Sample records for enzyme expression ratio-optimized

  1. Plant cell wall glycosyltransferases: High-throughput recombinant expression screening and general requirements for these challenging enzymes

    DOE PAGES

    Welner, Ditte Hededam; Shin, David; Tomaleri, Giovani P.; ...

    2017-06-09

    Molecular characterization of plant cell wall glycosyltransferases is a critical step towards understanding the biosynthesis of the complex plant cell wall, and ultimately for efficient engineering of biofuel and agricultural crops. The majority of these enzymes have proven very difficult to obtain in the needed amount and purity for such molecular studies, and recombinant cell wall glycosyltransferase production efforts have largely failed. A daunting number of strategies can be employed to overcome this challenge, including optimization of DNA and protein sequences, choice of expression organism, expression conditions, coexpression partners, purification methods, and optimization of protein solubility and stability. Hence researchersmore » are presented with thousands of potential conditions to test. Ultimately, the subset of conditions that will be sampled depends on practical considerations and prior knowledge of the enzyme(s) being studied. We have developed a rational approach to this process. We devise a pipeline comprising in silico selection of targets and construct design, and high-throughput expression screening, target enrichment, and hit identification. We have applied this pipeline to a test set of Arabidopsis thaliana cell wall glycosyltransferases known to be challenging to obtain in soluble form, as well as to a library of cell wall glycosyltransferases from other plants including agricultural and biofuel crops. The screening results suggest that recombinant cell wall glycosyltransferases in general have a very low soluble: Insoluble ratio in lysates from heterologous expression cultures, and that co-expression of chaperones as well as lysis buffer optimization can increase this ratio. We have applied the identified preferred conditions to Reversibly Glycosylated Polypeptide 1 from Arabidopsis thaliana, and processed this enzyme to near-purity in unprecedented milligram amounts. The obtained preparation of Reversibly Glycosylated Polypeptide 1 has the expected arabinopyranose mutase and autoglycosylation activities.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.« less

  2. Plant cell wall glycosyltransferases: High-throughput recombinant expression screening and general requirements for these challenging enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welner, Ditte Hededam; Shin, David; Tomaleri, Giovani P.

    Molecular characterization of plant cell wall glycosyltransferases is a critical step towards understanding the biosynthesis of the complex plant cell wall, and ultimately for efficient engineering of biofuel and agricultural crops. The majority of these enzymes have proven very difficult to obtain in the needed amount and purity for such molecular studies, and recombinant cell wall glycosyltransferase production efforts have largely failed. A daunting number of strategies can be employed to overcome this challenge, including optimization of DNA and protein sequences, choice of expression organism, expression conditions, coexpression partners, purification methods, and optimization of protein solubility and stability. Hence researchersmore » are presented with thousands of potential conditions to test. Ultimately, the subset of conditions that will be sampled depends on practical considerations and prior knowledge of the enzyme(s) being studied. We have developed a rational approach to this process. We devise a pipeline comprising in silico selection of targets and construct design, and high-throughput expression screening, target enrichment, and hit identification. We have applied this pipeline to a test set of Arabidopsis thaliana cell wall glycosyltransferases known to be challenging to obtain in soluble form, as well as to a library of cell wall glycosyltransferases from other plants including agricultural and biofuel crops. The screening results suggest that recombinant cell wall glycosyltransferases in general have a very low soluble: Insoluble ratio in lysates from heterologous expression cultures, and that co-expression of chaperones as well as lysis buffer optimization can increase this ratio. We have applied the identified preferred conditions to Reversibly Glycosylated Polypeptide 1 from Arabidopsis thaliana, and processed this enzyme to near-purity in unprecedented milligram amounts. The obtained preparation of Reversibly Glycosylated Polypeptide 1 has the expected arabinopyranose mutase and autoglycosylation activities.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.« less

  3. Chemometrics Optimized Extraction Procedures, Phytosynergistic Blending and in vitro Screening of Natural Enzyme Inhibitors Amongst Leaves of Tulsi, Banyan and Jamun.

    PubMed

    De, Baishakhi; Bhandari, Koushik; Singla, Rajeev K; Katakam, Prakash; Samanta, Tanmoy; Kushwaha, Dilip Kumar; Gundamaraju, Rohit; Mitra, Analava

    2015-10-01

    Tulsi, Banyan, and Jamun are popular Indian medicinal plants with notable hypoglycemic potentials. Now the work reports chemo-profiling of the three species with in-vitro screening approach for natural enzyme inhibitors (NEIs) against enzymes pathogenic for type 2 diabetes. Further along with the chemometrics optimized extraction process technology, phyto-synergistic studies of the composite polyherbal blends have also been reported. Chemometrically optimized extraction procedures, ratios of polyherbal composites to achieve phyto-synergistic actions, and in-vitro screening of NEIs amongst leaves of Tulsi, Banyan, and Jamun. The extraction process parameters of the leaves of three plant species (Ficus benghalensis, Syzigium cumini and Ocimum sanctum) were optimized by rotatable central composite design of chemometrics so as to get maximal yield of bio-actives. Phyto-blends of three species were prepared so as to achieve synergistic antidiabetic and antioxidant potentials and the ratios were optimized by chemometrics. Next, for in vitro screening of natural enzyme inhibitors the individual leaf extracts as well as composite blends were subjected to assay procedures to see their inhibitory potentials against the enzymes pathogenic in type 2 diabetes. The antioxidant potentials were also estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Considering response surface methodology studies and from the solutions obtained using desirability function, it was found that hydro-ethanolic or methanolic solvent ratio of 52.46 ± 1.6 and at a temperature of 20.17 ± 0.6 gave an optimum yield of polyphenols with minimal chlorophyll leaching. The species also showed the presence of glycosides, alkaloids, and saponins. Composites in the ratios of 1:1:1 and 1:1:2 gave synergistic effects in terms of polyphenol yield and anti-oxidant potentials. All composites (1:1:1, 1:2:1, 2:1:1, 1:1:2) showed synergistic anti-oxidant actions. Inhibitory activities against the targeted enzymes expressed in terms of IC50 values have shown that hydro-ethanolic extracts in all cases whether individual species or composites in varying ratios gave higher IC50 values thus showing greater effectivity. Current research provides the state-of-the-art of search of NEIs amongst three species by in-vitro assays which can be further utilized for bioactivity-guided isolations of such enzyme inhibitors. Further, it reports the optimized phyto-blend ratios so as to achieve synergistic anti-oxidative actions. The current research work focuses on the optimization of the extraction process parameters and the ratios of phyto-synergistic blends of the leaves of three common medicinal plants viz. banyan, jamun and tulsi by chemometrics. Qualitative and quantitative chemo profiling of the extracts were done by different phytochemical tests and UV spectrophotometric methods. Enzymes like alpha amylase, alpha glucosidase, aldose reductase, dipeptidyl peptidase 4, angiotensin converting enzymes are found to be pathogenic in type 2 diabetes. In vitro screening of natural enzyme inhibitors amongst individual extracts and composite blends were carried out by different assay procedures and the potency expressed in terms of IC50 values. Antioxidant potentials were estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Hydroalcoholic solvent (50:50) gave maximal yield of bio-actives with minimal chlorophyll leaching. Hydroethanolic extract of tulsi showed maximal antioxidant effect. Though all composites showed synergism, maximal effects were shown by the composite (1:1:2) in terms of polyphenol yield, antioxidant effect and inhibitory actions against the targeted enzymes. Abbreviations used: DPP4- dipeptidyl peptidase 4; AR- aldose reductase; ACE- angiotensin converting enzyme; PPAR-γ- peroxisome proliferator activated receptor-γ; NEIs- natural enzyme inhibitors; BE- binding energy; GLP-1- Glucagon like peptide -1; ROS- Reactive oxygen species; CAT- catalase; GSH-Px- glutathione per-oxidase; SOD- superoxide dismutase; pNPG- para-nitro phenyl-α-D-gluco-pyranoside solution; DPPH- 1,1-diphenyl-2-picrylhydrazyl; RSM- Response surface methodology; CCD- central composite design; DMSO- dimethyl sulfoxide; HHL- hippuryl-L-histidyl-L-leucine; GPN-Tos- Gly-Pro p-nitroanilide toluenesulfonate salt; ESC- experimental scavenging capacity; TSC- theoretical scavenging capacity; FRAP- Ferric Reducing Assay Procedure; ABTS- 2, 2'- azinobis (3-ethylbenzothiazoline-6 - sulfonic acid.

  4. Chemometrics Optimized Extraction Procedures, Phytosynergistic Blending and in vitro Screening of Natural Enzyme Inhibitors Amongst Leaves of Tulsi, Banyan and Jamun

    PubMed Central

    De, Baishakhi; Bhandari, Koushik; Singla, Rajeev K.; Katakam, Prakash; Samanta, Tanmoy; Kushwaha, Dilip Kumar; Gundamaraju, Rohit; Mitra, Analava

    2015-01-01

    Background: Tulsi, Banyan, and Jamun are popular Indian medicinal plants with notable hypoglycemic potentials. Now the work reports chemo-profiling of the three species with in-vitro screening approach for natural enzyme inhibitors (NEIs) against enzymes pathogenic for type 2 diabetes. Further along with the chemometrics optimized extraction process technology, phyto-synergistic studies of the composite polyherbal blends have also been reported. Objective: Chemometrically optimized extraction procedures, ratios of polyherbal composites to achieve phyto-synergistic actions, and in-vitro screening of NEIs amongst leaves of Tulsi, Banyan, and Jamun. Materials and Methods: The extraction process parameters of the leaves of three plant species (Ficus benghalensis, Syzigium cumini and Ocimum sanctum) were optimized by rotatable central composite design of chemometrics so as to get maximal yield of bio-actives. Phyto-blends of three species were prepared so as to achieve synergistic antidiabetic and antioxidant potentials and the ratios were optimized by chemometrics. Next, for in vitro screening of natural enzyme inhibitors the individual leaf extracts as well as composite blends were subjected to assay procedures to see their inhibitory potentials against the enzymes pathogenic in type 2 diabetes. The antioxidant potentials were also estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Results: Considering response surface methodology studies and from the solutions obtained using desirability function, it was found that hydro-ethanolic or methanolic solvent ratio of 52.46 ± 1.6 and at a temperature of 20.17 ± 0.6 gave an optimum yield of polyphenols with minimal chlorophyll leaching. The species also showed the presence of glycosides, alkaloids, and saponins. Composites in the ratios of 1:1:1 and 1:1:2 gave synergistic effects in terms of polyphenol yield and anti-oxidant potentials. All composites (1:1:1, 1:2:1, 2:1:1, 1:1:2) showed synergistic anti-oxidant actions. Inhibitory activities against the targeted enzymes expressed in terms of IC50 values have shown that hydro-ethanolic extracts in all cases whether individual species or composites in varying ratios gave higher IC50 values thus showing greater effectivity. Conclusion: Current research provides the state-of-the-art of search of NEIs amongst three species by in-vitro assays which can be further utilized for bioactivity-guided isolations of such enzyme inhibitors. Further, it reports the optimized phyto-blend ratios so as to achieve synergistic anti-oxidative actions. SUMMARY The current research work focuses on the optimization of the extraction process parameters and the ratios of phyto-synergistic blends of the leaves of three common medicinal plants viz. banyan, jamun and tulsi by chemometrics. Qualitative and quantitative chemo profiling of the extracts were done by different phytochemical tests and UV spectrophotometric methods. Enzymes like alpha amylase, alpha glucosidase, aldose reductase, dipeptidyl peptidase 4, angiotensin converting enzymes are found to be pathogenic in type 2 diabetes. In vitro screening of natural enzyme inhibitors amongst individual extracts and composite blends were carried out by different assay procedures and the potency expressed in terms of IC50 values. Antioxidant potentials were estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Hydroalcoholic solvent (50:50) gave maximal yield of bio-actives with minimal chlorophyll leaching. Hydroethanolic extract of tulsi showed maximal antioxidant effect. Though all composites showed synergism, maximal effects were shown by the composite (1:1:2) in terms of polyphenol yield, antioxidant effect and inhibitory actions against the targeted enzymes. Abbreviations used: DPP4- dipeptidyl peptidase 4; AR- aldose reductase; ACE- angiotensin converting enzyme; PPAR-γ- peroxisome proliferator activated receptor-γ; NEIs- natural enzyme inhibitors; BE- binding energy; GLP-1- Glucagon like peptide -1; ROS- Reactive oxygen species; CAT- catalase; GSH-Px- glutathione per-oxidase; SOD- superoxide dismutase; pNPG- para-nitro phenyl-α-D-gluco-pyranoside solution; DPPH- 1,1-diphenyl-2-picrylhydrazyl; RSM- Response surface methodology; CCD- central composite design; DMSO- dimethyl sulfoxide; HHL- hippuryl-L-histidyl-L-leucine; GPN-Tos- Gly-Pro p-nitroanilide toluenesulfonate salt; ESC- experimental scavenging capacity; TSC- theoretical scavenging capacity; FRAP- Ferric Reducing Assay Procedure; ABTS- 2, 2’- azinobis (3-ethylbenzothiazoline-6 – sulfonic acid. PMID:27013789

  5. Efficient biosynthesis of L-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system.

    PubMed

    Liu, Qiaoli; Zhou, Junping; Yang, Taowei; Zhang, Xian; Xu, Meijuan; Rao, Zhiming

    2018-03-01

    Whole-cell catalysis with co-expression of two or more enzymes in a single host as a simple low-cost biosynthesis method has been widely studied and applied but hardly with regulation of multi-enzyme expression. Here we developed an efficient whole-cell catalyst for biosynthesis of L-phenylglycine (L-Phg) from benzoylformic acid through co-expression of leucine dehydrogenase from Bacillus cereus (BcLeuDH) and NAD + -dependent mutant formate dehydrogenase from Candida boidinii (CbFDH A10C ) in Escherichia coli with tunable multi-enzyme-coordinate expression system. By co-expressing one to four copies of CbFDH A10C and optimization of the RBS sequence of BcLeuDH in the expression system, the ratio of BcLeuDH to CbFDH in E. coli BL21/pETDuet-rbs 4 leudh-3fdh A10C was finally regulated to 2:1, which was the optimal one determined by enzyme-catalyzed synthesis. The catalyst activity of E. coli BL21/pETDuet-rbs 4 leudh-3fdh A10C was 28.4 mg L -1  min -1  g -1 dry cell weight for L-Phg production using whole-cell transformation, it's was 3.7 times higher than that of engineered E. coli without enzyme expression regulation. Under optimum conditions (pH 8.0 and 35 °C), 60 g L -1 benzoylformic acid was completely converted to pure chiral L-Phg in 4.5 h with 10 g L -1 dry cells and 50.4 g L -1 ammonium formate, and with enantiomeric excess > 99.9%. This multi-enzyme-coordinate expression system strategy significantly improved L-Phg productivity and demonstrated a novel low-cost method for enantiopure L-Phg production.

  6. Preparation and nanoencapsulation of l-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study

    NASA Astrophysics Data System (ADS)

    Bahreini, Elham; Aghaiypour, Khosrow; Abbasalipourkabir, Roghayeh; Mokarram, Ali Rezaei; Goodarzi, Mohammad Taghi; Saidijam, Massoud

    2014-07-01

    This paper describes the production, purification, and immobilization of l-asparaginase II (ASNase II) in chitosan nanoparticles (CSNPs). ASNase II is an effective antineoplastic agent, used in the acute lymphoblastic leukemia chemotherapy. Cloned ASNase II gene ( ansB) in pAED4 plasmid was transformed into Escherichia coli BL21pLysS (DE3) competent cells and expressed under optimal conditions. The lyophilized enzyme was loaded into CSNPs by ionotropic gelation method. In order to get optimal entrapment efficiency, CSNP preparation, chitosan/tripolyphosphate (CS/TPP) ratio, and protein loading were investigated. ASNase II loading into CSNPs was confirmed by Fourier transform infrared (FTIR) spectroscopy, and morphological observation was carried out by transmission electron microscopy. Three absolute CS/TPP ratios were studied. Entrapment efficiency and loading capacity increased with increasing CS and TPP concentration. The best ratio was applied for obtaining optimal ASNase II-loaded CSNPs with the highest entrapment efficiency. Size, zeta potential, entrapment efficiency, and loading capacity of the optimal ASNase II-CSNPs were 340 ± 12 nm, 21.2 ± 3 mV, 76.2% and 47.6%, respectively. The immobilized enzyme showed an increased in vitro half-life in comparison with the free enzyme. The pH and thermostability of the immobilized enzyme was comparable with the free enzyme. This study leads to a better understanding of how to prepare CSNPs, how to achieve high encapsulation efficiency for a high molecular weight protein, and how to prolong the release of protein from CSNPs. A conceptual understanding of biological responses to ASNase II-loaded CSNPs is needed for the development of novel methods of drug delivery.

  7. Regulation of C:N:P stoichiometry of microbes and soil organic matter by optimizing enzyme allocation: an omics-informed model study

    NASA Astrophysics Data System (ADS)

    Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.

    2017-12-01

    Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.

  8. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    PubMed

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  9. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Indro Neil; Landick, Robert

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  10. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE PAGES

    Ghosh, Indro Neil; Landick, Robert

    2016-07-16

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  11. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  12. Engineering low-temperature expression systems for heterologous production of cold-adapted enzymes.

    PubMed

    Bjerga, Gro Elin Kjæreng; Lale, Rahmi; Williamson, Adele Kim

    2016-01-01

    Production of psychrophilic enzymes in the commonly used mesophilic expression systems is hampered by low intrinsic stability of the recombinant enzymes at the optimal host growth temperatures. Unless strategies for low-temperature expression are advanced, research on psychrophilic enzymes may end up being biased toward those that can be stably produced in commonly used mesophilic host systems. Two main strategies are currently being explored for the development of low-temperature expression in bacterial hosts: (i) low-temperature adaption of existing mesophilic expression systems, and (ii) development of new psychrophilic hosts. These developments include genetic engineering of the expression cassettes to optimize the promoter/operator systems that regulate heterologous expression. In this addendum we present our efforts in the development of such low-temperature expression systems, and speculate about future advancements in the field and potential applications.

  13. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature recorded a significantly increased feed intake, these results clearly suggested that at high, sub-optimal water temperature, fish metabolism attempted to increment its overall ARA status -the most bioactive LC-PUFA participating in the inflammatory response- by modulating the metabolic fate of dietary ARA (expressed as % of net intake), reducing its β-oxidation and favouring synthesis and deposition. This correlates also with results from other recent studies showing that both immune- and stress- responses in fish are up regulated in fish held at high temperatures. This is a novel and fundamental information that warrants industry and scientific attention, in consideration of the imminent increase in water temperatures, continuous expansion of aquaculture operations, resources utilisation in aquafeed and much needed seasonal/adaptive nutritional strategies. PMID:26599513

  14. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    PubMed

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature recorded a significantly increased feed intake, these results clearly suggested that at high, sub-optimal water temperature, fish metabolism attempted to increment its overall ARA status -the most bioactive LC-PUFA participating in the inflammatory response- by modulating the metabolic fate of dietary ARA (expressed as % of net intake), reducing its β-oxidation and favouring synthesis and deposition. This correlates also with results from other recent studies showing that both immune- and stress- responses in fish are up regulated in fish held at high temperatures. This is a novel and fundamental information that warrants industry and scientific attention, in consideration of the imminent increase in water temperatures, continuous expansion of aquaculture operations, resources utilisation in aquafeed and much needed seasonal/adaptive nutritional strategies.

  15. A stepwise approach for the reproducible optimization of PAMO expression in Escherichia coli for whole-cell biocatalysis

    PubMed Central

    2012-01-01

    Background Baeyer-Villiger monooxygenases (BVMOs) represent a group of enzymes of considerable biotechnological relevance as illustrated by their growing use as biocatalyst in a variety of synthetic applications. However, due to their increased use the reproducible expression of BVMOs and other biotechnologically relevant enzymes has become a pressing matter while knowledge about the factors governing their reproducible expression is scattered. Results Here, we have used phenylacetone monooxygenase (PAMO) from Thermobifida fusca, a prototype Type I BVMO, as a model enzyme to develop a stepwise strategy to optimize the biotransformation performance of recombinant E. coli expressing PAMO in 96-well microtiter plates in a reproducible fashion. Using this system, the best expression conditions of PAMO were investigated first, including different host strains, temperature as well as time and induction period for PAMO expression. This optimized system was used next to improve biotransformation conditions, the PAMO-catalyzed conversion of phenylacetone, by evaluating the best electron donor, substrate concentration, and the temperature and length of biotransformation. Combining all optimized parameters resulted in a more than four-fold enhancement of the biocatalytic performance and, importantly, this was highly reproducible as indicated by the relative standard deviation of 1% for non-washed cells and 3% for washed cells. Furthermore, the optimized procedure was successfully adapted for activity-based mutant screening. Conclusions Our optimized procedure, which provides a comprehensive overview of the key factors influencing the reproducible expression and performance of a biocatalyst, is expected to form a rational basis for the optimization of miniaturized biotransformations and for the design of novel activity-based screening procedures suitable for BVMOs and other NAD(P)H-dependent enzymes as well. PMID:22720747

  16. Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamarii.

    PubMed

    Anandan, Dayanandan; Marmer, William N; Dudley, Robert L

    2007-05-01

    Aspergillus tamarii expresses an extracellular alkaline protease that we show to be effective in removing hair from cattle hide. Large quantities of the enzyme will be required for the optimization of the enzymatic dehairing process so the growth conditions for maximum protease expression by A. tamarii were optimized for both solid-state culture on wheat bran and for broth culture. Optimal protease expression occurred, for both cultural media, at initial pH 9; the culture was incubated at 30 degrees C for 96 h using a 5% inoculum. The crude enzyme was isolated, purified and characterized using MALDI TOF TOF. The alkaline protease was homologous to the alkaline protease expressed by Aspergillus viridinutans.

  17. Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.

    PubMed

    Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad

    2016-06-01

    Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.

  18. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  19. Optimization of extraction conditions for osthol, a melanogenesis inhibitor from Cnidium monnieri fruits.

    PubMed

    Beom Kim, Seon; Kim, CheongTaek; Liu, Qing; Hee Jo, Yang; Joo Choi, Hak; Hwang, Bang Yeon; Kyum Kim, Sang; Kyeong Lee, Mi

    2016-08-01

    Coumarin derivatives have been reported to inhibit melanin biosynthesis. The melanogenesis inhibitory activity of osthol, a major coumarin of the fruits of Cnidium monnieri Cusson (Umbelliferae), and optimized extraction conditions for the maximum yield from the isolation of osthol from C. monnieri fruits were investigated. B16F10 melanomas were treated with osthol at concentration of 1, 3, and 10 μM for 72 h. The expression of melanogenesis genes, such as tyrosinase, TRP-1, and TRP-2 was also assessed. For optimization, extraction factors such as extraction solvent, extraction time, and sample/solvent ratio were tested and optimized for maximum yield of osthol using response surface methodology with the Box-Behnken design (BBD). Osthol inhibits melanin content in B16F10 melanoma cells with an IC50 value of 4.9 μM. The melanogenesis inhibitory activity of osthol was achieved not by direct inhibition of tyrosinase activity but by inhibiting melanogenic enzyme expressions, such as tyrosinase, TRP-1, and TRP-2. The optimal condition was obtained as a sample/solvent ratio, 1500 mg/10 ml; an extraction time 30.3 min; and a methanol concentration of 97.7%. The osthol yield under optimal conditions was found to be 15.0 mg/g dried samples, which were well matched with the predicted value of 14.9 mg/g dried samples. These results will provide useful information about optimized extraction conditions for the development of osthol as cosmetic therapeutics to reduce skin hyperpigmentation.

  20. [Hydrogen production and enzyme activity of acidophilic strain X-29 at different C/N ratio].

    PubMed

    Li, Qiu-bo; Xing, De-feng; Ren, Nan-qi; Zhao, Li-hua; Song, Ye-ying

    2006-04-01

    Some fermentative bacteria can produce hydrogen by utilizing carbohydrate and other kinds of organic compounds as substrates. Hydrogen production was also determined by both the limiting of growth and related enzyme activity in energy metabolism. Carbon and nitrogen are needed for the growth and metabolism of microorganisms. In addition, the carbon/nitrogen (C/N) ratio can influence the material metabolized and the energy produced. In order to improve the hydrogen production efficiency of the bacteria, we analyzed the effect of different C/N ratios on hydrogen production and the related enzyme activities in the acidophilic strain X-29 using batch test. The results indicate that the differences in the metabolism level and enzyme activity are obvious at different C/N ratios. Although the difference in liquid fermentative products produced per unit of biomass is not obvious, hydrogen production is enhanced at a specifically determined ratio. At a C/N ratio of 14 the accumulative hydrogen yield of strain X-29 reaches the maximum, 2210.9 mL/g. At different C/N ratios, the expression of hydrogenase activity vary; the activity of hydrogenase decrease quickly after reaching a maximum along with the fermentation process, but the time of expression is short. The activity of alcohol dehydrogenase (ADH) tend to stabilize after reaching a peak along with the fermentation process, the difference in expression activity is little, and the expression period is long at different C/N ratios. At a C/N ratio of 14 hydrogenase and ADH reach the maximum 2.88 micromol x (min x mg)(-1) and 33.2 micromol x (min x mg)(-1), respectively. It is shown that the C/N ratio has an important effect on enhancing hydrogen production and enzyme activity.

  1. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.

    PubMed

    Berkhout, Jan; Bosdriesz, Evert; Nikerel, Emrah; Molenaar, Douwe; de Ridder, Dick; Teusink, Bas; Bruggeman, Frank J

    2013-06-01

    Evolutionary adaptations in metabolic networks are fundamental to evolution of microbial growth. Studies on unneeded-protein synthesis indicate reductions in fitness upon nonfunctional protein synthesis, showing that cell growth is limited by constraints acting on cellular protein content. Here, we present a theory for optimal metabolic enzyme activity when cells are selected for maximal growth rate given such growth-limiting biochemical constraints. We show how optimal enzyme levels can be understood to result from an enzyme benefit minus cost optimization. The constraints we consider originate from different biochemical aspects of microbial growth, such as competition for limiting amounts of ribosomes or RNA polymerases, or limitations in available energy. Enzyme benefit is related to its kinetics and its importance for fitness, while enzyme cost expresses to what extent resource consumption reduces fitness through constraint-induced reductions of other enzyme levels. A metabolic fitness landscape is introduced to define the fitness potential of an enzyme. This concept is related to the selection coefficient of the enzyme and can be expressed in terms of its fitness benefit and cost.

  2. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant.

    PubMed

    Kurumbang, Nagendra Prasad; Dvorak, Pavel; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-03-21

    Anthropogenic halogenated compounds were unknown to nature until the industrial revolution, and microorganisms have not had sufficient time to evolve enzymes for their degradation. The lack of efficient enzymes and natural pathways can be addressed through a combination of protein and metabolic engineering. We have assembled a synthetic route for conversion of the highly toxic and recalcitrant 1,2,3-trichloropropane to glycerol in Escherichia coli, and used it for a systematic study of pathway bottlenecks. Optimal ratios of enzymes for the maximal production of glycerol, and minimal toxicity of metabolites were predicted using a mathematical model. The strains containing the expected optimal ratios of enzymes were constructed and characterized for their viability and degradation efficiency. Excellent agreement between predicted and experimental data was observed. The validated model was used to quantitatively describe the kinetic limitations of currently available enzyme variants and predict improvements required for further pathway optimization. This highlights the potential of forward engineering of microorganisms for the degradation of toxic anthropogenic compounds.

  3. Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery.

    PubMed

    Imani, Rana; Prakash, Satya; Vali, Hojatollah; Faghihi, Shahab

    2018-05-29

    The successful application of nucleic acid-based therapy for the treatment of various cancers is largely dependent on a safe and efficient delivery system. A dual-functionalized graphene oxide (GO)-based nanocarrier with the conjugation of aminated-polyethylene glycol (PEG-diamine) and octa-arginine (R8) for the intracellular delivery of nucleic acids is proposed. The functionalized sites are covalently co-conjugated and the PEG : R8 molar ratio is optimized at 10 : 1 to achieve a hydrocolloidally stable size of 252 ± 2.0 nm with an effective charge of +40.97 ± 1.05 and an amine-rich content of 10.87 ± 0.4 μmol g-1. The uptake of the nanocarrier in breast cancer cell lines, MCF-7 and MDA-MB 231, is investigated. The siRNA and pDNA condensation ability in the presence and absence of enzymes and the endosomal buffering capacity, as well as the intracellular localization of the gene/nanocarrier complex are also evaluated. Furthermore, the delivery of functional genes associated with the nanocarrier is assessed using c-Myc protein knockdown and EGFP gene expression. The effective uptake of the nanocarrier by the cells shows superior cytocompatibility, and protects the siRNA and pDNA against enzyme degradation while inhibiting their migration with N : P ratios of 10 and 5, respectively. The co-conjugation of PEG-diamine and the cationic cell-penetrating peptide (CPP) into the GO nanocarrier also provides a superior internalization efficacy of 85% in comparison with a commercially available transfection reagent. The c-Myc protein knockdown and EGFP expression, which are induced by the nanocarrier, confirm that the optimized PEG-diamine/R8-functionalized GO could effectively deliver pDNA and siRNA into the cells and interfere with gene expression.

  4. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    PubMed

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  5. Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from Aspergillus niger into Trichoderma reesei.

    PubMed

    Sun, Xianhua; Xue, Xianli; Li, Mengzhu; Gao, Fei; Hao, Zhenzhen; Huang, Huoqing; Luo, Huiying; Qin, Lina; Yao, Bin; Su, Xiaoyun

    2017-12-20

    Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL -1 and 1204 U·mL -1 , respectively.

  6. Whole-Cell Biocatalytic Synthesis of Cinnamyl Acetate with a Novel Esterase from the DNA Library of Acinetobacter hemolyticus.

    PubMed

    Dong, Hao; Secundo, Francesco; Xue, Changhu; Mao, Xiangzhao

    2017-03-15

    Cinnamyl acetate has a wide application in the flavor and fragrance industry because of its sweet, balsamic, and floral odor. Up to now, lipases have been mainly used in enzyme-mediated synthesis of cinnamyl acetate, whereas esterases are used in only a few cases. Moreover, the use of purified enzymes is often a disadvantage, which leads to increases of the production costs. In this paper, a genomic DNA library of Acinetobacter hemolyticus was constructed, and a novel esterase (EstK1) was identified. After expression in Escherichia coli, the whole-cell catalyst of EstK1 displayed high transesterification activity to produce cinnamyl acetate in nonaqueous systems. Furthermore, under optimal conditions (vinyl acetate as acyl donor, isooctane as solvent, molar ratio 1:4, temperature 40 °C), the conversion ratio of cinnamyl alcohol could be up to 94.1% at 1 h, and it reached an even higher level (97.1%) at 2 h.

  7. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    PubMed

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  8. Study on the technology of compound enzymatic hydrolysis of whole passion fruit

    NASA Astrophysics Data System (ADS)

    Yang, Yu-xia; Duan, Zhen-hua; Kang, Chao; Zhu, Xiang-hao; Li, Ding-jin

    2017-12-01

    Fresh Whole Passion Fruit was used as raw material, The enzymatic hydrolysis technology of Passion Fruit by Complex enzyme were studied, The effects of enzyme dosage, Enzyme ratio(cellulose: pectinase), pH, temperature and time on the hydrolysis were investigated by single-tests and orthogonal tests, the hydrolysis indicators of single-factor tests and orthogonal tests were juice yield. The optimal hydrolysis conditions of Passion Fruit by Complex enzyme were enzyme dosage 0.12%, Enzyme ratio 5:1, hydrolysis temperature 50°C, pH4.0 and time 3.5 h. Under such conditions, juice yield of Passion Fruit was 92.91%.

  9. Complementary DNA cloning, functional expression and characterization of a novel cytochrome P450, CYP2D50, from equine liver.

    PubMed

    DiMaio Knych, H K; Stanley, S D

    2008-10-01

    Members of the CYP2D family constitute only about 2-4% of total hepatic CYP450s, however, they are responsible for the metabolism of 20-25% of commonly prescribed therapeutic compounds. CYP2D enzymes have been identified in a number of different species. However, vast differences in the metabolic activity of these enzymes have been well documented. In the horse, the presence of a member of the CYP2D family has been suggested from studies with equine liver microsomes, however its presence has not been definitively proven. In this study a cDNA encoding a novel CYP2D enzyme (CYP2D50) was cloned from equine liver and expressed in a baculovirus expression system. The nucleotide sequence of CYP2D50 was highly homologous to that of human CYP2D6 and therefore the activity of the enzyme was characterized using dextromethorphan and debrisoquine, two isoform selective substrates for the human orthologue. CYP2D50 displayed optimal catalytic activity with dextromethorphan using molar ratios of CYP2D50 to NADPH CYP450 reductase of 1:15. Although CYP2D50 and CYP2D6 shared significant sequence homology, there were striking differences in the catalytic activity between the two enzymes. CYP2D50 dextromethorphan-O-demethylase activity was nearly 180-fold slower than the human counterpart, CYP2D6. Similarly, rates of formation of 4-hydroxydebrisoquine activity were 50-fold slower for CYP2D50 compared to CYP2D6. The results of this study demonstrate substantial interspecies variability in metabolism of substrates by CYP2D orthologues in the horse and human and support the need to fully characterize this enzyme system in equids.

  10. Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli.

    PubMed

    Pek, Han Bin; Klement, Maximilian; Ang, Kok Siong; Chung, Bevan Kai-Sheng; Ow, Dave Siak-Wei; Lee, Dong-Yup

    2015-01-01

    Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Dietary phytic acid prevents fatty liver by reducing expression of hepatic lipogenic enzymes and modulates gut microflora in rats fed a high-sucrose diet.

    PubMed

    Sekita, Ayaka; Okazaki, Yukako; Katayama, Tetsuyuki

    2016-06-01

    The aim of this study was to investigate the effect of phytic acid (PA) on fatty liver and gut microflora in rats fed a high-sucrose (HSC) diet. Three groups of rats were fed a high-starch (HSR) diet or an HSC diet with or without 1.02% sodium PA for 12 d. We evaluated hepatic weight, total lipids, and triacylglycerol (TG) levels, the activities and expression of hepatic lipogenic enzymes (glucose-6-phosphate dehydrogenase, malic enzyme 1, and fatty acid synthetase), and fecal microflora. The HSC diet significantly increased hepatic total lipids and TG levels, and the activities and expression of the hepatic lipogenic enzymes compared with the HSR diet. These upregulations were clearly suppressed by dietary PA. Consumption of PA elevated the fecal ratio of Lactobacillus spp. and depressed the ratio of Clostridium cocoides, and suppressed the elevation in the ratio of C. leptum induced by the HSC diet. This work showed that dietary PA ameliorates sucrose-induced fatty liver through reducing the expression of hepatic lipogenesis genes and modulates gut microflora in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation.

    PubMed

    Laothanachareon, Thanaporn; Bunterngsook, Benjarat; Suwannarangsee, Surisa; Eurwilaichitr, Lily; Champreda, Verawat

    2015-12-01

    Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optimization of 2-ethylhexyl palmitate production using lipozyme RM IM as catalyst in a solvent-free system.

    PubMed

    Richetti, Aline; Leite, Selma G F; Antunes, Octávio A C; de Souza, Andrea L F; Lerin, Lindomar A; Dallago, Rogério M; Paroul, Natalia; Di Luccio, Marco; Oliveira, J Vladimir; Treichel, Helen; de Oliveira, Débora

    2010-04-01

    This work reports the application of a lipase in the 2-ethylhexyl palmitate esterification in a solvent-free system with an immobilized lipase (Lipozyme RM IM). A sequential strategy was used applying two experimental designs to optimize the 2-ethylhexyl palmitate production. An empirical model was then built so as to assess the effects of process variables on the reaction conversion. Afterwards, the operating conditions that optimized 2-ethylhexyl palmitate production were established as being acid/alcohol molar ratio 1:3, temperature of 70 degrees C, stirring rate of 150 rpm, 10 wt.% of enzyme, leading to a reaction conversion as high as 95%. From this point, a kinetic study was carried out evaluating the effect of acid:alcohol molar ratio, the enzyme concentration and the temperature on product conversion. The results obtained in this step permit to verify that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt.%) and temperature of 70 degrees C, led to conversions next to 100%.

  14. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel.

    PubMed

    Huang, Jinjin; Xia, Ji; Yang, Zhen; Guan, Feifei; Cui, Di; Guan, Guohua; Jiang, Wei; Li, Ying

    2014-01-01

    We previously cloned a 1,3-specific lipase gene from the fungus Rhizomucor miehei and expressed it in methylotrophic yeast Pichia pastoris strain GS115. The enzyme produced (termed RML) was able to catalyze methanolysis of soybean oil and showed strong position specificity. However, the enzyme activity and amount of enzyme produced were not adequate for industrial application. Our goal in the present study was to improve the enzyme properties of RML in order to apply it for the conversion of microalgae oil to biofuel. Several new expression plasmids were constructed by adding the propeptide of the target gene, optimizing the signal peptide, and varying the number of target gene copies. Each plasmid was transformed separately into P. pastoris strain X-33. Screening by flask culture showed maximal (21.4-fold increased) enzyme activity for the recombinant strain with two copies of the target gene; the enzyme was termed Lipase GH2. The expressed protein with the propeptide (pRML) was a stable glycosylated protein, because of glycosylation sites in the propeptide. Quantitative real-time RT-PCR analysis revealed two major reasons for the increase in enzyme activity: (1) the modified recombinant expression system gave an increased transcription level of the target gene (rml), and (2) the enzyme was suitable for expression in host cells without causing endoplasmic reticulum (ER) stress. The modified enzyme had improved thermostability and methanol or ethanol tolerance, and was applicable directly as free lipase (fermentation supernatant) in the catalytic esterification and transesterification reaction. After reaction for 24 hours at 30°C, the conversion rate of microalgae oil to biofuel was above 90%. Our experimental results show that signal peptide optimization in the expression plasmid, addition of the gene propeptide, and proper gene dosage significantly increased RML expression level and enhanced the enzymatic properties. The target enzyme was the major component of fermentation supernatant and was stable for over six months at 4°C. The modified free lipase is potentially applicable for industrial-scale conversion of microalgae oil to biodiesel.

  15. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…

  17. Expression of a Deschampsia antarctica Desv. Polypeptide with Lipase Activity in a Pichia pastoris Vector

    PubMed Central

    Rabert, Claudia; Gutiérrez-Moraga, Ana; Navarrete-Gallegos, Alejandro; Navarrete-Campos, Darío; Bravo, León A.; Gidekel, Manuel

    2014-01-01

    The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628), which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L) with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed. PMID:24514564

  18. An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.

    PubMed

    Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia

    2015-12-01

    Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Optimization of thermophilic trans-isoprenyl diphosphate synthase expression in Escherichia coli by response surface methodology.

    PubMed

    Piccolomini, Angelica A; Fiabon, Alex; Borrotti, Matteo; De Lucrezia, Davide

    2017-01-01

    We optimized the heterologous expression of trans-isoprenyl diphosphate synthase (IDS), the key enzyme involved in the biosynthesis of trans-polyisoprene. trans-Polyisoprene is a particularly valuable compound due to its superior stiffness, excellent insulation, and low thermal expansion coefficient. Currently, trans-polyisoprene is mainly produced through chemical synthesis and no biotechnological processes have been established so far for its large-scale production. In this work, we employed D-optimal design and response surface methodology to optimize the expression of thermophilic enzymes IDS from Thermococcus kodakaraensis. The design of experiment took into account of six factors (preinduction cell density, inducer concentration, postinduction temperature, salt concentration, alternative carbon source, and protein inhibitor) and seven culture media (LB, NZCYM, TB, M9, Ec, Ac, and EDAVIS) at five different pH points. By screening only 109 experimental points, we were able to improve IDS production by 48% in close-batch fermentation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  20. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing

    DOE PAGES

    Wei, Hui; Wang, Wei; Alahuhta, Markus; ...

    2014-10-16

    Background: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichodermamore » reesei were cloned into Yarrowia. Results: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient degradation of cellulosic substrates. In Conclusion: Taken together, this work demonstrates the first case of successful expression of a chimeric CBHI with essentially full native activity in Y. lipolytica, and supports the notion that Y. lipolytica strains can be genetically engineered, ultimately by heterologous expression of fungal cellulases and other enzymes, to directly convert lignocellulosic substrates to biofuels.« less

  1. Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation.

    PubMed

    Yang, Hongyu; Zhu, Qiang; Zhou, Nandi; Tian, Yaping

    2016-11-01

    Prolyl aminopeptidases are specific exopeptidases that catalyze the hydrolysis of the N-terminus proline residue of peptides and proteins. In the present study, the prolyl aminopeptidase gene (pap) from Aspergillus oryzae JN-412 was optimized through the codon usage of Pichia pastoris. Both the native and optimized pap genes were inserted into the expression vector pPIC9 K and were successfully expressed in P. pastoris. Additionally, the activity of the intracellular enzyme expressed by the recombinant optimized pap gene reached 61.26 U mL(-1), an activity that is 2.1-fold higher than that of the native gene. The recombinant enzyme was purified by one-step elution through Ni-affinity chromatography. The optimal temperature and pH of the purified PAP were 60 °C and 7.5, respectively. Additionally, the recombinant PAP was recovered at a yield greater than 65 % at an extremely broad range of pH values from 6 to 10 after treatment at 50 °C for 6 h. The molecular weight of the recombinant PAP decreased from 50 kDa to 48 kDa after treatment with a deglycosylation enzyme, indicating that the recombinant PAP was completely glycosylated. The glycosylated PAP exhibited high thermo-stability. Half of the activity remained after incubation at 50 °C for 50 h, whereas the remaining activity of PAP expressed in E. coli was only 10 % after incubation at 50 °C for 1 h. PAP could be activated by the appropriate salt concentration and exhibited salt tolerance against NaCl at a concentration up to 5 mol L(-1).

  2. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    PubMed

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  3. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production.

    PubMed

    Andrade, Thalles A; Errico, Massimiliano; Christensen, Knud V

    2017-11-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Expression of lignocellulolytic enzymes in Pichia pastoris

    PubMed Central

    2012-01-01

    Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic) proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris. PMID:22583625

  5. Engineering Isoprene Synthase Expression and Activity in Cyanobacteria.

    PubMed

    Chaves, Julie E; Rueda-Romero, Paloma; Kirst, Henning; Melis, Anastasios

    2017-12-15

    Efforts to heterologously produce quantities of isoprene hydrocarbons (C 5 H 8 ) renewably from CO 2 and H 2 O through the photosynthesis of cyanobacteria face barriers, including low levels of recombinant enzyme accumulation compounded by their slow innate catalytic activity. The present work sought to alleviate the "expression level" barrier upon placing the isoprene synthase (IspS) enzyme in different fusion configurations with the cpcB protein, the highly expressed β-subunit of phycocyanin. Different cpcB*IspS fusion constructs were made, distinguished by the absence or presence of linker amino acids between the two proteins. Composition of linker amino acids was variable with lengths of 7, 10, 16, and 65 amino acids designed to test for optimal activity of the IspS through spatial positioning between the cpcB and IspS. Results showed that fusion constructs with the highly expressed cpcB gene, as the leader sequence, improved transgene expression in the range of 61 to 275-fold over what was measured with the unfused IspS control. However, the specific activity of the IspS enzyme was attenuated in all fusion transformants, possibly because of allosteric effects exerted by the leader cpcB fusion protein. This inhibition varied depending on the nature of the linker amino acids between the cpcB and IspS proteins. In terms of isoprene production, the results further showed a trade-off between specific activity and transgenic enzyme accumulation. For example, the cpcB*L7*IspS strain showed only about 10% the isoprene synthase specific-activity of the unfused cpcB-IspS control, but it accumulated 254-fold more IspS enzyme. The latter more than countered the slower specific activity and made the cpcB*L7*IspS transformant the best isoprene producing strain in this work. Isoprene to biomass yield ratios improved from 0.2 mg g -1 in the unfused cpcB-IspS control to 5.4 mg g -1 in the cpcB*L7*IspS strain, a 27-fold improvement.

  6. A Novel Method to Predict Highly Expressed Genes Based on Radius Clustering and Relative Synonymous Codon Usage.

    PubMed

    Tran, Tuan-Anh; Vo, Nam Tri; Nguyen, Hoang Duc; Pham, Bao The

    2015-12-01

    Recombinant proteins play an important role in many aspects of life and have generated a huge income, notably in the industrial enzyme business. A gene is introduced into a vector and expressed in a host organism-for example, E. coli-to obtain a high productivity of target protein. However, transferred genes from particular organisms are not usually compatible with the host's expression system because of various reasons, for example, codon usage bias, GC content, repetitive sequences, and secondary structure. The solution is developing programs to optimize for designing a nucleotide sequence whose origin is from peptide sequences using properties of highly expressed genes (HEGs) of the host organism. Existing data of HEGs determined by practical and computer-based methods do not satisfy for qualifying and quantifying. Therefore, the demand for developing a new HEG prediction method is critical. We proposed a new method for predicting HEGs and criteria to evaluate gene optimization. Codon usage bias was weighted by amplifying the difference between HEGs and non-highly expressed genes (non-HEGs). The number of predicted HEGs is 5% of the genome. In comparison with Puigbò's method, the result is twice as good as Puigbò's one, in kernel ratio and kernel sensitivity. Concerning transcription/translation factor proteins (TF), the proposed method gives low TF sensitivity, while Puigbò's method gives moderate one. In summary, the results indicated that the proposed method can be a good optional applying method to predict optimized genes for particular organisms, and we generated an HEG database for further researches in gene design.

  7. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil).

    PubMed

    Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar

    2012-08-01

    The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    PubMed

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  9. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.

    PubMed

    Latimer, Luke N; Dueber, John E

    2017-06-01

    A common challenge in metabolic engineering is rapidly identifying rate-controlling enzymes in heterologous pathways for subsequent production improvement. We demonstrate a workflow to address this challenge and apply it to improving xylose utilization in Saccharomyces cerevisiae. For eight reactions required for conversion of xylose to ethanol, we screened enzymes for functional expression in S. cerevisiae, followed by a combinatorial expression analysis to achieve pathway flux balancing and identification of limiting enzymatic activities. In the next round of strain engineering, we increased the copy number of these limiting enzymes and again tested the eight-enzyme combinatorial expression library in this new background. This workflow yielded a strain that has a ∼70% increase in biomass yield and ∼240% increase in xylose utilization. Finally, we chromosomally integrated the expression library. This library enriched for strains with multiple integrations of the pathway, which likely were the result of tandem integrations mediated by promoter homology. Biotechnol. Bioeng. 2017;114: 1301-1309. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Proteolytic enzymes from Bromelia antiacantha as tools for controlled tissue hydrolysis in entomology.

    PubMed

    Macció, Laura; Vallés, Diego; Cantera, Ana Maria

    2013-12-01

    A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.

  11. Optimization of yeast-based production of medicinal protoberberine alkaloids.

    PubMed

    Galanie, Stephanie; Smolke, Christina D

    2015-09-16

    Protoberberine alkaloids are bioactive molecules abundant in plant preparations for traditional medicines. Yeast engineered to express biosynthetic pathways for fermentative production of these compounds will further enable investigation of the medicinal properties of these molecules and development of alkaloid-based drugs with improved efficacy and safety. Here, we describe the optimization of a biosynthetic pathway in Saccharomyces cerevisiae for conversion of rac-norlaudanosoline to the protoberberine alkaloid (S)-canadine. This yeast strain is engineered to express seven heterologous enzymes, resulting in protoberberine alkaloid production from a simple benzylisoquinoline alkaloid precursor. The seven enzymes include three membrane-bound enzymes: the flavin-dependent oxidase berberine bridge enzyme, the cytochrome P450 canadine synthase, and a cytochrome P450 reductase. A number of strategies were implemented to improve flux through the pathway, including enzyme variant screening, genetic copy number variation, and culture optimization, that led to an over 70-fold increase in canadine titer up to 1.8 mg/L. Increased canadine titers enable extension of the pathway to produce berberine, a major constituent of several traditional medicines, for the first time in a microbial host. We also demonstrate that this strain is viable at pilot scale. By applying metabolic engineering and synthetic biology strategies for increased conversion of simple benzylisoquinoline alkaloids to complex protoberberine alkaloids, this work will facilitate chemoenzymatic synthesis or de novo biosynthesis of these and other high-value compounds using a microbial cell factory.

  12. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM).

    PubMed

    Vasiee, Alireza; Behbahani, Behrooz Alizadeh; Yazdi, Farideh Tabatabaei; Moradi, Samira

    2016-12-01

    In this study, the screening of lipase positive bacteria from rice flour was carried out by Rhodamin B agar plate method. Bacillus cereus was identified by 16S rDNA method. Screening of the appropriate variables and optimization of the lipase production was performed using Plackett-Burman design (PBD) and response surface methodology (RSM). Among the isolated bacteria, an aerobic Bacillus cereus strain was recognized as the best lipase-producing bacteria (177.3 ± 20 U/ml). Given the results, the optimal enzyme production conditions were achieved with coriander seed extract (CSE)/yeast extract ratio of 16.9 w/w, olive oil (OO) and MgCl 2 concentration of 2.37 g/L and 24.23 mM, respectively. In these conditions, the lipase activity (LA) was predicted 343 U/mL that was approximately close to the predicted value (324 U/mL), which was increased 1.83 fold LA compared with the non-optimized lipase. The kinetic parameters of V max and K m for the lipase were measured 0.367 μM/min.mL and 5.3 mM, respectively. The lipase producing Bacillus cereus was isolated and RSM was used for the optimization of enzyme production. The CSE/yeast extract ratio of 16.9 w/w, OO concentration of 2.37 g/L and MgCl 2 concentration of 24.23 mM, were found to be the optimal conditions of the enzyme production process. LA at optimal enzyme production conditions was observed 1.83 times more than the non-optimal conditions. Ultimately, it can be concluded that the isolated B. cereus from rice flour is a proper source of lipase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, C. A.; Sullivan, R.; Johnson, C.

    CO2 and H2 are promising feedstocks for production of valuable biocompounds. Ralstonia eutropha utilizes these feedstocks to generate energy (ATP) and reductant (NAD(P)H) via oxidation of H2 by a membrane-bound (MBH) and a soluble hydrogenase (SH) for CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle. Increased expression of the enzyme that fixes CO2 (RubisCO) resulted in 6-fold activity improvement in vitro, while increased expression of the MBH operon or the SH operon plus MBH operon maturation factors necessary for activity resulted in a 10-fold enhancement. Current research involves genetic manipulation of two endogenous cbb operons for increased expression, analysis of expressionmore » and activity of CBB/MBH/SH, cofactor ratios, and downstream products during autotrophic growth in control versus enhanced strains, and development of strategies for long-term, optimal overexpression. These studies will improve our understanding of autotrophic metabolism and provide a chassis strain for autotrophic production of biodiesel and other valuable carbon biocompounds.« less

  14. Alterations of the levels of primary antioxidant enzymes in different grades of human astrocytoma tissues.

    PubMed

    Yen, Hsiu-Chuan; Lin, Chih-Lung; Chen, Bing-Shian; Chen, Chih-Wei; Wei, Kuo-Chen; Yang, Mei-Lin; Hsu, Jee-Ching; Hsu, Yung-Hsing

    2018-06-03

    Malignant astrocytoma is the most commonly occurring brain tumor in humans. Oxidative stress is implicated in the development of cancers. Superoxide dismutase 2 (SOD2) was found to exert tumor suppressive effect in basic research, but increased SOD2 protein level was associated with higher aggressiveness of human astrocytomas. However, studies reporting alterations of antioxidant enzymes in human astrocytomas often employed less accurate methods or included different types of tumors. Here we analyzed the mRNA levels, activities, and protein levels of primary antioxidant enzymes in control brain tissues and various grades of astrocytomas obtained from 40 patients. SOD1 expression, SOD1 activity, and SOD1 protein level were lower in Grade IV astrocytomas. SOD2 expression was lower in low-grade (Grades I and II) and Grade III astrocytomas than in controls, but SOD2 expression and SOD2 protein level were higher in Grade IV astrocytomas than in Grade III astrocytomas. Although there was no change in SOD2 activity and a lower activity of citrate synthase (CS), the MnSOD:CS ratio increased in Grade IV astrocytomas compared with controls and low-grade astrocytomas. Furthermore, SOD1 activity, CS activity, SOD1 expression, GPX4 expression, and GPX4 protein level were inversely correlated with the malignancy, whereas catalase activity, catalase protein, SOD2 protein level, and the SOD2:CS ratio were positively correlated with the degree of malignancy. Lower SOD2:CS ratio was associated with poor outcomes for Grade IV astrocytomas. This is the first study to quantify changes of various primary antioxidant enzymes in different grades of astrocytomas at different levels concurrently in human astrocytomas.

