by the physicochemical properties of the stabilizing molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrlich, R.S.; Colman, R.F.
1987-06-16
Isocitrate and ..cap alpha..-ketoglutarate have been synthesized with carbon-13 enrichment at specific positions. The /sup 13/C NMR spectra of these derivatives were measured as a function of pH. The magnitudes of the changes in chemical shifts with pH for free isocitrate and the magnesium-isocitrate complex suggest that the primary site of ionization at the ..beta..-carboxyl. In the presence of the enzyme NADP/sup +/-dependent isocitrate dehydrogenase and the activating metal magnesium, the carbon-13 resonances of all three carboxyls remain constant from pH 5.5 to pH 7.5. Thus, the carboxyls remain in the ionized form in the enzyme-isocitrate complex. The ..cap alpha..-hydroxylmore » carbon resonance could not be located in the enzyme-isocitrate complex, suggesting immobilization of this group. Magnesium produces a 2 ppm downfield shift of the ..beta..-carboxyl but does not change the resonances of the ..cap alpha..- and ..gamma..-carboxyls. This result is consistent with metal activation of both the dehydrogenation and decarboxylation reactions. The /sup 13/C NMR spectrum of ..cap alpha..-ketoglutarate remains unchanged in the presence of isocitrate dehydrogenase, implying the absence of alterations in geometry in the enzyme-bound form. Formation of the quaternary complex with Mg/sup 2 +/ and NADPH leads to loss of the ..cap alpha..-ketoglutarate resonances and the appearance of new resonances characteristic of ..cap alpha..-hydroxyglutarate. In addition, a broad peak ascribed to the enol form of ..cap alpha..-ketoglutarate is observed. The substantial change in the shift of the ..beta..-carboxyl of isocitrate and the lack of significant shifts in the other carboxyls of isocitrate or ..cap alpha..-ketoglutarate suggest that interaction of the ..beta..-carboxyl with the enzyme contributes to the tighter binding of isocitrate and may be significant for the oxidative decarboxylation function of isocitrate dehydrogenase.« less
Waldman, S A; Kuno, T; Kamisaki, Y; Chang, L Y; Gariepy, J; O'Hanley, P; Schoolnik, G; Murad, F
1986-01-01
A novel form of particulate guanylate cyclase tightly coupled by cytoskeletal components to receptors for heat-stable enterotoxin (ST) produced by Escherichia coli can be found in membranes from rat intestinal mucosa. Intestinal particulate guanylate cyclase was resistant to solubilization with detergent alone, with only 30% of the total enzyme activity being extracted with Lubrol-PX. Under similar conditions, 70% of this enzyme was solubilized from rat lung membranes. The addition of high concentrations of sodium chloride to the extraction buffer resulted in greater solubilization of particulate guanylate cyclase from intestinal membranes. Although extraction of intestinal membranes with detergent and salt resulted in greater solubilization of guanylate cyclase, a small fraction of the enzyme activity remained associated with the particulate fraction. This activity was completely resistant to solubilization with a variety of detergents and chaotropes. Particulate guanylate cyclase and the ST receptor solubilized by detergent retained their abilities to produce cyclic GMP and bind ST, respectively. However, ST failed to activate particulate guanylate cyclase in detergent extracts. In contrast, guanylate cyclase resistant to solubilization remained functional and coupled to the ST receptor since enzyme activation by ST was unaffected by various extraction procedures. The possibility that the ST receptor and particulate guanylate cyclase were the same molecule was explored. ST binding and cyclic GMP production were separated by affinity chromatography on GTP-agarose. Similarly, guanylate cyclase migrated as a 300,000-dalton protein, while the ST receptor migrated as a 240,000-dalton protein on gel filtration chromatography. Also, thiol-reactive agents such as cystamine and N-ethylmaleimide inhibited guanylate cyclase activation by ST, with no effect on receptor binding of ST. These data suggest that guanylate cyclase and the ST receptor are independent proteins coupled by cytoskeletal components in membranes of intestinal mucosa. PMID:2867046
Rejón, Juan D.; Zienkiewicz, Agnieszka; Rodríguez-García, María Isabel; Castro, Antonio J.
2012-01-01
Background and Aims A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized. Methods The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods. Key Results Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles. Conclusions In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of the stigma. PMID:22922586
Piergiorge, Rafael Mina; de Miranda, Antonio Basílio; Catanho, Marcos
2017-01-01
Abstract Since enzymes catalyze almost all chemical reactions that occur in living organisms, it is crucial that genes encoding such activities are correctly identified and functionally characterized. Several studies suggest that the fraction of enzymatic activities in which multiple events of independent origin have taken place during evolution is substantial. However, this topic is still poorly explored, and a comprehensive investigation of the occurrence, distribution, and implications of these events has not been done so far. Fundamental questions, such as how analogous enzymes originate, why so many events of independent origin have apparently occurred during evolution, and what are the reasons for the coexistence in the same organism of distinct enzymatic forms catalyzing the same reaction, remain unanswered. Also, several isofunctional enzymes are still not recognized as nonhomologous, even with substantial evidence indicating different evolutionary histories. In this work, we begin to investigate the biological significance of the cooccurrence of nonhomologous isofunctional enzymes in human metabolism, characterizing functional analogous enzymes identified in metabolic pathways annotated in the human genome. Our hypothesis is that the coexistence of multiple enzymatic forms might not be interpreted as functional redundancy. Instead, these enzymatic forms may be implicated in distinct (and probably relevant) biological roles. PMID:28854631
Wang, J.; Barycki, J. J.; Colman, R. F.
1996-01-01
Reaction of rat liver glutathione S-transferase, isozyme 1-1, with 4-(fluorosulfonyl)benzoic acid (4-FSB), a xenobiotic substrate analogue, results in a time-dependent inactivation of the enzyme to a final value of 35% of its original activity when assayed at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The rate of inactivation exhibits a nonlinear dependence on the concentration of 4-FSB from 0.25 mM to 9 mM, characterized by a KI of 0.78 mM and kmax of 0.011 min-1. S-Hexylglutathione or the xenobiotic substrate analogue, 2,4-dinitrophenol, protects against inactivation of the enzyme by 4-FSB, whereas S-methylglutathione has little effect on the reaction. These experiments indicate that reaction occurs within the active site of the enzyme, probably in the binding site of the xenobiotic substrate, close to the glutathione binding site. Incorporation of [3,5-3H]-4-FSB into the enzyme in the absence and presence of S-hexylglutathione suggests that modification of one residue is responsible for the partial loss of enzyme activity. Tyr 8 and Cys 17 are shown to be the reaction targets of 4-FSB, but only Tyr 8 is protected against 4-FSB by S-hexylglutathione. DTT regenerates cysteine from the reaction product of cysteine and 4-FSB, but does not reactivate the enzyme. These results show that modification of Tyr 8 by 4-FSB causes the partial inactivation of the enzyme. The Michaelis constants for various substrates are not changed by the modification of the enzyme. The pH dependence of the enzyme-catalyzed reaction of glutathione with CDNB for the modified enzyme, as compared with the native enzyme, reveals an increase of about 0.9 in the apparent pKa, which has been interpreted as representing the ionization of enzyme-bound glutathione; however, this pKa of about 7.4 for modified enzyme remains far below the pK of 9.1 for the -SH of free glutathione. Previously, it was considered that Tyr 8 was essential for GST catalysis. In contrast, we conclude that Tyr 8 facilitates the ionization of the thiol group of glutathione bound to glutathione S-transferase, but is not required for enzyme activity. PMID:8762135
Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst
NASA Astrophysics Data System (ADS)
San, Boi Hoa; Ha, Eun-Ju; Paik, Hyun-Jong; Kim, Kyeong Kyu
2014-05-01
Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis.Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00407h
Singh, Kuljinder; Kaur, Manpreet; Rup, Pushpinder J; Singh, Jatinder
2008-11-01
The lectin from tubers of cobra lily, Arisaema curvatum Kunth was purified by affinity chromatography using asialofetuin-linked amino activated porous silica beads. The concentration dependent effect of lectin was studied on second instar larvae (64-72 hr) of Bactrocera cucurbitae (Coq.). The treatment not only resulted in a significant reduction in the percentage pupation and emergence of the adults from treated larvae but it also prolonged the remaining larval development period. A very low LC50 value, 39 mgl(-1) of lectin was obtained on the basis of adult emergence using probit analysis. The activity of three hydrolase enzymes (esterases, acid and alkaline phosphatases), one oxidoreductase (catalase) and one group transfer enzyme (GSTs: Glutathione S-transferases) was assayed in second instar larvae under the influence of the LC50 of lectin at increasing exposure intervals (0, 24, 48 and 72 hr). The Arisaema curvatum lectin significantly decreased the activity of all the enzymes except for esterases, where the activity increased as compared to control at all exposure intervals. The decrease in pupation and emergence as well as significant suppression in the activities of two hydrolases, one oxidoreductase and one GST enzyme in treated larvae of B. cucurbitae indicated that this lectin has anti-metabolic effect on the melon fruit fly larvae.
Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard
2009-01-01
The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666
Immobilization of Aspergillus niger xylanase on magnetic latex beads.
Tyagi, R; Gupta, M N
1995-04-01
Xylanase from Pectinex 3XL was purified 70-fold by precipitation with an enteric polymer, Eudragit S-100. The purified xylanase was immobilized on magnetic latex beads via carbodi-imide coupling. The immobilized preparation showed 80% of the total activity bound to the beads. The pH optimum remained unchanged at 6.0 and the Km increased from 0.25 g/100 ml (free enzyme) to 0.39 g/100 ml on immobilization. Immobilization resulted in significant thermal stability at 60 degrees C. The time course of hydrolysis of xylan at 60 degrees C by free enzyme as well as immobilized enzyme was also studied.
Frlan, Rok; Kovač, Andreja; Blanot, Didier; Gobec, Stanislav; Pečar, Slavko; Obreza, Aleš
2011-06-01
Mur ligases are essential enzymes involved in the cytoplasmic steps of peptidoglycan synthesis which remain attractive, yet unexploited targets. In order to develop new antibacterial agents, we have designed a series of new MurC and MurD inhibitors bearing amino acid sulfonohydrazide moiety. The L-Leu series of this class displayed the highest enzyme inhibition with IC50 in the concentration range between 100 and 500 µM, with L-Thr, L-Pro and L-Ala derivatives being inactive. The most promising compound of the series also expressed weak antibacterial activity against S. aureus with MIC = 128 µg/mL.
A smart bioconjugate of alginate and pectinase with unusual biological activity toward chitosan.
Sardar, Meryam; Roy, Ipsita; Gupta, Munishwar N
2003-01-01
The commercial preparation of pectinase (Pectinex Ultra SP-L) was conjugated to alginate by noncovalent interactions by employing 1% alginate during the conjugation protocol. The optimum "immobilization efficiency" was 0.76. The pH optimum and the thermal stability of the enzyme remained unchanged upon conjugation with alginate. The soluble bioconjugate showed a 3-fold increase in V(max)/K(m) as compared to the free enzyme when the smart biocatalyst was used for chitosan hydrolysis. Time course hydrolysis of chitosan thus showed higher conversion of chitosan into reducing oligosaccharides/sugars. The smart bioconjugate could be reused five times without any detectable loss of chitosanase activity.
Wu, Xia; Paskaleva, Elena E.; Mehta, Krunal K.; Dordick, Jonathan S.; Kane, Ravi S.
2016-01-01
Bacterial lysins are potent antibacterial enzymes with potential applications in the treatment of bacterial infections. Some lysins lose activity in the growth media of target bacteria, and the underlying mechanism remains unclear. Here we use CD11, an autolysin of Clostridium difficile, as a model lysin to demonstrate that the inability of this enzyme to kill C. difficile in growth medium is not associated with inhibition of the enzyme activity by medium, or the modification of the cell wall peptidoglycan. Rather, wall teichoic acids (WTAs) appear to prevent the enzyme from binding to the cells and cleaving the cell wall peptidoglycan. By partially blocking the biosynthetic pathway of WTAs with tunicamycin, cell binding improved and the lytic efficacy of CD11 was significantly enhanced. This is the first report of the mechanism of lysin inactivation in growth medium, and provides insights into understanding the behavior of lysins in complex environments, including the gastrointestinal tract. PMID:27759081
A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning
Wybouw, Nicky; Dermauw, Wannes; Tirry, Luc; Stevens, Christian; Grbić, Miodrag; Feyereisen, René; Van Leeuwen, Thomas
2014-01-01
Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide. DOI: http://dx.doi.org/10.7554/eLife.02365.001 PMID:24843024
Programming Enzyme-Initiated Autonomous DNAzyme Nanodevices in Living Cells.
Chen, Feng; Bai, Min; Cao, Ke; Zhao, Yue; Cao, Xiaowen; Wei, Jing; Wu, Na; Li, Jiang; Wang, Lihua; Fan, Chunhai; Zhao, Yongxi
2017-12-26
Molecular nanodevices are computational assemblers that switch defined states upon external stimulation. However, interfacing artificial nanodevices with natural molecular machineries in living cells remains a great challenge. Here, we delineate a generic method for programming assembly of enzyme-initiated DNAzyme nanodevices (DzNanos). Two programs including split assembly of two partzymes and toehold exchange displacement assembly of one intact DNAzyme initiated by telomerase are computed. The intact one obtains higher assembly yield and catalytic performance ascribed to proper conformation folding and active misplaced assembly. By employing MnO 2 nanosheets as both DNA carriers and source of Mn 2+ as DNAzyme cofactor, we find that this DzNano is well assembled via a series of conformational states in living cells and operates autonomously with sustained cleavage activity. Other enzymes can also induce corresponding DzNano assembly with defined programming modules. These DzNanos not only can monitor enzyme catalysis in situ but also will enable the implementation of cellular stages, behaviors, and pathways for basic science, diagnostic, and therapeutic applications as genetic circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Deepa; Gawel, Damian; Itsko, Mark
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present paper, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNAmore » with high affinity (K d ~ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent K m for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Finally, our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.« less
Singh, Deepa; Gawel, Damian; Itsko, Mark; ...
2015-02-18
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present paper, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNAmore » with high affinity (K d ~ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent K m for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Finally, our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.« less
Souza, Lívia Tereza Andrade; Oliveira, Jamil S.; dos Santos, Vera L.; Regis, Wiliam C. B.; Santoro, Marcelo M.; Resende, Rodrigo R.
2014-01-01
Lipolytic potential of Aspergillus japonicus LAB01 was investigated by describing the catalytic properties and stability of a secreted extracellular lipase. Enzyme production was considered high under room temperature after 4 days using sunflower oil and a combination of casein with sodium nitrate. Lipase was partially purified by 3.9-fold, resulting in a 44.2% yield using ammonium sulphate precipitation (60%) quantified with Superose 12 HR gel filtration chromatography. The activity of the enzyme was maximised at pH 8.5, and the enzyme demonstrated stability under alkaline conditions. The optimum temperature was found to be 45°C, and the enzyme was stable for up to 100 minutes, with more than 80% of initial activity remaining after incubation at this temperature. Partially purified enzyme showed reasonable stability with triton X-100 and was activated in the presence of organic solvents (toluene, hexane, and methanol). Among the tested ions, only Cu2+, Ni2+, and Al3+ showed inhibitory effects. Substrate specificity of the lipase was higher for C14 among various p-nitrophenyl esters assayed. The KM and V max values of the purified enzyme for p-nitrophenyl palmitate were 0.13 mM and 12.58 umol/(L·min), respectively. These features render a novel biocatalyst for industrial applications. PMID:25530954
Characterisation of Nitric Oxide Synthase in Three Cnidarian-Dinoflagellate Symbioses
Safavi-Hemami, Helena; Young, Neil D.; Doyle, Jason; Llewellyn, Lyndon; Klueter, Anke
2010-01-01
Background Nitric oxide synthase (NOS) is an enzyme catalysing the conversion of L-arginine to L-citrulline and nitric oxide (NO), the latter being an essential messenger molecule for a range of biological processes. Whilst its role in higher vertebrates is well understood little is known about the role of this enzyme in early metazoan groups. For instance, NOS-mediated signalling has been associated with Cnidaria-algal symbioses, however controversy remains about the contribution of enzyme activities by the individual partners of these mutualistic relationships. Methodology/Principal Findings Using a modified citrulline assay we successfully measured NOS activity in three cnidarian-algal symbioses: the sea anemone Aiptasia pallida, the hard coral Acropora millepora, and the soft coral Lobophytum pauciflorum, so demonstrating a wide distribution of this enzyme in the phylum Cnidaria. Further biochemical (citrulline assay) and histochemical (NADPH-diaphorase) investigations of NOS in the host tissue of L. pauciflorum revealed the cytosolic and calcium dependent nature of this enzyme and its in situ localisation within the coral's gastrodermal tissue, the innermost layer of the body wall bearing the symbiotic algae. Interestingly, enzyme activity could not be detected in symbionts freshly isolated from the cnidarians, or in cultured algal symbionts. Conclusions/Significance These results suggest that NOS-mediated NO release may be host-derived, a finding that has the potential to further refine our understanding of signalling events in cnidarian-algal symbioses. PMID:20442851
Characterisation of nitric oxide synthase in three cnidarian-dinoflagellate symbioses.
Safavi-Hemami, Helena; Young, Neil D; Doyle, Jason; Llewellyn, Lyndon; Klueter, Anke
2010-04-28
Nitric oxide synthase (NOS) is an enzyme catalysing the conversion of L-arginine to L-citrulline and nitric oxide (NO), the latter being an essential messenger molecule for a range of biological processes. Whilst its role in higher vertebrates is well understood little is known about the role of this enzyme in early metazoan groups. For instance, NOS-mediated signalling has been associated with Cnidaria-algal symbioses, however controversy remains about the contribution of enzyme activities by the individual partners of these mutualistic relationships. Using a modified citrulline assay we successfully measured NOS activity in three cnidarian-algal symbioses: the sea anemone Aiptasia pallida, the hard coral Acropora millepora, and the soft coral Lobophytum pauciflorum, so demonstrating a wide distribution of this enzyme in the phylum Cnidaria. Further biochemical (citrulline assay) and histochemical (NADPH-diaphorase) investigations of NOS in the host tissue of L. pauciflorum revealed the cytosolic and calcium dependent nature of this enzyme and its in situ localisation within the coral's gastrodermal tissue, the innermost layer of the body wall bearing the symbiotic algae. Interestingly, enzyme activity could not be detected in symbionts freshly isolated from the cnidarians, or in cultured algal symbionts. These results suggest that NOS-mediated NO release may be host-derived, a finding that has the potential to further refine our understanding of signalling events in cnidarian-algal symbioses.
Synthesis and activity of Helicobacter pylori urease and catalase at low pH.
Bauerfeind, P; Garner, R; Dunn, B E; Mobley, H L
1997-01-01
BACKGROUND: Helicobacter pylori produces large amounts of urease presumably to be prepared for the rare event of a sudden acid exposure. The hypothesis that H pylori is acid sensitive and protein production is inhibited by low pH was examined. METHODS: H pylori or its soluble enzymes were incubated buffered or unbuffered at a pH ranging from 2-7 in the presence of 5 mM urea for 30 minutes. After exposure, urease and catalase activities of whole cells, supernatants, and soluble enzyme preparations were measured at pH 6.8. Newly synthesised enzyme was quantified by immunoprecipitation of [35S]-methionine labelled protein. RESULTS: Exposure to buffer below pH 4 resulted in loss of intracellular urease activity. In soluble enzyme preparations and supernatant, no urease activity was measurable after incubation at pH < 5. In contrast, catalase in whole cells, supernatant, and soluble enzyme preparations remained active after exposure to pH > or = 3. Exposure below pH 5 inhibited synthesis of total protein including nascent urease and catalase. At pH 6 or 7, urease represented 10% of total protein, catalase 1.5%. Exposure of H pylori to unbuffered HCl (pH > 2) resulted in an immediate neutralisation; urease and catalase activities and synthesis were unchanged. CONCLUSION: Low surrounding pH reduces activity of urease and synthesis of nascent urease, catalase, and presumably of most other proteins. This suggests that H pylori is not acidophilic although it tolerates short-term exposure to low pH. PMID:9155571
Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L
2014-07-01
The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified. © The Author(s) 2014.
Duan, Juan; Hu, Chuncai; Guo, Jiafan; Guo, Lianxian; Sun, Jia; Zhao, Zuguo
2018-02-28
The mechanism of substrate hydrolysis of New Delhi metallo-β-lactamase 1 (NDM-1) has been reported, but the process in which NDM-1 captures and transports the substrate into its active center remains unknown. In this study, we investigated the process of the substrate entry into the NDM-1 activity center through long unguided molecular dynamics simulations using meropenem as the substrate. A total of 550 individual simulations were performed, each of which for 200 ns, and 110 of them showed enzyme-substrate binding events. The results reveal three categories of relatively persistent and noteworthy enzyme-substrate binding configurations, which we call configurations A, B, and C. We performed binding free energy calculations of the enzyme-substrate complexes of different configurations using the molecular mechanics Poisson-Boltzmann surface area method. The role of each residue of the active site in binding the substrate was investigated using energy decomposition analysis. The simulated trajectories provide a continuous atomic-level view of the entire binding process, revealing potentially valuable regions where the enzyme and the substrate interact persistently and five possible pathways of the substrate entering into the active center, which were validated using well-tempered metadynamics. These findings provide important insights into the binding mechanism of meropenem to NDM-1, which may provide new prospects for the design of novel metallo-β-lactamase inhibitors and enzyme-resistant antibiotics.
Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.
Weedon, James T; Aerts, Rien; Kowalchuk, George A; van Bodegom, Peter M
2011-01-01
Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding the response of the soil nitrogen cycle to shifts in temperature and other global change factors is crucial for predicting the fate of cold biome carbon stores. Measurements of soil enzyme activities at different positions of the nitrogen cycling network are an important tool for this purpose. We review a selection of studies that provide data on potential enzyme activities across natural, seasonal and experimental gradients in cold biomes. Responses of enzyme activities to increased nitrogen availability and temperature are diverse and seasonal dynamics are often larger than differences due to experimental treatments, suggesting that enzyme expression is regulated by a combination of interacting factors reflecting both nutrient supply and demand. The extrapolation from potential enzyme activities to prediction of elemental nitrogen fluxes under field conditions remains challenging. Progress in molecular '-omics' approaches may eventually facilitate deeper understanding of the links between soil microbial community structure and biogeochemical fluxes. In the meantime, accounting for effects of the soil spatial structure and in situ variations in pH and temperature, better mapping of the network of enzymatic processes and the identification of rate-limiting steps under different conditions should advance our ability to predict nitrogen fluxes.
Chae, J P; Valeriano, V D; Kim, G-B; Kang, D-K
2013-01-01
To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01. The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l(-1) isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel-nitrilotriacetic acid (Ni(2+) -NTA) agarose column and their activities characterized. BSH A hydrolysed tauro-conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco-conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety. BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate-binding sites, these remain functional through motif conservation. This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco-conjugated or tauro-conjugated bile salts. Future structural homology studies and site-directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes. © 2012 The Society for Applied Microbiology.
Singh, Vandana; Ahmed, Shakeel
2012-03-01
An effective carrier matrix for diastase alpha amylase immobilization has been fabricated by gum acacia-gelatin dual templated polymerization of tetramethoxysilane. Silver nanoparticle (AgNp) doping to this hybrid could significantly enhance the shelf life of the impregnated enzyme while retaining its full bio-catalytic activity. The doped nanohybrid has been characterized as a thermally stable porous material which also showed multipeak photoluminescence under UV excitation. The immobilized diastase alpha amylase has been used to optimize the conditions for soluble starch hydrolysis in comparison to the free enzyme. The optimum pH for both immobilized and free enzyme hydrolysis was found to be same (pH=5), indicating that the immobilization made no major change in enzyme conformation. The immobilized enzyme showed good performance in wide temperature range (from 303 to 323 K), 323 K being the optimum value. The kinetic parameters for the immobilized, (K(m)=10.30 mg/mL, V(max)=4.36 μmol mL(-1)min(-1)) and free enzyme (K(m)=8.85 mg/mL, V(max)=2.81 μmol mL(-1)min(-1)) indicated that the immobilization improved the overall stability and catalytic property of the enzyme. The immobilized enzyme remained usable for repeated cycles and did not lose its activity even after 30 days storage at 40°C, while identically synthesized and stored silver undoped hybrid lost its ~31% activity in 48 h. Present study revealed the hybrids to be potentially useful for biomedical and optical applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera.
Collins, A M; Williams, V; Evans, J D
2004-04-01
Honey bee (Apis mellifera) sperm remains viable in the spermatheca of mated female honey bees for several years. During this time, the sperm retains respiratory activity, placing it at risk of the damaging effects of reactive oxygen species common to many biological processes. Antioxidative enzymes might help reduce this damage. Here we use quantitative real-time RT-PCR to establish gene-expression profiles in male and female honey bee reproductive tissues for three antioxidative enzymes: catalase, glutathione-S-transferase (GST) and superoxide dismutase (SOD1, cytosolic). Catalase and GST showed ten- to twenty-fold transcript increases in the sperm storage organs of mated queens vs. unmated queens, whereas SOD1 levels are high in both mated and unmated queens. Male reproductive and somatic tissues showed relatively high levels of all three antioxidant-encoding transcripts. All three enzymes screened were higher in mature males vs. young males, although this effect did not appear to be confined to reproductive tissues and, hence, need not reflect a role in sperm longevity. Furthermore, antioxidative enzyme transcripts remained present, and apparently increased, in male tissues long after sperm had matured and seminal fluid was produced. We also found measurable levels of catalase transcripts in honey bee semen. The presence of catalase transcripts in both reproductive tissues and semen in bees suggests that this enzyme might play a key role in antioxidative protection.
NASA Astrophysics Data System (ADS)
Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.
2017-12-01
Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic carbon and phosphorus acquisition in the Marcell bog may increase whereas nitrogen acquisition would remain unchanged. The lack of temperature response for leucine amino peptidase has been measured in other systems but may be less of a concern in the Marcell bog due to low microbial biomass and enzymatic activity at depth and relatively low peat C:N ratios.
Dhayat, Nasser A; Dick, Bernhard; Frey, Brigitte M; d'Uscio, Claudia H; Vogt, Bruno; Flück, Christa E
2017-01-01
The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we investigated androgen production from birth to one year of life with a focus on minipuberty and on production of androgens through the backdoor pathway. Additionally, we assessed the development of the specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, and performed in house GC-MS steroid profiling for 67 steroid metabolites. Data were analyzed for androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (An boys -An girls ), and uses predominantly the alternative backdoor pathway (An/Et; Δ5<Δ4 lyase activity). Modelling of steroid enzyme activities showed age-related effects for 21-, 11-, 17-hydroxylase and P450 oxidoreductase activities as well as 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase type 1/2 and 5α-reductase activities. Sex-related characteristics were found for 21-hydroxylase and 5α-reductase activities. Overall, our study shows that androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway. Calculations of specific diagnostic ratios for enzyme activities seem to allow the diagnosis of specific steroid disorders from the urinary steroid metabolome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dual-radiolabeled nanoparticle probes for depth-independent in vivo imaging of enzyme activation
NASA Astrophysics Data System (ADS)
Black, Kvar C. L.; Zhou, Mingzhou; Sarder, Pinaki; Kuchuk, Maryna; Al-Yasiri, Amal Y.; Gunsten, Sean P.; Liang, Kexian; Hennkens, Heather M.; Akers, Walter J.; Laforest, Richard; Brody, Steven L.; Cutler, Cathy S.; Achilefu, Samuel
2018-02-01
Quantitative and noninvasive measurement of protease activities has remained an imaging challenge in deep tissues such as the lungs. Here, we designed a dual-radiolabeled probe for reporting the activities of proteases such as matrix metalloproteinases (MMPs) with multispectral single photon emission computed tomography (SPECT) imaging. A gold nanoparticle (NP) was radiolabeled with 125I and 111In and functionalized with an MMP9-cleavable peptide to form a multispectral SPECT imaging contrast agent. In another design, incorporation of 199Au radionuclide into the metal crystal structure of gold NPs provided a superior and stable reference signal in lungs, and 111In was linked to the NP surface via a protease-cleavable substrate, which can serve as an enzyme activity reporter. This work reveals strategies to correlate protease activities with diverse pathologies in a tissue-depth independent manner.
Rehman, Haneef Ur; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio; Ansari, Asma
2013-08-15
Pectinases are heterogeneous group of enzymes that catalyse the hydrolysis of pectin substances which is responsible for the turbidity and undesirable cloudiness in fruits juices. In current study, partially purified pectinase from Bacillus licheniformis KIBGE-IB21 was immobilized in calcium alginate beads. The effect of sodium alginate and calcium chloride concentration on immobilization was studied and it was found that the optimal sodium alginate and calcium chloride concentration was 3.0% and 0.2 M, respectively. It was found that immobilization increases the optimal reaction time for pectin degradation from 5 to 10 min and temperature from 45 to 55°C, whereas, the optimal pH remained same with reference to free enzyme. Thermal stability of enzyme increased after immobilization and immobilized pectinase retained more than 80% of its initial activity after 5 days at 30°C as compared with free enzyme which showed only 30% of residual activity. The immobilized enzyme also exhibited good operational stability and 65% of its initial activity was observed during third cycle. In term of pectinase immobilization efficiency and stability, this calcium alginate beads approach seemed to permit good results and can be used to make a bioreactor for various applications in food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Zhiheng; Zhu, Haihao; Fang, Guang Guang; Walsh, Kathryn; Mwamburi, Maya; Wolozin, Benjamin; Abdul-Hay, Same O.; Ikezu, Tsuneya; Lessring, Malcolm A.; Qiu, Wei Qiao
2013-01-01
Sporadic Alzheimer’s disease (AD) patients have low amyloid-β peptide (Aβ) clearance in the central nervous system (CNS). The peripheral Aβ clearance may also be important but its role in AD remains unclear. We aimed to study the Aβ degrading proteases including insulin degrading enzyme (IDE), angiotensin converting enzyme (ACE) and others in blood. Using the fluorogenic substrate V—a substrate of IDE and other metalloproteases, we showed that human serum degraded the substrate V, and the activity was inhibited by adding increasing dose of Aβ. The existence of IDE activity was demonstrated by the inhibition of insulin, amylin or EDTA, and further confirmed by immunocapture of IDE using monoclonal antibodies. The involvement of ACE was indicated by the ability of the ACE inhibitor, lisinopril, to inhibit the substrate V degradation. To test the variations of substrate V degradation in humans, we used serum samples from a homebound elderly population with cognitive diagnoses. Compared with the elderly who had normal cognition, those with probable AD and amnestic mild cognitive impairment (amnestic MCI) had lower peptidase activities. Probable AD or amnestic MCI as an outcome remained negatively associated with serum substrate V degradation activity after adjusting for the confounders. The elderly with probable AD had lower serum substrate V degradation activity compared with those who had vascular dementia. The blood proteases mediating Aβ degradation may be important for the AD pathogenesis. More studies are needed to specify each Aβ degrading protease in blood as a useful biomarker and a possible treatment target for AD. PMID:22232014
NASA Astrophysics Data System (ADS)
Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua
2016-02-01
The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.
Caseinolytic and milk-clotting activities from Moringa oleifera flowers.
Pontual, Emmanuel V; Carvalho, Belany E A; Bezerra, Ranilson S; Coelho, Luana C B B; Napoleão, Thiago H; Paiva, Patrícia M G
2012-12-01
This work reports the detection and characterization of caseinolytic and milk-clotting activities from Moringa oleifera flowers. Proteins extracted from flowers were precipitated with 60% ammonium sulphate. Caseinolytic activity of the precipitated protein fraction (PP) was assessed using azocasein, as well as α(s)-, β- and κ-caseins as substrates. Milk-clotting activity was analysed using skim milk. The effects of heating (30-100°C) and pH (3.0-11.0) on enzyme activities were determined. Highest caseinolytic activity on azocasein was detected after previous incubation of PP at pH 4.0 and after heating at 50°C. Milk-clotting activity, detected only in the presence of CaCl(2), was highest at incubation of PP at pH 3.0 and remained stable up to 50°C. The pre-treatment of milk at 70°C resulted in highest clotting activity. Enzyme assays in presence of protease inhibitors indicated the presence of aspartic, cysteine, serine and metallo proteases. Aspartic proteases appear to be the main enzymes involved in milk-clotting activity. PP promoted extensive cleavage of κ-casein and low level of α(s)- and β-caseins hydrolysis. The milk-clotting activity indicates the application of M. oleifera flowers in dairy industry. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo
2009-08-01
Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.
Sigala, Paul A.; Kraut, Daniel A.; Caaveiro, Jose M. M.; Pybus, Brandon; Ruben, Eliza A.; Ringe, Dagmar; Petsko, Gregory A.; Herschlag, Daniel
2009-01-01
Enzymes are classically proposed to accelerate reactions by binding substrates within active site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1 – 1 Å scale of most substrate rearrangements. The flexibility of active site functional groups along the coordinate of substrate rearrangement, the distance scale on which enzymes can distinguish structural rearrangement, and the energetic significance of discrimination on that scale remain open questions that are fundamental to a basic physical understanding of enzyme active sites and catalysis. We bring together high resolution X-ray crystallography, 1H and 19F NMR spectroscopy, quantum mechanical calculations, and transition state analog binding measurements to test the distance scale on which non-covalent forces can constrain side chain and ligand relaxation or translation along a specific coordinate and the energetic consequences of such geometric constraints within the active site of bacterial ketosteroid isomerase (KSI). Our results strongly suggest that packing and binding interactions within the KSI active site can constrain local side chain reorientation and prevent hydrogen bond shortening by 0.1 Å or less. Further, this constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. These results provide evidence that subtle geometric effects, indistinguishable in most X-ray crystallographic structures, can have significant energetic consequences and highlight the importance of using synergistic experimental approaches to dissect enzyme function. PMID:18808119
Morales-Álvarez, Edwin D; Rivera-Hoyos, Claudia M; Cardozo-Bernal, Ángela M; Poutou-Piñales, Raúl A; Pedroza-Rodríguez, Aura M; Díaz-Rincón, Dennis J; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J; Cuervo-Patiño, Claudia L
2017-01-01
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZ α A- GlucPost -Stop in Pichia pastoris . Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL -1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a V max of 6.87 × 10 -5 mM s -1 , with an apparent K m of 5.36 × 10 -2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.
Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Cardozo-Bernal, Ángela M.; Pedroza-Rodríguez, Aura M.; Díaz-Rincón, Dennis J.; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Cuervo-Patiño, Claudia L.
2017-01-01
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges. PMID:28421142
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth
2007-09-27
Nature uses enzymes to activate otherwise unreactive compounds in remarkable ways. For example, DNases are capable of hydrolyzing phosphate diester bonds in DNA within seconds,[1-3]--a reaction with an estimated half-life of 200 million years without an enzyme.[4] The fundamental features of enzyme catalysis have been much discussed over the last sixty years in an effort to explain the dramatic rate increases and high selectivities of enzymes. As early as 1946, Linus Pauling suggested that enzymes must preferentially recognize and stabilize the transition state over the ground state of a substrate.[5] Despite the intense study of enzymatic selectivity and ability tomore » catalyze chemical reactions, the entire nature of enzyme-based catalysis is still poorly understood. For example, Houk and co-workers recently reported a survey of binding affinities in a wide variety of enzyme-ligand, enzyme-transition-state, and synthetic host-guest complexes and found that the average binding affinities were insufficient to generate many of the rate accelerations observed in biological systems.[6] Therefore, transition-state stabilization cannot be the sole contributor to the high reactivity and selectivity of enzymes, but rather, other forces must contribute to the activation of substrate molecules. Inspired by the efficiency and selectivity of Nature, synthetic chemists have admired the ability of enzymes to activate otherwise unreactive molecules in the confines of an active site. Although much less complex than the evolved active sites of enzymes, synthetic host molecules have been developed that can carry out complex reactions with their cavities. While progress has been made toward highly efficient and selective reactivity inside of synthetic hosts, the lofty goal of duplicating enzymes specificity remains.[7-9] Pioneered by Lehn, Cram, Pedersen, and Breslow, supramolecular chemistry has evolved well beyond the crown ethers and cryptands originally studied.[10-12] Despite the increased complexity of synthetic host molecules, most assembly conditions utilize self-assembly to form complex highly-symmetric structures from relatively simple subunits. For supramolecular assemblies able to encapsulate guest molecules, the chemical environment in each assembly--defined by the size, shape, charge, and functional group availability--greatly influences the guest-binding characteristics.[6, 13-17]« less
Nonequilibrium phase transition in a self-activated biological network.
Berry, Hugues
2003-03-01
We present a lattice model for a two-dimensional network of self-activated biological structures with a diffusive activating agent. The model retains basic and simple properties shared by biological systems at various observation scales, so that the structures can consist of individuals, tissues, cells, or enzymes. Upon activation, a structure emits a new mobile activator and remains in a transient refractory state before it can be activated again. Varying the activation probability, the system undergoes a nonequilibrium second-order phase transition from an active state, where activators are present, to an absorbing, activator-free state, where each structure remains in the deactivated state. We study the phase transition using Monte Carlo simulations and evaluate the critical exponents. As they do not seem to correspond to known values, the results suggest the possibility of a separate universality class.
Prenatal ethanol exposure alters steroidogenic enzyme activity in newborn rat testes.
Kelce, W R; Rudeen, P K; Ganjam, V K
1989-10-01
We have examined the in utero effects of ethanol exposure on testicular steroidogenesis in newborn male pups. Pregnant Sprague-Dawley rats were fed a liquid ethanol diet (35% ethanol-derived calories), a pair-fed isocaloric liquid diet, or a standard laboratory rat chow and water diet beginning on Day 12 of gestation and continuing through parturition. Although there were no significant differences in the enzymatic activity of 5-ene-3 beta-hydroxysteroid dehydrogenase/isomerase or C17,20-lyase, the enzymatic activity of 17 alpha-hydroxylase was significantly (p less than 0.01) reduced (i.e., approximately 36%) in the ethanol-exposed pups compared to those from the pair-fed and chow treatment groups. This lesion in testicular steroidogenic enzyme activity in newborn male pups exposed to alcohol in utero was transient as 17 alpha-hydroxylase activity from the ethanol-exposed animals returned to control levels by postnatal Day 20 and remained at control levels through adulthood (postnatal Day 60). These data suggest that the suppression of the perinatal testosterone surge in male rats exposed to alcohol in utero and the associated long term demasculinizing effects of prenatal ethanol exposure might be the result of reduced testicular steroidogenic enzyme activity in the perinatal animal.
Buckley, Seamus J; Collins, Patrick J; O'Connor, Brendan F
2004-07-01
The discovery of a potentially novel proline-specific peptidase from bovine serum is presented which is capable of cleaving the dipeptidyl peptidase IV (DPIV) substrate Gly-Pro-MCA. The enzyme was isolated and purified with the use of Phenyl Sepharose Hydrophobic Interaction, Sephacryl S-300 Gel Filtration, and Q-Sephacryl Anion Exchange, producing an overall purification factor of 257. SDS PAGE resulted in a monomeric molecular mass of 158kDa while size exclusion chromatography generated a native molecular mass of 328kDa. The enzyme remained active over a broad pH range with a distinct preference for a neutral pH range of 7-8.5. Chromatofocusing and isoelectric focusing (IEF) revealed the enzyme's isoelectric point to be 4.74. DPIV-like activity was not inhibited by serine protease inhibitors but was by the metallo-protease inhibitors, the phenanthrolines. The enzyme was also partially inhibited by bestatin. Substrate specificity studies proved that the enzyme is capable of sequential cleavage of bovine beta-Casomorphin and Substance P. The peptidase cleaved the standard DPIV substrate, Gly-Pro-MCA with a K(M) of 38.4 microM, while Lys-Pro-MCA was hydrolysed with a K(M) of 103 microM. The DPIV-like activity was specifically inhibited by both Diprotin A and B, non-competitively, generating a K(i) of 1.4 x 10(-4) M for both inhibitors. Ile-Thiazolidide and Ile-Pyrrolidide both inhibited competitively with an inhibition constant of 3.7 x 10(-7) and 7.5 x 10(-7) M, respectively. It is concluded that bovine serum DPIV-like activity share many biochemical properties with DPIV and DPIV-like enzymes but not exclusively, suggesting that the purified peptidase may play an important novel role in bioactive oligopeptide degradation.
Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen
2013-01-01
Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after harsh desiccation, followed by loss of the specialized functions of specific groups of bacteria. PMID:24386188
Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia
Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian
2014-01-01
Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; P<0.05). Glycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (P<0.01) in the ipsilateral hemisphere (24 hours post-stroke), which corresponded with a 48% reduction in cAMP-dependent protein kinase A (PKA) activity (P<0.01). In addition, glycogen debranching enzyme expression 24 hours post-stroke was 77% (P<0.01) and 72% lower (P<0.01) at the protein and mRNA level, respectively. In cultured rat primary cerebellar astrocytes, hypoxia and inhibition of PKA activity significantly reduced glycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has identified that glycogen breakdown is impaired during ischemic stroke, the molecular basis of which includes reduced glycogen debranching enzyme expression level together with reduced glycogen phosphorylase and PKA activity. PMID:24858129
Nicotinamide riboside phosphorylase from beef liver: purification and characterization.
Imai, T; Anderson, B M
1987-04-01
Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.
Diharce, Julien; Golebiowski, Jérôme; Fiorucci, Sébastien; Antonczak, Serge
2016-04-21
In the course of metabolite formation, some multienzymatic edifices, the so-called metabolon, are formed and lead to a more efficient production of these natural compounds. One of the major features of these enzyme complexes is the facilitation of direct transfer of the metabolite between enzyme active sites by substrate channelling. Biophysical insights into substrate channelling remain scarce because the transient nature of these macromolecular complexes prevents the observation of high resolution structures. Here, using molecular modelling, we describe the substrate channelling of a flavonoid compound between DFR (dihydroflavonol-4-reductase) and LAR (leucoanthocyanidin reductase). The simulation presents crucial details concerning the kinetic, thermodynamic, and structural aspects of this diffusion. The formation of the DFR-LAR complex leads to the opening of the DFR active site giving rise to a facilitated diffusion, in about 1 μs, of the DFR product towards LAR cavity. The theoretically observed substrate channelling is supported experimentally by the fact that this metabolite, i.e. the product of the DFR enzyme, is not stable in the media. Moreover, along this path, the influence of the solvent is crucial. The metabolite remains close to the surface of the complex avoiding full solvation. In addition, when the dynamic behaviour of the system leads to a loss of interaction between the metabolite and the enzymes, water molecules through bridging H-bonds prevent the former from escaping to the bulk.
A simple, inexpensive and sensitive method for detecting organophosphate and carbamate insecticides is reported. Acetylcholinesterase was immobilized to PorexR Lateral-FloTM membrane material and remained active for several months at room temperature. The assay was sensitive ...
Agarolytic culturable bacteria associated with three antarctic subtidal macroalgae.
Sánchez Hinojosa, Verónica; Asenjo, Joel; Leiva, Sergio
2018-05-21
Bacterial communities of Antarctic marine macroalgae remain largely underexplored in terms of diversity and biotechnological applications. In this study, three Antarctic subtidal macroalgae (Himantothallus grandifolius, Pantoneura plocamioides and Plocamium cartilagineum), two of them endemic of Antarctica, were investigated as a source for isolation of agar-degrading bacteria. A total of 21 epiphytic isolates showed agarolytic activity at low temperature on agar plates containing agar as the sole carbon source. 16S rRNA identification showed that the agar-degrading bacteria belonged to the genera Cellulophaga, Colwellia, Lacinutrix, Olleya, Paraglaciecola, Pseudoalteromonas and Winogradskyella. The agarase enzyme from a potential new species of the genus Olleya was selected for further purification. The enzyme was purified from the culture supernatant of Olleya sp. HG G5.3 by ammonium sulfate precipitation and ion-exchange chromatography. Molecular weight of the agarase was estimated to be 38 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The purified enzyme exhibited activity at 4 °C, retaining > 50% of its maximum activity at this temperature. This is the first study reporting the phylogeny of agar-degrading bacteria isolated from Antarctic subtidal macroalgae and the results suggest the huge potential of Antarctic algae-associated bacteria as a source of cold-active hydrolytic enzymes of biotechnological interest.
The effect of deep eutectic solvents on catalytic function and structure of bovine liver catalase.
Harifi-Mood, Ali Reza; Ghobadi, Roohollah; Divsalar, Adeleh
2017-02-01
Aqueous solutions of reline and glyceline, the most common deep eutectic solvents, were used as a medium for Catalase reaction. By some spectroscopic methods such as UV-vis, fluorescence and circular dichroism (CD) function and structure of Catalase were investigated in aqueous solutions of reline and glyceline. These studies showed that the binding affinity of the substrate to the enzyme increased in the presence of 100mM glyceline solution, which contrasts with reline solution that probably relates to instructive changes in secondary structure of protein. Meanwhile, enzyme remained nearly 70% and 80% active in this concentration of glyceline and reline solutions respectively. In the high concentration of DES solutions, enzyme became mainly inactive but surprisingly stayed in nearly 40% active in choline chloride solution, which is the common ion species in reline and glyceline solvents. It is proposed that the chaotropic nature of choline cation might stop the reducing trend of activity in concentrated choline chloride solutions but this instructive effect is lost in aqueous deep eutectic solvents. In this regard, the presence of various concentrations of deep eutectic solvents in the aqueous media of human cells would be an activity adjuster for this important enzyme in its different operation conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Zhengqun; Pei, Xue; Zhang, Ziyu; Wei, Yi; Song, Yanyue; Chen, Lina; Liu, Shouan; Zhang, Shi-Hong
2018-07-01
In a halotolerant fungus Aspergillus glaucus CCHA, several functional proteins with stress-tolerant activity have been studied, but no secretory enzymes have been identified yet. The unique GH5 cellulase candidate from A. glaucus, an endoglucanase termed as AgCMCase, was cloned, expressed in the Pichia pastoris system and the purified enzyme was characterized. A large amount of recombinant enzyme secreted by the P. pastoris GS115 strain was purified to homogeneity. The molecular weight of the purified endoglucanase is about 55.0 kDa. The AgCMCase exhibited optimum catalytic activity at pH 5.0 and 55 °C. However, it remained relatively stable at temperatures ranging from 45 to 80 °C and pH ranging from 4.0 to 9.0. In addition, it showed higher activity at extreme NaCl concentrations from 1.0 to 4.0 M, suggesting it is an enzyme highly stable under heat, acid, alkaline and saline conditions. To evaluate the catalytic activity of AgCMCase, the hydrolysis products of rice and corn straws were successfully studied. In conclusion, the AgCMCase is a thermostable and salt-tolerant cellulase with potential for industrial application.
NASA Astrophysics Data System (ADS)
Moreno, Angel; Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Kay, Matthew W.
2017-03-01
Reduction of NAD+ by dehydrogenase enzymes to form NADH is a key component of cellular metabolism. In cellular preparations and isolated mitochondria suspensions, enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH has been shown to be an effective approach for measuring the rate of NADH production to assess dehydrogenase enzyme activity. Our objective was to demonstrate how dehydrogenase activity could be assessed within the myocardium of perfused hearts using NADH ED-FRAP. This was accomplished using a combination of high intensity UV pulses to photobleach epicardial NADH. Replenishment of epicardial NADH fluorescence was then imaged using low intensity UV illumination. NADH ED-FRAP parameters were optimized to deliver 23.8 mJ of photobleaching light energy at a pulse width of 6 msec and a duty cycle of 50%. These parameters provided repeatable measurements of NADH production rate during multiple metabolic perturbations, including changes in perfusate temperature, electromechanical uncoupling, and acute ischemia/reperfusion injury. NADH production rate was significantly higher in every perturbation where the energy demand was either higher or uncompromised. We also found that NADH production rate remained significantly impaired after 10 min of reperfusion after global ischemia. Overall, our results indicate that myocardial NADH ED-FRAP is a useful optical non-destructive approach for assessing dehydrogenase activity.
Hecht, K; Wrba, A; Jaenicke, R
1989-07-15
Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.
Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.
Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y
2015-04-01
The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fratebianchi, Dante; Cavello, Ivana Alejandra; Cavalitto, Sebastián Fernando
2017-01-01
An endo-polygalacturonase secreted by Aspergillus sojae was characterized after being purified to homogeneity from submerged cultures with orange peel as the sole carbon source by gel filtration and ion-exchange chromatographies. According to SDS-PAGE and analytical isoelectric focusing analyses, the enzyme presents a molecular weight of 47 kDa and pI value of 4.2. This enzyme exhibits considerable stability under highly acidic to neutral conditions (pH 1.5-6.5) and presents a half-life of 2 h at 50°C. Besides its activity towards pectin and polygalacturonic acid, the enzyme displays pectin-releasing activity, acting best in a pH range of 3.3-5.0. Thin-layer chromatographic analysis revealed that tri-galacturonate is the main enzymatic end product of polygalacturonic acid hydrolysis, indicating that it is an endo-polygalacturonase. The enzyme exhibits Michaelis-Menten kinetics, with KM and VMAX values of 0.134 mg/mL and 9.6 µmol/mg/min, respectively, and remained stable and active in the presence of SO2, ethanol, and various cations assayed except Hg2+. © 2017 S. Karger AG, Basel.
Singh, Ram Sarup; Dhaliwal, Rajesh; Puri, Munish
2007-05-01
An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.
Bogra, Pushpa; Kumar, Ashwani; Kuhar, Kalika; Panwar, Surbhi; Singh, Randhir
2013-11-01
Clarity of fruit juices is desirable to maintain an aesthetically pleasing quality and international standards. The most commonly used enzymes in juice industries are pectinases. A partially-purified pectinmethylesterase from tomato was entrapped in calcium alginate beads and used for juice clarification. The activity yield was maximum at 1 % (w/v) CaCl2 and 2.5 % (w/v) alginate. The immobilized enzyme retained ~55 % of its initial activity (5.7 × 10(-2) units) after more than ten successive batch reactions. The Km, pH and temperature optima were increased after immobilization. The most effective clarification of fruit juice (%T620 ~60 %) by the immobilized enzyme was at 4 °C with a holding time of 20 min. The viscosity dropped by 56 % and the filterability increased by 260 %. The juice remains clear after 2 months of storage at 4 °C.
Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose.
Ahmed, Ibrahim Nasser; Chang, Ray; Tsai, Wei-Bor
2017-04-01
Cellulase was adsorbed onto poly(acrylic acid), PAA, nanogel, that was fabricated via inverse-phase microemulsion polymerization. The PAA nanogel was around 150nm in diameter and enriched with carboxyl groups. The surface charge of PAA nanogel depended on the pHs of the environment and affected the adsorption of cellulase. The temperature stability of the immobilized cellulase was greatly enhanced in comparison to the free enzyme, especially at high temperature. At 80°C, the immobilized cellulase remained ∼75% of hydrolytic activity, in comparison to ∼55% for the free cellulase. Furthermore, the immobilized cellulase was more active than the free enzyme in acidic buffers. The immobilized cellulase could be recovered via centrifugation and can be used repeatedly, although the recovery ratio needs further improvement. In conclusion, PAA nanogel has the potential in the application of enzyme immobilization for biochemical processes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Slenzka, K.; Appel, R.; Kappel, Th.; Rahmann, H.
Biochemical analyses of the brain of cichlid fish larvae, exposed for 7 days to increased acceleration of 3g (hyper-g), revealed an increase in energy availability (succinate dehydrogenase activity, SDH), and in mitochondrial energy transformation (creatine kinase, Mi_a-CK), but no changes in an energy consumptive process (high-affinity Ca^2+-ATPase). Brain glucose-6-phosphate dehydrogenase (G6PDH) of developing fish was previously found to be increased after hyper-g exposure. Three respectively 5 hours thereafter dramatic fluctuations in enzyme activity were registered. Analysing the cytosolic or plasma membrane-located brain creatine kinase (BB-CK) of clawed toad larvae after long-term hyper-g exposure a significant increase in enzyme activity was demonstrated, whereas the activity of a high affinity Ca^2+-ATPase remained unaffected.
Toplak, Ana; Wu, Bian; Fusetti, Fabrizia; Quaedflieg, Peter J. L. M.
2013-01-01
Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.66) in the thermophilic bacterium Coprothermobacter proteolyticus. The gene was functionally expressed in Escherichia coli, and the enzyme, which we called proteolysin, was purified to near homogeneity from crude cell lysate by a single heat treatment step. Proteolysin has a broad pH tolerance and is active at temperatures of up to 80°C. In addition, the enzyme shows good activity and stability in the presence of organic solvents, detergents, and dithiothreitol, and it remains active in 6 M guanidinium hydrochloride. Based on its stability and activity profile, proteolysin can be an excellent candidate for applications where resistance to harsh process conditions is required. PMID:23851086
Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes
NASA Technical Reports Server (NTRS)
Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.
2016-01-01
Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.
Real-time monitoring of enzyme activity in a mesoporous silicon double layer
Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.
2009-01-01
A double layer mesoporous silicon with different pore sizes functions as a nano-reactor that can isolate, filter and quantify the kinetics of enzyme reactions in real-time by optical reflectivity. This tiny reactor may be used to rapidly characterize a variety of isolated enzymes in a label-free manner. Activity of certain protease enzymes is often an indicator of disease states such as cancer1,2, stroke2, and neurodegeneracy3, and thus, there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules4 but coupling a sensitive detection method remains difficult. Here we report a single mesoporous nano-reactor that can isolate and quantify in real-time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer with large pore sizes traps the protease enzymes and acts as the reactor while the lower layer with smaller pore sizes excludes the large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity and this allows label-free quantification of enzyme kinetics in real-time within a volume of approximately 5 nanoliters. PMID:19350037
Ultrafast infrared spectroscopy reveals water-mediated coherent dynamics in an enzyme active site.
Adamczyk, Katrin; Simpson, Niall; Greetham, Gregory M; Gumiero, Andrea; Walsh, Martin A; Towrie, Michael; Parker, Anthony W; Hunt, Neil T
2015-01-01
Understanding the impact of fast dynamics upon the chemical processes occurring within the active sites of proteins and enzymes is a key challenge that continues to attract significant interest, though direct experimental insight in the solution phase remains sparse. Similar gaps in our knowledge exist in understanding the role played by water, either as a solvent or as a structural/dynamic component of the active site. In order to investigate further the potential biological roles of water, we have employed ultrafast multidimensional infrared spectroscopy experiments that directly probe the structural and vibrational dynamics of NO bound to the ferric haem of the catalase enzyme from Corynebacterium glutamicum in both H 2 O and D 2 O. Despite catalases having what is believed to be a solvent-inaccessible active site, an isotopic dependence of the spectral diffusion and vibrational lifetime parameters of the NO stretching vibration are observed, indicating that water molecules interact directly with the haem ligand. Furthermore, IR pump-probe data feature oscillations originating from the preparation of a coherent superposition of low-frequency vibrational modes in the active site of catalase that are coupled to the haem ligand stretching vibration. Comparisons with an exemplar of the closely-related peroxidase enzyme family shows that they too exhibit solvent-dependent active-site dynamics, supporting the presence of interactions between the haem ligand and water molecules in the active sites of both catalases and peroxidases that may be linked to proton transfer events leading to the formation of the ferryl intermediate Compound I. In addition, a strong, water-mediated, hydrogen bonding structure is suggested to occur in catalase that is not replicated in peroxidase; an observation that may shed light on the origins of the different functions of the two enzymes.
Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira
2016-01-25
This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury. Copyright © 2015 Elsevier B.V. All rights reserved.
Hongpattarakere, Tipparat; Komeda, Hidenobu; Asano, Yasuhisa
2005-12-01
The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.
Metabolism of d-Arabinose: Origin of a d-Ribulokinase Activity in Escherichia coli1
LeBlanc, Donald J.; Mortlock, Robert P.
1971-01-01
The kinase responsible for the phosphorylation of d-ribulose was purified 45.5-fold from a strain of Escherichia coli K-12 capable of growth on d-arabinose with no separation of d-ribulo- or l-fuculokinase activities. Throughout the purification, the ratios of activities remained essentially constant. A nonadditive effect of combining both substrates in an assay mixture; identical Km values for adenosine triphosphate with either l-fuculose or d-ribulose as substrate; and, the irreversible loss of activity on both substrates, after removal of magnesium ions from the enzyme preparation, suggest that the dual activity is due to the same enzyme. A fourfold greater affinity of the enzyme for l-fuculose than for d-ribulose, as well as a higher relative activity on l-fuculose, suggest that the natural substrate for this enzyme is l-fuculose. The product of the purified enzyme, with d-ribulose as substrate, was prepared. The ratio of total phosphorous to ribulose phosphate was 1.01:1, indicating that the product was ribulose monophosphate. The behavior of the kinase product in the cysteine-carbazole and orcinol reactions, as well as the results of periodate oxidation assays, provided evidence that it was not d-ribulose-5-phosphate. Reaction of this compound with a cell-free extract of E. coli possessing l-fuculose-l-phosphate aldolase activity resulted in the production of dihydroxyacetone phosphate and glycolaldehyde. The kinase product failed to reduce 2,3,5-triphenyltetrazolium and possessed a half-life of approximately 1.5 min in the presence of 1 n HCl at 100 C. These properties suggested that the phosphate group was attached to carbon atom 1 of d-ribulose. PMID:4323967
Fructose 2,6-bisphosphate and 6-phosphofructo-2-kinase during liver regeneration.
Rosa, J L; Ventura, F; Carreras, J; Bartrons, R
1990-01-01
Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme. PMID:2173548
Activation of dioxygen by copper metalloproteins and insights from model complexes
Quist, David A.; Diaz, Daniel E.; Liu, Jeffrey J.; Karlin, Kenneth D.
2017-01-01
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing met-alloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O2-activation in copper proteins are addressed. PMID:27921179
Extracellular vesicles are independent metabolic units with asparaginase activity
Leonardi, Tommaso; Costa, Ana S. H.; Cossetti, Chiara; Peruzzotti-Jametti, Luca; Bernstock, Joshua D.; Saini, Harpreet K.; Gelati, Maurizio; Vescovi, Angelo Luigi; Bastos, Carlos; Faria, Nuno; Occhipinti, Luigi G.; Enright, Anton J.; Frezza, Christian; Pluchino, Stefano
2017-01-01
Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. While it has been shown that cells can traffic metabolic enzymes via EVs much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Both our metabolomics and functional analyses revealed that EVs harbour L-asparaginase activity catalysed by the enzyme Asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC-derived EVs traffic ASRGL1. Our results demonstrate for the first time that NSC EVs function as independent, extracellular metabolic units able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment. PMID:28671681
Activation of dioxygen by copper metalloproteins and insights from model complexes.
Quist, David A; Diaz, Daniel E; Liu, Jeffrey J; Karlin, Kenneth D
2017-04-01
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O 2 -activation in copper proteins are addressed.
Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme.
Dajnowicz, Steven; Johnston, Ryne C; Parks, Jerry M; Blakeley, Matthew P; Keen, David A; Weiss, Kevin L; Gerlits, Oksana; Kovalevsky, Andrey; Mueser, Timothy C
2017-10-16
Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B 6 ) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substrate analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. Quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.Pyridoxal 5'-phosphate (PLP) is a ubiquitous co factor for diverse enzymes, among them aspartate aminotransferase. Here the authors use neutron crystallography, which allows the visualization of the positions of hydrogen atoms, and computation to characterize the catalytic mechanism of the enzyme.
Rangani, Jaykumar; Parida, Asish K.; Panda, Ashok; Kumari, Asha
2016-01-01
Salinity-induced modulations in growth, photosynthetic pigments, relative water content (RWC), lipid peroxidation, photosynthesis, photosystem II efficiency, and changes in activity of various antioxidative enzymes were studied in the halophyte Salvadora persica treated with various levels of salinity (0, 250, 500, 750, and 1000 mM NaCl) to obtain an insight into the salt tolerance ability of this halophyte. Both fresh and dry biomass as well as leaf area (LA) declined at all levels of salinity whereas salinity caused an increase in leaf succulence. A gradual increase was observed in the Na+ content of leaf with increasing salt concentration up to 750 mM NaCl, but at higher salt concentration (1000 mM NaCl), the Na+ content surprisingly dropped down to the level of 250 mM NaCl. The chlorophyll and carotenoid contents of the leaf remained unaffected by salinity. The photosynthetic rate (PN), stomatal conductance (gs), the transpiration rate (E), quantum yield of PSII (ΦPSII), photochemical quenching (qP), and electron transport rate remained unchanged at low salinity (250 to 500 mM NaCl) whereas, significant reduction in these parameters were observed at high salinity (750 to 1000 mM NaCl). The RWC% and water use efficiency (WUE) of leaf remained unaffected by salinity. The salinity had no effect on maximum quantum efficiency of PS II (Fv/Fm) which indicates that PS II is not perturbed by salinity-induced oxidative damage. Analysis of the isoforms of antioxidative enzymes revealed that the leaves of S. persica have two isoforms each of Mn-SOD and Fe-SOD and one isoform of Cu-Zn SOD, three isoforms of POX, two isoforms of APX and one isoform of CAT. There was differential responses in activity and expression of different isoforms of various antioxidative enzymes. The malondialdehyde (MDA) content (a product of lipid peroxidation) of leaf remained unchanged in S. persica treated with various levels of salinity. Our results suggest that the absence of pigment degradation, the reduction of water loss, and the maintenance of WUE and protection of PSII from salinity-induced oxidative damage by the coordinated changes in antioxidative enzymes are important factors responsible for salt tolerance of S. persica. PMID:26904037
De Fine Licht, Henrik H; Boomsma, Jacobus J
2014-12-04
Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity. We genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar. Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation tolerance, disease susceptibility and temperature sensitivity may apply in some combinations but not in others. We hypothesize that this may be related to ecological specialization in general, but this awaits further testing. Our finding of both cryptic ant species and extensive cultivar diversity underlines the importance of identifying all species-level variation before embarking on estimates of interaction specificity.
Effect of three typical sulfide mineral flotation collectors on soil microbial activity.
Guo, Zunwei; Yao, Jun; Wang, Fei; Yuan, Zhimin; Bararunyeretse, P; Zhao, Yue
2016-04-01
The sulfide mineral flotation collectors are wildly used in China, whereas their toxic effect on soil microbial activity remains largely unexplored. In this study, isothermal microcalorimetric technique and soil enzyme assay techniques were employed to investigate the toxic effect of typical sulfide mineral flotation collectors on soil microbial activity. Soil samples were treated with different concentrations (0-100 μg•g - 1 soil) of butyl xanthate, butyl dithiophosphate, and sodium diethyldithiocarbamate. Results showed a significant adverse effect of butyl xanthate (p < 0.05), butyl dithiophosphate, and sodium diethyldithiocarbamate (p < 0.01) on soil microbial activity. The growth rate constants k decreased along with the increase of flotation collectors concentration from 20.0 to 100.0 μg•g(-1). However, the adverse effects of these three floatation collectors showed significant difference. The IC 20 of the investigated flotation reagents followed such an order: IC 20 (butyl xanthate) > IC 20 (sodium diethyldithiocarbamate) > IC 20 (butyl dithiophosphate) with their respective inhibitory concentration as 47.03, 38.36, and 33.34 μg•g(-1). Besides, soil enzyme activities revealed that these three flotation collectors had an obvious effect on fluorescein diacetate hydrolysis (FDA) enzyme and catalase (CAT) enzyme. The proposed methods can provide meaningful toxicological information of flotation reagents to soil microbes in the view of metabolism and biochemistry, which are consistent and correlated to each other.
Arabacı, Nihan; Arıkan, Burhan
2018-05-28
A cold-active alkaline amylase producer Bacillus subtilis N8 was isolated from soil samples. Amylase synthesis optimally occurred at 15°C and pH 10.0 on agar plates containing starch. The molecular weight of the enzyme was found to be 205 kDa by performing SDS-PAGE. While the enzyme exhibited the highest activity at 25°C and pH 8.0, it was highly stable in alkaline media (pH 8.0-12.0) and retained 96% of its original activity at low temperatures (10-40°C) for 24 hr. While the amylase activity increased in the presence of β-mercaptoethanol (103%); Ba 2+ , Ca 2+ , Na + , Zn 2+ , Mn 2+ , H 2 O 2 , and Triton X-100 slightly inhibited the activity. The enzyme showed resistance to some denaturants: such as SDS, EDTA, and urea (52, 65, and 42%, respectively). N8 α-amylase displayed the maximum remaining activity of 56% with 3% NaCl. The major final products of starch were glucose, maltose, and maltose-derived oligosaccharides. This novel cold-active α-amylase has the potential to be used in the industries of detergent and food, bioremediation process and production of prebiotics.
Bolado-Martínez, E; Acedo-Félix, E; Peregrino-Uriarte, A B; Yepiz-Plascencia, G
2012-01-01
Phosphoketolases are key enzymes of the phosphoketolase pathway of heterofermentative lactic acid bacteria, which include lactobacilli. In heterofermentative lactobacilli xylulose 5-phosphate phosphoketolase (X5PPK) is the main enzyme of the phosphoketolase pathway. However, activity of fructose 6-phosphate phosphoketolase (F6PPK) has always been considered absent in lactic acid bacteria. In this study, the F6PPK activity was detected in 24 porcine wild-type strains of Lactobacillus reuteri and Lactobacillus mucosae, but not in the Lactobacillus salivarius or in L. reuteri ATCC strains. The activity of F6PPK increased after treatment of the culture at low-pH and diminished after porcine bile-salts stress conditions in wild-type strains of L. reuteri. Colorimetric quantification at 505 nm allowed to differentiate between microbial strains with low activity and without the activity of F6PPK. Additionally, activity of F6PPK and the X5PPK gene expression levels were evaluated by real time PCR, under stress and nonstress conditions, in 3 L. reuteri strains. Although an exact correlation, between enzyme activity and gene expression was not obtained, it remains possible that the xpk gene codes for a phosphoketolase with dual substrate, at least in the analyzed strains of L. reuteri.
Lorenzen, A; Moon, T W; Kennedy, S W; Glen, G A
1999-01-01
Experiments were conducted to survey and detect differences in plasma corticosterone concentrations and intermediary metabolic enzyme activities in herring gull (Larus argentatus) embryos environmentally exposed to organochlorine contaminants in ovo. Unincubated fertile herring gull eggs were collected from an Atlantic coast control site and various Great Lakes sites in 1997 and artificially incubated in the laboratory. Liver and/or kidney tissues from approximately half of the late-stage embryos were analyzed for the activities of various intermediary metabolic enzymes known to be regulated, at least in part, by corticosteroids. Basal plasma corticosterone concentrations were determined for the remaining embryos. Yolk sacs were collected from each embryo and a subset was analyzed for organochlorine contaminants. Regression analysis of individual yolk sac organochlorine residue concentrations, or 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQs), with individual basal plasma corticosterone concentrations indicated statistically significant inverse relationships for polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs), total polychlorinated biphenyls (PCBs), non-ortho PCBs, and TEQs. Similarly, inverse relationships were observed for the activities of two intermediary metabolic enzymes (phosphoenolpyruvate carboxykinase and malic enzyme) when regressed against PCDDs/PCDFs. Overall, these data suggest that current levels of organochlorine contamination may be affecting the hypothalamo-pituitary-adrenal axis and associated intermediary metabolic pathways in environmentally exposed herring gull embryos in the Great Lakes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10064546
Facchinetti de Castro Girão, Luciana; Gonçalves da Rocha, Surza Lucia; Sobral, Ricardo Sposina; Dinis Ano Bom, Ana Paula; Franco Sampaio, André Luiz; Godinho da Silva, José; Ferrara, Maria Antonieta; Pinto da Silva Bon, Elba; Perales, Jonas
2016-04-01
Asparaginase obtained from Escherichia coli and Erwinia chrysanthemi are used to treat acute lymphocytic leukaemia and non-Hodgkin's lymphoma. However, these agents cause severe adverse effects. Saccharomyces cerevisiae asparaginase II, encoded by the ASP3 gene, could be a potential candidate for the formulation of new drugs. This work aimed to purify and characterize the periplasmic asparaginase produced by a recombinant Pichia pastoris strain harbouring the ASP3 gene. The enzyme was purified to homogeneity with an activity recovery of 51.3%. The estimated molecular mass of the enzyme was 136 kDa (under native conditions) and 48.6 kDa and 44.6 kDa (under reducing conditions), suggesting an oligomeric structure. The recombinant asparaginase is apparently non-phosphorylated, and the major difference between the monomers seems to be their degree of glycosylation. The enzyme showed an isoelectric point of 4.5 and maximum activity at 46 °C and pH 7.2, retaining 92% of the activity at 37 °C. Circular dichroism and fluorescence analyses showed that the enzyme structure is predominantly α-helical with the contribution of β-sheet and that it remains stable up to 45 °C and in the pH range of 6-10. In vitro tests indicated that the recombinant asparaginase demonstrated antitumoural activity against K562 leukaemic cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Exploring the potential impact of an expanded genetic code on protein function
Xiao, Han; Nasertorabi, Fariborz; Choi, Sei -hyun; ...
2015-05-18
With few exceptions, all living organisms encode the same 20 canonical amino acids; however, it remains an open question whether organisms with additional amino acids beyond the common 20 might have an evolutionary advantage. In this paper, we begin to test that notion by making a large library of mutant enzymes in which 10 structurally distinct noncanonical amino acids were substituted at single sites randomly throughout TEM-1 β-lactamase. A screen for growth on the β-lactam antibiotic cephalexin afforded a unique p-acrylamido-phenylalanine (AcrF) mutation at Val-216 that leads to an increase in catalytic efficiency by increasing k cat, but not significantlymore » affecting K M. To understand the structural basis for this enhanced activity, we solved the X-ray crystal structures of the ligand-free mutant enzyme and of the deacylation-defective wild-type and mutant cephalexin acyl-enzyme intermediates. These structures show that the Val-216–AcrF mutation leads to conformational changes in key active site residues—both in the free enzyme and upon formation of the acyl-enzyme intermediate—that lower the free energy of activation of the substrate transacylation reaction. Finally, the functional changes induced by this mutation could not be reproduced by substitution of any of the 20 canonical amino acids for Val-216, indicating that an expanded genetic code may offer novel solutions to proteins as they evolve new activities.« less
Aguiar, André; Gavioli, Daniela; Ferraz, André
2014-11-01
Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Comparative Studies of Enzymes Related to Serine Metabolism in Higher Plants 1
Cheung, Geoffrey P.; Rosenblum, I. Y.; Sallach, H. J.
1968-01-01
The following enzymes related to serine metabolism in higher plants have been investigated: 1) d-3-phosphoglycerate dehydrogenase, 2) phosphohydroxypyruvate:l-glutamate transaminase, 3) d-glycerate dehydrogenase, and 4) hydroxypyruvate:l-alanine transaminase. Comparative studies on the distribution of the 2 dehydrogenases in seeds and leaves from various plants revealed that d-3-phosphoglycerate dehydrogenase is widely distributed in seeds in contrast to d-glycerate dehydrogenase, which is either absent or present at low levels, and that the reverse pattern is observed in green leaves. The levels of activity of the 4 enzymes listed above were followed in different tissues of the developing pea (Pisum sativum, var. Alaska). In the leaf, from the tenth to seventeenth day of germination, the specific activity of d-glycerate dehydrogenase increased markedly and was much higher than d-3-phosphoglycerate dehydrogenase which remained relatively constant during this time period. Etiolation resulted in a decrease in d-glycerate dehydrogenase and an increase in d-3-phosphoglycerate dehydrogenase activities. In apical meristem, on the other hand, the level of d-3-phosphoglycerate dehydrogenase exceeded that of d-glycerate dehydrogenase at all time periods studied. Low and decreasing levels of both dehydrogenases were found in epicotyl and cotyledon. The specific activities of the 2 transaminases remained relatively constant during development in both leaf and apical meristem. In general, however, the levels of phosphohydroxypyruvate:l-glutamate transaminase were comparable to those of d-3-phosphoglycerate dehydrogenase in a given tissue as were those for hydroxypyruvate: l-alanine transaminase and d-glycerate dehydrogenase. PMID:5699148
Teng, Yigang; Yin, Qiuyu; ding, Ming; Zhao, Fukun
2010-10-01
In this study, we confirmed that at least three endo-β-1,4-glucanases existed in the digestive juice of the giant snail, Achatina fulica ferussac, by Congo red staining assay. One of these enzymes, a novel endo-β-1,4-glucanase (AfEG22), was purified 29.5-fold by gel filtration, anion exchange, and hydrophobic interaction chromatography. The carboxymethyl cellulose (CMC) hydrolytic activity of the purified enzyme was 12.3 U/mg protein. The molecular mass of AfEG22 was 22081 Da determined by MALDI-TOF. N-terminal amino acid sequencing revealed a sequence of EQRCTNQGGILKYYNT, which did not have significant homology with any proteins in BLAST database. The optimal pH and temperature for hydrolytic activity toward CMC were pH 4.0 and 50°C, respectively. AfEG22 was stable between pH 3.0 and pH 12.0 when incubated at 4°C for 3 h or at 37°C for 1 h. The enzyme remained more than 80% activity between pH 4.5 and pH 7.0 after incubation at 50°C for 1 h. AfEG22 possessed excellent thermostability as more than 70% activity was remained after incubation at 60°C for 3 h. Substrate specific analysis revealed that AfEG22 was a typical endo-β-1,4-glucanase. This is the first time to report a novel endo-β-1,4-glucanase with high stability from the digestive juice of A. fulica.
Foumani, Maryam; Vuong, Thu V.; MacCormick, Benjamin; Master, Emma R.
2015-01-01
The gluco-oligosaccharide oxidase from Sarocladium strictum CBS 346.70 (GOOX) is a single domain flavoenzyme that favourably oxidizes gluco- and xylo- oligosaccharides. In the present study, GOOX was shown to also oxidize plant polysaccharides, including cellulose, glucomannan, β-(1→3,1→4)-glucan, and xyloglucan, albeit to a lesser extent than oligomeric substrates. To improve GOOX activity on polymeric substrates, three carbohydrate binding modules (CBMs) from Clostridium thermocellum, namely CtCBM3 (type A), CtCBM11 (type B), and CtCBM44 (type B), were separately appended to the amino and carboxy termini of the enzyme, generating six fusion proteins. With the exception of GOOX-CtCBM3 and GOOX-CtCBM44, fusion of the selected CBMs increased the catalytic activity of the enzyme (kcat) on cellotetraose by up to 50%. All CBM fusions selectively enhanced GOOX binding to soluble and insoluble polysaccharides, and the immobilized enzyme on a solid cellulose surface remained stable and active. In addition, the CBM fusions increased the activity of GOOX on soluble glucomannan by up to 30 % and on insoluble crystalline as well as amorphous cellulose by over 50 %. PMID:25932926
Charron, Laetitia; Geffard, Olivier; Chaumot, Arnaud; Coulaud, Romain; Jaffal, Ali; Gaillet, Véronique; Dedourge-Geffard, Odile; Geffard, Alain
2015-01-01
Digestive enzyme activity is often used as a sensitive response to environmental pollution. However, only little is known about the negative effects of stress on digestive capacities and their consequences on energy reserves and reproduction, although these parameters are important for the maintenance of populations. To highlight if changes in biochemical responses (digestive enzymes and reserves) led to impairments at an individual level (fertility), Gammarus fossarum were submitted to a lower food intake throughout a complete female reproductive cycle (i.e. from ovogenesis to offspring production). For both males and females, amylase activity was inhibited by the diet stress, whereas trypsin activity was not influenced. These results underline similar sensitivity of males and females concerning their digestive capacity. Energy reserves decreased with food starvation in females, and remained stable in males. The number of embryos per female decreased with food starvation. Lower digestive activity in males and females therefore appears as an early response. These results underline the ecological relevance of digestive markers, as they make it possible to anticipate upcoming consequences on reproduction in females, a key biological variable for population dynamics.
Afriat-Jurnou, Livnat; Cohen, Rami; Paluy, Irina; Ben-Adiva, Ran; Yadid, Itamar
2018-02-01
Inulinases are fructofuranosyl hydrolases that target the β-2,1 linkage of inulin and hydrolyze it into fructose, glucose and inulooligosaccharides (IOS), the latter are of growing interest as dietary fibers. Inulinases from various microorganisms have been purified, characterized and produced for industrial applications. However, there remains a need for inulinases with increased catalytic activity and better production yields to improve the hydrolysis process and fulfill the growing industrial demands for specific fibers. In this study, we used directed enzyme evolution to increase the yield and activity of an endoinulinase enzyme originated from the filamentous fungus Talaromyces purpureogenus (Penicillium purpureogenum ATCC4713). Our directed evolution approach yielded variants showing up to fivefold improvements in soluble enzyme production compared to the starting point which enabled high-yield production of highly purified recombinant enzyme. The distribution of the enzymatic reaction products demonstrated that after 24 h of incubation, the main product (57%) had a degree of polymerization of 3 (DP3). To the best of our knowledge, this is the first application of directed enzyme evolution to improve inulooligosaccharide production. The approach enabled the screening of large genetic libraries within short time frames and facilitated screening for improved enzymatic activities and properties, such as substrate specificity, product range, thermostability and pH optimum. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
Enzyme processing of textiles in reverse micellar solution.
Sawada, K; Ueda, M
2001-08-23
Scouring of cotton using pectinase enzyme, bioscouring, in reverse micellar system was studied. The effectiveness of bioscouring was evaluated by measuring weight loss of cotton, analyzing pectin and cotton wax remaining and by wetness testing. Pectinase enzyme showed excellent activity even in organic media, and the effectiveness of scouring was equivalent or better than that achieved by conventional alkaline process or bioscouring in aqueous media. Enzymatic modification of wool using protease enzyme in the same system was also studied. It has found that felting property and tensile strength of wool fabrics treated by protease in reverse micellar system were superior to those in aqueous media. Possibilities of utilization of the same system for the subsequent textile dyeing process were also investigated. It was found that cotton and polyester fabrics were dyed satisfactorily by reverse micellar system compared to conventional aqueous system.
Yang, Hongyu; Zhu, Qiang; Zhou, Nandi; Tian, Yaping
2016-11-01
Prolyl aminopeptidases are specific exopeptidases that catalyze the hydrolysis of the N-terminus proline residue of peptides and proteins. In the present study, the prolyl aminopeptidase gene (pap) from Aspergillus oryzae JN-412 was optimized through the codon usage of Pichia pastoris. Both the native and optimized pap genes were inserted into the expression vector pPIC9 K and were successfully expressed in P. pastoris. Additionally, the activity of the intracellular enzyme expressed by the recombinant optimized pap gene reached 61.26 U mL(-1), an activity that is 2.1-fold higher than that of the native gene. The recombinant enzyme was purified by one-step elution through Ni-affinity chromatography. The optimal temperature and pH of the purified PAP were 60 °C and 7.5, respectively. Additionally, the recombinant PAP was recovered at a yield greater than 65 % at an extremely broad range of pH values from 6 to 10 after treatment at 50 °C for 6 h. The molecular weight of the recombinant PAP decreased from 50 kDa to 48 kDa after treatment with a deglycosylation enzyme, indicating that the recombinant PAP was completely glycosylated. The glycosylated PAP exhibited high thermo-stability. Half of the activity remained after incubation at 50 °C for 50 h, whereas the remaining activity of PAP expressed in E. coli was only 10 % after incubation at 50 °C for 1 h. PAP could be activated by the appropriate salt concentration and exhibited salt tolerance against NaCl at a concentration up to 5 mol L(-1).
Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A
2005-12-01
The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride level was significantly elevated postrace, then fell 30% below baseline 1 day after the run, and returned to baseline after 1 week. Total cholesterol responded less dramatically but with a similar pattern. High-density lipoprotein cholesterol remained significantly elevated and low-density lipoprotein cholesterol was transiently reduced for 3 days after the run. The total cholesterol/high-density cholesterol ratio was significantly lowered for 3 days. Serum lactate dehydrogenase activity significantly doubled postrace and then declined but remained elevated for 2 weeks. Serum creatine kinase activity peaked 24 hr after the run, with a 15-fold rise, and returned to baseline after 1 week. The rise of these enzymes reflects mechanically damaged muscle cells leaking contents into the interstitial fluid. It is concluded that a prolonged strenuous exercise bout in recreational runners, such as a marathon, produces beneficial changes in lipid blood profiles that are significant for only 3 days. However, muscle damage is also evident for 1 week or more from the dramatic and long-lasting effect on enzyme levels. Laboratory values for these runners were outside normal ranges for some days after the race.
Keomanivong, F E; Camacho, L E; Lemley, C O; Kuemper, E A; Yunusova, R D; Borowicz, P P; Kirsch, J D; Vonnahme, K A; Caton, J S; Swanson, K C
2017-06-01
This study examined effects of stage of gestation and nutrient restriction with subsequent realimentation on maternal and foetal bovine pancreatic function. Dietary treatments were assigned on day 30 of pregnancy and included: control (CON; 100% requirements; n = 18) and restricted (R; 60% requirements; n = 30). On day 85, cows were slaughtered (CON, n = 6; R, n = 6), remained on control (CC; n = 12) and restricted (RR; n = 12), or realimented to control (RC; n = 11). On day 140, cows were slaughtered (CC, n = 6; RR, n = 6; RC, n = 5), remained on control (CCC, n = 6; RCC, n = 5) or realimented to control (RRC, n = 6). On day 254, the remaining cows were slaughtered and serum samples were collected from the maternal jugular vein and umbilical cord to determine insulin and glucose concentrations. Pancreases from cows and foetuses were removed, weighed, and subsampled for enzyme and histological analysis. As gestation progressed, maternal pancreatic α-amylase activity decreased and serum insulin concentrations increased (p ≤ 0.03). Foetal pancreatic trypsin activity increased (p < 0.001) with advancing gestation. Foetal pancreases subjected to realimentation (CCC vs. RCC and RRC) had increased protein and α-amylase activity at day 254 (p ≤ 0.02), while trypsin (U/g protein; p = 0.02) demonstrated the opposite effect. No treatment effects were observed for maternal or foetal pancreatic insulin-containing cell clusters. Foetal serum insulin and glucose levels were reduced with advancing gestation (p ≤ 0.03). The largest maternal insulin-containing cell cluster was not influenced by advancing gestation, while foetal clusters grew throughout (p = 0.01). These effects indicate that maternal digestive enzymes are influenced by nutrient restriction and there is a potential for programming of increased foetal digestive enzyme production resulting from previous maternal nutrient restriction. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function
Johnson, Troy A.; Holyoak, Todd
2012-01-01
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that transitions between an open/disorded conformation to a closed/ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies show that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. In order to more fully investigate the roles of the lid domain in PEPCK function we created three mutations that replaced the 11-residue lid domain with one, two or three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity resulting in a decrease in the catalytic parameters by at least 106. Structural characterization of the mutants in complexes representing the catalytic cycle suggest that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all elements required for chemical conversion of substrates to products remaining intact. PMID:23127136
The oxalic acid biosynthetic activity of Burkholderia mallei is encoded by a single locus
USDA-ARS?s Scientific Manuscript database
Although it is known that oxalic acid provides a selective advantage to the secreting microbe, our understanding of how this acid is biosynthesized remains incomplete. This study reports the identification, cloning, and partial characterization of the oxalic acid biosynthetic enzyme from the animal ...
Plasmid-mediated fosfomycin resistance is due to enzymatic modification of the antibiotic.
Llaneza, J; Villar, C J; Salas, J A; Suarez, J E; Mendoza, M C; Hardisson, C
1985-01-01
The molecular mechanism of plasmid-mediated resistance to fosfomycin is described. The antibiotic was inactivated intracellularly and remained inside the cells. Modification was also obtained from cell extracts and was not energy dependent. The modifying enzyme seems to have sulfhydryl groups in its active center. PMID:3899003
Walsh, Patrick J; Kajimura, Makiko; Mommsen, Thomas P; Wood, Chris M
2006-08-01
In order to investigate the metabolic poise of the elasmobranch rectal gland, we conducted two lines of experimentation. First, we examined the effects of feeding on plasma metabolites and enzyme activities from several metabolic pathways in several tissues of the dogfish shark, Squalus acanthias, after starvation and at 6, 20, 30 and 48 h post-feeding. We found a rapid and sustained ten-fold decrease in plasma beta-hydroxybutyrate at 6 h and beyond compared with starved dogfish, suggesting an upregulation in the use of this substrate, a decrease in production, or both. Plasma acetoacetate levels remain unchanged, whereas there was a slight and transient decrease in plasma glucose levels at 6 h. Several enzymes showed a large increase in activity post-feeding, including beta-hydroxybutyrate dehydrogenase in rectal gland and liver, and in rectal gland, isocitrate dehydrogenase, citrate synthase, lactate dehydrogenase, aspartate amino transferase, alanine amino transferase, glutamine synthetase and Na(+)/K(+) ATPase. Also notable in these enzyme measurements was the overall high level of activity in the rectal gland in general. For example, activity of the Krebs' TCA cycle enzyme citrate synthase (over 30 U g(-1)) was similar to activities in muscle from other species of highly active fish. Surprisingly, lactate dehydrogenase activity in the gland was also high (over 150 U g(-1)), suggesting either an ability to produce lactate anaerobically or use lactate as an aerobic fuel. Given these interesting observations, in the second aspect of the study we examined the ability of several metabolic substrates (alone and in combination) to support chloride secretion by the rectal gland. Among the substrates tested at physiological concentrations (glucose, beta-hydroxybutyrate, lactate, alanine, acetoacetate, and glutamate), only glucose could consistently maintain a viable preparation. Whereas beta-hydroxybutyrate could enhance gland activity when presented in combination with glucose, surprisingly it could not sustain chloride secretion when used as a lone substrate. Our results are discussed in the context of the in vivo role of the gland and mechanisms of possible upregulation of enzyme activities.