  15. Expression of codon-optmized phosphoenolpyruvate carboxylase gene from Glaciecola sp. HTCC2999 in Escherichia coli and its application for C4 chemical production.

    PubMed

    Park, Soohyun; Pack, Seung Pil; Lee, Jinwon

    2012-08-01

    We examined the expression of the phosphoenolpyruvate carboxylase (PEPC) gene from marine bacteria in Escherichia coli using codon optimization. The codon-optimized PEPC gene was expressed in the E. coli K-12 strain W3110. SDS-PAGE analysis revealed that the codon-optimized PEPC gene was only expressed in E. coli, and measurement of enzyme activity indicated the highest PEPC activity in the E. coli SGJS112 strain that contained the codon-optimized PEPC gene. In fermentation assays, the E. coli SGJS112 produced the highest yield of oxaloacetate using glucose as the source and produced a 20-times increase in the yield of malate compared to the control. We concluded that the codon optimization enabled E. coli to express the PEPC gene derived from the Glaciecola sp. HTCC2999. Also, the expressed protein exhibited an enzymatic activity similar to that of E. coli PEPC and increased the yield of oxaloacetate and malate in an E. coli system.

  16. The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Colin J.; Carr, Paul D.; Kim, Hye-Kyung

    2006-07-01

    The metallo-glycerophosphodiesterase from E. aerogenes (GpdQ) has been cloned, expressed in E. coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals. The metallo-glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) has been cloned, expressed in Escherichia coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme andmore » subsequent optimization of these conditions led to crystals that diffracted to 2.9 Å and belonged to space group P2{sub 1}3, with unit-cell parameter a = 164.1 Å. Self-rotation function analysis and V{sub M} calculations indicated that the asymmetric unit contains two copies of the monomeric enzyme, corresponding to a solvent content of 79%. It is intended to determine the structure of this protein utilizing SAD phasing from transition metals or molecular replacement.« less

  17. Alpha-amylase from the Hyperthermophilic Archaeon Thermococcus thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, E. C. M. J.; Pusey, M. L.; Ng, M. L.; Garriott, O. K.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments such as hot springs. The ability of survival at extreme conditions has rendered enzymes from extremophiles to be of interest in industrial applications. One approach to producing these extremozymes entails the expression of the enzyme-encoding gene in a mesophilic host such as E.coli. This method has been employed in the effort to produce an alpha-amylase from a hyperthermophile (an organism that displays optimal growth above 80 C) isolated from a hydrothermal vent at the Rainbow vent site in the Atlantic Ocean. alpha-amylases catalyze the hydrolysis of starch to produce smaller sugars and constitute a class of industrial enzymes having approximately 25% of the enzyme market. One application for thermostable alpha-amylases is the starch liquefaction process in which starch is converted into fructose and glucose syrups. The a-amylase encoding gene from the hyperthermophile Thermococcus thioreducens was cloned and sequenced, revealing high similarity with other archaeal hyperthermophilic a-amylases. The gene encoding the mature protein was expressed in E.coli. Initial characterization of this enzyme has revealed an optimal amylolytic activity between 85-90 C and around pH 5.3-6.0.

  18. Expression and Characterization of Acidothermus celluloyticus E1 Endoglucanase in Transgenic Duckweed Lemna minor 8627

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Cheng, J. J.; Himmel, M. E.

    2007-01-01

    Endoglucanase E1 from Acidothermus cellulolyticus was expressed cytosolically under control of the cauliflower mosaic virus 35S promoter in transgenic duckweed, Lemna minor 8627 without any obvious observable phenotypic effects on morphology or rate of growth. The recombinant enzyme co-migrated with the purified catalytic domain fraction of the native E1 protein on western blot analysis, revealing that the cellulose-binding domain was cleaved near or in the linker region. The duckweed-expressed enzyme was biologically active and the expression level was up to 0.24% of total soluble protein. The endoglucanase activity with carboxymethylcellulose averaged 0.2 units mg protein{sup -1} extracted from fresh duckweed.more » The optimal temperature and pH for E1 enzyme activity were about 80 C and pH 5, respectively. While extraction with HEPES (N-[2-hydroxyethyl]piperazine-N{prime}-[2-ethanesulfonic acid]) buffer (pH 8) resulted in the highest recovery of total soluble proteins and E1 enzyme, extraction with citrate buffer (pH 4.8) at 65 C enriched relative amounts of E1 enzyme in the extract. This study demonstrates that duckweed may offer new options for the expression of cellulolytic enzymes in transgenic plants.« less

  19. High activity and stability of codon-optimized phosphoenolpyruvate carboxylase from Photobacterium profundum SS9 at low temperatures and its application for in vitro production of oxaloacetate.

    PubMed

    Park, Soohyun; Hong, Soohye; Pack, Seung Pil; Lee, Jinwon

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC) of Photobacterium profundum SS9 can be expressed and purified using the Escherichia coli expression system. In this study, a codon-optimized PEPC gene (OPPP) was used to increase expression levels. We confirmed OPPP expression and purified it from extracts of recombinant E. coli SGJS117 harboring the OPPP gene. The purified OPPP showed a specific activity value of 80.3 U/mg protein. The OPPP was stable under low temperature (5-30 °C) and weakly basic conditions (pH 8.5-10). The enzymatic ability of OPPP was investigated for in vitro production of oxaloacetate using phosphoenolpyruvate (PEP) and bicarbonate. Only samples containing the OPPP, PEP, and bicarbonate resulted in oxaloacetate production. OPPP production system using E. coli could be a platform technology to produce high yields of heterogeneous gene and provide the PEPC enzyme, which has high enzyme activity.

  20. Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma

    PubMed Central

    Lewis, Michael J; Wiebe, John P; Heathcote, J Godfrey

    2004-01-01

    Background Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5α-reductase (5αR) and lower 3α-hydroxysteroid oxidoreductase (3α-HSO) and 20α-HSO activities. The resulting higher levels of 5α-reduced progesterone metabolites such as 5α-pregnane-3,20-dione (5αP) in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αDHP), more prominent in normal tissue, have the opposite (anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression. Methods Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA) of 5αR type 1 (SRD5A1), 5αR type 2 (SRD5A2), 3α-HSO type 2 (AKR1C3), 3α-HSO type 3 (AKR1C2) and 20α-HSO (AKR1C1) mRNAs in paired (tumorous and nontumorous) breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples. Results Expression of 5αR1 and 5αR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression of 3α-HSO2, 3α-HSO3 and 20α-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal than in tumor sample. The mean tumor:normal expression ratios for 5αR1 and 5αR2 were about 35–85-fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples, the tumor:normal ratios for 5αR were significantly higher than the ratios for the HSOs. Conclusions The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of SRD5A1 (5αR1) and SRD5A2 (5αR2) is elevated, and expression of AKR1C1 (20α-HSO), AKR1C2 (3α-HSO3) and AKR1C3 (3α-HSO2) is reduced in tumorous as compared to normal breast tissue. The changes in progesterone metabolizing enzyme expression levels help to explain the increases in mitogen/metastasis inducing 5αP and decreases in mitogen/metastasis inhibiting 3αHP progesterone metabolites found in breast tumor tissues. Understanding what causes these changes in expression could help in designing protocols to prevent or reverse the changes in progesterone metabolism associated with breast cancer. PMID:15212687

  1. Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma.

    PubMed

    Lewis, Michael J; Wiebe, John P; Heathcote, J Godfrey

    2004-06-22

    Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5alpha-reductase (5alphaR) and lower 3alpha-hydroxysteroid oxidoreductase (3alpha-HSO) and 20alpha-HSO activities. The resulting higher levels of 5alpha-reduced progesterone metabolites such as 5alpha-pregnane-3,20-dione (5alphaP) in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3alpha-ol-20-one (3alphaHP) and 4-pregnen-20alpha-ol-3-one (20alphaDHP), more prominent in normal tissue, have the opposite (anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression. Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA) of 5alphaR type 1 (SRD5A1), 5alphaR type 2 (SRD5A2), 3alpha-HSO type 2 (AKR1C3), 3alpha-HSO type 3 (AKR1C2) and 20alpha-HSO (AKR1C1) mRNAs in paired (tumorous and nontumorous) breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples. Expression of 5alphaR1 and 5alphaR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression of 3alpha-HSO2, 3alpha-HSO3 and 20alpha-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal than in tumor sample. The mean tumor:normal expression ratios for 5alphaR1 and 5alphaR2 were about 35-85-fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples, the tumor:normal ratios for 5alphaR were significantly higher than the ratios for the HSOs. The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of SRD5A1 (5alphaR1) and SRD5A2 (5alphaR2) is elevated, and expression of AKR1C1 (20alpha-HSO), AKR1C2 (3alpha-HSO3) and AKR1C3 (3alpha-HSO2) is reduced in tumorous as compared to normal breast tissue. The changes in progesterone metabolizing enzyme expression levels help to explain the increases in mitogen/metastasis inducing 5alphaP and decreases in mitogen/metastasis inhibiting 3alphaHP progesterone metabolites found in breast tumor tissues. Understanding what causes these changes in expression could help in designing protocols to prevent or reverse the changes in progesterone metabolism associated with breast cancer.

  2. β-galactosidase Production by Aspergillus niger ATCC 9142 Using Inexpensive Substrates in Solid-State Fermentation: Optimization by Orthogonal Arrays Design.

    PubMed

    Kazemi, Samaneh; Khayati, Gholam; Faezi-Ghasemi, Mohammad

    2016-01-01

    Enzymatic hydrolysis of lactose is one of the most important biotechnological processes in the food industry, which is accomplished by enzyme β-galactosidase (β-gal, β-D-galactoside galactohydrolase, EC 3.2.1.23), trivial called lactase. Orthogonal arrays design is an appropriate option for the optimization of biotechnological processes for the production of microbial enzymes. Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was employed to screen the most significant levels of parameters, including the solid substrates (wheat straw, rice straw, and peanut pod), the carbon/nitrogen (C/N) ratios, the incubation time, and the inducer. The level of β-gal production was measured by a photometric enzyme activity assay using the artificial substrate ortho-Nitrophenyl-β-D-galactopyranoside. The results showed that C/N ratio (0.2% [w/v], incubation time (144 hour), and solid substrate (wheat straw) were the best conditions determined by the design of experiments using the Taguchi approach. Our finding showed that the use of rice straw and peanut pod, as solid-state substrates, led to 2.041-folds increase in the production of the enzyme, as compared to rice straw. In addition, the presence of an inducer did not have any significant impact on the enzyme production levels.

  3. Optimization of extraction of novel pectinase enzyme discovered in red pitaya (Hylocereus polyrhizus) peel.

    PubMed

    Zohdi, Nor Khanani; Amid, Mehrnoush

    2013-11-20

    Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.

  4. Cloning and biochemical characterization of an endo-1,4-β-mannanase from the coffee berry borer hypothenemus hampei

    PubMed Central

    2013-01-01

    Background The study of coffee polysaccharides-degrading enzymes from the coffee berry borer Hypothenemus hampei, has become an important alternative in the identification for enzymatic inhibitors that can be used as an alternative control of this dangerous insect. We report the cloning, expression and biochemical characterization of a mannanase gene that was identified in the midgut of the coffee berry borer and is responsible for the degradation of the most abundant polysaccharide in the coffee bean. Methods The amino acid sequence of HhMan was analyzed by multiple sequence alignment comparisons with BLAST (Basic Local Alignment Search Tool) and CLUSTALW. A Pichia pastoris expression system was used to express the recombinant form of the enzyme. The mannanase activity was quantified by the 3,5-dinitrosalicylic (DNS) and the hydrolitic properties were detected by TLC. Results An endo-1,4-β-mannanase from the digestive tract of the insect Hypothenemus hampei was cloned and expressed as a recombinant protein in the Pichia pastoris system. This enzyme is 56% identical to the sequence of an endo-β-mannanase from Bacillus circulans that belongs to the glycosyl hydrolase 5 (GH5) family. The purified recombinant protein (rHhMan) exhibited a single band (35.5 kDa) by SDS-PAGE, and its activity was confirmed by zymography. rHhMan displays optimal activity levels at pH 5.5 and 30°C and can hydrolyze galactomannans of varying mannose:galactose ratios, suggesting that the enzymatic activity is independent of the presence of side chains such as galactose residues. The enzyme cannot hydrolyze manno-oligosaccharides such as mannobiose and mannotriose; however, it can degrade mannotetraose, likely through a transglycosylation reaction. The Km and kcat values of this enzyme on guar gum were 2.074 mg ml-1 and 50.87 s-1, respectively, which is similar to other mannanases. Conclusion This work is the first study of an endo-1,4-β-mannanase from an insect using this expression system. Due to this enzyme’s importance in the digestive processes of the coffee berry borer, this study may enable the design of inhibitors against endo-1,4-β-mannanase to decrease the economic losses stemming from this insect. PMID:23965285

  5. A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology.

    PubMed

    Zhang, Dong-Hao; Zhang, Jiang-Yan; Che, Wen-Cai; Wang, Yun

    2016-09-01

    In this work, the new approach to synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid with benzyl alcohol is optimized by response surface methodology. The effects of various reaction conditions, including temperature, enzyme loading, substrate molar ratio of benzyl alcohol to cinnamic acid, and reaction time, are investigated. A 5-level-4-factor central composite design is employed to search for the optimal yield of benzyl cinnamate. A quadratic polynomial regression model is used to analyze the experimental data at a 95% confidence level (P<0.05). The coefficient of determination of this model is found to be 0.9851. Three sets of optimum reaction conditions are established, and the verified experimental trials are performed for validating the optimum points. Under the optimum conditions (40°C, 31mg/mL enzyme loading, 2.6:1 molar ratio, 27h), the yield reaches 97.7%, which provides an efficient processes for industrial production of benzyl cinnamate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies.

    PubMed

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1) was used with 4% (w/w) catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  7. Optimization of Soluble Expression and Purification of Recombinant Human Rhinovirus Type-14 3C Protease Using Statistically Designed Experiments: Isolation and Characterization of the Enzyme.

    PubMed

    Antoniou, Georgia; Papakyriacou, Irineos; Papaneophytou, Christos

    2017-10-01

    Human rhinovirus (HRV) 3C protease is widely used in recombinant protein production for various applications such as biochemical characterization and structural biology projects to separate recombinant fusion proteins from their affinity tags in order to prevent interference between these tags and the target proteins. Herein, we report the optimization of expression and purification conditions of glutathione S-transferase (GST)-tagged HRV 3C protease by statistically designed experiments. Soluble expression of GST-HRV 3C protease was initially optimized by response surface methodology (RSM), and a 5.5-fold increase in enzyme yield was achieved. Subsequently, we developed a new incomplete factorial (IF) design that examines four variables (bacterial strain, expression temperature, induction time, and inducer concentration) in a single experiment. The new design called Incomplete Factorial-Strain/Temperature/Time/Inducer (IF-STTI) was validated using three GST-tagged proteins. In all cases, IF-STTI resulted in only 10% lower expression yields than those obtained by RSM. Purification of GST-HRV 3C was optimized by an IF design that examines simultaneously the effect of the amount of resin, incubation time of cell lysate with resin, and glycerol and DTT concentration in buffers, and a further 15% increase in protease recovery was achieved. Purified GST-HRV 3C protease was active at both 4 and 25 °C in a variety of buffers.

  8. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  9. Cloning, Production and Characterization of a Glycoside Hydrolase Family 7 Enzyme from the Gut Microbiota of the Termite Coptotermes curvignathus.

    PubMed

    Woon, James Sy-Keen; King, Patricia Jie Hung; Mackeen, Mukram Mohamed; Mahadi, Nor Muhammad; Wan Seman, Wan Mohd Khairulikhsan; Broughton, William J; Abdul Murad, Abdul Munir; Abu Bakar, Farah Diba

    2017-07-01

    Coptotermes curvignathus is a termite that, owing to its ability to digest living trees, serves as a gold mine for robust industrial enzymes. This unique characteristic reflects the presence of very efficient hydrolytic enzyme systems including cellulases. Transcriptomic analyses of the gut of C. curvignathus revealed that carbohydrate-active enzymes (CAZy) were encoded by 3254 transcripts and that included 69 transcripts encoding glycoside hydrolase family 7 (GHF7) enzymes. Since GHF7 enzymes are useful to the biomass conversion industry, a gene encoding for a GHF7 enzyme (Gh1254) was synthesized, sub-cloned and expressed in the methylotrophic yeast Pichia pastoris. Expressed GH1254 had an apparent molecular mass of 42 kDa, but purification was hampered by its low expression levels in shaken flasks. To obtain more of the enzyme, GH1254 was produced in a bioreactor that resulted in a fourfold increase in crude enzyme levels. The purified enzyme was active towards soluble synthetic substrates such as 4-methylumbelliferyl-β-D-cellobioside, 4-nitrophenyl-β-D-cellobioside and 4-nitrophenyl-β-D-lactoside but was non-hydrolytic towards Avicel or carboxymethyl cellulose. GH1254 catalyzed optimally at 35 °C and maintained 70% of its activity at 25 °C. This enzyme is thus potentially useful in food industries employing low-temperature conditions.

  10. Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species.

    PubMed

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3'H activity late in fruit development of F.×ananassa.

  11. Dihydroflavonol 4-Reductase Genes Encode Enzymes with Contrasting Substrate Specificity and Show Divergent Gene Expression Profiles in Fragaria Species

    PubMed Central

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (K cat/K m values) of DFR1 combined with the loss of F3’H activity late in fruit development of F.×ananassa. PMID:25393679

  12. Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification.

    PubMed

    Wanmolee, Wanwitoo; Sornlake, Warasirin; Rattanaphan, Nakul; Suwannarangsee, Surisa; Laosiripojana, Navadol; Champreda, Verawat

    2016-11-21

    Efficient hydrolysis of lignocellulosic materials to sugars for conversion to biofuels and chemicals is a key step in biorefinery. Designing an active saccharifying enzyme system with synergy among their components is considered a promising approach. In this study, a lignocellulose-degrading enzyme system of Chaetomium globosum BCC5776 (CG-Cel) was characterized for its activity and proteomic profiles, and synergism with accessory enzymes. The highest cellulase productivity of 0.40 FPU/mL was found for CG-Cel under the optimized submerged fermentation conditions on 1% (w/v) EPFB (empty palm fruit bunch), 2% microcrystalline cellulose (Avicel®) and 1% soybean meal (SBM) at 30 °C, pH 5.8 for 6 d. CG-Cel worked optimally at 50-60 °C in an acidic pH range. Proteomics analysis by LC/MS/MS revealed a complex enzyme system composed of core cellulases and accessory hydrolytic/non-hydrolytic enzymes attacking plant biopolymers. A synergistic enzyme system comprising the CG-Cel, a β-glucosidase (Novozyme® 188) and a hemicellulase Accellerase® XY was optimized on saccharification of alkaline-pretreated rice straw by a mixture design approach. Applying a full cubic model, the optimal ratio of ternary enzyme mixture containing CG-Cel: Novozyme® 188: Accellerase® XY of 44.4:20.6:35.0 showed synergistic enhancement on reducing sugar yield with a glucose releasing efficiency of 256.4 mg/FPU, equivalent to a 2.9 times compared with that from CG-Cel alone. The work showed an approach for developing an active synergistic enzyme system based on the newly characterized C. globosum for lignocellulose saccharification and modification in bio-industries.

  13. Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.

    PubMed

    Banerjee, Goutami; Car, Suzana; Scott-Craig, John S; Borrusch, Melissa S; Aslam, Nighat; Walton, Jonathan D

    2010-08-01

    The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for biomass conversion, we have developed a platform, called GENPLAT, that uses robotic liquid handling and statistically valid experimental design to analyze synthetic enzyme mixtures. Commercial enzymes (Accellerase 1000 +/- Multifect Xylanase, and Spezyme CP +/- Novozyme 188) were used to test the system and serve as comparative benchmarks. Using ammonia-fiber expansion (AFEX) pretreated corn stover ground to 0.5 mm and a glucan loading of 0.2%, an enzyme loading of 15 mg protein/g glucan, and 48 h digestion at 50 degrees C, commercial enzymes released 53% and 41% of the available glucose and xylose, respectively. Mixtures of three, five, and six pure enzymes of Trichoderma species, expressed in Pichia pastoris, were systematically optimized. Statistical models were developed for the optimization of glucose alone, xylose alone, and the average of glucose + xylose for two digestion durations, 24 and 48 h. The resulting models were statistically significant (P < 0.0001) and indicated an optimum composition for glucose release (values for optimized xylose release are in parentheses) of 29% (5%) cellobiohydrolase 1, 5% (14%) cellobiohydrolase 2, 25% (25%) endo-beta1,4-glucanase 1, 14% (5%) beta-glucosidase, 22% (34%) endo-beta1,4-xylanase 3, and 5% (17%) beta-xylosidase in 48 h at a protein loading of 15 mg/g glucan. Comparison of two AFEX-treated corn stover preparations ground to different particle sizes indicated that particle size (100 vs. 500 microm) makes a large difference in total digestibility. The assay platform and the optimized "core" set together provide a starting point for the rapid testing and optimization of alternate core enzymes from other microbial and recombinant sources as well as for the testing of "accessory" proteins for development of superior enzyme mixtures for biomass conversion. (c) 2010 Wiley Periodicals, Inc.

  14. Fructooligosaccharides production by Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase constitutively expressed to high levels in Pichia pastoris.

    PubMed

    Hernández, Lázaro; Menéndez, Carmen; Pérez, Enrique R; Martínez, Duniesky; Alfonso, Dubiel; Trujillo, Luis E; Ramírez, Ricardo; Sobrino, Alina; Mazola, Yuliet; Musacchio, Alexis; Pimentel, Eulogio

    2018-01-20

    The non-saccharolytic yeast Pichia pastoris was engineered to express constitutively the mature region of sucrose:sucrose 1-fructosyltransferase (1-SST, EC 2.4.1.99) from Tall fescue (Schedonorus arundinaceus). The increase of the transgene dosage from one to nine copies enhanced 7.9-fold the recombinant enzyme (Sa1-SSTrec) yield without causing cell toxicity. Secretion driven by the Saccharomyces cerevisiae α-factor signal peptide resulted in periplasmic retention (38%) and extracellular release (62%) of Sa1-SSTrec to an overall activity of 102.1 U/ml when biomass reached (106 g/l, dry weight) in fed-batch fermentation using cane sugar for cell growth. The volumetric productivity of the nine-copy clone PGFT6x-308 at the end of fermentation (72 h) was 1422.2 U/l/h. Sa1-SSTrec purified from the culture supernatant was a monomeric glycoprotein optimally active at pH 5.0-6.0 and 45-50 °C. The removal of N-linked oligosaccharides by Endo Hf treatment decreased the enzyme stability but had no effect on the substrate and product specificities. Sa1-SSTrec converted sucrose (600 g/l) into 1-kestose (GF 2 ) and nystose (GF 3 ) in a ratio 9:1 with their sum representing 55-60% (w/w) of the total carbohydrates in the reaction mixture. Variations in the sucrose (100-800 g/l) or enzyme (1.5-15 units per gram of substrate) concentrations kept unaltered the product profile. Sa1-SSTrec is an attractive candidate enzyme for the industrial production of short-chain fructooligosaccharides, most particularly 1-kestose. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology.

    PubMed

    Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-03-31

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.

  16. Heterologous expression of a recombinant lactobacillal β-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system.

    PubMed

    Nguyen, Tien-Thanh; Nguyen, Hoang-Minh; Geiger, Barbara; Mathiesen, Geir; Eijsink, Vincent G H; Peterbauer, Clemens K; Haltrich, Dietmar; Nguyen, Thu-Ha

    2015-03-07

    Two overlapping genes lacL and lacM (lacLM) encoding for heterodimeric β-galactosidase from Lactobacillus reuteri were previously cloned and over-expressed in the food-grade host strain Lactobacillus plantarum WCFS1, using the inducible lactobacillal pSIP expression system. In this study, we analyzed different factors that affect the production of recombinant L. reuteri β-galactosidase. Various factors related to the cultivation, i.e. culture pH, growth temperature, glucose concentration, as well as the induction conditions, including cell concentration at induction point and inducer concentration, were tested. Under optimal fermentation conditions, the maximum β-galactosidase levels obtained were 130 U/mg protein and 35-40 U/ml of fermentation broth corresponding to the formation of approximately 200 mg of recombinant protein per litre of fermentation medium. As calculated from the specific activity of the purified enzyme (190 U/mg), β-galactosidase yield amounted to roughly 70% of the total soluble intracellular protein of the host organism. It was observed that pH and substrate (glucose) concentration are the most prominent factors affecting the production of recombinant β-galactosidase. The over-expression of recombinant L. reuteri β-galactosidase in a food-grade host strain was optimized, which is of interest for applications of this enzyme in the food industry. The results provide more detailed insight into these lactobacillal expression systems and confirm the potential of the pSIP system for efficient, tightly controlled expression of enzymes and proteins in lactobacilli.

  17. Heterogonous expression and characterization of a plant class IV chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    PubMed

    Ishisaki, Kana; Honda, Yuji; Taniguchi, Hajime; Hatano, Naoya; Hamada, Tatsuro

    2012-03-01

    A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third and fourth glycosidic linkages from the non-reducing end of (GlcNAc)(6). The pH optimum of the enzymatic reaction was 5.5 at 37°C. The optimal temperature for activity was 60°C in 50 mM sodium acetate buffer (pH 5.5). The anomeric form of the products indicated that it was an inverting enzyme. The k(cat)/K(m) of the (GlcNAc)(n) hydrolysis increased with an increase in the degree of polymerization. Amino acid sequence alignment analysis between NaCHIT1 and a class IV chitinase from a Picea abies (Norway spruce) suggested that the deletion of four loops likely led the enzyme to optimize the (GlcNAc)(n) hydrolytic reaction rather than the hydrolysis of polymeric substrates.

  18. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii.

    PubMed

    Mayerhoff, Zea D V L; Roberto, Inês C; Franco, Telma T

    2006-05-01

    A central composite experimental design leading to a set of 16 experiments with different combinations of pH and temperature was performed to attain the optimal activities of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes from Candida mogii cell extract. Under optimized conditions (pH 6.5 and 38 degrees C), the XR and XDH activities were found to be 0.48 U/ml and 0.22 U/ml, respectively, resulting in an XR to XDH ratio of 2.2. Stability, cofactor specificity and kinetic parameters of the enzyme XR were also evaluated. XR activity remained stable for 3 h under 4 and 38 degrees C and for 4 months of storage at -18 degrees C. Studies on cofactor specificity showed that only NADPH-dependent XR was obtained under the cultivation conditions employed. The XR present in C. mogii extracts showed a superior Km value for xylose when compared with other yeast strains. Besides, this parameter was not modified after enzyme extraction by aqueous two-phase system.

  19. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    PubMed

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  20. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    PubMed Central

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  1. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes

    PubMed Central

    Zheng, Desong; Sun, Quanxi; Liu, Jiang; Li, Yaxiao; Hua, Jinping

    2016-01-01

    Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis. PMID:27433934

  2. Enzymatic process optimization for the in vitro production of isoprene from mevalonate.

    PubMed

    Cheng, Tao; Liu, Hui; Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xie, Congxia; Zhao, Guang; Xian, Mo

    2017-01-09

    As an important bulk chemical for synthetic rubber, isoprene can be biosynthesized by robust microbes. But rational engineering and optimization are often demanded to make the in vivo process feasible due to the complexities of cellular metabolism. Alternative synthetic biochemistry strategies are in fast development to produce isoprene or isoprenoids in vitro. This study set up an in vitro enzyme synthetic chemistry process using 5 enzymes in the lower mevalonate pathway to produce isoprene from mevalonate. We found the level and ratio of individual enzymes would significantly affect the efficiency of the whole system. The optimized process using 10 balanced enzyme unites (5.0 µM of MVK, PMK, MVD; 10.0 µM of IDI, 80.0 µM of ISPS) could produce 6323.5 µmol/L/h (430 mg/L/h) isoprene in a 2 ml in vitro system. In a scale up process (50 ml) only using 1 balanced enzyme unit (0.5 µM of MVK, PMK, MVD; 1.0 µM of IDI, 8.0 µM of ISPS), the system could produce 302 mg/L isoprene in 40 h, which showed higher production rate and longer reaction phase with comparison of the in vivo control. By optimizing the enzyme levels of lower MVA pathway, synthetic biochemistry methods could be set up for the enzymatic production of isoprene or isoprenoids from mevalonate.

  3. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production].

    PubMed

    Jin, Yingfu; Han, Li; Zhang, Shasha; Li, Shizhong; Liu, Weifeng; Tao, Yong

    2017-11-25

    To optimize key enzymes, such as to explore the gene resources and to modify the expression level, can maximize metabolic pathways of target products. β-carotene is a terpenoid compound with important application value. Lycopene cyclase (CrtY) is the key enzyme in β-carotene biosynthesis pathway, catalyzing flavin adenine dinucleotide (FAD)-dependent cyclization reaction and β-carotene synthesis from lycopene precursor. We optimized lycopene cyclase (CrtY) to improve the synthesis of β-carotene and determined the effect of CrtY expression on metabolic pathways. Frist, we developed a β-carotene synthesis module by coexpressing the lycopene β-cyclase gene crtY with crtEBI module in Escherichia coli. Then we simultaneously optimized the ribosome-binding site (RBS) intensity and the species of crtY using oligo-linker mediated DNA assembly method (OLMA). Five strains with high β-carotene production capacity were screened out from the OLMA library. The β-carotene yields of these strains were up to 15.79-18.90 mg/g DCW (Dry cell weight), 65% higher than that of the original strain at shake flask level. The optimal strain CP12 was further identified and evaluated for β-carotene production at 5 L fermentation level. After process optimization, the final β-carotene yield could reach to 1.9 g/L. The results of RBS strength and metabolic intermediate analysis indicated that an appropriate expression level of CrtY could be beneficial for the function of the β-carotene synthesis module. The results of this study provide important insight into the optimization of β-carotene synthesis pathway in metabolic engineering.

  4. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    PubMed

    Young, Eric M; Zhao, Zheng; Gielesen, Bianca E M; Wu, Liang; Benjamin Gordon, D; Roubos, Johannes A; Voigt, Christopher A

    2018-05-09

    Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the construction of strain libraries from which the maximum information can be extracted without sampling every possible combination. We use Saccharomyces cerevisiae as a host for a novel six-gene pathway to itaconic acid, selected by comparing alternative shunt pathways that bypass the mitochondrial TCA cycle. The pathway is distinctive for the use of acetylating acetaldehyde dehydrogenase to increase cytosolic acetyl-CoA pools, a bacterial enzyme to synthesize citrate in the cytosol, and an itaconic acid exporter. Precise control over the expression of each gene is enabled by a set of promoter-terminator pairs that span a 174-fold range. Two large combinatorial libraries (160 variants, 2.4Mb and 32 variants, 0.6Mb) are designed where the expression levels are selected by statistical methods (I-optimal response surface methodology, full factorial, or Plackett-Burman) with the intent of extracting different types of guiding information after the screen. This is applied to the design of a third library (24 variants, 0.5Mb) intended to alleviate a bottleneck in cis-aconitate decarboxylase (CAD) expression. The top strain produces 815mg/l itaconic acid, a 4-fold improvement over the initial strain achieved by iteratively balancing pathway expression. Including a methylated product in the total, the strain produces 1.3g/l combined itaconic acids. Further, a regression analysis of the libraries reveals the optimal expression level of CAD as well as pairwise interdependencies between genes that result in increased titer and purity of itaconic acid. This work demonstrates adapting algorithmic design strategies to guide automated yeast strain construction and learn information after each iteration. Copyright © 2018. Published by Elsevier Inc.

  5. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production

    PubMed Central

    2013-01-01

    Background Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called “China wood oil” is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However, the high cost of R. oryzae lipase remains a barrier for its industrial applications. Through different heterologous expression strategies and fermentation techniques, the highest expression level of the lipase from R. oryzae reached 1334 U/mL in Pichia pastoris, which is still not optimistic for industry applications. Results The prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. A chimeric lipase from R. oryzae was constructed by replacing the prosequence with that from the R. chinensis lipase and expressed in P. pastoris. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The properties of the chimera were studied. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. By response surface methodology, three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C. Conclusions This is the first report on improving the expression level of the lipase from R. oryzae by replacing prosequences. The immobilized chimera was used successfully for biodiesel production from tung oil. Using tung oil as non-edible raw material and a chimeric lipase from R. oryzae as an economic catalyst make this study a promising one for biodiesel applications. PMID:23432946

  6. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production.

    PubMed

    Yu, Xiao-Wei; Sha, Chong; Guo, Yong-Liang; Xiao, Rong; Xu, Yan

    2013-02-21

    Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called "China wood oil" is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However, the high cost of R. oryzae lipase remains a barrier for its industrial applications. Through different heterologous expression strategies and fermentation techniques, the highest expression level of the lipase from R. oryzae reached 1334 U/mL in Pichia pastoris, which is still not optimistic for industry applications. The prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. A chimeric lipase from R. oryzae was constructed by replacing the prosequence with that from the R. chinensis lipase and expressed in P. pastoris. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The properties of the chimera were studied. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. By response surface methodology, three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C. This is the first report on improving the expression level of the lipase from R. oryzae by replacing prosequences. The immobilized chimera was used successfully for biodiesel production from tung oil. Using tung oil as non-edible raw material and a chimeric lipase from R. oryzae as an economic catalyst make this study a promising one for biodiesel applications.

  7. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology

    PubMed Central

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production. PMID:26366414

  8. Optimization of cellulase production by Penicillium sp.

    PubMed

    Prasanna, H N; Ramanjaneyulu, G; Rajasekhar Reddy, B

    2016-12-01

    The production of cellulolytic enzymes (β-exoglucanase, β-endoglucanase and β-glucosidase) by Penicillium sp. on three different media in liquid shake culture conditions was compared. The organism exhibited relatively highest activity of endoglucanase among three enzymes measured at 7-day interval during the course of its growth on Czapek-Dox medium supplemented with 0.5 % (w/v) cellulose. Cellulose at 0.5 %, lactose at 0.5 %, sawdust at 0.5 %, yeast extract at 0.2 % as a nitrogen source, pH 5.0 and 30 °C temperature were found to be optimal for growth and cellulase production by Penicillium sp. Yields of Fpase, CMCase and β-glucosidase, attained on optimized medium with Penicillium sp. were 8.7, 25 and 9.52 U/ml, respectively with increment of 9.2, 5.9 and 43.8-folds over titers of the respective enzyme on unoptimised medium. Cellulase of the fungal culture with the ratio of β-glucosidase to Fpase greater than one will hold potential for biotechnological applications.

  9. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability.

    PubMed

    Vieille, C; Zeikus, G J

    2001-03-01

    Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.

  10. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability

    PubMed Central

    Vieille, Claire; Zeikus, Gregory J.

    2001-01-01

    Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of >80°C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described. PMID:11238984

  11. Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress.

    PubMed

    Guo, Hui; Xian, Jian-An; Li, Bin; Ye, Chao-Xia; Wang, An-Li; Miao, Yu-Tao; Liao, Shao-An

    2013-05-01

    Apoptotic cell ratio and mRNA expression of caspase-3, cathepsin B (CTSB), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx) in hemocytes of white shrimp Litopenaeus vannamei exposed to nitrite-N (20 mg/L) was investigated at different stress time (0, 4, 8, 12, 24, 48 and 72 h). The apoptotic cell ratio and mRNA expression level of CTSB were significantly increased in shrimp exposed to nitrite-N for 48 and 72 h. Caspase-3 mRNA expression level significantly increased by 766.50% and 1811.16% for 24 and 48 h exposure, respectively. HSP70 expression level significantly increased at 8 and 72 h exposure. MnSOD mRNA expression in hemocytes up-regulated at 8 and 48 h, while CAT mRNA expression level increased at 24 and 48 h. GPx expression showed a trend that increased first and then decreased. Significant increases of GPx expression were observed at 8 and 12 h exposure. Expression level of TRx reached its highest level after 48 h exposure. These results suggest that nitrite exposure induces expression of apoptosis-related genes in hemocytes, and subsequently caused hemocyte apoptosis. Meanwhile, expression levels of HSP70 and antioxidant enzymes up-regulated to protect the hemocyte against nitrite stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Characterization of a Novel Maltose-Forming α-Amylase from Lactobacillus plantarum subsp. plantarum ST-III.

    PubMed

    Jeon, Hye-Yeon; Kim, Na-Ri; Lee, Hye-Won; Choi, Hye-Jeong; Choung, Woo-Jae; Koo, Ye-Seul; Ko, Dam-Seul; Shim, Jae-Hoon

    2016-03-23

    A novel maltose (G2)-forming α-amylase from Lactobacillus plantarum subsp. plantarum ST-III was expressed in Escherichia coli and characterized. Analysis of conserved amino acid sequence alignments showed that L. plantarum maltose-producing α-amylase (LpMA) belongs to glycoside hydrolase family 13. The recombinant enzyme (LpMA) was a novel G2-producing α-amylase. The properties of purified LpMA were investigated following enzyme purification. LpMA exhibited optimal activity at 30 °C and pH 3.0. It produced only G2 from the hydrolysis of various substrates, including maltotriose (G3), maltopentaose (G5), maltosyl β-cyclodextrin (G2-β-CD), amylose, amylopectin, and starch. However, LpMA was unable to hydrolyze cyclodextrins. Reaction pattern analysis using 4-nitrophenyl-α-d-maltopentaoside (pNPG5) demonstrated that LpMA hydrolyzed pNPG5 from the nonreducing end, indicating that LpMA is an exotype α-amylase. Kinetic analysis revealed that LpMA had the highest catalytic efficiency (kcat/Km ratio) toward G2-β-CD. Compared with β-amylase, a well-known G2-producing enzyme, LpMA produced G2 more efficiently from liquefied corn starch due to its ability to hydrolyze G3.

  13. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adney, W. S.; Jeoh, T.; Beckham, G. T.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonlymore » used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after 120 h compared to the wild type P. funiculosum enzyme expressed in A. niger var. awamori. Overall, this study demonstrates that 'tuning' enzyme glycosylation for expression from heterologous expression hosts is essential for generating engineered enzymes with optimal stability and activity.« less

  14. Effects of exogenous inosine monophosphate on growth performance, flavor compounds, enzyme activity, and gene expression of muscle tissues in chicken.

    PubMed

    Yan, Junshu; Liu, Peifeng; Xu, Liangmei; Huan, Hailin; Zhou, Weiren; Xu, Xiaoming; Shi, Zhendan

    2018-04-01

    The goal of this experiment was to examine effects of diets supplemented with exogenous inosine monophosphate (IMP) on the growth performance, flavor compounds, enzyme activity and gene expression of chicken. A total of 1,500 healthy, 1-day-old male 3-yellow chickens were used for a 52-d experimental period. Individuals were randomly divided into 5 groups (group I, II, III, IV, V) with 6 replicates per group, and fed a basal diet supplemented with 0.0, 0.05, 0.1, 0.2, and 0.3% IMP, respectively. There was no significant response to the increasing dietary IMP level in average daily feed intake (ADFI), average daily gain (ADG), and feed:gain ratio (F/G) (P ≥ 0.05). IMP content of the breast and thigh muscle showed an exponential and linear response to the increasing dietary IMP level (P < 0.05), the highest IMP content was obtained when the diet with 0.3% and 0.2% exogenous IMP was fed. There were significant effects of IMP level in diet on free amino acids (FAA) (exponential, linear and quadratic effect, P < 0.05) and delicious amino acids (DAA) (quadratic effect, P < 0.01) content in breast muscle. FAA and DAA content in thigh muscle showed an exponential and linear response (P < 0.05), and quadratic response (P < 0.01) to the increasing dietary IMP level, the highest FAA and DAA content was obtained when the diet with 0.2% exogenous IMP was fed. Dietary IMP supplementation had a quadratic effect on 5΄-NT and the alkaline phosphatase (ALP) enzyme activity in the breast muscle (P < 0.05), and the adenosine triphosphate (ATP) enzyme activity in the thigh muscles increased exponentially and linearly with increasing IMP level in diet (exponential effect, P = 0.061; linear effect, P = 0.059). Cyclohydrolase (ATIC) gene expression in thigh muscle had a quadratic response to the increasing dietary IMP level (P < 0.05), 0.2% exogenous IMP group had the highest (AMPD1) gene expression of the breast muscle and ATIC gene expression of the thigh muscle. These results indicate that dietary IMP did not affect the growth performance of chicken, the diet with 0.2 to 0.3% exogenous IMP is optimal to improve the meat flavor quality in chicken.

  15. Microbial xylanases: engineering, production and industrial applications.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2012-01-01

    Enzymatic depolymerization of hemicellulose to monomer sugars needs the synergistic action of multiple enzymes, among them endo-xylanases (EC 3.2.1.8) and β-xylosidases (EC 3.2.1.37) (collectively xylanases) play a vital role in depolymerizing xylan, the major component of hemicellulose. Recent developments in recombinant protein engineering have paved the way for engineering and expressing xylanases in both heterologous and homologous hosts. Functional expression of endo-xylanases has been successful in many hosts including bacteria, yeasts, fungi and plants with yeasts being the most promising expression systems. Functional expression of β-xylosidases is more challenging possibly due to their more complicated structures. The structures of endo-xylanases of glycoside hydrolase families 10 and 11 have been well elucidated. Family F/10 endo-xylanases are composed of a cellulose-binding domain and a catalytic domain connected by a linker peptide with a (β/α)8 fold TIM barrel. Family G/11 endo-xylanases have a β-jelly roll structure and are thought to be able to pass through the pores of hemicellulose network owing to their smaller molecular sizes. The structure of a β-D-xylosidase belonging to family 39 glycoside hydrolase has been elucidated as a tetramer with each monomer being composed of three distinct regions: a catalytic domain of the canonical (β/α)8--TIM barrel fold, a β-sandwich domain and a small α-helical domain with the enzyme active site that binds to D-xylooligomers being present on the upper side of the barrel. Glycosylation is generally considered as one of the most important post-translational modifications of xylanases, but a few examples showed functional expression of eukaryotic xylanases in bacteria. The optimal ratio of these synergistic enzymes is very important in improving hydrolysis efficiency and reducing enzyme dosage but has hardly been addressed in literature. Xylanases have been used in traditional fields such as food, feed and paper industries for a longer time but more and more attention has been paid to using them in producing sugars and other chemicals from lignocelluloses in recent years. Mining new genes from nature, rational engineering of known genes and directed evolution of these genes are required to get tailor-made xylanases for various industrial applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Optimization of cDNA-AFLP experiments using genomic sequence data.

    PubMed

    Kivioja, Teemu; Arvas, Mikko; Saloheimo, Markku; Penttilä, Merja; Ukkonen, Esko

    2005-06-01

    cDNA amplified fragment length polymorphism (cDNA-AFLP) is one of the few genome-wide level expression profiling methods capable of finding genes that have not yet been cloned or even predicted from sequence but have interesting expression patterns under the studied conditions. In cDNA-AFLP, a complex cDNA mixture is divided into small subsets using restriction enzymes and selective PCR. A large cDNA-AFLP experiment can require a substantial amount of resources, such as hundreds of PCR amplifications and gel electrophoresis runs, followed by manual cutting of a large number of bands from the gels. Our aim was to test whether this workload can be reduced by rational design of the experiment. We used the available genomic sequence information to optimize cDNA-AFLP experiments beforehand so that as many transcripts as possible could be profiled with a given amount of resources. Optimization of the selection of both restriction enzymes and selective primers for cDNA-AFLP experiments has not been performed previously. The in silico tests performed suggest that substantial amounts of resources can be saved by the optimization of cDNA-AFLP experiments.

  17. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    PubMed

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the basis for a next generation production host, since the strain has still a large potential for further genetic engineering. The final amylase titer of 65% in reference to B. licheniformis protease titer suggests that the developed B. pumilus expression platform is also suitable for an efficient production of non-proteolytic enzymes reaching a final titer of several grams per liter without complex process modifications.

  18. Flume Computer-Aided Design (CAD): Integrated CAD for Microflume Components and Systems

    DTIC Science & Technology

    2002-04-01

    31 3.3: Matching the Mix Ratio (Part B...sizes) will be optimized based on the required flow rates and mixing ratios of the different species. The influence of etch depth is investigated on a...Inhibition Study In this network, the target protein is mixed with protease (i.e. enzyme that cleaves the target protein) and the protease inhibitor (the

  19. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase

    NASA Astrophysics Data System (ADS)

    Konwarh, Rocktotpal; Karak, Niranjan; Rai, Sudhir Kumar; Mukherjee, Ashis Kumar

    2009-06-01

    Nanotechnology holds the prospect for avant-garde changes to improve the performance of materials in various sectors. The domain of enzyme biotechnology is no exception. Immobilization of industrially important enzymes onto nanomaterials, with improved performance, would pave the way to myriad application-based commercialization. Keratinase produced by Bacillus subtilis was immobilized onto poly(ethylene glycol)-supported Fe3O4 superparamagnetic nanoparticles. The optimization process showed that the highest enzyme activity was noted when immobilized onto cyanamide-activated PEG-assisted MNP prepared under conditions of 25 °C and pH 7.2 of the reaction mixture before addition of H2O2 (3% w/w), 2% (w/v) PEG6000 and 0.062:1 molar ratio of PEG to FeCl2·4H2O. Further statistical optimization using response surface methodology yielded an R2 value that could explain more than 94% of the sample variations. Along with the magnetization studies, the immobilization of the enzyme onto the PEG-assisted MNP was characterized by UV, XRD, FTIR and TEM. The immobilization process had resulted in an almost fourfold increase in the enzyme activity over the free enzyme. Furthermore, the immobilized enzyme exhibited a significant thermostability, storage stability and recyclability. The leather-industry-oriented application of the immobilized enzyme was tested for the dehairing of goat-skin.

  20. Heterogeneous Expression and Functional Characterization of Cellulose-Degrading Enzymes from Aspergillus niger for Enzymatic Hydrolysis of Alkali Pretreated Bamboo Biomass.

    PubMed

    Ali, Nasir; Ting, Zhang; Li, Hailong; Xue, Yong; Gan, Lihui; Liu, Jian; Long, Minnan

    2015-09-01

    Enzymatic hydrolysis of cellulosic biomass has caught much attention because of modest reaction conditions and environment friendly conditions. To reduce the cost and to achieve good quantity of cellulases, a heterologous expression system is highly favored. In this study, cellulose-degrading enzymes, GH3 family β-glucosidase (BGL), GH7 family-related cellobiohydrolases (CBHs), and endoglucanase (EG) from a newly isolated Aspergillus niger BE-2 are highly expressed in Pichia pastoris GS115. The strain produced EG, CBHs, and BGL enzymatic concentration of 0.56, 0.11, and 22 IU/mL, respectively. Mode of actions of the recombinant enzymes for substrate specificity and end product analysis are verified and found specific for cellulose degradation. Bamboo biomass saccharification with A. niger cellulase released a high level of fermentable sugars. Hydrolysis parameters are optimized to obtain reducing sugars level of 3.18 g/L. To obtain reducing sugars from a cellulosic biomass, A. niger could be a good candidate for enzymes resource of cellulase to produce reducing sugars from a cellulosic biomass. This study also facilitates the development of highly efficient enzyme cocktails for the bioconversion of lignocellulosic biomass into monosaccharides and oligosaccharides.

  1. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology

    PubMed Central

    Auwal, Shehu Muhammad; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-01-01

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4–7), temperature (40–70 °C), enzyme/substrate (E/S) ratio (0.5%–2%) and time (30–360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries. PMID:28362352

  2. Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves.

    PubMed

    Huynh, Nguyen Thai; Smagghe, Guy; Gonzales, Gerard Bryan; Van Camp, John; Raes, Katleen

    2014-07-30

    Phenolic compounds are highly present in byproducts from the cauliflower (Brassica oleracea L. var. botrytis) harvest and are thus a valuable source for valorization toward phenolic-rich extracts. In this study, we aimed to optimize and characterize the release of individual phenolic compounds from outer leaves of cauliflower, using two commercially available polysaccharide-degrading enzymes, Viscozyme L and Rapidase. As major results, the optimal conditions for the enzyme treatment were: enzyme/substrate ratio of 0.2% for Viscozyme L and 0.5% for Rapidase, temperature 35 °C, and pH 4.0. Using a UPLC-HD-TOF-MS setup, the main phenolic compounds in the extracts were identified as kaempferol glycosides and their combinations with different hydroxycinnamic acids. The most abundant components were kaempferol-3-feruloyldiglucoside and kaempferol-3-glucoside (respectively, 37.8 and 58.4 mg rutin equiv/100 g dry weight). Incubation of the cauliflower outer leaves with the enzyme mixtures resulted in a significantly higher extraction yield of kaempferol-glucosides as compared to the control treatment.

  3. Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation.

    PubMed

    Su, Liqiu; Shen, Yanbing; Zhang, Wenkai; Gao, Tian; Shang, Zhihua; Wang, Min

    2017-10-30

    Cofactor engineering is involved in the modification of enzymes related to nicotinamide adenine dinucleotides (NADH and NAD + ) metabolism, which results in a significantly altered spectrum of metabolic products. Cofactor engineering plays an important role in metabolic engineering but is rarely reported in the sterols biotransformation process owing to its use of multi-catabolic enzymes, which promote multiple consecutive reactions. Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are important steroid medicine intermediates that are obtained via the nucleus oxidation and the side chain degradation of phytosterols by Mycobacterium. Given that the biotransformation from phytosterols to AD (D) is supposed to be a NAD + -dependent process, this work utilized cofactor engineering in Mycobacterium neoaurum and investigated the effect on cofactor and phytosterols metabolism. Through the addition of the coenzyme precursor of nicotinic acid in the phytosterols fermentation system, the intracellular NAD + /NADH ratio and the AD (D) production of M. neoaurum TCCC 11978 (MNR M3) were higher than in the control. Moreover, the NADH: flavin oxidoreductase was identified and was supposed to exert a positive effect on cofactor regulation and phytosterols metabolism pathways via comparative proteomic profiling of MNR cultured with and without phytosterols. In addition, the NADH: flavin oxidoreductase and a water-forming NADH oxidase from Lactobacillus brevis, were successfully overexpressed and heterologously expressed in MNR M3 to improve the intracellular ratio of NAD + /NADH. After 96 h of cultivation, the expression of these two enzymes in MNR M3 resulted in the decrease in intracellular NADH level (by 51 and 67%, respectively) and the increase in NAD + /NADH ratio (by 113 and 192%, respectively). Phytosterols bioconversion revealed that the conversion ratio of engineered stains was ultimately improved by 58 and 147%, respectively. The highest AD (D) conversion ratio by MNR M3N2 was 94% in the conversion system with soybean oil as reaction media to promote the solubility of phytosterols. The ratio of NAD + /NADH is an important factor for the transformation of phytosterols. Expression of NADH: flavin oxidoreductase and water-forming NADH oxidase in MNR improved AD (D) production. Besides the manipulation of key enzyme activities, which included in phytosterols degradation pathways, maintenance the balance of redox also played an important role in promoting steroid biotransformation. The recombinant MNR strain may be useful in industrial production.

  4. Optimization of manganese peroxidase production from Schizophyllum sp. F17 in solid-state fermentation of agro-industrial residues.

    PubMed

    Zhou, Yue; Yang, Bing; Yang, Yang; Jia, Rong

    2014-03-01

    Manganese peroxidase (MnP), a crucial enzyme in lignin degradation, has wide potential applications in environmental protection. However, large-scale industrial application of this enzyme is limited due to several factors primarily related to cost and availability. Special attention has been paid to the production of MnP from inexpensive sources, such as lignocellulosic residues, using solid-state fermentation (SSF) systems. In the present study, a suitable SSF medium for the production of MnP by Schizophyllum sp. F17 from agro-industrial residues has been optimized. The mixed solid medium, comprising pine sawdust, rice straw, and soybean powder at a ratio of 0.52:0.15:0.33, conferred a maximum enzyme activity of 11.18 U/g on the sixth day of SSF. The results show that the use of wastes such as pine sawdust and rice straw makes the enzyme production more economical as well as helps solve environmental problems.