Gagnon, Susannah M. L.; Meloncelli, Peter J.; Zheng, Ruixiang B.; Haji-Ghassemi, Omid; Johal, Asha R.; Borisova, Svetlana N.; Lowary, Todd L.; Evans, Stephen V.
2015-01-01
Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB. PMID:26374898
Venditto, Immacolata; Najmudin, Shabir; Luís, Ana S; Ferreira, Luís M A; Sakka, Kazuo; Knox, J Paul; Gilbert, Harry J; Fontes, Carlos M G A
2015-04-24
Structural carbohydrates comprise an extraordinary source of energy that remains poorly utilized by the biofuel sector as enzymes have restricted access to their substrates within the intricacy of plant cell walls. Carbohydrate active enzymes (CAZYmes) that target recalcitrant polysaccharides are modular enzymes containing noncatalytic carbohydrate-binding modules (CBMs) that direct enzymes to their cognate substrate, thus potentiating catalysis. In general, CBMs are functionally and structurally autonomous from their associated catalytic domains from which they are separated through flexible linker sequences. Here, we show that a C-terminal CBM46 derived from BhCel5B, a Bacillus halodurans endoglucanase, does not interact with β-glucans independently but, uniquely, acts cooperatively with the catalytic domain of the enzyme in substrate recognition. The structure of BhCBM46 revealed a β-sandwich fold that abuts onto the region of the substrate binding cleft upstream of the active site. BhCBM46 as a discrete entity is unable to bind to β-glucans. Removal of BhCBM46 from BhCel5B, however, abrogates binding to β-1,3-1,4-glucans while substantially decreasing the affinity for decorated β-1,4-glucan homopolymers such as xyloglucan. The CBM46 was shown to contribute to xyloglucan hydrolysis only in the context of intact plant cell walls, but it potentiates enzymatic activity against purified β-1,3-1,4-glucans in solution or within the cell wall. This report reveals the mechanism by which a CBM can promote enzyme activity through direct interaction with the substrate or by targeting regions of the plant cell wall where the target glucan is abundant. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus
NASA Astrophysics Data System (ADS)
Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.
2012-10-01
Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.
Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M.; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E.; Notarangelo, Luigi D.; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D.; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric
2015-01-01
SUMMARY Activation-induced cytidine deaminase (AID), the enzyme mediating class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B-cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B-cell intrinsic AID expression mediates central B-cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells. PMID:26546282
Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide.
Hiner, A N; Rodríguez-López, J N; Arnao, M B; Lloyd Raven, E; García-Cánovas, F; Acosta, M
2000-01-01
The activity of ascorbate peroxidase (APX) has been studied with H(2)O(2) and various reducing substrates. The activity decreased in the order pyrogallol>ascorbate>guaiacol>2, 2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The inactivation of APX with H(2)O(2) as the sole substrate was studied. The number of H(2)O(2) molecules required for maximal inactivation of the enzyme was determined as approx. 2.5. Enzymic activity of approx. 20% of the original remained at the end of the inactivation process (i.e. approx. 20% resistance) when ascorbate or ABTS was used as the substrate in activity assays. With pyrogallol or guaiacol no resistance was seen. Inactivation by H(2)O(2) followed over time with ascorbate or pyrogallol assays exhibited single-exponential decreases in enzymic activity. Hyperbolic saturation kinetics were observed in both assay systems; a similar dissociation constant (0.8 microM) for H(2)O(2) was obtained in each case. However, the maximum rate constant (lambda(max)) obtained from the plots differed depending on the assay substrate. The presence of reducing substrate in addition to H(2)O(2) partly or completely protected the enzyme from inactivation, depending on how many molar equivalents of reducing substrate were added. An oxygen electrode system has been used to confirm that APX does not exhibit a catalase-like oxygen-releasing reaction. A kinetic model was developed to interpret the experimental results; both the results and the model are compared and contrasted with previously obtained results for horseradish peroxidase C. The kinetic model has led us to the conclusion that the inactivation of APX by H(2)O(2) represents an unusual situation in which no enzyme turnover occurs but there is a partition of the enzyme between two forms, one inactive and the other with activity towards reducing substrates such as ascorbate and ABTS only. The partition ratio is less than 1. PMID:10816425
Management of pain in chronic pancreatitis with emphasis on exogenous pancreatic enzymes.
Hobbs, Paul M; Johnson, William G; Graham, David Y
2016-08-06
One of the most challenging issues arising in patients with chronic pancreatitis is the management of abdominal pain. Many competing theories exist to explain pancreatic pain including ductal hypertension from strictures and stones, increased interstitial pressure from glandular fibrosis, pancreatic neuritis, and ischemia. This clinical problem is superimposed on a background of reduced enzyme secretion and altered feedback mechanisms. Throughout history, investigators have used these theories to devise methods to combat chronic pancreatic pain including: Lifestyle measures, antioxidants, analgesics, administration of exogenous pancreatic enzymes, endoscopic drainage procedures, and surgical drainage and resection procedures. While the value of each modality has been debated over the years, pancreatic enzyme therapy remains a viable option. Enzyme therapy restores active enzymes to the small bowel and targets the altered feedback mechanism that lead to increased pancreatic ductal and tissue pressures, ischemia, and pain. Here, we review the mechanisms and treatments for chronic pancreatic pain with a specific focus on pancreatic enzyme replacement therapy. We also discuss different approaches to overcoming a lack of clinical response update ideas for studies needed to improve the clinical use of pancreatic enzymes to ameliorate pancreatic pain.
Caenorhabditis elegans glutamylating enzymes function redundantly in male mating.
Chawla, Daniel G; Shah, Ruchi V; Barth, Zachary K; Lee, Jessica D; Badecker, Katherine E; Naik, Anar; Brewster, Megan M; Salmon, Timothy P; Peel, Nina
2016-09-15
Microtubule glutamylation is an important modulator of microtubule function and has been implicated in the regulation of centriole stability, neuronal outgrowth and cilia motility. Glutamylation of the microtubules is catalyzed by a family of tubulin tyrosine ligase-like (TTLL) enzymes. Analysis of individual TTLL enzymes has led to an understanding of their specific functions, but how activities of the TTLL enzymes are coordinated to spatially and temporally regulate glutamylation remains relatively unexplored. We have undertaken an analysis of the glutamylating TTLL enzymes in C. elegans We find that although all five TTLL enzymes are expressed in the embryo and adult worm, loss of individual enzymes does not perturb microtubule function in embryonic cell divisions. Moreover, normal dye-filling, osmotic avoidance and male mating behavior indicate the presence of functional amphid cilia and male-specific neurons. A ttll-4(tm3310); ttll-11(tm4059); ttll-5(tm3360) triple mutant, however, shows reduced male mating efficiency due to a defect in the response step, suggesting that these three enzymes function redundantly, and that glutamylation is required for proper function of the male-specific neurons. © 2016. Published by The Company of Biologists Ltd.
Management of pain in chronic pancreatitis with emphasis on exogenous pancreatic enzymes
Hobbs, Paul M; Johnson, William G; Graham, David Y
2016-01-01
One of the most challenging issues arising in patients with chronic pancreatitis is the management of abdominal pain. Many competing theories exist to explain pancreatic pain including ductal hypertension from strictures and stones, increased interstitial pressure from glandular fibrosis, pancreatic neuritis, and ischemia. This clinical problem is superimposed on a background of reduced enzyme secretion and altered feedback mechanisms. Throughout history, investigators have used these theories to devise methods to combat chronic pancreatic pain including: Lifestyle measures, antioxidants, analgesics, administration of exogenous pancreatic enzymes, endoscopic drainage procedures, and surgical drainage and resection procedures. While the value of each modality has been debated over the years, pancreatic enzyme therapy remains a viable option. Enzyme therapy restores active enzymes to the small bowel and targets the altered feedback mechanism that lead to increased pancreatic ductal and tissue pressures, ischemia, and pain. Here, we review the mechanisms and treatments for chronic pancreatic pain with a specific focus on pancreatic enzyme replacement therapy. We also discuss different approaches to overcoming a lack of clinical response update ideas for studies needed to improve the clinical use of pancreatic enzymes to ameliorate pancreatic pain. PMID:27602238
Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates.
Ahumada, Katherine; Martínez-Gil, Ana; Moreno-Simunovic, Yerko; Illanes, Andrés; Wilson, Lorena
2016-11-08
Aroma is a remarkable factor of quality and consumer preference in wine, representing a distinctive feature of the product. Most aromatic compounds in varietals are in the form of glycosidic precursors, which are constituted by a volatile aglycone moiety linked to a glucose residue by an O -glycosidic bond; glucose is often linked to another sugar (arabinose, rhamnose or apiose). The use of soluble β-glycosidases for aroma liberation implies the addition of a precipitating agent to remove it from the product and precludes its reuse after one batch. An attractive option from a technological perspective that will aid in removing such constraints is the use of immobilized glycosidases. Immobilization by aggregation and crosslinking is a simple strategy producing enzyme catalysts of very high specific activity, being an attractive option to conventional immobilization to solid inert supports. The purpose of this work was the evaluation of co-immobilized β-glycosidases crosslinked aggregates produced from the commercial preparation AR2000, which contains the enzymes involved in the release of aromatic terpenes in Muscat wine (α-l-arabinofuranosidase and β-d-glucopyranosidase). To do so, experiments were conducted with co-immobilized crosslinked enzyme aggregates (combi-CLEAs), and with the soluble enzymes, using an experiment without enzyme addition as control. Stability of the enzymes at the conditions of winemaking was assessed and the volatiles composition of wine was determined by SPE-GC-MS. Stability of enzymes in combi-CLEAs was much higher than in soluble form, 80% of the initial activity remaining after 60 days in contact with the wine; at the same conditions, the soluble enzymes had lost 80% of their initial activities after 20 days. Such higher stabilities will allow prolonged use of the enzyme catalyst reducing its impact in the cost of winemaking. Wine treated with combi-CLEAs was the one exhibiting the highest concentration of total terpenes (18% higher than the control) and the highest concentrations of linalool (20% higher), nerol (20% higher) and geraniol (100% higher), which are the most important terpenes in determining Muscat typicity. Co-immobilized enzymes were highly stable at winemaking conditions, so their reutilization is possible and technologically attractive by reducing the impact of enzyme cost on winemaking cost.
Saavedra, Juan M; Azócar, Mauricio A; Rodríguez, Vida; Ramírez-Sarmiento, César A; Andrews, Barbara A; Asenjo, Juan A; Parra, Loreto P
2018-03-25
Detailed molecular mechanisms underpinning enzymatic reactions are still a central problem in biochemistry. The need for active site flexibility to sustain catalytic activity constitutes a notion of wide acceptance, although its direct influence remains to be fully understood. With the aim of studying the relationship between structural dynamics and enzyme catalysis, the cellulase Cel5A from Bacillus agaradherans is used as a model for in silico comparative analysis with mesophilic and psychrophilic counterparts. Structural features that determine flexibility are related to kinetic and thermodynamic parameters of catalysis. As a result, three specific positions in the vicinity of the active site of Cel5A are selected for protein engineering via site-directed mutagenesis. Three Cel5A variants are generated, N141L, A137Y and I102A/A137Y, showing a concomitant increase in the catalytic activity at low temperatures and a decrease in activation energy and activation enthalpy, similar to cold-active enzymes. These results are interpreted in structural terms by molecular dynamics simulations, showing that disrupting a hydrogen bond network in the vicinity of the active site increases local flexibility. These results provide a structural framework for explaining the changes in thermodynamic parameters observed between homologous enzymes with varying temperature adaptations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J; Boxer, Steven G
2011-10-04
Understanding how electric fields and their fluctuations in the active site of enzymes affect efficient catalysis represents a critical objective of biochemical research. We have directly measured the dynamics of the electric field in the active site of a highly proficient enzyme, Δ(5)-3-ketosteroid isomerase (KSI), in response to a sudden electrostatic perturbation that simulates the charge displacement that occurs along the KSI catalytic reaction coordinate. Photoexcitation of a fluorescent analog (coumarin 183) of the reaction intermediate mimics the change in charge distribution that occurs between the reactant and intermediate state in the steroid substrate of KSI. We measured the electrostatic response and angular dynamics of four probe dipoles in the enzyme active site by monitoring the time-resolved changes in the vibrational absorbance (IR) spectrum of a spectator thiocyanate moiety (a quantitative sensor of changes in electric field) placed at four different locations in and around the active site, using polarization-dependent transient vibrational Stark spectroscopy. The four different dipoles in the active site remain immobile and do not align to the changes in the substrate electric field. These results indicate that the active site of KSI is preorganized with respect to functionally relevant changes in electric fields.
Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.
2011-01-01
Understanding how electric fields and their fluctuations in the active site of enzymes affect efficient catalysis represents a critical objective of biochemical research. We have directly measured the dynamics of the electric field in the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), in response to a sudden electrostatic perturbation that simulates the charge displacement that occurs along the KSI catalytic reaction coordinate. Photoexcitation of a fluorescent analog (coumarin 183) of the reaction intermediate mimics the change in charge distribution that occurs between the reactant and intermediate state in the steroid substrate of KSI. We measured the electrostatic response and angular dynamics of four probe dipoles in the enzyme active site by monitoring the time-resolved changes in the vibrational absorbance (IR) spectrum of a spectator thiocyanate moiety (a quantitative sensor of changes in electric field) placed at four different locations in and around the active site, using polarization-dependent transient vibrational Stark spectroscopy. The four different dipoles in the active site remain immobile and do not align to the changes in the substrate electric field. These results indicate that the active site of KSI is preorganized with respect to functionally relevant changes in electric fields. PMID:21949360
Mehrabadi, Mohammad; Bandani, Ali R; Saadati, Fatemeh
2010-01-01
The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the K(m) remained constant (0.58%) but the maximum velocity (V(max)) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T(50)) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase.
Mehrabadi, Mohammad; Bandani, Ali R.; Saadati, Fatemeh
2010-01-01
The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the Km remained constant (0.58%) but the maximum velocity (Vmax) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T50) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase. PMID:21062146
Welsch, Ralf; Zhou, Xiangjun; Yuan, Hui; Álvarez, Daniel; Sun, Tianhu; Schlossarek, Dennis; Yang, Yong; Shen, Guoxin; Zhang, Hong; Rodriguez-Concepcion, Manuel; Thannhauser, Theodore W; Li, Li
2018-01-08
Phytoene synthase (PSY) is the crucial plastidial enzyme in the carotenoid biosynthetic pathway. However, its post-translational regulation remains elusive. Likewise, Clp protease constitutes a central part of the plastid protease network, but its substrates for degradation are not well known. In this study, we report that PSY is a substrate of the Clp protease. PSY was uncovered to physically interact with various Clp protease subunits (i.e., ClpS1, ClpC1, and ClpD). High levels of PSY and several other carotenogenic enzyme proteins overaccumulate in the clpc1, clpp4, and clpr1-2 mutants. The overaccumulated PSY was found to be partially enzymatically active. Impairment of Clp activity in clpc1 results in a reduced rate of PSY protein turnover, further supporting the role of Clp protease in degrading PSY protein. On the other hand, the ORANGE (OR) protein, a major post-translational regulator of PSY with holdase chaperone activity, enhances PSY protein stability and increases the enzymatically active proportion of PSY in clpc1, counterbalancing Clp-mediated proteolysis in maintaining PSY protein homeostasis. Collectively, these findings provide novel insights into the quality control of plastid-localized proteins and establish a hitherto unidentified post-translational regulatory mechanism of carotenogenic enzymes in modulating carotenoid biosynthesis in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Bai, Xuegui; Yang, Liming; Tian, Meihua; Chen, Jinhui; Shi, Jisen; Yang, Yongping; Hu, Xiangyang
2011-01-01
The viability of recalcitrant seeds is lost following stress from either drying or freezing. Reactive oxygen species (ROS) resulting from uncontrolled metabolic activity are likely responsible for seed sensitivity to drying. Nitric oxide (NO) and the ascorbate-glutathione cycle can be used for the detoxification of ROS, but their roles in the seed response to desiccation remain poorly understood. Here, we report that desiccation induces rapid accumulation of H2O2, which blocks recalcitrant Antiaris toxicaria seed germination; however, pretreatment with NO increases the activity of antioxidant ascorbate-glutathione pathway enzymes and metabolites, diminishes H2O2 production and assuages the inhibitory effects of desiccation on seed germination. Desiccation increases the protein carbonylation levels and reduces protein S-nitrosylation of these antioxidant enzymes; these effects can be reversed with NO treatment. Antioxidant protein S-nitrosylation levels can be further increased by the application of S-nitrosoglutathione reductase inhibitors, which further enhances NO-induced seed germination rates after desiccation and reduces desiccation-induced H2O2 accumulation. These findings suggest that NO reinforces recalcitrant seed desiccation tolerance by regulating antioxidant enzyme activities to stabilize H2O2 accumulation at an appropriate concentration. During this process, protein carbonylation and S-nitrosylation patterns are used as a specific molecular switch to control antioxidant enzyme activities. PMID:21674063
NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism
DOE Office of Scientific and Technical Information (OSTI.GOV)
The discovery of a new mode of action by C. thermocellum to convert biomass to biofuels is significant because the bacterium is already recognized as one of the most effective in the biosphere. Researchers found that, in addition to using common cellulase degradation mechanisms attached to cells, C. thermocellum also uses a new category of cell-free scaffolded enzymes. The new discovery will influence the strategies used to improve the cellulolytic activity of biomass degrading microbes going forward. Better understanding of this bacterium could lead to cheaper production of ethanol and drop-in fuels. Also, this discovery demonstrates that nature's biomass conversionmore » behaviors are not fully understood and remain as opportunities for future microbial/enzyme engineering efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hottiger, T.; Schmutz, P.; Wiemken, A.
Heat shock resulted in rapid accumulation of large amounts of trehalose in Saccharomyces cerevisiae. In cultures growing exponentially on glucose, the trehalose content of the cells increased from 0.01 to 1 g/g of protein within 1 h after the incubation temperature was shifted from 27 to 40/sup 0/C. When the temperature was readjusted to 27/sup 0/C, the accumulated trehalose was rapidly degraded. In parallel, the activity of the trehalose-phosphate synthase, the key enzyme of trehalose biosynthesis, increased about six fold during the heat shock and declined to normal level after readjustment of the temperature. Surprisingly, the activity of neutral trehalase,more » the key enzyme of trehalose degradation, also increased about threefold during the heat shock and remained almost constant during recovery of the cells at 27/sup 0/C. In pulse-labeling experiments with (/sup 14/C) glucose, trehalose was found to be turned over rapidly in heat-shocked cells, indicating that both anabolic and catabolic enzymes of trehalose metabolism were active in vivo. Possible functions of the heat-induced accumulation of trehalose and its rapid turnover in an apparently futile cycle during heat shock are discussed.« less
Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis L,D-transpeptidase.
Lecoq, Lauriane; Bougault, Catherine; Hugonnet, Jean-Emmanuel; Veckerlé, Carole; Pessey, Ombeline; Arthur, Michel; Simorre, Jean-Pierre
2012-05-09
β-lactams inhibit peptidoglycan polymerization by acting as suicide substrates of essential d,d-transpeptidases. Bypass of these enzymes by unrelated l,d-transpeptidases results in β-lactam resistance, although carbapenems remain unexpectedly active. To gain insight into carbapenem specificity of l,d-transpeptidases (Ldts), we solved the nuclear magnetic resonance (NMR) structures of apo and imipenem-acylated Bacillus subtilis Ldt and show that the cysteine nucleophile is present as a neutral imidazole-sulfhydryl pair in the substrate-free enzyme. NMR relaxation dispersion does not reveal any preexisting conformational exchange in the apoenzyme, and change in flexibility is not observed upon noncovalent binding of β-lactams (K(D) > 37.5 mM). In contrast, covalent modification of active cysteine by both carbapenems and 2-nitro-5-thiobenzoate induces backbone flexibility that does not result from disruption of the imidazole-sulfhydryl proton interaction or steric hindrance. The chemical step of the reaction determines enzyme specificity since no differences in drug affinity were observed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects on starch and amylolytic enzymes during Lepidium meyenii Walpers root storage.
Rondán-Sanabria, Gerby Giovanna; Valcarcel-Yamani, Beatriz; Finardi-Filho, Flavio
2012-10-01
The high water content in maca (Lepidium meyenii W.) roots combined with the damage produced during or after harvest makes them vulnerable to attack by enzymes and microorganisms. Although starch degradation has been extensively studied, in maca roots there is a paucity of research regarding the starch reserves. In this paper, parameters of starch degradation are shown to be related to the action of amylolytic enzymes during storage at room temperature. Over the course of three weeks, the starch and protein content, soluble sugar, total amylolytic activity, and α- and β-amylase activity were measured. In addition, the integrity of starch granules was observed by scanning electron microscopy. Despite the evidence of dehydration, there were no significant differences (p ≤ 0.5) in the total starch content or in the activities of α- and β-amylase. After the third week the roots remained suitable for consumption. The results indicate a postharvest latency that can lead to sprout or to senescence, depending on the environmental conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Monitoring of protease catalyzed reactions by quantitative MALDI MS using metal labeling.
Gregorius, Barbara; Jakoby, Thomas; Schaumlöffel, Dirk; Tholey, Andreas
2013-05-21
Quantitative mass spectrometry is a powerful tool for the determination of enzyme activities as it does not require labeled substrates and simultaneously allows for the identification of reaction products. However, major restrictions are the limited number of samples which can be measured in parallel due to the need for isotope labeled internal standards. Here we describe the use of metal labeling of peptides for the setup of multiplexed enzyme activity assays. After proteolytic reaction, using the protease trypsin, remaining substrates and peptide products formed in the reaction were labeled with metal chelators complexing rare earth metal ions. Labeled peptides were quantified with high accuracy and over a wide dynamic range (at least 2 orders of magnitude) using MALDI MS in case of simple peptide mixtures or by LC-MALDI MS for complex substrate mixtures and used for the monitoring of time-dependent product formation and substrate consumption. Due to multiplexing capabilities and accuracy, the presented approach will be useful for the determination of enzyme activities with a wide range of biochemical and biotechnological applications.
Kaufmann, Paul; Duffus, Benjamin R; Teutloff, Christian; Leimkühler, Silke
2018-04-30
The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to CO 2 and the oxidation of H 2 to protons and electrons. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the reaction mechanism of substrate oxidation at the unique Mo/Cu center, as well as the nature of intermediates formed during the catalytic cycle. So far, the investigation of the role of amino acids at the active site was hampered by the lack of a suitable expression system that allowed for detailed site-directed mutagenesis studies at the active site. Here, we report on the establishment of a functional heterologous expression system of O. carboxidovorans CODH in Escherichia coli. We characterize the purified enzyme in detail by a combination of kinetic and spectroscopic studies and show that it was purified in a form with characteristics comparable to those of the native enzyme purified from O. carboxidovorans. With this expression system in hand, we were for the first time able to generate active-site variants of this enzyme. Our work presents the basis for more detailed studies of the reaction mechanism for CO and H 2 oxidation of Mo/Cu-dependent CODHs in the future.
Ramadan, Abdelaziz; Nemoto, Keiichirou; Seki, Motoaki; Shinozaki, Kazuo; Takeda, Hiroyuki; Takahashi, Hirotaka; Sawasaki, Tatsuya
2015-11-10
Protein ubiquitination is a ubiquitous mechanism in eukaryotes. In Arabidopsis, ubiquitin modification is mainly mediated by two ubiquitin activating enzymes (E1s), 37 ubiquitin conjugating enzymes (E2s), and more than 1300 predicted ubiquitin ligase enzymes (E3s), of which ~470 are RING-type E3s. A large proportion of the RING E3's gene products have yet to be characterised in vitro, likely because of the laborious work involved in large-scale cDNA cloning and protein expression, purification, and characterisation. In addition, several E2s, which might be necessary for the activity of certain E3 ligases, cannot be expressed by Escherichia coli or cultured insect cells and, therefore, remain uncharacterised. Using the RIKEN Arabidopsis full-length cDNA library (RAFL) with the 'split-primer' PCR method and a wheat germ cell-free system, we established protein libraries of Arabidopsis E2 and RING E3 enzymes. We expressed 35 Arabidopsis E2s including six enzymes that have not been previously expressed, and 204 RING proteins, most of which had not been functionally characterised. Thioester assays using dithiothreitol (DTT) showed DTT-sensitive ubiquitin thioester formation for all E2s expressed. In expression assays of RING proteins, 31 proteins showed high molecular smears, which are probably the result of their functional activity. The activities of another 27 RING proteins were evaluated with AtUBC10 and/or a group of different E2s. All the 27 RING E3s tested showed ubiquitin ligase activity, including 17 RING E3s. Their activities are reported for the first time. The wheat germ cell-free system used in our study, which is a eukaryotic expression system and more closely resembles the endogenous expression of plant proteins, is very suitable for expressing Arabidopsis E2s and RING E3s in their functional form. In addition, the protein libraries described here can be used for further understanding E2-E3 specificities and as platforms for protein-protein interaction screening.
Harmsen, T; Jongerius, M C; van der Zwan, C W; Plantinga, A D; Kraaijeveld, C A; Berbers, G A
1992-01-01
A 50% neutralization enzyme immunoassay (N50-EIA) was compared with an indirect enzyme-linked immunosorbent assay (ELISA) for determining mumps virus antibodies in three consecutive serum samples from 138 children vaccinated with a live mumps vaccine at the age (in years) of 1.5. By the N50-EIA, most (132 of 138) preserum samples did not show neutralizing activity. Eight to 12 weeks after vaccination, 17 of the children were still negative, but only 7 remained so after 2.5 years, resulting in a seroconversion rate of 125 of 132 (95%). Over the same period, the neutralization geometric mean titer rose from 3.6 to 9.9. By an indirect ELISA, 128 of 138 preserum samples were found negative. The early and late postvaccination sera of 8 children were ELISA negative, resulting in a seroconversion rate of 120 of 128 (94%). Only two children remained seronegative by both methods. Seven of the late postvaccination serum samples yielded noncorresponding results, reflecting 95% correlation between both methods. Due to cross-reactivity with parainfluenza viruses, the ELISA proved to be less specific, but on the other hand, it showed a greater sensitivity than the N50-EIA. PMID:1500523
A Sensitive and Versatile Fluorescent Activity Assay for ABHD12.
Savinainen, Juha R; Navia-Paldanius, Dina; Laitinen, Jarmo T
2016-01-01
Despite great progress in identifying and deorphanizing members of the human metabolic serine hydrolase (mSH) family, the fundamental role of numerous enzymes in this large protein class has remained unclear. One recently found mSH is α/β-hydrolase domain containing 12 (ABHD12) enzyme, whose natural substrate in vivo appears to be the lysophospholipid lysophosphatidylserine (LPS). In vitro, ABHD12 together with monoacylglycerol lipase (MAGL) and ABHD6 hydrolyzes also monoacylglycerols (MAGs) such as the primary endocannabinoid 2-arachidonoyl glycerol (2-AG). Traditional approaches for determining 2-AG hydrolase activity are rather laborious, and often utilize unnatural substrates. Here, we describe a sensitive fluorescent assay of ABHD12 activity in a 96-well-plate format that allows simultaneous testing of inhibitor activities of up to 40 compounds in a single assay. The method utilizes lysates of HEK293 cells transiently overexpressing human ABHD12 as the enzymatic source, and kinetically monitors glycerol liberated in the hydrolysis of 1(3)-AG, the preferred MAG substrate of this enzyme. Glycerol output is coupled to an enzymatic cascade generating the fluorescent end-product resorufin. This methodology has helped to identify the first class of inhibitors showing selectivity for ABHD12 over the other mSHs.
Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress.
Rossatto, Tatiana; do Amaral, Marcelo Nogueira; Benitez, Letícia Carvalho; Vighi, Isabel Lopes; Braga, Eugenia Jacira Bolacel; de Magalhães Júnior, Ariano Martins; Maia, Mara Andrade Colares; da Silva Pinto, Luciano
2017-10-01
The rice cultivar ( Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3 - CU/Zn , OsSOD2 - Cu/Zn , OsSOD - Cu/Zn , OsSOD4 - Cu/Zn , OsSODCc1 - Cu/Zn , OsSOD - Fe , OsAPX1 , OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6 , which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.
Herbst, Dominik A; Boll, Björn; Zocher, Georg; Stehle, Thilo; Heide, Lutz
2013-01-18
The biosynthesis of nonribosomally formed peptides (NRPs), which include important antibiotics such as vancomycin, requires the activation of amino acids through adenylate formation. The biosynthetic gene clusters of NRPs frequently contain genes for small, so-called MbtH-like proteins. Recently, it was discovered that these MbtH-like proteins are required for some of the adenylation reactions in NRP biosynthesis, but the mechanism of their interaction with the adenylating enzymes has remained unknown. In this study, we determined the structure of SlgN1, a 3-methylaspartate-adenylating enzyme involved in the biosynthesis of the hybrid polyketide/NRP antibiotic streptolydigin. SlgN1 contains an MbtH-like domain at its N terminus, and our analysis defines the parameters required for an interaction between MbtH-like domains and an adenylating enzyme. Highly conserved tryptophan residues of the MbtH-like domain critically contribute to this interaction. Trp-25 and Trp-35 form a cleft on the surface of the MbtH-like domain, which accommodates the alanine side chain of Ala-433 of the adenylating domain. Mutation of Ala-433 to glutamate abolished the activity of SlgN1. Mutation of Ser-23 of the MbtH-like domain to tyrosine resulted in strongly reduced activity. However, the activity of this S23Y mutant could be completely restored by addition of the intact MbtH-like protein CloY from another organism. This suggests that the interface found in the structure of SlgN1 is the genuine interface between MbtH-like proteins and adenylating enzymes.
Carrière, Frédéric; Grandval, Philippe; Renou, Christophe; Palomba, Aurélie; Priéri, Florence; Giallo, Jacqueline; Henniges, Friederike; Sander-Struckmeier, Suntje; Laugier, René
2005-01-01
The contribution of human gastric lipase (HGL) to the overall lipolysis process in chronic pancreatitis (CP), as well as the relative pancreatic enzyme levels, rarely are addressed. This study was designed to quantify pancreatic and extrapancreatic enzyme output, activity, and stability in CP patients vs. healthy volunteers. Healthy volunteers (n = 6), mild CP patients (n = 5), and severe (n = 7) CP patients were intubated with gastric and duodenal tubes before the administration of a test meal. HGL, human pancreatic lipase (HPL), chymotrypsin, and amylase concentrations were assessed in gastric and duodenal samples by measuring the respective enzymatic activities. Intragastric and overall lipolysis levels at the angle of Treitz were estimated based on quantitative analysis of lipolysis products. Similar analyses were performed on duodenal contents incubated ex vivo for studying enzyme stability and evolution of lipolysis. Although HPL, chymotrypsin, and amylase outputs all were extremely low, HGL outputs in patients with severe CP (46.8 +/- 31.0 mg) were 3-4-fold higher than in healthy controls (13.3 +/- 13.8 mg). Intragastric lipolysis did not increase, however, in patients with severe CP, probably because of the rapid decrease in the pH level of the gastric contents caused by a higher gastric acid secretion. HGL remains active and highly stable in the acidic duodenal contents of CP patients, and, overall, can achieve a significant lipolysis of the dietary triglycerides (30% of the control values) in the absence of HPL. Although all pancreatic enzyme secretions are simultaneously reduced in severe CP, gastric lipase can compensate partly for the loss of pancreatic lipase but not normalize overall lipolytic activity.
A possible role for CD26/DPPIV enzyme activity in the regulation of psoriatic pruritus.
Komiya, Eriko; Hatano, Ryo; Otsuka, Haruna; Itoh, Takumi; Yamazaki, Hiroto; Yamada, Taketo; Dang, Nam H; Tominaga, Mitsutoshi; Suga, Yasushi; Kimura, Utako; Takamori, Kenji; Morimoto, Chikao; Ohnuma, Kei
2017-06-01
Psoriasis (PSO) is one of the most common chronic inflammatory skin diseases, and pruritus affects approximately 60-90% of patients with PSO. However, the pathogenesis of pruritus in PSO remains unclear. Dipeptidyl peptidase IV (DPPIV) enzyme activity is involved in the regulation of peptide hormones, chemokines and neurotransmitters. Our aim is to evaluate for a potential association between DPPIV and an increased risk of pruritus, and to identify possible underlying treatment targets in affected patients. Utilizing clinical serum samples of PSO patients and in vivo experimental pruritus models, we evaluated for a potential association between DPPIV and an increased risk for pruritus, and attempted to identify possible underlying treatment targets in pruritus of PSO. We first showed that levels of DPPIV enzyme activity in sera of patients with PSO were significantly increased compared to those of healthy controls. We next evaluated levels of substance-P (SP), which is a neurotransmitter for pruritus and a substrate for DPPIV enzyme. Truncated form SP cleaved by DPPIV was significantly increased in sera of PSO. In an in vivo pruritus model induced by SP, scratching was decreased by treatment with a DPPIV inhibitor. Moreover, DPPIV-knockout mice showed attenuation of scratching induced by SP. Finally, scratching was decreased following the administration of a DPPIV inhibitor in an imiquimod-induced PSO model. On the other hand, scratching induced by imiquimod was increased in DPPIV overexpressing-mice. These results suggest that inhibition of DPPIV enzyme activity regulates pruritus in PSO. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Microbial synthesis of medium-chain chemicals from renewables.
Sarria, Stephen; Kruyer, Nicholas S; Peralta-Yahya, Pamela
2017-12-01
Linear, medium-chain (C8-C12) hydrocarbons are important components of fuels as well as commodity and specialty chemicals. As industrial microbes do not contain pathways to produce medium-chain chemicals, approaches such as overexpression of endogenous enzymes or deletion of competing pathways are not available to the metabolic engineer; instead, fatty acid synthesis and reversed β-oxidation are manipulated to synthesize medium-chain chemical precursors. Even so, chain lengths remain difficult to control, which means that purification must be used to obtain the desired products, titers of which are typically low and rarely exceed milligrams per liter. By engineering the substrate specificity and activity of the pathway enzymes that generate the fatty acyl intermediates and chain-tailoring enzymes, researchers can boost the type and yield of medium-chain chemicals. Development of technologies to both manipulate chain-tailoring enzymes and to assay for products promises to enable the generation of g/L yields of medium-chain chemicals.
Biocatalytic induction of supramolecular order
NASA Astrophysics Data System (ADS)
Hirst, Andrew R.; Roy, Sangita; Arora, Meenakshi; Das, Apurba K.; Hodson, Nigel; Murray, Paul; Marshall, Stephen; Javid, Nadeem; Sefcik, Jan; Boekhoven, Job; van Esch, Jan H.; Santabarbara, Stefano; Hunt, Neil T.; Ulijn, Rein V.
2010-12-01
Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.
Ricardo, C P; Sovia, D
1974-03-01
Sucrose storage in tuberous roots was not observed when the tissues had very high activities of acid invertase. High activities of the enzyme were always present in the roots at early stages of their development. In species where the activity of the enzyme decreased during root development, sucrose was stored. Thus, acid invertase was undetectable in mature roots of carrots (Daucus carota L.) where sucrose formed almost 80% of the dry matter. Conversely, radish (Raphanus sativus L.) and turnip (Brassica rapa L.) roots, in which the activity of the enzyme remained high until maturity, did not store appreciable amounts of sucrose (2% and 9%, respectively, of the dry matter in the mature roots), reducing sugars being the main reserve (more than 80% of the dry matter in mature turnips). The correlation between sucrose content and acid invertase activity was furthermore evident in both sucrose- and hexose-storing roots when the activity of this enzyme was affected by changes in the mineral nutrition. Deficiencies of nitrogen and sulphur reduced the activity of acid and alkaline invertases and led to increase in sucrose content and decrease in reducing sugars. However, the decline of alkaline invertase activity in tissues low in acid invertase had no clear effect on sugar content. Sodium chloride (10(-1)M) affected acid invertase and sugars in a manner similar to that of the two deficiencies, but had practically no effect on alkaline invertase. The changes in sugar content produced by the variations in mineral nutrition were small in hexose-storing roots in relation to those of sucrose-storing roots. It is possible that this result is related to the different levels of acid invertase in the two types of roots.
Yang, Xiaoxue; Cong, Hua; Song, Jinzhu; Zhang, Junzheng
2013-11-01
Trichoderma asperellum parasitizes a large variety of phytopathogenic fungi. The mycoparasitic activity of T. asperellum depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall and proteases which are a group of enzymes capable of degrading proteins from host. In this study, a full-length cDNA clone of aspartic protease gene, TaAsp, from T. asperellum was obtained and sequenced. The 1,185 bp long cDNA sequence was predicted to encode a 395 amino acid polypeptide with molecular mass of 42.3 kDa. The cDNA of TaAsp was inserted into the pPIC9K vector and transformed into yeast Pichia pastoris GS115 for heterologous expression. A clearly visible band with molecular mass about 42 kDa in the SDS-PAGE gel indicated that the transformant harboring the gene TaAsp had been successfully translated in P. pastoris and produced a recombinant protein. Enzyme characterization test showed that the optimum fermentation time for P. pastoris GS115 transformant was 72 h. Enzyme activity of the recombinant aspartic proteinase remained relatively stable at 25-60 °C and pH 3.0-9.0, which indicated its good prospect of application in biocontrol. The optimal pH value and temperature of the enzyme activity were pH 4.0 and 40 °C, and under this condition, with casein as the substrate, the recombinant protease activity was 18.5 U mL(-1). In order to evaluate antagonistic activity of the recombinant protease against pathogenic fungi, five pathogenic fungi, Fusarium oxysporum, Alternaria alternata, Cytospora chrysosperma, Sclerotinia sclerotiorum and Rhizoctonia solani, were applied to the test of in vitro inhibition of their mycelial growth by culture supernatant of P. pastoris GS115 transformant.
Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine.
Liao, T H; Hamosh, P; Hamosh, M
1984-05-01
Ten to 30% of dietary fat is hydrolyzed in the stomach by lingual lipase, an enzyme secreted from lingual serous glands. We investigated the substrate specificity of this enzyme as well as the potential of lingual lipase to act in the upper small intestine i.e., in the presence of bile salts and lecithin. The data presented show that partially purified preparations of rat lingual lipase and the lipase in gastric aspirates of newborn infants have identical substrate specificity: medium-chain triglycerides were hydrolyzed at rates 5-8-fold higher than long-chain triglycerides; the rat and human enzymes do not hydrolyze the ester bond of lecithin or cholesteryl-ester. In contrast to pancreatic lipase, the hydrolysis of triglycerides by lingual lipase is not inhibited by lecithin. But, similar to pancreatic lipase the activity of lingual lipase is inhibited by bile salts, the extent of inhibition varying with its nature and concentration. This inactivation is not prevented by colipase but is partially averted by lipids and protein, suggesting that lingual lipase can remain active in the duodenum. The pH optimum of the enzyme (2.2-6.5 in the rat and 3.5-6.0 in human gastric aspirates) is compatible with continued activity in the upper small intestine, especially during the neonatal period, when the luminal pH is under 6.5. The marked variation in lipase activity levels in gastric aspirates of newborn infants is probably due to individual variations in enzyme amounts. The characteristics of the lipase are however identical in infants with low, intermediate or high activity levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Thakur, Abhishek; Kumar, Pradeep; Lata, Jeevan; Devi, Neena; Chand, Duni
2018-05-01
Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that scavenges free radicals and increases the longevity. In this study, a thermostable superoxide dismutase (SOD) from Bacillus licheniformis SPB-13, from Himalayan region was purified to homogeneity using ion exchange chromatography (DEAE-Sepharose). The SDS and native PAGE analysis showed that SOD is composed of two subunits of 32 kDa each and total molecular mass of the enzyme was estimated as 68 kDa. The specific activity of enzyme was 3965.51 U/mg and was purified to 16.17 folds. The SOD showed maximum activity with 60 mM Tris-HCl buffer at pH 8.0 for 2 min of incubation. Enzyme along with FeCl 3 as metal ion remained active till 70 °C. After reaction variables optimization, enzyme activity increased from 3965.51 to 4015.72 U/mg. Kinetic analysis of SOD showed k m of 1.4 mM of NADH and V max of 10000 U/mg of protein. Turnover number (k cat ) and catalytic efficiency (k cat /K m ) were found to be 11,333 s -1 and 7092.2 s -1 ·mM -1 NADH. The activation energy (E a ) was calculated as 2.67 kJ·mol -1 . After typing, it was found to be a member of Fe/Mn SOD family with IC 50 value of 25 μg/ml, prevented the cell death at a concentration of 30 μg/ml and it increased the cell viability by 30%. Copyright © 2018 Elsevier B.V. All rights reserved.
Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.
Botyanszki, Zsofia; Tay, Pei Kun R; Nguyen, Peter Q; Nussbaumer, Martin G; Joshi, Neel S
2015-10-01
Biocatalytic transformations generally rely on purified enzymes or whole cells to perform complex transformations that are used on industrial scale for chemical, drug, and biofuel synthesis, pesticide decontamination, and water purification. However, both of these systems have inherent disadvantages related to the costs associated with enzyme purification, the long-term stability of immobilized enzymes, catalyst recovery, and compatibility with harsh reaction conditions. We developed a novel strategy for producing rationally designed biocatalytic surfaces based on Biofilm Integrated Nanofiber Display (BIND), which exploits the curli system of E. coli to create a functional nanofiber network capable of covalent immobilization of enzymes. This approach is attractive because it is scalable, represents a modular strategy for site-specific enzyme immobilization, and has the potential to stabilize enzymes under denaturing environmental conditions. We site-specifically immobilized a recombinant α-amylase, fused to the SpyCatcher attachment domain, onto E. coli curli fibers displaying complementary SpyTag capture domains. We characterized the effectiveness of this immobilization technique on the biofilms and tested the stability of immobilized α-amylase in unfavorable conditions. This enzyme-modified biofilm maintained its activity when exposed to a wide range of pH and organic solvent conditions. In contrast to other biofilm-based catalysts, which rely on high cellular metabolism, the modified curli-based biofilm remained active even after cell death due to organic solvent exposure. This work lays the foundation for a new and versatile method of using the extracellular polymeric matrix of E. coli for creating novel biocatalytic surfaces. © 2015 Wiley Periodicals, Inc.
Substrate specificity of low-molecular mass bacterial DD-peptidases.
Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F
2011-11-22
The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown. © 2011 American Chemical Society
Reaction Mechanism and Molecular Basis for Selenium/Sulfur Discrimination of Selenocysteine Lyase*
Omi, Rie; Kurokawa, Suguru; Mihara, Hisaaki; Hayashi, Hideyuki; Goto, Masaru; Miyahara, Ikuko; Kurihara, Tatsuo; Hirotsu, Ken; Esaki, Nobuyoshi
2010-01-01
Selenocysteine lyase (SCL) catalyzes the pyridoxal 5′-phosphate-dependent removal of selenium from l-selenocysteine to yield l-alanine. The enzyme is proposed to function in the recycling of the micronutrient selenium from degraded selenoproteins containing selenocysteine residue as an essential component. The enzyme exhibits strict substrate specificity toward l-selenocysteine and no activity to its cognate l-cysteine. However, it remains unclear how the enzyme distinguishes between selenocysteine and cysteine. Here, we present mechanistic studies of selenocysteine lyase from rat. ESI-MS analysis of wild-type and C375A mutant SCL revealed that the catalytic reaction proceeds via the formation of an enzyme-bound selenopersulfide intermediate on the catalytically essential Cys-375 residue. UV-visible spectrum analysis and the crystal structure of SCL complexed with l-cysteine demonstrated that the enzyme reversibly forms a nonproductive adduct with l-cysteine. Cys-375 on the flexible loop directed l-selenocysteine, but not l-cysteine, to the correct position and orientation in the active site to initiate the catalytic reaction. These findings provide, for the first time, the basis for understanding how trace amounts of a selenium-containing substrate is distinguished from excessive amounts of its cognate sulfur-containing compound in a biological system. PMID:20164179
Oteri, Francesco; Baaden, Marc; Lojou, Elisabeth; Sacquin-Mora, Sophie
2014-12-04
[NiFe]-hydrogenases catalyze the cleavage of molecular hydrogen into protons and electrons and represent promising tools for H2-based technologies such as biofuel cells. However, many aspects of these enzymes remain to be understood, in particular how the catalytic center can be protected from irreversible inactivation by O2. In this work, we combined homology modeling, all-atom molecular dynamics, and coarse-grain Brownian dynamics simulations to investigate and compare the dynamic and mechanical properties of two [NiFe]-hydrogenases: the soluble O2-sensitive enzyme from Desulfovibrio fructosovorans, and the O2-tolerant membrane-bound hydrogenase from Aquifex aeolicus. We investigated the diffusion pathways of H2 from the enzyme surface to the central [NiFe] active site, and the possible proton pathways that are used to evacuate hydrogen after the oxidation reaction. Our results highlight common features of the two enzymes, such as a Val/Leu/Arg triad of key residues that controls ligand migration and substrate access in the vicinity of the active site, or the key role played by a Glu residue for proton transfer after hydrogen oxidation. We show specificities of each hydrogenase regarding the enzymes internal tunnel network or the proton transport pathways.
RESEARCH OF THE I$sup 131$-LABELING OF LACTIC DEHYDROGENASE (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Addabbo, A.; Klaus, D.
1961-03-01
Lactic acid dehyrogenase (LDH) from rabbit muscle in crystalline suspension was labeled by the method of Banks, Seligman, and Fine. The enzymatic activity decreased significantly; this loss was attributed to denaturation of the enzyme by the CCl/sub 4/ containing the /sup 131/I/sub 2/, with which the enzyme was shaken during the labeling, and not to inactivatio by BETA and gamma rays from the decay of /sup 131/I. Suitable controls demonstrated this explanation. When 7 ml dialyzed LDH solution was shaken carefully for 3 to 5 min with 0.5 ml CCl/sub 4/ solution after 0.2 ml 1.25% Na/sub 2/CO/sub 3/ wasmore » added, workup by addition of 0.1 ml 1N acetic acid, 60-hr dialysis against Tyrode solution at 4 deg C, and centrifugation gave optimal labeling: radioactive yield 1.72%, /sup 131/I activity 11 mu c/mg, 4.1% enzyme activity remaining. Paper electrophoresis of LDH/sup 131/I shows four bands; that with greatest activity is in the region of gamma -globulins from added human serum and the initial point; the other three are in the region of alpha /sub 2/- and BETA globulins. After intravenous injection in the rabbit, two phases of elimination from serum are observed; in the first, the half lives of enzyme activity, serum radioactivity, and /sup 131/PBI are 78.1, 33.8, and 21.6 min respectively; in the second, 332.0, 303.0, and 247.0 min respectively. The difference between enzyme activity and / sup 131/PBI in the first phase is attributed to more rapid elimination of the denatured LDH-/sup 131/I; these two activities in the second phase are the same. Organs contained the following /sup 131/I activity 24 hr after injection: liver, 0.99% of original dose; kidneys 0.58%, lungs, 0.22%; spleen, 0.01%; erythrocytes, 0.0%. (BBB)« less
Rajapakshe, Asha; Astashkin, Andrei V.; Klein, Eric L.; Reichmann, Debora; Mendel, Ralf R.; Bittner, Florian; Enemark, John H.
2011-01-01
Mitochondrial amidoxime reducing components (mARC-1 and mARC-2) represent a novel group of Mo containing enzymes in eukaryotes. These proteins form the catalytic part of a three-component enzyme complex known to be responsible for the reductive activation of several N-hydroxylated prodrugs. No X-ray crystal structures are available for these enzymes as yet. Previous biochemical investigation by B. Wahl et al. (J. Biol. Chem. 285 (2010) 37847–37859) has revealed that two of the Mo coordination positions are occupied by sulfur atoms from a pyranopterindithiolate (molybdopterin, MPT) cofactor. In this work, we have used continuous wave and pulsed electron paramagnetic resonance (EPR) and density functional theoretical (DFT) calculations to determine the nature of remaining ligands in the Mo(V) state of the active site of mARC-2. The experiments with samples in D2O have identified the exchangeable equatorial ligand as a hydroxyl group. The experiments on samples in H217O-enriched buffer have shown the presence of a slowly exchangeable axial oxo ligand. The comparison of the experimental 1H and 17O hyperfine interactions with those calculated using DFT has shown that the remaining non-exchangeable equatorial ligand is, most likely, protein-derived, and that the possibility of an equatorial oxo ligand can be excluded. PMID:21916412
Nizam, Shadab; Gazara, Rajesh Kumar; Verma, Sandhya; Singh, Kunal; Verma, Praveen Kumar
2014-01-01
Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes.
Yu, Ta-Yi; Mok, Kenny C; Kennedy, Kristopher J; Valton, Julien; Anderson, Karen S; Walker, Graham C; Taga, Michiko E
2012-06-01
The "flavin destructase" enzyme BluB catalyzes the unprecedented conversion of flavin mononucleotide (FMN) to 5,6-dimethylbenzimidazole (DMB), a component of vitamin B(12). Because of its unusual chemistry, the mechanism of this transformation has remained elusive. This study reports the identification of 12 mutant forms of BluB that have severely reduced catalytic function, though most retain the ability to bind flavin. The "flavin destructase" BluB is an unusual enzyme that fragments the flavin cofactor FMNH(2) in the presence of oxygen to produce 5,6-dimethylbenzimidazole (DMB), the lower axial ligand of vitamin B(12) (cobalamin). Despite the similarities in sequence and structure between BluB and the nitroreductase and flavin oxidoreductase enzyme families, BluB is the only enzyme known to fragment a flavin isoalloxazine ring. To explore the catalytic residues involved in this unusual reaction, mutants of BluB impaired in DMB biosynthesis were identified in a genetic screen in the bacterium Sinorhizobium meliloti. Of the 16 unique point mutations identified in the screen, the majority were located in conserved residues in the active site or in the unique "lid" domain proposed to shield the active site from solvent. Steady-state enzyme assays of 12 purified mutant proteins showed a significant reduction in DMB synthesis in all of the mutants, with eight completely defective in DMB production. Ten of these mutants have weaker binding affinities for both oxidized and reduced FMN, though only two have a significant effect on complex stability. These results implicate several conserved residues in BluB's unique ability to fragment FMNH(2) and demonstrate the sensitivity of BluB's active site to structural perturbations. This work lays the foundation for mechanistic studies of this enzyme and further advances our understanding of the structure-function relationship of BluB. Copyright © 2012 The Protein Society.
Alginate/polymethacrylate copolymer microparticles for the intestinal delivery of enzymes.
Scocca, Sarah; Faustini, Massimo; Villani, Simona; Munari, Eleonora; Conte, Ubaldo; Russo, Vincenzo; Riccardi, Alessia; Vigo, Daniele; Torre, Maria Luisa
2007-04-01
Proteins administered orally must pass through the gastric environment in order to reach their site of absorption in the intestine. How to protect these exogenously administered proteins from the damaging effects of gastric acid and pepsin proteolytic activity, which often induce irreversible structural and functional alterations to the molecules, is an intriguing challenge. Another problem is the physical and chemical instability of proteins during some technological processes, which often involve the use of organic solvents or high temperatures. In this study we investigated the use of alginate microparticles containing one of two enzymes, an enteric polymer and a lyoprotectant for the intestinal delivery of proteins. The two enzymes tested in this protein delivery system were lactate dehydrogenase and alpha-amylase: the former was chosen because of its sensitivity to denaturation, the latter for its relevance in nutrition and medicine. A sodium alginate aqueous solution containing the enteric polymer, a lyoprotectant and the enzyme was either extruded or sprayed into a calcium chloride solution, with the resultant formation of beads and microspheres which were freeze-dried. About 90% of the enzyme activity was maintained during the process of loading the proteins into the microparticles and the subsequent freeze-drying process. The stability of the encapsulated enzyme in an acid medium and the enzymatic activity in an intestinal environment were then investigated by a dissolution test. This consisted of exposing the microparticles to simulated gastric fluid (pH 1.2) for 2 hours and to simulated intestinal fluid (pH 7.5+/-0.1) for 1 hour. The morphology of the microparticles did not change in the acid environment, whereas they completely dissolved within 3 min in the simulated intestinal fluid. Residual enzymatic activity after the test remained satisfactory for both enzymes. In conclusion, these microparticle systems offer promise for applications in human and veterinary medicine as well as in human and animal nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawwa, Renda; Larsen, Sonia D.; Ratia, Kiira
2010-11-09
An enzyme from the amidohydrolase family from Deinococcus radiodurans (Dr-OPH) with homology to phosphotriesterase has been shown to exhibit activity against both organophosphate (OP) and lactone compounds. We have characterized the physical properties of Dr-OPH and have found it to be a highly thermostable enzyme, remaining active after 3 h of incubation at 60 C and withstanding incubation at temperatures up to 70 C. In addition, it can withstand concentrations of at least 200 mg/mL. These properties make Dr-OPH a promising candidate for development in commercial applications. However, compared to the most widely studied OP-degrading enzyme, that from Pseudomonas diminuta,more » Dr-OPH has low hydrolytic activity against certain OP substrates. Therefore, we sought to improve the OP-degrading activity of Dr-OPH, specifically toward the pesticides ethyl and methyl paraoxon, using structure-based and random approaches. Site-directed mutagenesis, random mutagenesis, and site-saturation mutagenesis were utilized to increase the OP-degrading activity of Dr-OPH. Out of a screen of more than 30,000 potential mutants, a total of 26 mutant enzymes were purified and characterized kinetically. Crystal structures of w.t. Dr-OPH, of Dr-OPH in complex with a product analog, and of 7 mutant enzymes were determined to resolutions between 1.7 and 2.4 {angstrom}. Information from these structures directed the design and production of 4 additional mutants for analysis. In total, our mutagenesis efforts improved the catalytic activity of Dr-OPH toward ethyl and methyl paraoxon by 126- and 322-fold and raised the specificity for these two substrates by 557- and 183-fold, respectively. Our work highlights the importance of an iterative approach to mutagenesis, proving that large rate enhancements are achieved when mutations are made in already active mutants. In addition, the relationship between the kinetic parameters and the introduced mutations has allowed us to hypothesize on those factors most important for maintaining the structure and function of the enzyme.« less
Hartwich, G; Leicher, H; Müller, H; Domschke, W; Matzkies, F
1976-01-01
This report shows that appropriate doses of vincristin sulphate may decrease disaccharidase activities of intestinal mucosa. With the higher doses of the cytostatic drug, the drastic drop of enzyme activities is associated with morphological alterations of the mucosa; disacchardiase activities remain depressed at least for a couple of days even after full morphological restoration of the mucosa. Studies in man should reveal whether similar intestinal lesions occur due to therapeutic doses of vincristin sulphate.
Effect of pepper lipoxygenase activity and its linked reactions on pigments of the pepper fruit.
Jarén-Galán, M; Mínguez-Mosquera, M I
1999-11-01
The products formed during the enzymatic reaction catalyzed by the lipoxygenase of pepper (variety Agridulce) have in vitro a strong destructive action on the carotenoid pigments of the fruit. When conditions and proportions of enzyme and pigments are similar to those found in the fruit, and at a reaction temperature of 20 degrees C, almost 30% of the pigments are destroyed after 24 h of reaction. Of this amount, 2.5% is due to autoxidation of pigments, 4. 5% to oxidation induced by the presence of linoleic under saturating conditions, and the remaining 22% to the presence in the medium of reaction products of the lipoxygenase-catalyzed reaction. When the enzyme acts under substrate-saturating conditions, the rate of pigment destruction by lipoxygenase can be considered maximal at the experimental temperature. The fact that in vitro pepper lipoxygenase induces a heavy destruction of pigments and that, in vivo, its activity remains almost constant during over-ripening could explain why up to 40% of the pigment content in some varieties is lost during the postharvest period.
Cirilli, Marco; Caruso, Giovanni; Gennai, Clizia; Urbani, Stefania; Frioni, Eleonora; Ruzzi, Maurizio; Servili, Maurizio; Gucci, Riccardo; Poerio, Elia; Muleo, Rosario
2017-01-01
Olive fruits and oils contain an array of compounds that contribute to their sensory and nutritional properties. Phenolic compounds in virgin oil and olive-derived products have been proven to be highly beneficial for human health, eliciting increasing attention from the food industry and consumers. Although phenolic compounds in olive fruit and oil have been extensively investigated, allowing the identification of the main classes of metabolites and their accumulation patterns, knowledge of the molecular and biochemical mechanisms regulating phenolic metabolism remains scarce. We focused on the role of polyphenoloxidase (PPO), peroxidase (PRX) and β-glucosidase (β-GLU) gene families and their enzyme activities in the accumulation of phenolic compounds during olive fruit development (35–146 days after full bloom), under either full irrigation (FI) or rain-fed (RF) conditions. The irrigation regime affected yield, maturation index, mesocarp oil content, fruit size, and pulp-to-pit ratio. Accumulation of fruit phenolics was higher in RF drupes than in FI ones. Members of each gene family were developmentally regulated, affected by water regime, and their transcript levels were correlated with the respective enzyme activities. During the early phase of drupe growth (35–43 days after full bloom), phenolic composition appeared to be linked to β-GLU and PRX activities, probably through their effects on oleuropein catabolism. Interestingly, a higher β-GLU activity was measured in immature RF drupes, as well as a higher content of the oleuropein derivate 3,4-DHPEA-EDA and verbascoside. Activity of PPO enzymes was slightly affected by the water status of trees during ripening (from 120 days after full bloom), but was not correlated with phenolics content. Overall, the main changes in phenolics content appeared soon after the supply of irrigation water and remained thereafter almost unchanged until maturity, despite fruit growth and the progressive decrease in pre-dawn leaf water potential. We suggest that enzymes involved in phenolic catabolism in the olive fruit have a differential sensitivity to soil water availability depending on fruit developmental stage. PMID:28536589
NOMURA, DANIEL K.; CASIDA, JOHN E.
2010-01-01
Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672
Sánchez-Ferrer, Alvaro; Bru, Roque; Garcia-Carmona, Francisco
1989-01-01
Polyphenoloxidase from grape berries is extracted only by nonionic detergents with a hydrophilic-lipophilic balance between 12.4 and 13.5. The enzyme was partially purified in latent form, free of phenolics and chlorophylls, by using temperature phase partitioning in a solution of Triton X-114. This method permits the purification of the enzyme with the same fold purification as the commonly used method, but with a yield three times higher and a 90% reduction in time needed. The latent enzyme can be activated by different treatments, including trypsin and cationic and anionic detergents. Cetyltrimethylamonium bromide was found to be the most effective detergent activator, followed by sodium dodecyl sulfate. Polyphenoloxidase in grape berries, in spite of being an integral membrane protein, had an anomalous interaction with Triton X-114, remaining in the detergent-poor phase after phase separation. This could be explained by its having a short hydrophobic tail that anchors it to the membrane. Images Figure 1 Figure 3 PMID:16667205
2004-04-15
Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas
Mitidieri, Sydnei; Souza Martinelli, Anne Helene; Schrank, Augusto; Vainstein, Marilene Henning
2006-07-01
There is a wide range of biotechnological applications for amylases, including the textile, pharmaceutical, food and laundry industries. Hydrolytic enzymes are 100% biodegradable and enzymatic detergents can achieve effective cleaning with lukewarm water. Microorganisms and culture media were tested for amylase production and the best producer was Aspergillus niger L119 (3.9 U ml(-1) +/- 0.2) in submerged culture and its amylase demonstrated excellent activity at 50-55 degrees C and pH 4.0, remaining stable at 53 degrees C for up to 200 h. In order to establish the potential uses of this enzyme in detergents, different formulations were tested using the A. niger amylase extract. Enzyme activity was compared with three commercial formulations. The detergents are used in hospitals to clean surgical and endoscopy equipment. The presence of amylase in the formulation is because of its action within hospital drainage system, whether or not it has any function in cleaning the equipment.
Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme
Dajnowicz, Steven; Johnston, Ryne C.; Parks, Jerry M.; ...
2017-10-16
Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B6) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substratemore » analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. As a result, quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.« less
Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dajnowicz, Steven; Johnston, Ryne C.; Parks, Jerry M.
Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B6) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substratemore » analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. As a result, quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.« less
Reid, Michael S; Le, X Chris; Zhang, Hongquan
2018-04-27
Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay
2017-01-01
Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents. PMID:28463978
Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay; Singh, Sukh Mahendra
2017-01-01
Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.
Franco Cairo, João P L; Carazzolle, Marcelo F; Leonardo, Flávia C; Mofatto, Luciana S; Brenelli, Lívia B; Gonçalves, Thiago A; Uchima, Cristiane A; Domingues, Romênia R; Alvarez, Thabata M; Tramontina, Robson; Vidal, Ramon O; Costa, Fernando F; Costa-Leonardo, Ana M; Paes Leme, Adriana F; Pereira, Gonçalo A G; Squina, Fabio M
2016-01-01
Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi . Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9) and beta-glucosidases (GH1) were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7) and endo-glucanases (GH5 and GH45), as well as classical xylanases (GH10 and GH11), were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi . Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs), which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes.
Franco Cairo, João P. L.; Carazzolle, Marcelo F.; Leonardo, Flávia C.; Mofatto, Luciana S.; Brenelli, Lívia B.; Gonçalves, Thiago A.; Uchima, Cristiane A.; Domingues, Romênia R.; Alvarez, Thabata M.; Tramontina, Robson; Vidal, Ramon O.; Costa, Fernando F.; Costa-Leonardo, Ana M.; Paes Leme, Adriana F.; Pereira, Gonçalo A. G.; Squina, Fabio M.
2016-01-01
Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9) and beta-glucosidases (GH1) were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7) and endo-glucanases (GH5 and GH45), as well as classical xylanases (GH10 and GH11), were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi. Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs), which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes. PMID:27790186
Wei, Yunxie; Liu, Guoyin; Chang, Yanli; Lin, Daozhe; Reiter, Russel J; He, Chaozu; Shi, Haitao
2018-03-12
Melatonin is widely involved in growth, development, and stress responses in plants. Although the melatonin synthesis enzymes have been identified in various plants, their interacting proteins remain unknown. Herein, overexpression of tryptophan decarboxylase 2 (MeTDC2)-interacting proteins, N-acetylserotonin O-methyltransferase 2 (MeASMT2) interacting proteins, and N-acetylserotonin O-methyltransferase 3 (MeASMT3) in cassava leaf protoplasts resulted in more melatonin than when other enzymes were overexpressed. Through yeast two-hybrid, 14 MeTDC2-interacting proteins, 24 MeASMT2 interacting proteins, and 9 MeASMT3-interacting proteins were identified. Notably, we highlighted MeWRKY20 and MeWRKY75 as common interacting proteins of the 3 enzymes, as evidenced by yeast two-hybrid, and in vivo bimolecular fluorescence complementation (BiFC). Moreover, co-overexpression of MeTDC2/MeASMT2/3 with MeWRKY20/75 in cassava leaf protoplasts did not only activated the transcriptional activities of MeWRKY20 and MeWRKY75 on W-box, but also induced the effects of MeTDC2, MeASMT2/3 on endogenous melatonin levels. Taken together, 3 melatonin synthesis enzymes (MeTDC2, MeASMT2/3) interact with MeWRKY20/75 to form a protein complex in cassava. This information significantly extends the knowledge of the complex modulation of plant melatonin signaling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Identification of muscadine wine sulfur volatiles: pectinase versus skin-contact maceration.
Gürbüz, Ozan; Rouseff, June; Talcott, Stephen T; Rouseff, Russell
2013-01-23
Muscadine grapes ( Vitis rotundifolia ) are widely grown in the southern United States, as the more common Vitis vinifera cannot be cultivated due to Pierce's disease. There is interest to determine if certain cultivars can be used for good-quality wine production. This study compared the effect of pectolytic enzyme pretreatment with conventional skin-contact fermentation on Muscadine (Noble, Vitis rotundifolia ) wine major volatiles, aroma active volatiles, and volatile sulfur compounds (VSCs). Volatile composition, aroma activity, and VSCs in the initial juice and wine samples after 3 years were determined by gas chromatography in combination with mass spectrometry (GC-MS), olfactory detection (GC-O), and pulsed flame photometric detection (GC-PFPD). Forty-three nonethanol MS volatiles were common to all samples. Total ion chromatogram (TIC) MS peak area increased 91% in the skin-contact wines from the initial juice but only 24% in the enzyme-treated wine. Thirty-one VSCs were detected. Twenty-four sulfur volatiles were identified by matching their retention characteristics on polar and nonpolar columns with those of standards or MS spectrum matches. Six of these (sulfur dioxide, 1-propanethiol, 3-mercapto-2-pentanone, 3-mercapto-2-butanone, 2,8-epithio-cis-p-menthane, and 1-p-menthene-8-thiol) were reported for the first time in muscadine wine. Five additional VSCs were tentatively identified by matching standardized retention values with literature values, and two remain unidentified. Total sulfur peak areas increased 400% in the skin-contact wine and 560% in the enzyme-treated wine compared to the initial juice. There were 42 aroma-active volatiles in the initial juice, 48 in the skin-contact wine, and 66 in the enzyme-treated wine. Eleven aroma-active volatiles in the skin-contact wine and 16 aroma volatiles in the enzyme-treated wine appear to be due to sulfur volatiles. Pectolytic enzyme-treated wines contained less total volatiles but more sulfur and aroma-active volatiles than the traditional skin-contact wine.
Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis.
Eckert, Catherine; Lecerf, Maxime; Dubost, Lionel; Arthur, Michel; Mesnage, Stéphane
2006-12-01
The major peptidoglycan hydrolase of Enterococcus faecalis, AtlA, has been identified, but its enzyme activity remains unknown. We have used tandem mass spectrometry analysis of peptidoglycan hydrolysis products obtained using the purified protein to show that AtlA is an N-acetylglucosaminidase. To gain insight into the regulation of its enzyme activity, the three domains of AtlA were purified alone or in combination following expression of truncated forms of the atlA gene in Escherichia coli or partial digestion of AtlA by proteinase K. The central domain of AtlA was catalytically active, but its activity was more than two orders of magnitude lower than that of the complete protein. Partial proteolysis of AtlA was detected in vivo: zymograms of E. faecalis extracts revealed two catalytically active protein bands of 62 and 72 kDa that were both absent in extracts from an atlA null mutant. Limited digestion of AtlA by proteinase K in vitro suggested that the proteolytic cleavage of AtlA in E. faecalis extracts corresponds to the truncation of the N-terminal domain, which is rich in threonine and glutamic acid residues. We show that the truncation of the N-terminal domain from recombinant AtlA has no impact on enzyme activity. The C-terminal domain of the protein, which contains six LysM modules bound to highly purified peptidoglycan, was required for optimal enzyme activity. These data indicate that AtlA is not produced as a proenzyme and that control of the AtlA glucosaminidase activity is likely to occur at the level of LysM-mediated binding to peptidoglycan.
Functional Analysis of AtlA, the Major N-Acetylglucosaminidase of Enterococcus faecalis▿
Eckert, Catherine; Lecerf, Maxime; Dubost, Lionel; Arthur, Michel; Mesnage, Stéphane
2006-01-01
The major peptidoglycan hydrolase of Enterococcus faecalis, AtlA, has been identified, but its enzyme activity remains unknown. We have used tandem mass spectrometry analysis of peptidoglycan hydrolysis products obtained using the purified protein to show that AtlA is an N-acetylglucosaminidase. To gain insight into the regulation of its enzyme activity, the three domains of AtlA were purified alone or in combination following expression of truncated forms of the atlA gene in Escherichia coli or partial digestion of AtlA by proteinase K. The central domain of AtlA was catalytically active, but its activity was more than two orders of magnitude lower than that of the complete protein. Partial proteolysis of AtlA was detected in vivo: zymograms of E. faecalis extracts revealed two catalytically active protein bands of 62 and 72 kDa that were both absent in extracts from an atlA null mutant. Limited digestion of AtlA by proteinase K in vitro suggested that the proteolytic cleavage of AtlA in E. faecalis extracts corresponds to the truncation of the N-terminal domain, which is rich in threonine and glutamic acid residues. We show that the truncation of the N-terminal domain from recombinant AtlA has no impact on enzyme activity. The C-terminal domain of the protein, which contains six LysM modules bound to highly purified peptidoglycan, was required for optimal enzyme activity. These data indicate that AtlA is not produced as a proenzyme and that control of the AtlA glucosaminidase activity is likely to occur at the level of LysM-mediated binding to peptidoglycan. PMID:17041059
Moreno-Cermeño, Armando; Obis, Èlia; Bellí, Gemma; Cabiscol, Elisa; Ros, Joaquim; Tamarit, Jordi
2010-01-01
The primary function of frataxin, a mitochondrial protein involved in iron homeostasis, remains controversial. Using a yeast model of conditional expression of the frataxin homologue YFH1, we analyzed the primary effects of YFH1 depletion. The main conclusion unambiguously points to the up-regulation of iron transport systems as a primary effect of YFH1 down-regulation. We observed that inactivation of aconitase, an iron-sulfur enzyme, occurs long after the iron uptake system has been activated. Decreased aconitase activity should be considered part of a group of secondary events promoted by iron overloading, which includes decreased superoxide dismutase activity and increased protein carbonyl formation. Impaired manganese uptake, which contributes to superoxide dismutase deficiency, has also been observed in YFH1-deficient cells. This low manganese content can be attributed to the down-regulation of the metal ion transporter Smf2. Low Smf2 levels were not observed in AFT1/YFH1 double mutants, indicating that high iron levels could be responsible for the Smf2 decline. In summary, the results presented here indicate that decreased iron-sulfur enzyme activities in YFH1-deficient cells are the consequence of the oxidative stress conditions suffered by these cells. PMID:20956517
Ko, Hyeok-Jin; Lee, Eun Woo; Bang, Won-Gi; Lee, Cheol-Koo; Kim, Kyoung Heon; Choi, In-Geol
2010-05-01
In seeking aryl acylamidase (EC 3.5.1.13) acting on an amide bond in p-acetaminophenol (Tylenol), we identified a novel gene encoding 496 residues of a protein. The gene revealed a conserved amidase signature region with a canonical catalytic triad. The gene was expressed in E. coli and characterized for its biochemical properties. The optimum pH and temperature for the activity on p-acetaminophenol were 10 and 37 degrees C, respectively. The half-life of enzyme activity at 37 degrees C was 192 h and 90% of its activity remained after 3 h incubation at 40 degrees C. Divalent metals was found to inhibit the activity of enzyme. The K (m) values for various aryl acylamides such as 4-nitroacetanilide, p-acetaminophenol, phenacetin, 4-chloroacetanilide and acetanilide were 0.10, 0.32, 0.83, 1.9 and 19 mM, respectively. The reverse reaction activity (amide synthesis) was also examined using various chain lengths (C(1) approximately C(4) and C(10)) of carboxylic donors and aniline as substrates. These kinetic parameters and substrate specificity in forward and reverse reaction indicated that the aryl acylamidase in this study has a preference for aryl substrate having polar functional groups and hydrophobic carboxylic donors.
Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji
2002-05-01
Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.
De Fine Licht, Henrik H.; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J.
2013-01-01
Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non–leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya. PMID:23267060
De Fine Licht, Henrik H; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J
2013-01-08
Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non-leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya.
Venditti, Tullio; D'hallewin, Guy; Ladu, Gianfranca; Petretto, Giacomo L; Pintore, Giorgio; Labavitch, John M
2018-03-25
The present study was performed to clarify the strategies of Penicillium digitatum during pathogenesis on citrus, assessing, on albedo plugs, the effects of treatment with NaHCO 3 , at two different pH (5 and 8.3), on cell wall-degrading enzymes activity, over a period of 72 h. The treatment with NaHCO 3 , under alkaline pH, delayed the polygalacturonase activity for 72 h, or 48 h in the case of the pectin lyase, if compared to the control or the same treatment at pH 5. On the contrary, the pectin methyl esterase activity rapidly increased after 24 h, in plugs dipped in the same solution. In this case, the activity remained higher than untreated or pH 5 treated plugs up to 72 h. The rapid increase in pectin methyl esterase activity, under alkaline conditions, is presumably the strategy of the pathogen to lower the pH, soon after the initiation of infection, in order to restore an optimal environment for the subsequent polygalacturonase and pectin lyase action. In fact at the same time, a low pH delayed the enzymatic activity of polygalacturonase and pectin lyase, the two enzymes that actually cleave the α-1,4-linkages between the galacturonic acid residues. This article is protected by copyright. All rights reserved.
Fraga, Amanda; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Menezes, Jackson; da Silva Vaz Jr, Itabajara; Logullo, Carlos; da Fonseca, Rodrigo Nunes; Campos, Eldo
2013-01-01
The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos. PMID:23983617
Baks, Tim; Janssen, Anja E M; Boom, Remko M
2006-06-20
The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme. 2006 Wiley Periodicals, Inc.
Uehara, Shotaro; Ishii, Sakura; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi
2017-08-01
A β -blocker, metoprolol, is one of the in vivo probes for human cytochrome P450 (P450) 2D6. Investigation of nonhuman primate P450 enzymes helps to improve the accuracy of the extrapolation of pharmacokinetic data from animals into humans. Common marmosets ( Callithrix jacchus ) are a potential primate model for preclinical research, but the detailed roles of marmoset P450 enzymes in metoprolol oxidation remain unknown. In this study, regio- and stereo-selectivity of metoprolol oxidations by a variety of P450 enzymes in marmoset and human livers were investigated in vitro. Although liver microsomes from cynomolgus monkeys and rats preferentially mediated S -metoprolol O -demethylation and R -metoprolol α -hydroxylation, respectively, those from humans, marmosets, minipigs, and dogs preferentially mediated R -metoprolol O -demethylation, in contrast to the slow rates of R - and S -metoprolol oxidation in mouse liver microsomes. R - and S -metoprolol O -demethylation activities in marmoset livers were strongly inhibited by quinidine and ketoconazole, and were significantly correlated with bufuralol 1'-hydroxylation and midazolam 1'-hydroxylation activities and also with P450 2D and 3A4 contents, which is different from the case in human livers that did not have any correlations with P450 3A-mediated midazolam 1'-hydroxylation. Recombinant human P450 2D6 enzyme and marmoset P450 2D6/3A4 enzymes effectively catalyzed R -metoprolol O -demethylation, comparable to the activities of human and marmoset liver microsomes, respectively. These results indicated that the major roles of P450 2D enzymes for the regio- and stereo-selectivity of metoprolol oxidation were similar between human and marmoset livers, but the minor roles of P450 3A enzymes were unique to marmosets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase.
Sharma, Arvind; Yogavel, Manickam; Sharma, Amit
2016-02-01
Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting.
Jeganathan, Jeganaesan; Bassi, Amarjeet; Nakhla, George
2006-09-01
Wastewaters generating from pet food industries contain high concentration of oil and grease (O&G), which is difficult to treat through conventional biological treatment systems. In this study, the hydrolysis of O&G originating from pet food industrial wastewater was evaluated. Candida rugosa lipase was immobilized in calcium alginate beads and applied in the hydrolysis experiment. Results showed that approximately 50% of the O&G was hydrolyzed due to the enzyme activity. A significant increment in COD and VFA production was also observed. The immobilized lipase activity was confirmed with p-nitrophenyl palmitate (pNPP) before and after O&G hydrolysis. During the 3-day experiment, approximately 65% of the beads were recovered and after the hydrolysis, approximately 70% of the enzyme activity remained in the beads. This study shows the potential of immobilized lipase as a pre-treatment step in biological treatment of pet food manufacturing wastewater.
Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin
2013-01-01
Background Enzyme recycling is a method to reduce the production costs for advanced bioethanol by lowering the overall use of enzymes. Commercial cellulase preparations consist of many different enzymes that are important for efficient and complete cellulose (and hemicellulose) hydrolysis. This abundance of different activities complicates enzyme recycling since the individual enzymes behave differently in the process. Previously, the general perception was that β-glucosidases could easily be recycled via the liquid phase, as they have mostly been observed not to adsorb to pretreated biomass or only adsorb to a minor extent. Results The results from this study with Cellic® CTec2 revealed that the vast majority of the β-glucosidase activity was lost from the liquid phase and was adsorbed to the residual biomass during hydrolysis and fermentation. Adsorption studies with β-glucosidases in two commercial preparations (Novozym 188 and Cellic® CTec2) to substrates mimicking the components in pretreated wheat straw revealed that the Aspergillus niger β-glucosidase in Novozym 188 did not adsorb significantly to any of the components in pretreated wheat straw, whereas the β-glucosidase in Cellic® CTec2 adsorbed strongly to lignin. The extent of adsorption of β-glucosidase from Cellic® CTec2 was affected by both type of biomass and pretreatment method. With approximately 65% of the β-glucosidases from Cellic® CTec2 adsorbed onto lignin from pretreated wheat straw, the activity of the β-glucosidases in the slurry decreased by only 15%. This demonstrated that some enzyme remained active despite being bound. It was possible to reduce the adsorption of Cellic® CTec2 β-glucosidase to lignin from pretreated wheat straw by addition of bovine serum albumin or poly(ethylene glycol). Conclusions Contrary to the β-glucosidases in Novozym 188, the β-glucosidases in Cellic® CTec2 adsorb significantly to lignin. The lignin adsorption observed for Cellic® CTec2 is usually not a problem during hydrolysis and fermentation since most of the catalytic activity is retained. However, adsorption of β-glucosidases to lignin may prove to be a problem when trying to recycle enzymes in the production of advanced bioethanol. PMID:24274678
Purification and characterization of alpha-amylase from Bacillus licheniformis CUMC305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, T.; Chandra, A.K.
Alpha-amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90 degrees C and pH 9.0, and 91% of this activity remained at 100 degrees C. In the presence of substrate (soluble starch), the alpha-amylase enzyme was fully stable after a 4-hour incubation at 100 degrees C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74,more » 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 hours of treatment. The activation energy for this enzyme was calculated as 5.1 x 10 to the power of 5 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca(2+), and Mg(2+), showed stimulatory effect, wheras Hg(2+), Cu(2+), Ni(2+), Zn(2+), Ag+, Fe(2+), Co(2+), Cd(2+), Al(3+), and Mn(2+) were inhibitory. Of the anions, azide, F-, SO/sub 3/(2-), SO/sub 4/(3-), S/sub 2/O/sub 3/(2-), MoO/sub 4/(2-), and Wo/sub 4/(2-) showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, beta-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. Alpha-amylase was fairly resistant to EDTA treatment at 30 degrees C, but heating at 90 degrees C in presence of EDTA resulted in the complete loss of enzyme activity. (Refs. 32).« less
Adaptation of red cell enzymes and intermediates in metabolic disorders.
Goebel, K M; Goebel, F D; Neitzert, A; Hausmann, L; Schneider, J
1975-01-01
The metabolic activity of the red cell glycolytic pathway hexose monophosphate shunt (HMP) with dependent glutathione system was studied in patients with hyperthyroidism (n = 10), hyperlipoproteinemia (n = 16), hypoglycemia (n = 25) and hyperglycemia (n = 23). In uncontrolled diabetics and patients with hyperthyroidism the mean value of glucose phosphate isomerase (GPI), glucose-6-phosphate dehydrogenase (G-6-PD), glutathione reductase (GR) was increased, whereas these enzyme activities were reduced in patients with hypoglycemia. Apart from a few values of hexokinase (HK) which were lower than normal the results in hyperlipoproteinemia patients remained essentially unchanged, including the intermediates such as 2,3-diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP) and reduced glutathione (GSH). While increased rates of 2,3-DPG and ATP in hypoglycemia patients were obtained, these substrates were markedly reduced in diabetics.
Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle.
O'Brien, R A; Ostberg, A J; Vrbová, G
1978-01-01
1. The mechanism responsible for the elimination of polyneuronal innervation in developing rat soleus muscles was studied electrophysiologically and histologically. 2. Initially all the axons contacting a single end-plate have simple bulbous terminals. As elimination proceeds one axon develops terminal branches while the other terminals remain bulbous and may be seen in contact with, or a short distance away from, the end-plate. It is suggested that the branched terminal remains in contact with the muscle fibre while the other terminals withdraw. 3. At a time when polyneuronal innervation can no longer be detected electrophysiologically, the histological technique still shows the presence of end-plates contacted by more than one nerve terminal. 4. The effect of activity on the disappearance of polyneuronal innervation was examined. Activity was increased by electrical stimulation of the right sciatic nerve. This procedure also produced reflex activity in the contralateral limb. In both cases polyneuronal innervation was eliminated more rapidly in the active muscles. 5. The finding that proteolytic enzymes are released from muscles treated with acetylcholine (ACh), and the observation of the more rapid elimination of supernumerary terminals at the end-plates of active muscles, lead to the suggestion that superfluous nerve-muscle contacts are removed by the proteolytic enzymes in response to neuromuscular activity. The selective stabilization of only one of the terminals is discussed in the light of these results. Images Plate 1 Plate 2 PMID:722562
Basketter, David; Berg, Ninna; Broekhuizen, Cees; Fieldsend, Mark; Kirkwood, Sheila; Kluin, Cornelia; Mathieu, Sophie; Rodriguez, Carlos
2012-10-01
Enzymes used in cleaning products have an excellent safety profile, with little ability to cause adverse responses in humans. For acute toxicity, genotoxicity, sub-acute and repeated dose toxicity, enzymes are unremarkable. Reproductive toxicity and carcinogenicity are also not endpoints of concern. Exceptions are the ability of some proteases to produce irritating effects at high concentrations and more importantly, the intrinsic potential of these bacterial/fungal proteins to act as respiratory sensitizers. It is a reasonable assumption that the majority of enzyme proteins possess this hazard. However, methods for characterising the respiratory sensitisation hazard of enzymes are lacking and the information required for risk assessment and risk management, although sufficient, remains limited. Previously, most data was generated in animal models and in in vitro immunoassays that assess immunological cross-reactivity. Nevertheless, by the establishment of strict limits on airborne exposure (based on a defined minimal effect limit of 60ng active enzyme protein/m(3)) and air and health monitoring, occupational safety can be assured. Similarly, by ensuring that airborne exposure is kept similarly low, coupled with knowledge of the fate of these enzymes on skin and fabrics, it has proven possible to establish a long history of safe consumer use of enzyme containing products. Copyright © 2012 Elsevier Inc. All rights reserved.
Baek, Seung Cheol; Ho, Thien-Hoang; Lee, Hyun Woo; Jung, Won Kyeong; Gang, Hyo-Seung; Kang, Lin-Woo; Kim, Hoon
2017-05-01
β-1,3-1,4-Glucanase (BGlc8H) from Paenibacillus sp. X4 was mutated by error-prone PCR or truncated using termination primers to improve its enzyme properties. The crystal structure of BGlc8H was determined at a resolution of 1.8 Å to study the possible roles of mutated residues and truncated regions of the enzyme. In mutation experiments, three clones of EP 2-6, 2-10, and 5-28 were finally selected that exhibited higher specific activities than the wild type when measured using their crude extracts. Enzyme variants of BG 2-6 , BG 2-10 , and BG 5-28 were mutated at two, two, and six amino acid residues, respectively. These enzymes were purified homogeneously by Hi-Trap Q and CHT-II chromatography. Specific activity of BG 5-28 was 2.11-fold higher than that of wild-type BG wt , whereas those of BG 2-6 and BG 2-10 were 0.93- and 1.19-fold that of the wild type, respectively. The optimum pH values and temperatures of the variants were nearly the same as those of BG wt (pH 5.0 and 40 °C, respectively). However, the half-life of the enzyme activity and catalytic efficiency (k cat /K m ) of BG 5-28 were 1.92- and 2.12-fold greater than those of BG wt at 40 °C, respectively. The catalytic efficiency of BG 5-28 increased to 3.09-fold that of BG wt at 60 °C. These increases in the thermostability and catalytic efficiency of BG 5-28 might be useful for the hydrolysis of β-glucans to produce fermentable sugars. Of the six mutated residues of BG 5-28 , five residues were present in mature BGlc8H protein, and two of them were located in the core scaffold of BGlc8H and the remaining three residues were in the substrate-binding pocket forming loop regions. In truncation experiments, three forms of C-terminal truncated BGlc8H were made, which comprised 360, 286, and 215 amino acid residues instead of the 409 residues of the wild type. No enzyme activity was observed for these truncated enzymes, suggesting the complete scaffold of the α 6 /α 6 -double-barrel structure is essential for enzyme activity.