  5. Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice.

    PubMed

    Zhou, Shengmin; Wang, Yueqiang; Jacoby, Jörg J; Jiang, Yuanrong; Zhang, Yaqiong; Yu, Liangli Lucy

    2017-08-09

    Obesity is related to an increasing risk of chronic diseases. Medium- and long-chain triacylglycerols (MLCT) have been recognized as a promising choice to reduce body weight. In this study, three MLCT with different contents of medium-chain fatty acids (MCFA) (10-30%, w/w) were prepared, and their effects on lipid metabolism and fecal gut microbiota composition of C57BL/6J mice were systematically investigated. MLCT with 30% (w/w) MCFA showed the best performance in decreasing body weight gain as well as optimizing serum lipid parameters and liver triacylglycerol content. The expression levels of genes encoding enzymes for fatty acid degradation increased markedly and expression levels of genes encoding enzymes for de novo fatty acid biosynthesis decreased significantly in the liver of mice treated with MLCT containing 30% (w/w) MCFA. Interestingly, the dietary intake of a high fat diet containing MLCT did significantly decrease the ratio of Firmicutes to Bacteroidetes and down-regulate the relative abundance of Proteobacteria that may attribute to weight loss. Furthermore, we found a notable increase in the total short-chain fatty acid (SCFA) content in feces of mice on a MLCT containing diet. All these results may be concomitantly responsible for the antiobesity effect of MLCT with relatively high contents of MCFA.

  6. Exploring the potential of the bacterial carotene desaturase CrtI to increase the beta-carotene content in Golden Rice.

    PubMed

    Al-Babili, Salim; Hoa, Tran Thi Cuc; Schaub, Patrick

    2006-01-01

    To increase the beta-carotene (provitamin A) content and thus the nutritional value of Golden Rice, the optimization of the enzymes employed, phytoene synthase (PSY) and the Erwinia uredovora carotene desaturase (CrtI), must be considered. CrtI was chosen for this study because this bacterial enzyme, unlike phytoene synthase, was expressed at barely detectable levels in the endosperm of the Golden Rice events investigated. The low protein amounts observed may be caused by either weak cauliflower mosaic virus 35S promoter activity in the endosperm or by inappropriate codon usage. The protein level of CrtI was increased to explore its potential for enhancing the flux of metabolites through the pathway. For this purpose, a synthetic CrtI gene with a codon usage matching that of rice storage proteins was generated. Rice plants were transformed to express the synthetic gene under the control of the endosperm-specific glutelin B1 promoter. In addition, transgenic plants expressing the original bacterial gene were generated, but the endosperm-specific glutelin B1 promoter was employed instead of the cauliflower mosaic virus 35S promoter. Independent of codon optimization, the use of the endosperm-specific promoter resulted in a large increase in bacterial desaturase production in the T(1) rice grains. However, this did not lead to a significant increase in the carotenoid content, suggesting that the bacterial enzyme is sufficiently active in rice endosperm even at very low levels and is not rate-limiting. The endosperm-specific expression of CrtI did not affect the carotenoid pattern in the leaves, which was observed upon its constitutive expression. Therefore, tissue-specific expression of CrtI represents the better option.

  7. Heterologous Expression of a Bioactive β-Hexosyltransferase, an Enzyme Producer of Prebiotics, from Sporobolomyces singularis

    PubMed Central

    Dagher, Suzanne F.; Azcarate-Peril, M. Andrea

    2013-01-01

    Galacto-oligosaccharides (GOS) are indigestible dietary fibers that are able to reach the lower gastrointestinal tract to be selectively fermented by health-promoting bacteria. In this report, we describe the heterologous expression of an optimized synthetically produced version of the β-hexosyltransferase gene (Bht) from Sporobolomyces singularis. The Bht gene encodes a glycosyl hydrolase (EC 3.2.1.21) that acts as galactosyltransferase, able to catalyze a one-step conversion of lactose to GOS. Expression of the enzyme in Escherichia coli yielded an inactive insoluble protein, while the methylotrophic yeast Pichia pastoris GS115 produced a bioactive β-hexosyltransferase (rBHT). The enzyme exhibited faster kinetics at pHs between 3.5 and 6 and at temperatures between 40 and 50°C. Enzyme stability improved at temperatures lower than 40°C, and glucose was found to be a competitive inhibitor of enzymatic activity. P. pastoris secreted a fraction of the bioactive rBHT into the fermentation broth, while the majority of the enzyme remained associated with the outer membrane. Both the secreted and the membrane-associated forms were able to efficiently convert lactose to GOS. Additionally, resting cells with membrane-bound enzyme converted 90% of the initial lactose into GOS at 68% yield (g/g) (the maximum theoretical is 75%) with no secondary residual (glucose or galactose) products. This is the first report of a bioactive BHT from S. singularis that has been heterologously expressed. PMID:23241974

  8. Lipase-catalysed interesterification between canola oil and fully hydrogenated canola oil in contact with supercritical carbon dioxide.

    PubMed

    Jenab, Ehsan; Temelli, Feral; Curtis, Jonathan M

    2013-12-01

    The processing parameters in enzymatic reactions using CO2-expanded (CX) lipids have strong effects on the physical properties of liquid phase, degree of interesterification, and physicochemical properties of the final reaction products. CX-canola oil and fully hydrogenated canola oil (FHCO) were interesterified using Lipozyme TL IM in a high pressure stirred batch reactor. The effects of immobilised enzyme load, pressure, substrate ratio and reaction time on the formation of mixed triacylglycerols (TG) from trisaturated and triunsaturated TG were investigated. The optimal immobilised enzyme load, pressure, substrate ratio and time for the degree of interesterification to reach the highest equilibrium state were 6% (w/v) of initial substrates, 10 MPa, blend with 30% (w/w) of FHCO and 2h, respectively. The physicochemical properties of the initial blend and interesterified products with different FHCO ratios obtained at optimal reaction conditions were determined in terms of TG composition, thermal behaviour and solid fat content (SFC). The amounts of saturated and triunsaturated TG decreased while the amounts of mixed TG increased as a result of interesterification. Thus, the interesterified product had a lower melting point, and broader melting and plasticity ranges compared to the initial blends. These findings are important for better understanding of CX-lipid reactions and for optimal formulation of base-stocks of margarine and confectionary fats to meet industry demands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Production of high activity Aspergillus niger BCC4525 β-mannanase in Pichia pastoris and its application for mannooligosaccharides production from biomass hydrolysis.

    PubMed

    Harnpicharnchai, Piyanun; Pinngoen, Waraporn; Teanngam, Wanwisa; Sornlake, Warasirin; Sae-Tang, Kittapong; Manitchotpisit, Pennapa; Tanapongpipat, Sutipa

    2016-12-01

    A cDNA encoding β-mannanase was cloned from Aspergillus niger BCC4525 and expressed in Pichia pastoris KM71. The secreted enzyme hydrolyzed locust bean gum substrate with very high activity (1625 U/mL) and a relatively high k cat /K m (461 mg -1 s -1  mL). The enzyme is thermophilic and thermostable with an optimal temperature of 70 °C and 40% retention of endo-β-1,4-mannanase activity after preincubation at 70 °C. In addition, the enzyme exhibited broad pH stability with an optimal pH of 5.5. The recombinant enzyme hydrolyzes low-cost biomass, including palm kernel meal (PKM) and copra meal, to produce mannooligosaccharides, which is used as prebiotics to promote the growth of beneficial microflora in animals. An in vitro digestibility test simulating the gastrointestinal tract system of broilers suggested that the recombinant β-mannanase could effectively liberate reducing sugars from PKM-containing diet. These characteristics render this enzyme suitable for utilization as a feed additive to improve animal performance.

  10. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    PubMed Central

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R 2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  11. [Development of an optimal scheme for calculating results of the use of an immunoenzyme test-system for determining the antigenic activity of a cultured antirabies vaccine].

    PubMed

    Tsetlin, E M; Volkova, R A

    1996-01-01

    Ninety-eight lots of commercial antirabies vaccine manufactured by Immunopreparat Research and Production Amalgamation have been tested using enzyme immunoassay system for the detection of rabies virus antigens. Comparison of different variants of interpreting and expressing the results helped define the optimal method for assessment of vaccine titer and reference values: optical density value equal to 0.2 is taken as the cut-off. Antigenic activity of the vaccine may be expressed in international units, similarly as immunogenic activity.

  12. Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2

    PubMed Central

    Everett, Peter; Clish, Clary B.; Sukhatme, Vikas P.

    2010-01-01

    Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy. PMID:20824065

  13. Study on the preparation process of cross-linked porous cassava starch

    NASA Astrophysics Data System (ADS)

    Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua

    2017-04-01

    Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.

  14. Purified enzymes improve isolation and characterization of the adult thymic epithelium.

    PubMed

    Seach, Natalie; Wong, Kahlia; Hammett, Maree; Boyd, Richard L; Chidgey, Ann P

    2012-11-30

    The reproducible isolation and accurate characterization of thymic epithelial cell (TEC) subsets is of critical importance to the ongoing study of thymopoiesis and its functional decline with age. The study of adult TEC, however, is significantly hampered due to the severely low stromal to hematopoietic cell ratio. Non-biased digestion and enrichment protocols are thus essential to ensure optimal cell yield and accurate representation of stromal subsets, as close as possible to their in vivo representation. Current digestion protocols predominantly involve diverse, relatively impure enzymatic variants of crude collagenase and collagenase/dispase (col/disp) preparations, which have variable efficacy and are often suboptimal in their ability to mediate complete digestion of thymus tissue. To address these issues we compared traditional col/disp preparations with the latest panel of Liberase products that contain a blend of highly purified collagenase and neutral protease enzymes. Liberase enzymes revealed a more rapid, complete dissociation of thymus tissue; minimizing loss of viability and increasing recovery of thymic stromal cell (TSC) elements. In particular, the recovery and viability of TEC, notably the rare cortical subsets, were significantly enhanced with Liberase products containing medium to high levels of thermolysin. The improved stromal dissociation led to numerically increased TEC yield and total TEC RNA isolated from pooled digests of adult thymus. Furthermore, the increased recovery of TEC enhanced resolution and quantification of TEC subsets in both adult and aged mice, facilitating flow cytometric analysis on a per thymus basis. We further refined the adult TEC phenotype by correlating surface expression of known TEC markers, with expression of intracellular epithelial lineage markers, Keratin 5 and Keratin 8. The data reveal more extensive expression of K8 than previously recognized and indicates considerable heterogeneity still exists within currently defined adult TEC subsets. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  15. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    PubMed

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  16. Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii.

    PubMed

    van Rooyen, Jason M; Hakimi, Mohamed-Ali; Belrhali, Hassan

    2015-06-01

    Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

    DOE PAGES

    Simmons, Christopher W.; Reddy, Amitha P.; D’haeseleer, Patrik; ...

    2014-12-31

    New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched onmore » rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. In conclusion, coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Furthermore, glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.« less

  18. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Christopher W.; Reddy, Amitha P.; D’haeseleer, Patrik

    New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched onmore » rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. In conclusion, coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Furthermore, glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.« less

  19. Efficient co-expression of a recombinant staphopain A and its inhibitor staphostatin A in Escherichia coli.

    PubMed

    Wladyka, Benedykt; Puzia, Katarzyna; Dubin, Adam

    2005-01-01

    Staphopain A is a staphylococcal cysteine protease. Genes encoding staphopain A and its specific inhibitor, staphostatin A, are localized in an operon. Staphopain A is an important staphylococcal virulence factor. It is difficult to perform studies on its interaction with other proteins due to problems in obtaining a sufficient amount of the enzyme from natural sources. Therefore efforts were made to produce a recombinant staphopain A. Sequences encoding the mature form of staphopain A and staphostatin A were PCR-amplified from Staphylococcus aureus genomic DNA and cloned into different compatible expression vectors. Production of staphopain A was observed only when the enzyme was co-expressed together with its specific inhibitor, staphostatin A. Loss of the function mutations introduced within the active site of staphopain A causes the expression of the inactive enzyme. Mutations within the reactive centre of staphostatin A result in abrogation of production of both the co-expressed proteins. These results support the thesis that the toxicity of recombinant staphopain A to the host is due to its proteolytic activity. The coexpressed proteins are located in the insoluble fraction. Ni2+-nitrilotriacetate immobilized metal-affinity chromatography allows for an efficient and easy purification of staphopain A. Our optimized refolding parameters allow restoration of the native conformation of the enzyme, with yields over 10-fold higher when compared with isolation from natural sources.

  20. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    DOE PAGES

    Standaert, Robert F.; Giannone, Richard J.; Michener, Joshua K.

    2018-04-18

    Here, metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neithermore » enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.« less

  1. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Standaert, Robert F.; Giannone, Richard J.; Michener, Joshua K.

    Here, metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neithermore » enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.« less

  2. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes.

    PubMed

    Standaert, Robert F; Giannone, Richard J; Michener, Joshua K

    2018-06-01

    Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI , from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA , duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI , growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.

  3. Engineering strategies for the fermentative production of plant alkaloids in yeast

    PubMed Central

    Trenchard, Isis J.; Smolke, Christina D.

    2015-01-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. PMID:25981946

  4. Expression of food-grade phytase in Lactococcus lactis from optimized conditions in milk broth.

    PubMed

    Miao, Yuzhi; Xu, Hui; Fei, Baojin; Qiao, Dairong; Cao, Yi

    2013-07-01

    The major objective of this study was to engineer lactic acid bacteria to produce the enzyme phytase from a gene native to Bacillus subtilis GYPB04. The phytase gene (phyC) of B. subtilis GYPB04 was cloned into the plasmid pMG36e for expression in Lactococcus lactis. The enzyme activity in L. lactis cultured in GM17 broth was 20.25 U/mL at 36°C. The expressed phytase was characterized as active in a pH range of 2.0-9.0 at a temperature range of 20-80°C, with an optimum pH of 5.5-6.5 and temperature of 60°C. When cultured in food-grade milk broth, the transformed L. lactis grew to an OD(600 nm) value of 1.05 and had a phytase yield of 13.58 U/mL. In same broth under optimized conditions for cell growth and phytase production, the transformant reached an OD(600 nm) value of 1.68 and a phytase yield of 42.12 U/mL, representing approximately 1.6-fold and 3.1-fold increases, respectively, compared to growth in natural milk broth. Fermentation was scaled to 5 L under optimized conditions, and product analysis revealed a final OD(600 nm) value of 1.89 and an extracellular enzyme activity of 24.23 U/mL. The results of this study may be used in the dairy fermentation industry for the development of functional, healthy yogurts and other fermented dairy foods that provide both active phytase and viable probiotics to the consumer. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus.

    PubMed

    Zhu, Yang; Li, Qian; Mao, Guanghua; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Zhou, Lulu; Zhang, Tianxiu; Yang, Jun; Yang, Liuqing; Wu, Xiangyang

    2014-01-30

    The enzyme-assisted extraction (EAE) of polysaccharides from the fruits of Hericium erinaceus was studied. In this study, response surface methodology and the Box-Behnken design based on single-factor and orthogonal experiments were applied to optimize the EAE conditions. The optimal extraction conditions were as follows: a pH of 5.71, a temperature of 52.03°C and a time of 33.79 min. The optimal extraction conditions resulted in the highest H. erinaceus polysaccharides (HEP) yield, with a value 13.46 ± 0.37%, which represented an increase of 67.72% compared to hot water extraction (HWE). The polysaccharides were characterized by FT-IR, SEM, CD, AFM, and GC. The results showed that HEP was composed of mannose, glucose, xylose, and galactose in a molar ratio of 15.16:5.55:4.21:1. The functional groups of the H. erinaceus polysaccharides extracted by HWE and EAE were fundamentally identical but had apparent conformational changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Development of ochratoxin a in cereal by chemiluminescence enzyme immunoassay

    NASA Astrophysics Data System (ADS)

    Li, Min; Liu, Renrong; Zhu, Lixin; Chen, Zhenzhen

    2017-11-01

    A rapid, simple and sensitive chemiluminescence enzyme immunoassay method (CLEIA) was established to detect ochratoxin A (OTA) in cereal. Optimal conditions including antibody dilution ratio and enzyme conjugate, ionic strength, pH value and organic solvent. Established indirect competition inhibition curve to determine the linear working range, detection limit and recovery rate. Results: The 50% inhibitory concentration and the detection limit of the CLEIA were78.8pg/mL and 14.86 pg/mL, respectively, with a linear range of 0.015-0.4ng/mL. At 1∼4μpg/kg fortified levels in wheat, mean recoveries ranged from 67.47% to100.35%.

  7. Biodiesel production using waste frying oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpe, Trupti W.; Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less

  8. Effects of different components of Mao Dongqing's total flavonoids and total saponins on transient ischemic attack (TIA) model of rats.

    PubMed

    Miao, Ming-San; Peng, Meng-Fan; Ma, Rui-Juan; Bai, Ming; Liu, Bao-Song

    2018-03-01

    Objective: To study the effects of the different components of the total flavonoids and total saponins from Mao Dongqing's active site on the rats of TIA model, determine the optimal reactive components ratio of Mao Dongqing on the rats of TIA. Methods: TIA rat model was induced by tail vein injection of tert butyl alcohol, the blank group was injected with the same amount of physiological saline, then behavioral score wasevaluated. Determination the level of glutamic acid in serum, the activity of Na+-K+-ATP enzyme, CA ++ -ATP enzyme and Mg ++ -ATP enzyme in Brain tissue, observe the changes of hippocampus in brain tissue, the comprehensive weight method was used to evaluate the efficacy of each component finally. Results: The contents of total flavonoids and total saponins in the active part of Mao Dongqing can significantly improve the pathological changes of brain tissue in rats, improve the activity of Na + -K + -ATP enzyme, Ca ++ -ATP enzyme and Mg ++ -ATP enzyme in the brain of rats, and reduce the level of glutamic acid in serum. The most significant of the contents was the ratio of 10:6. The different proportions of total flavonoids and total saponins in the active part of Mao Dongqing all has a better effect on the rats with TIA, and the ratio of 10:6 is the best active component for preventing and controlling TIA.

  9. A new strategy for the cloning, overexpression and one step purification of three DHAP-dependent aldolases: rhamnulose-1-phosphate aldolase, fuculose-1-phosphate aldolase and tagatose-1,6-diphosphate aldolase.

    PubMed

    Garcia-Junceda, E; Shen, G J; Sugai, T; Wong, C H

    1995-07-01

    Three DHAP-dependent aldolases, rhamnulose-1-phosphate aldolase (Rham-1PA), fuculose-1-phosphate aldolase (Fuc-1PA) and tagatose-1,6-diphosphate aldolase (TDPA) have been cloned and overexpressed in Escherichia coli using two different expression vectors: pTrcHis for the expression of Rham-1PA and Fuc-1PA and pRSET for the expression of TDPA. In each case the recombinant enzyme is synthesized as a fusion protein with a hexahistidine tag on the N-terminus. The three enzymes have been purified in only one step by chelation affinity chromatography. The effects of cultivation temperature and concentration of inducer have been studied in order to optimize the expression of the recombinant proteins and to avoid the formation of inclusion bodies.

  10. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    PubMed

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.

  11. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    PubMed

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

  12. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

    PubMed Central

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-01-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  13. Current knowledge of microRNA-mediated regulation of drug metabolism in humans.

    PubMed

    Nakano, Masataka; Nakajima, Miki

    2018-05-01

    Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.

  14. Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash.

    PubMed

    Mohana, Sarayu; Shah, Amita; Divecha, Jyoti; Madamwar, Datta

    2008-11-01

    Xylanase production by a newly isolated strain of Burkholderia sp. was studied under solid state fermentation using anaerobically treated distillery spent wash. Response surface methodology (RSM) involving Box-Behnken design was employed for optimizing xylanase production. The interactions between distillery effluent concentration, initial pH, moisture ratio and inoculum size were investigated and modeled. Under optimized conditions, xylanase production was found to be in the range of 5200-5600 U/g. The partially purified enzyme recovered after ammonium sulphate fractionation showed maximum activity at 50 degrees C and pH 8.6. Kinetic parameters like Km and Vmax for xylan were found to be 12.75 mg/ml and 165 micromol/mg/min. In the presence of metal ions such as Ca2+, Co2+, Mn2+, Ba2+, Mg2+ and protein disulphide reducing agents such as beta-mercaptoethanol and dithiotheritol (DTT) the activity of enzyme increased, where as strong inhibition of enzyme activity was observed in the presence of Cu2+, Ag+, Fe2+ and SDS. The crude enzyme hydrolysed lignocellulosic substrate, wheat bran as well as industrial pulp.

  15. Evaluation of 5-fluorouracil metabolic enzymes as predictors of response to adjuvant chemotherapy outcomes in patients with stage II/III colorectal cancer: a decision-curve analysis.

    PubMed

    Shigeta, Kohei; Ishii, Yoshiyuki; Hasegawa, Hirotoshi; Okabayashi, Koji; Kitagawa, Yuko

    2014-12-01

    The effectiveness of 5-fluorouracil (5-FU)-based adjuvant chemotherapy is reported in patients with colorectal cancer (CRC), but the usefulness of 5-FU metabolic enzymes as predictive biomarkers of the efficacy of this chemotherapy remains unclear. This study aims to verify whether 5-FU metabolic enzymes are predictive biomarkers in the clinical setting of adjuvant chemotherapy for stage II/III CRC. In total, 179 patients with stage II/III CRC who were treated at our institute between 2000 and 2010 were enrolled. Messenger RNA (mRNA) expression of major 5-FU metabolic enzymes, namely thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase (TP), orotate phosphoribosyl transferase, and β-actin (control) was evaluated using the Danenberg Tumor Profile method. mRNA expression and other clinicopathological data were investigated with regard to CRC relapse. A total of 78 patients underwent surgery alone, while 101 underwent adjuvant chemotherapy (5-FU plus leucovorin [LV] or tegafur plus uracil /LV) following surgery. Relapse-free survival was longer and risk of recurrence was lower in association with high TP mRNA expression than in association with low TP mRNA expression in the adjuvant chemotherapy group (hazard ratio 0.66; 95 % confidence interval 0.47-0.92; p = 0.016), but not in the surgery alone group. mRNA expression of no other enzymes was associated with relapse in both groups. In decision-curve analyses, the predictive efficiency of TP mRNA expression plus clinicopathological factors was slightly better than that of clinicopathological factors only. TP mRNA expression in tumors predicted the effects of adjuvant chemotherapy for stage II/III CRC, although the beneficial effects were marginal.

  16. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria.

    PubMed

    Bell, Sean M; Wendt, Dan J; Zhang, Yanhong; Taylor, Timothy W; Long, Shinong; Tsuruda, Laurie; Zhao, Bin; Laipis, Phillip; Fitzpatrick, Paul A

    2017-01-01

    Phenylketonuria (PKU) is a genetic metabolic disease in which the decrease or loss of phenylalanine hydroxylase (PAH) activity results in elevated, neurotoxic levels of phenylalanine (Phe). Due to many obstacles, PAH enzyme replacement therapy is not currently an option. Treatment of PKU with an alternative enzyme, phenylalanine ammonia lyase (PAL), was first proposed in the 1970s. However, issues regarding immunogenicity, enzyme production and mode of delivery needed to be overcome. Through the evaluation of PAL enzymes from multiple species, three potential PAL enzymes from yeast and cyanobacteria were chosen for evaluation of their therapeutic potential. The addition of polyethylene glycol (PEG, MW = 20,000), at a particular ratio to modify the protein surface, attenuated immunogenicity in an animal model of PKU. All three PEGylated PAL candidates showed efficacy in a mouse model of PKU (BTBR Pahenu2) upon subcutaneous injection. However, only PEGylated Anabaena variabilis (Av) PAL-treated mice demonstrated sustained low Phe levels with weekly injection and was the only PAL evaluated that maintained full enzymatic activity upon PEGylation. A PEGylated recombinant double mutant version of AvPAL (Cys503Ser/Cys565Ser), rAvPAL-PEG, was selected for drug development based on its positive pharmacodynamic profile and favorable expression titers. PEGylation was shown to be critical for rAvPAL-PEG efficacy as under PEGylated rAvPAL had a lower pharmacodynamic effect. rAvPAL and rAvPAL-PEG had poor stability at 4°C. L-Phe and trans-cinnamate were identified as activity stabilizing excipients. rAvPAL-PEG is currently in Phase 3 clinical trials to assess efficacy in PKU patients.

  17. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.

    PubMed

    Liu, Zhuo; Inokuma, Kentaro; Ho, Shih-Hsin; den Haan, Riaan; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-06-01

    Crystalline cellulose is one of the major contributors to the recalcitrance of lignocellulose to degradation, necessitating high dosages of cellulase to digest, thereby impeding the economic feasibility of cellulosic biofuels. Several recombinant cellulolytic yeast strains have been developed to reduce the cost of enzyme addition, but few of these strains are able to efficiently degrade crystalline cellulose due to their low cellulolytic activities. Here, by combining the cellulase ratio optimization with a novel screening strategy, we successfully improved the cellulolytic activity of a Saccharomyces cerevisiae strain displaying four different synergistic cellulases on the cell surface. The optimized strain exhibited an ethanol yield from Avicel of 57% of the theoretical maximum, and a 60% increase of ethanol titer from rice straw. To our knowledge, this work is the first optimization of the degradation of crystalline cellulose by tuning the cellulase ratio in a cellulase cell-surface display system. This work provides key insights in engineering the cellulase cocktail in a consolidated bioprocessing yeast strain. Biotechnol. Bioeng. 2017;114: 1201-1207. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Rational design of engineered microbial cell surface multi-enzyme co-display system for sustainable NADH regeneration from low-cost biomass.

    PubMed

    Han, Lei; Liang, Bo; Song, Jianxia

    2018-02-01

    As an important cofactor, NADH is essential for most redox reactions and biofuel cells. However, supply of exogenous NADH is challenged, due to the low production efficiency and high cost of NADH regeneration system, as well as low stability of NADH. Here, we constructed a novel cell surface multi-enzyme co-display system with ratio- and space-controllable manner as exogenous NADH regeneration system for the sustainable NADH production from low-cost biomass. Dockerin-fused glucoamylase (GA) and glucose dehydrogenase (GDH) were expressed and assembled on the engineered bacterial surfaces, which displayed protein scaffolds with various combinations of different cohesins. When the ratio of GA and GDH was 3:1, the NADH production rate of the whole-cell biocatalyst reached the highest level using starch as substrate, which was three times higher than that of mixture of free enzymes, indicating that the highly ordered spatial organization of enzymes would promote reactions, due to the ratio of enzymes and proximity effect. To confirm performance of the established NADH regeneration system, the highly efficient synthesis of L-lactic acid (L-LA) was conducted by the system and the yield of L-LA (16 g/L) was twice higher than that of the mixture of free enzymes. The multi-enzyme co-display system showed good stability in the cyclic utilization. In conclusion, the novel sustainable NADH system would provide a cost-effective strategy to regenerate cofactor from low-cost biomass.

  19. [Study on preparation of sagittatoside B with epimedin B converted from cellulase].

    PubMed

    Xu, Feng-Juan; Sun, E; Zhang, Zhen-Hai; Cui, Li; Jia, Xiao-Bin

    2014-01-01

    To prepare sagittatoside B with epimedin B Hydrolyzed from cellulase. With the conversion ratio as the index, the effects of pH value, temperature, reaction time, dosage of enzyme and concentration of substrates on the conversion ratio were detected. L9 (3(4)) orthogonal design was adopted to optimize the preparation process. Hydrolyzed products were identified by MS, 1H-NMR, and 13C-NMR. The results showed that the optimum reaction conditions for the enzymatic hydrolysis were that the temperature was 50 degrees C, the reaction medium was pH 5.6 acetic acid-sodium acetate buffer solution, the concentration of substrates was 20 g x L(-1), the mass ratio between enzyme and substrate was 3: 5, and the relative molecular mass of the reaction product was 646.23. NMR data proved that the product was sagittatoside B. The process is simple and reliable under mild reaction conditions, thus suitable for industrial production.

  20. Expression, purification, and characterization of a bifunctional 99-kDa peptidoglycan hydrolase from Pediococcus acidilactici ATCC 8042.

    PubMed

    García-Cano, Israel; Campos-Gómez, Manuel; Contreras-Cruz, Mariana; Serrano-Maldonado, Carlos Eduardo; González-Canto, Augusto; Peña-Montes, Carolina; Rodríguez-Sanoja, Romina; Sánchez, Sergio; Farrés, Amelia

    2015-10-01

    Pediococcus acidilactici ATCC 8042 is a lactic acid bacteria that inhibits pathogenic microorganisms such as Staphylococcus aureus through the production of two proteins with lytic activity, one of 110 kDa and the other of 99 kDa. The 99-kDa one has high homology to a putative peptidoglycan hydrolase (PGH) enzyme reported in the genome of P. acidilactici 7_4, where two different lytic domains have been identified but not characterized. The aim of this work was the biochemical characterization of the recombinant enzyme of 99 kDa. The enzyme was cloned and expressed successfully and retains its activity against Micrococcus lysodeikticus. It has a higher N-acetylglucosaminidase activity, but the N-acetylmuramoyl-L-alanine amidase can also be detected spectrophotometrically. The protein was then purified using gel filtration chromatography. Antibacterial activity showed an optimal pH of 6.0 and was stable between 5.0 and 7.0. The optimal temperature for activity was 60 °C, and all activity was lost after 1 h of incubation at 70 °C. The number of strains susceptible to the recombinant 99-kDa enzyme was lower than that susceptible to the mixture of the 110- and 99-kDa PGHs of P. acidilactici, a result that suggests synergy between these two enzymes. This is the first PGH from LAB that has been shown to possess two lytic sites. The results of this study will aid in the design of new antibacterial agents from natural origin that can combat foodborne disease and improve hygienic practices in the industrial sector.

  1. Ultrasound assisted three phase partitioning of a fibrinolytic enzyme.

    PubMed

    Avhad, Devchand N; Niphadkar, Sonali S; Rathod, Virendra K

    2014-03-01

    The present investigation is aimed at ultrasound assisted three phase partitioning (UATPP) of a fibrinolytic enzyme from Bacillus sphaericus MTCC 3672. Three phase partitioning integrates the concentration and partial purification step of downstream processing of a biomolecule. Three phase system is formed with simultaneous addition of ammonium sulfate to crude broth and followed by t-butanol. UATPP of a fibrinolytic enzyme was studied by varying different process parameters such as ammonium sulfate saturation concentration, pH, broth to t-butanol ratio, temperature, ultrasound frequency, ultrasonication power, and duty cycle. The optimized parameters yielding maximum purity of 16.15-fold of fibrinolytic enzyme with 65% recovery comprised of 80% ammonium sulfate saturation, pH 9, temperature 30 °C, broth to t-butanol ratio 0.5 (v/v), at 25 kHz frequency and 150 W ultrasonication power with 40% duty cycle for 5 min irradiation time. SDS PAGE analysis of partitioned enzyme shows partial purification with a molecular weight in the range of 55-70 kDa. Enhanced mass transfer of UATPP resulted in higher fold purity of fibrinolytic enzyme with reduced time of operation from 1 h to 5 min as compared to conventional TPP. Outcome of our findings highlighted the use of UATPP as an efficient biosepartion technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    PubMed

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, Veeranki V

    2017-01-01

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Regardless of producing high protein titers, various cellular and process level bottlenecks restrict the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large-scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed-batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. A comparative study of the metabolic response in rainbow trout and Nile tilapia to changes in dietary macronutrient composition.

    PubMed

    Figueiredo-Silva, A Cláudia; Saravanan, Subramanian; Schrama, Johan W; Panserat, Stéphane; Kaushik, Sadasivam; Geurden, Inge

    2013-03-14

    Metabolic mechanisms underlying the divergent response of rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus) to changes in dietary macronutrient composition were assessed. Fish were fed one of four isoenergetic diets having a digestible protein-to-digestible energy (DP:DE) ratio above or below the optimal DP:DE ratio for both species. At each DP:DE ratio, fat was substituted by an isoenergetic amount of digestible starch as the non-protein energy source (NPE). Dietary DP:DE ratio did not affect growth and only slightly lowered protein gains in tilapia. In rainbow trout fed diets with low DP:DE ratios, particularly with starch as the major NPE source, growth and protein utilisation were highly reduced, underlining the importance of NPE source in this species. We also observed species-specific responses of enzymes involved in amino acid catabolism, lipogenesis and gluconeogenesis to dietary factors. Amino acid transdeamination enzyme activities were reduced by a low dietary DP:DE ratio in both species and in tilapia also by the substitution of fat by starch as the NPE source. Such decreased amino acid catabolism at high starch intakes, however, did not lead to improved protein retention. Our data further suggest that a combination of increased lipogenic and decreased gluconeogenic enzyme activities accounts for the better use of carbohydrates and to the improved glycaemia control in tilapia compared with rainbow tront fed starch-enriched diets with low DP:DE ratio.

  4. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease.

    PubMed

    Jones, Simon P; Franco, Nunzio F; Varney, Bianca; Sundaram, Gayathri; Brown, David A; de Bie, Josien; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.

  5. Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings

    PubMed Central

    Ding, Xiaotao; Jiang, Yuping; He, Lizhong; Zhou, Qiang; Yu, Jizhu; Hui, Dafeng; Huang, Danfeng

    2016-01-01

    To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•− production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•− production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation. PMID:27752105

  6. Culture of bovine ovarian follicle wall sections maintained the highly estrogenic profile under basal and chemically defined conditions

    PubMed Central

    Vasconcelos, R.B.; Salles, L.P.; Silva, I. Oliveira e; Gulart, L.V.M.; Souza, D.K.; Torres, F.A.G.; Bocca, A.L.; Silva, A.A.M. Rosa e

    2013-01-01

    Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E2) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P4) and E2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P4 throughout the culture period; however, P4 concentration was significantly higher in NDM. In both media, E2 concentration was increased at 24 h, followed by a decrease at 48 h. The E2:P4 ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E2:P4 ratio in FWS cultures. PMID:23969977

  7. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.

    PubMed

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek; Rychlik, Ivan

    2015-12-28

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota

    PubMed Central

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek

    2015-01-01

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550

  9. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    PubMed

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  10. Statistical key factors optimization of conditions for hydrogen production from S-TE (solubilization by thermophilic enzyme) waste sludge.

    PubMed

    Guo, Liang; Zhao, Jun; She, Zonglian; Lu, Mingmin; Zong, Yan

    2013-06-01

    Waste sludge can be solubilized after S-TE (solubilization by thermophilic enzyme) pretreatment as the cryptic growth occurs at the expense of the cell lysate. The hydrogen production from S-TE sludge is greatly influenced by many factors. In this study, factors including pH, C/N, C/P, and Fe(2+) affecting hydrogen production from S-TE sludge were optimized using uniform design. The optimum condition for maximum hydrogen yield of 68.4 ml H2/g VSS (volatile suspended solid) could be predicted from regression model, and the optimum conditions were pH of 6.4, C/N ratio of 38, C/P ratio of 265, and Fe(2+) concentration of 85 mg/L. There was interaction effect of factors on hydrogen production from S-TE sludge. Different pH, C/N, C/P and Fe(2+) conditions could influence the VSS removal rate, carbohydrate and protein utilization. When the highest compositions of acetate and ethanol and lowest propionate were observed in metabolites, effective hydrogen production was also achieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Bioelectrochemical conversion of CO2 to value added product formate using engineered Methylobacterium extorquens.

    PubMed

    Jang, Jungho; Jeon, Byoung Wook; Kim, Yong Hwan

    2018-05-08

    The conversion of carbon dioxide to formate is a fundamental step for building C1 chemical platforms. Methylobacterium extorquens AM1 was reported to show remarkable activity converting carbon dioxide into formate. Formate dehydrogenase 1 from M. extorquens AM1 (MeFDH1) was verified as the key responsible enzyme for the conversion of carbon dioxide to formate in this study. Using a 2% methanol concentration for induction, microbial harboring the recombinant MeFDH1 expressing plasmid produced the highest concentration of formate (26.6 mM within 21 hours) in electrochemical reactor. 60 μM of sodium tungstate in the culture medium was optimal for the expression of recombinant MeFDH1 and production of formate (25.7 mM within 21 hours). The recombinant MeFDH1 expressing cells showed maximum formate productivity of 2.53 mM/g-wet cell/hr, which was 2.5 times greater than that of wild type. Thus, M. extorquens AM1 was successfully engineered by expressing MeFDH1 as recombinant enzyme to elevate the production of formate from CO 2 after elucidating key responsible enzyme for the conversion of CO 2 to formate.

  12. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ1 -dehydrogenase and catalase in Bacillus subtilis.

    PubMed

    Shao, M; Sha, Z; Zhang, X; Rao, Z; Xu, M; Yang, T; Xu, Z; Yang, S

    2017-01-01

    3-ketosteroid-Δ 1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H 2 O 2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H 2 O 2 to enhance ADD production. The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg -1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksdd opt -katA to eliminate the toxic effects of H 2 O 2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l -1 . This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H 2 O 2 by co-expressing catalase. This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry. © 2016 The Society for Applied Microbiology.

  13. The immobilization of lipase on PVDF-co-HFP membrane

    NASA Astrophysics Data System (ADS)

    Kayhan, Naciye; Eyüpoǧlu, Volkan; Adem, Şevki

    2016-04-01

    Lipase is an enzyme having a lot of different industrial applications such as biodiesel production, biopolymer synthesis, enantiopure pharmaceutical productions, agrochemicals, etc. Its immobilized form on different substances is more conventional and useful than its free form. Supporting material was prepared using PVDF-co-HFP in laboratory conditions and attached 1,4-diaminobutane (DA) and epichlorohydrin (EPI) ligands to the membrane to immobilize lipase enzyme. The immobilization conditions such as enzyme amount, pH, the concentration of salt, thermal stability and activity were stabilized for our experimental setup. Then, biochemical characterizations were performed on immobilized lipase PVDF-co-HFP regarding optimal pH activity, temperature and thermal stability. Also, the desorption ratios of immobilized enzyme in two different pathway were investigated to confirm immobilization stability for 24 hours.

  14. Repurposing a bacterial quality control mechanism to enhance enzyme production in living cells

    USDA-ARS?s Scientific Manuscript database

    Heterologous expression of many proteins in bacteria, yeasts, and plants is often limited by low titers of functional protein. To address this problem, we have created a two-tiered directed evolution strategy in Escherichia coli that enables optimization of protein production while maintaining high ...

  15. A thermolabile aspartic proteinase from Mucor mucedo DSM 809: gene identification, cloning, and functional expression in Pichia pastoris.

    PubMed

    Yegin, Sirma; Fernandez-Lahore, Marcelo

    2013-06-01

    In this study, the cDNA encoding the aspartic proteinase of Mucor mucedo DSM 809 has been identified by RNA ligased-mediated and oligo-capping rapid amplification of cDNA ends (RACE) technique. The gene contained an open reading frame of 1,200 bp and encoded for a signal peptide of 21 amino acid residues. Two N-glycosylation sites were observed within the identified sequence. The proteinase gene was cloned into the vector pGAPZαA and expressed in Pichia pastoris X-33 for the first time. The protein has been secreted in functionally active form into the culture medium. The expression system does not require any acid activation process. The factors affecting the expression level were optimized in shaking flask cultures. Maximum enzyme production was observed with an initial medium pH of 3.5 at 20 °C and 220 rpm shaking speed utilizing 4 % glucose as a carbon and energy source. The enzyme was purified with cation exchange chromatography and further studies revealed that the enzyme was secreted in glycosylated form. The purified enzyme exhibited remarkable sensitivity to thermal treatment and became completely inactivated after incubation at 55 °C for 10 min. These results indicated that the recombinant proteinase could be considered as a potential rennet candidate for the cheese-making industry.

  16. Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass.

    PubMed

    Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su

    2018-01-01

    Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.

  17. Engineering strategies for the fermentative production of plant alkaloids in yeast.

    PubMed

    Trenchard, Isis J; Smolke, Christina D

    2015-07-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 μg/L stylopine, 548 μg/L cis-N-methylstylopine, 252 μg/L protopine, and 80 μg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Clearance mechanism of a mannosylated antibody-enzyme fusion protein used in experimental cancer therapy.

    PubMed

    Kogelberg, Heide; Tolner, Berend; Sharma, Surinder K; Lowdell, Mark W; Qureshi, Uzma; Robson, Mathew; Hillyer, Tim; Pedley, R Barbara; Vervecken, Wouter; Contreras, Roland; Begent, Richard H J; Chester, Kerry A

    2007-01-01

    MFECP1 is a mannosylated antibody-enzyme fusion protein used in antibody-directed enzyme prodrug therapy (ADEPT). The antibody selectively targets tumor cells and the targeted enzyme converts a prodrug into a toxic drug. MFECP1 is obtained from expression in the yeast Pichia pastoris and produced to clinical grade. The P. pastoris-derived mannosylation of the fusion protein aids rapid normal tissue clearance required for successful ADEPT. The work presented provides evidence that MFECP1 is cleared by the endocytic and phagocytic mannose receptor (MR), which is known to bind to mannose-terminating glycans. MR-transfected fibroblast cells internalize MFECP1 as revealed by flow cytometry and confocal microscopy. Immunofluorescence microscopy shows that in vivo clearance in mice occurs predominantly by MR on liver sinusoidal endothelial cells, although MR is also expressed on adjacent Kupffer cells. In the spleen, MFECP1 is taken up by MR-expressing macrophages residing in the red pulp and not by dendritic cells which are found in the marginal zone and white pulp. Clearance can be inhibited in vivo by the MR inhibitor mannan as shown by increased enzyme activities in blood. The work improves understanding of interactions of MFECP1 with normal tissue, shows that glycosylation can be exploited in the design of recombinant anticancer therapeutics and opens the ways for optimizing pharmacokinetics of mannosylated recombinant therapeutics.

  19. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1–FoxM1 complex

    PubMed Central

    Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-01-01

    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy. PMID:27601681

  20. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex.

    PubMed

    Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-09-20

    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.

  1. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    PubMed

    Yuan, Lin; Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased pancreatic trypsin mRNA levels by 40%, 44% and 28%, respectively. Supplementation with NSP enzyme and 160 mg/kg protease decreased pancreatic trypsin mRNA levels by 13%. Pancreatic lipase and amylase mRNA expression were significantly elevated in treated animals compared to the control group (p<0.05). These results suggest that the amount of NSP enzyme and acid protease in the diet significantly affects digestive function, endogenous digestive-enzyme activity and mRNA expression in broilers.

  2. Cloning and expression of the Aspergillus oryzae glucan 1,3-beta-glucosidase A (exgA) in Pichia pastoris.

    PubMed

    Boonvitthya, Nassapat; Tanapong, Phatrapan; Kanngan, Patcharaporn; Burapatana, Vorakan; Chulalaksananukul, Warawut

    2012-10-01

    The glucan 1,3-beta-glucosidase A gene (exgA) from Aspergillus oryzae and fused to the Saccharomyces cerevisiae signal peptide (α-factor) was expressed under the control of either a constitutive (GAP) or an inducible (AOX1) promoter in Pichia pastoris. A 1.4-fold higher extracellular enzyme activity (2 U/ml) was obtained using the AOX1 inducible expression system than with the GAP constitutive promoter (1.4 U/ml). The purified recombinant ExgA enzyme, with a yield of 10 mg protein/l culture supernatant, was about 40 kDa by SDS-PAGE analysis with a specific activity of 289 U/mg protein. The enzyme was optimally active at 35 °C and pH 5.0 and displayed a K(M) and V(max) of 0.56 mM and 10,042 μmol/(min mg protein), respectively, with p-nitrophenyl-β-D-glucopyranoside as the substrate. Moreover, it was tolerant to glucose inhibition with a K(i) of 365 mM.

  3. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study.

    PubMed

    Ishak, Nurazwa; Lajis, Ahmad Firdaus B; Mohamad, Rosfarizan; Ariff, Arbakariya B; Mohamed, Mohd Shamzi; Halim, Murni; Wasoh, Helmi

    2018-02-24

    The synthesis of kojic acid derivative (KAD) from kojic and palmitic acid (C16:0) in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM), was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT) experiments, a high reaction rate (30.6 × 10 -3 M·min -1 ) of KAD synthesis was recorded using acetone, enzyme loading of 1.25% ( w / v ), reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM) whereby the optimized molar ratio (fatty acid: kojic acid), enzyme loading, reaction temperature and reaction time were 6.74, 1.97% ( w / v ), 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%). This condition was reevaluated in a 0.5 L stirred tank reactor (STR) where the agitation effects of two impellers; Rushton turbine (RT) and pitch-blade turbine (PBT), were investigated. In the STR, a very high yield of KAD synthesis (84.12%) was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  4. The effect of ZnO nanoparticles on liver function in rats

    PubMed Central

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    2016-01-01

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621

  5. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  6. [Enzymatic characteristics of peroxidase from Chrysanthemum morifolium cv. Bo-ju].

    PubMed

    Zhu, Yu-Yun; Lyu, Xin-Lin; Li, Xiang-Wei; Zhang, Dong; Dong, Li-Hua; Zhu, Jing-Jing; Wang, Zhi-Min; Zhang, Jin-Zhen

    2018-04-01

    The enzymatic browning is one of the main reasons for affecting the quality of medicinal flowers. In the process of chrysanthemum harvesting and processing, improper treatment will lead to the browning and severely impact the appearance and quality of chrysanthemum. Peroxidase enzyme is one of the oxidoreductases that cause enzymatic browning of fresh chrysanthemum. The enzymatic characteristics of peroxidase (POD) in chrysanthemum were studied in this paper. In this experiment, the effects of different reaction substrates and their concentrations, PH value of buffer and reaction temperatures on the activity of POD enzyme were investigated. The results showed that the optimal substrate of POD was guaiacol, and the optimal concentration of POD was 50 mmol·L⁻¹. The optimal pH value and reaction temperature were 4.4 and 30-35 °C, respectively. Michaelis-Menten equation was obtained to express the kinetics of enzyme-catalyzed reaction of POD, Km=0.193 mol·L⁻¹, Vmax=0.329 D·min⁻¹. In addition, the results of POD enzyme thermal stability test showed that the POD enzyme activity was inhibited when being treated at 80 °C for 4 min or at 100 °C for 2 min. The above results were of practical significance to reveal the enzymatic browning mechanism, control the enzymatic browning and improve the quality of chrysanthemum, and can also provide the basis for the harvesting and processing of medicinal materials containing polyphenols. Copyright© by the Chinese Pharmaceutical Association.

  7. Immobilization of alpha-amylase from Bacillus circulans GRS 313 on coconut fiber.

    PubMed

    Dey, Gargi; Nagpal, Varima; Banerjee, Rintu

    2002-01-01

    A simple and inexpensive method for immobilizing alpha-amylase from Bacillus circulans GRS 313 on coconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30 degrees C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48 degrees C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48 degrees C. The reutilization capacity of the immobilized enzyme was up to three cycles.

  8. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme.

    PubMed Central

    Dong, G; Vieille, C; Zeikus, J G

    1997-01-01

    The gene encoding the Pyrococcus furiosus hyperthermophilic amylopullulanase (APU) was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a single 827-residue polypeptide with a 26-residue signal peptide. The protein sequence had very low homology (17 to 21% identity) with other APUs and enzymes of the alpha-amylase family. In particular, none of the consensus regions present in the alpha-amylase family could be identified. P. furiosus APU showed similarity to three proteins, including the P. furiosus intracellular alpha-amylase and Dictyoglomus thermophilum alpha-amylase A. The mature protein had a molecular weight of 89,000. The recombinant P. furiosus APU remained folded after denaturation at temperatures of < or = 70 degrees C and showed an apparent molecular weight of 50,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Denaturating temperatures of above 100 degrees C were required for complete unfolding. The enzyme was extremely thermostable, with an optimal activity at 105 degrees C and pH 5.5. Ca2+ increased the enzyme activity, thermostability, and substrate affinity. The enzyme was highly resistant to chemical denaturing reagents, and its activity increased up to twofold in the presence of surfactants. PMID:9293009

  9. Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants.

    PubMed

    Lubovská, Zuzana; Dobrá, Jana; Storchová, Helena; Wilhelmová, Naďa; Vanková, Radomíra

    2014-11-01

    Cytokinins (CKs) as well as the antioxidant enzyme system (AES) play important roles in plant stress responses. The expression and activity of antioxidant enzymes (AE) were determined in drought, heat and combination of both stresses, comparing the response of tobacco plants overexpressing the main cytokinin degrading enzyme, cytokinin oxidase/dehydrogenase, under the control of root-specific WRKY6 promoter (W6:CKX1 plants) or constitutive promoter (35S:CKX1 plants) and the corresponding wild-type (WT). Expression levels as well as activities of cytosolic ascorbate peroxidase, catalase 3, and cytosolic superoxide dismutase were low under optimal conditions and increased after heat and combined stress in all genotypes. Unlike catalase 3, two other peroxisomal enzymes, catalase 1 and catalase 2, were transcribed extensively under control conditions. Heat stress, in contrast to drought or combined stress, increased catalase 1 and reduced catalase 2 expression in WT and W6:CKX1 plants. In 35S:CKX1, catalase 1 expression was enhanced by heat or drought, but not under combined stress conditions. Mitochondrial superoxide dismutase expression was generally higher in 35S:CKX1 plants than in WT. Genes encoding for chloroplastic AEs, stromatal ascorbate peroxidase, thylakoidal ascorbate peroxidase and chloroplastic superoxide dismutase, were strongly transcribed under control conditions. All stresses down-regulated their expression in WT and W6:CKX1, whereas more stress-tolerant 35S:CKX1 plants maintained high expression during drought and heat. The achieved data show that the effect of down-regulation of CK levels on AES may be mediated by altered habit, resulting in improved stress tolerance, which is associated with diminished stress impact on photosynthesis, and changes in source/sink relations. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07.

    PubMed

    Gururaj, P; Ramalingam, Subramanian; Nandhini Devi, Ganesan; Gautam, Pennathur

    2016-01-01

    The purpose of this study was to isolate, purify and optimize the production conditions of an organic solvent tolerant and thermostable lipase from Acinetobacter sp. AU07 isolated from distillery waste. The lipase production was optimized by response surface methodology, and a maximum production of 14.5U/mL was observed at 30°C and pH 7, using a 0.5% (v/v) inoculum, 2% (v/v) castor oil (inducer), and agitation 150rpm. The optimized conditions from the shake flask experiments were validated in a 3L lab scale bioreactor, and the lipase production increased to 48U/mL. The enzyme was purified by ammonium sulfate precipitation and ion exchange chromatography and the overall yield was 36%. SDS-PAGE indicated a molecular weight of 45kDa for the purified protein, and Matrix assisted laser desorption/ionization time of flight analysis of the purified lipase showed sequence similarity with GDSL family of lipases. The optimum temperature and pH for activity of the enzyme was found to be 50°C and 8.0, respectively. The lipase was completely inhibited by phenylmethylsulfonyl fluoride but minimal inhibition was observed when incubated with ethylenediaminetetraacetic acid and dithiothreitol. The enzyme was stable in the presence of non-polar hydrophobic solvents. Detergents like SDS inhibited enzyme activity; however, there was minimal loss of enzyme activity when incubated with hydrogen peroxide, Tween 80 and Triton X-100. The kinetic constants (Km and Vmax) revealed that the hydrolytic activity of the lipase was specific to moderate chain fatty acid esters. The Vmax, Km and Vmax/Km ratio of the enzyme were 16.98U/mg, 0.51mM, and 33.29, respectively when 4-nitrophenyl palmitate was used as a substrate. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. A thermophilic cyanobacterium Synechococcus elongatus has three different Class I prenyltransferase genes.