Monhemi, Hassan; Housaindokht, Mohammad Reza; Moosavi-Movahedi, Ali Akbar; Bozorgmehr, Mohammad Reza
2014-07-28
Deep eutectic solvents (DESs) are utilized as green and inexpensive alternatives to classical ionic liquids. It has been known that some of DESs can be used as solvent in the enzymatic reactions to obtain very green chemical processes. DESs are quite poorly understood at the molecular level. Moreover, we do not know much about the enzyme microstructure in such systems. For example, how some hydrolase can remain active and stable in a deep eutectic solvent including 9 M of urea? In this study, the molecular dynamics of DESs as a liquid was simulated at the molecular level. Urea : choline chloride as a well-known eutectic mixture was chosen as a model DES. The behavior of the lipase as a biocatalyst was studied in this system. For comparison, the enzyme structure was also simulated in 8M urea. The thermal stability of the enzyme was also evaluated in DESs, water, and 8M urea. The enzyme showed very good conformational stability in the urea : choline chloride mixture with about 66% urea (9 M) even at high temperatures. The results are in good agreement with recent experimental observations. In contrast, complete enzyme denaturation occurred in 8M urea with only 12% urea in water. It was found that urea molecules denature the enzyme by interrupting the intra-chain hydrogen bonds in a "direct denaturation mechanism". However, in a urea : choline chloride deep eutectic solvent, as a result of hydrogen bonding with choline and chloride ions, urea molecules have a low diffusion coefficient and cannot reach the protein domains. Interestingly, urea, choline, and chloride ions form hydrogen bonds with the surface residues of the enzyme which, instead of lipase denaturation, leads to greater enzyme stability. To the best of our knowledge, this is the first study in which the microstructural properties of a macromolecule are examined in a deep eutectic solvent.
Age characteristics of changes in invertase activity of the mucous membrane of the small intestine
NASA Technical Reports Server (NTRS)
Rakhimov, K. R.; Aleksandrova, N. V.
1980-01-01
Rats of varying ages were subjected to stress from heat, cold, and hydrocortisone injection. Invertase activity in homogenates of small intestine mucous membranes was studied following sacrifice. Invertase activity was low in young animals, but increased sharply in 30 day old ones, remaining at a relatively constant level until old age. The study concludes that the stress hormone (corticosteroids, etc.) levels in the blood, which affects the formation of enteric enzyme levels and activities, and that age related peculiarities in invertase activity are a consequence of altered hormone status and epitheliocyte sensitivity.
Lignin from bamboo shoot shells as an activator and novel immobilizing support for α-amylase.
Gong, Weihua; Ran, Zhanxiang; Ye, Fayin; Zhao, Guohua
2017-08-01
This study examined the feasibility of α-amylase activation and immobilization, using lignin from bamboo shoot shells (BSS). Our results demonstrated that BSS lignin is an excellent α-amylase activator and it elevated α-amylase activity more than two-fold at a concentration of 5mg/ml. For immobilization of α-amylase via adsorption, BSS lignin was incubated in an α-amylase solution (5mg/ml) for 20min, and the maximum specific activity, amount of loaded protein and activity recovery were 92.4U/mg, 19.0mg/g and 111%, respectively. In contrast to its free counterpart, immobilized α-amylase improved the catalytic efficiency and storage stability, under comparable working conditions (temperature and pH). Regarding its convenient usage, immobilized enzyme can be suspended in advance, but a suspension incubated at 60°C should be used within 30min. The residual activity after 14 re-uses remained at a reasonable level (53.2%). In conclusion, this study reveals a novel support for enzyme immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanism of UCH-L5 Activation and Inhibition by DEUBAD Domains in RPN13 and INO80G
Sahtoe, Danny D.; van Dijk, Willem J.; El Oualid, Farid; Ekkebus, Reggy; Ovaa, Huib; Sixma, Titia K.
2015-01-01
Summary Deubiquitinating enzymes (DUBs) control vital processes in eukaryotes by hydrolyzing ubiquitin adducts. Their activities are tightly regulated, but the mechanisms remain elusive. In particular, the DUB UCH-L5 can be either activated or inhibited by conserved regulatory proteins RPN13 and INO80G, respectively. Here we show how the DEUBAD domain in RPN13 activates UCH-L5 by positioning its C-terminal ULD domain and crossover loop to promote substrate binding and catalysis. The related DEUBAD domain in INO80G inhibits UCH-L5 by exploiting similar structural elements in UCH-L5 to promote a radically different conformation, and employs molecular mimicry to block ubiquitin docking. In this process, large conformational changes create small but highly specific interfaces that mediate activity modulation of UCH-L5 by altering the affinity for substrates. Our results establish how related domains can exploit enzyme conformational plasticity to allosterically regulate DUB activity. These allosteric sites may present novel insights for pharmaceutical intervention in DUB activity. PMID:25702870
Nomura, Yuhta; Izumi, Atsushi; Fukunaga, Yoshinori; Kusumi, Kensuke; Iba, Koh; Watanabe, Seiya; Nakahira, Yoichi; Weber, Andreas P. M.; Nozawa, Akira; Tozawa, Yuzuru
2014-01-01
The guanosine 3′,5′-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 μm relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 μm. The IC50 of ppGpp for GKpm was ∼10 μm. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp. PMID:24722991
The Mechanism by Which Arabinoxylanases Can Recognize Highly Decorated Xylans*
Labourel, Aurore; Crouch, Lucy I.; Brás, Joana L. A.; Jackson, Adam; Rogowski, Artur; Gray, Joseph; Yadav, Madhav P.; Henrissat, Bernard; Fontes, Carlos M. G. A.; Gilbert, Harry J.; Najmudin, Shabir; Baslé, Arnaud; Cuskin, Fiona
2016-01-01
The enzymatic degradation of plant cell walls is an important biological process of increasing environmental and industrial significance. Xylan, a major component of the plant cell wall, consists of a backbone of β-1,4-xylose (Xylp) units that are often decorated with arabinofuranose (Araf) side chains. A large penta-modular enzyme, CtXyl5A, was shown previously to specifically target arabinoxylans. The mechanism of substrate recognition displayed by the enzyme, however, remains unclear. Here we report the crystal structure of the arabinoxylanase and the enzyme in complex with ligands. The data showed that four of the protein modules adopt a rigid structure, which stabilizes the catalytic domain. The C-terminal non-catalytic carbohydrate binding module could not be observed in the crystal structure, suggesting positional flexibility. The structure of the enzyme in complex with Xylp-β-1,4-Xylp-β-1,4-Xylp-[α-1,3-Araf]-β-1,4-Xylp showed that the Araf decoration linked O3 to the xylose in the active site is located in the pocket (−2* subsite) that abuts onto the catalytic center. The −2* subsite can also bind to Xylp and Arap, explaining why the enzyme can utilize xylose and arabinose as specificity determinants. Alanine substitution of Glu68, Tyr92, or Asn139, which interact with arabinose and xylose side chains at the −2* subsite, abrogates catalytic activity. Distal to the active site, the xylan backbone makes limited apolar contacts with the enzyme, and the hydroxyls are solvent-exposed. This explains why CtXyl5A is capable of hydrolyzing xylans that are extensively decorated and that are recalcitrant to classic endo-xylanase attack. PMID:27531750
Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.
Wang, Meng; Abad, Danny; Kickhoefer, Valerie A; Rome, Leonard H; Mahendra, Shaily
2015-11-24
Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater.
The flow and fate of digestive enzymes in the field cricket, Gryllus bimaculatus.
Woodring, Joseph
2017-07-01
The flow of enzymes, the ratio of bound to unbound enzymes, and their inactivation in the cricket Gryllus bimaculatus was studied. The digestive enzymes are forced forward into the crop by caecal contraction and then they are mixed with freshly chewed food and saliva, forming a crop-chyme. This chyme is blended by crop peristalsis, and periodic opening of the preproventricular valve (PPV) allows posterior movement into the proventriculus and further into the midgut. The contraction of the crop is modulated by Grybi-AST and Grybi-SK peptides, which are partially secreted by the caecal endocrine cells. Most of the aminopeptidase and the four disaccharidases examined are membrane bound (62-80%); the remaining (20-38%) as well all trypsin, chymotrypsin, lipase, and amylase are secreted free into the caecal lumen. Cricket trypsin loses only 30% of its activity in 4 h and very little thereafter. The presence of digestive products in the lumen appears to retard further trypsin autolysis. Cricket trypsin digests 42% of the chymotrypsin, 37% of the lipase, and 45% of the amylase in the caecal fluids over 24 h in vitro no significant difference. Without Ca ion amylase was almost completely digested. About 50% of the membrane bound and free aminopeptidase was digested in the caecal lumen, and about 30-38% of the bound and free maltase. This loss of digestive enzyme activity is possible, because enzyme secretion rates are high, the unbound enzymes are effectively recycled, and the time of nutrient passage is short. © 2017 Wiley Periodicals, Inc.
Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J; Steen, Andrew D
2018-01-01
Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N -terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases.
Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J.; Steen, Andrew D.
2018-01-01
Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N-terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases. PMID:29559961
Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi
Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.; Paša-Tolić, Ljiljana; Chaput, Dominique L.; Haridas, Sajeet; Wu, Si; LaButti, Kurt; Grigoriev, Igor V.; Henrissat, Bernard; Santelli, Cara M.; Hansel, Colleen M.
2016-01-01
Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment. PMID:27434633
Crawford, N A; Droux, M; Kosower, N S; Buchanan, B B
1989-05-15
Results obtained with isolated intact chloroplasts maintained aerobically under light and dark conditions confirm earlier findings with reconstituted enzyme assays and indicate that the ferredoxin/thioredoxin system functions as a light-mediated regulatory thiol chain. The results were obtained by application of a newly devised procedure in which a membrane-permeable thiol labeling reagent, monobromobimane (mBBr), reacts with sulfhydryl groups and renders the derivatized protein fluorescent. The mBBr-labeled protein in question is isolated individually from chloroplasts by immunoprecipitation and its thiol redox status is determined quantitatively by combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorescence measurements. The findings indicate that each member of the ferredoxin/thioredoxin system containing a catalytically active thiol group is reduced in isolated intact chloroplasts after a 2-min illumination. The extents of reduction were FTR, 38%; thioredoxin m, 75% (11-kDa form) and 87% (13-kDa form); thioredoxin f, 95%. Reduction of each of these components was negligible both in the dark and when chloroplasts were transferred from light to dark conditions. The target enzyme, NADP-malate dehydrogenase, also underwent net reduction in illuminated intact chloroplasts. Fructose-1,6-bisphosphatase showed increased mBBr labeling under these conditions, but due to interfering gamma globulin proteins it was not possible to determine whether this was a result of net reduction as is known to take place in reconstituted assays. Related experiments demonstrated that mBBr, as well as N-ethylmaleimide, stabilized photoactivated NADP-malate dehydrogenase and fructose-1,6-bisphosphatase so that they remained active in the dark. By contrast, phosphoribulokinase, another thioredoxin-linked enzyme, was immediately deactivated following mBBr addition. These latter results provide new information on the relation between the regulatory and active sites of these enzymes.
Sun, Haijian; Zhu, Xuexue; Zhou, Yuetao; Cai, Weiwei; Qiu, Liying
2017-01-01
Oxidized low-density lipoprotein (ox-LDL) accumulation is one of the critical determinants in endothelial dysfunction in many cardiovascular diseases such as atherosclerosis. C1q/TNF-related protein 9 (CTRP9) is identified to be an adipocytokine with cardioprotective properties. However, the potential roles of CTRP9 in endothelial function remain largely elusive. In the present study, the effects of CTRP9 on the proliferation, apoptosis, migration, angiogenesis, nitric oxide (NO) production and oxidative stress in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL were investigated. We observed that treatment with ox-LDL inhibited the proliferation, migration, angiogenesis and the generation of NO, while stimulated the apoptosis and reactive oxygen species (ROS) production in HUVECs. Incubation of HUVECs with CTRP9 rescued ox-LDL-induced endothelial injury. CTRP9 treatment reversed ox-LDL-evoked decreases in antioxidant enzymes including heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate (NAD(P)H) dehydrogenase quinone 1, and glutamate-cysteine ligase (GCL), as well as endothelial nitric oxide synthase (eNOS). Furthermore, CTRP9 induced activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC1-α) and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Of interest, AMPK inhibition or PGC1-α silencing abolished CTRP9-mediated antioxidant enzymes levels, eNOS expressions, and endothelial protective effects. Collectively, we provided the first evidence that CTRP9 attenuated ox-LDL-induced endothelial injury by antioxidant enzyme inductions dependent on PGC-1α/AMPK activation. PMID:28587104
Khoramnia, Anahita; Ebrahimpour, Afshin; Beh, Boon Kee; Lai, Oi Ming
2011-01-01
The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.
Campuzano, Susana; Serra, Beatriz; Llull, Daniel; García, José L; García, Pedro
2009-09-01
A Streptococcus mitis genomic DNA fragment carrying the SMT1224 gene encoding a putative beta-galactosidase was identified, cloned, and expressed in Escherichia coli. This gene encodes a protein 2,411 amino acids long with a predicted molecular mass of 268 kDa. The deduced protein contains an N-terminal signal peptide and a C-terminal choline-binding domain consisting of five consensus repeats, which facilitates the anchoring of the secreted enzyme to the cell wall. The choline-binding capacity of the protein facilitates its purification using DEAE-cellulose affinity chromatography, although its complete purification was achieved by constructing a His-tagged fusion protein. The recombinant protein was characterized as a monomeric beta-galactosidase showing a specific activity of around 2,500 U/mg of protein, with optimum temperature and pH ranges of 30 to 40 degrees C and 6.0 to 6.5, respectively. Enzyme activity is not inhibited by glucose, even at 200 mM, and remains highly stable in solution or immobilized at room temperature in the absence of protein stabilizers. In S. mitis, the enzyme was located attached to the cell surface, but a significant activity was also detected in the culture medium. This novel enzyme represents the first beta-galactosidase having a modular structure with a choline-binding domain, a peculiar property that can also be useful for some biotechnological applications.
Kern, Marcelo; McGeehan, John E; Streeter, Simon D; Martin, Richard N A; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P; Payne, Christina M; Himmel, Michael E; Schnorr, Kirk; Beckham, Gregg T; Cragg, Simon M; Bruce, Neil C; McQueen-Mason, Simon J
2013-06-18
Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.
Kern, Marcelo; McGeehan, John E.; Streeter, Simon D.; Martin, Richard N. A.; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P.; Payne, Christina M.; Himmel, Michael E.; Schnorr, Kirk; Beckham, Gregg T.; Cragg, Simon M.; Bruce, Neil C.; McQueen-Mason, Simon J.
2013-01-01
Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes. PMID:23733951
Merín, M G; Morata de Ambrosini, V I
2015-05-01
The influence of oenological factors on cold-active pectinases from 15 preselected indigenous yeasts belonging to Aureobasidium pullulans, Filobasidium capsuligenum, Rhodotorula dairenensis, Cryptococcus saitoi and Saccharomyces cerevisiae was investigated. Pectinolytic enzymes were constitutive or partially constitutive; and high glucose concentration (200 g l(-1) ) did not affect or increased pectinase production at 12°C and pH 3·5 (up to 113·9 U mg(-1) ) only in A. pullulans strains. SO2 (120 mg l(-1) ) slightly affected the growth of A. pullulans strains but did not affect pectinase production levels. Ethanol (15%) barely affected pectinase activity of A. pullulans strains but diminished relative activity to 12-79% of basidiomycetous yeasts. Moreover, non-Saccharomyces strains showed promising properties of oenological interest. This study demonstrates that cold-active pectinases from some A. pullulans strains were able to remain active at glucose, ethanol and SO2 concentrations usually found in vinification, and suggests their potential use as processing aids for low-temperature winemaking. Nowadays, there is increasing interest in low-temperature winemaking. Nevertheless, commercial oenological pectinases, produced by fungi, are rarely active at low temperatures. Cold-active pectinases that are stable under vinification conditions are needed. This study indicated that cold-active and acid-tolerant pectinases from non-Saccharomcyes yeasts were able to remain active at glucose, ethanol and SO2 concentrations usually found in winemaking. Furthermore, not only are these yeasts a source of cold-active pectinases, but the yeasts themselves are also potential adjunct cultures for oenology to produce these enzymes during cold-winemaking. © 2015 The Society for Applied Microbiology.
Notch-modifying xylosyltransferase-substrate complexes support an SNi-like retaining mechanism
Yu, Hongjun; Takeuchi, Megumi; LeBarron, Jamie; Kantharia, Joshua; London, Erwin; Bakker, Hans; Haltiwanger, Robert S.; Li, Huilin; Takeuchi, Hideyuki
2015-01-01
A major remaining question in glycobiology is how a glycosyltransferase (GT) that retains the anomeric linkage of a sugar catalyzes the reaction. Xylosideα1–3 Xylosyltransferase (XXYLT1) is a retaining GT that regulates Notch receptor activation by adding xylose to the Notch extracellular domain. Here, using natural acceptor and donor substrates and active Mus musculus XXYLT1, we report a series of crystallographic snapshots along the reaction, including an unprecedented natural and competent Michaelis reaction complex for retaining enzymes. These structures strongly support the SNi-like reaction as the retaining mechanism for XXYLT1. Unexpectedly the Epidermal Growth Factor-like repeat acceptor substrate undergoes a large conformational change upon binding to the active site, providing a structural basis for substrate specificity. Our improved understanding of this retaining enzyme will accelerate the design of retaining GT inhibitors that can modulate Notch activity in pathological situations where dysregulation of Notch is known to cause cancer or developmental disorders. PMID:26414444
Notch-modifying xylosyltransferase structures support an S Ni-like retaining mechanism
Yu, Hongjun; Li, Huilin; Takeuchi, Megumi; ...
2015-09-28
A major question remaining in glycobiology is how a glycosyltransferase (GT) that retains the anomeric linkage of a sugar catalyzes the reaction. Xyloside α-1,3-xylosyltransferase (XXYLT1) is a retaining GT that regulates Notch receptor activation by adding xylose to the Notch extracellular domain. Here, using natural acceptor and donor substrates and active Mus musculus XXYLT1, we report a series of crystallographic snapshots along the reaction, including an unprecedented natural and competent Michaelis reaction complex for retaining enzymes. These structures strongly support the SNi-like reaction as the retaining mechanism for XXYLT1. Unexpectedly, the epidermal growth factor–like repeat acceptor substrate undergoes a largemore » conformational change upon binding to the active site, providing a structural basis for substrate specificity. As a result, our improved understanding of this retaining enzyme will accelerate the design of retaining GT inhibitors that can modulate Notch activity in pathological situations in which Notch dysregulation is known to cause cancer or developmental disorders.« less
Notch-modifying xylosyltransferase structures support an S Ni-like retaining mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hongjun; Li, Huilin; Takeuchi, Megumi
A major question remaining in glycobiology is how a glycosyltransferase (GT) that retains the anomeric linkage of a sugar catalyzes the reaction. Xyloside α-1,3-xylosyltransferase (XXYLT1) is a retaining GT that regulates Notch receptor activation by adding xylose to the Notch extracellular domain. Here, using natural acceptor and donor substrates and active Mus musculus XXYLT1, we report a series of crystallographic snapshots along the reaction, including an unprecedented natural and competent Michaelis reaction complex for retaining enzymes. These structures strongly support the SNi-like reaction as the retaining mechanism for XXYLT1. Unexpectedly, the epidermal growth factor–like repeat acceptor substrate undergoes a largemore » conformational change upon binding to the active site, providing a structural basis for substrate specificity. As a result, our improved understanding of this retaining enzyme will accelerate the design of retaining GT inhibitors that can modulate Notch activity in pathological situations in which Notch dysregulation is known to cause cancer or developmental disorders.« less
Carbon Dioxide Metabolism in Leaf Epidermal Tissue 1
Willmer, C. M.; Pallas, J. E.; Black, C. C.
1973-01-01
A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism. Images PMID:16658581
Balcells, Cristina; Pastor, Isabel; Vilaseca, Eudald; Madurga, Sergio; Cascante, Marta; Mas, Francesc
2014-04-17
Enzyme kinetics studies have been usually designed as dilute solution experiments, which differ substantially from in vivo conditions. However, cell cytosol is crowded with a high concentration of molecules having different shapes and sizes. The consequences of such crowding in enzymatic reactions remain unclear. The aim of the present study is to understand the effect of macromolecular crowding produced by dextran of different sizes and at diverse concentrations in the well-known reaction of oxidation of NADH by pyruvate catalyzed by L-lactate dehydrogenase (LDH). Our results indicate that the reaction rate is determined by both the occupied volume and the relative size of dextran obstacles with respect to the enzyme present in the reaction. Moreover, we analyzed the influence of macromolecular crowding on the Michaelis-Menten constants, vmax and Km. The obtained results show that only high concentrations and large sizes of dextran reduce both constants suggesting a mixed activation-diffusion control of this enzymatic reaction due to the dextran crowding action. From our knowledge, this is the first experimental study that depicts mixed activation-diffusion control in an enzymatic reaction due to the effect of crowding.
Takahashi, Hiroshi; Hirai, Yukihiko; Migita, Makoto; Seino, Yoshihiko; Fukuda, Yuh; Sakuraba, Hitoshi; Kase, Ryoichi; Kobayashi, Toshihide; Hashimoto, Yasuhiro; Shimada, Takashi
2002-01-01
Fabry disease is a systemic disease caused by genetic deficiency of a lysosomal enzyme, α-galactosidase A (α-gal A), and is thought to be an important target for enzyme replacement therapy. We studied the feasibility of gene-mediated enzyme replacement for Fabry disease. The adeno-associated virus (AAV) vector containing the α-gal A gene was injected into the right quadriceps muscles of Fabry knockout mice. A time course study showed that α-gal A activity in plasma was increased to ≈25% of normal mice and that this elevated activity persisted for up to at least 30 weeks without development of anti-α-gal A antibodies. The α-gal A activity in various organs of treated Fabry mice remained 5–20% of those observed in normal mice. Accumulated globotriaosylceramide in these organs was completely cleared by 25 weeks after vector injection. Reduction of globotriaosylceramide levels was also confirmed by immunohistochemical and electronmicroscopic analyses. Echocardiographic examination of treated mice demonstrated structural improvement of cardiac hypertrophy 25 weeks after the treatment. AAV vector-mediated muscle-directed gene transfer provides an efficient and practical therapeutic approach for Fabry disease. PMID:12370426
Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses.
Zhao, Yi; Long, Marcus J C; Wang, Yiran; Zhang, Sheng; Aye, Yimon
2018-02-28
Posttranslational modifications (PTMs) are the lingua franca of cellular communication. Most PTMs are enzyme-orchestrated. However, the reemergence of electrophilic drugs has ushered mining of unconventional/non-enzyme-catalyzed electrophile-signaling pathways. Despite the latest impetus toward harnessing kinetically and functionally privileged cysteines for electrophilic drug design, identifying these sensors remains challenging. Herein, we designed "G-REX"-a technique that allows controlled release of reactive electrophiles in vivo. Mitigating toxicity/off-target effects associated with uncontrolled bolus exposure, G-REX tagged first-responding innate cysteines that bind electrophiles under true k cat / K m conditions. G-REX identified two allosteric ubiquitin-conjugating proteins-Ube2V1/Ube2V2-sharing a novel privileged-sensor-cysteine. This non-enzyme-catalyzed-PTM triggered responses specific to each protein. Thus, G-REX is an unbiased method to identify novel functional cysteines. Contrasting conventional active-site/off-active-site cysteine-modifications that regulate target activity, modification of Ube2V2 allosterically hyperactivated its enzymatically active binding-partner Ube2N, promoting K63-linked client ubiquitination and stimulating H2AX-dependent DNA damage response. This work establishes Ube2V2 as a Rosetta-stone bridging redox and ubiquitin codes to guard genome integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changela, Anita; DiGate, Russell J.; Mondragon, Alfonso
Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5{prime} phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is boundmore » along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.« less
Qureshi, Abdul Sattar; Khushk, Imrana; Ali, Chaudhry Haider; Lashari, Safia; Bhutto, Muhammad Aqeel; Mangrio, Ghulam Sughra; Lu, Changrui
2017-01-01
Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α-amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm) at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60–70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials. PMID:28168200
Simair, Altaf Ahmed; Qureshi, Abdul Sattar; Khushk, Imrana; Ali, Chaudhry Haider; Lashari, Safia; Bhutto, Muhammad Aqeel; Mangrio, Ghulam Sughra; Lu, Changrui
2017-01-01
Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α -amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm) at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60-70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials.
Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair.
Bhat, Javaid Y; Thieulin-Pardo, Gabriel; Hartl, F Ulrich; Hayer-Hartl, Manajit
2017-01-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO 2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO 2 molecule and binding of a Mg 2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are "misfire" products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins.
Shimizu, Takayuki; Inoue, Ken-ichi; Hachiya, Hiroyuki; Shibuya, Norisuke; Shimoda, Mitsugi; Kubota, Keiichi
2014-09-01
Cancer cells show enhanced glycolysis and inhibition of oxidative phosphorylation, even in the presence of sufficient oxygen (aerobic glycolysis). Glycolysis is much less efficient for energy production than oxidative phosphorylation, and the reason why cancer cells selectively use glycolysis remains unclear. Biospecimens were collected from 45 hepatocellular carcinoma patients. Protein samples were prepared through subcellular localization or whole-cell lysis. Protein synthesis was measured by SDS-PAGE and immunoblotting. mRNA transcription was measured using quantitative RT-PCR. Statistical correlation among immunoblotting data and clinicolaboratory factors were analyzed using SPSS. Enzymes for oxidative phosphorylation (SDHA and SDHB) were frequently decreased (56 and 48 % of patients, respectively) in hepatocellular carcinomas. The lowered amount of the SDH protein complex was rarely accompanied by stabilization of HIF1α and subsequent activation of the hypoxia response. On the other hand, protein synthesis of G6PD and TKT, enzymes critical for pentose phosphate pathway (PPP), was increased (in 45 and 55 % of patients, respectively), while that of ALDOA, an enzyme for mainstream glycolysis, was eliminated (in 55 % of patients). Alteration of protein synthesis was correlated with gene expression for G6PD and TKT, but not for TKTL1, ALDOA, SDHA or SDHB. Augmented transcription and synthesis of PPP enzymes were accompanied by nuclear accumulation of NRF2. Hepatocellular carcinomas divert glucose metabolism to the anabolic shunt by activating transcription factor NRF2.
Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E
2013-05-01
Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.
Duval, Romain; Xu, Ximing; Bui, Linh-Chi; Mathieu, Cécile; Petit, Emile; Cariou, Kevin; Dodd, Robert H; Dupret, Jean-Marie; Rodrigues-Lima, Fernando
2016-02-23
Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood. This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (k(i) = 200 M(-1).s(-1) and 66 M(-1).s(-1) for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals.
Proteolytic enzymes in seawater: contribution of prokaryotes and protists
NASA Astrophysics Data System (ADS)
Obayashi, Y.; Suzuki, S.
2016-02-01
Proteolytic enzyme is one of the major catalysts of microbial processing of organic matter in biogeochemical cycle. Here we summarize some of our studies about proteases in seawater, including 1) distribution of protease activities in coastal and oceanic seawater, 2) responses of microbial community and protease activities in seawater to organic matter amending, and 3) possible contribution of heterotrophic protists besides prokaryotes to proteases in seawater, to clarify cleared facts and remaining questions. Activities of aminopeptidases, trypsin-type and chymotrypsin-type proteases were detected from both coastal and oceanic seawater by using MCA-substrate assay. Significant activities were detected from not only particulate (cell-associated) fraction but also dissolved fraction of seawater, especially for trypsin-type and chymotrypsin-type proteases. Hydrolytic enzymes in seawater have been commonly thought to be mainly derived from heterotrophic prokaryotes; however, it was difficult to determine actual source organisms of dissolved enzymes in natural seawater. Our experiment with addition of dissolved protein to subtropical oligotrophic Pacific water showed drastically enhancement of the protease activities especially aminopeptidases in seawater, and the prokaryotic community structure simultaneously changed to be dominant of Bacteroidetes, indicating that heterotrophic bacteria were actually one of the sources of proteases in seawater. Another microcosm experiment with free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium showed that extracellular trypsin-type activity was mainly attributed to the ciliate. The protist seemed to work in organic matter digestion in addition to be a grazer. From the results, we propose a system of organic matter digestion by prokaryotes and protists in aquatic environments, although their actual contribution in natural environments should be estimated in future studies.
Wojtuszkiewicz, Anna; Barcelos, Ana; Dubbelman, Boas; De Abreu, Ronney; Brouwer, Connie; Bökkerink, Jos P; de Haas, Valerie; de Groot-Kruseman, Hester; Jansen, Gerrit; Kaspers, Gertjan L; Cloos, Jacqueline; Peters, G J
2014-01-01
Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.
Durieux, P O; Schütz, P; Brun, R; Köhler, P
1991-03-01
A rapid switch from a fermentative to a primarily oxidative type of glucose utilization was observed during in vitro differentiation of Trypanosoma brucei STIB348 and EATRO1244 bloodstream to procyclic trypomastigotes. In accordance with previously published reports bloodstream populations produced pyruvate as the major end product of glucose catabolism, together with very small amounts of CO2, succinate and glycerol. During differentiation pyruvate excretion decreased within 48 h to the low levels produced by 28-day procyclic stages. Concomitant with the decline in pyruvate formation, acetate appeared as a new product and the rates of respiratory CO2 increased considerably. The amount of carbon released with these compounds could account for nearly all of the glucose carbon consumed. Rates of glucose utilization and formation of acetate and CO2 in cells differentiated for 48 h were essentially the same as those found in 28-day procyclics. Succinate and glycerol excretion remained low during the entire transformation process, and no significant difference in the pattern and quantities of end products were found between the two trypanosome strains. During trypanosome differentiation the changes in metabolism were associated with marked alterations in enzyme activity levels. Activities of the tricarboxylic acid (TCA) cycle enzymes citrate synthase, isocitrate dehydrogenase (NAD+), succinate dehydrogenase and fumarase were not detectable in bloodstream trypomastigotes but appeared upon differentiation for 24 h. An exception was citrate synthase whose activity was not demonstrable until 48 h postinoculation into culture. After 48 h the majority of the TCA cycle enzyme activities continued to increase steadily until day 28. Pyruvate kinase activity decreased in differentiating cells after 48 h to about 25% of the level found in bloodstream trypomastigotes.(ABSTRACT TRUNCATED AT 250 WORDS)
Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos
2007-08-01
The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.
Wright, D. P.; Huppe, H. C.; Turpin, D. H.
1997-01-01
Pyridine nucleotide pools were measured in intact plastids from roots of barley (Hordeum vulgare L.) during the onset of NO2- assimilation and compared with the in vitro effect of the NADPH/NADP ratio on the activity of plastidic glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) from N-sufficient or N-starved roots. The NADPH/NADP ratio increased from 0.9 to 2.0 when 10 mM glucose-6-phosphate was supplied to intact plastids. The subsequent addition of 1 mM NaNO2 caused a rapid decline in this ratio to 1.5. In vitro, a ratio of 1.5 inactivated barley root plastid G6PDH by approximately 50%, suggesting that G6PDH could remain active during NO2- assimilation even at the high NADPH/NADP ratios that would favor a reduction of ferredoxin, the electron donor of NO2- reductase. Root plastid G6PDH was sensitive to reductive inhibition by dithiothreitol (DTT), but even at 50 mM DTT the enzyme remained more than 35% active. In root plastids from barley starved of N for 3 d, G6PDH had a substantially reduced specific activity, had a lower Km for NADP, and was less inhibited by DTT than the enzyme from N-sufficient root plastids, indicating that there was some effect of N starvation on the G6PDH activity in barley root plastids. PMID:12223780
Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H; Brun, Reto; Carballeira, Néstor M
2010-11-01
Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC(50) value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC(50) value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC(50) 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC(50) values of 0.38 and 0.58 μg/ml (IC(50) control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC(50) values 3.7-31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC(50) 20.2 μg/ml), and Leishmania donovani (IC(50) values 4.1-13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mohamed-Hussein, Zeti-Azura; Ng, Chyan Leong
2016-01-01
Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that’s highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant. PMID:27560927
Gürsoy, Mervi; Könönen, Eija; Gürsoy, Ulvi K; Tervahartiala, Taina; Pajukanta, Riitta; Sorsa, Timo
2010-12-01
Pregnancy induces or enhances susceptibility to gingivitis; however, the presence and role of neutrophilic enzymes in pregnancy-related gingivitis are not well known. The present study demonstrates the relationship between neutrophilic enzymes in gingival crevicular fluid (GCF) and periodontal status during pregnancy and postpartum. At baseline, 30 periodontally healthy pregnant women (Pr group) and 24 non-pregnant women (N-Pr group) as their controls participated in the study. The Pr group was examined once per each trimester and twice during postpartum and the N-Pr group three times (on successive months). During each visit, GCF samples were collected from all first molars, and clinical measurements (visible plaque index, bleeding on probing [BOP], probing depth [PD], and clinical attachment level) were recorded. The samples were analyzed for matrix metalloproteinase (MMP)-8, polymorphonuclear neutrophil (PMN) elastase, myeloperoxidase (MPO), and tissue inhibitor of matrix metalloproteinase (TIMP)-1. Their levels were compared to the periodontal status at the collection site. In the Pr group, BOP and PD scores significantly increased between the first and second trimester, indicating pregnancy gingivitis. This increased inflammation was not reflected by the enzymes examined in GCF; the amounts of PMN elastase decreased continuously during the follow-up period, and those of MPO and MMP-8 did not increase until delivery, whereas TIMP-1 amounts remained stable throughout the follow-up period. In the N-Pr group, all parameters remained steady. Despite an increased susceptibility to gingivitis during mid-pregnancy, the host response does not seem to activate its own degradative enzymes.
The toxicology and immunology of detergent enzymes.
Basketter, David; Berg, Ninna; Kruszewski, Francis H; Sarlo, Katherine; Concoby, Beth
2012-01-01
Detergent enzymes have a very good safety profile, with almost no capacity to generate adverse acute or chronic responses in humans. The exceptions are the limited ability of some proteases to produce irritating effects at high concentrations, and the intrinsic potential of these bacterial and fungal proteins to act as respiratory sensitizers, demonstrated in humans during the early phase of the industrial use of enzymes during the 1960s and 1970s. How enzymes generate these responses are beginning to become a little clearer, with a developing appreciation of the cell surface mechanism(s) by which the enzymatic activity promotes the T-helper (T(H))-2 cell responses, leading to the generation of IgE. It is a reasonable assumption that the majority of enzyme proteins possess this intrinsic hazard. However, toxicological methods for characterizing further the respiratory sensitization hazard of individual enzymes remains a problematic area, with the consequence that the information feeding into risk assessment/management, although sufficient, is limited. Most of this information was in the past generated in animal models and in vitro immunoassays that assess immunological cross-reactivity. Ultimately, by understanding more fully the mechanisms which drive the IgE response to enzymes, it will be possible to develop better methods for hazard characterization and consequently for risk assessment and management.
Huang, Yandong; Yue, Zhi; Tsai, Cheng-Chieh; Henderson, Jack A; Shen, Jana
2018-03-15
Despite the relevance of understanding structure-function relationships, robust prediction of proton donors and nucleophiles in enzyme active sites remains challenging. Here we tested three types of state-of-the-art computational methods to calculate the p K a 's of the buried and hydrogen bonded catalytic dyads in five enzymes. We asked the question what determines the p K a order, i.e., what makes a residue proton donor vs a nucleophile. The continuous constant pH molecular dynamics simulations captured the experimental p K a orders and revealed that the negative nucleophile is stabilized by increased hydrogen bonding and solvent exposure as compared to the proton donor. Surprisingly, this simple trend is not apparent from crystal structures and the static structure-based calculations. While the generality of the findings awaits further testing via a larger set of data, they underscore the role of dynamics in bridging enzyme structures and functions.
Molecular simulations enlighten the binding mode of quercetin to lipoxygenase-3.
Fiorucci, Sébastien; Golebiowski, Jérôme; Cabrol-Bass, Daniel; Antonczak, Serge
2008-11-01
Inhibition of lipoxygenases (LOXs) by flavonoid compounds is now well documented, but the description of the associated mechanism remains controversial due to a lack of information at the molecular level. For instance, X-ray determination of quercetin/LOX-3 system has led to a structure where the enzyme was cocrystallized with a degradation product of the substrate, which rendered the interpretation of the reported interactions between this flavonoid compound and the enzyme difficult. Molecular modeling simulations can in principle allow obtaining precious insights that could fill this lack of structural information. Thus, in this study, we have investigated various binding modes of quercetin to LOX-3 enzyme in order to understand the first step of the inhibition process, that is the association of the two entities. Molecular dynamics simulations and free energy calculations suggest that quercetin binds the metal center via its 3-hydroxychromone function. Moreover, enzyme/substrate interactions within the cavity impose steric hindrances to quercetin that may activate a direct dioxygen addition on the substrate. (c) 2008 Wiley-Liss, Inc.
Buttet, Géraldine F.; Holliger, Christof
2013-01-01
Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed. PMID:23995945
Jahangiri, Elham; Reichelt, Senta; Thomas, Isabell; Hausmann, Kristin; Schlosser, Dietmar; Schulze, Agnes
2014-08-08
The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.
Rocha, Marcio; Sodek, Ladaslav; Licausi, Francesco; Hameed, Muhammad Waqar; Dornelas, Marcelo Carnier; van Dongen, Joost T
2010-10-01
Alanine aminotransferase (AlaAT) catalyses the reversible conversion of pyruvate and glutamate into alanine and oxoglutarate. In soybean, two subclasses were identified, each represented by two highly similar members. To investigate the role of AlaAT during hypoxic stress in soybean, changes in transcript level of both subclasses were analysed together with the enzyme activity and alanine content of the tissue. Moreover, the dependency of AlaAT activity and gene expression was investigated in relation to the source of nitrogen supplied to the plants. Using semi-quantitative PCR, GmAlaAT genes were determined to be highest expressed in roots and nodules. Under normal growth conditions, enzyme activity of AlaAT was detected in all organs tested, with lowest activity in the roots. Upon waterlogging-induced hypoxia, AlaAT activity increased strongly. Concomitantly, alanine accumulated. During re-oxygenation, AlaAT activity remained high, but the transcript level and the alanine content decreased. Our results show a role for AlaAT in the catabolism of alanine during the initial period of re-oxygenation following hypoxia. GmAlaAT also responded to nitrogen availability in the solution during waterlogging. Ammonium as nitrogen source induced both gene expression and enzyme activity of AlaAT more than when nitrate was supplied in the nutrient solution. The work presented here indicates that AlaAT might not only be important during hypoxia, but also during the recovery phase after waterlogging, when oxygen is available to the tissue again.
Freire, Carolina A; Togni, Valéria G; Hermes-Lima, Marcelo
2011-10-01
The swimming crabs Callinectes danae and C. ornatus are found in bays and estuaries, but C. danae is more abundant in lower salinities, while C. ornatus remains restricted to areas of higher salinity. Experimental crabs of both species were submitted to: air exposure (Ae, 3h), reimmersion in 33‰ (control) sea water (SW) (Ri, 1h) following air exposure; hyposaline (Ho, 10‰ for 2h) or hypersaline (He, 40‰ for 2h) SW, then return to control 33‰ SW (RHo and RHe, for 1h). Hemolymph was sampled for osmolality and chloride determinations. Activity of antioxidant enzymes [glutathione peroxidase (GPX), catalase, glutathione-S-transferase] and levels of carbonyl proteins and lipid peroxidation (TBARS) were evaluated in hepatopancreas, muscle, anterior and posterior gills. In Ho groups, hemolymph concentrations were lower in both species, compared to He groups. C. danae displayed higher control activities of GPX (hepatopancreas and muscle) and catalase (all four tissues) than C. ornatus. C. ornatus presented increased activities of catalase and GPX in Ae, Ri, and He groups. Increased TBARS was seen in C. ornatus tissues (He group). The more euryhaline species displayed higher constitutive activities of antioxidant enzymes, and the less euryhaline species exhibited activation of these enzymes when exposed to air or hyper-salinity. Copyright © 2011 Elsevier Inc. All rights reserved.
Leitsch, David; Kolarich, Daniel; Binder, Marina; Stadlmann, Johannes; Altmann, Friedrich; Duchêne, Michael
2009-04-01
Infections with the microaerophilic parasite Trichomonas vaginalis are treated with the 5-nitroimidazole drug metronidazole, which is also in use against Entamoeba histolytica, Giardia intestinalis and microaerophilic/anaerobic bacteria. Here we report that in T. vaginalis the flavin enzyme thioredoxin reductase displays nitroreductase activity with nitroimidazoles, including metronidazole, and with the nitrofuran drug furazolidone. Reactive metabolites of metronidazole and other nitroimidazoles form covalent adducts with several proteins that are known or assumed to be associated with thioredoxin-mediated redox regulation, including thioredoxin reductase itself, ribonucleotide reductase, thioredoxin peroxidase and cytosolic malate dehydrogenase. Disulphide reducing activity of thioredoxin reductase was greatly diminished in extracts of metronidazole-treated cells and intracellular non-protein thiol levels were sharply decreased. We generated a highly metronidazole-resistant cell line that displayed only minimal thioredoxin reductase activity, not due to diminished expression of the enzyme but due to the lack of its FAD cofactor. Reduction of free flavins, readily observed in metronidazole-susceptible cells, was also absent in the resistant cells. On the other hand, iron-depleted T. vaginalis cells, expressing only minimal amounts of PFOR and hydrogenosomal malate dehydrogenase, remained fully susceptible to metronidazole. Thus, taken together, our data suggest a flavin-based mechanism of metronidazole activation and thereby challenge the current model of hydrogenosomal activation of nitroimidazole drugs.
Glutathione Peroxidase Enzyme Activity in Aging
Espinoza, Sara E.; Guo, Hongfei; Fedarko, Neal; DeZern, Amy; Fried, Linda P.; Xue, Qian-Li; Leng, Sean; Beamer, Brock; Walston, Jeremy D.
2010-01-01
Background It is hypothesized that free radical damage contributes to aging. Age-related decline in activity of the antioxidant enzyme glutathione peroxidase (GPx) may contribute to increased free radicals. We hypothesized that GPx activity decreases with age in a population of older women with disability. Methods Whole blood GPx activity was measured in baseline stored samples from participants in the Women's Health and Aging Study I, a cohort of disabled community-dwelling older women. Linear regression was used to determine cross-sectional associations between GPx activity and age, adjusting for hemoglobin, coronary disease, diabetes, selenium, and body mass index. Results Six hundred one participants had complete demographic, disease, and laboratory information. An inverse association was observed between GPx and age (regression coefficient = −2.9, p < .001), indicating that for each 1-year increase in age, GPx activity decreased by 2.9 μmol/min/L. This finding remained significant after adjustment for hemoglobin, coronary disease, diabetes, and selenium, but not after adjustment for body mass index and weight loss. Conclusion This is the first study to examine the association between age and GPx activity in an older adult cohort with disability and chronic disease. These findings suggest that, after age 65, GPx activity declines with age in older women with disability. This decline does not appear to be related to diseases that have been previously reported to alter GPx activity. Longitudinal examination of GPx activity and other antioxidant enzymes in diverse populations of older adults will provide additional insight into age- and disease-related changes in these systems. PMID:18511755
USDA-ARS?s Scientific Manuscript database
Oxidative stress in the fat and the liver has been linked to the development of obesity and the metabolic syndrome. However, the molecular origin of reactive oxygen species and the role of these in obesity remain areas of active investigation. The NADPH oxidases (NOX) enzymes are a major source of ...
Bioactive Components in Fish Venoms
Ziegman, Rebekah; Alewood, Paul
2015-01-01
Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767
NASA Technical Reports Server (NTRS)
2004-01-01
Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas
Artz, Jacob H.; White, Spencer N.; Zadvornyy, Oleg A.; Fugate, Corey J.; Hicks, Danny; Gauss, George H.; Posewitz, Matthew C.; Boyd, Eric S.; Peters, John W.
2015-01-01
Mercuric ion reductase (MerA), a mercury detoxification enzyme, has been tuned by evolution to have high specificity for mercuric ions (Hg2+) and to catalyze their reduction to a more volatile, less toxic elemental form. Here, we present a biochemical and structural characterization of MerA from the thermophilic crenarchaeon Metallosphaera sedula. MerA from M. sedula is a thermostable enzyme, and remains active after extended incubation at 97°C. At 37°C, the NADPH oxidation-linked Hg2+ reduction specific activity was found to be 1.9 μmol/min⋅mg, increasing to 3.1 μmol/min⋅mg at 70°C. M. sedula MerA crystals were obtained and the structure was solved to 1.6 Å, representing the first solved crystal structure of a thermophilic MerA. Comparison of both the crystal structure and amino acid sequence of MerA from M. sedula to mesophillic counterparts provides new insights into the structural determinants that underpin the thermal stability of the enzyme. PMID:26217660
Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery
Barve, Ashutosh; Jin, Wei; Cheng, Kun
2014-01-01
Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to lack of specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-specific antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency. PMID:24878184
Glycolysis without pyruvate kinase in Clostridium thermocellum
Olson, Daniel G.; Horl, Manuel; Fuhrer, Tobias; ...
2016-12-01
The metabolism of Clostridium thermocellum is notable in that it assimilates sugar via the EMP pathway but does not possess a pyruvate kinase enzyme. In the wild type organism, there are three proposed pathways for conversion of phosphoenolpyruvate (PEP) to pyruvate, which differ in their cofactor usage. One path uses pyruvate phosphate dikinase (PPDK), another pathway uses the combined activities of PEP carboxykinase (PEPCK) and oxaloacetate decarboxylase (ODC). Yet another pathway, the malate shunt, uses the combined activities of PEPCK, malate dehydrogenase and malic enzyme. First we showed that there is no flux through the ODC pathway by enzyme assay.more » Flux through the remaining two pathways (PPDK and malate shunt) was determined by dynamic 13C labeling. In the wild-type strain, the malate shunt accounts for about 33 ± 2% of the flux to pyruvate, with the remainder via the PPDK pathway. Deletion of the ppdk gene resulted in a redirection of all pyruvate flux through the malate shunt. Lastly, this provides the first direct evidence of the in-vivo function of the malate shunt.« less
Crystal structure of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17
Godoy, Andre S.; de Lima, Mariana Z. T.; Camilo, Cesar M.; Polikarpov, Igor
2016-01-01
Given the current interest in second-generation biofuels, carbohydrate-active enzymes have become the most important tool to overcome the structural recalcitrance of the plant cell wall. While some glycoside hydrolase families have been exhaustively described, others remain poorly characterized, especially with regard to structural information. The family 43 glycoside hydrolases are a diverse group of inverting enzymes; the available structure information on these enzymes is mainly from xylosidases and arabinofuranosidase. Currently, only one structure of an exo-β-1,3-galactanase is available. Here, the production, crystallization and structure determination of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17 (BbGal43A) are described. BbGal43A was successfully produced and showed activity towards synthetic galactosides. BbGal43A was subsequently crystallized and data were collected to 1.4 Å resolution. The structure shows a single-domain molecule, differing from known homologues, and crystal contact analysis predicts the formation of a dimer in solution. Further biochemical studies are necessary to elucidate the differences between BbGal43A and its characterized homologues. PMID:27050262
Pifferi, P G; Tramontini, M; Malacarne, A
1989-04-20
Endo-polygalacturonase (endo-PG) was immobilized on a wide range of natural and synthetic macromolecular supports and their modified derivatives representing many chemical classes, including esters, amides, phenols, alkyl- and arylamines, and carboxyl derivatives. The immobilization entailed methods of adsorption alone as well as covalent bond formation using glutaraldehyde or carbodiimide or via the diazo-coupling reaction. The most promising system proved to be immobilization on trimalehylchitosan (TMC) via adsorption followed by treatment with glutaraldehyde (GA). The binding capacity of the support is on the order of 13,000 IU/g, half of which is active. Various properties of immobilized endo-PG were evaluated. The optimum pH of the enzyme shifted to the alkaline side. The relative catalytic activity was considerably high even at room temperature and remained so above 70 degrees C. The thermal stability at pH 3-4 was notably improved by immobilization, the half-time doubling. Finally, the apparent K(m) was greater for immobilized endo-PG than for native enzyme, while the V(max) was smaller for the immobilized enzyme.
Sharma, S; Tyagi, R; Gupta, M N; Singh, T P
2001-01-01
For the first time, it is demonstrated that exposure of an enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes, namely, proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin were exposed to acetonitrile at 70 degrees C for three hr. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, proteinase K was analyzed in detail using X-ray diffraction method. The overall structure of the enzyme was found to be similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad remained intact after the treatment. However, the water structure in the substrate binding site underwent some rearrangement as some of the water molecules were either displaced or completely absent. The most striking observation concerning the water structure was the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules were located in the recognition site. Interlinked through water molecules, the sites occupied by acetonitrile molecules were independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu 96, Ile 107 and Leu 133. The development of such a hydrophobic environment at the recognition site introduced a striking conformation change in Ile 107 by rotating its side chain about C alpha-C beta bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar change had earlier been observed in proteinase K when it was complexed to a substrate analogue, lactoferrin fragment.
Potential enzyme activities in cryoturbated organic matter of arctic soils
NASA Astrophysics Data System (ADS)
Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.
2012-12-01
An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for microbial biomass, was significantly higher in topsoil organic horizons than in cryoturbated and mineral horizons. Changes in the microbial community composition were mainly caused by the relative amount of fungal biomarkers. Within the fungal community the biomarker 18:2w6, which is often associated with ectomycorrhiza, was negatively correlated to the general fungal biomarker 18:1w9. This negative correlation indicates a shift from mycorrhizal to saprotrophic fungi from topsoil towards cryoturbatad and mineral subsoil horizons. In summary, the measured oxidative and hydrolytic (potential) enzyme activities cannot explain the previously observed retarded decomposition in cryoturbated horizons. The measured actual cellulase activity however was strongly reduced in cryoturbated material compared to topsoil horizons. A possible explanation for the observed strong reduction of actual cellulase activity could lie within the fungal community structure which shifted towards saprotrophic fungi from topsoil to cryoturbated horizons.
High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1.
Quyen, Dinh Thi; Giang Le, Thi Thu; Nguyen, Thi Thao; Oh, Tae-Kwang; Lee, Jung-Kee
2005-01-01
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).
Caldwell, Shane J.
2012-01-01
Aminoglycoside (6′) acetyltransferase-Ie/aminoglycoside (2″) phosphotransferase-Ia [AAC(6′)-Ie/APH(2″)-Ia] is one of the most problematic aminoglycoside resistance factors in clinical pathogens, conferring resistance to almost every aminoglycoside antibiotic available to modern medicine. Despite 3 decades of research, our understanding of the structure of this bifunctional enzyme remains limited. We used small-angle X-ray scattering (SAXS) to model the structure of this bifunctional enzyme in solution and to study the impact of substrate binding on the enzyme. It was observed that the enzyme adopts a rigid conformation in solution, where the N-terminal AAC domain is fixed to the C-terminal APH domain and not loosely tethered. The addition of acetyl-coenzyme A, coenzyme A, GDP, guanosine 5′-[β,γ-imido]triphosphate (GMPPNP), and combinations thereof to the protein resulted in only modest changes to the radius of gyration (RG) of the enzyme, which were not consistent with any large changes in enzyme structure upon binding. These results imply some selective advantage to the bifunctional enzyme beyond coexpression as a single polypeptide, likely linked to an improvement in enzymatic properties. We propose that the rigid structure contributes to improved electrostatic steering of aminoglycoside substrates toward the two active sites, which may provide such an advantage. PMID:22290965
Lehto, M T; Sharom, F J
1998-01-01
Many hydrolytic enzymes are attached to the extracellular face of the plasma membrane of eukaryotic cells by a glycosylphosphatidylinositol (GPI) anchor. Little is currently known about the consequences for enzyme function of anchor cleavage by phosphatidylinositol-specific phospholipase C. We have examined this question for the GPI-anchored protein 5'-nucleotidase (5'-ribonucleotide phosphohydrolase; EC 3.1.3.5), both in the native lymphocyte plasma membrane, and following purification and reconstitution into defined lipid bilayer vesicles, using Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC). Membrane-bound, detergent-solubilized and cleaved 5'-nucleotidase all obeyed Michaelis-Menten kinetics, with a Km for 5'-AMP in the range 11-16 microM. The GPI anchor was removed from essentially all 5'-nucleotidase molecules, indicating that there is no phospholipase-resistant pool of enzyme. However, the phospholipase was much less efficient at cleaving the GPI anchor when 5'-nucleotidase was present in detergent solution, dimyristoyl phosphatidylcholine, egg phosphatidylethanolamine and sphingomyelin, compared with the native plasma membrane, egg phosphatidylcholine and a sphingolipid/cholesterol-rich mixture. Lipid molecular properties and bilayer packing may affect the ability of PI-PLC to gain access to the GPI anchor. Catalytic activation, characterized by an increase in Vmax, was observed following PI-PLC cleavage of reconstituted 5'-nucleotidase from vesicles of several different lipids. The highest degree of activation was noted for 5'-nucleotidase in egg phosphatidylethanolamine. An increase in Vmax was also noted for a sphingolipid/cholesterol-rich mixture, the native plasma membrane and egg phosphatidylcholine, whereas vesicles of sphingomyelin and dimyristoyl phosphatidylcholine showed little activation. Km generally remained unchanged following cleavage, except in the case of the sphingolipid/cholesterol-rich mixture. Insertion of the GPI anchor into a lipid bilayer appears to reduce the catalytic efficiency of 5'-nucleotidase, possibly via a conformational change in the enzyme, and activity is restored on release from the membrane. PMID:9576857
Castro-Fernandez, Víctor; Herrera-Morande, Alejandra; Zamora, Ricardo; Merino, Felipe; Gonzalez-Ordenes, Felipe; Padilla-Salinas, Felipe; Pereira, Humberto M; Brandão-Neto, Jose; Garratt, Richard C; Guixe, Victoria
2017-09-22
One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales , Methanosarcinales , and Methanococcales , as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
East-Seletsky, Alexandra; O'Connell, Mitchell R; Knight, Spencer C; Burstein, David; Cate, Jamie H D; Tjian, Robert; Doudna, Jennifer A
2016-10-13
Bacterial adaptive immune systems use CRISPRs (clustered regularly interspaced short palindromic repeats) and CRISPR-associated (Cas) proteins for RNA-guided nucleic acid cleavage. Although most prokaryotic adaptive immune systems generally target DNA substrates, type III and VI CRISPR systems direct interference complexes against single-stranded RNA substrates. In type VI systems, the single-subunit C2c2 protein functions as an RNA-guided RNA endonuclease (RNase). How this enzyme acquires mature CRISPR RNAs (crRNAs) that are essential for immune surveillance and how it carries out crRNA-mediated RNA cleavage remain unclear. Here we show that bacterial C2c2 possesses a unique RNase activity responsible for CRISPR RNA maturation that is distinct from its RNA-activated single-stranded RNA degradation activity. These dual RNase functions are chemically and mechanistically different from each other and from the crRNA-processing behaviour of the evolutionarily unrelated CRISPR enzyme Cpf1 (ref. 11). The two RNase activities of C2c2 enable multiplexed processing and loading of guide RNAs that in turn allow sensitive detection of cellular transcripts.
Multifunctionalized biocatalytic P22 nanoreactor for combinatory treatment of ER+ breast cancer.
Chauhan, Kanchan; Hernandez-Meza, Juan M; Rodríguez-Hernández, Ana G; Juarez-Moreno, Karla; Sengar, Prakhar; Vazquez-Duhalt, Rafael
2018-02-20
Tamoxifen is the standard endocrine therapy for breast cancers, which require metabolic activation by cytochrome P450 enzymes (CYP). However, the lower and variable concentrations of CYP activity at the tumor remain major bottlenecks for the efficient treatment, causing severe side-effects. Combination nanotherapy has gained much recent attention for cancer treatment as it reduces the drug-associated toxicity without affecting the therapeutic response. Here we show the modular design of P22 bacteriophage virus-like particles for nanoscale integration of virus-driven enzyme prodrug therapy and photodynamic therapy. These virus capsids carrying CYP activity at the core are decorated with photosensitizer and targeting moiety at the surface for effective combinatory treatment. The estradiol-functionalized nanoparticles are recognized and internalized into ER+ breast tumor cells increasing the intracellular CYP activity and showing the ability to produce reactive oxygen species (ROS) upon UV 365 nm irradiation. The generated ROS in synergy with enzymatic activity drastically enhanced the tamoxifen sensitivity in vitro, strongly inhibiting tumor cells. This work clearly demonstrated that the targeted combinatory treatment using multifunctional biocatalytic P22 represents the effective nanotherapeutics for ER+ breast cancer.
Samaranayaka, Anusha G P; Kitts, David D; Li-Chan, Eunice C Y
2010-02-10
Pacific hake fish protein hydrolysate (FPH) with promising chemical assay based antioxidative capacity was studied for in vitro angiotensin-I-converting enzyme (ACE)-inhibitory potential, intestinal cell permeability characteristics, and intracellular antioxidative potential using the Caco-2 cell model system. FPH showed substrate-type inhibition of ACE with IC(50) of 161 microg of peptides/mL. HPLC analysis revealed that different peptides were responsible for antioxidative and ACE-inhibitory activity. FPH inhibited 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidation in Caco-2 cells at noncytotoxic concentrations. In vitro simulated gastrointestinal digestion increased (P < 0.05) antioxidative capacity; ACE-inhibitory activity of FPH remained unchanged, although individual peptide fractions showed decreased or no activity after digestion. Some FPH peptides passed through Caco-2 cells: the permeates showed 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity but no ACE-inhibitory activity. These results suggest the potential for application of Pacific hake FPH to reduce oxidative processes in vivo. Further studies are needed to assess prospective antihypertensive effects.
Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system.
Ohno, Misa; Kimura, Masahiro; Miyazaki, Haruko; Okawa, Kazuaki; Onuki, Riho; Nemoto, Chiyuki; Tabata, Eri; Wakita, Satoshi; Kashimura, Akinori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Nukina, Nobuyuki; Bauer, Peter O; Oyama, Fumitaka
2016-11-24
Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc) 2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc) 2 , a source of carbon, nitrogen and energy.
Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system
Ohno, Misa; Kimura, Masahiro; Miyazaki, Haruko; Okawa, Kazuaki; Onuki, Riho; Nemoto, Chiyuki; Tabata, Eri; Wakita, Satoshi; Kashimura, Akinori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Nukina, Nobuyuki; Bauer, Peter O.; Oyama, Fumitaka
2016-01-01
Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc)2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc)2, a source of carbon, nitrogen and energy. PMID:27883045
Okamoto, Ken; Matsumoto, Koji; Hille, Russ; Eger, Bryan T.; Pai, Emil F.; Nishino, Takeshi
2004-01-01
Molybdenum is widely distributed in biology and is usually found as a mononuclear metal center in the active sites of many enzymes catalyzing oxygen atom transfer. The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen. Here, we present the crystal structure of the key intermediate in the hydroxylation reaction of xanthine oxidoreductase with a slow substrate, in which the carbon–oxygen bond of the product is formed, yet the product remains complexed to the molybdenum. This intermediate displays a stable broad charge–transfer band at ≈640 nm. The crystal structure of the complex indicates that the catalytically labile Mo—OH oxygen has formed a bond with a carbon atom of the substrate. In addition, the Mo⋕S group of the oxidized enzyme has become protonated to afford Mo—SH on reduction of the molybdenum center. In contrast to previous assignments, we find this last ligand at an equatorial position in the square-pyramidal metal coordination sphere, not the apical position. A water molecule usually seen in the active site of the enzyme is absent in the present structure, which probably accounts for the stability of this intermediate toward ligand displacement by hydroxide. PMID:15148401
Haohao, Zhang; Guijun, Qin; Juan, Zheng; Wen, Kong; Lulu, Chen
2015-03-01
Although resveratrol (RES) is thought to be a key regulator of insulin sensitivity in rodents, the exact mechanism underlying this effect remains unclear. Therefore, we sought to investigate how RES affects skeletal muscle oxidative and antioxidant levels of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations in high-fat diet (HFD)-induced insulin resistance (IR) rats. Systemic and skeletal muscle insulin sensitivity together with expressions of several genes related to mitochondrial biogenesis and skeletal muscle SIRT1, SIRT3 protein levels were studied in rats fed a normal diet, a HFD, and a HFD with intervention of RES for 8 weeks. Oxidative stress levels and antioxidant enzyme activities were assessed in SS and IMF mitochondria. HFD fed rats exhibited obvious systemic and skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p < 0.05). Both SS and IMF mitochondria demonstrated elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels. In addition, SS mitochondrial antioxidant enzyme activities were significantly lower, while IMF mitochondrial antioxidant enzyme activities were higher (p < 0.05). By contrast, RES treatment protected rats against diet induced IR, increased SIRT1 and SIRT3 expressions, mtDNA, and mitochondrial biogenesis (p < 0.05). Moreover, the activities of SS and IMF mitochondrial antioxidant enzymes were increased, which reverted the increased SS mitochondrial oxidative stress levels (p < 0.05). This study suggests that RES ameliorates insulin sensitivity consistent with improved SIRT3 expressions and rebalance between SS mitochondrial oxidative stress and antioxidant competence in HFD rats.
Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias
2014-08-01
Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.
Bringing metabolic networks to life: convenience rate law and thermodynamic constraints
Liebermeister, Wolfram; Klipp, Edda
2006-01-01
Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases. PMID:17173669
Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.
2016-07-19
Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of fourmore » recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.« less
Rosado, Leonardo Astolfi; Wahni, Khadija; Degiacomi, Giulia; Pedre, Brandán; Young, David; de la Rubia, Alfonso G; Boldrin, Francesca; Martens, Edo; Marcos-Pascual, Laura; Sancho-Vaello, Enea; Albesa-Jové, David; Provvedi, Roberta; Martin, Charlotte; Makarov, Vadim; Versées, Wim; Verniest, Guido; Guerin, Marcelo E; Mateos, Luis M; Manganelli, Riccardo; Messens, Joris
2017-08-11
The Mycobacterium tuberculosis rv2466c gene encodes an oxidoreductase enzyme annotated as DsbA. It has a CPWC active-site motif embedded within its thioredoxin fold domain and mediates the activation of the prodrug TP053, a thienopyrimidine derivative that kills both replicating and nonreplicating bacilli. However, its mode of action and actual enzymatic function in M. tuberculosis have remained enigmatic. In this study, we report that Rv2466c is essential for bacterial survival under H 2 O 2 stress. Further, we discovered that Rv2466c lacks oxidase activity; rather, it receives electrons through the mycothiol/mycothione reductase/NADPH pathway to activate TP053, preferentially via a dithiol-disulfide mechanism. We also found that Rv2466c uses a monothiol-disulfide exchange mechanism to reduce S -mycothiolated mixed disulfides and intramolecular disulfides. Genetic, phylogenetic, bioinformatics, structural, and biochemical analyses revealed that Rv2466c is a novel mycothiol-dependent reductase, which represents a mycoredoxin cluster of enzymes within the DsbA family different from the glutaredoxin cluster to which mycoredoxin-1 (Mrx1 or Rv3198A) belongs. To validate this DsbA-mycoredoxin cluster, we also characterized a homologous enzyme of Corynebacterium glutamicum (NCgl2339) and observed that it demycothiolates and reduces a mycothiol arsenate adduct with kinetic properties different from those of Mrx1. In conclusion, our work has uncovered a DsbA-like mycoredoxin that promotes mycobacterial resistance to oxidative stress and reacts with free mycothiol and mycothiolated targets. The characterization of the DsbA-like mycoredoxin cluster reported here now paves the way for correctly classifying similar enzymes from other organisms. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Yu, Xiang; Erzinger, Melanie M; Pietsch, Kathryn E; Cervoni-Curet, Frances N; Whang, John; Niederhuber, John; Sturla, Shana J
2012-11-01
Prostaglandin reductase 1 (PTGR1) is a highly inducible enzyme with enone reductase activity. Previous studies demonstrated the role of rat PTGR1 in the activation of acylfulvene analogs, a class of antitumor natural product derivatives. Of these, hydroxymethylacylfulvene (HMAF) was in advanced clinical development for the treatment of advanced solid tumors, including prostate, ovarian, and pancreatic cancers. However, the efficiency of human PTGR1 in activating acylfulvenes and its potential to enhance therapeutic efficacy have remained uncharacterized. In this study, human PTGR1 was polymerase chain reaction-cloned and purified. Conversion of HMAF to its cellular metabolite by the purified enzyme proceeded at a 20-fold higher rate than with the rat variant of the enzyme. The Km was 4.9 μM, which was 40-fold lower than for the rat variant and similar to the therapeutic dose. Human cell lines, including colon cancer lines, were transfected with a vector containing rat PTGR1 or human PTGR1, and cell viability was examined after dosing with HMAF. New data obtained in this study suggest that transfection with human PTGR1, or its induction in colon and liver cancer cell lines with 1,2-dithiol-3-thione, enhances susceptibility to the cytotoxic influences of HMAF by 2- to 10-fold. Furthermore, similar or enhanced enzyme induction and HMAF toxicity results from preconditioning cancer cells with the bioactive food components curcumin and resveratrol. The functional impact of PTGR1 induction in human cells and chemical-based strategies for its activation can provide important knowledge for the design of clinical strategies involving reductively activated cytotoxic chemotherapeutics.
NASA Technical Reports Server (NTRS)
Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.
1988-01-01
The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.
NASA Astrophysics Data System (ADS)
Prajapati, A. S.; Panchal, K.; Subramanian, R. B.; Patel, D. H.; Sudhir, A. P.; Dave, B. R.
2015-12-01
Global demand for energy has grown with the development of new industries, requiring constant improvement and search for new sources of energy. One of the challenges today is releasing the energy of glucose that nature has cleverly locked into lignocellulosic biomass. Potent and efficient enzyme preparations need to be developed for the enzymatic saccharification process to be more economical. Approaches like enzyme engineering, reconstitution of enzyme mixtures and bioprospecting for superior enzymes are gaining importance. The ocean is considered to be a great reservoir of biodiversity. Because enzymes have unequalled advantages, many industries are keenly interested in adapting enzymatic methods for their processes. Microbial communities in marine environments are ecologically relevant as intermediaries of energy and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. The exploitation of marine bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology. Several industrial enzymes are derived from terrestrial sources, whereas, marine environment which encompasses about 71 percent of the earth's surface and a vast resources for useful enzymes, remain unexplored. Marine microorganisms take active part in the mineralization of complex organic matter through degradative pathways of their metabolism. Bacteria from marine environments secrete different enzymes based on their habitat and their ecological functions. Therefore marine microbial enzymes have become the focal point of interest. Even though many of these enzymes are being isolated, the efficiency of hydrolysis is very poor. This could be overcome by altering the substrate specificity of lignocellulases. Protein engineering could prove to be useful to improve the catalytic function these enzymes.
Hwa, Kuo Yuan; Subramani, Boopathi; Shen, San-Tai; Lee, Yu-May
2015-09-01
β-Glycosidase from Thermococcus kodakarensis KOD1 is a hyperthermophilic enzyme with β-glucosidase, β-mannosidase, β-fucosidase and β-galactosidase activities. Sequence alignment with other β-glycosidases from hyperthermophilic archaea showed two unique active site residues, Gln77 and Asp206. These residues were represented by Arg and Asp in all other hyperthermophilic β-glycosidases. The two active site residues were mutated to Q77R, D206N and D206Q, to study the role of these unique active site residues in catalytic activity and to alter the substrate specificity to enhance its β-glucosidase activity. The secondary structure analysis of all the mutants showed no change in their structure and exhibited in similar conformation like wild-type as they all existed in dimer form in an SDS-PAGE under non-reducing conditions. Q77R and D206Q affected the catalytic activity of the enzyme whereas the D206N altered the catalytic turn-over rate for glucosidase and mannosidase activities with fucosidase activity remain unchanged. Gln77 is reported to interact with catalytic nucleophile and Asp206 with axial C2-hydroxyl group of substrates. Q77R might have made some changes in three dimensional structure due to its electrostatic effect and lost its catalytic activity. The extended side chains of D206Q is predicted to affect the substrate binding during catalysis. The high-catalytic turn-over rate by D206N for β-glucosidase activity makes it a useful enzyme in cellulose degradation at high temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.
Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.
Gupta, Anshu; Khare, S K
2009-01-01
Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.
NASA Astrophysics Data System (ADS)
Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven
2016-04-01
Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an array of extracellular enzymes including oxidases and peroxidases for (poly)phenols and hydrolases for N-compounds, would enable verifying the hypothesized binding and stabilization of N onto accumulating polyphenols at BAU site under SOM accumulating management.
Xing, Elizabeth M.; Knox, Van W.; O'Donnell, Patricia A.; Sikura, Tracey; Liu, Yuli; Wu, Susan; Casal, Margret L.; Haskins, Mark E.; Ponder, Katherine P.
2013-01-01
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of β-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term. PMID:23628461
Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin
2016-01-01
The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50–60 °C and pH 5.5–6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates. PMID:27271847
Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo
2009-08-01
Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.
Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin
2016-06-08
The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50-60 °C and pH 5.5-6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates.
Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.
2010-01-01
Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6. μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescense analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml) respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature and calculated pharmacokinetic properties suggest that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes. PMID:20855214
Regulation of porphyrin synthesis and photodynamic therapy in heavy metal intoxication.
Grinblat, Borislava; Pour, Nir; Malik, Zvi
2006-01-01
Protoporphyrin IX (PpIX) synthesis by malignant cells is successfully exploited for photodynamic therapy (PDT) following administration of 5-aminolevulinic acid (ALA) and light irradiation. The influence of two environmental heavy metal poisons, lead and gallium, on PpIX-synthesis and ALA-PDT was studied in two neu-ronal cell lines, SH-SY5Y neuroblastoma and PC12 pheochromocytoma. The heavy metal intoxication affected two of the heme-synthesis enzymes, ALA-dehydratase (ALAD) and porphobilinogen deaminase (PBGD). The present results show that lead poisoning significantly decreased the PBGD cellular level and inhibited its enzymatic activity, whereas the effects of gallium were less prominent. Although, the protein levels were reduced, the mRNA levels of PBGD remained unchanged during metal intoxication. These findings show additional inhibitory activity of lead on top of its classical effect on ALAD. Proteasome activity was enhanced during lead treatment, as measured by the AMC fluorigenic proteasome assay. The reduction in PBGD levels was not a consequence of PBGD mRNA reduced synthesis, which remained unchanged as shown by RT-PCR analysis. As a result of the lead poisoning, marked alterations in the cell cycle were observed, including a decreased G1 phase and an increased number of S phase cells. The efficacy of ALA-PDT was reduced in correlation with decreased activities of the enzymes during lead intoxication. We may conclude that lead poisoning adversely affects the outcome of ALA photodynamic therapy of cancer.
Molinari, José L; García-Mendoza, Esperanza; de la Garza, Yazmin; Ramírez, José A; Sotelo, Julio; Tato, Patricia
2002-06-01
To detect IgG antibodies to Taenia solium, a controlled double-blind study was conducted using 91 coded cerebrospinal fluid samples from patients with neurocysticercosis (NCC) and other neurologic disorders. Samples were tested in an enzyme-linked immunosorbent assay (ELISA) using metacestode excretion/secretion antigens. The results were correlated with data from medical records on the diagnosis of NCC (based on computed tomography and magnetic resonance imaging criteria) and other neurologic disorders. The ELISA results were positive in 22 of the 24 cases with active NCC. In contrast, six cases with calcified cysts (inactive NCC), as well as one case in a transitional stage, were negative. One case with a calcified granuloma and another with a granuloma plus calcifications (classified as inactive NCC) had positive results. The remaining negative results corresponded to other neurologic disorders (58 cases). The results of the ELISA showed a significant difference between active and inactive NCC (P = 0.0034).
Novel enzymatic assay predicts minoxidil response in the treatment of androgenetic alopecia.
Goren, Andy; Castano, Juan Antonio; McCoy, John; Bermudez, Fernando; Lotti, Torello
2014-01-01
Topical minoxidil is the most common drug used for the treatment of androgenetic alopecia (AGA) in men and women. Although topical minoxidil exhibits a good safety profile, the efficacy in the overall population remains relatively low at 30-40%. To observe significant improvement in hair growth, minoxidil is typically used daily for a period of at least 3-4 months. Due to the significant time commitment and low response rate, a biomarker for predicting patient response prior to therapy would be advantageous. Minoxidil is converted in the scalp to its active form, minoxidil sulfate, by the sulfotransferase enzyme SULT1A1. We hypothesized that SULT1A1 enzyme activity in the hair follicle correlates with minoxidil response for the treatment of AGA. Our preliminary retrospective study of a SULT1A1 activity assay demonstrates 95% sensitivity and 73% specificity in predicting minoxidil treatment response for AGA. A larger prospective study is now under way to further validate this novel assay. © 2013 Wiley Periodicals, Inc.
MYC-induced reprogramming of glutamine catabolism supports optimal virus replication
Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.
2015-01-01
Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297
Xun, Er-na; Lv, Xiao-li; Kang, Wei; Wang, Jia-xin; Zhang, Hong; Wang, Lei; Wang, Zhi
2012-10-01
The lipase from Pseudomonas fluorescens (Lipase AK, AKL) was immobilized onto the magnetic Fe(3)O(4) nanoparticles via hydrophobic interaction. Enzyme loading and immobilization yield were determined as 21.4±0.5 mg/g and 49.2±1.8 %, respectively. The immobilized AKL was successfully used for resolution of 2-octanol with vinyl acetate used as acyl donor. Effects of organic solvent, water activity, substrate ratio, and temperature were investigated. Under the optimum conditions, the preferred isomer for AKL is the (R)-2-octanol and the highest enantioselectivity (E=71.5±2.2) was obtained with a higher enzyme activity (0.197±0.01 μmol/mg/min). The results also showed that the immobilized lipase could be easily separated from reaction media by the magnetic steel and remained 89 % of its initial activity as well as the nearly unchanged enantioselectivity after five consecutive cycles, indicating a high stability in practical operation.
de Vries, Ronald P.; Gruppen, Harry; Kabel, Mirjam A.
2015-01-01
The fungus Agaricus bisporus is commercially grown for the production of edible mushrooms. This cultivation occurs on compost, but not all of this substrate is consumed by the fungus. To determine why certain fractions remain unused, carbohydrate degrading enzymes, water-extracted from mushroom-grown compost at different stages of mycelium growth and fruiting body formation, were analyzed for their ability to degrade a range of polysaccharides. Mainly endo-xylanase, endo-glucanase, β-xylosidase and β-glucanase activities were determined in the compost extracts obtained during mushroom growth. Interestingly, arabinofuranosidase activity able to remove arabinosyl residues from doubly substituted xylose residues and α-glucuronidase activity were not detected in the compost enzyme extracts. This correlates with the observed accumulation of arabinosyl and glucuronic acid substituents on the xylan backbone in the compost towards the end of the cultivation. Hence, it was concluded that compost grown A. bisporus lacks the ability to degrade and consume highly substituted xylan fragments. PMID:26237450
Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium
NASA Astrophysics Data System (ADS)
Freeman, Michael F.; Helf, Maximilian J.; Bhushan, Agneya; Morinaka, Brandon I.; Piel, Jörn
2017-04-01
Uncultivated bacteria represent a massive resource of new enzymes and bioactive metabolites, but such bacteria remain functionally enigmatic. Polytheonamides are potent peptide cytotoxins produced by uncultivated bacteria that exist as symbionts in a marine sponge. Outside glycobiology, polytheonamides represent the most heavily post-translationally modified biomolecules that are derived from amino acids. The biosynthesis of polytheonamides involves up to 50 site-specific modifications to create a membrane-spanning β-helical structure. Here, we provide functional evidence that only seven enzymes are necessary for this process. They iteratively catalyse epimerization, methylation and hydroxylation of diverse amino acids. To reconstitute C-methylation, we employed the rarely used heterologous host Rhizobium leguminosarum to invoke the activities of two cobalamin-dependent C-methyltransferases. We observed 44 of the modifications to systematically unravel the biosynthesis of one of the most densely modified and metabolically obscure ribosome-derived molecules found in nature.
Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures
Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.
2014-01-01
Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252
Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki; Veski, Peep; Yliruusi, Jouko
2010-06-01
We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D-galactose using a standardized method. A near-linear increase was obtained in the thickness of the enzyme coat as the treatment proceeded. Interestingly, lactose, which is a substrate for beta-galactosidase, did not undergo enzymatic degradation during processing and remained unchanged for at least 1 month. Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach.
Babych, H; Antonyak, H; Sklyarov, A Y
2000-06-01
To investigate the participation of thyroxine in the regulation of energy metabolism in neutrophilic polymorphonuclear leukocytes and their bone marrow precursors. The influence of L-thyroxine (T4; 4 mg/kg every 12 hr from day 2 to 10 of age) was estimated on the activity of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G-6-PDH), NADP-dependent isocitrate dehydrogenase (ICDH) and cytochrome C-oxidase in bone marrow myeloid cells and circulating neutrophils of 3, 5 and 10 day (d) old piglets. Serum T4 and 3,5, 3'-triiodothyronine (T3) concentrations were estimated at every stage of experiment by radioimmunoassay. Bone marrow cells of myeloid lineage and blood neutrophilic polymorphonuclear leukocytes were separated by differential centrifugation of haematopoietic cell suspension using Ficoll-Hypaque gradients. The hyperthyroid status resulted in significant increase in PFK and LDH activity in myelokaryocytes of 3 and 3-5 d piglets, while the activity of HK and PK in the cells of 3-10 d animals remained unchanged. Moreover, ICDH activity in myelokaryocytes increased on day 10 and that of cytochrome C oxidase in bone marrow cells at all intervals. Marked increase in HK and LDH activity on day 3-5 was found also in blood polymorphonuclear granulocytes, while PFK and PK activity was increased during the whole period. At the same time even the increase in ICDH and cytochrome C-oxidase activity was observed, respectively, in 3 and 5-10 d old piglet neutrophils. Besides that, T4 inhibited G-6-PDH activity in myeloid cells on day 3 to 10 and did not influence the enzyme activity in circulating leukocytes. The administration of T4 resulted in preferential stimulation of oxidative stages of carbohydrate catabolism in myelocaryocytes, while the activity of glycolytic enzymes in these cells was less affected. On the contrary, the enzymes of glycolysis in blood neutrophils showed higher sensitivity to T4 action as compared to catalysts of oxidative reactions. The intensity of pentose phosphate pathway seems to be inhibited in bone marrow myelocaryocytes of T4 treated animals, while that in blood leukocytes remained unaffected.
Son, Dong Ju; Akiba, Satoshi; Hong, Jin Tae; Yun, Yeo Pyo; Hwang, Seock Yeon; Park, Young Hyun; Lee, Sung Eun
2014-01-01
PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2), COX-1, COX-2, and thromboxane A2 (TXA2) synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PG)E2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms. PMID:25153972
Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayes, Heather B.; Knott, Brandon C.; Crowley, Michael F.
In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase ( TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleavingmore » the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2S O ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less
Gimeno-Pérez, María; Linde, Dolores; Fernández-Arrojo, Lucía; Plou, Francisco J; Fernández-Lobato, María
2015-04-01
The β-fructofuranosidase Xd-INV from the yeast Xanthophyllomyces dendrorhous is the largest microbial enzyme producing neo-fructooligosaccharides (neo-FOS) known to date. It mainly synthesizes neokestose and neonystose, oligosaccharides with potentially improved prebiotic properties. The Xd-INV gene comprises an open reading frame of 1995 bp, which encodes a 665-amino acid protein. Initial N-terminal sequencing of Xd-INV pointed to a majority extracellular protein of 595 amino acids lacking the first 70 residues (potential signal peptide). Functionality of the last 1785 bp of Xd-INV gene was previously proved in Saccharomyces cerevisiae but only weak β-fructofuranosidase activity was quantified. In this study, different strategies to improve this enzyme level in a heterologous system have been used. Curiously, best results were obtained by increasing the protein N-terminus sequence in 39 amino acids, protein of 634 residues. The higher β-fructofuranosidase activity detected in this study, about 15 U/mL, was obtained using Pichia pastoris and represents an improvement of about 1500 times the level previously obtained in a heterologous organism and doubles the best level of activity obtained by the natural producer. Heterologously expressed protein was purified and characterized biochemically and kinetically. Except by its glycosylation degree (10 % lower) and thermal stability (4-5 °C lower in the 60-85 °C range), the properties of the heterologous enzyme, including ability to produce neo-FOS, remained unchanged. Interestingly, besides the neo-FOS referred before blastose was also detected (8-22 g/L) in the reaction mixtures, making Xd-INV the first yeast enzyme producing this non-conventional disaccharide reported to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.
1987-06-25
We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher massmore » (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, T.L.; Obih, P.O.; Jaiswal, R.
1997-05-01
The responses of various xenobiotic metabolizing enzymes in fish models are rapidly evolving as important biomarkers for monitoring unacceptable levels of environmental contaminants. Ethoxyresorufin O-deethylase, a specific cytochrome P450-dependent monooxygenase, is often used as an indicator of polycyclic aromatic hydrocarbon pollution. Another class of enzymes which are potential biomarkers are the B-type esterases. These enzymes are sensitive to inhibition by organophosphates, and include the cholinesterases (ChE) and carboxylesterases. ChEs are further subdivided into acetylcholinesterase and butyryl cholinesterase. Among fish, AChE is predominantly localized in the brain and muscle, whereas, BuChE activity is found mainly in liver and plasma. The precisemore » physiological role of BuChE is unknown, although it has been regarded as a marker enzyme for glial or supportive cells or other non-neuronal elements. Inhibition of ChE activity has often been associated with exposure to organophosphate and carbamate insecticides and other neurotoxic xenobiotics. Chemicals other than carbarnates and organophosphates that are environmental contaminants can also affect the activity of ChEs. Carboxylesterases represent a heterogenous group of isozymes that can catalyze the hydrolysis of a wide range of xenobiotic esters, amides and thioesters. For most CaE, their natural substrates are unknown, therefore, their physiological functions remain to be elucidated. These enzymes (CaE) occur widely in most tissues and are generally found in high levels in the liver. The purpose of this research was to evaluate the liver and brain esterases in the spotted gar fish as biomarkers of effect to multiple contaminants in the lower Mississippi River basin. 15 refs., 3 figs., 2 tabs.« less
Arakawa, Hiroshi; Kamioka, Hiroki; Jomura, Tomoko; Koyama, Satoshi; Idota, Yoko; Yano, Kentaro; Kojima, Hajime; Ogihara, Takuo
2017-01-01
Drug-induced liver injury (DILI) is a common reason for withdrawal of candidate drugs from clinical trials, or of approved drugs from the market. DILI may be induced not only by intact parental drugs, but also by metabolites or intermediates, and therefore should be evaluated in the enzyme-induced state. Here, we present a protocol for assay of drug-metabolizing enzyme-inducing potential using three-dimensional (3D) primary cultures of human hepatocytes (hepatocyte spheroids). Hepatocyte spheroids could be used up to 21 d after seeding (pre-culture for 7 d and exposure to inducer for up to 14 d), based on preliminary evaluation of basal activities of CYP subtypes and mRNA expression of the corresponding transcription factor and xenobiotic receptors (aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane X receptor (PXR)). After 2 d exposure of hepatocyte spheroids to omeprazole, phenobarbital and rifampicin (typical inducers of CYP1A2, 2B6 and 3A4, respectively), CYP1A2, 2B6 and 3A4 mRNA expression levels were significantly increased. The mRNA induction of CYP2B6 remained reasonably stable between days 2 and 14 of exposure to inducers, while induction of both CYP1A2 and 3A4 continued to increase up to day 14. These enzyme activities were all significantly increased compared with the control until day 14. Our findings indicate that our 3D hepatocyte spheroids system would be especially suitable for long-term testing of enzyme activity induction by drugs, either to predict or to verify clinical events.
Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases
Mayes, Heather B.; Knott, Brandon C.; Crowley, Michael F.; ...
2016-06-01
In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase ( TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleavingmore » the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2S O ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less
The effect of ZnO nanoparticles on liver function in rats
Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun
2016-01-01
Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621
Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair
Bhat, Javaid Y.; Thieulin-Pardo, Gabriel; Hartl, F. Ulrich; Hayer-Hartl, Manajit
2017-01-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO2 molecule and binding of a Mg2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are “misfire” products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins. PMID:28443288
Hershey, H P; Schwartz, L J; Gale, J P; Abell, L M
1999-07-01
Acetolactate synthase (ALS) is the first committed step of branched-chain amino acid biosynthesis in plants and bacteria. The bacterial holoenzyme has been well characterized and is a tetramer of two identical large subunits (LSUs) of 60 kDa and two identical small subunits (SSUs) ranging in molecular mass from 9 to 17 kDa depending on the isozyme. The enzyme from plants is much less well characterized. Attempts to purify the protein have yielded an enzyme which appears to be an oligomer of LSUs, with the potential existence of a SSU for the plant enzyme remaining a matter of considerable speculation. We report here the discovery of a cDNA clone that encodes a SSU of plant ALS based upon the homology of the encoded peptide with various bacterial ALS SSUs. The plant ALS SSU is more than twice as large as any of its prokaryotic homologues and contains two domains that each encode a full-length copy of the prokaryotic SSU polypeptide. The cDNA clone was used to express Nicotiana plumbaginifolia SSU in Escherichia coli. Mixing a partially purified preparation of this SSU with the LSU of ALS from either N. plumbaginifolia or Arabidopsis thaliana results in both increased specific activity and increased stability of the enzymic activity. These results are consistent with those observed for the bacterial enzyme in similar experiments and represent the first functional demonstration of the existence of a SSU for plant ALS.
NASA Astrophysics Data System (ADS)
Fernández-Reiriz, M. J.; Navarro, J. M.; Cisternas, B. A.; Babarro, J. M. F.; Labarta, U.