    PubMed

    Ohto, C; Ishida, C; Nakane, H; Muramatsu, M; Nishino, T; Obata, S

    1999-05-01

    Prenyltransferases (prenyl diphosphate synthases), which are a broad group of enzymes that catalyze the consecutive condensation of homoallylic diphosphate of isopentenyl diphosphates (IPP, C5) with allylic diphosphates to synthesize prenyl diphosphates of various chain lengths, have highly conserved regions in their amino acid sequences. Based on the above information, three prenyltransferase homologue genes were cloned from a thermophilic cyanobacterium, Synechococcus elongatus. Through analyses of the reaction products of the enzymes encoded by these genes, it was revealed that one encodes a thermolabile geranylgeranyl (C20) diphosphate synthase, another encodes a farnesyl (C15) diphosphate synthase whose optimal reaction temperature is 60 degrees C, and the third one encodes a prenyltransferase whose optimal reaction temperature is 75 degrees C. The last enzyme could catalyze the synthesis of five prenyl diphosphates of farnesyl, geranylgeranyl, geranylfarnesyl (C25), hexaprenyl (C30), and heptaprenyl (C35) diphosphates from dimethylallyl (C5) diphosphate, geranyl (C10) diphosphate, or farnesyl diphosphate as the allylic substrates. The product specificity of this novel kind of enzyme varied according to the ratio of the allylic and homoallylic substrates. The situations of these three S. elongatus enzymes in a phylogenetic tree of prenyltransferases are discussed in comparison with a mesophilic cyanobacterium of Synechocystis PCC6803, whose complete genome has been reported by Kaneko et al. (1996).

  12. Heterologous expression of Trametes versicolor laccase in Saccharomyces cerevisiae.

    PubMed

    Iimura, Yosuke; Sonoki, Tomonori; Habe, Hiroshi

    2018-01-01

    Laccase is used in various industrial fields, and it has been the subject of numerous studies. Trametes versicolor laccase has one of the highest redox potentials among the various forms of this enzyme. In this study, we optimized the expression of laccase in Saccharomyces cerevisiae. Optimizing the culture conditions resulted in an improvement in the expression level, and approximately 45 U/L of laccase was functionally secreted in the culture. The recombinant laccase was found to be a heavily hypermannosylated glycoprotein, and the molecular weight of the carbohydrate chain was approximately 60 kDa. These hypermannosylated glycans lowered the substrate affinity, but the optimum pH and thermo-stability were not changed by these hypermannosylated glycans. This functional expression system described here will aid in molecular evolutionary studies conducted to generate new variants of laccase. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Optimization of enzymatic esterification of dihydrocaffeic acid with hexanol in ionic liquid using response surface methodology.

    PubMed

    Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze

    2017-05-26

    Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.

  14. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation.

    PubMed

    Chang, Bea-Ven; Chang, Yi-Ming

    2016-04-01

    The toxic chemicals bisphenol A (BPA), bisphenol F (BPF), nonylphenol (NP), and tetrabromobisphenol A (TBBPA) are endocrine-disrupting chemicals that have consequently drawn much concern regarding their effect on the environment. The objectives of this study were to investigate the degradation of BPA, BPF, NP, and TBBPA by enzymes from Pleurotus eryngii in submerged fermentation (SmF) and solid-state fermentation (SSF), and also to assess the removal of toxic chemicals in spent mushroom compost (SMC). BPA and BPF were analyzed by high-performance liquid chromatography; NP and TBBPA were analyzed by gas chromatography. NP degradation was enhanced by adding CuSO4 (1 mM), MnSO4 (0.5 mM), gallic acid (1 mM), tartaric acid (20 mM), citric acid (20 mM), guaiacol (1 mM), or 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid; 1 mM), with the last yielding a higher NP degradation rate than the other additives from SmF. The optimal conditions for enzyme activity from SSF were a sawdust/wheat bran ratio of 1:4 and a moisture content of 5 mL/g. The enzyme activities were higher with sawdust/wheat bran than with sawdust/rice bran. The optimal conditions for the extraction of enzyme from SMC required using sodium acetate buffer (pH 5.0, solid/solution ratio 1:5), and extraction over 3 hours. The removal rates of toxic chemicals by P. eryngii, in descending order of magnitude, were SSF > SmF > SMC. The removal rates were BPF > BPA > NP > TBBPA. Copyright © 2014. Published by Elsevier B.V.

  15. Synergistic effects and related bioactive mechanisms of Potentilla fruticosa Linn. leaves combined with green tea polyphenols studied with microbial test system (MTS).

    PubMed

    Liu, Ze-Hua; Luo, Zi-Wen; Li, Deng-Wu; Wang, Dong-Mei; Ji, Xia

    2018-06-01

    Previous research found Potentilla fruticosa leaf extracts (PFE) combined with green tea polyphenols (GTP) showed obvious synergistic effects based on chemical mechanisms. This study further confirmed the synergy of PFE + GTP viewed from bioactivities using the microbial test system (MTS). The MTS antioxidant activity results showed the combination of PFE + GTP exhibited synergistic effect and the ratio 3:1 showed the strongest synergy, which were in accordance with the results in H 2 O 2 production rate. The combination of PFE + GTP promoted CAT and SOD enzyme activity and their gene expression especially at the ratio 3:1. Therefore, the synergism of PFE + GTP may be due to the promotion of CAT and SOD genes expression which enhanced the CAT and SOD enzyme activities. These results confirmed the synergy of PFE + GTP and could provide theoretical basis to produce a compounded tea made of a mixture of leaves from Potentilla species.

  16. Environmental statistics and optimal regulation.

    PubMed

    Sivak, David A; Thomson, Matt

    2014-09-01

    Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein expression levels all will affect the suitability of different strategies--such as constitutive expression or graded response--for regulating protein levels in response to environmental inputs. We propose a general framework-here specifically applied to the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient-to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.

  17. Unaltered myocilin expression in the blood of primary open angle glaucoma patients

    PubMed Central

    Azad, Taif Anwar; Spaeth, George L.; Myers, Jonathan; Katz, L. Jay; Moster, Marlene; Bosley, Thomas M.

    2012-01-01

    Purpose To investigate the expression of the myocilin gene (MYOC) in the blood of primary open angle glaucoma (POAG) patients to determine if altered systemic expression is playing a role. Methods Patients (n=47) were eligible for inclusion if they met standard clinical criteria for POAG. Control subjects (n=27) were recruited who were free from glaucoma by examination. RNA was extracted from leukocytes of patients and controls and converted to cDNA by reverse transcriptase enzyme, and quantitative PCR was used to assess expression levels of MYOC and the house keeping gene β-globulin (HBB). The ratio of MYOC expression to HBB expression for POAG patients was compared to that of controls and to clinical characteristics of POAG patients. Results Mean gene expression values were statistically similar in POAG patients and controls for both MYOC (p≤0.55) and HBB (p≤0.48). MYOC/HBB ratios were also statistically indistinguishable between POAG patients and controls (p≤0.90). MYOC/HBB ratios were not significantly associated with age, sex, or ethnicity of patients within the POAG group. Similarly, MYOC/HBB ratios were not significantly associated with clinical parameters related to POAG severity, including maximum intraocular pressure, vertical cup-to-disk ratio, static perimetry mean deviation, or static perimetry pattern standard deviation. Conclusions MYOC expression is not altered in the blood of POAG patients, unlike MYOC expression in trabecular meshwork (TM) cultures. These results suggests that MYOC expression is not altered systemically but rather that MYOC expression may contribute to POAG pathogenesis in specific tissues such as TM. PMID:22550394

  18. Optimization of hydrolysis conditions, isolation, and identification of neuroprotective peptides derived from seahorse Hippocampus trimaculatus.

    PubMed

    Pangestuti, Ratih; Ryu, Bomi; Himaya, Swa; Kim, Se-Kwon

    2013-08-01

    Hippocampus trimaculatus is one of the most heavily traded seahorse species for traditional medicine purposes in many countries. In the present study, we showed neuroprotective effects of peptide derived from H. trimaculatus against amyloid-β42 (Aβ42) toxicity which are central to the pathogenesis of Alzheimer's diseases (AD). Firstly, H. trimaculatus was separately hydrolyzed by four different enzymes and tested for their protective effect on Aβ42-induced neurotoxicity in differentiated PC12 cells. Pronase E hydrolysate exerted highest protection with cell viability value of 88.33 ± 3.33 %. Furthermore, we used response surface methodology to optimize pronase E hydrolysis conditions and found that temperature at 36.69 °C with the hydrolysis time 20.01 h, enzyme to substrate (E/S) ratio of 2.02 % and pH 7.34 were the most optimum conditions. Following several purification steps, H. trimaculatus-derived neuroprotective peptides (HTP-1) sequence was identified as Gly-Thr-Glu-Asp-Glu-Leu-Asp-Lys (906.4 Da). HTP-1 protected PC12 cells from Aβ42-induced neuronal death with the cell viability value of 85.52 ± 2.22 % and up-regulated pro-survival gene (Bcl-2) expressions. These results suggest that HTP-1 has the potential to be used in treatment of neurodegenerative diseases, particularly AD. Identification, characterization, and synthesis of bioactive components derived from H. trimaculatus have the potential to replace or at least complement the use of seahorse as traditional medicine, which further may become an approach to minimize seahorse exploitation in traditional medicine.

  19. Expression of a functional cold active β-galactosidase from Planococcus sp-L4 in Pichia pastoris.

    PubMed

    Mahdian, Seyed Mohammad Amin; Karimi, Ehsan; Tanipour, Mohammad Hossein; Parizadeh, Seyed Mohammad Reza; Ghayour-Mobarhan, Majid; Bazaz, Mojtaba Mousavi; Mashkani, Baratali

    2016-09-01

    Lactase deficiency problem discourages many adults from consuming milk as a major source of micro- and macronutrients. Enzymatic hydrolysis of lactose is an ideal solution for this problem but such processing adds significant costs. In this study, a cold active β-galactosidase from Planococcus sp-L4 (bgal) was optimized for expression of recombinant "BGalP" in Pichia pastoris. As a result of codon optimization, the codon adaptation index was improved from 0.58 to 0.85 after replacing rare codons. After transformation of two P. pastoris strains (KM71H and GS115), the activity of BGalP enzyme was measured in the culture supernatants using ortho-Nitrophenyl-β-galactoside (ONPG). Maximal activity was recorded as 3.7U/ml on day 11 in KM71H clone #2 which was 20% higher than the best GS115 clone. Activity measurements under different conditions indicated optimal activity at pH 6.5. It was active at temperatures ranging from 0 to 55°C with deactivation occurring at or above 60°C. Protein analysis of the crude ultra-filtrate showed the enzyme was ∼75kDa and was the major constituent (85%) of the sample. This enzyme have the potential to find utility for the breakdown of lactose in chilled milk and subsequently can be deactivated by pasteurization. The use of BGalP would minimize energy consumption thus decreasing cost and also help to preserve the nutritional elements of the milk. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal.

    PubMed

    Bayar, Nadia; Friji, Marwa; Kammoun, Radhouane

    2018-02-15

    In this study, pectin was isolated from Opuntia ficus indica (OFI) cladodes after removing mucilage using the xylanase and cellulase. The process variables were optimized by the Box Behnken design with three factors at three levels. The optimal extraction condition obtained was: liquid to solid (LS), cellulase to xylanase and enzymes to matter ratios of 22ml/g, 2:1U/U and 4U/g, respectively. The simulated extraction yield of 17.91% was validated by the experimental result (16.67±0.30). The enzyme-extracted pectin from OFI cladodes (EAEPC) was low methylated, with a high uronic acid content, a water and oil holding capacity of 5.42g/g and 1.23g/g, respectively, a good foam and emulsion stability and important DPPH radical scavenging activity. Both the OFI cladodes and enzymatic process present promising alternatives to traditional sources and extraction processes of pectin, respectively. EAEPC thus represents a promising additive in food industries. Copyright © 2017. Published by Elsevier Ltd.

  1. High level production of β-galactosidase exhibiting excellent milk-lactose degradation ability from Aspergillus oryzae by codon and fermentation optimization.

    PubMed

    Zhao, Qianqian; Liu, Fei; Hou, Zhongwen; Yuan, Chao; Zhu, Xiqiang

    2014-03-01

    A β-galactosidase gene from Aspergillus oryzae was engineered utilizing codon usage optimization to be constitutively and highly expressed in the Pichia pastoris SMD1168H strain in a high-cell-density fermentation. After fermentation for 96 h in a 50-L fermentor using glucose and glycerol as combined carbon sources, the recombinant enzyme in the culture supernatant had an activity of 4,239.07 U mL(-1) with o-nitrophenyl-β-D-galactopyranoside as the substrate, and produced a total of extracellular protein content of 7.267 g L(-1) in which the target protein (6.24 g L(-1)) occupied approximately 86 %. The recombinant β-galactosidase exhibited an excellent lactose hydrolysis ability. With 1,000 U of the enzyme in 100 mL milk, 92.44 % lactose was degraded within 24 h at 60 °C, and the enzyme could also accomplish the hydrolysis at low temperatures of 37, 25, and 10 °C. Thus, this engineered strain had significantly higher fermentation level of A. oryzae lactase than that before optimization and the β-galactosidase may have a good application potential in whey and milk industries.

  2. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components.

    PubMed

    Qing, Chang; Wei-ding, Cui; Wei-min, Fan

    2011-04-01

    Chondrocytes and bone marrow mesenchymal stem cells (BMSCs) are frequently used as seed cells in cartilage tissue engineering. In the present study, we determined if the co-culture of rabbit articular chondrocytes and BMSCs in vitro promotes the expression of cartilaginous extracellular matrix and, if so, what is the optimal ratio of the two cell types. Cultures of rabbit articular chondrocytes and BMSCs were expanded in vitro and then cultured individually or at a chondrocyte:BMSC ratio of 4:1, 2:1, 1:1, 1:2, 1:4 for 21 days and cultured in DMEM/F12. BMSCs were cultured in chondrogenic induction medium. Quantitative real-time RT-PCR and Western blot were used to evaluate gene expression. In the co-cultures, type II collagen and aggrecan expression increased on days 14 and 21. At the mRNA level, the expression of type II collagen and aggrecan on day 21 was much higher in the 4:1, 2:1, and 1:1 groups than in either the articular chondrocyte group or the induced BMSC group, and the best ratio of co-culture groups seems to be 2:1. Also on day 21, the expression of type II collagen and aggrecan proteins in the 2:1 group was much higher than in all other groups. The results demonstrate that the co-culture of rabbit chondrocytes and rabbit BMSCs at defined ratios can promote the expression of cartilaginous extracellular matrix. The optimal cell ratio appears to be 2:1 (chondrocytes:BMSCs). This approach has potential applications in cartilage tissue engineering since it provides a protocol for maintaining and promoting seed-cell differentiation and function.

  3. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.

    PubMed

    Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong

    2009-01-01

    In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.

  4. Enhancing enzymatic efficiency by attachment to semiconductor nanoparticles for biosensor applications

    NASA Astrophysics Data System (ADS)

    Breger, Joyce C.; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Stewart, Michael H.; Deschamps, Jeffrey R.; Ancona, Mario G.; Medintz, Igor L.

    2015-05-01

    Nanosensors employing quantum dots (QDs) with appended biofunctional moieties offer tremendous promise for disease surveillance/diagnostics and chemical/biological threat activity. Their small size permits cell penetration and their inherent photochemical properties are well-suited for rapid, optical measurement. The effectiveness of enzymes immobilized on QDs, however, are not completely understood, hindering development of chemical/biological sensors and remediation materials. Here, we analyze enzyme effectiveness for the neutralization of a simulant nerve agent when attached to two distinctly-sized QDs. Two sizes of QDs, 525 or 625 nm, were appended with DHLA ligands to improve aqueous stability and prevent aggregation. Various molar ratios of de novo phosphotriesterase trimer (PTE3) were rapidly self-assembled via spontaneous metal coordination of the PTE oligohistidine tag onto the Zn2+-rich QD surface. PTE catalyzes the detoxification of organophosphate pesticides (e.g, paraoxon, an analog of sarin) to p-nitrophenol whose absorbance can be measured at 405 nm. The optimal ratio of PTE3 to 525 nm and 625 nm QD's was determined to be 12 and 24, respectively. The enhanced enzyme performance in both cases is most likely due to increased enzyme-substrate interactions from improvements in enzyme orientation, enzyme density, and substrate diffusion on or near the QD. Development of these nansosensors as optical-based biosensors (e.g., within compact microfluidic devices) may greatly improve the sensitivity of conventional biological/chemical detection schemes.

  5. Optimization of sol-gel medium for entrapment of acetylcholinesterase enzyme in biosensor for pesticide detection

    NASA Astrophysics Data System (ADS)

    Wijayanti, S. D.; Rahayu, F. S.; Widyaningsih, T. D.

    2018-03-01

    Pesticides are chemical substances used to kill and control pests or diseases that can damage crops. The use of pesticides should be done precisely because the accumulation of chemicals contained in pesticides can cause various health effects. Therefore, detection of pesticide residues on plants is important to reduce the risk of poisoning due to pesticide residues. Some of the conventional methods that have been done to detect pesticide residues have weaknesses among expensive tools, takes a long time, and are generally performed by trained laboratory technicians. Biosensors are analytical devices that can measure the quantitative or semi-quantitative targets of analyte by utilizing a bioreceptor such as enzyme. Several studies have shown that enzyme-based acetylcholinesterase-based biosensors can be used to detect pesticide residues in vegetable samples. The objective of this research was to get a proper silica based sol-gel formulation with molar ratio of H2O:TEOS and NaOH concentration as immobilization medium of acetylcholinesterase enzyme for biosensor application. Response Surface Methodology (RSM) was used in order to determine the interaction between the parameters studied and resulting responses which were amount and activity of acetylcholinesterase enzyme. Based on the research, the best result for immobilized enzyme activity was shown by molar ratio (H2O: TEOS) 1: 8 and 4 mM NaOH treatment.

  6. Palm-based medium-and-long-chain triacylglycerol (P-MLCT): production via enzymatic interesterification and optimization using response surface methodology (RSM).

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Karim, Nur Azwani Ab; Alwi, Siti Maslina Mohd; Lai, Oi-Ming

    2015-02-01

    Structured lipid such as medium-and long-chain triacylglycerol (MLCT) is claimed to be able to suppress body fat accumulation and be used to manage obesity. Response surface methodology (RSM) with four factors and three levels (+1,0,-1) faced centered composite design (FCCD) was employed for optimization of the enzymatic interesterification conditions of palm-based MLCT (P-MLCT) production. The effect of the four variables namely: substrate ratio palm kernel oil: palm oil, PKO:PO (40:60-100:0 w/w), temperature (50-70 °C), reaction time (0.5-7.5 h) and enzyme load (5-15 % w/w) on the P-MLCT yield (%) and by products (%) produced were investigated. The responses were determined via acylglycerol composition obtained from high performance liquid chromatography. Well-fitted models were successfully established for both responses: P-MLCT yield (R (2) = 0.9979) and by-products (R (2) = 0.9892). The P-MLCT yield was significantly (P < 0.05) affected by substrate ratio, reaction time and reaction temperature but not enzyme load (P > 0.05). Substrate ratio PKO: PO (100:0 w/w) gave the highest yield of P-MLCT (61 %). Nonetheless, substrate ratio of PKO: PO (90:10w/w) was chosen to improve the fatty acid composition of the P-MLCT. The optimized conditions for substrate ratio PKO: PO (90:10 w/w) was 7.26 h, 50 °C and 5 % (w/w) Lipozyme TLIM lipase, which managed to give 60 % yields of P-MLCT. Up scaled results in stirred tank batch reactor gave similar yields as lab scale. A 20 % increase in P-MLCT yield was obtained via RSM. The effect of enzymatic interesterification on the physicochemical properties of PKO:PO (90:10 w/w) were also studied. Thermoprofile showed that the P-MLCT oil melted below body temperature of 37 °C.

  7. Enzymatic saccharification of brown seaweed for production of fermentable sugars.

    PubMed

    Sharma, Sandeep; Horn, Svein Jarle

    2016-08-01

    This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Optimization of condition for conjugation of enrofloxacin to enzymes in chemiluminescence enzyme immunoassay

    NASA Astrophysics Data System (ADS)

    Yu, Songcheng; Yu, Fei; Zhang, Hongquan; Qu, Lingbo; Wu, Yongjun

    2014-06-01

    In this study, in order to find out a proper method for conjugation of enrofloxacin to label enzymes, two methods were compared and carbodiimide condensation was proved to be better. The results showed that the binding ratio of enrofloxacin and alkaline phosphatase (ALP) was 8:1 and that of enrofloxacin and horseradish peroxidase (HRP) was 5:1. This indicated that conjugate synthesized by carbodiimide condensation was fit for chemiluminescence enzyme immunoassay (CLEIA). Furthermore, data revealed that dialysis time was an important parameter for conjugation and 6 days was best. Buffer to dilute conjugate had little effect on CLEIA. The storage condition for conjugates was also studied and it was shown that the conjugate was stable at 4 °C with no additive up to 30 days. These data were valuable for establishing CLEIA to quantify enrofloxacin.

  9. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-beta-mannosidase from Bacillus licheniformis in Escherichia coli.

    PubMed

    Songsiriritthigul, Chomphunuch; Buranabanyat, Bancha; Haltrich, Dietmar; Yamabhai, Montarop

    2010-04-11

    Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-beta-mannosidase or 1,4-beta-D-mannanase (EC 3.2.1.78), commonly named beta-mannanase, is an enzyme that can catalyze random hydrolysis of beta-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-beta-mannosidase gene (manB) from B. licheniformis. The mannan endo-1,4-beta-mannosidase gene (manB), commonly known as beta-mannanase, from Bacillus licheniformis strain DSM13 was cloned and overexpressed in Escherichia coli. The enzyme can be harvested from the cell lysate, periplasmic extract, or culture supernatant when using the pFLAG expression system. A total activity of approximately 50,000 units could be obtained from 1-l shake flask cultures. The recombinant enzyme was 6 x His-tagged at its C-terminus, and could be purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The specific activity of the purified enzyme when using locust bean gum as substrate was 1672 +/- 96 units/mg. The optimal pH of the enzyme was between pH 6.0 - 7.0; whereas the optimal temperature was at 50 - 60 degrees C. The recombinant beta-mannanase was stable within pH 5 - 12 after incubation for 30 min at 50 degrees C, and within pH 6 - 9 after incubation at 50 degrees C for 24 h. The enzyme was stable at temperatures up to 50 degrees C with a half-life time of activity (tau1/2) of approximately 80 h at 50 degrees C and pH 6.0. Analysis of hydrolytic products by thin layer chromatography revealed that the main products from the bioconversion of locus bean gum and mannan were various manno-oligosaccharide products (M2 - M6) and mannose. Our study demonstrates an efficient expression and secretion system for the production of a relatively thermo- and alkali-stable recombinant beta-mannanase from B. licheniformis strain DSM13, suitable for various biotechnological applications.

  10. Effects of dietary neutral detergent fiber and starch ratio on rumen epithelial cell morphological structure and gene expression in dairy cows.

    PubMed

    Ma, L; Zhao, M; Zhao, L S; Xu, J C; Loor, J J; Bu, D P

    2017-05-01

    This study was designed to investigate the effect of dietary neutral detergent fiber to starch ratio on rumen epithelial morphological structure and gene expression. Eight primiparous dairy cows including 4 ruminally fistulated cows were assigned to 4 total mixed rations with neutral detergent fiber to starch ratios of 0.86, 1.18, 1.63, and 2.34 in a replicated 4 × 4 Latin square design. The duration of each period was 21 d including 14 d for adaptation and 7 d for sampling. Rumen epithelial papillae were collected from the ruminally fistulated cows for morphological structure examination and mRNA expression analysis using quantitative real-time PCR of several genes related to volatile fatty acid absorption and metabolism, and cellular growth. Increasing dietary neutral detergent fiber to starch ratio resulted in a linear increase in the thickness of the stratum spinosum and basale. In contrast, expression of HMGCS2 (encoding the rate-limiting enzyme in the synthesis of ketone bodies) decreased linearly, whereas the expression of MCT2 (encoding a transporter of volatile fatty acid) increased linearly with increasing dietary neutral detergent fiber to starch ratio. As dietary neutral detergent fiber to starch ratio increased, expression of IGFBP5 (a gene related to the growth of rumen epithelial papillae) decreased, whereas IGFBP6 expression increased. Both of these IGFBP genes are regulated by short-chain fatty acids. Overall, the data indicate that dietary neutral detergent fiber to starch ratio can alter the thickness of the rumen epithelial papillae partly through changes in expression of genes associated with regulating volatile fatty acid absorption, metabolism, and cell growth. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease

    PubMed Central

    Jones, Simon P.; Franco, Nunzio F.; Varney, Bianca; Sundaram, Gayathri; Brown, David A.; de Bie, Josien; Lim, Chai K.; Guillemin, Gilles J.; Brew, Bruce J.

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes. PMID:26114426

  12. Antifungal activity of biogenic tellurium nanoparticles against Candida albicans and its effects on squalene monooxygenase gene expression.

    PubMed

    Zare, Bijan; Sepehrizadeh, Zargham; Faramarzi, Mohammad Ali; Soltany-Rezaee-Rad, Mohammad; Rezaie, Sassan; Shahverdi, Ahmad Reza

    2014-01-01

    In this study, we evaluated the antifungal activity of biogenic tellurium nanoparticles (Te NPs) against Candida albicans (ATCC14053). In addition, the effect of these biogenic NPs on squalene monooxygenase activity and the squalene monooxygenase gene (ERG1) expression level was evaluated. Squalene monooxygenase is an important enzyme involved in the synthesis of ergosterol, cholesterol, and phytosterols. Because of the importance of the noted compound, the squalene monooxygenase gene could be considered a good antifungal target. Results showed that biogenic Te NPs had antifungal effect against C. albicans. The minimal fungicidal concentration-minimal inhibitory concentration ratios of the biogenic Te NPs revealed that these NPs exhibited fungicidal effects against the test strain. The results of an enzyme assay using quantitative high-performance liquid chromatography showed squalene accumulation in C. albicans cells because of enzyme inhibition. Real-time PCR analysis showed an increase in the expression of the ERG1 gene in C. albicans cells, which were treated with Te NPs (0.2 mg/mL). It is conclution that Te NPs can inhibit the squalene monooxygenase enzyme, and, as a result, this inhibition phenomenon can cause an increase in the expression level of the ERG1 gene. This is the first report of the anti-Candida effect of biogenic Te NPs and its possible mechanisms. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum.

    PubMed

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that lead to addiction.

  14. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    PubMed Central

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that lead to addiction. PMID:24634647

  15. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus) Peel Using Response Surface Methodology

    PubMed Central

    Abdul Manap, Mohd Yazid; Zohdi, Norkhanani

    2014-01-01

    The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403

  16. Heterologous expression and characterization of mouse spermine oxidase.

    PubMed

    Cervelli, Manuela; Polticelli, Fabio; Federico, Rodolfo; Mariottini, Paolo

    2003-02-14

    Polyamine oxidases are key enzymes responsible of the polyamine interconversion metabolism in animal cells. Recently, a novel enzyme belonging to this class of enzymes has been characterized for its capability to oxidize preferentially spermine and designated as spermine oxidase. This is a flavin adenine dinucleotide-containing enzyme, and it has been expressed both in vitro and in vivo systems. The primary structure of mouse spermine oxidase (mSMO) was deduced from a cDNA clone (Image Clone 264769) recovered by a data base search utilizing the human counterpart of polyamine oxidases, PAOh1. The open reading frame predicts a 555-amino acid protein with a calculated M(r) of 61,852.30, which shows a 95.1% identity with PAOh1. To understand the biochemical properties of mSMO and its structure/function relationship, the mSMO cDNA has been subcloned and expressed in secreted and secreted-tagged forms into Escherichia coli BL21 DE3 cells. The recombinant enzyme shows an optimal pH value of 8.0 and is able to oxidize rapidly spermine to spermidine and 3-aminopropanal and fails to act upon spermidine and N(1)-acetylpolyamines. The purified recombinant-tagged form enzyme (M(r) approximately 68,000) has K(m) and k(cat) values of 90 microm and 4.5 s(-1), respectively, using spermine as substrate at pH 8.0. Molecular modeling of mSMO protein based on maize polyamine oxidase three-dimensional structure suggests that the general features of maize polyamine oxidase active site are conserved in mSMO.

  17. Characteristics of the Copper,Zinc Superoxide Dismutase of a Hadal Sea Cucumber (Paelopatides sp.) from the Mariana Trench.

    PubMed

    Li, Yanan; Kong, Xue; Chen, Jiawei; Liu, Helu; Zhang, Haibin

    2018-05-18

    Superoxide dismutases (SODs) are among the most important antioxidant enzymes and show great potential in preventing adverse effects during therapeutic trials. In the present study, cloning, expression, and characterization of a novel Cu,Zn superoxide dismutase (Ps-Cu,Zn-SOD) from a hadal sea cucumber ( Paelopatides sp.) were reported. Phylogenetic analysis showed that Ps-Cu,Zn-SOD belonged to a class of intracellular SOD. Its K m and V max were 0.0258 ± 0.0048 mM and 925.1816 ± 28.0430 units/mg, respectively. The low K m value of this enzyme represents a high substrate affinity and can adapt to the low metabolic rate of deep sea organisms. The enzyme functioned from 0 °C to 80 °C with an optimal temperature of 40 °C. Moreover, the enzyme activity was maintained up to 87.12% at 5 °C. The enzyme was active at pH 4 to 12 with an optimal pH of 8.5. Furthermore, Ps-Cu,Zn-SOD tolerated high concentration of urea and GuHCl, resisted hydrolysis by proteases, and maintained stability at high pressure. All these features demonstrated that the deep sea Ps-Cu,Zn-SOD is a potential candidate for application to the biopharmaceutical field.

  18. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus,more » led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.« less

  19. Sequential Metabolic Phases as a Means to Optimize Cellular Output in a Constant Environment

    PubMed Central

    Bockmayr, Alexander; Holzhütter, Hermann-Georg

    2015-01-01

    Temporal changes of gene expression are a well-known regulatory feature of all cells, which is commonly perceived as a strategy to adapt the proteome to varying external conditions. However, temporal (rhythmic and non-rhythmic) changes of gene expression are also observed under virtually constant external conditions. Here we hypothesize that such changes are a means to render the synthesis of the metabolic output more efficient than under conditions of constant gene activities. In order to substantiate this hypothesis, we used a flux-balance model of the cellular metabolism. The total time span spent on the production of a given set of target metabolites was split into a series of shorter time intervals (metabolic phases) during which only selected groups of metabolic genes are active. The related flux distributions were calculated under the constraint that genes can be either active or inactive whereby the amount of protein related to an active gene is only controlled by the number of active genes: the lower the number of active genes the more protein can be allocated to the enzymes carrying non-zero fluxes. This concept of a predominantly protein-limited efficiency of gene expression clearly differs from other concepts resting on the assumption of an optimal gene regulation capable of allocating to all enzymes and transporters just that fraction of protein necessary to prevent rate limitation. Applying this concept to a simplified metabolic network of the central carbon metabolism with glucose or lactate as alternative substrates, we demonstrate that switching between optimally chosen stationary flux modes comprising different sets of active genes allows producing a demanded amount of target metabolites in a significantly shorter time than by a single optimal flux mode at fixed gene activities. Our model-based findings suggest that temporal expression of metabolic genes can be advantageous even under conditions of constant external substrate supply. PMID:25786979

  20. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase.

    PubMed

    Holck, Jesper; Larsen, Dorte M; Michalak, Malwina; Li, Haiying; Kjærulff, Louise; Kirpekar, Finn; Gotfredsen, Charlotte H; Forssten, Sofia; Ouwehand, Arthur C; Mikkelsen, Jørn D; Meyer, Anne S

    2014-03-25

    A Trypanosoma cruzi trans-sialidase (E.C. 3.2.1.18) was cloned into Pichia pastoris and expressed. The pH and temperature optimum of the enzyme was determined as pH 5.7 and 30°C. Using casein glycomacropeptide (CGMP) and lactose as sialyl-donor and acceptor respectively, the optimal donor/acceptor ratio for the trans-sialidase catalysed 3'-sialyllactose production was found to be 1:4. Quantitative amounts of 3'-sialyllactose were produced from CGMP and lactose at a yield of 40mg/g CGMP. The 3'-sialyllactose obtained exerted a stimulatory effect on selected probiotic strains, including different Bifidobacterium strains in single culture fermentations. The trans-sialidase also catalysed the transfer of sialic acid from CGMP to galacto-oligosaccharides (GOS) and to the human milk oligosaccharide (HMO) backbone lacto-N-tetraose (LNT) to produce 3'-sialyl-GOS, including doubly sialylated GOS products, and 3'-sialyl-LNT, respectively. This work thus provides proof of the concept of producing 3'-sialyllactose and potentially other sialylated HMOs as well as sialylated GOS enzymatically by trans-sialidase activity, while at the same time providing valorisation of CGMP, a co-processing product from cheese manufacture. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Characterization of ecto-nucleotidases in human oviducts with an improved approach simultaneously identifying protein expression and in situ enzyme activity.

    PubMed

    Villamonte, María Lina; Torrejón-Escribano, Benjamín; Rodríguez-Martínez, Aitor; Trapero, Carla; Vidal, August; Gómez de Aranda, Inmaculada; Sévigny, Jean; Matías-Guiu, Xavier; Martín-Satué, Mireia

    2018-03-01

    Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those taking place in oviducts, including contraction, beating of cilia, and maintenance of fluid composition that, in turn, influences sperm capacitation and hyperactivation, as well as oocyte and embryo nourishing. Ecto-nucleotidases are the enzymes that regulate extracellular ATP and adenosine levels, thus playing a role in reproduction. We have optimized a convenient method for characterizing ecto-nucleotidases that simultaneously localizes the protein and its associated enzyme activity in the same tissue slice and characterizes ecto-nucleotidases in human oviducts. The technique combines immunofluorescence and in situ histochemistry, allowing precise identification of ecto-nucleotidases at a subcellular level. In oviducts, remarkably, ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and NTPDase3, with the ability to hydrolyze ATP to AMP, are expressed in ciliated epithelial cells but with different subcellular localization. Ecto-5'nucleotidase/CD73 is also expressed apically in ciliated cells. CD73, together with alkaline phosphatase, also expressed apically in oviductal epithelium, complete the hydrolysis sequence by dephosphorylating AMP to adenosine. The concerted action of these enzymes would contribute to the local increase of adenosine concentration necessary for sperm capacitation. The use of this method would be an asset for testing new potential therapeutic drugs with inhibitory potential, which is of great interest presently in the field of oncology and in other clinical disciplines.

  2. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers

    PubMed Central

    Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased pancreatic trypsin mRNA levels by 40%, 44% and 28%, respectively. Supplementation with NSP enzyme and 160 mg/kg protease decreased pancreatic trypsin mRNA levels by 13%. Pancreatic lipase and amylase mRNA expression were significantly elevated in treated animals compared to the control group (p<0.05). These results suggest that the amount of NSP enzyme and acid protease in the diet significantly affects digestive function, endogenous digestive-enzyme activity and mRNA expression in broilers. PMID:28323908

  3. Lactulose production by a thermostable glycoside hydrolase from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167.

    PubMed

    Letsididi, Rebaone; Hassanin, Hinawi Am; Koko, Marwa Yf; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2018-02-01

    Lactulose has various uses in the food and pharmaceutical fields. Thermostable enzymes have many advantages for industrial exploitation, including high substrate solubilities as well as reduced risk of process contamination. Enzymatic synthesis of lactulose employing a transgalactosylation reaction by a recombinant thermostable glycoside hydrolase (GH1) from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167 was investigated. The optimal pH for lactulose production was found to be 4.5, while the optimal temperature was 85 °C, before it dropped moderately to 83% at 90 °C. However, the relative activity for lactulose synthesis dropped sharply to 35% at 95 °C. At optimal reaction conditions of 70% (w/w) initial sugar substrates with molar ratio of lactose to fructose of 1:4, 15 U mL -1 enzyme concentration and 85 °C, the time course reaction produced a maximum lactulose concentration of 108 g L -1 at 4 h, corresponding to a lactulose yield of 14% and 27 g L -1  h -1 productivity with 84% lactose conversion. The transgalactosylation reaction for lactulose synthesis was greatly influenced by the ratio of galactose donor to acceptor. This novel GH1 may be useful for process applications owing to its high activity in very concentrated substrate reaction media and promising thermostability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. High-level expression of two thermophilic β-mannanases in Yarrowialipolytica.

    PubMed

    YaPing, Wang; Ben, Rao; Ling, Zhang; Lixin, Ma

    2017-05-01

    Two thermophilic β-mannanases (ManA and ManB)were successfully expressed in Yarrowialipolytica using vector pINA1296I. The sequences of manA from Aspergillus niger CBS 513.88 and manB from Bacillus subtilis BCC41051 were optimized based on codon-usage bias in Y.lipolytica and synthesized by overlapping polymerase chain reaction (PCR). We utilized the pINA1296I vector, which allows inserting and expression of multiple copies of an expression cassette, to engineer recombinant strains containing multiple copies of manA or manB. Following verification of target-gene expression by quantitative PCR, fermentation experiments indicated that recombinant protein levels and enzyme activity increased along with increasing manA/manB copy number.After production in a 10 l fermenter, we obtained maximum enzyme activity from strains YLA6 and YLB6 of3024 U/mL and 1024 U/mL, respectively. Additionally, purification and characterization results revealed that the optimum pH and temperature for manA activity were pH∼5 and ∼70 °C, and for manB activity were pH∼7 and 60 °C, respectively. These results indicated that the thermo stabilities of these two enzymes were higher than most other mannanases, making them potentially useful for industrial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Biosynthesis of inulin from sucrose using inulosucrase from Lactobacillus gasseri DSM 20604.

    PubMed

    Ni, Dawei; Zhu, Yingying; Xu, Wei; Bai, Yuxiang; Zhang, Tao; Mu, Wanmeng

    2018-04-01

    Inulin is composed of fructose residues connected by β-(2, 1) glycosidic linkages with many promising physiochemical and physiological properties. In this study, an inulin-producing inulosucrase gene from Lactobacillus gasseri DSM 20604 was cloned, expressed and purified. SDS-PAGE and gel filtration found that the recombinant inulosucrase is a monomeric protein with a molecular weight of 63KDa. The optimal pH for its sucrose hydrolysis and transfructosylation activities was pH 5.5. The optimal temperatures were measured to be 45, 25, and 35°C for sucrose hydrolysis, transfructosylation, and total activity, respectively. Biosynthesis studies showed that the optimal enzyme dosage was 4.5U/g sucrose. Higher sucrose concentrations immensely contributed to inulin biosynthesis; the inulin yield reached its maximum after 1.5h of reaction. Structural analyses of the polysaccharide produced by the recombinant enzyme from sucrose revealed that it is an inulin-type fructan with a molecular weight of 5.858×10 6 Da. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Environmental statistics and optimal regulation

    NASA Astrophysics Data System (ADS)

    Sivak, David; Thomson, Matt

    2015-03-01

    The precision with which an organism can detect its environment, and the timescale for and statistics of environmental change, will affect the suitability of different strategies for regulating protein levels in response to environmental inputs. We propose a general framework--here applied to the enzymatic regulation of metabolism in response to changing nutrient concentrations--to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, and the costs associated with enzyme production. We find: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.

  7. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication

    PubMed Central

    Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2015-01-01

    Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297

  8. Purification, characterization, and heterologous expression of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9.

    PubMed

    Mao, Shurui; Lu, Zhaoxin; Zhang, Chong; Lu, Fengxia; Bie, Xiaomei

    2013-02-01

    Purification, characterization, gene cloning, and heterologous expression in Escherichia coli of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9 have been investigated in this paper. The donor strain B. altitudinis YC-9 was isolated from spring silt. The native enzyme was purified by ammonium sulfate precipitation, diethylaminoethyl-cellulose anion exchange chromatography, and Sephadex G-100 gel filtration. The purified β-1,3-1,4-glucanase was observed to be stable at 60 °C and retain more than 90% activity when incubated for 2 h at 60 °C and remain about 75% and 44% activity after incubating at 70 °C and 80 °C for 10 min, respectively. Acidity and temperature optimal for this enzyme was pH 6 and 65 °C. The open reading frame of the enzyme gene was measured to be 732 bp encoding 243 amino acids, with a predicted molecular weight of 27.47 kDa. The gene sequence of β-1,3-1,4-glucanase showed a homology of 98% with that of Bacillus licheniformis. After being expressed in E. coli BL21, active recombinant enzyme was detected both in the supernatants of the culture and the cell lysate, with the activity of 102.7 and 216.7 U/mL, respectively. The supernatants of the culture were used to purify the recombinant enzyme. The purified recombinant enzyme was characterized to show almost the same properties to the wild enzyme, except that the specific activity of the recombinant enzyme reached 5392.7 U/mg, which was higher than those ever reported β-1,3-1,4-glucanase from Bacillus strains. The thermal stability and high activity make this enzyme broad prospect for industry application. This is the first report on β-1,3-1,4-glucanase produced by B. altitudinis.

  9. The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function.

    PubMed

    Chua, Li-Min; Lim, Mei-Li; Wong, Boon-Seng

    2013-08-09

    Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD(+)/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Characterization of an Agrobacterium tumefaciens d-Psicose 3-Epimerase That Converts d-Fructose to d-Psicose

    PubMed Central

    Kim, Hye-Jung; Hyun, Eun-Kyung; Kim, Yeong-Su; Lee, Yong-Joo; Oh, Deok-Kun

    2006-01-01

    The noncharacterized gene previously proposed as the d-tagatose 3-epimerase gene from Agrobacterium tumefaciens was cloned and expressed in Escherichia coli. The expressed enzyme was purified by three-step chromatography with a final specific activity of 8.89 U/mg. The molecular mass of the purified protein was estimated to be 132 kDa of four identical subunits. Mn2+ significantly increased the epimerization rate from d-fructose to d-psicose. The enzyme exhibited maximal activity at 50°C and pH 8.0 with Mn2+. The turnover number (kcat) and catalytic efficiency (kcat/Km) of the enzyme for d-psicose were markedly higher than those for d-tagatose, suggesting that the enzyme is not d-tagatose 3-epimerase but d-psicose 3-epimerase. The equilibrium ratio between d-psicose and d-fructose was 32:68 at 30°C. d-Psicose was produced at 230 g/liter from 700-g/liter d-fructose at 50°C after 100 min, corresponding to a conversion yield of 32.9%. PMID:16461638

  11. Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization.

    PubMed

    Hema, G S; Joshy, C G; Shyni, K; Chatterjee, Niladri S; Ninan, George; Mathew, Suseela

    2017-02-01

    The study optimized the hydrolysis conditions for the production of fish collagen peptides from skin of Malabar grouper ( Epinephelus malabaricus ) using response surface methodology. The hydrolysis was done with enzymes pepsin, papain and protease from bovine pancreas. Effects of process parameters viz: pH, temperature, enzyme substrate ratio and hydrolysis time of the three different enzymes on degree of hydrolysis were investigated. The optimum response of degree of hydrolysis was estimated to be 10, 20 and 28% respectively for pepsin, papain and protease. The functional properties of the product developed were analysed which showed changes in the properties from proteins to peptides. SDS-PAGE combined with MALDI TOF method was successfully applied to determine the molecular weight distribution of the hydrolysate. The electrophoretic pattern indicated that the molecular weights of peptides formed due to hydrolysis were nearly 2 kDa. MALDI TOF spectral analysis showed the developed hydrolysate contains peptides having molecular weight in the range below 2 kDa.

  12. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    PubMed

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  13. A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase.

    PubMed

    Shibata, Nozomu; Suetsugu, Mari; Kakeshita, Hiroshi; Igarashi, Kazuaki; Hagihara, Hiroshi; Takimura, Yasushi

    2017-01-01

    Trichoderma reesei is considered a candidate fungal enzyme producer for the economic saccharification of cellulosic biomass. However, performance of the saccharifying enzymes produced by T. reesei is insufficient. Therefore, many attempts have been made to improve its performance by heterologous protein expression. In this study, to increase the conversion efficiency of alkaline-pretreated bagasse to sugars, we conducted screening of biomass-degrading enzymes that showed synergistic effects with enzyme preparations produced by recombinant T. reesei . Penicillium sp. strain KSM-F532 produced the most effective enzyme to promote the saccharification of alkaline-pretreated bagasse. Biomass-degrading enzymes from strain KSM-F532 were fractionated and analyzed, and a xylanase, named PspXyn10, was identified. The amino acid sequence of PspXyn10 was determined by cDNA analysis: the enzyme shows a modular structure consisting of glycoside hydrolase family 10 (GH10) and carbohydrate-binding module family 1 (CBM1) domains. Purified PspXyn10 was prepared from the supernatant of a recombinant T. reesei strain. The molecular weight of PspXyn10 was estimated to be 55 kDa, and its optimal temperature and pH for xylanase activity were 75 °C and pH 4.5, respectively. More than 80% of the xylanase activity was maintained at 65 °C for 10 min. With beechwood xylan as the substrate, the enzyme had a K m of 2.2 mg/mL and a V max of 332 μmol/min/mg. PspXyn10ΔCBM, which lacked the CBM1 domain, was prepared by limited proteolysis. PspXyn10ΔCBM showed increased activity against soluble xylan, but decreased saccharification efficiency of alkaline-pretreated bagasse. This result indicated that the CBM1 domain of PspXyn10 contributes to the enhancement of the saccharification efficiency of alkaline-pretreated bagasse. A recombinant T. reesei strain, named X2PX10, was constructed from strain X3AB1. X3AB1 is an Aspergillus aculeatus β-glucosidase-expressing T. reesei PC-3-7. X2PX10 also expressed PspXyn10 under the control of the xyn2 promoter. An enzyme preparation from X2PX10 showed almost the same saccharification efficiency of alkaline-pretreated bagasse at half the enzyme dosage as that used for an enzyme preparation from X3AB1. Our results suggest that PspXyn10 promotes the saccharification of alkaline-pretreated bagasse more efficiently than TrXyn3, a GH10 family xylanase from T. reesei , and that the PspXyn10-expressing strain is suitable for enzyme production for biomass saccharification.

  14. Gene cloning, expression, and characterization of a new carboxylesterase from Serratia sp. SES-01: comparison with Escherichia coli BioHe enzyme.

    PubMed

    Kwon, Min-A; Kim, Hyun Suk; Oh, Joon Young; Song, Bong Keun; Song, Jae Kwang

    2009-02-01

    The carboxylesterase-encoding gene (bioHs) of a newly isolated strain, Serratia sp. SES-01, was cloned from the genomic DNA library by detecting formation of transparent halo around the colony on LB-tributyrin agar plates. The amino acid sequence of BioHs was highly similar to the members of the BioH enzyme family involved in the biotin biosynthetic pathway; it showed the highest similarity (91%) with that of Serratia proteamaculans. To compare BioHs with other BioH enzymes, the relatively well-known bioHe gene of E. coli was cloned with PCR. After we achieved high-level expression of soluble BioHs and BioHe through the exploration of different culture conditions, the purified BioHs and BioHe enzymes were characterized in terms of specificity, activity, and stability. BioHe was generally more robust to a change in temperature and pH and an addition of organic solvents than BioHs. The two enzymes exhibited a strong preference for carboxylesterase rather than for thioesterase and were optimal at relatively low temperatures (20-40 degrees ) and alkaline pHs (7.5-9.0). The results in this study strongly suggested that both the BioHs and BioHe enzymes would be potential candidates for use as a carboxylesterase in many industrial applications.

  15. Improvement of LOD in Fluorescence Detection with Spectrally Nonuniform Background by Optimization of Emission Filtering.

    PubMed

    Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N

    2017-10-17

    The limit-of-detection (LOD) in analytical instruments with fluorescence detection can be improved by reducing noise of optical background. Efficiently reducing optical background noise in systems with spectrally nonuniform background requires complex optimization of an emission filter-the main element of spectral filtration. Here, we introduce a filter-optimization method, which utilizes an expression for the signal-to-noise ratio (SNR) as a function of (i) all noise components (dark, shot, and flicker), (ii) emission spectrum of the analyte, (iii) emission spectrum of the optical background, and (iv) transmittance spectrum of the emission filter. In essence, the noise components and the emission spectra are determined experimentally and substituted into the expression. This leaves a single variable-the transmittance spectrum of the filter-which is optimized numerically by maximizing SNR. Maximizing SNR provides an accurate way of filter optimization, while a previously used approach based on maximizing a signal-to-background ratio (SBR) is the approximation that can lead to much poorer LOD specifically in detection of fluorescently labeled biomolecules. The proposed filter-optimization method will be an indispensable tool for developing new and improving existing fluorescence-detection systems aiming at ultimately low LOD.

  16. Optimization of condition for conjugation of enrofloxacin to enzymes in chemiluminescence enzyme immunoassay.

    PubMed

    Yu, Songcheng; Yu, Fei; Zhang, Hongquan; Qu, Lingbo; Wu, Yongjun

    2014-06-05

    In this study, in order to find out a proper method for conjugation of enrofloxacin to label enzymes, two methods were compared and carbodiimide condensation was proved to be better. The results showed that the binding ratio of enrofloxacin and alkaline phosphatase (ALP) was 8:1 and that of enrofloxacin and horseradish peroxidase (HRP) was 5:1. This indicated that conjugate synthesized by carbodiimide condensation was fit for chemiluminescence enzyme immunoassay (CLEIA). Furthermore, data revealed that dialysis time was an important parameter for conjugation and 6days was best. Buffer to dilute conjugate had little effect on CLEIA. The storage condition for conjugates was also studied and it was shown that the conjugate was stable at 4°C with no additive up to 30days. These data were valuable for establishing CLEIA to quantify enrofloxacin. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Environmental Statistics and Optimal Regulation

    PubMed Central

    2014-01-01

    Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein expression levels all will affect the suitability of different strategies–such as constitutive expression or graded response–for regulating protein levels in response to environmental inputs. We propose a general framework–here specifically applied to the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient–to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones. PMID:25254493

  18. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes.

    PubMed

    Chang, Shu-Wei; Huang, Myron; Hsieh, Yu-Hsun; Luo, Ying-Ting; Wu, Tsung-Ta; Tsai, Chia-Wen; Chen, Chin-Shuh; Shaw, Jei-Fu

    2014-07-15

    In this study, the catalytic efficiency of four recombinant CRL (Candida rugosa lipase) isozymes (LIP1-LIP4) towards the production of fatty acid methyl ester (FAME) was compared and evaluated as an alternative green method for industrial applications. The results indicated that the recombinant C. rugosa LIP1 enzyme exhibited the highest catalytic efficiency for FAME production compared to the recombinant C. rugosa LIP2-LIP4 enzymes. The optimal conditions were as follows: pH 7.0, methanol/soybean oil molar ratio: 3/1, enzyme amount: 2U (1.6 μL), reaction temperature: 20°C, 22 h of reaction time, and 3 times of methanol addition (1 mol/6h), and resulted in 61.5 ± 1.5 wt.% of FAME conversion. The reaction product contained also 10 wt.% of DAG with a ratio of 1,3-DAG to 1,2-DAG of approximately 4:6, and can be potentially used in industrial applications as a food emulsifier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Extracellular enzyme kinetics scale with resource availability

    USGS Publications Warehouse

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  20. Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta.

    PubMed

    Wakayama, Masataka; Ohnishi, Jun-ichi; Ueno, Osamu

    2006-05-01

    In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades--namely, the leaf sheath, stem, scale leaf, and constituents of the spike--also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.

  1. Transcription in Yeast: Separation and Properties of Multiple RNA Polymerases

    PubMed Central

    Adman, Ray; Schultz, Loren D.; Hall, Benjamin D.

    1972-01-01

    Four peaks of DNA-directed RNA polymerase activity are resolved by salt gradient elution of a sonicated yeast cell extract on DEAE-Sephadex. The enzymes, which are named IA, IB, II, and III in order of elution, all appear to come from cell nuclei. Only enzyme II is sensitive to α-amanitin. All enzymes are more active with Mn++ than with Mg++ as divalent ion. Enzymes IB and II have salt optima in the range 0.05-0.10 M (NH4)2SO4, whereas enzyme III is maximally active at 0.20-0.25 M (NH4)2SO4. With optimal salt concentration and saturating DNA, the template preference ratio, activity on native calfthymus DNA divided by activity on denatured calf-thymus DNA, is 2.2 for IB, 0.4 for II, and 3.5 for III. None of the yeast polymerases was inhibited by rifamycin SV. Rifamycin AF/013 effectively inhibited polymerases IB, II, and III. PMID:4558656

  2. The Complete Genome Sequence of Hyperthermophile Dictyoglomus turgidum DSM 6724™ Reveals a Specialized Carbohydrate Fermentor

    PubMed Central

    Brumm, Phillip J.; Gowda, Krishne; Robb, Frank T.; Mead, David A.

    2016-01-01

    Here we report the complete genome sequence of the chemoorganotrophic, extremely thermophilic bacterium, Dictyoglomus turgidum, which is a Gram negative, strictly anaerobic bacterium. D. turgidum and D. thermophilum together form the Dictyoglomi phylum. The two Dictyoglomus genomes are highly syntenic, and both are distantly related to Caldicellulosiruptor spp. D. turgidum is able to grow on a wide variety of polysaccharide substrates due to significant genomic commitment to glycosyl hydrolases, 16 of which were cloned and expressed in our study. The GH5, GH10, and GH42 enzymes characterized in this study suggest that D. turgidum can utilize most plant-based polysaccharides except crystalline cellulose. The DNA polymerase I enzyme was also expressed and characterized. The pure enzyme showed improved amplification of long PCR targets compared to Taq polymerase. The genome contains a full complement of DNA modifying enzymes, and an unusually high copy number (4) of a new, ancestral family of polB type nucleotidyltransferases designated as MNT (minimal nucleotidyltransferases). Considering its optimal growth at 72°C, D. turgidum has an anomalously low G+C content of 39.9% that may account for the presence of reverse gyrase, usually associated with hyperthermophiles. PMID:28066333

  3. Temperature influence on fluorescence intensity and enzyme activity of the fusion protein of GFP and hyperthermophilic xylanase.

    PubMed

    Zhang, Chong; Liu, Min-Sheng; Xing, Xin-Hui

    2009-09-01

    By constructing the expression system for fusion protein of GFPmut1 (a green fluorescent protein mutant) with the hyperthermophilic xylanase obtained from Dictyoglomus thermophilum Rt46B.1, the effects of temperature on the fluorescence of GFP and its relationship with the activities of GFP-fused xylanase have been studied. The fluorescence intensities of both GFP and GFP-xylanase have proved to be thermally sensitive, with the thermal sensitivity of the fluorescence intensity of GFP-xylanase being 15% higher than that of GFP. The lost fluorescence intensity of GFP inactivated at high temperature of below 60 degrees C in either single or fusion form can be completely recovered by treatment at 0 degrees C. By the fluorescence recovery of GFP domain at low temperature, the ratios of fluorescence intensity to xylanase activity (Rgfp/Axyl) at 15 degrees C and 37 degrees C have been compared. Even though the numbers of molecules of GFP and xylanase are equivalent, the Rgfp/Axyl ratio at 15 degrees C is ten times of that at 37 degrees C. This is mainly due to the fact that lower temperature is more conducive to the correct folding of GFP than the hyperthermophilic xylanase during the expression. This study has indicated that the ratio of GFP fluorescence to the thermophilic enzyme activity for the fusion proteins expressed at different temperatures could be helpful in understanding the folding properties of the two fusion partners and in design of the fusion proteins.

  4. A novel cross-linked enzyme aggregates (CLEAs) of papain and neutrase-production, partial characterization and application.

    PubMed

    Chen, Zhongqin; Wang, Yanwei; Liu, Wei; Wang, Jingya; Chen, Haixia

    2017-02-01

    The neutrase (EC 3.4.24.4) and papain (EC 3.4.22.2) were together immobilized ascross-linked enzyme aggregates (N-P-CLEAs) and their properties were characterized. The influence of the precipitant, cross-linking ratio of glutaraldehyde and cross-linking time were investigated. Ethanol was selected as the more efficient precipitant compared with ammonium sulfate. The proper cross-linking ratio of enzyme and glutaraldehyde was 1:5 (v/v) and the optimized cross-linking time was 4h. N-P-CLEAs showed obvious improvement in thermal stability and pH stability than the free enzyme (P<0.05) and could hold relatively high activity retention in nonpolar and hydrophilic solvents and without activity loss at 4°C for more than six months. The cross-linking reaction had been appeared in N-P-CLEAs and more orderly microscopic surface morphology of N-P-CLEAs was observed. The molecular weight and thermal denaturation temperature of N-P-CLEAs were increased while the isoelectric point was decreased compared with those of the free enzymes. Application of N-P-CLEAs in bean proteins and zein showed a higher degree of hydrolysis, such as the hydrolysis degree of mung bean protein hydrolyzed by N-P-CLEAs was 12%, increased by approximately 4.5% compared to that of free enzyme. The results demonstrated that the N-P-CLEAs was suitable for application in food protein hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes.

    PubMed

    Gagaoua, Mohammed; Hoggas, Naouel; Hafid, Kahina

    2015-02-01

    The present work describes for the first time an elegant non-chromatographic method, the three phase partitioning for the purification and recovery of zingibain, a milk-clotting enzyme, from Zingiber officinale rhizomes. Factors affecting partitioning efficiency such as (NH4)2SO4 saturation, crude extract to t-butanol ratio and pH on zingibain partitioning were investigated. Optimal purification parameters were 50% (NH4)2SO4 saturation with 1.0:1.0 ratio of crude extract:t-butanol at pH 7.0, which gave 14.91 purification fold with 215% recovery of zingibain. The enzyme was found to be exclusively partitioned in the aqueous phase. The enzyme showed a prominent single band on SDS-PAGE. It is a monomeric protein of 33.8 kDa and its isoelectric point is 4.38. The enzyme exhibited maximal proteolytic activity at a temperature of 60 °C and pH 7.0. It was found to be stable at 40-65 °C during 2 h. The enzyme was found to be highly stable against numerous metal ions and its activity was enhanced by Ca(2+), K(+) and Na(+). It was completely inhibited by heavy metal ions such as Cu(2+) and Hg(2+) and partially by Cd(+). Zingibain milk-clotting activity (MCA) was found to be highly stable when stored under freezing (-20 °C) for 30 days compared at 4 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Monodispersed silica nanoparticles as carrier for co-immobilization of bi-enzyme and its application for glucose biosensing

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Wei, Wei; Liu, Songqin

    A novel glucose sensing strategy by using bi-enzyme coated monodispered silica nanoparticles (SiO2) was proposed. The monodispered SiO2 was synthesized according to our previously reported seed-growth methods. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were simultaneously covalent immobilized on the surface of SiO2 nanoparticles through the cross-linker of glutaraldehyde. The immobilized bi-enzyme remained their bioactivities well for the substrate reaction. Thus, the resultant SiO2-GOD/HRP nanocomposites could be used as catalyst for enzymatic substrate reactions in the presence of 3,3‧,5,5‧-tetramethylbenzidine (TMB) as chromogenic reagent and glucose as substrate. The factors of affecting the catalytic activities of enzymes were optimized. Under optimal conditions, the absorbance at 450 nm in UV-visible spectra increased with the glucose concentration, which could be used for glucose detection with a linear range from 0.5 μM to 250 μM and a detection limit of 0.22 μM at a signal-to-noise ratio of 3σ. Considering the potential of making pills using this SiO2-GOD/HRP, the present strategy has good prospect in the clinic science and other fields in future.

  7. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study.

    PubMed

    Zígolo, M Antonela; Salinas, Maximiliano; Alché, Laura; Baldessari, Alicia; Liñares, Guadalupe García

    2018-08-01

    We present an efficient approach to the synthesis of a series of glycyrrhetinic acid derivatives. Six derivatives, five of them new compounds, were obtained through chemoenzymatic reactions in very good to excellent yield. In order to find the optimal reaction conditions, the influence of various parameters such as enzyme source, nucleophile:substrate ratio, enzyme:substrate ratio, solvent and temperature was studied. The excellent results obtained by lipase catalysis made the procedure very efficient considering their advantages such as mild reaction conditions and low environmental impact. Moreover, in order to explain the reactivity of glycyrrhetinic acid and the acetylated derivative to different nucleophiles in the enzymatic reactions, molecular docking studies were carried out. In addition, one of the synthesized compounds exhibited remarkable antiviral activity against TK + and TK- strains of Herpes simplex virus type 1 (HSV-1), sensitive and resistant to acyclovir (ACV) treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The alpha glycerophosphate cycle in Drosophila melanogaster VI. structure and evolution of enzyme paralogs in the genus Drosophila.

    PubMed

    Carmon, Amber; MacIntyre, Ross

    2010-01-01

    The genome sequences of 12 Drosophila species contain 3 paralogs for alpha glycerophosphate dehydrogenase (GPDH) and for the mitochondrial alpha glycerophosphate oxidase (GPO). These 2 enzymes participate in the alpha glycerophosphate cycle in the adult thoracic flight muscles. The flight muscle enzymes are encoded by gpdh-1 at 26A2 and gpo-1 at 52C8. In this paper, we show that the GPDH paralogs share the same evolutionarily conserved functional domains and most intron positions, whereas the GPO paralogs share only some of the functional domains of mitochondrial oxidoreductases. The GPO paralogs not expressed in the flight muscles essentially lack introns. GPDH paralogs encoded by gpdh-2 and gpdh-3 and the GPO paralogs encoded by gpo-2 and gpo-3 are expressed only in the testes. Gene trees for the GPDH and GPO paralogs indicate that the genes expressed in the flight muscles are evolving very slowly presumably under strong purifying selection whereas the paralogs expressed in the testes are evolving more rapidly. The concordance between species and gene trees, d(N)/d(S) ratios, phylogenetic analysis by maximum likelihood-based tests, and analyses of radical and conservative substitutions all indicate that the additional GPDH and GPO paralogs are also evolving under purifying selection.

  9. Maternal nutrient deprivation induces sex-specific changes in thyroid hormone receptor and deiodinase expression in the fetal guinea pig brain

    PubMed Central

    Chan, Shiao Y; Andrews, Marcus H; Lingas, Rania; McCabe, Chris J; Franklyn, Jayne A; Kilby, Mark D; Matthews, Stephen G

    2005-01-01

    Thyroid hormone deprivation during fetal life has been implicated in neurodevelopmental morbidity. In humans, poor growth in utero is also associated with fetal hypothyroxinaemia. In guinea pigs, a short period (48 h) of maternal nutrient deprivation at gestational day (gd) 50 results in fetuses with hypothyroxinaemia and increased brain/body weight ratios. Thyroid hormone action is mediated by nuclear thyroid hormone receptors (TRs) and is dependent upon the prereceptor regulation of supply of triiodothyronine (T3) by deiodinase enzymes. Examination of fetal guinea pig brains using in situ hybridization demonstrated widespread expression of mRNAs encoding TRα1, α2 and β1, with regional colocalization of deiodinase type 2 (D2) mRNA in the developing forebrain, limbic structures, brainstem and cerebellum at gd52. With maternal nutrient deprivation, TRα1 and β1 mRNA expression was significantly increased in the male, but decreased in the female fetal hippocampus and cerebellum and other areas showing high TR expression under euthyroid conditions. Maternal nutrient deprivation resulted in elevated D2 mRNA expression in males and females. Deiodinase type 3 (D3) mRNA expression was confined to the shell of the nucleus accumbens, the posterior amygdalohippocampal area, brainstem and cerebellum, and did not change with maternal nutrient deprivation. In conclusion, maternal nutrient deprivation resulted in sex-specific changes in TR mRNA expression and a generalized increase in D2 mRNAs within the fetal brain. These changes may represent a protective mechanism to maintain appropriate thyroid hormone action in the face of fetal hypothyroxinaemia in order to optimize brain development. PMID:15878952

  10. Study on relationship between expression level and molecular conformations of gene drugs targeting to hepatoma cells in vitro

    PubMed Central

    Yang, Dong-Ye; Lu, Fang-Gen; Tang, Xi-Xiang; Zhao, Shui-Ping; Ouyang, Chun-Hui; Wu, Xiao-Ping; Liu, Xiao-Wei; Wu, Xiao-Ying

    2003-01-01

    AIM: To increase exogenous gene expression level by modulating molecular conformations of targeting gene drugs. METHODS: The full length cDNAs of both P40 and P35 subunits of human interleukin 12 were amplified through polymerase chain reaction (PCR) and cloned into eukaryotic expressing vectors pcDNA3.1 (±) to construct plasmids of P (+)/IL-12, P (+)/P40 and P (-)/P35. These plasmids were combined with ASOR-PLL to form two targeting gene drugs [ASOR-PLL-P (+)/IL-12 and ASOR-PLL-P (+)/P40 + ASOR-PLL-P (-)/P35] in optimal ratios. The conformations of these two drugs at various concentrations adjuvant were examined under electron microscope (EM) and the drugs were transfected into HepG2 (ASGr+) cells. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed with total RNA extracted from the transfected cells to determine the hIL12 mRNA transcript level. The hIL12 protein in the cultured supernatant was measured with enzyme-linked immunosorbent assay (ELISA) 48 hours after transfection. RESULTS: Targeting gene drugs, whose structures were granular and circle-like and diameters ranged from 25 nm to 150 nm, had the highest hIL-12 expression level. The hIL-12 expression level in the group co-transfected with ASOR-PLL-P (+)/P40 and ASOR-PLL-P (-)/P35 was higher than that of ASOR-PLL-P (+)/IL-12 transfected group. CONCLUSION: The molecular conformations of targeting gene drugs play an important role in exogenous gene expression level, the best structures are granular and circle-like and their diameters range from 25 nm to 150 nm. The sizes and linking styles of exogenous genes also have some effects on their expression level. PMID:12970883

  11. Optimization of Clonazepam Therapy Adjusted to Patient’s CYP3A Status and NAT2 Genotype

    PubMed Central

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István

    2016-01-01

    Background: The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Methods: Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients’ CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. Results: The patients’ CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Conclusion: Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. PMID:27639091

  12. An active recombinant cocoonase from the silkworm Bombyx mori: bleaching, degumming and sericin degrading activities.

    PubMed

    Unajak, Sasimanas; Aroonluke, Suradet; Promboon, Amornrat

    2015-04-01

    Cocoonase is a serine protease produced by silk moths and used for softening the cocoons so that they can escape. Degumming is one of the important steps in silk processing. This research aimed to produce an active recombinant Bombyx mori cocoonase (BmCoc) for the silk degumming process. A recombinant BmCoc was successfully expressed in a Pichia pastoris system. The purified enzyme showed specific activity of 227 U mg(-1) protein, 2.4-fold purification, 95% yield and a molecular weight of 26 kDa. The enzyme exhibited optimal temperature at 40 °C and optimal pH at 8, and showed thermal stability at 25-45 °C and pH stability at 5-9. The recombinant enzyme exhibited sericin degumming ability and color bleaching characteristics, and did not affect the fibroin fiber. The enzyme also degraded sericin substrate with a product size about 30-70 kDa. In this study, we successfully produced the active recombinant BmCoc in P. pastoris with promising functions for the Thai silk degumming process, which includes degumming, sericin degrading and color bleaching activities. Our data clearly indicated that the recombinant enzyme had proteolytic activity on sericin but not on fibroin proteins. The recombinant BmCoc has proven to be suitable for numerous applications in the silk industry. © 2014 Society of Chemical Industry.

  13. Cell-specific Labeling Enzymes for Analysis of Cell–Cell Communication in Continuous Co-culture*

    PubMed Central

    Tape, Christopher J.; Norrie, Ida C.; Worboys, Jonathan D.; Lim, Lindsay; Lauffenburger, Douglas A.; Jørgensen, Claus

    2014-01-01

    We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDCM.tub-KDEL) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (LyrM37-KDEL) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDCM.tub-KDEL and LyrM37-KDEL facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell–cell phospho-signaling experiments, we propose DDCM.tub-KDEL and LyrM37-KDEL as excellent enzymes for cell-specific labeling with amino acid precursors. PMID:24820872

  14. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01.

    PubMed

    Chae, J P; Valeriano, V D; Kim, G-B; Kang, D-K

    2013-01-01

    To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01. The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l(-1) isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel-nitrilotriacetic acid (Ni(2+) -NTA) agarose column and their activities characterized. BSH A hydrolysed tauro-conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco-conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety. BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate-binding sites, these remain functional through motif conservation. This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco-conjugated or tauro-conjugated bile salts. Future structural homology studies and site-directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes. © 2012 The Society for Applied Microbiology.

  15. Effect of a feeder layer composed of mouse embryonic and human foreskin fibroblasts on the proliferation of human embryonic stem cells.

    PubMed

    Yang, Hua; Qiu, Ying; Zeng, Xianghui; Ding, Yan; Zeng, Jianye; Lu, Kehuan; Li, Dongsheng

    2016-06-01

    The aim of the present study was to investigate the effects of feeder layers composed of various ratios of mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (hFFs) on the growth of human embryonic stem cells (hESCs). In addition, the secretion levels of basic fibroblast growth factor (bFGF) by the feeder layers was detected. MEFs and hFFs were treated with mitomycin C and seeded onto gelatin-coated plates at a density of 1×10 8 cells/l. The hFFs and MEFs were combined and plated at the following ratios: 0:1, 1:2, 1:1, 2:1 and 1:0. The secretion of bFGF by the various hFF/MEF ratio feeder layers was detected using an enzyme-linked immunosorbent assay. Subsequently, hESCs were cultured on top of the various feeder layers. The differences in the cellular morphology of the hESCs were observed using microscopy, and the expression levels alkaline phosphatase (AKP) and octamer-binding transcription factor 4 (OCT-4) were detected using immunohistochemical analysis as indicators of differentiation status. The results showed that the hFFs secreted substantial quantities of bFGF, while no bFGF was secreted by the MEFs. The clones of hESC growing on the feeder layer containing MEF or hFF alone were flat. By contrast, hESC clones grown on a mixed feeder layer containing hFFs + MEFs at a ratio of 1:1 exhibited an accumulated growth with a clear edge, as compared with the other ratios. In addition, hESCs growing on the feeder layer were positive for the expression of AKP and OCT-4. In summary, feeder layer hFFs secreted bFGF, while MEFs did not, indicating that bFGF is not the only factor that supports the growth and differentiation of hESCs. The optimal growth of hESCs was achieved using a mixed feeder layer composed of hFFs + MEFs at a ratio of 1:1.

  16. Regulating unfolded protein response activator HAC1p for production of thermostable raw-starch hydrolyzing α-amylase in Pichia pastoris.

    PubMed

    Huang, Mengmeng; Gao, Yanyun; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2017-03-01

    Unfolded protein response (UPR) usually happens when expressing heterologous proteins in high level, which may help cells to facilitate protein processing. Here, we evaluated the effects of the UPR activator HAC1p on a raw-starch hydrolyzing α-amylase (Gs4j-amyA), so as to improve heterologous production of the enzyme in Pichia pastoris. The gene (amyA) encoding Gs4j-amyA was first codon-optimized and expressed in P. pastoris under the control of the AOX1 promoter. A high gene dosage (12 copies) of amyA facilitated amylase expression which produced an enzyme activity of 305 U/ml. A spliced HAC1 encoding an UPR activator HAC1p was then co-expressed and the dosage effects of HAC1 on amylase expression was investigated. Six copies of HAC1 driven by AOX1 promoter produced a high amylase activity of 2200 U/ml, further increasing by 621%. However, excessive gene dosages driven by the same promoter led to a titration effect of its transcription factors and decreased the amount of amyA transcripts. Thus, constitutive expression of HAC1 by GAP promotor was further involved and Gs4j-amyA activity reached 3700 U/ml finally, which was further increased by 68.2%. Moreover, Gs4j-amyA was glycosylated in P. pastoris which generated higher enzyme activity than that in E. coli. Generally, regulating HAC1p expression by different strategies enhanced amylase production by 11.1 folds, indicating a reference for expression of other proteins in P. pastoris.

  17. mRNA secondary structure engineering of Thermobifida fusca endoglucanase (Cel6A) for enhanced expression in Escherichia coli.

    PubMed

    Ali, Imran; Asghar, Rehana; Ahmed, Sajjad; Sajjad, Muhammad; Tariq, Muhammad; Waheed Akhtar, M

    2015-03-01

    The sequence and structure of mRNA plays an important role in solubility and expression of the translated protein. To divulge the role of mRNA secondary structure and its thermodynamics in the expression level of the recombinant endoglucanase in Escherichia coli, 5'-end of the mRNA was thermodynamically optimized. Molecular engineering was done by introducing two silent synonymous mutations at positions +5 (UCU with UCC) and +7 (UUC with UUU) of the 5'-end of mRNA to relieve hybridization with ribosomal binding site. Two variants of glycoside hydrolase family six endoglucanase, wild type (cel6A.wt) and mutant (cel6A.mut) from Thermobifida fusca were expressed and characterized in E. coli using T7 promoter-based expression vector; pET22b(+). Enhanced expression level of engineered construct (Cel6A.mut) with ∆G = -2.7 kcal mol(-1)was observed. It showed up to ~45 % higher expression as compared to the wild type construct (Cel6A.wt) having ∆G = -7.8 kcal mol(-1) and ~25 % expression to the total cell proteins. Heterologous protein was purified by heating the recombinant E. coli BL21 (DE3) CodonPlus at 60 °C. The optimum pH for enzyme activity was six and optimum temperature was 60 °C. Maximum activity was observed 4.5 Umg(-1) on CMC. Hydrolytic activity was also observed on insoluble substrates, i.e. RAC (2.8 Umg(-1)), alkali treated bagass (1.7 Umg(-1)), filter paper (1.2 Umg(-1)) and BMCC (0.3 Umg(-1)). Metal ions affect endoglucanase activity in different ways. Only Fe(2+) exhibited 20.8 % stimulatory effects on enzyme activity. Enzyme activity was profoundly inhibited by Hg2(+) (91.8 %).

  18. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli

    PubMed Central

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; Ajikumar, Parayil Kumaran

    2016-01-01

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature’s favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities. PMID:26951651

  19. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli.

    PubMed

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; De Mey, Marjan; Ajikumar, Parayil Kumaran

    2016-03-22

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.

  20. Cell foundry with high product specificity and catalytic activity for 21-deoxycortisol biotransformation.

    PubMed

    Xiong, Shuting; Wang, Ying; Yao, Mingdong; Liu, Hong; Zhou, Xiao; Xiao, Wenhai; Yuan, Yingjin

    2017-06-13

    21-deoxycortisol (21-DF) is the key intermediate to manufacture pharmaceutical glucocorticoids. Recently, a Japan patent has realized 21-DF production via biotransformation of 17-hydroxyprogesterone (17-OHP) by purified steroid 11β-hydroxylase CYP11B1. Due to the less costs on enzyme isolation, purification and stabilization as well as cofactors supply, whole-cell should be preferentially employed as the biocatalyst over purified enzymes. No reports as so far have demonstrated a whole-cell system to produce 21-DF. Therefore, this study aimed to establish a whole-cell biocatalyst to achieve 21-DF transformation with high catalytic activity and product specificity. In this study, Escherichia coli MG1655(DE3), which exhibited the highest substrate transportation rate among other tested chassises, was employed as the host cell to construct our biocatalyst by co-expressing heterologous CYP11B1 together with bovine adrenodoxin and adrenodoxin reductase. Through screening CYP11B1s (with mutagenesis at N-terminus) from nine sources, Homo sapiens CYP11B1 mutant (G25R/G46R/L52 M) achieved the highest 21-DF transformation rate at 10.6 mg/L/h. Furthermore, an optimal substrate concentration of 2.4 g/L and a corresponding transformation rate of 16.2 mg/L/h were obtained by screening substrate concentrations. To be noted, based on structural analysis of the enzyme-substrate complex, two types of site-directed mutations were designed to adjust the relative position between the catalytic active site heme and the substrate. Accordingly, 1.96-fold enhancement on 21-DF transformation rate (to 47.9 mg/L/h) and 2.78-fold improvement on product/by-product ratio (from 0.36 to 1.36) were achieved by the combined mutagenesis of F381A/L382S/I488L. Eventually, after 38-h biotransformation in shake-flask, the production of 21-DF reached to 1.42 g/L with a yield of 52.7%, which is the highest 21-DF production as known. Heterologous CYP11B1 was manipulated to construct E. coli biocatalyst converting 17-OHP to 21-DF. Through the strategies in terms of (1) screening enzymes (with N-terminal mutagenesis) sources, (2) optimizing substrate concentration, and most importantly (3) rational design novel mutants aided by structural analysis, the 21-DF transformation rate was stepwise improved by 19.5-fold along with 4.67-fold increase on the product/byproduct ratio. Eventually, the highest 21-DF reported production was achieved in shake-flask after 38-h biotransformation. This study highlighted above described methods to obtain a high efficient and specific biocatalyst for the desired biotransformation.

  1. Production of Delta(1)-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris.

    PubMed

    Taura, Futoshi; Dono, Emi; Sirikantaramas, Supaart; Yoshimura, Kohji; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-09-28

    Delta(1)-Tetrahydrocannabinolic acid (THCA) synthase is the enzyme that catalyzes the oxidative cyclization of cannabigerolic acid into THCA, the acidic precursor of Delta(1)-tetrahydrocannabinol. We developed a novel expression system for THCA synthase using a methylotrophic yeast Pichia pastoris as a host. Under optimized conditions, the transgenic P. pastoris secreted approximately 1.32nkat/l of THCA synthase activity, and the culture medium, from which the cells were removed, effectively synthesized THCA from cannabigerolic acid with a approximately 98% conversion rate. The secreted THCA synthase was readily purified to homogeneity. Interestingly, endoglycosidase treatment afforded a deglycosylated THCA synthase with more catalytic activity than that of the glycosylated form. The non-glycosylated THCA synthase should be suitable for structure-function studies because it displayed much more activity than the previously reported native enzyme from Cannabis sativa as well as the recombinant enzyme from insect cell cultures.

  2. Carbon Dioxide Metabolism in Leaf Epidermal Tissue 1

    PubMed Central

    Willmer, C. M.; Pallas, J. E.; Black, C. C.

    1973-01-01

    A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism. Images PMID:16658581

  3. Phosphatidylglycerolphosphate synthase expression in Schizosaccharomyces pombe is regulated by the phospholipid precursors inositol and choline.

    PubMed Central

    Karkhoff-Schweizer, R R; Kelly, B L; Greenberg, M L

    1991-01-01

    The enzyme phosphatidylglycerolphosphate synthase (PGPS; CDP-diacylglycerol glycerol 3-phosphate 3-phosphatidyltransferase; EC 2.7.8.5) catalyzes the committed step in the cardiolipin biosynthetic pathway. To study the regulation of PGPS in Schizosaccharomyces pombe, we characterized the enzyme biochemically. Maximum activity occurred in the presence of 6 mM Triton X-100 at pH 7.5. The apparent Km values for CDP-diacylglycerol and glycerol 3-phosphate were 130 and 26 microM, respectively. Optimal activity was at 35 degrees C, and enzyme activity was labile above 40 degrees C. Thioreactive agents were inhibitory to PGPS activity. To determine whether S. pombe PGPS is regulated by phospholipid precursors, we examined the time-dependent expression of PGPS upon inositol and choline starvation. Starvation for inositol resulted in a threefold increase in PGPS expression in wild-type cells. In cho1 and cho2 mutants, which are blocked in phosphatidylcholine synthesis, starvation for choline resulted in transient derepression of PGPS expression. In choline auxotrophs starved for inositol, PGPS was derepressed 2.5- to 3-fold in the presence of choline and less or not at all in the absence of choline. This is the first description of PGPS regulation in S. pombe and the first demonstration of inositol-mediated regulation in the inositol-requiring yeast species. PMID:1655700

  4. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    PubMed

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A Recessive Pollination Control System for Wheat Based on Intein-Mediated Protein Splicing.

    PubMed

    Gils, Mario

    2017-01-01

    A transgene-expression system for wheat that relies on the complementation of inactive precursor protein fragments through a split-intein system is described. The N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from Synechocystis sp. and transformed into wheat plants. Upon translation, both barnase fragments are assembled by an autocatalytic intein-mediated trans-splicing reaction, thus forming a cytotoxic enzyme. This chapter focuses on the use of introns and flexible polypeptide linkers to foster the expression of a split-barnase expression system in plants. The methods and protocols that were employed with the objective to test the effects of such genetic elements on transgene expression and to find the optimal design of expression vectors for use in wheat are provided. Split-inteins can be used to form an agriculturally important trait (male sterility) in wheat plants. The use of this principle for the production of hybrid wheat seed is described. The suggested toolbox will hopefully be a valuable contribution to future optimization strategies in this commercially important crop.

  6. Optimization of Production Conditions for Protoplasts and Polyethylene Glycol-Mediated Transformation of Gaeumannomyces tritici.

    PubMed

    Wang, Mei; Zhang, Jie; Wang, Lanying; Han, Lirong; Zhang, Xing; Feng, Juntao

    2018-05-24

    Take-all, caused by Gaeumannomyces tritici , is one of the most important wheat root diseases worldwide, as it results in serious yield losses. In this study, G. tritici was transformed to express the hygromycin B phosphotransferase using a combined protoplast and polyethylene glycol (PEG)-mediated transformation technique. Based on a series of single-factor experimental results, three major factors-temperature, enzyme lysis time, and concentration of the lysing enzyme-were selected as the independent variables, which were optimized using the response surface methodology. A higher protoplast yield of 9.83 × 10⁷ protoplasts/mL was observed, and the protoplast vitality was also high, reaching 96.27% after optimization. Protoplasts were isolated under the optimal conditions, with the highest transformation frequency (46⁻54 transformants/μg DNA). Polymerase chain reaction and Southern blotting detection indicated that the genes of hygromycin phosphotransferase were successfully inserted into the genome of G. tritici . An optimised PEG-mediated protoplast transformation system for G. tritici was established. The techniques and procedures described will lay the foundation for establishing a good mutation library of G. tritici and could be used to transform other fungi.

  7. Expression and characterization of an enhanced recombinant heparinase I with chitin binding domain.

    PubMed

    Xu, Shuqin; Qiu, Meiling; Zhang, Xuanyue; Chen, Jinghua

    2017-12-01

    Heparinase I (Hep I) can efficiently depolymerize heparin and heparin sulfate to oligosaccharides or unsaturated disaccharides, which resulted in loss of physiological function such as blood coagulation. In order to realize the immobilization of Hep I on chitin carriers, we cloned Hep I with the chitin binding domain (ChBD) as a chitin-affinity tag, and the Small Ubiquitin-like MOdifier (SUMO) linker as a solvation enhancer in different fusion sequence. DNA and protein gels suggested that 4 kinds of recombinants were successfully constructed and expressed in Escherichia coli (E. coli). And the triple functional heparinases isolated from cell lysate could be efficiently purified by chitin beads. After optimizing fermentation conditions, it gave the specific enzyme activities of 1.88±0.11, 3.69±0.45, 3.44±0.38, and 2.73±0.29IU/mg total proteins for ChBD-Hep I, ChBD-SUMO-Hep I, SUMO-ChBD-Hep I, and ChBD-Hep I-SUMO, respectively, with unfractionated heparin as substrate. The optimal reaction temperature and pH were determined to be 30°C and 7.0 for all the fusion enzymes. ChBD-SUMO-Hep I exhibited the maximum half-life (48min) at 30°C and best thermo-stability under 15-50°C. All the fusion enzymes showed broad pH-stability in the range of 5.4-9.0. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production.

    PubMed

    Zang, Haoyu; Xie, Shanshan; Wu, Huijun; Wang, Weiduo; Shao, Xiankun; Wu, Liming; Rajer, Faheem Uddin; Gao, Xuewen

    2015-10-01

    A novel thermostable mannanase from a newly isolated Bacillus pumilus GBSW19 has been identified, expressed, purified and characterized. The enzyme shows a structure comprising a 28 amino acid signal peptide, a glycoside hydrolase family 5 (GH5) catalytic domain and no carbohydrate-binding module. The recombinant mannanase has molecular weight of 45 kDa with an optimal pH around 6.5 and is stable in the range from pH 5-11. Meanwhile, the optimal temperature is around 65 °C, and it retains 50% relative activity at 60 °C for 12h. In addition, the purified enzyme can be activated by several ions and organic solvents and is resistant to detergents. Bpman5 can efficiently convert locus bean gum to mainly M2, M3 and M5, and hydrolyze manno-oligosaccharides with a minimum DP of 3. Further exploration of the optimum condition using HPLC to prepare oligosaccharides from locust bean gum was obtained as 10mg/ml locust bean gum incubated with 10 U/mg enzyme at 50 °C for 24h. By using this enzyme, locust bean gum can be utilized to generate high value-added oligosaccharides with a DP of 2-6. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Variation in Its C-Terminal Amino Acids Determines Whether Endo-β-Mannanase Is Active or Inactive in Ripening Tomato Fruits of Different Cultivars1

    PubMed Central

    Bourgault, Richard; Bewley, J. Derek

    2002-01-01

    Endo-β-mannanase cDNAs were cloned and characterized from ripening tomato (Lycopersicon esculentum Mill. cv Trust) fruit, which produces an active enzyme, and from the tomato cv Walter, which produces an inactive enzyme. There is a two-nucleotide deletion in the gene from tomato cv Walter, which results in a frame shift and the deletion of four amino acids at the C terminus of the full-length protein. Other cultivars that produce either active or inactive enzyme show the same absence or presence of the two-nucleotide deletion. The endo-β-mannanase enzyme protein was purified and characterized from ripe fruit to ensure that cDNA codes for the enzyme from fruit. Immunoblot analysis demonstrated that non-ripening mutants, which also fail to exhibit endo-β-mannanase activity, do so because they fail to express the protein. In a two-way genetic cross between tomato cvs Walter and Trust, all F1 progeny from both crosses produced fruit with active enzyme, suggesting that this form is dominant and homozygous in tomato cv Trust. Self-pollination of a plant from the heterozygous F1 generation yielded F2 plants that bear fruit with and without active enzyme at a ratio appropriate to Mendelian genetic segregation of alleles. Heterologous expression of the two endo-β-mannanase genes in Escherichia coli resulted in active enzyme being produced from cultures containing the tomato cv Trust gene and inactive enzyme being produced from those containing the tomato cv Walter gene. Site-directed mutagenesis was used to establish key elements in the C terminus of the endo-β-mannanase protein that are essential for full enzyme activity. PMID:12427992

  10. Low source-sink ratio reduces reserve starch in grapevine woody canes and modulates sugar transport and metabolism at transcriptional and enzyme activity levels.

    PubMed

    Silva, Angélica; Noronha, Henrique; Dai, Zhanwu; Delrot, Serge; Gerós, Hernâni

    2017-09-01

    Severe leaf removal decreases storage starch and sucrose in grapevine cv. Cabernet Sauvignon fruiting cuttings and modulates the activity of key enzymes and the expression of sugar transporter genes. Leaf removal is an agricultural practice that has been shown to modify vineyard efficiency and grape and wine composition. In this study, we took advantage of the ability to precisely control the number of leaves to fruits in Cabernet Sauvignon fruiting cuttings to study the effect of source-sink ratios (2 (2L), 6 (6L) and 12 (12) leaves per cluster) on starch metabolism and accumulation. Starch concentration was significantly higher in canes from 6L (42.13 ± 1.44 mg g DW -1 ) and 12L (43.50 ± 2.85 mg g DW -1 ) than in 2L (22.72 ± 3.10 mg g DW -1 ) plants. Moreover, carbon limitation promoted a transcriptional adjustment of genes involved in starch metabolism in grapevine woody tissues, including a decrease in the expression of the plastidic glucose-6-phosphate translocator, VvGPT1. Contrarily, the transcript levels of the gene coding the catalytic subunit VvAGPB1 of the VvAGPase complex were higher in canes from 2L plants than in 6L and 12L, which positively correlated with the biochemical activity of this enzyme. Sucrose concentration increased in canes from 2L to 6L and 12L plants, and the amount of total phenolics followed the same trend. Expression studies showed that VvSusy transcripts decreased in canes from 2L to 6L and 12L plants, which correlated with the biochemical activity of insoluble invertase, while the expression of the sugar transporters VvSUC11 and VvSUC12, together with VvSPS1, which codes an enzyme involved in sucrose synthesis, increased. Thus, sucrose seems to control starch accumulation through the adjustment of the cane sink strength.

  11. Signal transduction in the carnivorous plant Sarracenia purpurea. Regulation of secretory hydrolase expression during development and in response to resources.

    PubMed Central

    Gallie, D R; Chang, S C

    1997-01-01

    Carnivory in plants has developed as an evolutionary adaptation to nutrient-poor environments. A significant investment of the resources of a carnivorous plant is committed to producing the traps, attractants, and digestive enzymes needed for the carnivory. The cost:benefit ratio of carnivory can be improved by either maximizing the prey capture rate or by reducing the metabolic commitment toward carnivory. Using the pitcher plant Sarracenia purpurea, we have investigated whether the expression of the hydrolytic enzymes needed for digestion is regulated in response to the presence of prey. Expression of protease, RNase, nuclease, and phosphatase activities could be induced in the fluid of nonactive traps by the addition of nucleic acids, protein, or reduced nitrogen, suggesting that hydrolase expression is induced upon perception of the appropriate chemical signal. Hydrolase expression was also developmentally controlled since expression commenced upon opening of a trap, increased for several days, and in the absence of prey largely ceased within 2 weeks. Nevertheless, the traps remained competent to induce expression in response to the appropriate signals. These data suggest that in young traps hydrolase expression is developmentally regulated, which is later replaced by a signal transduction mechanism, and they demonstrate the ability of a carnivorous species to respond to the availability of resources. PMID:9414556

  12. Signal transduction in the carnivorous plant Sarracenia purpurea. Regulation of secretory hydrolase expression during development and in response to resources.

    PubMed

    Gallie, D R; Chang, S C

    1997-12-01

    Carnivory in plants has developed as an evolutionary adaptation to nutrient-poor environments. A significant investment of the resources of a carnivorous plant is committed to producing the traps, attractants, and digestive enzymes needed for the carnivory. The cost:benefit ratio of carnivory can be improved by either maximizing the prey capture rate or by reducing the metabolic commitment toward carnivory. Using the pitcher plant Sarracenia purpurea, we have investigated whether the expression of the hydrolytic enzymes needed for digestion is regulated in response to the presence of prey. Expression of protease, RNase, nuclease, and phosphatase activities could be induced in the fluid of nonactive traps by the addition of nucleic acids, protein, or reduced nitrogen, suggesting that hydrolase expression is induced upon perception of the appropriate chemical signal. Hydrolase expression was also developmentally controlled since expression commenced upon opening of a trap, increased for several days, and in the absence of prey largely ceased within 2 weeks. Nevertheless, the traps remained competent to induce expression in response to the appropriate signals. These data suggest that in young traps hydrolase expression is developmentally regulated, which is later replaced by a signal transduction mechanism, and they demonstrate the ability of a carnivorous species to respond to the availability of resources.

  13. Efficient Degradation of Malathion in the Presence of Detergents Using an Engineered Organophosphorus Hydrolase Highly Expressed by Pichia pastoris without Methanol Induction.

    PubMed

    Bai, Yun-Peng; Luo, Xiao-Jing; Zhao, Yu-Lian; Li, Chun-Xiu; Xu, Dian-Sheng; Xu, Jian-He

    2017-10-18

    The biodegradation of pesticides by organophosphorus hydrolases (OPHs) requires an efficient enzyme production technology in industry. Herein, a Pichia pastoris strain was constructed for the extracellular expression of PoOPH M9 , an engineered malathion-degrading enzyme. After optimization, the maximum titer and yield of fermentation reached 50.8 kU/L and 4.1 g protein /L after 3 days, with the highest space-time yield (STY) reported so far, 640 U L -1 h -1 . PoOPH M9 displayed its high activity and stability in the presence of 0.1% (w/w) plant-derived detergent. Only 0.04 mg/mL enzyme could completely remove 0.15 mM malathion in aqueous solution within 20 min. Furthermore, 12 μmol malathion on apples and cucumbers surfaces was completely removed by 0.05 mg/mL PoOPH M9 in tap water after 35 min washing. The efficient production of the highly active PoOPH M9 has cleared a major barrier to biodegradation of pesticide residues in food industry.

  14. Expression level, cellular compartment and metabolic network position all influence the average selective constraint on mammalian enzymes

    PubMed Central

    2011-01-01

    Background A gene's position in regulatory, protein interaction or metabolic networks can be predictive of the strength of purifying selection acting on it, but these relationships are neither universal nor invariably strong. Following work in bacteria, fungi and invertebrate animals, we explore the relationship between selective constraint and metabolic function in mammals. Results We measure the association between selective constraint, estimated by the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, and several, primarily metabolic, measures of gene function. We find significant differences between the selective constraints acting on enzyme-coding genes from different cellular compartments, with the nucleus showing higher constraint than genes from either the cytoplasm or the mitochondria. Among metabolic genes, the centrality of an enzyme in the metabolic network is significantly correlated with Ka/Ks. In contrast to yeasts, gene expression magnitude does not appear to be the primary predictor of selective constraint in these organisms. Conclusions Our results imply that the relationship between selective constraint and enzyme centrality is complex: the strength of selective constraint acting on mammalian genes is quite variable and does not appear to exclusively follow patterns seen in other organisms. PMID:21470417

  15. Dynamic Nanocomposite Self-Deactivating Fabrics for the Individual and Collective Protection

    DTIC Science & Technology

    2006-11-01

    poly-ß-cyclodextrins (PCDs) and poly- trehalose (PTH) as polymeric supports, the incorporated enzymes will be able to repair themselves through a re...POLY- TREHALOSE (PTH) In a similar manner, polymeric trehalose (PTH) was also prepared in a different molar ratio optimized to maximize...MPT), polymeric trehalose (PTH) particles were prepared as a complementary substrate to poly-ß- CD particles in various aspects serving as an

  16. Geometric optimization of an active magnetic regenerative refrigerator via second-law analysis

    NASA Astrophysics Data System (ADS)

    Li, Peng; Gong, Maoqiong; Wu, Jianfeng

    2008-11-01

    Previous analyses [Z. Yan and J. Chen, J. Appl. Phys. 72, 1 (1992); J. Chen and Z. Yan, ibid., 84, 1791 (1998); Lin et al., Physica B 344, 147 (2004); Yang et al., ibid., 364, 33 (2005); Xia et al., ibid., 381, 246 (2006).] of irreversibilities in magnetic refrigerators overlooked several important losses that could be dominant in a real active magnetic regenerative refrigerator (AMRR). No quantitative expressions have been provided yet to estimate the corresponding entropy generations in real AMRRs. The important geometric parameters of AMRRs, such as the aspect ratio of the active magnetic regenerator and the refrigerant diameter, are still arbitrarily chosen. Expressions for calculating different types of entropy generations in the AMRR were derived and used to optimize the aspect ratio and the refrigerant diameter. An optimal coefficient of performance (15.54) was achieved at an aspect ratio of 6.39 and a refrigerant diameter of 1.1mm for our current system. Further study showed that the dissipative sources (e.g., the fluid friction and the unbalanced magnetic forces) in AMRRs, which were overlooked by previous investigations, could significantly contribute to entropy generations.

  17. Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of Arabidopsis Accessions[C][W][OA

    PubMed Central

    Sulpice, Ronan; Trenkamp, Sandra; Steinfath, Matthias; Usadel, Bjorn; Gibon, Yves; Witucka-Wall, Hanna; Pyl, Eva-Theresa; Tschoep, Hendrik; Steinhauser, Marie Caroline; Guenther, Manuela; Hoehne, Melanie; Rohwer, Johann M.; Altmann, Thomas; Fernie, Alisdair R.; Stitt, Mark

    2010-01-01

    Natural genetic diversity provides a powerful resource to investigate how networks respond to multiple simultaneous changes. In this work, we profile maximum catalytic activities of 37 enzymes from central metabolism and generate a matrix to investigate species-wide connectivity between metabolites, enzymes, and biomass. Most enzyme activities change in a highly coordinated manner, especially those in the Calvin-Benson cycle. Metabolites show coordinated changes in defined sectors of metabolism. Little connectivity was observed between maximum enzyme activities and metabolites, even after applying multivariate analysis methods. Measurements of posttranscriptional regulation will be required to relate these two functional levels. Individual enzyme activities correlate only weakly with biomass. However, when they are used to estimate protein abundances, and the latter are summed and expressed as a fraction of total protein, a significant positive correlation to biomass is observed. The correlation is additive to that obtained between starch and biomass. Thus, biomass is predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and optimization of carbon use. PMID:20699391

  18. [Effect of N-terminal truncation of Bacillus acidopullulyticus pullulanase on enzyme properties and functions].

    PubMed

    Chen, A'na; Liu, Xiuxia; Dai, Xiaofeng; Zhan, Jinling; Peng, Feng; Li, Lu; Wang, Fen; Li, Song; Yang, Yankun; Bai, Zhonghu

    2016-03-01

    We constructed different N-terminal truncated variants based on Bacillus acidopullulyticus pullulanase 3D structure (PDB code 2WAN), and studied the effects of truncated mutation on soluble expression, enzymatic properties, and application in saccharification. Upon expression, the variants of X45 domain deletion existed as inclusion bodies, whereas deletion of CBM41 domain had an effective effect on soluble expression level. The variants that lack of CBM41 (M1), lack of X25 (M3), and lack both of CBM41 and X25 (M5) had the same optimal pH (5.0) and optimal temperature (60 degrees C) with the wild-type pullulanase (WT). The K(m) of M1 and M5 were 1.42 mg/mL and 1.85 mg/mL, respectively, 2.4- and 3.1-fold higher than that of the WT. k(cat)/K(m) value of M5 was 40% lower than that of the WT. Substrate specificity results show that the enzymes exhibited greater activity with the low-molecular-weight dextrin than with high-molecular-weight soluble starch. When pullulanases were added to the saccharification reaction system, the dextrose equivalent of the WT, M1, M3, and M5 were 93.6%, 94.7%, 94.5%, and93.1%, respectively. These results indicate that the deletion of CBM41 domain and/or X25 domain did not affect the practical application in starch saccharification process. Furthermore, low-molecular-weight variants facilitate the heterologous expression. Truncated variants may be more suitable for industrial production than the WT.

  19. Anti-proliferative Effects of Androctonus amoreuxi Scorpion and Cerastes cerastes Snake Venoms on Human Prostate Cancer Cells

    PubMed Central

    Akef, Hassan; Kotb, Nahla; Abo-Elmatty, Dina; Salem, Sayed

    2017-01-01

    The present study evaluated the effects of Androctonus amoreuxi scorpion venom, Cerastes cerastes snake venom and their mixture on prostate cancer cells (PC3). An MTT assay was used to determine the anti-proliferative effect of the venoms, while quantitative real time PCR was used to evaluate the expression of apoptosis-related genes (Bax and Bcl-2). Furthermore, colorimetric assays were used to measure the levels of malondialdehyde (MDA) and antioxidant enzymes. Our results show that the venoms significantly reduced PC3 cell viability in a dose-dependent manner. On the other hand, these venoms significantly decreased Bcl-2 gene expression. Additionally, C. cerastes venom significantly reduced Bax gene expression, while A. amoreuxi venom and a mixture of A. amoreuxi & C. cerastes venoms did not alter Bax expression. Consequently, these venoms significantly increased the Bax/Bcl-2 ratio and the oxidative stress biomarker MDA. Furthermore, these venoms also increased the activity levels of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase. Overall, the venoms have cytotoxic and anti-proliferative effects on PC3 cells. PMID:28382285

  20. Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis

    PubMed Central

    Zhu, Jinheng; Qi, Jiyan; Fang, Yongjun; Xiao, Xiaohu; Li, Jiuhui; Lan, Jixian; Tang, Chaorong

    2018-01-01

    Sucrose-metabolizing enzymes in plant leaves have hitherto been investigated mainly in temperate plants, and rarely conducted in tandem with gene expression and sugar analysis. Here, we investigated the sugar content, gene expression, and the activity of sucrose-metabolizing enzymes in the leaves of Hevea brasiliensis, a tropical tree widely cultivated for natural rubber. Sucrose, fructose and glucose were the major sugars detected in Hevea leaves at four developmental stages (I to IV), with starch and quebrachitol as minor saccharides. Fructose and glucose contents increased until stage III, but decreased strongly at stage IV (mature leaves). On the other hand, sucrose increased continuously throughout leaf development. Activities of all sucrose-cleaving enzymes decreased markedly at maturation, consistent with transcript decline for most of their encoding genes. Activity of sucrose phosphate synthase (SPS) was low in spite of its high transcript levels at maturation. Hence, the high sucrose content in mature leaves was not due to increased sucrose-synthesizing activity, but more to the decline in sucrose cleavage. Gene expression and activities of sucrose-metabolizing enzymes in Hevea leaves showed striking differences compared with other plants. Unlike in most other species where vacuolar invertase predominates in sucrose cleavage in developing leaves, cytoplasmic invertase and sucrose synthase (cleavage direction) also featured prominently in Hevea. Whereas SPS is normally responsible for sucrose synthesis in plant leaves, sucrose synthase (synthesis direction) was comparable or higher than that of SPS in Hevea leaves. Mature Hevea leaves had an unusually high sucrose:starch ratio of about 11, the highest reported to date in plants. PMID:29449852

  1. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    PubMed

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  2. On optimal infinite impulse response edge detection filters

    NASA Technical Reports Server (NTRS)

    Sarkar, Sudeep; Boyer, Kim L.

    1991-01-01

    The authors outline the design of an optimal, computationally efficient, infinite impulse response edge detection filter. The optimal filter is computed based on Canny's high signal to noise ratio, good localization criteria, and a criterion on the spurious response of the filter to noise. An expression for the width of the filter, which is appropriate for infinite-length filters, is incorporated directly in the expression for spurious responses. The three criteria are maximized using the variational method and nonlinear constrained optimization. The optimal filter parameters are tabulated for various values of the filter performance criteria. A complete methodology for implementing the optimal filter using approximating recursive digital filtering is presented. The approximating recursive digital filter is separable into two linear filters operating in two orthogonal directions. The implementation is very simple and computationally efficient, has a constant time of execution for different sizes of the operator, and is readily amenable to real-time hardware implementation.

  3. Biochemical characterization of Aspergillus oryzae recombinant α-l-rhamnosidase expressed in Pichia pastoris.

    PubMed

    Ishikawa, Mai; Shiono, Yoshihito; Koseki, Takuya

    2017-12-01

    An α-l-rhamnosidase-encoding gene from Aspergillus oryzae, which belongs to the glycoside hydrolase family 78, was cloned and expressed in Pichia pastoris. SDS-PAGE of the purified recombinant α-l-rhamnosidase protein revealed smeared bands with apparent molecular mass of 90-130 kDa. After N-deglycosylation, the recombinant enzyme showed a molecular mass of 70 kDa. The enzyme exhibited optimal activity at a pH of 5.0 and a temperature of 70 °C. Specific activity of the enzyme was higher toward hesperidin than toward naringin, which consist of α-1,6 and α-1,2 linkages, respectively. The activity was also higher toward hesperidin than toward rutin, which consist of 7-O- and 3-O-glycosyl linkages of flavonoids, respectively. Kinetic analysis of the enzyme showed that the Michaelis constant (K m ) was lowest toward rutin, moderate toward naringin, and higher toward p-nitrophenyl-α-l-rhamnopyranoside and hesperidin. Its high catalytic efficiency (k cat /K m ) toward rutin was results of its low K m value while its high catalytic efficiency toward hesperidin was results of a considerably high k cat value. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. The Complete Genome Sequence of Hyperthermophile Dictyoglomus turgidum DSM 6724™ Reveals a Specialized Carbohydrate Fermentor

    DOE PAGES

    Brumm, Phillip J.; Gowda, Krishne; Robb, Frank T.; ...