2013-12-01
We analyzed absorption efficiency (AE) and digestive enzyme activity (amylase, cellulase complex, and laminarinase) of the infaunal bivalve Tagelus dombeii originating from two geographic sites, Corral-Valdivia and Melinka-Aysén, which have different long-term paralytic shellfish poisoning (PSP) exposure rates. We report the effects of past feeding history (origin) on T. dombeii exposed to a mixed diet containing the toxic dinoflagellate Alexandrium catenella and another dinoflagellate-free control diet over a 12-day period in the laboratory. Absorption efficiency values of T. dombeii individuals that experienced PSP exposure in their habitat (Melinka-Aysén) remained unchanged during exposure to toxic food in the laboratory. In contrast, T. dombeii from a non-PSP exposure field site (Corral-Valdivia) showed a significant reduction in AE with toxic exposure time. This study established that the amylase and cellulase complexes were the most important enzymes in the digestive glands of Tagelus from both sites. The temporal evolution of enzymatic activity under toxic diet was fitted to exponential (amylase and cellulase) and to a logarithmic (laminarinase) models. In all fits, we found significant effect of origin in the model parameters. At the beginning of the experiment, higher enzymatic activity was observed for clams from Corral-Valdivia. The amylase activity decreased with time exposure for individuals from Corral and increased for individuals from Melinka. Cellulase activity did not vary over time for clams from Corral, but increased for individuals from Melinka and laminarinase activity decreased over time for individuals from Corral and remained unchanged over time for Melinka. A feeding history of exposure to the dinoflagellate A. catenella was reflected in the digestive responses of both T. dombeii populations.
Sleep deprivation alters gene expression and antioxidant enzyme activity in mice splenocytes.
Lungato, L; Marques, M S; Pereira, V G; Hix, S; Gazarini, M L; Tufik, S; D'Almeida, V
2013-03-01
Cellular defence against the formation of reactive oxygen species (ROS) involves a number of mechanisms in which antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) play an important role. The relation between sleep deprivation and oxidative stress has not yet been completely elucidated. Although some authors did not find evidence of this relationship, others found alterations in some oxidative stress markers in response to sleep deprivation. Thus, the objective of this study was to identify changes induced by sleep deprivation in the activity and gene expression of antioxidant enzymes in mice splenocytes, ideally corroborating a better understanding of the observed effects related to sleep deprivation, which could be triggered by oxidative imbalance. Splenocytes from mice sleep deprived for 72 h showed no significant difference in CAT and CuZnSOD gene expression compared with normal sleep mice. However, sleep-deprived mice did show higher MnSOD gene expression than the control group. Concerning enzymatic activity, CuZnSOD and MnSOD significantly increased after sleep deprivation, despite the expression in CuZnSOD remained unchanged. Moreover, CAT activity was significantly lower after sleep deprivation. The data suggest that the antioxidant system is triggered by sleep deprivation, which in turn could influence the splenocytes homoeostasis, thus interfering in physiological responses. © 2013 The Authors. Scandinavian Journal of Immunology © 2013 Blackwell Publishing Ltd.
Changela, Anita; DiGate, Russell J.; Mondragón, Alfonso
2007-01-01
Summary E. coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5′ phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an 8-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding. PMID:17331537
Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas
2016-01-01
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.
Cong, Weitao; Ruan, Dandan; Xuan, Yuanhu; Niu, Chao; Tao, Youli; Wang, Yang; Zhan, Kungao; Cai, Lu; Jin, Litai; Tan, Yi
2015-12-01
Catalase is an antioxidant enzyme that specifically catabolizes hydrogen peroxide (H2O2). Overexpression of catalase via a heart-specific promoter (CAT-TG) was reported to reduce diabetes-induced accumulation of reactive oxygen species (ROS) and further prevent diabetes-induced pathological abnormalities, including cardiac structural derangement and left ventricular abnormity in mice. However, the mechanism by which catalase overexpression protects heart function remains unclear. This study found that activation of a ROS-dependent NF-κB signaling pathway was downregulated in hearts of diabetic mice overexpressing catalase. In addition, catalase overexpression inhibited the significant increase in nitration levels of key enzymes involved in energy metabolism, including α-oxoglutarate dehydrogenase E1 component (α-KGD) and ATP synthase α and β subunits (ATP-α and ATP-β). To assess the effects of the NF-κB pathway activation on heart function, Bay11-7082, an inhibitor of the NF-κB signaling pathway, was injected into diabetic mice, protecting mice against the development of cardiac damage and increased nitrative modifications of key enzymes involved in energy metabolism. In conclusion, these findings demonstrated that catalase protects mouse hearts against diabetic cardiomyopathy, partially by suppressing NF-κB-dependent inflammatory responses and associated protein nitration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Martínez-Manrique, Enrique; Jacinto-Hernández, Carmen; Garza-García, Ramón; Campos, Albino; Moreno, Ernesto; Bernal-Lugo, Irma
2011-10-01
Cooking time decreases when beans are soaked first. However, the molecular basis of this decrease remains unclear. To determine the mechanisms involved, changes in both pectic polysaccharides and cell wall enzymes were monitored during soaking. Two cultivars and one breeding line were studied. Soaking increased the activity of the cell wall enzymes rhamnogalacturonase, galactanase and polygalacturonase. Their activity in the cell wall was detected as changes in chemical composition of pectic polysaccharides. Rhamnose content decreased but galactose and uronic acid contents increased in the polysaccharides of soaked beans. A decrease in the average molecular weight of the pectin fraction was induced during soaking. The decrease in rhamnose and the polygalacturonase activity were associated (r = 0.933, P = 0.01, and r = 0.725, P = 0.01, respectively) with shorter cooking time after soaking. Pectic cell wall enzymes are responsible for the changes in rhamnogalacturonan I and polygalacturonan induced during soaking and constitute the biochemical factors that give bean cell walls new polysaccharide arrangements. Rhamnogalacturonan I is dispersed throughout the entire cell wall and interacts with cellulose and hemicellulose fibres, resulting in a higher rate of pectic polysaccharide thermosolubility and, therefore, a shorter cooking time. Copyright © 2011 Society of Chemical Industry.
King, Justin J.; Amemiya, Chris T.; Hsu, Ellen
2017-01-01
ABSTRACT Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties. PMID:28716949
Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris
NASA Technical Reports Server (NTRS)
Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)
2000-01-01
The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.
Wei, Hui; Yan, Wenbin; Quan, Guoming; Zhang, Jiaen; Liang, Kaiming
2017-09-12
Two Bidens species (Bidens pilosa and B. bipinnata) that originate from America have been introduced widely in pan-tropics, with the former regarded as a noxious invasive weed whereas the latter naturalized as a plant resource. Whether the two species exhibit different effects on the belowground system remains rarely studied. This study was conducted to investigate soil microbial carbon (C) utilization, enzyme activities and available nitrogen, phosphorus and potassium contents under the two species in a subtropical garden soil of southern China under different levels of light intensity. Results showed that the microbial C utilization and enzyme activities were not significantly different under the two species, implying that the strong invasiveness of B. pilosa could not be due to the plant-soil microbe interactions, at least plant-induced alterations of microbial community function to utilize C substrates. Alternatively, available soil nitrogen and potassium contents were significantly higher under B. pilosa than under B. bipinnata in full sun, indicating that the strong invasiveness of B. pilosa could result from rapid nutrient mobilizations by B. pilosa. However, the differences turned non-significant as light intensity decreased, suggesting that light availability could substantially alter the plant effects on soil nutrient mobilizations.
Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan DW
2008-01-01
Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments. PMID:18717988
Mechanism of O2 diffusion and reduction in FeFe hydrogenases
NASA Astrophysics Data System (ADS)
Kubas, Adam; Orain, Christophe; de Sancho, David; Saujet, Laure; Sensi, Matteo; Gauquelin, Charles; Meynial-Salles, Isabelle; Soucaille, Philippe; Bottin, Hervé; Baffert, Carole; Fourmond, Vincent; Best, Robert B.; Blumberger, Jochen; Léger, Christophe
2017-01-01
FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.
Tepper, Armand W J W
2010-05-12
A method for the electrical contacting of redox enzymes that obtain oxidizing or reducing equivalents from small electron-transfer proteins is demonstrated. The electrochemical contacting of redox enzymes through their immobilization onto electrode supports offers great potential for technological applications and for fundamental studies, but finding appropriate methods to immobilize the enzymes in an orientation allowing rapid electron transfer with the electrode has proven difficult. The copper enzyme nitrite reductase (NiR) and its natural electron-exchange partner pseudoazurin (Paz) are conjugated to a specific DNA tag and immobilized to a gold electrode into a stoichiometrically defined assembly. The DNA tethered to the electrode surface acts as flexible place-holder for the protein components, allowing both proteins to move within the construct. It is shown that Paz efficiently shuttles electrons between the electrode and the NiR enzyme, allowing the electrochemically driven NiR catalysis to be monitored. The activity of the NiR enzyme remains unperturbed by the immobilization. The rate-limiting step of the system is tentatively ascribed to the dissociation of the Paz/NiR complex. The electrochemical response of the system reports not only on the NiR catalysis and on interfacial electron transfer but also on the interaction between NiR and Paz.
Droux, M; Jacquot, J P; Miginac-Maslow, M; Gadal, P; Huet, J C; Crawford, N A; Yee, B C; Buchanan, B B
1987-02-01
Ferredoxin-thioredoxin reductase (FTR), an enzyme involved in the light regulation of chloroplast enzymes, was purified to homogeneity from leaves of spinach (a C3 plant) and corn (a C4 plant) and from cells of a cyanobacterium (Nostoc muscorum). The enzyme is a yellowish brown iron-sulfur protein, containing four nonheme iron and labile sulfide groups, that catalyzes the activation of NADP-malate dehydrogenase and fructose 1,6-bisphosphatase in the presence of ferredoxin and of thioredoxin m and f, respectively. FTR is synonymous with the protein earlier called ferralterin. FTR showed an Mr of about 30,000 (determined by sedimentation equilibrium ultracentrifugation, amino acid composition, gel filtration, and gradient gel electrophoresis) and was composed of two dissimilar subunits (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). One of the FTR subunits from each source was similar both in Mr (about 13,000) and immunological properties, while the other subunit (of variable molecular weight) was characteristic of a particular organism. The similar subunit contained a disulfide group that was rapidly reduced by a dithiol (dithiothreitol) but not by monothiols (2-mercaptoethanol or reduced glutathione). Homogeneous FTR formed a tight noncovalent complex with ferredoxin on affinity columns. The basis for the structural variation in the different FTR enzymes remains to be determined.
Structure-based design and profiling of novel 17β-HSD14 inhibitors.
Braun, Florian; Bertoletti, Nicole; Möller, Gabriele; Adamski, Jerzy; Frotscher, Martin; Guragossian, Nathalie; Madeira Gírio, Patrícia Alexandra; Le Borgne, Marc; Ettouati, Laurent; Falson, Pierre; Müller, Sebastian; Vollmer, Günther; Heine, Andreas; Klebe, Gerhard; Marchais-Oberwinkler, Sandrine
2018-05-22
The human enzyme 17β-hydroxysteroid dehydrogenase 14 (17β-HSD14) oxidizes the hydroxyl group at position 17 of estradiol and 5-androstenediol using NAD + as cofactor. However, the physiological role of the enzyme remains unclear. We recently described the first class of nonsteroidal inhibitors for this enzyme with compound 1 showing a high 17β-HSD14 inhibitory activity. Its crystal structure was used as starting point for a structure-based optimization in this study. The goal was to develop a promising chemical probe to further investigate the enzyme. The newly designed compounds revealed mostly very high inhibition of the enzyme and for seven of them the crystal structures of the corresponding inhibitor-enzyme complexes were resolved. The crystal structures disclosed that a small change in the substitution pattern of the compounds resulted in an alternative binding mode for one inhibitor. The profiling of a set of the most potent inhibitors identified 13 (K i = 9 nM) with a good selectivity profile toward three 17β-HSDs and the estrogen receptor alpha. This inhibitor displayed no cytotoxicity, good solubility, and auspicious predicted bioavailability. Overall, 13 is a highly interesting 17β-HSD14 inhibitor, which might be used as chemical probe for further investigation of the target enzyme. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Salway, Kurtis D; Tattersall, Glenn J; Stuart, Jeffrey A
2010-11-01
Estivation is an adaptive response to environments characterized by elevated temperatures and desiccative stress, as may occur during summer dry seasons. Similar to diapause and hibernation, it is characterized by low levels of activity, a drastically suppressed metabolic rate and enhanced stress resistance. We tested the hypothesis that Achatina fulica, a pulmonate land snail, enhances stress resistance during estivation and/or arousal by upregulating intracellular antioxidant defenses in the heart, kidney, hepatopancreas and foot tissues. No statistically significant changes in mitochondrial or cytosolic superoxide dismutase levels or activities, or glutathione peroxidase, glutathione reductase or catalase activities were associated with estivation in any tissue, however. In contrast, during arousal from estivation, activities of several antioxidant enzymes increased in heart, hepatopancreas and foot. In heart, a rapid increase in MnSOD protein levels was observed that peaked at 2h post arousal, but no such change was observed in CuZnSOD protein levels. Glutathione peroxidase activity was upregulated at 1h post arousal and remained elevated until 8h post arousal in heart tissue. Glutathione peroxidase was also upregulated at 24h post arousal in foot tissue. Glutathione reductase activity was upregulated at 4h post arousal in heart and foot tissues whereas catalase activity showed no changes. Markers of lipid peroxidation and protein damage revealed no significant increases during estivation or arousal. Therefore, antioxidant enzymes may play a role in oxidative stress defense specifically during arousal from estivation in A. fulica. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Xin; Bi, Hongna; Zuo, Huijun; Jia, Jingjing; Tang, Lin
2017-08-01
The purpose of this study was to explore the effect of residue tetracycline hydrochloride (TCH) in milk on molecular structure and activity of β-Gal. Inhibition kinetics assay showed the TCH inhibited β-Gal activity reversibly in a competitive manner. In addition, differences in the activity of β-Gal in the absence and presence of TCH as a function of pH and temperature were found although the optimum pH and temperature of β-Gal remained similar. Fluorescence experiment results showed that TCH effectively quenched the intrinsic fluorescence of β-Gal via static quenching. Thermodynamic parameters delineated the major roles of electrostatic forces played between β-Gal and TCH. Additionally, synchronous fluorescence and circular dichroism spectra (CD spectra) results indicated the secondary structure of β-Gal was changed due to the formation of β-Gal-TCH complexes. The molecular docking further revealed that TCH interacted with some amino acid residues of β-Gal, affecting the active site of the enzyme and thus leading to change in enzyme activity. These alterations in conformation and activity of β-Gal should be taken into consideration while using β-Gal for producing oligosaccharide prebiotics on dairy industries.
Puchalska, Patrycja; Concepción García, M; Luisa Marina, M
2014-08-15
This work evaluates, the presence of native antihypertensive peptides in five soybean-based infant formulas (SBIFs). SBIFs peptide extracts (<10 kDa) and their sub-fractions (5-10 kDa, 3-5 kDa, and <3 kDa) from a variety of samples were obtained by ultrafiltration and ACE inhibitory activity was determined. The highest activities were observed in the smaller (<5 kDa) peptide fractions. A set of peptides present in various SBIFs were studied, and identified using HPLC-Q-ToF-MS. Despite ACE inhibitory activity decreasing after in vitro gastrointestinal digestion, it still remained at a high value (IC50 values of 18.2±0.1 and 4.9±0.1 μg/mL). Peptides resisting the action of gastrointestinal enzymes were identified and compared to previously identified peptides, highlighting the presence of peptide RPSYT. This peptide was synthesised, its antihypertensive and antioxidant activity were evaluated, and its resistance to in vitro gastrointestinal digestion and to high processing temperatures were studied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ben-Zeev, Osnat; Doolittle, Mark H
2004-02-13
Among three lipases in the lipase gene family, hepatic lipase (HL), lipoprotein lipase, and pancreatic lipase, HL exhibits the lowest intracellular specific activity (i.e. minimal amounts of catalytic activity accompanied by massive amounts of inactive lipase mass in the endoplasmic reticulum (ER)). In addition, HL has a distinctive sedimentation profile, where the inactive mass overlaps the region containing active dimeric HL and trails into progressively larger molecular forms. Eventually, at least half of the HL inactive mass in the ER reaches an active, dimeric conformation (t(1/2) = 2 h) and is rapidly secreted. The remaining inactive mass is degraded. HL maturation occurs in the ER and is strongly dependent on binding to calnexin in the early co-/post-translational stages. Later stages of HL maturation occur without calnexin assistance, although inactive HL at all stages appears to be associated in distinct complexes with other ER proteins. Thus, unlike other lipases in the gene family, HL maturation is the rate-limiting step in its secretion as a functional enzyme.
Warkentin, Theodore E; Sheppard, Jo-Ann I; Chu, F Victor; Kapoor, Anil; Crowther, Mark A; Gangji, Azim
2015-01-01
Repeated therapeutic plasma exchange (TPE) has been advocated to remove heparin-induced thrombocytopenia (HIT) IgG antibodies before cardiac/vascular surgery in patients who have serologically-confirmed acute or subacute HIT; for this situation, a negative platelet activation assay (eg, platelet serotonin-release assay [SRA]) has been recommended as the target serological end point to permit safe surgery. We compared reactivities in the SRA and an anti-PF4/heparin IgG-specific enzyme immunoassay (EIA), testing serial serum samples in a patient with recent (subacute) HIT who underwent serial TPE precardiac surgery, as well as for 15 other serially-diluted HIT sera. We observed that post-TPE/diluted HIT sera-when first testing SRA-negative-continue to test strongly positive by EIA-IgG. This dissociation between the platelet activation assay and a PF4-dependent immunoassay for HIT antibodies indicates that patients with subacute HIT undergoing repeated TPE before heparin reexposure should be tested by serial platelet activation assays even when their EIAs remain strongly positive. © 2015 by The American Society of Hematology.
Henningsson, S; Persson, L; Rosengren, E
1979-02-01
The effects of methylglyoxal bis(guanylhydrazone) on S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50) activity were studied in the mouse kidney stimulated to growth by testosterone administration. The drug was found a potent inhibitor of the enzyme in vitrol Administration of methylglyoxal bis(guanylhydrazone) in vivo resulted in a transient inhibition followed by a strong enhancement of the enzyme activity. Dialysis of the kidney extract, to remove remaining methylglyoxal bis(guanylhydrazone), revealed a great and rapid increase in the activity of S-adenosyl-L-methionine decarboxylase. Injections of testosterone to castrated mice resulted in a marked increase in kidney weight and an accumulation of renal putrescine, spermidine and spermine. These effects of testosterone could not be blocked by simultaneous injections of methylglyoxal bis(guanylhydrazone). It appears that due to secondary effects by which the inhibition of methylglyoxal bis(guanylhydrazone) on S-adenosyl-L-methionine decarboxylase activity is circumvented the inhibitor seems to be of uncertain value in attempts to decrease selectively the in vivo levels of polyamines.
Małecki, Jędrzej; Jakobsson, Magnus E; Ho, Angela Y Y; Moen, Anders; Rustan, Arild C; Falnes, Pål Ø
2017-10-27
Lysine methylation is an important and much-studied posttranslational modification of nuclear and cytosolic proteins but is present also in mitochondria. However, the responsible mitochondrial lysine-specific methyltransferases (KMTs) remain largely elusive. Here, we investigated METTL12, a mitochondrial human S -adenosylmethionine (AdoMet)-dependent methyltransferase and found it to methylate a single protein in mitochondrial extracts, identified as citrate synthase (CS). Using several in vitro and in vivo approaches, we demonstrated that METTL12 methylates CS on Lys-395, which is localized in the CS active site. Interestingly, the METTL12-mediated methylation inhibited CS activity and was blocked by the CS substrate oxaloacetate. Moreover, METTL12 was strongly inhibited by the reaction product S -adenosylhomocysteine (AdoHcy). In summary, we have uncovered a novel human mitochondrial KMT that introduces a methyl modification into a metabolic enzyme and whose activity can be modulated by metabolic cues. Based on the established naming nomenclature for similar enzymes, we suggest that METTL12 be renamed CS-KMT (gene name CSKMT ). © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
A parts list for fungal cellulosomes revealed by comparative genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haitjema, Charles H.; Gilmore, Sean P.; Henske, John K.
Cellulosomes are large, multi-protein complexes that tether plant biomass degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria where species specific dockerin domains mediate assembly of enzymes onto complementary cohesin motifs interspersed within non-catalytic protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic protein-scale pathways2,3. For decades, analogous structures have been reported in the early branching anaerobic fungi, which are known to assemble by sequence divergent non-catalytic dockerin domains (NCDD)4. However, the enzyme components, modular assembly mechanism, and functional role of fungal cellulosomesmore » remain unknown5,6. Here, we describe the comprehensive set of proteins critical to fungal cellulosome assembly, including novel, conserved scaffolding proteins unique to the Neocallimastigomycota. High quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single molecule technology to overcome their repeat-richness and extremely low GC content. Genomic analysis coupled with proteomic validation revealed an average 320 NCDD-containing proteins per fungal strain that were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across 4 genera that contain a conserved amino acid sequence repeat that binds to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. Though many catalytic domains are shared with bacteria, the biocatalytic activity of anaerobic fungi is expanded by the inclusion of GH3, GH6, and GH45 enzymes in the enzyme complexes. Collectively, these findings suggest that the fungal cellulosome is an evolutionarily chimeric structure – an independently evolved fungal complex that co-opted useful activities from bacterial neighbors within the gut microbiome.« less
Characterisation of methionine adenosyltransferase from Mycobacterium smegmatis and M. tuberculosis
Berger, Bradley J; Knodel, Marvin H
2003-01-01
Background Tuberculosis remains a serious world-wide health threat which requires the characterisation of novel drug targets for the development of future antimycobacterials. One of the key obstacles in the definition of new targets is the large variety of metabolic alterations that occur between cells in the active growth and chronic/dormant phases of tuberculosis. The ideal biochemical target should be active in both growth phases. Methionine adenosyltransferase, which catalyses the formation of S-adenosylmethionine from methionine and ATP, is involved in polyamine biosynthesis during active growth and is also required for the methylation and cyclopropylation of mycolipids necessary for survival in the chronic phase. Results The gene encoding methionine adenosyltransferase has been cloned from Mycobacterium tuberculosis and the model organism M. smegmatis. Both enzymes retained all amino acids known to be involved in catalysing the reaction. While the M. smegmatis enzyme could be functionally expressed, the M. tuberculosis homologue was insoluble and inactive under a large variety of expression conditions. For the M. smegmatis enzyme, the Vmax for S-adenosylmethionine formation was 1.30 μmol/min/mg protein and the Km for methionine and ATP was 288 μM and 76 μM respectively. In addition, the enzyme was competitively inhibited by 8-azaguanine and azathioprine with a Ki of 4.7 mM and 3.7 mM respectively. Azathioprine inhibited the in vitro growth of M. smegmatis with a minimal inhibitory concentration (MIC) of 500 μM, while the MIC for 8-azaguanine was >1.0 mM. Conclusion The methionine adenosyltransferase from both organisms had a primary structure very similar those previously characterised in other prokaryotic and eukaryotic organisms. The kinetic properties of the M. smegmatis enzyme were also similar to known prokaryotic methionine adenosyltransferases. Inhibition of the enzyme by 8-azaguanine and azathioprine provides a starting point for the synthesis of higher affinity purine-based inhibitors. PMID:12809568
Mhuantong, Wuttichai; Charoensawan, Varodom; Kanokratana, Pattanop; Tangphatsornruang, Sithichoke; Champreda, Verawat
2015-01-01
As one of the most abundant agricultural wastes, sugarcane bagasse is largely under-exploited, but it possesses a great potential for the biofuel, fermentation, and cellulosic biorefinery industries. It also provides a unique ecological niche, as the microbes in this lignocellulose-rich environment thrive in relatively high temperatures (50°C) with varying microenvironments of aerobic surface to anoxic interior. The microbial community in bagasse thus presents a good resource for the discovery and characterization of new biomass-degrading enzymes; however, it remains largely unexplored. We have constructed a fosmid library of sugarcane bagasse and obtained the largest bagasse metagenome to date. A taxonomic classification of the bagasse metagenome reviews the predominance of Proteobacteria, which are also found in high abundance in other aerobic environments. Based on the functional characterization of biomass-degrading enzymes, we have demonstrated that the bagasse microbial community benefits from a large repertoire of lignocellulolytic enzymes, which allows them to digest different components of lignocelluoses into single molecule sugars. Comparative genomic analyses with other lignocellulolytic and non-lignocellulolytic metagenomes show that microbial communities are taxonomically separable by their aerobic "open" or anoxic "closed" environments. Importantly, a functional analysis of lignocellulose-active genes (based on the CAZy classifications) reveals core enzymes highly conserved within the lignocellulolytic group, regardless of their taxonomic compositions. Cellulases, in particular, are markedly more pronounced compared to the non-lignocellulolytic group. In addition to the core enzymes, the bagasse fosmid library also contains some uniquely enriched glycoside hydrolases, as well as a large repertoire of the newly defined auxiliary activity proteins. Our study demonstrates a conservation and diversification of carbohydrate-active genes among diverse microbial species in different biomass-degrading niches, and signifies the importance of taking a global approach to functionally investigate a microbial community as a whole, as compared to focusing on individual organisms.
PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS
Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.
2013-01-01
Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, J.S.; Saikatendu, K.S.; Subramanian, V.
Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn{sup 2+}-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335)more » determined to a resolution of 2.9 Angstroms. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by {approx}120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.« less
Assessment of environmental factors affecting male fertility
Dixon, R. L.; Sherins, R. J.; Lee, I. P.
1979-01-01
Exposure to drinking water containing as much as 500 ppm aluminum chloride for periods of 30, 60, and 90 days had no apparent effect on male reproductive processes. In an attempt to correlate enzyme activity with particular spermatogenic cell types, postnatal development of testicular enzymes was studied. Eight enzymes were selected: hyaluronidase (H), lactate dehydrogenase isoenzyme-X (LDH-X), dehydrogenases of sorbitol (SDH), α-glycerophosphate (GPDH), glucose-6-phosphate (G6PDH), malate (MDH), glyceraldehyde-3-phosphate (G3PDH), and isocitrate (ICDH). Enzyme specific activities in testicular homogenates were determined. Two types of enzyme developmental patterns were observed. One was represented by H, LDH-X, SDH, and GPDH; and the other by G6PDH, MDH, G3PDH, and ICDH. The former was characterized by a change in enzyme activities from low in newborn to high in adult while in the latter this pattern was reversed. The two complementary enzyme systems crossed each other at puberty. Prior to puberty, only spermatogonial cells are present; sperm differentiation initiated at puberty adds spermatocytes and spermatids to the testicular cell population. Male rats were exposed to borax in their diet for periods of 30 and 60 days. Concentrations of boron were 0, 500, 1000, and 2000 ppm. At the end of each experimental period, the specific activities of the selected enzymes were determined in the testis and prostate. Correlations of enzyme activity with testicular histology and androgen activities of the male accessory organs were sought. In addition, plasma FSH, LH, and testosterone levels were measured to assess pituitary-testicular interaction. Plasma and testicular boron concentrations were determined and a minimum boron concentration which induced germinal aplasia and male infertility was estimated. In both 30 and 60 day feeding studies, male rats receiving 500 ppm failed to demonstrate any significant adverse effects. In contrast, male rats receiving 100 and 2000 ppm boron displayed a significant loss of germinal elements, although most of the Leydig and Sertoli cells appeared normal. Testicular atrophy was associated with a decrease in seminiferous tubular diameter and a marked reduction of spermatocytes and spermatogenic cells. These morphologic alterations were associated with a concomitant reduction of H, SDH, and LDH-X specific activities. In contrast, the specific activities of G3PDH and MDH were significantly elevated above control. The increase in these enzyme activities can be attributed to the relative enrichment of spermatogonial cells during the loss of spermatocytes and spermiogenic cells. Boron-induced male germinal aplasia was also associated with significantly elevated plasma FSH while plasma LH and testosterone levels were not significantly altered. Plasma testosterone levels were unaltered. Male fertility studies demonstrated that at the 500 ppm boron level, fertility was unaffected. However, at 1000 and 2000 ppm boron, male fertility was significantly reduced. Most effects were reversible within 5 weeks. However, the male group receiving 2000 ppm boron for 60 days remained sterile. There was no dose-related decrease in litter size or fetal death in utero. Therefore, the boron-induced infertility was apparently not due to a dominant lethal effect but rather to germinal aplasia. Boron appears toxic to spermatogenic cells at testicular concentrations of 6–8 ppm. ImagesFIGURE 6.FIGURE 9. PMID:446458
Hobdey, Sarah E.; Knott, Brandon C.; Momeni, Majid Haddad; ...
2016-04-01
Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes often employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7Amore » and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7A CBM and DpuCel7A CBM, which were recombinantly expressed in T. reesei. DdiCel7A CBM and DpuCel7A CBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The K i of cellobiose was significantly higher for DdiCel7A CBM and DpuCel7A CBM than for TreCel7A: 205, 130, and 29 μM, respectively. Finally, taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobdey, Sarah E.; Knott, Brandon C.; Momeni, Majid Haddad
Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes often employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7Amore » and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7A CBM and DpuCel7A CBM, which were recombinantly expressed in T. reesei. DdiCel7A CBM and DpuCel7A CBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The K i of cellobiose was significantly higher for DdiCel7A CBM and DpuCel7A CBM than for TreCel7A: 205, 130, and 29 μM, respectively. Finally, taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life.« less
Smith, Clyde A; Toth, Marta; Weiss, Thomas M; Frase, Hilary; Vakulenko, Sergei B
2014-10-01
Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and enterococcal pathogens is primarily conferred by the bifunctional enzyme AAC(6')-Ie-APH(2'')-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6')-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2'')-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2'')-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6')-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6')-Ie enzyme is joined to APH(2'')-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2'')-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6')-Ie-APH(2'')-Ia enzyme.
Gunawan, Christa; Xue, Saisi; Pattathil, Sivakumar; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh
2017-01-01
Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomers after hydrolysis (72 h) with excess commercial enzyme loading (20 mg enzymes/g biomass). Nearly one third (7 out of 22%) of these total unconverted carbohydrates are present in unhydrolyzed solid (UHS) residues. The presence of these unconverted carbohydrates leads to a considerable sugar yield loss, which negatively impacts the overall economics of the biorefinery. Current commercial enzyme cocktails are not effective to digest specific cross-linkages in plant cell wall glycans, especially some of those present in hemicelluloses and pectins. Thus, obtaining information about the most recalcitrant non-cellulosic glycan cross-linkages becomes a key study to rationally improve commercial enzyme cocktails, by supplementing the required enzyme activities for hydrolyzing those unconverted glycans. In this work, cell wall glycans that could not be enzymatically converted to monomeric sugars from AFEX-pretreated corn stover (CS) were characterized using compositional analysis and glycome profiling tools. The pretreated CS was hydrolyzed using commercial enzyme mixtures comprising cellulase and hemicellulase at 7% glucan loading (~20% solid loading). The carbohydrates present in UHS and liquid hydrolysate were evaluated over a time period of 168 h enzymatic hydrolysis. Cell wall glycan-specific monoclonal antibodies (mAbs) were used to characterize the type and abundance of non-cellulosic polysaccharides present in UHS over the course of enzymatic hydrolysis. 4- O -methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan were found to be the most abundant epitopes recognized by mAbs in UHS and liquid hydrolysate, suggesting that the commercial enzyme cocktails used in this work are unable to effectively target those substituted polysaccharide residues. To our knowledge, this is the first report using glycome profiling as a tool to dynamically monitor recalcitrant cell wall carbohydrates during the course of enzymatic hydrolysis. Glycome profiling of UHS and liquid hydrolysates unveiled some of the glycans that are not cleaved and enriched after enzyme hydrolysis. The major polysaccharides include 4- O -methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan, suggesting that enzymes with glucuronidase and arabinofuranosidase activities are required to maximize monomeric sugar yields. This methodology provides a rapid tool to assist in developing new enzyme cocktails, by supplementing the existing cocktails with the required enzyme activities for achieving complete deconstruction of pretreated biomass in the future.
Confronting the catalytic dark matter encoded by sequenced genomes
Ellens, Kenneth W.; Christian, Nils; Singh, Charandeep; Satagopam, Venkata P.
2017-01-01
Abstract The post-genomic era has provided researchers with a deluge of protein sequences. However, a significant fraction of the proteins encoded by sequenced genomes remains without an identified function. Here, we aim at determining how many enzymes of uncertain or unknown function are still present in the Saccharomyces cerevisiae and human proteomes. Using information available in the Swiss-Prot, BRENDA and KEGG databases in combination with a Hidden Markov Model-based method, we estimate that >600 yeast and 2000 human proteins (>30% of their proteins of unknown function) are enzymes whose precise function(s) remain(s) to be determined. This illustrates the impressive scale of the ‘unknown enzyme problem’. We extensively review classical biochemical as well as more recent systematic experimental and computational approaches that can be used to support enzyme function discovery research. Finally, we discuss the possible roles of the elusive catalysts in light of recent developments in the fields of enzymology and metabolism as well as the significance of the unknown enzyme problem in the context of metabolic modeling, metabolic engineering and rare disease research. PMID:29059321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Lindsey N.; Culley, David E.; Hofstad, Beth A.
2013-12-01
Development of alternative, non-petroleum based sources of bioenergy that can be applied in the short-term find great promise in the use of highly abundant and renewable lignocellulosic plant biomass.1 This material obtained from different feedstocks, such as forest litter or agricultural residues, can yield liquid fuels and other chemical products through biorefinery processes.2 Biofuels are obtained from lignocellulosic materials by chemical pretreatment of the biomass, followed by enzymatic decomposition of cellulosic and hemicellulosic compounds into soluble sugars that are converted to desired chemical products via microbial metabolism and fermentation.3, 4 To release soluble sugars from polymeric cellulose multiple enzymes aremore » required, including endoglucanase, exoglucanase, and β-glucosidase.5, 6 However, the enzymatic hydrolysis of cellulose into soluble sugars remains a significant limiting factor to the efficient and economically viable utilization of lignocellulosic biomass for transport fuels.7, 8 The primary industrial source of cellulose and hemicellulases is the mesophilic soft-rot fungus Trichoderma reesei,9 having widespread applications in food, feed, textile, pulp, and paper industries.10 The genome encodes 200 glycoside hydrolases, including 10 cellulolytic and 16 hemicellulolytic enzymes.11 The hypercellulolytic catabolite derepressed strain RUT-C30 was obtained through a three-step UV and chemical mutagenesis of the original T. reesei strain QM6a,12, 13 in which strains M7 and NG14 were intermediate, having higher cellulolytic activity than the parent strain but less activity and higher catabolite repression than RUT-C30.14 Numerous methods have been employed to optimize the secreted enzyme cocktail of T. reesei including cultivation conditions, operational parameters, and mutagenesis.3 However, creating an optimal and economical enzyme mixture for production-scale biofuels synthesis may take thousands of experiments to identify.« less
Borg, K; Henriksson, J
1991-01-01
Capillary supply and oxidative and glycolytic enzyme activities were determined in muscle biopsies from the tibialis anterior muscle in six prior polio patients and a control group. The polio patients, who had paresis and atrophy, but were able to walk normally by making maximal use of all remaining anterior tibial motor units, showed type I (slow-twitch) muscle fibre predominance with a mean (SD) of 98 (2%) type I fibres versus 81 (8)% in the controls (p less than 0.01) and muscle fibre hypertrophy, the average type I fibre cross-sectional area being 108% (p less than 0.005) larger than in the controls. The number of capillaries per muscle fibre was not significantly different from that in the control group, but with the increased muscle fibre area in the polio patients, the capillary density was significantly lower. The number of capillaries in contact with type I fibres relative to fibre area was 40% lower in the patients than in the controls (p less than 0.005). The levels of citrate synthase and phosphofructokinase were significantly lower (38% and 33%, respectively, p less than 0.05) in the patients than in the controls, indicating decreased oxidative and glycolytic potentials in the muscle fibres of the polio patients. It is proposed that the abnormal high-frequency activation of all remaining motor units during each step cycle recorded in these patients constitutes a stimulus for type I muscle fibre predominance and hypertrophy but that the overall low muscle usage results in a decreased stimulation of capillary proliferation and mitochondrial enzyme synthesis. The low capillary density and decreased oxidative and glycolytic enzyme potentials might be important factors for the development of muscle weakness, fatigue and muscle pain, which are commonly occurring symptoms in patients with prior poliomyelitis. PMID:2030351
"Trojan Horse" strategy for deconstruction of biomass for biofuels production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann
2008-08-01
Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze themore » cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.« less
Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.
2002-01-01
α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586
Sánchez-Fayos Calabuig, P; Martín Relloso, M Jesús; González Guirado, Agustina; Porres Cubero, Juan Carlos
2007-01-01
The exocrine pancreas is a functionally dangerous structure since it is exposed to digestion by its most aggressive enzymes (proteases, etc) despite self-protective measures such as the synthesis of some of these enzymes in the form of inactive zymogens (trypsinogen, etc.). We review inflammatory pancreatic disease by separately analyzing its classical forms of onset: acute and chronic pancreatitis (AP and CP). There is general consensus that the initial pathogenic event in AP is intraacinar activation of trypsinogen into trypsin, followed by that of the remaining proenzymes, giving rise to an unusual model of autophagic inflammation. In contrast, consensus is lacking on the initial pathogenic event in CP (toxic-metabolic lesion, oxidative stress, ductal hypertension, etc.?), although in some cases a
AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.
González-Leiza, Silvia M; de Pedro, Miguel A; Ayala, Juan A
2011-12-01
In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.
AmpH, a Bifunctional dd-Endopeptidase and dd-Carboxypeptidase of Escherichia coli▿
González-Leiza, Silvia M.; de Pedro, Miguel A.; Ayala, Juan A.
2011-01-01
In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display dd-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional dd–endopeptidase and dd-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (kcat/Km) of 1,200 M−1 s−1 and 670 M−1 s−1, respectively, and removed the terminal d-alanine from muropeptides with a C-terminal d-Ala-d-Ala dipeptide. Both dd-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10−3 nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the dd-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling. PMID:22001512
Chen, Yaozong; Li, Tin Lok; Lin, Xingbang; Li, Xin; Li, Xiang David; Guo, Zhihong
2017-07-21
o -Succinylbenzoyl-CoA (OSB-CoA) synthetase (MenE) is an essential enzyme in bacterial vitamin K biosynthesis and an important target in the development of new antibiotics. It is a member of the adenylating enzymes (ANL) family, which reconfigure their active site in two different active conformations, one for the adenylation half-reaction and the other for a thioesterification half-reaction, in a domain-alternation catalytic mechanism. Although several aspects of the adenylating mechanism in MenE have recently been uncovered, its thioesterification conformation remains elusive. Here, using a catalytically competent Bacillus subtilis mutant protein complexed with an OSB-CoA analogue, we determined MenE high-resolution structures to 1.76 and 1.90 Å resolution in a thioester-forming conformation. By comparison with the adenylation conformation, we found that MenE's C-domain rotates around the Ser-384 hinge by 139.5° during domain-alternation catalysis. The structures also revealed a thioesterification active site specifically conserved among MenE orthologues and a substrate-binding mode distinct from those of many other acyl/aryl-CoA synthetases. Of note, using site-directed mutagenesis, we identified several residues that specifically contribute to the thioesterification half-reaction without affecting the adenylation half-reaction. Moreover, we observed a substantial movement of the activated succinyl group in the thioesterification half-reaction. These findings provide new insights into the domain-alternation catalysis of a bacterial enzyme essential for vitamin K biosynthesis and of its adenylating homologues in the ANL enzyme family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Cheng, Lailiang
2012-01-01
Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates. PMID:22412983
Meta-analysis of expression and function of neprilysin in Alzheimer's disease.
Zhang, Huifeng; Liu, Dan; Wang, Yixing; Huang, Huanhuan; Zhao, Yujia; Zhou, Hui
2017-09-14
Neprilysin (NEP) is one of the most important Aβ-degrading enzymes, and its expression and activity in Alzheimer's brain have been widely reported, but the results remain debatable. Thus, the meta-analysis was performed to elucidate the role of NEP in Alzheimer's disease (AD). The relevant case-control or cohort studies were retrieved according to our inclusion/exclusion criteria. Six studies with 123 controls and 141 AD cases, seven studies with 102 controls and 90 AD cases, and four studies with 93 controls and 132 AD cases were included in meta-analysis of NEP's protein, mRNA, and enzyme activity respectively. We conducted Meta regression to detect the sources of heterogeneity and further performed cumulative meta-analysis or subgroup analysis. Our meta-analysis revealed a significantly lower level of NEP mRNA (SMD=-0.44, 95%CI: -0.87, -0.00, p=0.049) in AD cases than in non-AD cases, and such pattern was not altered over time in the cumulative meta-analysis. However, the decrease of NEP protein (SMD=-0.18, 95%CI: -0.62, 0.25) and enzyme activity (SMD=-0.35, 95%CI: -1.03, 0.32) in AD cases did not pass the significance check, while the cumulative meta-analysis by average age showed the pooled effect became insignificant as adding the studies with younger subjects, which indicates that the protein expression and enzyme activity of NEP in the cortex are affected by age. Therefore, the present meta-analysis suggests the need of further investigation of roles of NEP in AD pathogenesis and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, Kaori; Uno, Shigeyuki; Seki, Taiichiro
Benzo[a]pyrene (BaP), a polyaromatic hydrocarbon produced by the combustion of cigarettes and coke ovens, is a known procarcinogen. BaP activates the aryl hydrocarbon receptor (AhR) and induces the expression of a battery of genes, including CYP1A1, which metabolize BaP to toxic compounds. The possible role of CYP1 enzymes in mediating BaP detoxification or metabolic activation remains to be elucidated. In this study, we assessed the effects of CYP1 enzymes (CYP1A1, CYP1A2 and CYP1B1) on BaP-induced AhR transactivation and DNA adduct formation in HEK293 cells and HepG2 cells. Transfection of CYP1A1 and CYP1B1, but not CYP1A2, suppressed BaP-induced activation of AhR.more » Expression of CYP1A1 and CYP1A2, but not CYP1B1, inhibited DNA adduct formation in BaP-treated HepG2 cells. These results indicate that CYP1A1 and CYP1B1 play a role in deactivation of BaP on AhR and that CYP1A1 and CYP1A2 are involved in BaP detoxification by suppressing DNA adduct formation. BaP treatment did not induce DNA adduct formation in HEK293 cells, even after transfection of CYP1 enzymes, suggesting that expression of CYP1 enzymes is not sufficient for DNA adduct formation. Lower expression of epoxide hydrolase and higher expression of glutathione S-transferase P1 (GSTP1) and GSTM1/M2 were observed in HEK293 cells compared with HepG2 cells. Dynamic expression of CYP1A1, CYP1A2 and CYP1B1 along with expression of other enzymes such as epoxide hydrolase and phase II enzymes may determine the detoxification or metabolic activation of BaP.« less
Variations in Nuclear Localization Strategies Among Pol X Family Enzymes.