    2016-12-20

    In this study we report the complete genome sequence of the chemoorganotrophic, extremely thermophilic bacterium, Dictyoglomus turgidum, which is a Gram negative, strictly anaerobic bacterium. D. turgidum and D. thermophilum together form the Dictyoglomi phylum. The two Dictyoglomus genomes are highly syntenic, and both are distantly related to Caldicellulosiruptor spp. D. turgidum is able to grow on a wide variety of polysaccharide substrates due to significant genomic commitment to glycosyl hydrolases, 16 of which were cloned and expressed in our study. The GH5, GH10, and GH42 enzymes characterized in this study suggest that D. turgidum can utilize most plant-based polysaccharidesmore » except crystalline cellulose. The DNA polymerase I enzyme was also expressed and characterized. The pure enzyme showed improved amplification of long PCR targets compared to Taq polymerase. The genome contains a full complement of DNA modifying enzymes, and an unusually high copy number (4) of a new, ancestral family of polB type nucleotidyltransferases designated as MNT (minimal nucleotidyltransferases). Considering its optimal growth at 72°C, D. turgidum has an anomalously low G+C content of 39.9% that may account for the presence of reverse gyrase, usually associated with hyperthermophiles.« less

  5. Expression and refolding of tobacco anionic peroxidase from E. coli inclusion bodies.

    PubMed

    Hushpulian, D M; Savitski, P A; Rojkova, A M; Chubar, T A; Fechina, V A; Sakharov, I Yu; Lagrimini, L M; Tishkov, V I; Gazaryan, I G

    2003-11-01

    Coding DNA of the tobacco anionic peroxidase gene was cloned in pET40b vector. The problem of 11 arginine codons, rare in procaryotes, in the tobacco peroxidase gene was solved using E. coli BL21(DE3) Codon Plus strain. The expression level of the tobacco apo-peroxidase in the above strain was approximately 40% of the total E. coli protein. The tobacco peroxidase refolding was optimized based on the earlier developed protocol for horseradish peroxidase. The reactivation yield of recombinant tobacco enzyme was about 7% with the specific activity of 1100-1200 U/mg towards 2,2;-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS). It was shown that the reaction of ABTS oxidation by hydrogen peroxide catalyzed by recombinant tobacco peroxidase proceeds via the ping-pong kinetic mechanism as for the native enzyme. In the presence of calcium ions, the recombinant peroxidase exhibits a 2.5-fold decrease in the second order rate constant for hydrogen peroxide and 1.5-fold decrease for ABTS. Thus, calcium ions have an inhibitory effect on the recombinant enzyme like that observed earlier for the native tobacco peroxidase. The data demonstrate that the oligosaccharide part of the enzyme has no effect on the kinetic properties and calcium inhibition of tobacco peroxidase.

  6. The Complete Genome Sequence of Hyperthermophile Dictyoglomus turgidum DSM 6724™ Reveals a Specialized Carbohydrate Fermentor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip J.; Gowda, Krishne; Robb, Frank T.

    In this study we report the complete genome sequence of the chemoorganotrophic, extremely thermophilic bacterium, Dictyoglomus turgidum, which is a Gram negative, strictly anaerobic bacterium. D. turgidum and D. thermophilum together form the Dictyoglomi phylum. The two Dictyoglomus genomes are highly syntenic, and both are distantly related to Caldicellulosiruptor spp. D. turgidum is able to grow on a wide variety of polysaccharide substrates due to significant genomic commitment to glycosyl hydrolases, 16 of which were cloned and expressed in our study. The GH5, GH10, and GH42 enzymes characterized in this study suggest that D. turgidum can utilize most plant-based polysaccharidesmore » except crystalline cellulose. The DNA polymerase I enzyme was also expressed and characterized. The pure enzyme showed improved amplification of long PCR targets compared to Taq polymerase. The genome contains a full complement of DNA modifying enzymes, and an unusually high copy number (4) of a new, ancestral family of polB type nucleotidyltransferases designated as MNT (minimal nucleotidyltransferases). Considering its optimal growth at 72°C, D. turgidum has an anomalously low G+C content of 39.9% that may account for the presence of reverse gyrase, usually associated with hyperthermophiles.« less

  7. Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase.

    PubMed

    Kalimuthu, Palraj; Tkac, Jan; Kappler, Ulrike; Davis, Jason J; Bernhardt, Paul V

    2010-09-01

    This paper describes a highly sensitive electrochemical (voltammetric) determination of sulfite using a combination of Starkeya novella sulfite dehydrogenase (SDH), horse heart cytochrome c (cyt c), and a self-assembled monolayer of 11-mercaptoundecanol (MU) cast on a gold electrode. The biosensor was optimized in terms of pH and the ratio of cyt c/SDH. The electrocatalytic oxidation current of sulfite increased linearly from 1 to 6 microM at the enzyme-modified electrode with a correlation coefficient of 0.9995 and an apparent Michaelis constant (K(M,app)) of 43 microM. Using an amperometric method, the low detection limit for sulfite at the enzyme-modified electrode was 44 pM (signal-to-noise ratio = 3). The modified electrode retained a stable response for 3 days while losing only ca. 4% of its initial sensitivity during a 2 week storage period in 50 mM Tris buffer solution at 4 degrees C. The enzyme electrode was successfully used for the determination of sulfite in beer and white wine samples. The results of these electrochemical analyses agreed well with an independent spectrophotometric method using Ellman's reagent, but the detection limit was far superior using the electrochemical method.

  8. Poly(2-ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents.

    PubMed

    Plothe, Ramona; Sittko, Ina; Lanfer, Franziska; Fortmann, Maximilian; Roth, Meike; Kolbach, Vivien; Tiller, Joerg C

    2017-01-01

    Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study, poly(2-ethyloxazoline) (PEtOx) was explored regarding its usefulness to activate various enzymes in organic solvents by directly electrospinning them from aqueous solutions containing the polymer. It was found that the concentration of PEtOx in the spinning solution and also the swellability of the fibers play a great role in the activity of the enzymes in organic solvents. Using electrospun lipase B from Candida antarctica (CaLB) under optimized conditions revealed a higher carrier activity than the commercial Novozyme 435 with 10 times less immobilized protein. The electrospinning of PEtOx/CaLB fibers onto a stirrer is used to realize a biocatalytic stirrer for organic solvents. Biotechnol. Bioeng. 2017;114: 39-45. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    PubMed

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Enzymatic Functionalization of Carbon-Hydrogen Bonds1

    PubMed Central

    Lewis, Jared C.; Coelho, Pedro S.

    2010-01-01

    The development of new catalytic methods to functionalize carbon-hydrogen (C-H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C-H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C-H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C-H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts. PMID:21079862

  11. Glucose biosensor based on GOx/HRP bienzyme at liquid-crystal/aqueous interface.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-11-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were co-immobilized to the polyacrylicacid block of a poly(acrylicacid-b-4-cyanobiphenyl-4'-undecylacrylate) (PAA-b-LCP) copolymer in water. PAA-b-LCP was strongly anchored by the LCP block in 4-cyano-4'-pentylbiphenyl (5CB) which was contained in a transmission electron microscope (TEM) grid for glucose detection. The optimal conditions for the performance of the TEM grid glucose biosensor were studied in terms of the activity and stability of the immobilized enzymes. Glucose in water was detected by the 5CB changing from a planar to a homeotropic orientation, as observed through a polarized optical microscope. The TEM biosensor detected glucose concentrations at ⩾0.02 mM, with an optimal GOx/HRP molar ratio of 3/1. This glucose biosensor has characteristics of enzyme sensitivity and stability, reusability, the ease and selective glucose detection which may provide a new way of detecting glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Enhanced cellulase hydrolysis of eucalyptus waste fibers from pulp mill by Tween80-assisted ferric chloride pretreatment.

    PubMed

    Chen, Liheng; Fu, Shiyu

    2013-04-03

    Pretreatment combining FeCl3 and Tween80 was performed for cellulose-to-ethanol conversion of eucalyptus alkaline peroxide mechanical pulping waste fibers (EAWFs). The FeCl3 pretreatment alone showed a good effect on the enzymatic hydrolysis of EAWFs, but inhibited enzyme activity to some extent. A surfactant, Tween80, added during FeCl3 pretreatment was shown to significantly enhance enzyme reaction by eluting enzymatic inhibitors such as iron(III) that are present at the surface of the pretreated biomass. Treatment temperature, liquid-solid ratio, treatment time, FeCl3 concentration, and Tween80 dosage for pretreatment were optimized as follows: 180 °C, 8:1, 30 min, 0.15 mol/L, and 1% (w/v). Pretreated EAWFs under such optimal conditions provided enzymatic glucose (based on 100 g of oven-dried feedstock) and substrate enzymatic digestibility of EAWFs of 34.8 g and 91.3% after 72 h of enzymatic hydrolysis, respectively, with an initial cellulase loading of 20 FPU/g substrate.

  13. Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels.

    PubMed

    Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David

    2006-02-01

    The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.

  14. Single-step purification and characterization of recombinant aspartase of Aeromonas media NFB-5.

    PubMed

    Singh, Ram Sarup; Yadav, Mukesh

    2012-07-01

    Aspartase (L-aspartate ammonia-lyase; EC 4.3.1.1) catalyzes the reversible amination of fumaric acid to produce L-aspartic acid. Aspartase coding gene (aspA) of Aeromonas media NFB-5 was cloned, sequenced, and expressed with His tag using pET-21b⁺ expression vector in Escherichia coli BL21. Higher expression was obtained with IPTG (1.5 mM) induction for 5 h at 37 °C in LB medium supplemented with 0.3% K₂HPO₄ and 0.3% KH₂PO₄. Recombinant His tagged aspartase was purified using Ni-NTA affinity chromatography and characterized for various biochemical and kinetic parameters. The purified aspartase showed optimal activity at pH 8.5 and 8.0 in the presence and absence of magnesium ions, respectively. The optimum temperature was determined to be 35 °C. The enzyme showed apparent K(m) and V(max) values for L-aspartate as 2.01 mM and 114 U/mg, respectively. The enzyme was stable in pH range of 6.5-9.5 and temperature up to 45 °C. Divalent metal ion requirement of enzyme was efficiently fulfilled by Mg²⁺, Mn²⁺, and Ca²⁺ ions. The cloned gene (aspA) product showed molecular weight of approximately 51 kDa by SDS-PAGE, which is in agreement with the molecular weight calculated from putative amino acid sequence. This is the first report on expression and characterization of recombinant aspartase from A. media.

  15. Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme.

    PubMed

    Wang, Miaomiao; Wu, Jing; Wu, Dan

    2018-02-15

    Kojibiose as a prebiotic and inhibitor of α-glucosidase exhibits potential for a wide range of applications in the food and medicine fields; however, large-scale separation and extraction of kojibiose from nature is difficult. Sucrose phosphorylase (SPase) can be used for the production of kojibiose, and currently, SPase is only heterologously expressed in E. coli, making it unsuitable for use in the food industry. However, Bacillus subtilis is generally considered to be a safe organism potentially useful for SPase expression. Here, for the first time, we heterologously expressed Bifidobacterium adolescentis SPase in a food-grade B. subtilis strain. The results showed that SPase was efficiently secreted into the extracellular medium in the absence of a signal peptide. After culturing the recombinant strain in a 3-L bioreactor, crude SPase yield and activity reached 7.5 g/L and 5.3 U/mL, respectively, the highest levels reported to date. The optimal reaction conditions for kojibiose synthesis catalyzed by recombinant SPase were as follows: 0.5 M sucrose, 0.5 M glucose, 0.02 U enzyme /mg all_substrates , pH 7.0, 50 °C, and 30 h. Furthermore, the substrate-conversion rate reached 40.01%, with kojibiose accounting for 104.45 g/L and selectivity for kojibiose production at 97%. Here, we successfully expressed SPase in B. subtilis in the absence of a signal peptide and demonstrated its secretion into the extracellular medium. Our results indicated high levels of recombinant enzyme expression, with a substrate-conversion rate of 40.01%. These results provide a basis for large-scale preparation of kojibiose by the recombinant SPase.

  16. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. © 2015 Wiley Periodicals, Inc.

  17. Production of a thermostable 1,3-1,4-β-glucanase mutant in Bacillus subtilis WB600 at a high fermentation capacity and its potential application in the brewing industry.

    PubMed

    Niu, Chengtuo; Liu, Chunfeng; Li, Yongxian; Zheng, Feiyun; Wang, Jinjing; Li, Qi

    2018-02-01

    1,3-1,4-β-glucanase was an important biotechnological aid in the brewing industry. In a previous research, a Bacillus BglTO mutant (BglTO) with high tolerance towards high temperature and low-pH conditions was constructed and expressed in Escherichia coli. However, E. coli was not a suitable host for enzyme production in food industry. Therefore, the present work aimed to achieve the high-level expression of BglTO in Bacillus subtilis WB600 and to test its effect in Congress mashing. The β-glucanase mutant was successfully expressed in B. subtilis WB600 and favorable plasmid segregation and structural stability were observed. The maximal extracellular activity of β-glucanase in recombinant B. subtilis WB600 reached 4840.4UmL -1 after cultivation condition optimization, which was 1.94-fold higher than that before optimization. The fermentation capacity of recombinant B. subtilis reached 242.02UmL -1 h -1 , which was the highest among all reported β-glucanases. The addition of BglTO in Congress mashing significantly reduced the filtration time and viscosity of mash by 29.7% and 12.3%, respectively, which was superior to two commercial enzymes. These favorable properties indicated that B. subtilis WB600 was a suitable host for production of BglTO, which was promising for application in the brewing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28.

    PubMed

    Choengpanya, Khuanjarat; Arthornthurasuk, Siriphan; Wattana-amorn, Pakorn; Huang, Wan-Ting; Plengmuankhae, Wandee; Li, Yaw-Kuen; Kongsaeree, Prachumporn T

    2015-11-01

    β-Xylosidases catalyze the breakdown of β-1,4-xylooligosaccharides, which are produced from degradation of xylan by xylanases, to fermentable xylose. Due to their important role in xylan degradation, there is an interest in using these enzymes in biofuel production from lignocellulosic biomass. In this study, the coding sequence of a glycoside hydrolase family 3 β-xylosidase from Aspergillus niger ASKU28 (AnBX) was cloned and expressed in Pichia pastoris as an N-terminal fusion protein with the α-mating factor signal sequence (α-MF) and a poly-histidine tag. The expression level was increased to 5.7 g/l in a fermenter system as a result of optimization of only five codons near the 5' end of the α-MF sequence. The recombinant AnBX was purified to homogeneity through a single-step Phenyl Sepharose chromatography. The enzyme exhibited an optimal activity at 70°C and at pH 4.0-4.5, and a very high kinetic efficiency toward a xyloside substrate. AnBX demonstrated an exo-type activity with retention of the β-configuration, and a synergistic action with xylanase in hydrolysis of beechwood xylan. This study provides comprehensive data on characterization of a glycoside hydrolase family 3 β-xylosidase that have not been determined in any prior investigations. Our results suggested that AnBX may be useful for degradation of lignocellulosic biomass in bioethanol production, pulp bleaching process and beverage industry. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum.

    PubMed

    Fernández-Bussy, Rodrigo; Mouguelar, Valeria; Banchio, Claudia; Coux, Gabriela

    2015-04-01

    In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.

  20. Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene.

    PubMed

    Chen, Shun-Jia; Wu, Yi-Hua; Huang, Hsiao-Yun; Wang, Chien-Chia

    2012-01-01

    Aminoacyl-tRNA synthetases are a large family of housekeeping enzymes that are pivotal in protein translation and other vital cellular processes. Saccharomyces cerevisiae possesses two distinct nuclear glycyl-tRNA synthetase (GlyRS) genes, GRS1 and GRS2. GRS1 encodes both cytoplasmic and mitochondrial activities, while GRS2 is essentially silent and dispensable under normal conditions. We herein present evidence that expression of GRS2 was drastically induced upon heat shock, ethanol or hydrogen peroxide addition, and high pH, while expression of GRS1 was somewhat repressed under those conditions. In addition, GlyRS2 (the enzyme encoded by GRS2) had a higher protein stability and a lower K(M) value for yeast tRNA(Gly) under heat shock conditions than under normal conditions. Moreover, GRS2 rescued the growth defect of a GRS1 knockout strain when highly expressed by a strong promoter at 37 °C, but not at the optimal temperature of 30 °C. These results suggest that GRS2 is actually an inducible gene that may function to rescue the activity of GRS1 under stress conditions.

  1. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    PubMed

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  2. Adaptability in linkage of soil carbon nutrient cycles - the SEAM model

    NASA Astrophysics Data System (ADS)

    Wutzler, Thomas; Zaehle, Sönke; Schrumpf, Marion; Ahrens, Bernhard; Reichstein, Markus

    2017-04-01

    In order to understand the coupling of carbon (C) and nitrogen (N) cycles, it is necessary to understand C and N-use efficiencies of microbial soil organic matter (SOM) decomposition. While important controls of those efficiencies by microbial community adaptations have been shown at the scale of a soil pore, an abstract simplified representation of community adaptations is needed at ecosystem scale. Therefore we developed the soil enzyme allocation model (SEAM), which takes a holistic, partly optimality based approach to describe C and N dynamics at the spatial scale of an ecosystem and time-scales of years and longer. We explicitly modelled community adaptation strategies of resource allocation to extracellular enzymes and enzyme limitations on SOM decomposition. Using SEAM, we explored whether alternative strategy-hypotheses can have strong effects on SOM and inorganic N cycling. Results from prototypical simulations and a calibration to observations of an intensive pasture site showed that the so-called revenue enzyme allocation strategy was most viable. This strategy accounts for microbial adaptations to both, stoichiometry and amount of different SOM resources, and supported the largest microbial biomass under a wide range of conditions. Predictions of the SEAM model were qualitatively similar to models explicitly representing competing microbial groups. With adaptive enzyme allocation under conditions of high C/N ratio of litter inputs, N in formerly locked in slowly degrading SOM pools was made accessible, whereas with high N inputs, N was sequestered in SOM and protected from leaching. The finding that adaptation in enzyme allocation changes C and N-use efficiencies of SOM decomposition implies that concepts of C-nutrient cycle interactions should take account for the effects of such adaptations. This can be done using a holistic optimality approach.

  3. [Prokaryotic expression and immunological activity of human neutrophil gelatinase associated lipocalin].

    PubMed

    Wu, Jianwei; Cai, Lei; Qian, Wei; Jiao, Liyuan; Li, Jiangfeng; Song, Xiaoli; Wang, Jihua

    2015-07-01

    To construct a prokaryotic expression vector of human neutrophil gelatinase associated lipocalin (NGAL) and identify the bioactivity of the fusion protein. The cDNA of human NGAL obtained from GenBank was linked to a cloning vector to construct the prokaryotic expression vector pCold-NGAL. Then the vector was transformed into E.coli BL21(DE3) plysS. Under the optimal induction condition, the recombinant NGAL (rNGAL) was expressed and purified by Ni Sepharose 6 Fast Flow affinity chromatography. The purity and activity of the rNGAL were respectively identified by SDS-PAGE and Western blotting combined with NGAL reagent (Latex enhanced immunoturbidimetry). Restriction enzyme digestion and nucleotide sequencing proved that the expression vector pCold-NGAL was successfully constructed. Under the optimal induction condition that we determined, the rNGAL was expressed in soluble form in E.coli BL21(DE3) plysS. The relative molecular mass of the rNGAL was 25 000, and its purity was more than 98.0%. Furthermore, Western blotting and immunoturbidimetry indicated that the rNGAL reacted with NGAL mAb specifically. Human rNGAL of high purity and bioactivity was successfully constructed in E.coli BL21(DE3) plysS using the expression vector pCold-NGAL.

  4. Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    McTernan, Patrick M; Chandrayan, Sanjeev K; Wu, Chang-Hao; Vaccaro, Brian J; Lancaster, W Andrew; Yang, Qingyuan; Fu, Dax; Hura, Greg L; Tainer, John A; Adams, Michael W W

    2014-07-11

    The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼ 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na(+) ions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hevener, Kirk E.; Mehboob, Shahila; Boci, Teuta

    The rapid rise in bacterial drug resistance coupled with the low number of novel antimicrobial compounds in the discovery pipeline has led to a critical situation requiring the expedient discovery and characterization of new antimicrobial drug targets. Enzymes in the bacterial fatty acid synthesis pathway, FAS-II, are distinct from their mammalian counterparts, FAS-I, in terms of both structure and mechanism. As such, they represent attractive targets for the design of novel antimicrobial compounds. Enoyl-acyl carrier protein reductase II, FabK, is a key, rate-limiting enzyme in the FAS-II pathway for several bacterial pathogens. The organism, Porphyromonas gingivalis, is a causative agentmore » of chronic periodontitis that affects up to 25% of the US population and incurs a high national burden in terms of cost of treatment. P. gingivalis expresses FabK as the sole enoyl reductase enzyme in its FAS-II cycle, which makes this a particularly appealing target with potential for selective antimicrobial therapy. Herein we report the molecular cloning, expression, purification and characterization of the FabK enzyme from P. gingivalis, only the second organism from which this enzyme has been isolated. Characterization studies have shown that the enzyme is a flavoprotein, the reaction dependent upon FMN and NADPH and proceeding via a Ping-Pong Bi-Bi mechanism to reduce the enoyl substrate. A sensitive assay measuring the fluorescence decrease of NADPH as it is converted to NADP{sup +} during the reaction has been optimized for high-throughput screening. Finally, protein crystallization conditions have been identified which led to protein crystals that diffract x-rays to high resolution.« less

  6. Maximizing the efficiency of multienzyme process by stoichiometry optimization.

    PubMed

    Dvorak, Pavel; Kurumbang, Nagendra P; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-09-05

    Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three-enzyme system catalyzing a five-step chemical conversion. Kinetic models of pathways with wild-type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one-pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose.

    PubMed

    Ríos-Fránquez, Francisco Javier; González-Bautista, Enrique; Ponce-Noyola, Teresa; Ramos-Valdivia, Ana Carmela; Poggi-Varaldo, Héctor Mario; García-Mena, Jaime; Martinez, Alfredo

    2017-05-01

    Bioethanol is one of the main biofuels produced from the fermentation of saccharified agricultural waste; however, this technology needs to be optimized for profitability. Because the commonly used ethanologenic yeast strains are unable to assimilate cellobiose, several efforts have been made to express cellulose hydrolytic enzymes in these yeasts to produce ethanol from lignocellulose. The C. flavigenabglA gene encoding β-glucosidase catalytic subunit was optimized for preferential codon usage in S. cerevisiae. The optimized gene, cloned into the episomal vector pRGP-1, was expressed, which led to the secretion of an active β-glucosidase in transformants of the S. cerevisiae diploid strain 2-24D. The volumetric and specific extracellular enzymatic activities using pNPG as substrate were 155 IU L -1 and 222 IU g -1 , respectively, as detected in the supernatant of the cultures of the S. cerevisiae RP2-BGL transformant strain growing in cellobiose (20 g L -1 ) as the sole carbon source for 48 h. Ethanol production was 5 g L -1 after 96 h of culture, which represented a yield of 0.41 g g -1 of substrate consumed (12 g L -1 ), equivalent to 76% of the theoretical yield. The S. cerevisiae RP2-BGL strain expressed the β-glucosidase extracellularly and produced ethanol from cellobiose, which makes this microorganism suitable for application in ethanol production processes with saccharified lignocellulose.

  8. Quantitative Proteomic and Microarray Analysis of the Archaeon Methanosarcina Acetivorans Grown with Acetate Versus Methanol*

    PubMed Central

    Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.

    2008-01-01

    Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate. PMID:17269732

  9. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala.

    PubMed

    Xu, Chao; Li, Xiang-Fei; Tian, Hong-Yan; Jiang, Guang-Zhen; Liu, Wen-Bin

    2016-04-01

    This study aimed to investigate the optimal feeding rate for juvenile blunt snout bream (average initial weight 23.74 ± 0.09 g) based on the results on growth performance, intestinal digestive and absorptive capabilities and endocrine functions. A total of 840 fish were randomly distributed into 24 cages and fed a commercial feed at six feeding rates ranging from 2.0 to 7.0% body weight (BW)/day. The results indicated that weight gain rate increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% BW/day, but decreased with the further increasing feeding rates (P > 0.05). Protein efficiency ratio and nitrogen and energy retention all showed a similar trend. However, feed conversion ratio increased significantly (P < 0.05) with increasing feeding rates. Feeding rates have little effects (P > 0.05) on whole-body moisture, ash and protein contents, but significantly (P < 0.05) affect both lipid and energy contents with the highest values both observed in fish fed 4.0% BW/day. In addition, moderate ration sizes (2.0-4.0% BW/day) resulted in the enhanced activities of intestinal enzymes, including lipase, protease, Na(+), K(+)-ATPase, alkaline phosphatase and creatine kinase. Furthermore, the mRNA levels of growth hormone, insulin-like growth factors-I, growth hormone receptor and neuropeptide all increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% and 6.0% BW/day, but decreased significantly (P < 0.05) with the further increase in feeding rates, whereas both leptin and cholecystokinin expressions showed an opposite trend. Based on the broken-line regression analysis of SGR against feeding rates, the optimal feeding rate for juvenile blunt snout bream was estimated to be 4.57% BW/day.

  10. Evaluation of seven cosubstrates in the quantification of horseradish peroxidase enzyme by square wave voltammetry.

    PubMed

    Kergaravat, Silvina V; Pividori, Maria Isabel; Hernandez, Silvia R

    2012-01-15

    The electrochemical detection for horseradish peroxidase-cosubstrate-H(2)O(2) systems was optimized. o-Phenilendiamine, phenol, hydroquinone, pyrocatechol, p-chlorophenol, p-aminophenol and 3,3'-5,5'-tetramethylbenzidine were evaluated as cosubstrates of horseradish peroxidase (HRP) enzyme. Therefore, the reaction time, the addition sequence of the substrates, the cosubstrate:H(2)O(2) ratio and the electrochemical techniques were elected by one-factor optimization assays while the buffer pH, the enzymatic activity and cosubstrate and H(2)O(2) concentrations for each system were selected simultaneously by response surface methodology. Then, the calibration curves for seven horseradish peroxidase-cosubstrate-H(2)O(2) systems were built and the analytic parameters were analyzed. o-Phenilendiamine was selected as the best cosubstrate for the HRP enzyme. For this system the reaction time of 60s, the phosphate buffer pH 6.0, and the concentrations of 2.5×10(-4)molL(-1) o-phenilendiamine and of 1.25×10(-4)molL(-1) H(2)O(2) were chosen as the optimal conditions. In these conditions, the calibration curve of horseradish peroxidase by square wave voltammetry showed a linearity range from 9.5×10(-11) to 1.9×10(-8)molL(-1) and the limit of detection of 3.8×10(-11)molL(-1) with RSD% of 0.03% (n=3). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Optimization of papain hydrolysis conditions for release of glycosaminoglycans from the chicken keel cartilage

    NASA Astrophysics Data System (ADS)

    Le Vien, Nguyen Thi; Nguyen, Pham Bao; Cuong, Lam Duc; An, Trinh Thi Thua; Dao, Dong Thi Anh

    2017-09-01

    Glycosaminoglycans (GAGs) are natural biocompounds which join to construct cartilage tissuses, it can be extracted from cartilage of sharks, pigs, cows, chickens, etc. GAGs contain a Chondroitin sulfate (CS) content which is a supplement of functional food used for preventing and supporting treatment of arthritis and eye diseases. Therefore, the GAGs extraction from byproducts of the industry of cattle and poultry slaughter to identify the CS content by papain enzyme is necessary. In this study, the optimal hydrolysis conditions were obtained by response surface methodology (RSM). The independent variables were coded as: pH (x1), enzyme concentration (x2), incubation temperature (x3) and hydrolysis time (x4). The results of the analysis of variance (ANOVA) shown that the variables actively affected GAGs content. The optimal conditions of hydrolysis were derived at pH of 7.1, ratio of enzyme per substances of 0.62% w/wpo, temperature of 65°C and hydrolysis time of 230 minutes, GAGs content reached 14.3% of the dry matter of raw material. Analyzes by HPLC revealed that 56.17% of the dry preparations of GAGs were CS compound, were equivalent to 8.11% of the dry matter of chicken keel cartilage. Molecular weight of the dry preparations GAGs was 259.6 kDa. The dry preparations included the contents of moisture 12.2%, protein 8.42%, lipid 0%, ash 10.03% and extracted GAGs 69.35%.

  12. Lipase production in lipolytic yeast from Wonorejo mangrove area

    NASA Astrophysics Data System (ADS)

    Alami, Nur Hidayatul; Nasihah, Liziyatin; Umar, Rurin Luswidya Artaty; Kuswytasari, Nengah Dwianita; Zulaika, Enny; Shovitri, Maya

    2017-06-01

    Lipase is an enzyme that is often used in industry and become a commercial enzyme. One group of microorganisms capable of producing lipase is a yeast. This study aims to screen yeast from Wonorejo mangrove that potential to produce lipase and to optimize the production of these enzymes. Screening test include the measurement of lipolytic index and value of fatty acid. Yeast with the best value of fatty acid will be continued to the measurement of lipase activity. It is affected by several environmental factors, such as pH, temperature, and incubation time. This research was conducted to observe the optimization variation on environmental factors combination to produce lipase. Lipase activity was tested by using p-Nitrophenyl Palmitate (pNPP). Absorbency was measured by spectrofotometer on wavelength of 410 nm. Measurement of the enzyme activity was done by interpolating the absorbance values on the p-nitrophenol standard curve then calculated by the formula. All data were analyzed by using descriptive quantitative method. The results show that the highest lypolityc index was 2.08. The highest value of fatty acid was 0.49 that was reached on 168 hours of incubation. Candida W3.8 expressed the highest lypolylitic potential. The optimum environment to produce lipase by Candida W 3.8 was on 120 hours of incubation time, in temperature range of 27°C - 45°C and pH range of 4,5 - 7.

  13. High endothelin-converting enzyme-1 expression independently predicts poor survival of patients with esophageal squamous cell carcinoma.

    PubMed

    Wu, Ching-Fang; Lee, Ching-Tai; Kuo, Yao-Hung; Chen, Tzu-Haw; Chang, Chi-Yang; Chang, I-Wei; Wang, Wen-Lun

    2017-09-01

    Patients with esophageal squamous cell carcinoma have poor survival and high recurrence rate, thus an effective prognostic biomarker is needed. Endothelin-converting enzyme-1 is responsible for biosynthesis of endothelin-1, which promotes growth and invasion of human cancers. The role of endothelin-converting enzyme-1 in esophageal squamous cell carcinoma is still unknown. Therefore, this study investigated the significance of endothelin-converting enzyme-1 expression in esophageal squamous cell carcinoma clinically. We enrolled patients with esophageal squamous cell carcinoma who provided pretreated tumor tissues. Tumor endothelin-converting enzyme-1 expression was evaluated by immunohistochemistry and was defined as either low or high expression. Then we evaluated whether tumor endothelin-converting enzyme-1 expression had any association with clinicopathological findings or predicted survival of patients with esophageal squamous cell carcinoma. Overall, 54 of 99 patients with esophageal squamous cell carcinoma had high tumor endothelin-converting enzyme-1 expression, which was significantly associated with lymph node metastasis ( p = 0.04). In addition, tumor endothelin-converting enzyme-1 expression independently predicted survival of patients with esophageal squamous cell carcinoma, and the 5-year survival was poorer in patients with high tumor endothelin-converting enzyme-1 expression ( p = 0.016). Among patients with locally advanced and potentially resectable esophageal squamous cell carcinoma (stage II and III), 5-year survival was poorer with high tumor endothelin-converting enzyme-1 expression ( p = 0.003). High tumor endothelin-converting enzyme-1 expression also significantly predicted poorer survival of patients in this population. In patients with esophageal squamous cell carcinoma, high tumor endothelin-converting enzyme-1 expression might indicate high tumor invasive property. Therefore, tumor endothelin-converting enzyme-1 expression could be a good biomarker to identify patients with worse survival and higher risks of recurrence, who might benefit from the treatment by endothelin-converting enzyme-1 inhibitor.

  14. Bioactive characteristics and optimization of tamarind seed protein hydrolysate for antioxidant-rich food formulations.

    PubMed

    Bagul, Mayuri B; Sonawane, Sachin K; Arya, Shalini S

    2018-04-01

    Tamarind seed has been a source of valuable nutrients such as protein (contains high amount of many essential amino acids), essential fatty acids, and minerals which are recognized as additive to develop perfect balanced functional foods. The objective of present work was to optimize the process parameters for extraction and hydrolysis of protein from tamarind seeds. Papain-derived hydrolysates showed a maximum degree of hydrolysis (39.49%) and radical scavenging activity (42.92 ± 2.83%) at optimized conditions such as enzyme-to-substrate ratio (1:5), hydrolysis time (3 h), hydrolysis temperature (65 °C), and pH 6. From this study, papain hydrolysate can be considered as good source of natural antioxidants in developing food formulations.

  15. Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions

    PubMed Central

    Goel, Anisha; Santos, Filipe; de Vos, Willem M.; Teusink, Bas

    2012-01-01

    Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis. PMID:22020503

  16. Strategies for microbial synthesis of high-value phytochemicals

    NASA Astrophysics Data System (ADS)

    Li, Sijin; Li, Yanran; Smolke, Christina D.

    2018-03-01

    Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.

  17. Prostate Cancer Characteristics Associated with Response to Pre-Receptor Targeting of the Androgen Axis

    PubMed Central

    Mostaghel, Elahe A.; Morgan, Andrew; Zhang, Xiaotun; Marck, Brett T.; Xia, Jing; Hunter-Merrill, Rachel; Gulati, Roman; Plymate, Stephen; Vessella, Robert L.; Corey, Eva; Higano, Celestia S.; Matsumoto, Alvin M.; Montgomery, R. Bruce; Nelson, Peter S.

    2014-01-01

    Background Factors influencing differential responses of prostate tumors to androgen receptor (AR) axis-directed therapeutics are poorly understood, and predictors of treatment efficacy are needed. We hypothesized that the efficacy of inhibiting DHT ligand synthesis would associate with intra-tumoral androgen ratios indicative of relative dependence on DHT-mediated growth. Methods We characterized two androgen-sensitive prostate cancer xenograft models after androgen suppression by castration in combination with the SRD5A inhibitor, dutasteride, as well as a panel of castration resistant metastases obtained via rapid autopsy. Results In LuCaP35 tumors (intra-tumoral T:DHT ratio 2∶1) dutasteride suppressed DHT to 0.02 ng/gm and prolonged survival vs. castration alone (337 vs.152 days, HR 2.8, p = 0.0015). In LuCaP96 tumors (T:DHT 10∶1), survival was not improved despite similar DHT reduction (0.02 ng/gm). LuCaP35 demonstrated higher expression of steroid biosynthetic enzymes maintaining DHT levels (5-fold higher SRD5A1, 41 fold higher, 99-fold higher RL-HSD, p<0.0001 for both), reconstitution of intra-tumoral DHT (to ∼30% of untreated tumors), and ∼2 fold increased expression of full length AR. In contrast, LuCaP96 demonstrated higher levels of steroid catabolizing enzymes (6.9-fold higher AKR1C2, 3000-fold higher UGT2B15, p = 0.002 and p<0.0001 respectively), persistent suppression of intra-tumoral DHT, and 6–8 fold induction of full length AR and the ligand independent V7 AR splice variant. Human metastases demonstrated bio-active androgen levels and AR full length and AR splice-variant expression consistent with the range observed in xenografts. Conclusions Intrinsic differences in basal steroidogenesis, as well as variable expression of full length and splice-variant AR, associate with response and resistance to pre-receptor AR ligand suppression. Expression of steroidogenic enzymes and AR isoforms may serve as potential biomarkers of sensitivity to potent AR-axis inhibition and should be validated in additional models. PMID:25356728

  18. Prostate cancer characteristics associated with response to pre-receptor targeting of the androgen axis.

    PubMed

    Mostaghel, Elahe A; Morgan, Andrew; Zhang, Xiaotun; Marck, Brett T; Xia, Jing; Hunter-Merrill, Rachel; Gulati, Roman; Plymate, Stephen; Vessella, Robert L; Corey, Eva; Higano, Celestia S; Matsumoto, Alvin M; Montgomery, R Bruce; Nelson, Peter S

    2014-01-01

    Factors influencing differential responses of prostate tumors to androgen receptor (AR) axis-directed therapeutics are poorly understood, and predictors of treatment efficacy are needed. We hypothesized that the efficacy of inhibiting DHT ligand synthesis would associate with intra-tumoral androgen ratios indicative of relative dependence on DHT-mediated growth. We characterized two androgen-sensitive prostate cancer xenograft models after androgen suppression by castration in combination with the SRD5A inhibitor, dutasteride, as well as a panel of castration resistant metastases obtained via rapid autopsy. In LuCaP35 tumors (intra-tumoral T:DHT ratio 2:1) dutasteride suppressed DHT to 0.02 ng/gm and prolonged survival vs. castration alone (337 vs.152 days, HR 2.8, p = 0.0015). In LuCaP96 tumors (T:DHT 10:1), survival was not improved despite similar DHT reduction (0.02 ng/gm). LuCaP35 demonstrated higher expression of steroid biosynthetic enzymes maintaining DHT levels (5-fold higher SRD5A1, 41 fold higher, 99-fold higher RL-HSD, p<0.0001 for both), reconstitution of intra-tumoral DHT (to ∼30% of untreated tumors), and ∼2 fold increased expression of full length AR. In contrast, LuCaP96 demonstrated higher levels of steroid catabolizing enzymes (6.9-fold higher AKR1C2, 3000-fold higher UGT2B15, p = 0.002 and p<0.0001 respectively), persistent suppression of intra-tumoral DHT, and 6-8 fold induction of full length AR and the ligand independent V7 AR splice variant. Human metastases demonstrated bio-active androgen levels and AR full length and AR splice-variant expression consistent with the range observed in xenografts. Intrinsic differences in basal steroidogenesis, as well as variable expression of full length and splice-variant AR, associate with response and resistance to pre-receptor AR ligand suppression. Expression of steroidogenic enzymes and AR isoforms may serve as potential biomarkers of sensitivity to potent AR-axis inhibition and should be validated in additional models.

  19. Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging.

    PubMed

    Olgun, Abdullah

    2009-08-01

    Mitochondrial DNA defects are involved supposedly via free radicals in many pathologies including aging and cancer. But, interestingly, free radical production was not found increased in prematurely aging mice having higher mutation rate in mtDNA. Therefore, some other mechanisms like the increase of mitochondrial NADH/NAD(+) and ubiquinol/ubiquinone ratios, can be in action in respiratory chain defects. NADH/NAD(+) ratio can be normalized by the activation or overexpression of nicotinamide nucleotide transhydrogenase (NNT), a mitochondrial enzyme catalyzing the following very important reaction: NADH + NADP(+ )<--> NADPH + NAD(+). The products NAD(+) and NADPH are required in many critical biological processes, e.g., NAD(+) is used by histone deacetylase Sir2 which regulates longevity in different species. NADPH is used in a number of biosynthesis reactions (e.g., reduced glutathione synthesis), and processes like apoptosis. Increased ubiquinol/ubiquinone ratio interferes the function of dihydroorotate dehydrogenase, the only mitochondrial enzyme involved in ubiquinone mediated de novo pyrimidine synthesis. Uridine and its prodrug triacetyluridine are used to compensate pyrimidine deficiency but their bioavailability is limited. Therefore, the normalization of the ubiquinol/ubiquinone ratio can be accomplished by allotopic expression of alternative oxidase, a mitochondrial ubiquinol oxidase which converts ubiquinol to ubiquinone.

  20. Optimization of Enzyme-Substrate Pairing for Bioluminescence Imaging of Gene Transfer Using Renilla and Gaussia Luciferases

    PubMed Central

    Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R.

    2010-01-01

    Background Bioluminescence imaging (BLI) permits the noninvasive quantitation and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. Methods With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. Results In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were 8–15 times higher than that of the prototypical RLuc-native coelenterazine combination. Conclusions Our results demonstrate that substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and that appropriate selection of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI. PMID:20527045

  1. Optimization of enzyme-substrate pairing for bioluminescence imaging of gene transfer using Renilla and Gaussia luciferases.

    PubMed

    Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R

    2010-06-01

    Bioluminescence imaging (BLI) permits the non-invasive quantification and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were eight- to 15-fold higher than that of the prototypical RLuc-native coelenterazine combination. Substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and appropriate choice of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI.

  2. Mining of Ruminant Microbial Phytase (RPHY1) from Metagenomic Data of Mehsani Buffalo Breed: Identification, Gene Cloning, and Characterization.

    PubMed

    Mootapally, Chandra Shekar; Nathani, Neelam M; Patel, Amrutlal K; Jakhesara, Subhash J; Joshi, Chaitanya G

    2016-01-01

    Phytases have been widely used as animal feed supplements to increase the availability of digestible phosphorus, especially in monogastric animals fed cereal grains. The present study describes the identification of a full-length phytase gene of Prevotella species present in Mehsani buffalo rumen. The gene, designated as RPHY1, consists of 1,251 bp and is expressed into protein with 417 amino acids. A homology search of the deduced amino acid sequence of the RPHY1 phytase gene in a nonredundant protein database showed that it shares 92% similarity with the histidine acid phosphatase domain. Subsequently, the RPHY1 gene was expressed using a pET32a expression vector in Escherichia coli BL21 and purified using a His60 Ni-NTA gravity column. The mass of the purified RPHY1 was estimated to be approximately 63 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal RPHY1 enzyme activity was observed at 55°C (pH 5) and exhibited good stability at 5°C and within the acidic pH range. Significant inhibition of RPHY1 activity was observed for Mg2+ and K+ metal ions, while Ca2+, Mn2+, and Na+ slightly inhibited enzyme activity. The RPHY1 phytase was susceptible to SDS, and it was highly stimulated in the presence of EDTA. Overall, the observed comparatively high enzyme activity levels and characteristics of the RPHY1 gene mined from rumen prove its promising candidature as a feed supplement enzyme in animal farming. © 2016 S. Karger AG, Basel.

  3. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase.

    PubMed

    Siódmiak, Tomasz; Mangelings, Debby; Vander Heyden, Yvan; Ziegler-Borowska, Marta; Marszałł, Michał Piotr

    2015-03-01

    Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.

  4. New insights into plant glycoside hydrolase family 32 in Agave species

    PubMed Central

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D.; Damián Santos, Maura L.; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana. PMID:26300895

  5. New insights into plant glycoside hydrolase family 32 in Agave species.

    PubMed

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D; Damián Santos, Maura L; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.

  6. Novel 1, 3-N, O-Spiroheterocyclic compounds inhibit heparanase activity and enhance nedaplatin-induced cytotoxicity in cervical cancer cells.

    PubMed

    Song, Yanan; Hu, Bin; Qu, Hongjie; Wang, Lu; Zhang, Yunxiao; Tao, Jinchao; Cui, Jinquan

    2016-06-14

    Heparanase (HPA) is an enzyme that plays an important role in cancer metastasis and angiogenesis and is a potential target for molecular treatment of tumors. We previously found that abnormally high HPA expression in cervical cancer tissues is associated with poor survival and increased lymph node metastasis. The present study was conducted to assess the utility of inhibiting HPA enzyme activity in cervical cancer treatment. Two series of 13 novel HPA inhibitors were synthesized and optimized. All tested inhibitors reduced HPA enzyme activity (IC50 values ranged from 4.47 μM to 47.19 μM) and inhibited the growth of HeLa cells (IC50 values ranged from 48.16 μM to 96.64 μM). The No. 16 inhibitor inhibited the migration and growth of HeLa and Siha cells in a dose- and time-dependent manner, and increased cell apoptosis and cell cycle G0/G1 and G2/M phase arrest, while decreasing the S phase cell population. More importantly, No. 16 sensitized cervical cancer cells to low concentrations of nedaplatin, decreased HPA, c-Myc and h-TERT levels, and increased p53 levels in HeLa and Siha cells. These results suggest that this HPA inhibitor reduced proliferation and HPA expression in cervical cancer cells by restoring p53 activity and downregulating h-TERT and c-Myc expression.

  7. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.

    PubMed

    Zou, Xian-Guo; Hu, Jiang-Ning; Zhao, Man-Li; Zhu, Xue-Mei; Li, Hong-Yan; Liu, Xiao-Ru; Liu, Rong; Deng, Ze-Yuan

    2014-10-29

    In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.

  8. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.

    In this paper, we report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradationmore » pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. Finally, in the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.« less

  9. Comparison of expression and enzymatic properties of Aspergillus oryzae lysine aminopeptidases ApsA and ApsB.

    PubMed

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-08-01

    The apsA and apsB genes encoding family M1 aminopeptidases were identified in the industrial fungus Aspergillus oryzae. The apsB was transcriptionally up-regulated up to 2.5-fold in response to the deprivation of nitrogen or carbon sources in growth media, while up-regulation of apsA was less significant. The encoded proteins were bacterially expressed and purified to characterize their enzymatic properties. ApsA and ApsB were optimally active at pH 7.0 and 35 °C and stable at pH ranges of 6-10 and 4-10, respectively, up to 40 °C. The enzymes were inhibited by bestatin and EDTA, as has been reported for family M1 aminopeptidases that characteristically contain a zinc-binding catalytic motif. Both enzymes preferentially liberated N-terminal lysine, which is an essential amino acid and an important additive to animal feed. Enzymes that efficiently release N-terminal lysine from peptides could be useful for food and forage industries. Examination of the reactivity toward peptide substrate of varying length revealed that ApsB exhibited broader substrate specificity than ApsA although the reactivity of ApsB decreased as the length of peptide substrate decreased.

  10. GENPLAT: an Automated Platform for Biomass Enzyme Discovery and Cocktail Optimization

    PubMed Central

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-01-01

    The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (www.megazyme.com), NZYTech (www.nzytech.com), and PROZOMIX (www.prozomix.com). Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase). PMID:22042431

  11. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.

    PubMed

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-10-24

    The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (www.megazyme.com), NZYTech (www.nzytech.com), and PROZOMIX (www.prozomix.com). Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase).

  12. Cocaine-Induced Behavioral Sensitization Is Associated With Changes in the Expression of Endocannabinoid and Glutamatergic Signaling Systems in the Mouse Prefrontal Cortex

    PubMed Central

    Blanco, Eduardo; Pavón, Francisco J.; Palomino, Ana; Luque-Rojas, María Jesús; Serrano, Antonia; Rivera, Patricia; Bilbao, Ainhoa; Alen, Francisco; Vida, Margarita; Suárez, Juan

    2015-01-01

    Background: Endocannabinoids modulate the glutamatergic excitatory transmission by acting as retrograde messengers. A growing body of studies has reported that both signaling systems in the mesocorticolimbic neural circuitry are involved in the neurobiological mechanisms underlying drug addiction. Methods: We investigated whether the expression of both endocannabinoid and glutamatergic systems in the prefrontal cortex (PFC) were altered by an acute and/or repeated cocaine administration schedule that resulted in behavioral sensitization. We measured the protein and mRNA expression of the main endocannabinoid metabolic enzymes and the cannabinoid receptor type 1 (CB1). We also analyzed the mRNA expression of relevant components of the glutamate-signaling system, including glutamate-synthesizing enzymes, metabotropic receptors, and ionotropic receptors. Results: Although acute cocaine (10mg/kg) produced no significant changes in the endocannabinoid-related proteins, repeated cocaine administration (20mg/kg daily) induced a pronounced increase in the CB1 receptor expression. In addition, acute cocaine administration (10mg/kg) in cocaine-sensitized mice (referred to as cocaine priming) induced a selective increase in the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). These protein changes were accompanied by an overall decrease in the ratios of endocannabinoid synthesis/degradation, especially the N-acyl phosphatidylethanolamine phospholipase D/FAAH and diacylglycerol lipase alpha/MAGL ratios. Regarding mRNA expression, while acute cocaine administration produced a decrease in CB1 receptors and N-acyl phosphatidylethanolamine phospholipase D, repeated cocaine treatment enhanced CB1 receptor expression. Cocaine-sensitized mice that were administered priming injections of cocaine mainly displayed an increased FAAH expression. These endocannabinoid changes were associated with modifications in glutamatergic transmission-related genes. An overall decrease was observed in the mRNA expression of the glutamate-synthesizing gene kidney-type glutaminase (KGA), the metabotropic glutamate receptors (mGluR3 and GluR), and subunits of NMDA ionotropic receptors (NR1, NR2A, NR2B and NR2C) after acute cocaine administration, while mice repeatedly exposed to cocaine only displayed an increase in NR2C. However, in cocaine-sensitized mice primed with cocaine, this inhibition was reversed and a strong increase was detected in the mGluR5, NR2 subunits, and both GluR1 and GluR3. Conclusions: These findings indicate that cocaine sensitization is associated with an endocannabinoid downregulation and a hyperglutamatergic state in the PFC that, overall, contribute to an enhanced glutamatergic input into PFC-projecting areas. PMID:25539508

  13. Optimized synthesis of lipase-catalyzed hexyl acetate in n-hexane by response surface methodology.

    PubMed

    Shieh, C J; Chang, S W

    2001-03-01

    Hexyl acetate, a short-chain ester with fruity odor, is a significant green note flavor compound and widely used in the food industry. The ability for immobilized lipase from Mucor miehei (Lipozyme IM-77) to catalyze the transesterification of hexanol with triacetin was investigated in this study. Response surface methodology and five-level-five-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, such as reaction time (2-10 h), temperature (25-65 degrees C), enzyme amount (10-50%; 0.024-0.118 BAUN), substrate molar ratio of triacetin to hexanol (1:1 to 3:1), and added water content (0-20%) on percentage molar conversion of hexyl acetate. The results showed that reaction temperature and substrate molar ratio were the most important parameters and that added water content had less of an effect on percent molar conversion. On the basis of canonical analysis, optimum synthesis conditions were as follows: reaction time, 7.7 h; temperature, 52.6 degrees C; enzyme amount, 37.1% (0.089 BAUN); substrate molar ratio, 2.7:1; and added water, 12.5%. The predicted value was 88.9% molar conversion, and the actual experimental value was 86.6% molar conversion.

  14. Preparation of Diacylglycerol from Lard by Enzymatic Glycerolysis and Its Compositional Characteristics

    PubMed Central

    Diao, Xiaoqin; Guan, Haining

    2017-01-01

    The aim of this study was to prepare diacylglycerol (DAG) by enzymatic glycerolysis of lard. The effects of reaction parameters such as lipase type, reaction temperature, enzyme amount, substrate molar ratio (lard/glycerol), reaction time, and magnetic stirring speed were investigated. Lipozyme RMIM was found to be a more active biocatalyst than Novozym 435, and the optimal reaction conditions were 14:100 (W/W) of enzyme to lard substrate ratio, 1:1 of lard to glycerol molar ratio, and 500 rpm magnetic stirring speed. The reaction mixture was first incubated at 65℃ for 2 h and then transferred to 45℃ for 8 h. At the optimum reaction conditions, the conversion rate of triacylglycerol (TAG) and the content of DAG in the reaction mixture reached 76.26% and 61.76%, respectively, and the DAG content in purified glycerolized lard was 82.03% by molecular distillation. The distribution of fatty acids and Fourier transform infrared spectra in glycerolized lard samples were similar to those in lard samples. The results revealed that enzymatic glycerolysis and molecular distillation can be used to prepare more highly purified DAG from lard. PMID:29725202

  15. Metabolomics of hexachlorocyclohexane (HCH) transformation: ratio of LinA to LinB determines metabolic fate of HCH isomers.

    PubMed

    Geueke, Birgit; Garg, Nidhi; Ghosh, Sneha; Fleischmann, Thomas; Holliger, Christof; Lal, Rup; Kohler, Hans-Peter E

    2013-04-01

    Although the production and use of technical hexachlorocyclohexane (HCH) and lindane (the purified insecticidal isomer γ-HCH) are prohibited in most countries, residual concentrations still constitute an immense environmental burden. Many studies describe the mineralization of γ-HCH by bacterial strains under aerobic conditions. However, the metabolic fate of the other HCH isomers is not well known. In this study, we investigated the transformation of α-, β-, γ-, δ-, ε-HCH, and a heptachlorocyclohexane isomer in the presence of varying ratios of the two enzymes that initiate γ-HCH degradation, a dehydrochlorinase (LinA) and a haloalkane dehalogenase (LinB). Each substrate yielded a unique metabolic profile that was strongly dependent on the enzyme ratio. Comparison of these results to those of in vivo experiments with different bacterial isolates showed that HCH transformation in the tested strains was highly optimized towards productive metabolism of γ-HCH and that under these conditions other HCH-isomers were metabolized to mixtures of dehydrochlorinated and hydroxylated side-products. In view of these results, bioremediation efforts need very careful planning and toxicities of accumulating metabolites need to be evaluated. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer.