Kirby, Thomas W; Pedersen, Lars C; Gabel, Scott A; Gassman, Natalie R; London, Robert E
2018-06-22
Despite the essential roles of pol X family enzymes in DNA repair, information about the structural basis of their nuclear import is limited. Recent studies revealed the unexpected presence of a functional NLS in DNA polymerase β, indicating the importance of active nuclear targeting, even for enzymes likely to leak into and out of the nucleus. The current studies further explore the active nuclear transport of these enzymes by identifying and structurally characterizing the functional NLS sequences in the three remaining human pol X enzymes: terminal deoxynucleotidyl transferase (TdT), DNA polymerase μ (pol μ), and DNA polymerase λ (pol λ). NLS identifications are based on Importin α (Impα) binding affinity determined by fluorescence polarization of fluorescein-labeled NLS peptides, X-ray crystallographic analysis of the Impα∆IBB•NLS complexes, and fluorescence-based subcellular localization studies. All three polymerases use NLS sequences located near their N-terminus; TdT and pol μ utilize monopartite NLS sequences, while pol λ utilizes a bipartite sequence, unique among the pol X family members. The pol μ NLS has relatively weak measured affinity for Impα, due in part to its proximity to the N-terminus that limits non-specific interactions of flanking residues preceding the NLS. However, this effect is partially mitigated by an N-terminal sequence unsupportive of Met1 removal by methionine aminopeptidase, leading to a 3-fold increase in affinity when the N-terminal methionine is present. Nuclear targeting is unique to each pol X family enzyme with variations dependent on the structure and unique functional role of each polymerase. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Oyen, David; Fenwick, R Bryn; Aoto, Phillip C; Stanfield, Robyn L; Wilson, Ian A; Dyson, H Jane; Wright, Peter E
2017-08-16
The rate-determining step in the catalytic cycle of E. coli dihydrofolate reductase is tetrahydrofolate (THF) product release, which can occur via an allosteric or an intrinsic pathway. The allosteric pathway, which becomes accessible when the reduced cofactor NADPH is bound, involves transient sampling of a higher energy conformational state, greatly increasing the product dissociation rate as compared to the intrinsic pathway that obtains when NADPH is absent. Although the kinetics of this process are known, the enzyme structure and the THF product conformation in the transiently formed excited state remain elusive. Here, we use side-chain proton NMR relaxation dispersion measurements, X-ray crystallography, and structure-based chemical shift predictions to explore the structural basis of allosteric product release. In the excited state of the E:THF:NADPH product release complex, the reduced nicotinamide ring of the cofactor transiently enters the active site where it displaces the pterin ring of the THF product. The p-aminobenzoyl-l-glutamate tail of THF remains weakly bound in a widened binding cleft. Thus, through transient entry of the nicotinamide ring into the active site, the NADPH cofactor remodels the enzyme structure and the conformation of the THF to form a weakly populated excited state that is poised for rapid product release.
Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots.
Li, Xian; Kushad, Mosbah M
2005-06-01
Myrosinase (beta-thioglucoside glucohydrolase; EC 3.2.3.147) from horseradish (Armoracia rusticana) roots was purified to homogeneity by ammonium sulfate fractionation, Q-sepharose, and concanavalin A sepharose affinity chromatography. The purified protein migrated as a single band with a mass of about 65 kDa on SDS-polyacrylamide gel electrophoresis. Using LC-MS/MS, this band was identified as myrosinase. Western blot analysis, using the anti-myrosinase monoclonal antibody 3D7, showed a single band of about 65 kDa for horseradish crude extract and for the purified myrosinase. The native molecular mass of the purified myrosinase was estimated, using gel filtration, to be about 130 kDa. Based on these data, it appeared that myrosinase from horseradish root consists of two subunits of similar molecular mass of about 65 kDa. The enzyme exhibited high activity at broad pH (pH 5.0-8.0) and temperature (37 and 45 degrees C). The purified enzyme remained stable at 4 degrees C for more than 1 year. Using sinigrin as a substrate, the Km and Vmax values for the purified enzyme were estimated to be 0.128 mM and 0.624 micromol min(-1), respectively. The enzyme was strongly activated by 0.5 mM ascorbic acid and was able to breakdown intact glucosinolates in a crude extract of broccoli.
Lee, Hyeran; Akers, Walter J; Cheney, Philip P; Edwards, W Barry; Liang, Kexian; Culver, Joseph P; Achilefu, Samuel
2009-01-01
Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with (64)Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters k(cat) and K(M) of 0.55+/-0.01 s(-1) and 1.12+/-0.06 microM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled (64)Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.
NASA Astrophysics Data System (ADS)
Lee, Hyeran; Akers, Walter J.; Cheney, Philip P.; Edwards, W. Barry; Liang, Kexian; Culver, Joseph P.; Achilefu, Samuel
2009-07-01
Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with 64Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters kcat and KM of 0.55+/-0.01 s-1 and 1.12+/-0.06 μM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled 64Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.
Gu, Yang; Lewis, David F; Alexander, J Steven; Wang, Yuping
2017-12-01
Chymase is an ACE (angiotensin-converting enzyme)-independent angiotensin II-forming enzyme whose expression is increased in the maternal vascular endothelium in preeclampsia. However, mechanisms underlying chymase activation in preeclampsia remain unclear. Cathepsin C is a key enzyme in the activation of several serine proteases including chymase. In this study, we determined whether increased cathepsin C expression/activity might be responsible for the upregulation of chymase expression in preeclampsia. Maternal vascular cathepsin C, chymase and ACE expression were examined through immunohistochemical staining of subcutaneous fat tissue sections of normal and preeclamptic pregnant women. The role of cathepsin C in endothelial chymase and ACE expression was determined in cells treated with cathepsin C. Consequences of chymase activation were then determined by measurement of angiotensin II production in cells treated with the ACE inhibitor captopril and the chymase inhibitor chymostatin, separately and in combination. Expression of both cathepsin C and chymase, but not ACE expression, was markedly increased in the maternal vascular endothelium in subjects with preeclampsia compared with normal pregnant controls. Exogenous cathepsin C induced a dose-dependent increase in expression of mature cathepsin C and chymase, but not ACE, in endothelial cells. Moreover, angiotensin II production was significantly inhibited in cells treated with captopril or chymostatin alone and was further inhibited in cells treated with both inhibitors. These results suggest that cathepsin C upregulation induces chymase activation and subsequently promotes angiotensin II generation in endothelial cells. These data also provide evidence of upregulation of the cathepsin C-chymase-angiotensin signaling axis in maternal vasculature in preeclampsia.
Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei
2017-09-16
The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.
Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; Bourassa, Megan W.; Sleiman, Sama F.; John, Roseleen; Thinnes, Cyrille C.; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W.; Morgenstern, Lewis; Xi, Guohua; Keep, Richard F.; Schallert, Timothy; Tappero, Ryan V.; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R.; Holman, Theodore R.; Culmsee, Carsten; Fong, Guo-Hua; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W.; Schofield, Christopher J.; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R.
2017-01-01
Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models. PMID:26936506
Patel, Parth; Gupta, Neha; Gaikwad, Sushama; Agrawal, Dinesh C; Khan, Bashir M
2014-02-01
Cinnamyl alcohol dehydrogenase is a broad substrate specificity enzyme catalyzing the final step in monolignol biosynthesis, leading to lignin formation in plants. Here, we report characterization of a recombinant CAD homologue (LlCAD2) isolated from Leucaena leucocephala. LlCAD2 is 80 kDa homo-dimer associated with non-covalent interactions, having substrate preference toward sinapaldehyde with Kcat/Km of 11.6×10(6) (M(-1) s(-1)), and a possible involvement of histidine at the active site. The enzyme remains stable up to 40 °C, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 0.002 and 5h, respectively. LlCAD2 showed optimal activity at pH 6.5 and 9 for reduction and oxidation reactions, respectively, and was stable between pH 7 and 9, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 7.5×10(-4) and 15 h, respectively. It is a Zn-metalloenzyme with 4 Zn(2+) per dimer, however, was inhibited in presence of externally supplemented Zn(2+) ions. The enzyme was resistant to osmolytes, reducing agents and non-ionic detergents. Copyright © 2013 Elsevier B.V. All rights reserved.
Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej
2017-01-01
The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds. PMID:28926960
Wang, Yuxia; Xu, Yan; Li, Jiming
2012-08-01
The production and application of novel β-glucosidase from Trichosporon asahii were studied. The β-glucosidase yield was improved by response surface methodology, and the optimal media constituents were determined to be dextrin 4.67% (w/v), yeast extract 2.99% (w/v), MgSO(4) 0.01% (w/v), and K(2) HPO(4) 0.02% (w/v). As a result, β-glucosidase production was enhanced from 123.72 to 215.66 U/L. The effects of different enological factors on the activity of β-glucosidases from T. asahii were investigated in comparison to commercial enzymes. β-Glucosidase from T. asahii was activated in the presence of sugars in the range from 10% to 40% (w/v), with the exception of glucose (slight inhibition), and retained higher relative activities than commercial enzymes under the same conditions. In addition, ethanol, in concentrations between 5% and 20% (v/v), also increased the β-glucosidase activity. Although the β-glucosidase activity decreased with decreasing pH, the residual activity of T. asahii was still above 50% at the average wine pH (pH 3.5). Due to these properties, extracellular β-glucosidase from T. asahii exhibited a better ability than commercial enzymes in hydrolyzing aromatic precursors that remained in young finished wine. The excellent performs of this β-glucosidase in wine aroma enhancement and sensory evaluation indicated that the β-glucosidase has a potential application to individuate suitable preparations that can complement and optimize grape or wine quality during the winemaking process or in the final wine. The present study demonstrated the usefulness of response surface methodology based on the central composite design for yield enhancement of β-glucosidase from T. asahii. The investigation of the primary characteristics of the enzyme and its application in young red wine suggested that the β-glucosidase from T. asahii can provide more impetus for aroma improvement in the future. © 2012 Institute of Food Technologists®
Chen, Huilun; Zhuang, Rensheng; Yao, Jun; Wang, Fei; Qian, Yiguang; Masakorala, Kanaji; Cai, Minmin; Liu, Haijun
2014-01-01
The accidents of aniline spill and explosion happened almost every year in China, whereas the toxic effect of aniline on soil microbial activity remained largely unexplored. In this study, isothermal microcalorimetric technique, glucose analysis, and soil enzyme assay techniques were employed to investigate the toxic effect of aniline on microbial activity in Chinese soil for the first time. Soil samples were treated with aniline from 0 to 2.5 mg/g soil to tie in with the fact of aniline spill. Results from microcalorimetric analysis showed that the introduction of aniline had a significant adverse effect on soil microbial activity at the exposure concentrations ≥0.4 mg/g soil (p < 0.05) and ≥0.8 mg/g soil (p < 0.01), and the activity was totally inhibited when the concentration increased to 2.5 mg/g soil. The glucose analysis indicated that aniline significantly decreased the soil microbial respiratory activity at the concentrations ≥0.8 mg/g soil (p < 0.05) and ≥1.5 mg/g soil (p < 0.01). Soil enzyme activities for β-glucosidase, urease, acid-phosphatase, and dehydrogenase revealed that aniline had a significant effect (p < 0.05) on the nutrient cycling of C, N, and P as well as the oxidative capacity of soil microorganisms, respectively. All of these results showed an intensively toxic effect of aniline on soil microbial activity. The proposed methods can provide toxicological information of aniline to soil microbes from the metabolic and biochemical point of views which are consistent with and correlated to each other.
Fatahinia, M; Halvaeezadeh, M; Rezaei-Matehkolaei, A
2017-06-01
Comparing the activities of secreted enzymes in different fungal species can improve our understanding of their pathogenic role. Secretion of various enzymes by Candida species has been considered for determination of their virulence in different Candida infections including vulvovaginitis. The aim of this study was to determine and compare the activity of secreted enzymes in Candidia strains isolated from women suspected to vulvovaginal candidiasis (VVC) and referred to some health centers in Khuzestan, Southwestern Iran. The vaginal secretion samples were taken by swap from 250 suspected women with symptoms of vulvovaginal candidiasis and cultured on CHROMagar Candida medium. Identification of the isolated Candida from culture positive samples performed by the color of colonies and some standard mycological procedures. Activities of phospholipase, hemolysin-α, hemolysin-β, esterase and proteinase were measured in vitro by standard laboratory protocols. The enzymatic activity index (EAI) was calculated for each enzyme in accordance to relevant protocols. Totally in eighty cases (32%), a Candida strain was isolated which found to be as 52 (65%) Candida albicans; 12 (15%) C. glabrata; 10 (12.5%) C. dubliniensis; 4 (5%) C. krusei, C. tropicalis and C. parapsilosis species (each=1; 1.3%). Among C. albicans strains, 89.1% produced all studied enzymes, while 86% of C. glabrata strains failed to produce proteinase and phospholipase. The EAIs in decreasing order were as hemolysin-β=0.2895, hemolysin-α=0.5420, esterase=0.5753, proteinase=0.7413, and phospholipase=0.7446, respectively. Activity of phospholipase, esterase and proteinase secreted by C. albicans and C. dubliniensis were significantly more than those released by C. glabrata and C. krusei, while 86% of C. glabrata strains did not show esterase activity. On the other hand, the activity rates of hemolysin α and β among all studied isolates were almost similar. In the present study, the prevalence of VVC among investigated women was higher than the previous report from Khuzestan but C. albicans has yet remained the predominant agent of VVC in this area. Given to the EAI, the virulence of C. albicans in VVC can be mediated by phospholipase, esterase and proteinases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Qureshi, T M; Vegarud, G E; Abrahamsen, R K; Skeie, S
2013-02-01
The angiotensin I-converting enzyme (ACE) inhibitory activity of Gamalost cheese, its pH 4.6-soluble fraction, and Norvegia cheese was monitored before and after digestion with human gastric and duodenal juices. Both Gamalost and Norvegia cheeses showed an increased ACE-inhibitory activity during gastrointestinal digestion. However, only Norvegia showed pronounced increased activity after duodenal digestion. More peptides were detected in digested Gamalost compared with digested Norvegia. Most of the peptides in Gamalost were derived from β-casein (CN), some originated from α(s1)-CN, and only a very few originated from α(s2)-CN and κ-CN. In general, the number of peptides increased during gastrointestinal digestion, whereas some peptides were further degraded and disappeared; however, surprisingly, a few peptides remained stable. The aromatic amino acids, such as Tyr, Phe, and Trp; the positively charged amino acids (Arg and Lys); and Leu increased after simulated gastrointestinal digestion of Gamalost and Norvegia. After in vitro gastrointestinal digestion, both Gamalost and Norvegia showed high ACE-inhibitory activity, which may contribute in lowering of mild hypertension. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effects of Resource Chemistry on the Composition and Function of Stream Hyporheic Biofilms
Hall, E. K.; Besemer, K.; Kohl, L.; Preiler, C.; Riedel, K.; Schneider, T.; Wanek, W.; Battin, T. J.
2012-01-01
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems. PMID:22347877
Effects of resource chemistry on the composition and function of stream hyporheic biofilms.
Hall, E.K.; Besemer, K.; Kohl, L.; Preiler, C.; Reidel, K.; Schneider, T.; Wanek, W.; Battin, T.J.
2012-01-01
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.
Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide RNA Processing and RNA Detection
East-Seletsky, Alexandra; O’Connell, Mitchell R.; Knight, Spencer C.; Burstein, David; Cate, Jamie H. D.; Tjian, Robert; Doudna, Jennifer A.
2017-01-01
Bacterial adaptive immune systems employ CRISPRs (clustered regularly interspaced short palindromic repeats) and CRISPR-associated (Cas) proteins for RNA-guided nucleic acid cleavage1,2. Although generally targeted to DNA substrates3–5, the Type III and Type VI CRISPR systems direct interference complexes against single-stranded RNA (ssRNA) substrates6–9. In Type VI systems, the single-subunit C2c2 protein functions as an RNA-guided RNA endonuclease9,10. How this enzyme acquires mature CRISPR RNAs (crRNAs) essential for immune surveillance and its mechanism of crRNA-mediated RNA cleavage remain unclear. Here we show that C2c2 possesses a unique ribonuclease activity responsible for CRISPR RNA maturation that is distinct from its RNA-activated ssRNA-degradation activity. These dual ribonuclease functions are chemically and mechanistically different from each other and from the crRNA-processing behavior of the evolutionarily unrelated CRISPR enzyme Cpf111. We show that the two ribonuclease activities of C2c2 enable multiplexed processing and loading of guide RNAs that in turn allow for sensitive cellular transcript detection. PMID:27669025
Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts*
Yoshida, Keisuke; Hara, Satoshi; Hisabori, Toru
2015-01-01
Redox regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of various functions in chloroplasts. Five Trx subtypes have been reported to reside in chloroplasts, but their functional diversity in the redox regulation of Trx target proteins remains poorly clarified. To directly address this issue, we studied the Trx-dependent redox shifts of several chloroplast thiol-modulated enzymes in vitro and in vivo. In vitro assays using a series of Arabidopsis recombinant proteins provided new insights into Trx selectivity for the redox regulation as well as the underpinning for previous suggestions. Most notably, by combining the discrimination of thiol status with mass spectrometry and activity measurement, we identified an uncharacterized aspect of the reductive activation of NADP-malate dehydrogenase; two redox-active Cys pairs harbored in this enzyme were reduced via distinct utilization of Trxs even within a single polypeptide. In our in vitro assays, Trx-f was effective in reducing all thiol-modulated enzymes analyzed here. We then investigated the in vivo physiological relevance of these in vitro findings, using Arabidopsis wild-type and Trx-f-deficient plants. Photoreduction of fructose-1,6-bisphosphatase was partially impaired in Trx-f-deficient plants, but the global impact of Trx-f deficiency on the redox behaviors of thiol-modulated enzymes was not as striking as expected from the in vitro data. Our results provide support for the in vivo functionality of the Trx system and also highlight the complexity and plasticity of the chloroplast redox network. PMID:25878252
Xing, Elizabeth M; Knox, Van W; O'Donnell, Patricia A; Sikura, Tracey; Liu, Yuli; Wu, Susan; Casal, Margret L; Haskins, Mark E; Ponder, Katherine P
2013-06-01
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of β-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term. Copyright © 2013 Elsevier Inc. All rights reserved.
Pigaglio, Emmanuelle; Durand, Nathalie; Meyer, Christian
1999-01-01
It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II. PMID:9880364
Mutational optimization of the coelenterazine-dependent luciferase from Renilla.
Woo, Jongchan; von Arnim, Albrecht G
2008-09-30
Renilla luciferase (RLUC) is a popular reporter enzyme for gene expression and biosensor applications, but it is an unstable enzyme whose catalytic mechanism remains to be elucidated. We titrated that one RLUC molecule can turn over about one hundred molecules of coelenterazine substrate. Mutagenesis of active site residue Pro220 extended the half-life of photon emission, yielding brighter luminescence in E. coli. Random mutagenesis uncovered two new mutations that stabilized and increased photon emission in vivo and in vitro, while ameliorating substrate inhibition. Further amended with a previously identified mutation, a new triple mutant showed a threefold improved kcat, as well as elevated luminescence in Arabidopsis. This advances the utility of RLUC as a reporter protein, biosensor, or resonance energy donor.
Mutational optimization of the coelenterazine-dependent luciferase from Renilla
Woo, Jongchan; von Arnim, Albrecht G
2008-01-01
Renilla luciferase (RLUC) is a popular reporter enzyme for gene expression and biosensor applications, but it is an unstable enzyme whose catalytic mechanism remains to be elucidated. We titrated that one RLUC molecule can turn over about one hundred molecules of coelenterazine substrate. Mutagenesis of active site residue Pro220 extended the half-life of photon emission, yielding brighter luminescence in E. coli. Random mutagenesis uncovered two new mutations that stabilized and increased photon emission in vivo and in vitro, while ameliorating substrate inhibition. Further amended with a previously identified mutation, a new triple mutant showed a threefold improved kcat, as well as elevated luminescence in Arabidopsis. This advances the utility of RLUC as a reporter protein, biosensor, or resonance energy donor. PMID:18826616
Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells.
Bera, Soumen; Wallimann, Theo; Ray, Subhankar; Ray, Manju
2008-12-01
The creatine/creatine kinase system decreases drastically in sarcoma. In the present study, an investigation of catalytic activities, western blot and mRNA expression unambiguously demonstrates the prominent expression of the creatine-synthesizing enzymes l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase in sarcoma, Ehrlich ascites carcinoma and Sarcoma 180 cells, whereas both enzymes were virtually undetectable in normal muscle. Compared to that of normal animals, these enzymes remained unaffected in the kidney or liver of sarcoma-bearing mice. High activity and expression of mitochondrial arginase II in sarcoma indicated increased ornithine formation. Slightly or moderately higher levels of ornithine, guanidinoacetate and creatinine were observed in sarcoma compared to muscle. Despite the intrinsically low level of creatine in Ehrlich ascites carcinoma and Sarcoma 180 cells, these cells could significantly take up and release creatine, suggesting a functional creatine transport, as verified by measuring mRNA levels of creatine transporter. Transcript levels of arginase II, ornithine-decarboxylase, S-adenosyl-homocysteine hydrolase and methionine-synthase were significantly upregulated in sarcoma and in Ehrlich ascites carcinoma and Sarcoma 180 cells. Overall, the enzymes related to creatine and arginine/methionine metabolism were found to be significantly upregulated in malignant cells. However, the low levels of creatine kinase in the same malignant cells do not appear to be sufficient for the building up of an effective creatine/phosphocreatine pool. Instead of supporting creatine biosynthesis, l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase appear to be geared to support cancer cell metabolism in the direction of polyamine and methionine synthesis because both these compounds are in high demand in proliferating cancer cells.
Zhang, Hui
2010-01-01
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or APOBEC3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. However, the cellular function of APOBEC3G remains to be further clarified. It has been reported that APOBEC3s can restrict the mobility of endogenous retroviruses and LTR-retrotransposons, suggesting that they can maintain stability in host genomes. However, APOBEC3G is normally cytoplasmic. Further studies have demonstrated that it is associated with an RNase-sensitive high molecular mass (HMM) and located in processing bodies (P-bodies) of replicating T-cells, indicating that the major cellular function of APOBEC3G seems to be related to P-body-related RNA processing and metabolism. As the function of P-body is closely related to miRNA activity, APOBEC3G could affect the miRNA function. Recent studies have demonstrated that APOBEC3G and its family members counteract miRNA-mediated repression of protein translation. Further, APOBEC3G enhances the association of miRNA-targeted mRNA with polysomes, and facilitates the dissociation of miRNA-targeted mRNA from P-bodies. As such, APOBEC3G regulate the activity of cellular miRNAs. Whether this function is related to its potent antiviral activity remains to be further determined.
Pedersen, Hege Lynum; Johnson, Kenneth A; McVey, Colin E; Leiros, Ingar; Moe, Elin
2015-10-01
Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues in the N-terminus of a symmetry-related molecule and the complementary DNA strand facing away from the active site were also observed which seem to stabilize the enzyme-DNA complex. However, the significance of this observation remains to be investigated. The results provide new insights into the current knowledge about DNA damage recognition and repair by uracil-DNA glycosylases.
In vitro biological evaluation of glyburide as potential inhibitor of collagenases.
Bodiga, Vijaya Lakshmi; Eda, Sasidhar Reddy; Chavali, Saishashank; Revur, Nagasaisreelekha Nagavalli; Zhang, Anita; Thokala, Sandhya; Bodiga, Sreedhar
2014-09-01
In tissues with upregulated MMP activity, MMP inhibition remains one of the key strategies. Potential inhibitors of MMPs have been tested for almost 30 years, but none have reached clinical utility due to bioavailability issues and adverse effects. This study utilized the approach of drug repurposing for exploring glyburide as a potential inhibitor against collagenases. In silico molecular docking studies were carried out to probe the interactions of glyburide with the active site Zn. Collagenase enzyme activity measurements and zymography analyses using conditioned medium from lung fibroblasts, rheumatoid synovial fibroblasts, and osteoblasts were carried out to confirm the inhibitory activity. Glyburide binds and interacts with the catalytic Zn residues of the collagenases, as evidenced by in silico molecular docking studies. Fluorescence enzyme activity measurements reveal that glyburide inhibits peptide substrate cleavage by all three collagenases in a dose-dependent manner. Collagen zymography studies validated inhibition of these collagenases by glyburide. These results identify glyburide as a potential inhibitor of collagenases and provide an insight into the mechanism of action of this small molecule. Thus, glyburide may offer additional advantages in diabetics, in controlling MMP activation and collagen degradation and could aid in the treatment of diseases with aberrant MMP activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Lara, Isabel; Echeverría, Gemma; Graell, Jordi; López, María Luisa
2007-07-25
Mondial Gala apples were harvested at commercial maturity and stored at 1 degrees C under either air or controlled atmosphere (CA) conditions (2 kPa O2/2 kPa CO2 and 1 kPa O2/1 kPa CO2), where they remained for 3 or 6 months. Data on emission of selected volatile esters, alcohol precursors, and activity of some aroma-related enzymes in both peel and pulp tissues were obtained during subsequent shelf life of fruit and submitted to multivariate analysis procedures. CA storage caused a decrease in the emission of volatile esters in comparison to storage in air. Results suggest that lessened ester production was the consequence of modifications in activities of alcohol o-acyltransferase (AAT) and lipoxygenase (LOX) activities. For short-term storage, inhibition of lipoxygenase activity in CA stored fruit possibly led to a shortage of lipid-derived substrates, resulting in decreased production of volatile esters in spite of substantial ester-forming capacity that allowed for some recovery of fruit capacity for ester emission during the shelf life. For long-term storage, strong inhibition of AAT activity in CA stored fruit in combination with low LOX activities resulted in unrecoverable diminution of biosynthesis of volatile esters.
Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy
Zheng, Yue; Huang, Jing; Zhao, Feng; ...
2018-03-27
ABSTRACT A recent surprising discovery of the activity of rare earth metals (lanthanides) as enzyme cofactors as well as transcriptional regulators has overturned the traditional assumption of biological inertia of these metals. However, so far, examples of such activities have been limited to alcohol dehydrogenases. Here we describe the physiological effects of a mutation in xoxG , a gene encoding a novel cytochrome, XoxG(4), and compare these to the effects of mutation in XoxF, a lanthanide-dependent methanol dehydrogenase, at the enzyme activity level and also at the community function level, using Methylomonas sp. strain LW13 as a model organism. Throughmore » comparative phenotypic characterization, we establish XoxG as the second protein directly involved in lanthanide-dependent metabolism, likely as a dedicated electron acceptor from XoxF. However, mutation in XoxG caused a phenotype that was dramatically different from the phenotype of the mutant in XoxF, suggesting a secondary function for this cytochrome, in metabolism of methane. We also purify XoxG(4) and demonstrate that this protein is a true cytochrome c , based on the typical absorption spectra, and we demonstrate that XoxG can be directly reduced by a purified XoxF, supporting one of its proposed physiological functions. Overall, our data continue to suggest the complex nature of the interplay between the calcium-dependent and lanthanide-dependent alcohol oxidation systems, while they also suggest that addressing the roles of these alternative systems is essential at the enzyme and community function level, in addition to the gene transcription level. IMPORTANCE The lanthanide-dependent biochemistry of living organisms remains a barely tapped area of knowledge. So far, only a handful of lanthanide-dependent alcohol dehydrogenases have been described, and their regulation by lanthanides has been demonstrated at the transcription level. Little information is available regarding the concentrations of lanthanides that could support sufficient enzymatic activities to support specific metabolisms, and so far, no other redox proteins involved in lanthanide-dependent methanotrophy have been demonstrated. The research presented here provides enzyme activity-level data on lanthanide-dependent methanotrophy in a model methanotroph. Additionally, we identify a second protein important for lanthanide-dependent metabolism in this organism, XoxG(4), a novel cytochrome. XoxG(4) appears to have multiple functions in methanotrophy, one function as an electron acceptor from XoxF and another function remaining unknown. On the basis of the dramatic phenotype of the XoxG(4) mutant, this function must be crucial for methanotrophy.« less
Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yue; Huang, Jing; Zhao, Feng
ABSTRACT A recent surprising discovery of the activity of rare earth metals (lanthanides) as enzyme cofactors as well as transcriptional regulators has overturned the traditional assumption of biological inertia of these metals. However, so far, examples of such activities have been limited to alcohol dehydrogenases. Here we describe the physiological effects of a mutation in xoxG , a gene encoding a novel cytochrome, XoxG(4), and compare these to the effects of mutation in XoxF, a lanthanide-dependent methanol dehydrogenase, at the enzyme activity level and also at the community function level, using Methylomonas sp. strain LW13 as a model organism. Throughmore » comparative phenotypic characterization, we establish XoxG as the second protein directly involved in lanthanide-dependent metabolism, likely as a dedicated electron acceptor from XoxF. However, mutation in XoxG caused a phenotype that was dramatically different from the phenotype of the mutant in XoxF, suggesting a secondary function for this cytochrome, in metabolism of methane. We also purify XoxG(4) and demonstrate that this protein is a true cytochrome c , based on the typical absorption spectra, and we demonstrate that XoxG can be directly reduced by a purified XoxF, supporting one of its proposed physiological functions. Overall, our data continue to suggest the complex nature of the interplay between the calcium-dependent and lanthanide-dependent alcohol oxidation systems, while they also suggest that addressing the roles of these alternative systems is essential at the enzyme and community function level, in addition to the gene transcription level. IMPORTANCE The lanthanide-dependent biochemistry of living organisms remains a barely tapped area of knowledge. So far, only a handful of lanthanide-dependent alcohol dehydrogenases have been described, and their regulation by lanthanides has been demonstrated at the transcription level. Little information is available regarding the concentrations of lanthanides that could support sufficient enzymatic activities to support specific metabolisms, and so far, no other redox proteins involved in lanthanide-dependent methanotrophy have been demonstrated. The research presented here provides enzyme activity-level data on lanthanide-dependent methanotrophy in a model methanotroph. Additionally, we identify a second protein important for lanthanide-dependent metabolism in this organism, XoxG(4), a novel cytochrome. XoxG(4) appears to have multiple functions in methanotrophy, one function as an electron acceptor from XoxF and another function remaining unknown. On the basis of the dramatic phenotype of the XoxG(4) mutant, this function must be crucial for methanotrophy.« less
Bi, Xiaodong; Liu, Zhen
2014-12-16
Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.
Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant.
Kamal, Md Zahid; Mohammad, Tabrez Anwar Shamim; Krishnamoorthy, G; Rao, Nalam Madhusudhana
2012-01-01
Relationship between stability and activity of enzymes is maintained by underlying conformational flexibility. In thermophilic enzymes, a decrease in flexibility causes low enzyme activity while in less stable proteins such as mesophiles and psychrophiles, an increase in flexibility is associated with enhanced enzyme activity. Recently, we identified a mutant of a lipase whose stability and activity were enhanced simultaneously. In this work, we probed the conformational dynamics of the mutant and the wild type lipase, particularly flexibility of their active site using molecular dynamic simulations and time-resolved fluorescence techniques. In contrast to the earlier observations, our data show that active site of the mutant is more rigid than wild type enzyme. Further investigation suggests that this lipase needs minimal reorganization/flexibility of active site residues during its catalytic cycle. Molecular dynamic simulations suggest that catalytically competent active site geometry of the mutant is relatively more preserved than wild type lipase, which might have led to its higher enzyme activity. Our study implies that widely accepted positive correlation between conformation flexibility and enzyme activity need not be stringent and draws attention to the possibility that high enzyme activity can still be accomplished in a rigid active site and stable protein structures. This finding has a significant implication towards better understanding of involvement of dynamic motions in enzyme catalysis and enzyme engineering through mutations in active site.
Chen, Nanhua; LaCrue, Alexis N.; Teuscher, Franka; Waters, Norman C.; Gatton, Michelle L.; Kyle, Dennis E.
2014-01-01
Artemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment. PMID:24913167
Yuan, Bo; Hu, Nan; Sun, Juan; Wang, Shi-An; Li, Fu-Li
2012-12-01
A novel extracellular exoinulinase was purified and characterized from a new yeast strain KRF1(T), and the gene encoding the enzyme was successfully cloned. The enzyme was stable at low pH between 3.0 and 6.5. The K (m) and V (max) values of the purified enzyme for inulin were 2.3 mg/mL and 4.8 mg/min, respectively. The optimum temperature of the inulinase was 50 °C, and the enzyme remained 78 % of activity at 60 °C for 2 h. The inulinase showed an amino acid sequence identity of 58 % to its closest homolog in Meyerozyma (Pichia) guilliermondii. In the secondary structure, the domain G (VMEVH) of the enzyme contained three unique residues (V, M, and H). Compared with previously reported inulinases, the enzyme from strain KRF1(T) displayed strong acid resistance, notable thermostability, and high affinity for the substrate of inulin. Based on sequence analysis of the 26S rDNA D1/D2 domain and phenotypic characterization, the yeast strain KRF1(T) was found to represent a novel anamorphic, ascomycetous yeast species. A complete description of the species is given and the name Candida kutaonensis sp. nov (type strain = KRF1(T) = AS 2.4027(T) = CBS 11388(T)) is proposed.
Filippatos, Theodosios D; Rizos, Evangelos C; Tsimihodimos, Vasilios; Gazi, Irene F; Tselepis, Alexandros D; Elisaf, Moses S
2013-06-01
Alterations in high-density lipoprotein (HDL) subclass distribution, as well as in the activities of HDL-associated enzymes, have been associated with increased cardiovascular disease (CVD) risk. HDL subclass distribution and the activities of HDL-associated enzymes remain unknown in prediabetic patients, a condition also associated with increased CVD risk. The aim of the present study was to assess any differences in HDL subclass distribution (using polyacrylamide gel electrophoresis) and in activities of HDL-associated enzymes between prediabetic (impaired fasting glucose, IFG, n = 80) and non-prediabetic subjects (n = 105). Subjects with prediabetes had significantly increased waist circumference, blood pressure and triacylglycerol (TAG) levels compared with subjects with fasting glucose levels <100 mg/dL (all p < 0.05). The proportion of small HDL3 over HDL cholesterol (HDL-C) was significantly increased in prediabetic subjects compared with their controls (p < 0.05). The activity of the anti-atherogenic HDL-associated lipoprotein-associated phospholipase A₂ (HDL-LpPLA₂) was significantly lower in subjects with prediabetes (p < 0.05), whereas the activity of paraoxonase 1 (using both paraoxon and phenyl acetate as substrates) did not significantly differ between subjects with or without prediabetes. In a stepwise linear regression analysis, the proportion of small HDL3 over HDL-C concentration was independently associated with the presence of prediabetes and with total cholesterol and TAG concentration (positively), as well as with HDL-C levels (negatively). We also observed a trend of increased small dense low-density lipoprotein cholesterol levels in prediabetic subjects compared with their controls. Subjects with IFG exhibit increased proportion of small HDL3 particles combined with decreased activity of the anti-atherogenic HDL-LpPLA₂.
Reiss, Renate; Ihssen, Julian; Richter, Michael; Eichhorn, Eric; Schilling, Boris; Thöny-Meyer, Linda
2013-01-01
Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term “laccase-like multi-copper oxidase” (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera. PMID:23755261
Roles of germination-specific lytic enzymes CwlJ and SleB in Bacillus anthracis.
Heffron, Jared D; Orsburn, Benjamin; Popham, David L
2009-04-01
The structural characteristics of a spore enable it to withstand stresses that typically kill a vegetative cell. Spores remain dormant until small molecule signals induce them to germinate into vegetative bacilli. Germination requires degradation of the thick cortical peptidoglycan by germination-specific lytic enzymes (GSLEs). Bacillus anthracis has four putative GSLEs, based upon sequence similarities with enzymes in other species: SleB, CwlJ1, CwlJ2, and SleL. In this study, the roles of SleB, CwlJ1, and CwlJ2 were examined. The expression levels of all three genes peak 3.5 h into sporulation. Genetic analysis revealed that, similar to other known GSLEs, none of these gene products are individually required for growth, sporulation, or triggering of germination. However, later germination events are affected in spores lacking CwlJ1 or SleB. Compared to the wild type, germinating spores without CwlJ1 suffer a delay in optical density loss and cortex peptidoglycan release. The absence of SleB also causes a delay in cortex fragment release. A double mutant lacking both SleB and CwlJ1 is completely blocked in cortex hydrolysis and progresses through outgrowth to produce colonies at a frequency 1,000-fold lower than that of the wild-type strain. A null mutation eliminating CwlJ2 has no effect on germination. High-performance liquid chromatography and mass spectroscopy analysis revealed that SleB is required for lytic transglycosylase activity. CwlJ1 also clearly participates in cortex hydrolysis, but its specific mode of action remains unclear. Understanding the lytic germination activities that naturally diminish spore resistance can lead to methods for prematurely inducing them, thus simplifying the process of treating contaminated sites.
Westman, Gunnar; Eriksson, Leif A.; Mapelli, Valeria
2018-01-01
The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocellulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2-hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them. PMID:29474495
Bate, Paul; Warwicker, Jim
2004-07-02
Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.
NASA Astrophysics Data System (ADS)
Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen
2016-03-01
Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules. Electronic supplementary information (ESI) available: Additional methods, IR and XRD spectroscopy, enzyme loading capacity, enzyme kinetic parameters, and enzyme stability data. See DOI: 10.1039/c5nr08734a
Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose.
Ko, Ja Kyong; Um, Youngsoon; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon
2015-05-01
Hydrothermal pretreatment using liquid hot water, steam explosion, or dilute acids enhances the enzymatic digestibility of cellulose by altering the chemical and/or physical structures of lignocellulosic biomass. However, compounds that inhibit both enzymes and microbial activity, including lignin-derived phenolics, soluble sugars, furan aldehydes, and weak acids, are also generated during pretreatment. Insoluble lignin, which predominantly remains within the pretreated solids, also acts as a significant inhibitor of cellulases during hydrolysis of cellulose. Exposed lignin, which is modified to be more recalcitrant to enzymes during pretreatment, adsorbs cellulase nonproductively and reduces the availability of active cellulase for hydrolysis of cellulose. Similarly, lignin-derived phenolics inhibit or deactivate cellulase and β-glucosidase via irreversible binding or precipitation. Meanwhile, the performance of fermenting microorganisms is negatively affected by phenolics, sugar degradation products, and weak acids. This review describes the current knowledge regarding the contributions of inhibitors present in whole pretreatment slurries to the enzymatic hydrolysis of cellulose and fermentation. Furthermore, we discuss various biological strategies to mitigate the effects of these inhibitors on enzymatic and microbial activity to improve the lignocellulose-to-biofuel process robustness. While the inhibitory effect of lignin on enzymes can be relieved through the use of lignin blockers and by genetically engineering the structure of lignin or of cellulase itself, soluble inhibitors, including phenolics, furan aldehydes, and weak acids, can be detoxified by microorganisms or laccase.
Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki
2014-12-22
Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. 'indicator model' and 'trade-off model'). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas
2016-01-01
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions. PMID:27119084
Kurabayashi, Atsushi; Tanaka, Chiharu; Matsumoto, Waka; Naganuma, Seiji; Furihata, Mutsuo; Inoue, Keiji; Kakinuma, Yoshihiko
2018-05-01
Our previous study revealed that cyclic hindlimb ischaemia-reperfusion (IR) activates cardiac acetylcholine (ACh) synthesis through the cholinergic nervous system and cell-derived ACh accelerates glucose uptake. However, the mechanisms regulating glucose metabolism in vivo remain unknown. We investigated the effects and mechanisms of IR in mice under pathophysiological conditions. Using IR-subjected male C57BL/6J mice, the effects of IR on blood sugar (BS), glucose uptake, central parasympathetic nervous system (PNS) activity, hepatic gluconeogenic enzyme expression and those of ACh on hepatocellular glucose uptake were assessed. IR decreased BS levels by 20% and increased c-fos immunoreactivity in the center of the PNS (the solitary tract and the dorsal motor vagal nucleus). IR specifically downregulated hepatic gluconeogenic enzyme expression and activities (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) and accelerated hepatic glucose uptake. Transection of a hepatic vagus nerve branch decreased this uptake and reversed BS decrease. Suppressed gluconeogenic enzyme expression was reversed by intra-cerebroventricular administration of a choline acetyltransferase inhibitor. Moreover, IR significantly attenuated hyperglycaemia in murine model of type I and II diabetes mellitus. IR provides another insight into a therapeutic modality for diabetes mellitus due to regulating gluconeogenesis and glucose-uptake and advocates an adjunctive mode rectifying disturbed glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.
Toxicity of Citrate-Capped Silver Nanoparticles in Common Carp (Cyprinus carpio)
Lee, Byoungcheun; Duong, Cuong Ngoc; Cho, Jaegu; Lee, Jaewoo; Kim, Kyungtae; Seo, Youngrok; Kim, Pilje; Choi, Kyunghee; Yoon, Junheon
2012-01-01
Juvenile common carp (Cyprinus carpio) were used as a model to investigate acute toxicity and oxidative stress caused by silver nanoparticles (Ag-NPs). The fish were exposed to different concentrations of Ag-NPs for 48 h and 96 h. After exposure, antioxidant enzyme levels were measured, including glutathione-S-transferase (GST), superoxidase dismutase, and catalase (CAT). Other biochemical parameters and histological abnormalities in different tissues (i.e., the liver, gills, and brain) were also examined. The results showed that Ag-NPs agglomerated in freshwater used during the exposure experiments, with particle size remaining <100 nm. Ag-NPs had no lethal effect on fish after 4 days of exposure. Biochemical analysis showed that enzymatic activities in the brain of the fish exposed to 200 μg/L of Ag-NPs were significantly reduced. Varied antioxidant enzyme activity was recorded in the liver and gills. Varied antioxidant enzyme activity was recorded for CAT in the liver and GST in the gills of the fish. However, the recovery rate of fish exposed to 200 μg/L of Ag-NPs was slower than when lower particle concentrations were used. Other biochemical indices showed no significant difference, except for NH3 and blood urea nitrogen concentrations in fish exposed to 50 μg/L of Ag-NPs. This study provides new evidence about the effects of nanoparticles on aquatic organisms. PMID:23093839
Structure of the novel monomeric glyoxalase I from Zea mays
Turra, Gino L.; Agostini, Romina B.; Fauguel, Carolina M.; Presello, Daniel A.; Andreo, Carlos S.; González, Javier M.; Campos-Bermudez, Valeria A.
2015-01-01
The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined. PMID:26457425