    PubMed

    Wang, Y; Wu, H; Zong, M H

    2008-10-01

    The process of biodiesel production from corn oil catalyzed by lipozyme TL IM, an inexpensive 1,3-position specific lipase from Thermomyces lanuginosus was optimized by response surface methodology (RSM) and a central composite rotatable design (CCRD) was used to study the effects of enzyme dosage, ratio of t-butanol to oil (v/v) and ratio of methanol to oil (mol/mol) on the methyl esters (ME) yield of the methanolysis. The optimum combinations for the reaction were 25.9U/goil of enzyme, 0.58 volume ratio of t-butanol to oil and 0.5, 0.5, 2.8 molar equivalent of methanol to oil added at the reaction time of 0, 2, and 4h, respectively, by which a ME yield of 85.6%, which was very close to the predicted value of 85.0%, could be obtained after reaction for 12h. Waste oil was found to be more suitable feedstock, and could give 93.7% ME yield under the optimum conditions described above. Adding triethylamine (TEA), an acyl migration enhancer, could efficiently improve the ME yield of the methanolysis of corn oil, giving a ME yield of 92.0%.

  17. Effects of cytochrome P450 3A modulators ketoconazole and carbamazepine on quetiapine pharmacokinetics

    PubMed Central

    Grimm, Scott W; Richtand, Neil M; Winter, Helen R; Stams, Karen R; Reele, Stots B

    2006-01-01

    Aims To explore the potential for drug interactions on quetiapine pharmacokinetics using in vitro and in vivo assessments. Methods The CYP enzymes responsible for quetiapine metabolite formation were assessed using recombinant expressed CYPs and CYP-selective inhibitors. P-glycoprotein (Pgp) transport was tested in MDCK cells expressing the human MDR1 gene. The effects of CYP3A4 inhibition were evaluated clinically in 12 healthy volunteers that received 25 mg quetiapine before and after 4 days of treatment with ketoconazole 200 mg daily. To assess CYP3A4 induction in vivo, 18 patients with psychiatric disorders were titrated to steady-state quetiapine levels (300 mg twice daily), then titrated to 600 mg daily carbamazepine for 2 weeks. Results CYP3A4 was found to be responsible for formation of quetiapine sulfoxide and N- and O-desalkylquetiapine and not a Pgp substrate. In the clinical studies, ketoconazole increased mean quetiapine plasma Cmax by 3.35-fold, from 45 to 150 ng ml−1 (mean Cmax ratio 90% CI 2.51, 4.47) and decreased its clearance (Cl/F) by 84%, from 138 to 22 l h−1 (mean ratio 90% CI 0.13, 0.20). Carbamazepine decreased quetiapine plasma Cmax by 80%, from 1042 to 205 ng ml−1 (mean Cmax ratio 90% CI 0.14, 0.28) and increased its clearance 7.5-fold, from 65 to 483 l h−1 (mean ratio 90% CI 6.04, 9.28). Conclusions Cytochrome P450 3A4 is a primary enzyme responsible for the metabolic clearance of quetiapine. Quetiapine pharmacokinetics were affected by concomitant administration of ketoconazole and carbamazepine, and therefore other drugs and ingested natural products that strongly modulate the activity or expression of CYP3A4 would be predicted to change exposure to quetiapine. PMID:16390352

  18. Increased dipicolinic acid production with an enhanced spoVF operon in Bacillus subtilis and medium optimization.

    PubMed

    Takahashi, Fumikazu; Sumitomo, Nobuyuki; Hagihara, Hiroshi; Ozaki, Katsuya

    2015-01-01

    Dipicolinic acid (DPA) is a multi-functional agent for cosmetics, antimicrobial products, detergents, and functional polymers. The aim of this study was to design a new method for producing DPA from renewable material. The Bacillus subtilis spoVF operon encodes enzymes for DPA synthase and the part of lysine biosynthetic pathway. However, DPA is only synthesized in the sporulation phase, so the productivity of DPA is low level. Here, we report that DPA synthase was expressed in vegetative cells, and DPA was produced in the culture medium by replacement of the spoVFA promoter with other highly expressed promoter in B. subtilis vegetative cells, such as spoVG promoter. DPA levels were increased in the culture medium of genetically modified strains. DPA productivity was significantly improved up to 29.14 g/L in 72 h culture by improving the medium composition using a two-step optimization technique with the Taguchi methodology.

  19. Genetic engineering of Synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol.

    PubMed

    van der Woude, Aniek D; Perez Gallego, Ruth; Vreugdenhil, Angie; Puthan Veetil, Vinod; Chroumpi, Tania; Hellingwerf, Klaas J

    2016-04-08

    Erythritol is a polyol that is used in the food and beverage industry. Due to its non-caloric and non-cariogenic properties, the popularity of this sweetener is increasing. Large scale production of erythritol is currently based on conversion of glucose by selected fungi. In this study, we describe a biotechnological process to produce erythritol from light and CO2, using engineered Synechocystis sp. PCC6803. By functionally expressing codon-optimized genes encoding the erythrose-4-phosphate phosphatase TM1254 and the erythrose reductase Gcy1p, or GLD1, this cyanobacterium can directly convert the Calvin cycle intermediate erythrose-4-phosphate into erythritol via a two-step process and release the polyol sugar in the extracellular medium. Further modifications targeted enzyme expression and pathway intermediates. After several optimization steps, the best strain, SEP024, produced up to 2.1 mM (256 mg/l) erythritol, excreted in the medium.

  20. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartwig, S.; Frister, T.; Alemdar, S.

    2015-03-20

    An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L{sup −1} were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni{sup 2+}-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pImore » 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg{sup 2+} containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K{sub M} = 1.111 μM (±0.113), v{sub max} = 0.3245 μM min{sup −1} (±0.0035), k{sub cat} = 2.95 min{sup −1}, as well as a catalytic efficiency k{sub cat}/K{sub M} = 4.43 × 10{sup 4} M{sup −1} s{sup −1} were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was cloned and expressed. • Fusion to SUMO and cold-shock induction enhanced soluble yields in E. coli. • Ni{sup 2+}-IMAC purification of the SUMO-fused and unfused enzyme. • (+)-Zizaene identified as main cyclization product by GC–MS. • Enzyme kinetic parameters comparable to related sesquiterpene synthases.« less

  1. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

    DOE PAGES

    Inoue, Hiroyuki; Decker, Stephen R.; Taylor, Larry E.; ...

    2014-10-09

    Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysismore » of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and characterized. The optimized mixture of these five enzymes was highly effective for the hydrolysis of PCS glucan, providing a foundation for future improvement of the T. cellulolyticus cellulase system.« less

  2. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Hiroyuki; Decker, Stephen R.; Taylor, Larry E.

    Background: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. Results: Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysismore » of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. In Conclusion: Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and characterized. The optimized mixture of these five enzymes was highly effective for the hydrolysis of PCS glucan, providing a foundation for future improvement of the T. cellulolyticus cellulase system.« less

  3. Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas.

    PubMed

    Golinska, Monika; Troy, Helen; Chung, Yuen-Li; McSheehy, Paul M; Mayr, Manuel; Yin, Xiaoke; Ly, Lucy; Williams, Kaye J; Airley, Rachel E; Harris, Adrian L; Latigo, John; Perumal, Meg; Aboagye, Eric O; Perrett, David; Stubbs, Marion; Griffiths, John R

    2011-05-25

    HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes.

  4. Molecular and biochemical characterization of natural and recombinant phosphoglycerate kinase B from Trypanosoma rangeli.

    PubMed

    Villafraz, O; Rondón-Mercado, R; Cáceres, A J; Concepción, J L; Quiñones, W

    2018-04-01

    T. rangeli epimastigotes contain only a single detectable phosphoglycerate kinase (PGK) enzyme in their cytosol. Analysis of this parasite's recently sequenced genome showed a gene predicted to code for a PGK with the same molecular mass as the natural enzyme, and with a cytosolic localization as well. In this work, we have partially purified the natural PGK from T. rangeli epimastigotes. Furthermore, we cloned the predicted PGK gene and expressed it as a recombinant active enzyme. Both purified enzymes were kinetically characterized and displayed similar substrate affinities, with Km ATP values of 0.13 mM and 0.5 mM, and Km 3PGA values of 0.28 mM and 0.71 mM, for the natural and recombinant enzyme, respectively. The optimal pH for activity of both enzymes was in the range of 8-10. Like other PGKs, TrPGK is monomeric with a molecular mass of approximately 44 kDa. The enzyme's kinetic characteristics are comparable with those of cytosolic PGK isoforms from related trypanosomatid species, indicating that, most likely, this enzyme is equivalent with the PGKB that is responsible for generating ATP in the cytosol of other trypanosomatids. This is the first report of a glycolytic enzyme characterization from T. rangeli. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Dissimilarities in the Metabolism of Antiretroviral Drugs used in HIV Pre-exposure Prophylaxis in Colon and Vagina Tissues

    PubMed Central

    To, Elaine E.; Hendrix, Craig W.; Bumpus, Namandjé N.

    2013-01-01

    Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP. PMID:23965226

  6. Expression, functional analysis and mutation of a novel neutral zearalenone-degrading enzyme.

    PubMed

    Wang, Meixing; Yin, Lifeng; Hu, Huizhen; Selvaraj, Jonathan Nimal; Zhou, Yuling; Zhang, Guimin

    2018-06-24

    The crops and grains were often contaminated by high level of mycotoxin zearalenone (ZEN). In order to remove ZEN and keep food safe, ZEN-degrading or detoxifying enzymes are urgently needed. Here, a newly identified lactonohydrolase responsible for the detoxification of ZEN, annotated as Zhd518, was expressed and characterized. Zhd518 showed 65% amino acid identity with Zhd101, which was widely studied for its ZEN-degrading ability. A detailed activity measurement method of ZEN-degrading enzyme was provided. Biochemical analysis indicated that the purified recombinant Zhd518 from E. coli exhibited a high activity against ZEN (207.0 U/mg), with the optimal temperature and pH of 40 °C and 8.0, respectively. The Zhd518 can degrade ZEN derivatives, and the specific activities against α-Zearalenol, β-Zearalenol, α-Zearalanol and β-Zearalanol were 23.0 U/mg, 64.7 U/mg, 119.8 U/mg and 66.5 U/mg, respectively. The active sites of Zhd518 were predicted by structure modeling and determined by mutation analysis. A point mutant N156H exhibited 3.3-fold activity against α-Zearalenol comparing to Zhd518. Zhd518 is the first reported neutral and the second characterized ZEN-degrading enzyme, which provides a new and more excellent candidate for ZEN detoxifying in food and feed industry. Copyright © 2018. Published by Elsevier B.V.

  7. Novel Coprinopsis cinerea Polyesterase That Hydrolyzes Cutin and Suberin▿ †

    PubMed Central

    Kontkanen, Hanna; Westerholm-Parvinen, Ann; Saloheimo, Markku; Bailey, Michael; Rättö, Marjaana; Mattila, Ismo; Mohsina, Marzia; Kalkkinen, Nisse; Nakari-Setälä, Tiina; Buchert, Johanna

    2009-01-01

    Three cutinase gene-like genes from the basidiomycete Coprinopsis cinerea (Coprinus cinereus) found with a similarity search were cloned and expressed in Trichoderma reesei under the control of an inducible cbh1 promoter. The selected transformants of all three polyesterase constructs showed activity with p-nitrophenylbutyrate, used as a model substrate. The most promising transformant of the cutinase CC1G_09668.1 gene construct was cultivated in a laboratory fermentor, with a production yield of 1.4 g liter−l purified protein. The expressed cutinase (CcCUT1) was purified to homogeneity by immobilized metal affinity chromatography exploiting a C-terminal His tag. The N terminus of the enzyme was found to be blocked. The molecular mass of the purified enzyme was determined to be around 18.8 kDa by mass spectrometry. CcCUT1 had higher activity on shorter (C2 to C10) fatty acid esters of p-nitrophenol than on longer ones, and it also exhibited lipase activity. CcCUT1 had optimal activity between pH 7 and 8 but retained activity over a wide pH range. The enzyme retained 80% of its activity after 20 h of incubation at 50°C, but residual activity decreased sharply at 60°C. Microscopic analyses and determination of released hydrolysis products showed that the enzyme was able to depolymerize apple cutin and birch outer bark suberin. PMID:19201950

  8. Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin.

    PubMed

    Kontkanen, Hanna; Westerholm-Parvinen, Ann; Saloheimo, Markku; Bailey, Michael; Rättö, Marjaana; Mattila, Ismo; Mohsina, Marzia; Kalkkinen, Nisse; Nakari-Setälä, Tiina; Buchert, Johanna

    2009-04-01

    Three cutinase gene-like genes from the basidiomycete Coprinopsis cinerea (Coprinus cinereus) found with a similarity search were cloned and expressed in Trichoderma reesei under the control of an inducible cbh1 promoter. The selected transformants of all three polyesterase constructs showed activity with p-nitrophenylbutyrate, used as a model substrate. The most promising transformant of the cutinase CC1G_09668.1 gene construct was cultivated in a laboratory fermentor, with a production yield of 1.4 g liter(-l) purified protein. The expressed cutinase (CcCUT1) was purified to homogeneity by immobilized metal affinity chromatography exploiting a C-terminal His tag. The N terminus of the enzyme was found to be blocked. The molecular mass of the purified enzyme was determined to be around 18.8 kDa by mass spectrometry. CcCUT1 had higher activity on shorter (C(2) to C(10)) fatty acid esters of p-nitrophenol than on longer ones, and it also exhibited lipase activity. CcCUT1 had optimal activity between pH 7 and 8 but retained activity over a wide pH range. The enzyme retained 80% of its activity after 20 h of incubation at 50 degrees C, but residual activity decreased sharply at 60 degrees C. Microscopic analyses and determination of released hydrolysis products showed that the enzyme was able to depolymerize apple cutin and birch outer bark suberin.

  9. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization

    PubMed Central

    Kim, Tae-Su; Patel, Sanjay K. S.; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-01-01

    A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s−1 toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP+ (vs. only 2.5% relative activity with NAD+). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP+-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol. PMID:27633501

  10. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization.

    PubMed

    Kim, Tae-Su; Patel, Sanjay K S; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-09-16

    A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s(-1) toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP(+) (vs. only 2.5% relative activity with NAD(+)). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP(+)-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol.

  11. [Characterization of D-lactate dehydrogenase isozymes from a D-lactic acid producing bacterium Sporolactobacillus inulinus].

    PubMed

    Zhang, Danru; Zheng, Lu; Wu, Bin; He, Bingfang

    2016-11-04

    Sporolactobacillus inulinus, a typical homofermentative lactic acid bacterium, is an efficient D-lactic acid producer. Various environment factors affect the productivity of S. inulinus. Glucokinase, phosphofructokinase, pyruvate kinase and lactic dehydrogenase are the key enzymes of D-lactic acid production from glucose by S. inulinus. The characteristics of these enzymes are important in controlling and regulating the fermentation process. According to the genome bioinformatics analysis of S. inulinus CASD, three putative D-lactate dehydrogenases were identified, among which the bifunctional protein had been reported. In this study, we provided insights into the characteristics of the other two D-lactate dehydrogenase isozymes. S. inulinus Y2-8 genome was used as the template to amplify D-lactate dehydrogenase gene (dldh) and D-isomer specific 2-hydroxyacid dehydrogenase gene (dhdh). The two recombinant strains E-pET-28a/dldh and E-pET-28a/dhdh were constructed for enzyme expression. Both recombinants DLDH and DHDH could convert pyruvic acid into D-lactic acid. Enzymes expressed by recombinant strains were purified by Ni-NTA chromatography. The apparent molecular mass of DLDH was approximately 37 kDa by SDS-PAGE analysis, and DLDH showed a high affinity to pyruvate with the Km value of (0.58±0.04) mmol/L. The optimal reaction temperature and pH for DLDH was 35℃ and 6.5, respectively. The apparent molecular mass of DHDH was approximately 39 kDa, and the Km of DHDH toward pyruvate was (1.70±0.08) mmol/L. The optimum catalysis temperature and pH of DHDH were 30℃ and 7.5, respectively. According to the Km and optimal reaction pH, DLDH was suggested as the main catalyst in formation D-lactic acid from pyruvate during the fermentation. The enzymatic properties would contribute to the regulation of the fermentation of S. inulinus.

  12. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: optimization by response surface methodology.

    PubMed

    Zhou, D; Xu, X; Mu, H; Høy, C E; Adler-Nissen, J

    2001-12-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S(r)), enzyme load (E(l), based on substrate), water content (W(c), based on enzyme), and reaction temperature (T(e)), the five most important parameters for the reaction, were chosen for the optimization. The range of each parameter was selected as follows: t(r) = 5-17 h; E(l) = 6-14 wt %; T(e) = 45-65 degrees C; S(r) = 2-6 mol/mol; and W(c) = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; S(r) = 5; E(l) = 14 wt %; W(c) = 10 wt %; T(e) = 65 degrees C. At these conditions, products with 55 mol % incorporation of caproic acid and 55 mol % di-incorporated structured triacylglycerols were obtained.

  13. Development and Evaluation of Recombinant Nucleocapsid Protein Based Diagnostic ELISA for Detection of Nipah Virus Infection in Pigs.

    PubMed

    Kulkarni, Diwakar D; Venkatesh, Govindarajalu; Tosh, Chakradhar; Patel, Priyanka; Mashoria, Anita; Gupta, Vandana; Gupta, Sourabh; D, Senthilkumar

    2016-01-01

    The recombinant viral protein-based indirect enzyme-linked immunosorbent assay (ELISA) is a cost-effective, safe, specific, and rapid tool to diagnose the viral infection. Nipah virus nucleocapsid (NiV-N) protein was expressed in Escherichia coli and purified by histidine tag-based affinity chromatography. The N protein was selected based on its immuno dominance and conservation among different NiV strains. An indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for swine sera was optimized using the recombinant NiV-N protein as an antigen along with negative and positive controls. The background reading was blocked using skim milk powder and chicken serum. A total number of 1709 swine serum samples from various states of India were tested with indirect ELISA and Western blot. The test was considered positive only when its total reactivity reading was higher than 0.2 cut-off value and the ratio of the total reactivity to the background reading was more than 2.0. Since specificity is high for Western blotting it was used as standard test for comparison of results of indirect ELISA. Sensitivity and specificity of indirect ELISA was 100% and 98.7%, respectively, in comparison with Western blotting. Recombinant N protein-based ELISA can be used in screening large number of serum samples for epidemiological investigations in developing countries where high containment laboratories are not available to handle this zoonotic virus.

  14. A simple method to determine IgG light chain to heavy chain polypeptide ratios expressed by CHO cells.

    PubMed

    Gerster, Anja; Wodarczyk, Claas; Reichenbächer, Britta; Köhler, Janet; Schulze, Andreas; Krause, Felix; Müller, Dethardt

    2016-12-01

    To establish a high-throughput method for determination of antibodies intra- and extracellular light chain (LC) to heavy chain (HC) polypeptide ratio as screening parameter during cell line development. Chinese Hamster Ovary (CHO) TurboCell pools containing different designed vectors supposed to result in different LC:HC polypeptide ratios were generated by targeted integration. Cell culture supernatants and cell lysates of a fed batch experiment were purified by combined Protein A and anti-kappa affinity batch purification in 96-well format. Capture of all antibodies and their fragments allowed the determination of the intra- and extracellular LC:HC peptide ratios by reduced SDS capillary electrophoresis. Results demonstrate that the method is suitable to show the significant impact of the vector design on the intra- and extracellular LC:HC polypeptide ratios. Determination of LC:HC polypeptide ratios can give important information in vector design optimization leading to CHO cell lines with optimized antibody assembly and preferred product quality.

  15. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae.

    PubMed

    Miandare, Hamed Kolangi; Mirghaed, Ali Taheri; Hosseini, Marjan; Mazloumi, Nastaran; Zargar, Ashkan; Nazari, Sajad

    2017-11-01

    Pacific white shrimp Litopenaeus vannamei (Boone, 1931) is an important economical shrimp species worldwide, especially in the Middle East region, and farming activities of this species have been largely affected by diseases, mostly viral and bacterial diseases. Scientists have started to use prebiotics for bolstering the immune status of the animal. This study aimed to investigate the influence of Immunogen ® on growth, digestive enzyme activity and immune related gene expression of Litopenaeus vannamei post-larvae. All post-larvae were acclimated to the laboratory condition for 14 days. Upon acclimation, shrimps were fed on different levels of Immunogen ® (0, 0.5, 1 and 1.5 g kg -1 ) for 60 days. No significant differences were detected in weight gain, specific growth rate (SGR) and food conversion ratio (FCR) in shrimp post-larvae in which fed with different levels of Immunogen ® and control diet. The results showed that digestive enzymes activity including protease and lipase increased with different amounts of Immunogen ® in the shrimp diet. Protease activity increased with 1.5 g kg -1 Immunogen ® after 60 days and lipase activity increased with 1 and 1.5 g kg -1 Immunogen ® after 30 and 60 days of the trial respectively (P < 0.05), while amylase activity did not change in response to different levels of Immunogen ® (P > 0.05). The expression of immune related genes including, prophenoloxidase, crustin and g-type lysozyme increased with diet 1.5 g kg -1 Immunogen ® (P < 0.05) while expression of penaeidin gene increased only with experimental diet 1 g kg -1 of Immunogen ® . These results indicated that increase in digestive enzymes activity and expression of immune related genes could modulate the Immunogen ® in the innate immune system in L. vannamei in this study. Copyright © 2017. Published by Elsevier Ltd.

  16. Optimization of Clonazepam Therapy Adjusted to Patient's CYP3A Status and NAT2 Genotype.

    PubMed

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István; Monostory, Katalin

    2016-12-01

    The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients' CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. The patients' CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  17. Production and partial purification of tannase from Aspergillus ficuum Gim 3.6.

    PubMed

    Ma, Wan-liang; Zhao, Fen-fen; Ye, Qin; Hu, Zhen-xing; Yan, Dong; Hou, Jie; Yang, Yang

    2015-01-01

    A novel fungal strain, Aspergillus ficuum Gim 3.6, was evaluated for its tannase-producing capability in a wheat bran-based solid-state fermentation. Thin-layer chromatography (TLC) analysis revealed that the strain was able to degrade tannic acid to gallic acid and pyrogallol during the fermentation process. Quantitation of enzyme activity demonstrated that this strain was capable of producing a relatively high yield of extracellular tannase. Single-factor optimization of process parameters resulted in high yield of tannase after 60 hr of incubation at a pH of 5.0 at 30°C, 1 mL of inoculum size, and 1:1 solid-liquid ratio in the presence of 2.0% (w/v) tannic acid as inducer. The potential of aqueous two-phase extraction (ATPE) for the purification of tannase was investigated. Influence of various parameters such as phase-forming salt, molecular weight of polyethylene glycol (PEG), pH, and stability ratio on tannase partition and purification was studied. In all the systems, the target enzyme was observed to preferentially partition to the PEG-rich top phase, and the best result of purification (2.74-fold) with an enzyme activity recovery of 77.17% was obtained in the system containing 17% (w/w) sodium citrate and 18.18% (w/w) PEG1000, at pH 7.0.

  18. The effectiveness of crude papain enzyme supplement for tilapia’s (Oreochromis niloticus) growth at the floating nets of Cirata Reservoir

    NASA Astrophysics Data System (ADS)

    Rostika, R.; Sunarto; Sugiyanto, H. N.; Dewanti, L. P.

    2018-03-01

    Papain is an enzyme capable of hydrolyzing protease into a more simple elements i.e. the peptide to amino acids. The enzyme in the feed can increase the absorption of protein and digestion rate in the digestive tract of fish. This research examined the effective level of enzyme papain to increase the Feed Utilization Efficiency (FUE), Protein Efficiency Ratio (PER) and Average Daily Gain (ADG). This research used Completely Randomized Design (CRD) with five treatments i.e. treatment A (control), treatment B (1.5 %), treatment C (2.25 %), treatment D (3 %) and treatment E (3.75 %) in triplicate. Tilapia (Oreochromis niloticus) with the average initial weight of 17 g, and initial total lenght of 8–10 cm was fed three times daily at feeding rate of 5 % of the total body weight. The results showed that supplementation of papain in the feed significantly increased the activity of protease, FUE, PER and ADG. The optimal dose of the enzyme papain at 3.75 % was able to increase 48.31 % of FUE, 2.13 % of PER and 2.07 % of ADG.

  19. Expression in Escherichia coli, refolding and crystallization of Aspergillus niger feruloyl esterase A using a serial factorial approach.

    PubMed

    Benoit, Isabelle; Coutard, Bruno; Oubelaid, Rachid; Asther, Marcel; Bignon, Christophe

    2007-09-01

    Hydrolysis of plant biomass is achieved by the combined action of enzymes secreted by microorganisms and directed against the backbone and the side chains of plant cell wall polysaccharides. Among side chains degrading enzymes, the feruloyl esterase A (FAEA) specifically removes feruloyl residues. Thus, FAEA has potential applications in a wide range of industrial processes such as paper bleaching or bio-ethanol production. To gain insight into FAEA hydrolysis activity, we solved its crystal structure. In this paper, we report how the use of four consecutive factorial approaches (two incomplete factorials, one sparse matrix, and one full factorial) allowed expressing in Escherichia coli, refolding and then crystallizing Aspergillus niger FAEA in 6 weeks. Culture conditions providing the highest expression level were determined using an incomplete factorial approach made of 12 combinations of four E. coli strains, three culture media and three temperatures (full factorial: 36 combinations). Aspergillus niger FAEA was expressed in the form of inclusion bodies. These were dissolved using a chaotropic agent, and the protein was purified by affinity chromatography on Ni column under denaturing conditions. A suitable buffer for refolding the protein eluted from the Ni column was found using a second incomplete factorial approach made of 96 buffers (full factorial: 3840 combinations). After refolding, the enzyme was further purified by gel filtration, and then crystallized following a standard protocol: initial crystallization conditions were found using commercial crystallization screens based on a sparse matrix. Crystals were then optimized using a full factorial screen.

  20. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    PubMed

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  1. Selection and Validation of Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Studies in Mossy Maze Polypore, Cerrena unicolor (Higher Basidiomycetes).

    PubMed

    Yang, Jie; Lin, Qi; Lin, Juan; Ye, Xiuyun

    2016-01-01

    With its ability to produce ligninolytic enzymes such as laccases, white-rot basidiomycete Cerrena unicolor, a medicinal mushroom, has great potential in biotechnology. Elucidation of the expression profiles of genes encoding ligninolytic enzymes are important for increasing their production. Quantitative real-time polymerase chain reaction (qPCR) is a powerful tool to study transcriptional regulation of genes of interest. To ensure accuracy and reliability of qPCR analysis of C. unicolor, expression levels of seven candidate reference genes were studied at different growth phases, under various induction conditions, and with a range of carbon/nitrogen ratios and carbon and nitrogen sources. The stability of the genes were analyzed with five statistical approaches, namely geNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder. Our results indicated that the selection of reference genes varied with sample sets. A combination of four reference genes (Cyt-c, ATP6, TEF1, and β-tubulin) were recommended for normalizing gene expression at different growth phases. GAPDH and Cyt-c were the appropriate reference genes under different induction conditions. ATP6 and TEF1 were most stable in fermentation media with various carbon/nitrogen ratios. In the fermentation media with various carbon or nitrogen sources, 18S rRNA and GAPDH were the references of choice. The present study represents the first validation analysis of reference genes in C. unicolor and serves as a foundation for its qPCR analysis.

  2. Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy.

    PubMed

    Paran, Christopher W; Zou, Kai; Ferrara, Patrick J; Song, Haowei; Turk, John; Funai, Katsuhiko

    2015-12-01

    Muscular dystrophy is accompanied by a reduction in activity of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) that contributes to abnormal Ca(2+) homeostasis in sarco/endoplasmic reticulum (SR/ER). Recent findings suggest that skeletal muscle fatty acid synthase (FAS) modulates SERCA activity and muscle function via its effects on SR membrane phospholipids. In this study, we examined muscle's lipid metabolism in mdx mice, a mouse model for Duchenne muscular dystrophy (DMD). De novo lipogenesis was ~50% reduced in mdx muscles compared to wildtype (WT) muscles. Gene expressions of lipogenic and other ER lipid-modifying enzymes were found to be differentially expressed between wildtype (WT) and mdx muscles. A comprehensive examination of muscles' SR phospholipidome revealed elevated phosphatidylcholine (PC) and PC/phosphatidylethanolamine (PE) ratio in mdx compared to WT mice. Studies in primary myocytes suggested that defects in key lipogenic enzymes including FAS, stearoyl-CoA desaturase-1 (SCD1), and Lipin1 are likely contributing to reduced SERCA activity in mdx mice. Triple transgenic expression of FAS, SCD1, and Lipin1 (3TG) in mdx myocytes partly rescued SERCA activity, which coincided with an increase in SR PE that normalized PC/PE ratio. These findings implicate a defect in lipogenesis to be a contributing factor for SERCA dysfunction in muscular dystrophy. Restoration of muscle's lipogenic pathway appears to mitigate SERCA function through its effects on SR membrane composition. Copyright © 2015. Published by Elsevier B.V.

  3. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

    NASA Astrophysics Data System (ADS)

    Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2018-06-01

    Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

  4. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP).

    PubMed

    Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.

  5. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    NASA Astrophysics Data System (ADS)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  6. On-site cellulase production and efficient saccharification of corn stover employing cbh2 overexpressing Trichoderma reesei with novel induction system.

    PubMed

    Li, Yonghao; Zhang, Xiaoyue; Xiong, Liang; Mehmood, Muhammad Aamer; Zhao, Xinqing; Bai, Fengwu

    2017-08-01

    Although on-site cellulase production offers cost-effective saccharification of lignocellulosic biomass, low enzyme titer is still a barrier for achieving robustness. In the present study, a strain of T. reesei was developed for enhanced production of cellulase via overexpression of Cellobiohydrolase II. Furthermore, optimum enzyme production was achieved using a novel inducer mixture containing synthesized glucose-sophorose (MGD) and alkali pre-treated corn stover (APCS). Within 60h, a remarkably higher cellulase productivity and activity were achieved in the fed-batch fermentation using the optimized ratio of MGD and APCS in the inducer mixture, compared to those reported using cellulosic biomass as the sole inducer. After the enzyme production, APCS was added directly into the fermentation broth at 20% solid loading, which produced 122.5g/L glucose and 40.21g/L xylose, leading to the highest yield reported so far. The improved enzyme titers during on-site cellulase production would benefit cost-competitive saccharification of lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2

    PubMed Central

    Ramírez-Alcántara, Verónica

    2014-01-01

    Pharmacotherapy based on 5-aminosalicylic acid (5-ASA) is a preferred treatment for ulcerative colitis, but variable patient response to this therapy is observed. Inflammation can affect therapeutic outcomes by regulating the expression and activity of drug-metabolizing enzymes; its effect on 5-ASA metabolism by the colonic arylamine N-acetyltransferase (NAT) enzyme isoforms is not firmly established. We examined if inflammation affects the capacity for colonic 5-ASA metabolism and NAT enzyme expression. 5-ASA metabolism by colonic mucosal homogenates was directly measured with a novel fluorimetric rate assay. 5-ASA metabolism reported by the assay was dependent on Ac-CoA, inhibited by alternative NAT substrates (isoniazid, p-aminobenzoylglutamate), and saturable with Km (5-ASA) = 5.8 μM. A mouse model of acute dextran sulfate sodium (DSS) colitis caused pronounced inflammation in central and distal colon, and modest inflammation of proximal colon, defined by myeloperoxidase activity and histology. DSS colitis reduced capacity for 5-ASA metabolism in central and distal colon segments by 52 and 51%, respectively. Use of selective substrates of NAT isoforms to inhibit 5-ASA metabolism suggested that mNAT2 mediated 5-ASA metabolism in normal and colitis conditions. Western blot and real-time RT-PCR identified that proximal and distal mucosa had a decreased mNAT2 protein-to-mRNA ratio after DSS. In conclusion, an acute colonic inflammation impairs the expression and function of mNAT2 enzyme, thereby diminishing the capacity for 5-ASA metabolism by colonic mucosa. PMID:24742986

  8. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli.

    PubMed

    Weng, MeiZhi; Zheng, ZhongLiang; Bao, Wei; Cai, YongJun; Yin, Yan; Zou, GuoLin; Zou, GouLin

    2009-11-01

    Nattokinase (subtilisin NAT, NK) is a bacterial serine protease with strong fibrinolytic activity and it is a potent cardiovascular drug. In medical and commercial applications, however, it is susceptible to chemical oxidation, and subsequent inactivation or denaturation. Here we show that the oxidative stability of NK was substantially increased by optimizing the amino acid residues Thr(220) and Met(222), which were in the vicinity of the catalytic residue Ser(221) of the enzyme. Two nonoxidative amino acids (Ser and Ala) were introduced at these sites using site-directed mutagenesis. Active enzymes were successfully expressed in Escherichia coli with periplasmic secretion and enzymes were purified to homogeneity. The purified enzymes were analyzed with respect to oxidative stability, kinetic parameters, fibrinolytic activity and thermal stability. M222A mutant was found to have a greatly increased oxidative stability compared with wild-type enzyme and it was resistant to inactivation by more than 1 M H(2)O(2), whereas the wild-type enzyme was inactivated by 0.1 M H(2)O(2) (t(1/2) approximately 11.6 min). The other mutant (T220S) also showed an obvious increase in antioxidative ability. Molecular dynamic simulations on wild-type and T220S mutant proteins suggested that a hydrogen bond was formed between Ser(220) and Asn(155), and the spatial structure of Met(222) was changed compared with the wild-type. The present study demonstrates the feasibility of improving oxidative stability of NK by site-directed mutagenesis and shows successful protein engineering cases to improve stability of NK as a potent therapeutic agent.

  9. Radiolabeled inhibitors as probes for imaging mutant IDH1 expression in gliomas: Synthesis and preliminary evaluation of labeled butyl-phenyl sulfonamide analogs.

    PubMed

    Chitneni, Satish K; Reitman, Zachary J; Gooden, David M; Yan, Hai; Zalutsky, Michael R

    2016-08-25

    Malignant gliomas frequently harbor mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Studies suggest that IDH mutation contributes to tumor pathogenesis through mechanisms that are mediated by the neomorphic metabolite of the mutant IDH1 enzyme, 2-hydroxyglutarate (2-HG). The aim of this work was to synthesize and evaluate radiolabeled compounds that bind to the mutant IDH1 enzyme with the goal of enabling noninvasive imaging of mutant IDH1 expression in gliomas by positron emission tomography (PET). A small library of nonradioactive analogs were designed and synthesized based on the chemical structure of reported butyl-phenyl sulfonamide inhibitors of mutant IDH1. Enzyme inhibition assays were conducted using purified mutant IDH1 enzyme, IDH1-R132H, to determine the IC50 and the maximal inhibitory efficiency of the synthesized compounds. Selected compounds, 1 and 4, were labeled with radioiodine ((125)I) and/or (18)F using bromo- and phenol precursors, respectively. In vivo behavior of the labeled inhibitors was studied by conducting tissue distribution studies with [(125)I]1 in normal mice. Cell uptake studies were conducted using an isogenic astrocytoma cell line that carried a native IDH1-R132H mutation to evaluate the potential uptake of the labeled inhibitors in IDH1-mutated tumor cells. Enzyme inhibition assays showed good inhibitory potency for compounds that have iodine or a fluoroethoxy substituent at the ortho position of the phenyl ring in compounds 1 and 4 with IC50 values of 1.7 μM and 2.3 μM, respectively. Compounds 1 and 4 inhibited mutant IDH1 activity and decreased the production of 2-HG in an IDH1-mutated astrocytoma cell line. Radiolabeling of 1 and 4 was achieved with an average radiochemical yield of 56.6 ± 20.1% for [(125)I]1 (n = 4) and 67.5 ± 6.6% for [(18)F]4 (n = 3). [(125)I]1 exhibited favorable biodistribution characteristics in normal mice, with rapid clearance from the blood and elimination via the hepatobiliary system by 4 h after injection. The uptake of [(125)I]1 in tumor cells positive for IDH1-R132H was significantly higher compared to isogenic WT-IDH1 controls, with a maximal uptake ratio of 1.67 at 3 h post injection. Co-incubation of the labeled inhibitors with the corresponding nonradioactive analogs, and decreasing the normal concentrations of FBS (10%) in the incubation media substantially increased the uptake of the labeled inhibitors in both the IDH1-mutant and WT-IDH1 tumor cell lines, suggesting significant non-specific binding of the synthesized labeled butyl-phenyl sulfonamide inhibitors. These data demonstrate the feasibility of developing radiolabeled probes for the mutant IDH1 enzyme based on enzyme inhibitors. Further optimization of the labeled inhibitors by modifying the chemical structure to decrease the lipophilicity and to increase potency may yield compounds with improved characteristics as probes for imaging mutant IDH1 expression in tumors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

    PubMed

    Sun, Wen-Jing; Zhao, Hong-Xia; Cui, Feng-Jie; Li, Yun-Hong; Yu, Si-Lian; Zhou, Qiang; Qian, Jing-Ya; Dong, Ying

    2013-07-08

    Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM). The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

  11. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology

    PubMed Central

    2013-01-01

    Background Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid’s oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One–factor-at-a-time experiments and response surface methodology (RSM). Results The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from “one–factor-at-a-time” experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. Conclusion The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives. PMID:23835418

  12. Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements.

    PubMed

    Gu, Yanyan; Zheng, Jiayi; Feng, Jun; Cao, Mingfeng; Gao, Weixia; Quan, Yufen; Dang, Yulei; Wang, Yi; Wang, Shufang; Song, Cunjiang

    2017-05-01

    Levan is a functional homopolymer of fructose with considerable applications in food, pharmaceutical and cosmetic industries. To improve the levan production in Bacillus amyloliquefaciens, the regulatory elements of sacB (encoding levansucrase) expression and levansucrase secretion were optimized. Four heterologous promoters were evaluated for sacB expression, and the Pgrac promoter led to the highest level for both sacB transcription and levansucrase enzyme activity. The levan production in the corresponding recombinant strain ΔLP-pHTPgrac reached 30.5 g/L, which was 114% higher than that of the control strain NK-ΔLP. In a further step, eight signal peptides were investigated (with Pgrac as the promoter for sacB expression) for their effects on the levansucrase secretion and levan production. The signal peptide yncM was identified as the optimal one, with a secretion efficiency of approximately 90%, and the levan production in the corresponding recombinant strain ΔLP-Y reached 37.4 g/L, which was 161% higher when compared with the control strains NK-ΔLP. Finally, fed-batch fermentation was carried out in 5-L bioreactors for levan production using the recombinant strain ΔLP-Y. A final levan concentration of 102 g/L was achieved, which is very close to the ever reported highest levan production level from the literature. To our best knowledge, this is the first report of the improvement of levan production through metabolic optimization for sacB expression and levansucrase secretion. The results from this study provided essential insights for systematically metabolic engineering of microbial cell factories for enhanced biochemical production.

  13. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase

    PubMed Central

    Puzzo, Francesco; Colella, Pasqualina; Biferi, Maria G.; Bali, Deeksha; Paulk, Nicole K.; Vidal, Patrice; Collaud, Fanny; Simon-Sola, Marcelo; Charles, Severine; Hardet, Romain; Leborgne, Christian; Meliani, Amine; Cohen-Tannoudji, Mathilde; Astord, Stephanie; Gjata, Bernard; Sellier, Pauline; van Wittenberghe, Laetitia; Vignaud, Alban; Boisgerault, Florence; Barkats, Martine; Laforet, Pascal; Kay, Mark A.; Koeberl, Dwight D.; Ronzitti, Giuseppe; Mingozzi, Federico

    2018-01-01

    Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa−/−) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa−/− mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector–mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease. PMID:29187643

  14. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.

    PubMed

    Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui

    2017-09-01

    In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

  15. Hsp27 (HSPB1) differential expression in normal salivary glands and pleomorphic adenomas and association with an increased Bcl2/Bax ratio.

    PubMed

    Siqueira, Elisa C de; Souza, Fabrício T A; Diniz, Marina G; Gomez, Ricardo S; Gomes, Carolina C

    2015-01-01

    Pleomorphic adenoma (PA) is the most common salivary gland neoplasm. The Hsp27 (HSPB1) is an antiapoptotic protein whose synthesis follows cytotoxic stresses and result in a transient increase in tolerance to subsequent cell injury. Although Hsp27 is expressed in a range of normal tissues and neoplasms, a wide variation in its expression exists among different cells and tissues types. In certain tumours of glandular origin (such as oesophageal adenocarcinomas), the level of Hsp27 is decreased. In the present study, Hsp27 protein levels were evaluated by enzyme-linked immunosorbent assay (ELISA) in a set of 18 fresh PA and 12 normal salivary gland samples. In addition, we tested if Hsp27 protein levels correlated with p53 expression and cell proliferation index, as well as with the transcriptional levels of Bcl-2-associated X protein (BAX), B cell lymphoma 2 (BCL2) and Caspase 3 in PA. We further tested the association between Hsp27 expression and PA tumour size. While all normal salivary gland samples expressed Hsp27 protein, only half of the PA samples expressed it, resulting in a reduced expression of Hsp27 in PA when compared with normal salivary glands (P = 0.003). The expression levels of this protein correlated positively with a higher messenger ribonucleic acid (mRNA) ratio of Bcl2/Bax (R = 0.631; P = 0.01). In conclusion, a decreased Hsp27 protein expression level in PA was found. In addition, Hsp27 levels correlated positively with the Bcl2/Bax mRNA ratio, suggesting an antiapoptotic effect.

  16. Mutational optimization of the coelenterazine-dependent luciferase from Renilla.

    PubMed

    Woo, Jongchan; von Arnim, Albrecht G

    2008-09-30

    Renilla luciferase (RLUC) is a popular reporter enzyme for gene expression and biosensor applications, but it is an unstable enzyme whose catalytic mechanism remains to be elucidated. We titrated that one RLUC molecule can turn over about one hundred molecules of coelenterazine substrate. Mutagenesis of active site residue Pro220 extended the half-life of photon emission, yielding brighter luminescence in E. coli. Random mutagenesis uncovered two new mutations that stabilized and increased photon emission in vivo and in vitro, while ameliorating substrate inhibition. Further amended with a previously identified mutation, a new triple mutant showed a threefold improved kcat, as well as elevated luminescence in Arabidopsis. This advances the utility of RLUC as a reporter protein, biosensor, or resonance energy donor.

  17. Mutational optimization of the coelenterazine-dependent luciferase from Renilla

    PubMed Central

    Woo, Jongchan; von Arnim, Albrecht G

    2008-01-01

    Renilla luciferase (RLUC) is a popular reporter enzyme for gene expression and biosensor applications, but it is an unstable enzyme whose catalytic mechanism remains to be elucidated. We titrated that one RLUC molecule can turn over about one hundred molecules of coelenterazine substrate. Mutagenesis of active site residue Pro220 extended the half-life of photon emission, yielding brighter luminescence in E. coli. Random mutagenesis uncovered two new mutations that stabilized and increased photon emission in vivo and in vitro, while ameliorating substrate inhibition. Further amended with a previously identified mutation, a new triple mutant showed a threefold improved kcat, as well as elevated luminescence in Arabidopsis. This advances the utility of RLUC as a reporter protein, biosensor, or resonance energy donor. PMID:18826616

  18. Immobilization of Chlamydomonas reinhardtii CLH1 on APTES-Coated Magnetic Iron Oxide Nanoparticles and Its Potential in the Production of Chlorophyll Derivatives.

    PubMed

    Yen, Chih-Chung; Chuang, Yao-Chen; Ko, Chia-Yun; Chen, Long-Fang O; Chen, Sheau-Shyang; Lin, Chia-Jung; Chou, Yi-Li; Shaw, Jei-Fu

    2016-07-26

    Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3-5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50-60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives.

  19. Heterologous Expression and Characterization of a Thermostable Exo-β-D-Glucosaminidase from Aspergillus oryzae.

    PubMed

    Wu, Dingxin; Wang, Linchun; Li, Yuwei; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-02-01

    An exo-β-D-glucosaminidase (AorCsxA) from Aspergillus oryzae FL402 was heterologously expressed and purified. The deduced amino acid sequence indicated that AorCsxA belonged to glycoside hydrolase family 2. AorCsxA digested colloid chitosan into glucosamine but not into chitosan oligosaccharides, demonstrating exo-β-D-glucosaminidase (CsxA) activity. AorCsxA exhibited optimal activity at pH 5.5 and 50°C; however, the enzyme expressed in Pichia pastoris (PpAorCsxA) showed much stronger thermostability at 50°C than that expressed in Escherichia coli (EcAorCsxA), which may be related to glycosylation. AorCsxA activity was inhibited by EDTA and most of the tested metal ions. A single amino acid mutation (F769W) in AorCsxA significantly enhanced the specific activity and hydrolysis velocity as revealed by comparison of Vmax and kcat values with those of the wild-type enzyme. The three-dimensional structure suggested the tightened pocket at the active site of F769W enabled efficient substrate binding. The AorCsxA gene was heterologously expressed in P. pastoris, and one transformant was found to produce 222 U/ml activity during the high-cell-density fermentation. This AorCsxA-overexpressing P. pastoris strain is feasible for large-scale production of AorCsxA.

  20. Tissue-specific regulation of malic enzyme by thyroid hormone in the neonatal rat.

    PubMed

    Sood, A; Schwartz, H L; Oppenheimer, J H

    1996-05-15

    Two recent studies have claimed that thyroid hormone administration accelerates malic enzyme gene expression in the neonatal brain in contrast to the well-documented lack of effect of triiodothyronine on malic enzyme gene expression in the adult brain. Since these observations conflict with earlier observations in our laboratory, we reinvestigated the effect of thyroid hormone status on the ontogeny of malic enzyme gene expression in the neonatal rat. Neither hypothyroidism nor hyperthyroidism influenced the ontogenesis of malic enzyme activity in neonatal brain whereas the patterns of gene expression and enzyme activity in liver were markedly affected. Our results suggest that tissue-specific factors in brain block thyroid hormone-induced gene expression by thyroid hormone.

  1. Performance of an ultrafiltration membrane bioreactor (UF-MBR) as a processing strategy for the synthesis of galacto-oligosaccharides at high substrate concentrations.

    PubMed

    Córdova, Andrés; Astudillo, Carolina; Vera, Carlos; Guerrero, Cecilia; Illanes, Andrés

    2016-04-10

    The performance of an ultrafiltration membrane bioreactor for galacto-oligosaccharides (GOS) synthesis using high lactose concentrations (470 g/L) and β-galactosidase from Aspergillus oryzae was assessed. Tested processing variables were: transmembrane-pressure (PT), crossflow-velocity (CFV) and temperature. Results showed that processing variables had significant effect on the yield, the enzyme productivity and the flux but did not on GOS concentration and reaction conversion obtained. As expected, the use of high turbulences improved mass transfer and reduced the membrane fouling, but the use of very high crossflow-velocities caused operational instability due to vortex formation and lactose precipitation. The use of a desirability function allowed determining optimal conditions which were: PT (4.38 bar), CFV (7.35 m/s) and temperature (53.1 °C), optimizing simultaneously flux and specific enzyme productivity Under these optimal processing conditions, shear-stress and temperature did not affect the enzyme but long-term operation was limited by flux decay. In comparison to a conventional batch system, at 12.5h of processing time, the continuous GOS synthesis in the UF-MBR increased significantly the amount of processed substrate and a 2.44-fold increase in the amount of GOS produced per unit mass of catalyst was obtained with respect to a conventional batch system. Furthermore, these results can be improved by far by tuning the membranearea/reactionvolume ratio, showing that the use of an UF-MBR is an attractive alternative for the GOS synthesis at very high lactose concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. N- vs. C-Domain Selectivity of Catalytic Inactivation of Human Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    PubMed Central

    Hocharoen, Lalintip; Joyner, Jeff C.; Cowan, J. A.

    2014-01-01

    The N- and C-terminal domains of human somatic Angiotensin I Converting Enzyme (sACE-1) demonstrate distinct physiological functions, with resulting interest in the development of domain-selective inhibitors for specific therapeutic applications. Herein, the activity of lisinopril-coupled transition metal chelates were tested for both reversible binding and irreversible catalytic inactivation of sACE-1. C/N domain binding selectivity ratios ranged from 1 to 350, while rates of irreversible catalytic inactivation of the N- and C-domains were found to be significantly greater for the N-domain, suggesting a more optimal orientation of the M-chelate-lisinopril complexes within the active site of the N-domain of sACE-1. Finally, the combined effect of binding selectivity and inactivation selectivity was assessed for each catalyst (double-filter selectivity factors), and several catalysts were found to cause domain-selective catalytic inactivation. The results of this study demonstrate the ability to optimize the target selectivity of catalytic metallopeptides through both binding and orientation factors (double-filter effect). PMID:24228790

  3. N- versus C-domain selectivity of catalytic inactivation of human angiotensin converting enzyme by lisinopril-coupled transition metal chelates.

    PubMed

    Hocharoen, Lalintip; Joyner, Jeff C; Cowan, J A

    2013-12-27

    The N- and C-terminal domains of human somatic angiotensin I converting enzyme (sACE-1) demonstrate distinct physiological functions, with resulting interest in the development of domain-selective inhibitors for specific therapeutic applications. Herein, the activity of lisinopril-coupled transition metal chelates was tested for both reversible binding and irreversible catalytic inactivation of each domain of sACE-1. C/N domain binding selectivity ratios ranged from 1 to 350, while rates of irreversible catalytic inactivation of the N- and C-domains were found to be significantly greater for the N-domain, suggesting a more optimal orientation of M-chelate-lisinopril complexes within the active site of the N-domain of sACE-1. Finally, the combined effect of binding selectivity and inactivation selectivity was assessed for each catalyst (double-filter selectivity factors), and several catalysts were found to cause domain-selective catalytic inactivation. The results of this study demonstrate the ability to optimize the target selectivity of catalytic metallopeptides through both binding and catalytic factors (double-filter effect).

  4. Optimisation of flavour ester biosynthesis in an aqueous system of coconut cream and fusel oil catalysed by lipase.

    PubMed

    Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2012-12-15

    Coconut cream and fusel oil, two low-cost natural substances, were used as starting materials for the biosynthesis of flavour-active octanoic acid esters (ethyl-, butyl-, isobutyl- and (iso)amyl octanoate) using lipase Palatase as the biocatalyst. The Taguchi design method was used for the first time to optimize the biosynthesis of esters by a lipase in an aqueous system of coconut cream and fusel oil. Temperature, time and enzyme amount were found to be statistically significant factors and the optimal conditions were determined to be as follows: temperature 30°C, fusel oil concentration 9% (v/w), reaction time 24h, pH 6.2 and enzyme amount 0.26 g. Under the optimised conditions, a yield of 14.25mg/g (based on cream weight) and signal-to-noise (S/N) ratio of 23.07 dB were obtained. The results indicate that the Taguchi design method was an efficient and systematic approach to the optimisation of lipase-catalysed biological processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate.

    PubMed

    Jia, Xiaojing; Liu, Ying; Han, Yejun

    2017-06-28

    Acetoin (3-hydroxy-2-butanone) is an important bio-based platform chemical with wide applications. In vitro enzyme catalysed synthesis exhibits great feasibility in the production of chemicals with high purity. In the present work, a synthetic pathway involving a two-step continuous reaction was constructed in vitro for acetoin production from pyruvate at improved temperature. Thermostable candidates, acetolactate synthase (coAHASL1 and coAHASL2 from Caldicellulosiruptor owensensis OL) and α-acetolactate decarboxylase (bsALDC from Bacillus subtilis IPE5-4) were cloned, heterologously expressed, and characterized. All the enzymes showed maximum activities at 65-70 °C and pH of 6.5. Enzyme kinetics analysis showed that coAHASL1 had a higher activity but lower affinity against pyruvate than that of coAHASL2. In addition, the activities of coAHASL1 and bsALDC were promoted by Mn 2+ and NADPH. The cascade enzymatic reaction was optimized by using coAHASL1 and bsALDC based on their kinetic properties. Under optimal conditions, a maximum concentration of 3.36 ± 0.26 mM acetoin was produced from 10 mM pyruvate after reaction for 24 h at 65 °C. The productivity of acetoin was 0.14 mM h -1 , and the yield was 67.80% compared with the theoretical value. The results confirmed the feasibility of synthesis of acetoin from pyruvate with a cell-free enzyme catalysed system at improved temperature.

  6. Steroid 5 alpha-reductase deficiency in a 65-year-old male pseudohermaphrodite: the natural history, ultrastructure of the testes, and evidence for inherited enzyme heterogeneity.

    PubMed

    Imperato-McGinley, J; Peterson, R E; Leshin, M; Griffin, J E; Cooper, G; Draghi, S; Berenyi, M; Wilson, J D

    1980-01-01

    We report a 65-yr-old male pseudohermaphrodite with steroid 5 alpha-reductase deficiency in whom there was no medical intervention before, during, or after puberty, enabling us to observe the natural history of this condition. The affected subject has an android build, with more facial and body hair than in previously described affected adults. Although the subject was raised as a girl, a male gender identity evolved with the events of puberty, but social factors have delayed the complete expression of a male gender role. Plasma levels of dihydrotestosterone and the in vivo conversion of radiolabeled testosterone to dihydrotestosterone were decreased. There was an elevated urinary etiocholanolone to androsterone ratio, typical of the syndrome. Characterization of 5 alpha-reductase enzyme activity in cultured genital skin fibroblasts demonstrated a pattern of enzyme activity distinctly different from three previously described families with this condition. There was decreased enzyme affinity for testosterone and NADPH. Also, the stability of the enzyme to elevated temperature was not protected by NADPH, resulting in rapid disappearance of enzyme activity after inhibition of protein synthesis with cycloheximide. Electron microscopic evaluation of the testes was carried out.

  7. Identification of the gene for β-fructofuranosidase from Ceratocystis moniliformis CMW 10134 and characterization of the enzyme expressed in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background β-Fructofuranosidases (or invertases) catalyse the commercially-important biotransformation of sucrose into short-chain fructooligosaccharides with wide-scale application as a prebiotic in the functional foods and pharmaceutical industries. Results We identified a β-fructofuranosidase gene (CmINV) from a Ceratocystis moniliformis genome sequence using protein homology and phylogenetic analysis. The predicted 615 amino acid protein, CmINV, grouped with an existing clade within the glycoside hydrolase (GH) family 32 and showed typical conserved motifs of this enzyme family. Heterologous expression of the CmINV gene in Saccharomyces cerevisiae BY4742∆suc2 provided further evidence that CmINV indeed functions as a β-fructofuranosidase. Firstly, expression of the CmINV gene complemented the inability of the ∆suc2 deletion mutant strain of S. cerevisiae to grow on sucrose as sole carbohydrate source. Secondly, the recombinant protein was capable of producing short-chain fructooligosaccharides (scFOS) when incubated in the presence of 10% sucrose. Purified deglycosylated CmINV protein showed a molecular weight of ca. 66 kDa and a Km and Vmax on sucrose of 7.50 mM and 986 μmol/min/mg protein, respectively. Its optimal pH and temperature conditions were determined to be 6.0 and 62.5°C, respectively. The addition of 50 mM LiCl led to a 186% increase in CmINV activity. Another striking feature was the relatively high volumetric production of this protein in S. cerevisiae as one mL of supernatant was calculated to contain 197 ± 6 International Units of enzyme. Conclusion The properties of the CmINV enzyme make it an attractive alternative to other invertases being used in industry. PMID:24225070

  8. Computational Analysis and Low-Scale Constitutive Expression of Laccases Synthetic Genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris

    PubMed Central

    Reyes-Guzmán, Edwin Alfredo; Poutou-Piñales, Raúl A.; Reyes-Montaño, Edgar Antonio; Pedroza-Rodríguez, Aura Marina; Rodríguez-Vázquez, Refugio; Cardozo-Bernal, Ángela M.

    2015-01-01

    Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications. PMID:25611746

  9. Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris.

    PubMed

    Rivera-Hoyos, Claudia M; Morales-Álvarez, Edwin David; Poveda-Cuevas, Sergio Alejandro; Reyes-Guzmán, Edwin Alfredo; Poutou-Piñales, Raúl A; Reyes-Montaño, Edgar Antonio; Pedroza-Rodríguez, Aura Marina; Rodríguez-Vázquez, Refugio; Cardozo-Bernal, Ángela M

    2015-01-01

    Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications.

  10. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    PubMed

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited Cdr1p expression by ~50%. We have developed a simple cloning strategy to fine-tune protein expression levels in yeast that has many potential applications in metabolic engineering and the optimization of protein expression in yeast. This study also highlights the importance of considering the use of multiple cloning-sites carefully to preclude unwanted effects on gene expression.

  11. Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast

    PubMed Central

    2013-01-01

    Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = −4.4 kcal/mol) inhibited Cdr1p expression by ~50%. Conclusion We have developed a simple cloning strategy to fine-tune protein expression levels in yeast that has many potential applications in metabolic engineering and the optimization of protein expression in yeast. This study also highlights the importance of considering the use of multiple cloning-sites carefully to preclude unwanted effects on gene expression. PMID:23895661

  12. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    PubMed

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SLACK, JEFFREY, M.

    Wood is a potential source for biofuels such as ethanol if it can be digested into sugars and fermented by yeast. Biomass derived from wood is a challenging substrate for ethanol production since it is made of lignin and cellulose which cannot be broken down easily into fermentable sugars. Some insects, and termites in particular, are specialized at using enzymes in their guts to digest wood into sugars. If termite gut enzymes could be made abundantly by a recombinant protein expression vector system, they could be applied to an industrial process to make biofuels from wood. In this study, amore » large cDNA library of relevant termite genes was made using termites fed a normal diet, or a diet with added lignin. A subtracted library yielded genes that were overexpressed in the presence of lignin. Termite gut enzyme genes were identified and cloned into recombinant insect viruses called baculoviruses. Using our PERLXpress system for protein expression, these termite gene recombinant baculoviruses were prepared and used to infect insect larvae, which then expressed abundant recombinant termite enzymes. Many of these expressed enzymes were prepared to very high purity, and the activities were studied in conjunction with collaborators at Purdue University. Recombinant termite enzymes expressed in caterpillars were shown to be able to release sugars from wood. Mixing different combinations of these enzymes increased the amount of sugars released from a model woody biomass substrate. The most economical, fastest and energy conserving way to prepare termite enzymes expressed by recombinant baculoviruses in caterpillars was by making crude liquid homogenates. Making enzymes stable in homogenates therefore was a priority. During the course of these studies, improvements were made to the recombinant baculovirus expression platform so that caterpillar-derived homogenates containing expressed termite enzymes would be more stable. These improvements in the baculoviruses included significantly reducing proteases and preventing blackening immune reactions that occur when caterpillars are homogenized. Proteases may degrade enzymes and immune reaction blackening may inactivate enzymes thus compromising the ability of these crude recombinant expressed termite enzyme preparations to release sugars. Commercial preparations of fungal enzymes currently are used to digest wood for ethanol production. We demonstrated in this study that termite enzymes could improve the efficiency of fungal enzyme cocktails. Although the economic feasibility of using caterpillar expressed termite enzymes alone to treat wood was not proven, this work points to the potential to combine C-PERLXpressed insect enzymes with industrial enzyme cocktails to boost their efficiency at treating wood for biofuels.« less

  14. Expression and purification of a functional recombinant aspartate aminotransferase (AST) from Escherichia coli.

    PubMed

    Zou, Lihui; Zhao, Haijian; Wang, Daguang; Wang, Meng; Zhang, Chuanbao; Xiao, Fei

    2014-07-01

    Aspartate aminotransferase (AST; E.C. 2.6.1.1), a vitamin B6-dependent enzyme, preferentially promotes the mutual transformation of aspartate and α-ketoglutarate to oxaloacetate and glutamate. It plays a key role in amino acid metabolism and has been widely recommended as a biomarker of liver and heart damage. Our study aimed to evaluate the extensive preparation of AST and its application in quality control in clinical laboratories. We describe a scheme to express and purify the 6His-AST fusion protein. An optimized sequence coding AST was synthesized and transformed into Escherichia coli BL21 (DE3) strain for protein expression. Ideally, the fusion protein has a volumetric productivity achieving 900 mg/l cultures. After affinity chromatography, the enzyme activity of purified AST reached 150,000 U/L. Commutability assessment between the engineered AST and standard AST from Roche suggested that the engineered AST was the better candidate for the reference material. Moreover, the AST showed high stability during long-term storage at -20ºC. In conclusion, the highly soluble 6His-tagged AST can become a convenient tool for supplying a much better and cheaper standard or reference material for the clinical laboratory.

  15. Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent.

    PubMed

    Xiang, Xinran; Suo, Hongbo; Xu, Chao; Hu, Yi

    2018-05-01

    Chitosan-mesoporous silica SBA-15 hybrid nanomaterials (CTS-SBA-15) were synthesized by means of carboxyl functionalized ionic liquids as the coupling agent. The as-prepared CTS-SBA-15 support was characterized by TEM, FTIR, TG and nitrogen adsorption-desorption techniques. Porcine pancreas lipase (PPL) was then bound to the hybrid nanomaterials by using the cross-linking reagent glutaraldehyde (GA). Further, the parameters like cross-linking concentration, time and ratio of supports to enzyme were optimized. The property of immobilized lipase were tested in detail by enzyme activity assays. The results indicated that the hybrid nanomaterials could form three-dimensional (3D) structure with homogeneous mesoporous structures and immobilized PPL revealed excellent enzymatic performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    PubMed

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  17. Interacting influence of potassium and polychlorinated biphenyl on cortisol and aldosterone biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.-A.; Lin, Tsu-Chun Emma

    Giving human adrenocortical H295R cells 14 mM KCl for 24 h significantly induced not only aldosterone biosynthesis but also cortisol biosynthesis. Pre-treating the cells with polychlorinated biphenyl 126 (PCB126) further increased potassium-induced aldosterone and cortisol productions in a dose-dependent manner, but all examined concentrations of PCB126 had little effect on the yields of precursor steroids progesterone and 17-OH-progesterone. Subsequent examinations revealed that CYP11B1 and CYP11B2 genes, responsible for the respective final steps of the cortisol and aldosterone biosynthetic pathways, exhibited increased responsiveness to PCB126 under high potassium. While 10{sup -5} M PCB126 was needed to induce a significant increase inmore » the basal mRNA abundance of either gene, PCB126 could enhance potassium-induced mRNA expression of CYP11B1 at 10{sup -7} M and CYP11B2 at 10{sup -9} M. Actually, potassium and PCB126 synergistically upregulated mRNA expression of both genes. Potassium raised the transcriptional rates of CYP11B1 and CYP11B2 probably through a conserved Ad5 cis-element, whereas PCB126 appeared to regulate these two genes at the post-transcriptional level. Positive potassium-PCB126 synergism was also detected in CYP11B2 enzyme activity estimated by aldosterone/progesterone ratio. In contrast, potassium and PCB126 increased CYP11B1 enzyme activity or cortisol/17-OH-progesterone ratio additively. Moreover, potassium improved the time effect of PCB126 on gene expression and enzyme activity of CYP11B2, but not the PCB126 time response of CYP11B1. These data demonstrated that potassium differentially enhanced the potency of PCB126 to induce CYP11B1- and CYP11B2-mediated steroidogenesis.« less

  18. Short and long-term impact of lipectomy on expression profile of hepatic anabolic genes in rats: a high fat and high cholesterol diet-induced obese model.

    PubMed

    Ling, Bey-Leei; Chiu, Chun-Tang; Lu, Hsiu-Chin; Lin, Jin-Jin; Kuo, Chiung-Yin; Chou, Fen-Pi

    2014-01-01

    To understand the molecular basis of the short and long-term effects of an immediate shortage of energy storage caused by lipectomy on expression profile of genes involved in lipid and carbohydrate metabolism in high fat and high cholesterol diet-induced obese rats. The hepatic mRNA levels of enzymes, regulator and transcription factors involved in glucose and lipid metabolism were analyzed by quantitative real time polymerase chain reaction (RT-qPCR) ten days and eight weeks after lipectomy in obese rats. Body and liver weights and serum biochemical parameters, adiponectin, leptin and insulin were determined. No significant difference was observed on the food intake between the lipectomized and sham-operated groups during the experimental period. Ten days after the operation, the lipectomized animals showed significant higher triacylglycerol, glucose and insulin levels, a lower adiponectin concentration than the sham-operated rats, along with significant higher hepatic mRNA levels of hepatocyte nuclear factor 4α (HNF4α) and the enzymes involved in lipogenesis, sterol biosynthesis and gluconeogenesis. The results of immunohistochemical (IHC) analysis also confirmed increased levels of lipogenic enzymes in the liver of lipectomized versus sham-operated animals. The lipectomized group had a significantly lower adiponectin/leptin ratio that was positively correlated to the level of LDL (r = 0.823, P<0.05) and negatively to glucose and insulin (r = -0.821 and -0.892 respectively, P<0.05). Eight weeks after the operation, the lipectomized animals revealed significant higher body and liver weights, weight gain, liver to body weight ratio, hepatic triacylglycerol and serum insulin level. In response to lipectomy a short term enhancement of the expression of hepatic anabolic genes involved in lipid and carbohydrate metabolism was triggered that might eventually lead to the final extra weight gain. These metabolic changes could be the results of reduced circulating adiponectin that further influences the functions of insulin and hepatic HNF4α.

  19. Functional Significance of Single Nucleotide Polymorphisms in the Lactase Gene in Diverse United States Subjects and Evidence for a Novel Lactase Persistence Allele at -13909 in Those of European Ancestry

    PubMed Central

    Baffour-Awuah, Nana Yaa; Fleet, Sarah; Baker, Susan S.; Butler, Johannah L.; Campbell, Catarina; Tischfield, Samuel; Mitchell, Paul D.; Moon, Jennifer E.; Allende-Richter, Sophie; Fishman, Laurie; Bousvaros, Athos; Fox, Victor; Kuokkanen, Mikko; Montgomery, Robert K.; Grand, Richard J.; Hirschhorn, Joel N.

    2014-01-01

    Objectives Recent data from mainly homogeneous European and African populations implicate a 140 bp region 5′ to the transcriptional start site of LCT (the lactase gene) as a regulatory site for lactase persistence and non-persistence. As there are no studies of United States non-homogeneous populations, we performed genotype/phenotype analysis of the -13910 and -22018 LCT SNPs in New England children, mostly of European ancestry. Methods Duodenal biopsies were processed for disaccharidase activities, RNA quantification by RT-PCR, allelic expression ratios by PCR, and genotyping and SNP analysis. Results were compared to clinical information. Results Lactase activity and mRNA levels, as well as sucrase-to-lactase ratios of enzyme activity and mRNA, showed robust correlations with genotype. None of the other LCT SNPs showed as strong a correlation with enzyme or mRNA activities as did -13910. Data were consistent with the -13910 being the causal sequence variant rather than -22018. Four individuals heterozygous for -13910T/C had allelic expression patterns similar to individuals with -13910C/C genotypes; of these, 2 showed equal LCT expression from the 2 alleles and a novel variant (-13909C>A) associated with lactase persistence. Conclusion The identification of -13910C/C genotype is very likely to predict lactase non-persistence, consistent with prior published studies. A -13910T/T genotype will frequently, but not perfectly, predict lactase persistence in this mixed European-ancestry population; a -13910T/C genotype will not predict the phenotype. A long, rare haplotype in 2 individuals with -13910T/C genotype but equal allele-specific expression contains a novel lactase persistence allele present at -13909. PMID:25625576

  20. Overexpression, purification, and characterization of SHPTP1, a Src homology 2-containing protein-tyrosine-phosphatase.

    PubMed Central

    Pei, D; Neel, B G; Walsh, C T

    1993-01-01

    A protein-tyrosine-phosphatase (PTPase; EC 3.1.3.48) containing two Src homology 2 (SH2) domains, SHPTP1, was previously identified in hematopoietic and epithelial cells. By placing the coding sequence of the PTPase behind a bacteriophage T7 promoter, we have overexpressed both the full-length enzyme and a truncated PTPase domain in Escherichia coli. In each case, the soluble enzyme was expressed at levels of 3-4% of total soluble E. coli protein. The recombinant proteins had molecular weights of 63,000 and 45,000 for the full-length protein and the truncated PTPase domain, respectively, as determined by SDS/PAGE. The recombinant enzymes dephosphorylated p-nitrophenyl phosphate, phosphotyrosine, and phosphotyrosyl peptides but not phosphoserine, phosphothreonine, or phosphoseryl peptides. The enzymes showed a strong dependence on pH and ionic strength for their activity, with pH optima of 5.5 and 6.3 for the full-length enzyme and the catalytic domain, respectively, and an optimal NaCl concentration of 250-300 mM. The recombinant PTPases had high Km values for p-nitrophenyl phosphate and exhibited non-Michaelis-Menten kinetics for phosphotyrosyl peptides. Images PMID:8430079

  1. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    PubMed Central

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  2. High-level expression of a specific beta-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris.

    PubMed

    Hua, Chengwei; Yan, Qiaojuan; Jiang, Zhengqiang; Li, Yinan; Katrolia, Priti

    2010-09-01

    In this study, a novel beta-1,3-1,4-glucanase gene (designated as PtLic16A) from Paecilomyces thermophila was cloned and sequenced. PtLic16A has an open reading frame of 945 bp, encoding 314 amino acids. The deduced amino acid sequence shares the highest identity (61%) with the putative endo-1,3(4)-beta-glucanase from Neosartorya fischeri NRRL 181. PtLic16A was cloned into a vector pPIC9K and was expressed successfully in Pichia pastoris as active extracellular beta-1,3-1,4-glucanase. The recombinant beta-1,3-1,4-glucanase (PtLic16A) was secreted predominantly into the medium which comprised up to 85% of the total extracellular proteins and reached a protein concentration of 9.1 g l(-1) with an activity of 55,300 U ml(-1) in 5-l fermentor culture. The enzyme was then purified using two steps, ion exchange chromatography, and gel filtration chromatography. The purified enzyme had a molecular mass of 38.5 kDa on SDS-PAGE. It was optimally active at pH 7.0 and a temperature of 70 degrees C. Furthermore, the enzyme exhibited strict specificity for beta-1,3-1,4-D: -glucans. This is the first report on the cloning and expression of a beta-1,3-1,4-glucanase gene from Paecilomyces sp.

  3. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.

    PubMed

    Hughes, Stephen R; Cox, Elby J; Bang, Sookie S; Pinkelman, Rebecca J; López-Núñez, Juan Carlos; Saha, Badal C; Qureshi, Nasib; Gibbons, William R; Fry, Michelle R; Moser, Bryan R; Bischoff, Kenneth M; Liu, Siqing; Sterner, David E; Butt, Tauseef R; Riedmuller, Steven B; Jones, Marjorie A; Riaño-Herrera, Néstor M

    2015-12-01

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains. © 2015 Society for Laboratory Automation and Screening.

  4. Expression analysis of human β-secretase in transgenic tomato fruits.

    PubMed

    Kim, H-S; Youm, J-W; Moon, K-B; Ha, J-H; Kim, Y-H; Joung, H; Jeon, J-H

    2012-03-01

    An emerging strategy in biomanufacturing involves using transgenic plants to express recombinant pharmaceutical and industrial proteins in large quantities. β-Site APP cleaving enzyme 1 (β-secretase 1, BACE1) is an enzyme involved in the abnormal production of Aβ42, the major component of senile plaques in Alzheimer's disease (AD). Thus, BACE1 represents a key target protein in the development of new potential drugs to treat Alzheimer's disease. We aimed to develop a tomato-derived recombinant BACE1 (rBACE1) protein to serve as a vaccine antigen that would promote an immune response. We utilized a plant expression cassette, pE8BACE, to optimize BACE1 expression in tomato fruits. Polyemerase chain reaction and Southern blot analyses verified integration of the BACE1 gene into the plant genome. Northern and Western blot analyses demonstrated successful mRNA and protein expression of rBACE1, respectively; the Sensizyme assay kit estimated the expression level of rBACE1 protein at 136 ± 7 ng mg⁻¹ total soluble protein. The tomato-derived rBACE1 retains its activity for a long storage period at cool or room temperature, and is highly resistant to degradation in conditions such as low acidity. Tomato-derived rBACE1 was severely degraded by heat or boiling. The proteolytic activity of tomato-derived rBACE1, confirmed by fluorescence resonance transfer assay, was similar to that of a commercial sample of Escherichia coli-derived BACE1. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Efficient removal of lignin with the maintenance of hemicellulose from kenaf by two-stage pretreatment process.

    PubMed

    Wan Azelee, Nur Izyan; Md Jahim, Jamaliah; Rabu, Amir; Abdul Murad, Abdul Munir; Abu Bakar, Farah Diba; Md Illias, Rosli

    2014-01-01

    The enhancement of lignocellulose hydrolysis using enzyme complexes requires an efficient pretreatment process to obtain susceptible conditions for the enzyme attack. This study focuses on removing a major part of the lignin layer from kenaf (Hibiscus cannabinus) while simultaneously maintaining most of the hemicellulose. A two-stage pretreatment process is adopted using calcium hydroxide, Ca(OH)₂, and peracetic acid, PPA, to break the recalcitrant lignin layer from other structural polysaccharides. An experimental screening of several pretreatment chemicals, concentrations, temperatures and solid-liquid ratios enabled the production of an optimally designed pretreatment process for kenaf. Our results showed that the pretreatment process has provide 59.25% lignin removal while maintaining 87.72% and 96.17% hemicellulose and cellulose, respectively, using 1g of Ca(OH)₂/L and a 8:1 (mL:g) ratio of liquid-Ca(OH)₂ at 50 °C for 1.5 h followed by 20% peracetic acid pretreatment at 75 °C for 2 h. These results validate this mild approach for aiding future enzymatic hydrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Click beetle luciferase mutant and near infrared naphthyl-luciferins for improved bioluminescence imaging.

    PubMed

    Hall, Mary P; Woodroofe, Carolyn C; Wood, Monika G; Que, Ivo; Van't Root, Moniek; Ridwan, Yanto; Shi, Ce; Kirkland, Thomas A; Encell, Lance P; Wood, Keith V; Löwik, Clemens; Mezzanotte, Laura

    2018-01-09

    The sensitivity of bioluminescence imaging in animals is primarily dependent on the amount of photons emitted by the luciferase enzyme at wavelengths greater than 620 nm where tissue penetration is high. This area of work has been dominated by firefly luciferase and its substrate, D-luciferin, due to the system's peak emission (~ 600 nm), high signal to noise ratio, and generally favorable biodistribution of D-luciferin in mice. Here we report on the development of a codon optimized mutant of click beetle red luciferase that produces substantially more light output than firefly luciferase when the two enzymes are compared in transplanted cells within the skin of black fur mice or in deep brain. The mutant enzyme utilizes two new naphthyl-luciferin substrates to produce near infrared emission (730 nm and 743 nm). The stable luminescence signal and near infrared emission enable unprecedented sensitivity and accuracy for performing deep tissue multispectral tomography in mice.

  7. Quantification of Flavin-containing Monooxygenases 1, 3, and 5 in Human Liver Microsomes by UPLC-MRM-Based Targeted Quantitative Proteomics and Its Application to the Study of Ontogeny.

    PubMed

    Chen, Yao; Zane, Nicole R; Thakker, Dhiren R; Wang, Michael Zhuo

    2016-07-01

    Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39-67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26-65) pmol/mg HLM protein and 27 (11.5-49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14-20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9-9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Quantification of Flavin-containing Monooxygenases 1, 3, and 5 in Human Liver Microsomes by UPLC-MRM-Based Targeted Quantitative Proteomics and Its Application to the Study of Ontogeny

    PubMed Central

    Chen, Yao; Zane, Nicole R.; Thakker, Dhiren R.

    2016-01-01

    Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39–67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26–65) pmol/mg HLM protein and 27 (11.5–49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14–20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9–9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. PMID:26839369

  9. Human tyrosinase produced in insect cells: a landmark for the screening of new drugs addressing its activity.

    PubMed

    Fogal, Stefano; Carotti, Marcello; Giaretta, Laura; Lanciai, Federico; Nogara, Leonardo; Bubacco, Luigi; Bergantino, Elisabetta

    2015-01-01

    Human tyrosinase is the first enzyme of the multistep process of melanogenesis. It catalyzes the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine and the following oxidation of o-diphenol to the corresponding quinone, L-dopaquinone. In spite of its biomedical relevance, its reactivity is far from being fully understood, mostly because of the lack of a suitable expression system. Indeed, until now, studies on substrates and inhibitors of tyrosinases have been performed in vitro almost exclusively using mushroom or bacterial enzymes. We report on the production of a recombinant human tyrosinase in insect cells (Sf9 line). Engineering the protein, improving cell culture conditions, and setting a suitable purification protocol optimized product yield. The obtained active enzyme was truthfully characterized with a number of substrate and inhibitor molecules. These results were compared to those gained from a parallel analysis of the bacterial (Streptomyces antibioticus) enzyme and those acquired from the literature for mushroom tyrosinase, showing that the reactivity of the human enzyme appears unique and pointing out the great bias introduced when using non-human tyrosinases to measure the inhibitory efficacy of new molecules. The described enzyme is therefore an indispensable paradigm in testing pharmaceutical or cosmetic agents addressing tyrosinase activity.

  10. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  11. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    PubMed

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. One step DNA assembly for combinatorial metabolic engineering.

    PubMed

    Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan

    2014-05-01

    The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Altered drug metabolism during pregnancy: Hormonal regulation of drug-metabolizing enzymes

    PubMed Central

    Jeong, Hyunyoung

    2013-01-01

    Importance of the field Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Areas covered in this review Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are likely responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes, thus potentially responsible for altered drug metabolism during pregnancy. What the reader will gain The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of drug-metabolizing enzymes. Take home message In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy. PMID:20367533

  14. A comparative study of extraction techniques for maximum recovery of glutamate decarboxylase (GAD) from Aspergillus oryzae NSK

    PubMed Central

    2013-01-01

    Background γ-Amino butyric acid (GABA) is a major inhibitory neurotransmitter of the mammalian central nervous system that plays a vital role in regulating vital neurological functions. The enzyme responsible for producing GABA is glutamate decarboxylase (GAD), an intracellular enzyme that both food and pharmaceutical industries are currently using as the major catalyst in trial biotransformation process of GABA. We have successfully isolated a novel strain of Aspergillus oryzae NSK that possesses a relatively high GABA biosynthesizing capability compared to other reported GABA-producing fungal strains, indicating the presence of an active GAD. This finding has prompted us to explore an effective method to recover maximum amount of GAD for further studies on the GAD’s biochemical and kinetic properties. The extraction techniques examined were enzymatic lysis, chemical permeabilization, and mechanical disruption. Under the GAD activity assay used, one unit of GAD activity is expressed as 1 μmol of GABA produced per min per ml enzyme extract (U/ml) while the specific activity was expressed as U/mg protein. Results Mechanical disruption by sonication, which yielded 1.99 U/mg of GAD, was by far the most effective cell disintegration method compared with the other extraction procedures examined. In contrast, the second most effective method, freeze grinding followed by 10% v/v toluene permeabilization at 25°C for 120 min, yielded only 1.17 U/mg of GAD, which is 170% lower than the sonication method. Optimized enzymatic lysis with 3 mg/ml Yatalase® at 60°C for 30 min was the least effective. It yielded only 0.70 U/mg of GAD. Extraction using sonication was further optimized using a one-variable-at-a-time approach (OVAT). Results obtained show that the yield of GAD increased 176% from 1.99 U/mg to 3.50 U/mg. Conclusion Of the techniques used to extract GAD from A. oryzae NSK, sonication was found to be the best. Under optimized conditions, about 176% of GAD was recovered compared to recovery under non optimized conditions. The high production level of GAD in this strain offers an opportunity to conduct further studies on GABA production at a larger scale. PMID:24321181

  15. [Extraction and analysis of the essential oil in Pogostemon cablin by enzymatic hydrolysis and inhibitory activity against Hela cell proliferation].

    PubMed

    Yu, Jing; Qi, Yue; Luo, Gang; Duan, Hong-quan; Zhou, Jing

    2012-05-01

    To optimize the extraction method of essential oil in Pogostemon cablin and analyze its inhibitory activity against Hela cell proliferation. The Pogostemon cablin was treated by hemicellulase before steam distillation. The enzyme dosage, treatment time, treatment temperature, pH were optimized through orthogonal experimental design. The components of essential oil were identified by gas chromatography-mass spectrometry (GC-MS). Inhibitory activity of patchouli oil against Hela cell proliferation was determined by MTP method. The optimum extraction process was as follows: pH 4.5, temperature 45 degrees C, the ratio of hemicellulase to Pogostemon cablin was 1% and enzymatic hydrolysis for 1.0 hour. Extraction ratio of the patchouli oil in steam distillation and hemicellulase extraction method was 2.2220 mg/g, 3.1360 mg/g respectively. Patchouli oil could inhibit Hela cell proliferation. IC50 of the patchouli oil in steam distillation and hemicellulase extraction method was 12.2 +/- 0.46 microg/mL and 0.36 +/- 0.03 microg/mL respectively. In comparison with steam distillation method, extraction ratios of essential oil and the inhibitory activity against Hela cell proliferation can be increased by the hemicellulase extraction method.

  16. Bioprocessing analysis of Pyrococcus furiosus strains engineered for CO2-based 3-hydroxypropionate production

    PubMed Central

    Hawkins, Aaron B.; Lian, Hong; Zeldes, Benjamin M.; Loder, Andrew J.; Lipscomb, Gina L.; Schut, Gerrit J.; Keller, Matthew W.; Adams, Michael W.W.; Kelly, Robert M.

    2015-01-01

    Metabolically engineered strains of the hyperthermophile Pyrococcus furiosus(Topt 95-100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO2 using enzymes from the Metallosphaera sedula (Topt73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal and sub-optimal temperatures, gas-liquid mass transfer in gas-intensive bioreactors, and potential bottlenecks arising from product formation. Transcriptomic comparisons of wild-type P. furiosus, a genetically-tractable, naturally-competent mutant (COM1), and COM1-based strains engineered for 3HP production revealed numerous differences after being shifted from 95°C to 72°C, where product formation catalyzed by the heterologously-produced M. sedula enzymes occurred. At 72°C, significantly higher levels of metabolic activity and a stress response were evident in 3HP-forming strains compared to the non-producing parent strain (COM1). Gas-liquid mass transfer limitations were apparent, given that 3HP titers and volumetric productivity in stirred bioreactors could be increased over 10-fold by increased agitation and higher CO2 sparging rates, from 18 mg/L to 276 mg/L and from 0.7 mg/L/hr to 11 mg/L/hr, respectively. 3HP formation triggered transcription of genes for protein stabilization and turnover, RNA degradation, and reactive oxygen species detoxification. The results here support the prospects of using thermally diverse sources of pathways and enzymes in metabolically engineered strains designed for product formation at sub-optimal growth temperatures. PMID:25753826

  17. High yield production of extracellular recombinant levansucrase by Bacillus megaterium.

    PubMed

    Korneli, Claudia; Biedendieck, Rebekka; David, Florian; Jahn, Dieter; Wittmann, Christoph

    2013-04-01

    In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH 6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg L(-1)) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U mL(-1) on fructose and 17.2 U mL(-1) on glycerol). This was further increased in high cell density fed-batch processes up to 55 U mL(-1), reflecting a levansucrase concentration of 0.52 g L(-1). This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.

  18. Vinclozolin modulates hepatic cytochrome P450 isoforms during pregnancy.

    PubMed

    de Oca, Félix Genoveva García-Montes; López-González, Ma de Lourdes; Escobar-Wilches, Derly Constanza; Chavira-Ramírez, Roberto; Sierra-Santoyo, Adolfo

    2015-06-01

    Vinclozolin (V) is classified as a potent endocrine disruptor. The aim of the present study was to determine the effects of V on rat liver CYP regulation and on serum levels of testosterone and estradiol during pregnancy. Pregnancy decreased the liver total CYP content by 65%, enzyme activities of MROD, PROD, and PNPH, and testosterone hydroxylation activities, as well as the protein content of CYP2A and 3A. V exposure remarkably induced the protein content and enzyme activities of CYP1A, 2A, 2B and 3A subfamilies. Testosterone and estradiol were affected in an opposite manner, provoking a 3.5-fold increase in the estradiol/testosterone ratio. These results suggest that V could regulate the hepatic CYP expression through interaction with receptors and coactivators involved in its expression and may play an important role in hormonal balance during pregnancy. In addition, the results may also contribute to understanding the toxicity of V by in utero exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Expression optimization and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Escherichia coli novablue.

    PubMed

    Yao, Ya-Feng; Weng, Yih-Ming; Hu, Hui-Yu; Ku, Kuo-Lung; Lin, Long-Liu

    2006-09-01

    A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His(6)-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 degrees C and 9, respectively. The apparent K (m) and V (max) values for gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor in the transpeptidation reaction were 37.9 microM and 53.7 x 10(-3) mM min(-1), respectively. The synthesis of L -theanine was performed in a reaction mixture containing 10 mM L -Gln, 40 mM ethylamine, and 1.04 U His(6)-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.

  20. Optimization of self-acting step thrust bearings for load capacity and stiffness.

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1972-01-01

    Linearized analysis of a finite-width rectangular step thrust bearing. Dimensionless load capacity and stiffness are expressed in terms of a Fourier cosine series. The dimensionless load capacity and stiffness were found to be a function of the dimensionless bearing number, the pad length-to-width ratio, the film thickness ratio, the step location parameter, and the feed groove parameter. The equations obtained in the analysis were verified. The assumptions imposed were substantiated by comparing the results with an existing exact solution for the infinite width bearing. A digital computer program was developed which determines optimal bearing configuration for maximum load capacity or stiffness. Simple design curves are presented. Results are shown for both compressible and incompressible lubrication. Through a parameter transformation the results are directly usable in designing optimal step sector thrust bearings.

  1. A novel malic enzyme gene, Mime2, from Mortierella isabellina M6-22 contributes to lipid accumulation.

    PubMed

    Li, Shan; Li, Lingyan; Xiong, Xiangfeng; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2018-05-18

    This study was aimed at cloning and characterizing a novel malic enzyme (ME) gene of Mortierella isabellina M6-22 and identifying its relation with lipid accumulation. Mime2 was cloned from strain M6-22. Plasmid pET32aMIME2 was constructed to express ME of MIME2 in Escherichia coli BL21. After purification, the optimal pH and temperature of MIME2, as well as K m and V max for NADP + were determined. The effects of EDTA or metal ions (Mn 2+ , Mg 2+ , Co 2+ , Cu 2+ , Ca 2+ , or Zn 2+ ) on the enzymatic activity of MIME2 were evaluated. Besides, plasmid pRHMIME2 was created to express MIME2 in Rhodosporidium kratochvilovae YM25235, and its cell lipid content was measured by the acid-heating method. The optimal pH and temperature of MIME2 are 5.8 and 30 °C, respectively. The act ivity of MIME2 was significantly increased by Mg 2+ , Ca 2+ , or Mn 2+ at 0.5 mM but inhibited by Cu 2+ or Zn 2+ (p < 0.05). The optimal enzymatic activity of MIME2 is 177.46 U/mg, and the K m and V max for NADP + are 0.703 mM and 156.25 μg/min, respectively. Besides, Mime2 transformation significantly increased the cell lipid content in strain YM25235 (3.15 ± 0.24 vs. 2.17 ± 0.31 g/L, p < 0.01). The novel ME gene Mime2 isolated from strain M6-22 contributes to lipid accumulation in strain YM25235.

  2. A competitive chemiluminescence enzyme immunoassay method for β-defensin-2 detection in transgenic mice.

    PubMed

    Yang, Xi; Zhou, Tao; Yu, Lei; Tan, Wenwen; Zhou, Rui; Hu, Yonggang

    2015-03-01

    A competitive chemiluminescence enzyme immunoassay (CLEIA) method for porcine β-defensin-2 (pBD-2) detection in transgenic mice was established. Several factors that affect detection, including luminol, p-iodophenol and hydrogen peroxide concentrations, as well as pH, were studied and optimized. The linear range of the proposed method for pBD-2 detection under optimal conditions was 0.05-80 ng/mL with a correlation coefficient of 0.9960. Eleven detections of a 30 ng/mL pBD-2 standard sample were performed. Reproducible results were obtained with a relative standard deviation of 3.94%. The limit of detection of the method for pBD-2 was 3.5 pg/mL (3σ). The proposed method was applied to determine pBD-2 expression levels in the tissues of pBD-2 transgenic mice, and compared with LC-MS/MS and quantitative real-time reverse-transcriptase polymerase chain reaction. This suggests that the CLEIA can be used as a valuable method to detect and quantify pBD-2. Copyright © 2014 John Wiley & Sons, Ltd.

  3. L-Asparaginase from Streptomyces griseus NIOT-VKMA29: optimization of process variables using factorial designs and molecular characterization of L-asparaginase gene

    NASA Astrophysics Data System (ADS)

    Meena, Balakrishnan; Anburajan, Lawrance; Sathish, Thadikamala; Vijaya Raghavan, Rangamaran; Dharani, Gopal; Valsalan Vinithkumar, Nambali; Kirubagaran, Ramalingam

    2015-07-01

    Marine actinobacteria are known to be a rich source for novel metabolites with diverse biological activities. In this study, a potential extracellular L-asparaginase was characterised from the Streptomyces griseus NIOT-VKMA29. Box-Behnken based optimization was used to determine the culture medium components to enhance the L-asparaginase production. pH, starch, yeast extract and L-asparagine has a direct correlation for enzyme production with a maximum yield of 56.78 IU mL-1. A verification experiment was performed to validate the experiment and more than 99% validity was established. L-Asparaginase biosynthesis gene (ansA) from Streptomyces griseus NIOT-VKMA29 was heterologously expressed in Escherichia coli M15 and the enzyme production was increased threefold (123 IU mL-1) over the native strain. The ansA gene sequences reported in this study encloses several base substitutions with that of reported sequences in GenBank, resulting in altered amino acid sequences of the translated protein.

  4. Effect of the replacement of aspartic acid/glutamic acid residues with asparagine/glutamine residues in RNase He1 from Hericium erinaceus on inhibition of human leukemia cell line proliferation.

    PubMed

    Kobayashi, Hiroko; Motoyoshi, Naomi; Itagaki, Tadashi; Suzuki, Mamoru; Inokuchi, Norio

    2015-01-01

    RNase He1 from Hericium erinaceus, a member of the RNase T1 family, has high identity with RNase Po1 from Pleurotus ostreatus with complete conservation of the catalytic sequence. However, the optimal pH for RNase He1 activity is lower than that of RNase Po1, and the enzyme shows little inhibition of human tumor cell proliferation. Hence, to investigate the potential antitumor activity of recombinant RNase He1 and to possibly enhance its optimum pH, we generated RNase He1 mutants by replacing 12 Asn/Gln residues with Asp/Glu residues; the amino acid sequence of RNase Po1 was taken as reference. These mutants were then expressed in Escherichia coli. Using site-directed mutagenesis, we successfully modified the optimal pH for enzyme activity and generated a recombinant RNase He1 that inhibited the proliferation of cells in the human leukemia cell line. These properties are extremely important in the production of anticancer biologics that are based on RNase activity.

  5. Characterization of a recombinant α-glucuronidase from Aspergillus fumigatus.

    PubMed

    Rosa, Lorena; Ravanal, María Cristina; Mardones, Wladimir; Eyzaguirre, Jaime

    2013-05-01

    The degradation of xylan requires the action of glycanases and esterases which hydrolyse, in a synergistic fashion, the main chain and the different substituents which decorate its structure. Among the xylanolytic enzymes acting on side-chains are the α-glucuronidases (AguA) (E.C. 3.2.1.139) which release methyl glucuronic acid residues. These are the least studies among the xylanolytic enzymes. In this work, the gene and cDNA of an α-glucuronidase from a newly isolated strain of Aspergillus fumigatus have been sequenced, and the gene has been expressed in Pichia pastoris. The gene is 2523 bp long, has no introns and codes for a protein of 840 amino acid residues including a putative signal peptide of 19 residues. The mature protein has a calculated molecular weight of 91,725 and shows 99 % identity with a putative α-glucuronidase from A. fumigatus A1163. The recombinant enzyme was expressed with a histidine tag and was purified to near homogeneity with a nickel nitriloacetic acid (Ni-NTA) column. The purified enzyme has a molecular weight near 100,000. It is inactive using birchwood glucuronoxylan as substrate. Activity is observed in the presence of xylooligosaccharides generated from this substrate by a family 10 endoxylanase and when a mixture of aldouronic acids are used as substrates. If, instead, family 11 endoxylanase is used to generate oligosaccharides, no activity is detected, indicating a different specificity in the cleavage of xylan by family 10 and 11 endoxylanases. Enzyme activity is optimal at 37 °C and pH 4.5-5. The enzyme binds cellulose, thus it likely possesses a carbohydrate binding module. Based on its properties and sequence similarities the catalytic module of the newly described α-glucuronidase can be classified in family 67 of the glycosyl hydrolases. The recombinant enzyme may be useful for biotechnological applications of α-glucuronidases. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria.

    PubMed

    García-Mantrana, Izaskun; Monedero, Vicente; Haros, Monika

    2015-09-01

    Plant-based food products can be modified by fermentation to improve flavour and the concentration of some biologically active compounds, but also to increase the mineral availability by eliminating anti-nutrient substances such as phytates. The objective of this study was to develop a fermented soybean drink with improved nutritional quality and source of probiotic bacteria by including as starter for fermentation Lactobacillus casei strains modified to produce phytase enzymes from bifidobacteria. The L. casei strains showed a good adaptation to develop in the soy drink but they needed the addition of external carbohydrates to give rise to an efficient acidification. The strain expressing the Bifidobacterium pseudocatenulatum phytase was able to degrade more than 90 % phytate during product fermentation, whereas expression of Bifidobacterium longum spp. infantis phytase only led to 65 % hydrolysis. In both cases, accumulation of myo-inositol triphosphates was observed. In addition, the hydrolysis of phytate in soy drink fermented with the L. casei strain expressing the B. pseudocatenulatum phytase resulted in phytate/mineral ratios for Fe (0.35) and Zn (2.4), which were below the critical values for reduced mineral bioavailability in humans. This investigation showed the ability of modified L. casei to produce enzymes with technological relevance in the design of new functional foods.

  7. Optimization of hCFTR Lung Expression in Mice Using DNA Nanoparticles

    PubMed Central

    Padegimas, Linas; Kowalczyk, Tomasz H; Adams, Sam; Gedeon, Chris R; Oette, Sharon M; Dines, Karla; Hyatt, Susannah L; Sesenoglu-Laird, Ozge; Tyr, Olena; Moen, Robert C; Cooper, Mark J

    2012-01-01

    Efficient and prolonged human cystic fibrosis transmembrane conductance regulator (hCFTR) expression is a major goal for cystic fibrosis (CF) lung therapy. A hCFTR expression plasmid was optimized as a payload for compacted DNA nanoparticles formulated with polyethylene glycol (PEG)-substituted 30-mer lysine peptides. A codon-optimized and CpG-reduced hCFTR synthetic gene (CO-CFTR) was placed in a polyubiquitin C expression plasmid. Compared to hCFTR complementary DNA (cDNA), CO-CFTR produced a ninefold increased level of hCFTR protein in transfected HEK293 cells and, when compacted as DNA nanoparticles, produced a similar improvement in lung mRNA expression in Balb/c and fatty acid binding protein promoter (FABP) CF mice, although expression duration was transient. Various vector modifications were tested to extend duration of CO-CFTR expression. A novel prolonged expression (PE) element derived from the bovine growth hormone (BGH) gene 3′ flanking sequence produced prolonged expression of CO-CFTR mRNA at biologically relevant levels. A time course study in the mouse lung revealed that CO-CFTR mRNA did not change significantly, with CO-CFTR/mCFTR geometric mean ratios of 94% on day 2, 71% on day 14, 53% on day 30, and 14% on day 59. Prolonged CO-CFTR expression is dependent on the orientation of the PE element and its transcription, is not specific to the UbC promoter, and is less dependent on other vector backbone elements. PMID:21952168

  8. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid

    PubMed Central

    Houghton, Joanna; Davis, Elaine O.

    2012-01-01

    Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTMP synthase. We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively. PMID:22034487

  9. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid.

    PubMed

    Fivian-Hughes, Amanda S; Houghton, Joanna; Davis, Elaine O

    2012-02-01

    Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTM synthesis [corrected].We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively.

  10. Regulation of 11 beta-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol.

    PubMed

    Gomez-Sanchez, Elise P; Ganjam, Venkataseshu; Chen, Yuan Jian; Liu, Ying; Zhou, Ming Yi; Toroslu, Cigdem; Romero, Damian G; Hughson, Michael D; de Rodriguez, Angela; Gomez-Sanchez, Celso E

    2003-08-01

    The 11beta-hydroxysteroid dehydrogenase (11betaHSD) type 1 (11betaHSD1) enzyme is an NADP+-dependent oxidoreductase, usually reductase, of major glucocorticoids. The NAD+-dependent type 2 (11betaHSD2) enzyme is an oxidase that inactivates cortisol and corticosterone, conferring extrinsic specificity of the mineralocorticoid receptor for aldosterone. We reported that addition of a reducing agent to renal homogenates results in the monomerization of 11betaHSD2 dimers and a significant increase in NAD+-dependent corticosterone conversion. Estrogenic effects on expression, dimerization, and activity of the kidney 11betaHSD1 and -2 enzymes are described herein. Renal 11betaHSD1 mRNA and protein expressions were decreased to very low levels by estradiol (E2) treatment of both intact and castrated male rats; testosterone had no effect. NADP+-dependent enzymatic activity of renal homogenates from E2-treated rats measured under nonreducing conditions was less than that of homogenates from intact animals. Addition of 10 mM DTT to aliquots from these same homogenates abrogated the difference in NADP+-dependent activity between E2-treated and control rats. In contrast, 11betaHSD2 mRNA and protein expressions were significantly increased by E2 treatment. There was a marked increase in the number of juxtamedullary proximal tubules stained by the antibody against 11betaHSD2 after the administration of E2. Notwithstanding, neither the total corticosterone and 11-dehydrocorticosterone excreted in the urine nor their ratio differed between E2- and vehicle-treated rats. NAD+-dependent enzymatic activity in the absence or presence of a reducing agent demonstrated that the increase in 11betaHSD2 protein was not associated with an increase in in vitro activity unless the dimers were reduced to monomers.

  11. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus).

    PubMed

    Shi, Xiao-Chen; Jin, Ai; Sun, Jian; Yang, Zhou; Tian, Jing-Jing; Ji, Hong; Yu, Hai-Bo; Li, Yang; Zhou, Ji-Shu; Du, Zhen-Yu; Chen, Li-Qiao

    2017-08-01

    This study evaluated the protective effect of α-lipoic acid (LA) on n-3 highly unsaturated fatty acids (HUFAs)-induced lipid peroxidation in grass carp. The result indicated that diets with n-3 HUFAs increased the production of malondialdehyde (MDA) (P < 0.05), thereby inducing lipid peroxidation in liver and muscle of grass carp. Meanwhile, compared with control group, the hepatosomatic index (HSI) and kidney index (KI) of grass carp were markedly increased in n-3 HUFAs-only group. However, diets with LA remarkably inhibited the n-3 HUFAs-induced increase of HSI, KI, and MDA level in serum, liver and muscle (P < 0.05). Interestingly, LA also significantly elevated the ratio of total n-3 HUFAs in fatty acid composition of muscle and liver (P < 0.05). Furthermore, LA significantly promoted the activity of antioxidant enzymes in serum, muscle and liver of grass carp (P < 0.05), including superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GST). The further results showed that LA significantly elevated mRNA expression of antioxidant enzymes with promoting the mRNA expression of NF-E2-related nuclear factor 2 (Nrf2) and decreasing Kelch-like-ECH-associated protein 1 (Keap1) mRNA level. From the above, these results suggested that LA could attenuate n-3 HUFAs-induced lipid peroxidation, remit the toxicity of the lipid peroxidant, and protect n-3 HUFAs against lipid peroxidation to promote its deposition in fish, likely strengthening the activity of antioxidant enzymes through regulating mRNA expressions of antioxidant enzyme genes via mediating Nrf2-Keap1 signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  13. Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.

    PubMed

    Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P

    2017-09-27

    Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Clustering and optimal arrangement of enzymes in reaction-diffusion systems.

    PubMed

    Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich

    2013-05-17

    Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.

  15. Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

    PubMed Central

    Xu, Ye Tong; Ma, Xiao Kang; Wang, Chun Lin; Yuan, Ming Feng; Piao, Xiang Shu

    2018-01-01

    Objective The goal of this study was to investigate the effects of dietary standard ileal digestible (SID) valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA) metabolism enzymes. Methods A total of 144 crossbred pigs (Duroc×Landrace×Large White) weaned at 28±4 days of age (8.79±0.02 kg body weight) were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows) for 28 days. Results Average daily gain increased quadratically (p<0.05), the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05) as the SID valine:lysine ratio increased. The concentrations of plasma α-keto isovaleric and valine increased linearly (p<0.05), plasma aspartate, asparagine and cysteine decreased (p<0.05) as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain α-keto acid dehydrogenase in the longissimus dorsi muscle (p<0.05). Conclusion Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council [6]. PMID:28728397

  16. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Maeda, Toshinari; Vardar, Gönül; Self, William T; Wood, Thomas K

    2007-01-01

    Background Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- ↔ H2 (g). Results Hydrogen yields were enhanced up to 41-fold by cloning the bidirectional hydrogenase (encoded by hoxEFUYH) from the cyanobacterium into E. coli. Using an optimized medium, E. coli cells expressing hoxEFUYH also produced twice as much hydrogen as the well-studied Enterobacter aerogenes HU-101, and hydrogen gas bubbles are clearly visible from the cultures. Overexpression of HoxU alone (small diaphorase subunit) accounts for 43% of the additional hydrogen produced by HoxEFUYH. In addition, hydrogen production in E. coli mutants with defects in the native formate hydrogenlyase system show that the cyanobacterial hydrogenase depends on both the native E. coli hydrogenase 3 as well as on its maturation proteins. Hydrogen absorption by cells expressing hoxEFUYH was up to 10 times lower than cells which lack the cloned cyanobacterial hydrogenase; hence, the enhanced hydrogen production in the presence of hoxEFUYH is due to inhibition of hydrogen uptake activity in E. coli. Hydrogen uptake by cells expressing hoxEFUYH was suppressed in three wild-type strains and in two hycE mutants but not in a double mutant defective in hydrogenase 1 and hydrogenase 2; hence, the active cyanobacterial locus suppresses hydrogen uptake by hydrogenase 1 and hydrogenase 2 but not by hydrogenase 3. Differential gene expression indicated that overexpression of HoxEFUYH does not alter expression of the native E. coli hydrogenase system; instead, biofilm-related genes are differentially regulated by expression of the cyanobacterial enzymes which resulted in 2-fold elevated biofilm formation. This appears to be the first enhanced hydrogen production by cloning a cyanobacterial enzyme into a heterologous host. Conclusion Enhanced hydrogen production in E. coli cells expressing the cyanobacterial HoxEFUYH is by inhibiting hydrogen uptake of both hydrogenase 1 and hydrogenase 2. PMID:17521447

  17. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms

    PubMed Central

    Mattila, Joshua T.; Ojo, Olabisi O.; Kepka-Lenhart, Diane; Marino, Simeone; Kim, Jin Hee; Eum, Seok Yong; Via, Laura E.; Barry, Clifton E.; Klein, Edwin; Kirschner, Denise E.; Morris, Sidney M.; Lin, Philana Ling; Flynn, JoAnne L.

    2013-01-01

    Macrophages in granulomas are both anti-mycobacterial effector and host cell for Mycobacterium tuberculosis(M.tb), yet basic aspects of macrophage diversity and function within the complex structures of granulomas remain poorly understood. To address this, we examined myeloid cell phenotypes and expression of enzymes correlated with host defense in macaque and human granulomas. Macaque granulomas had upregulated inducible and endothelial nitric oxide synthase (iNOS and eNOS) and arginase (Arg1 and Arg2) expression and enzyme activity compared to non-granulomatous tissue. Immunohistochemical analysis indicated macrophages adjacent to uninvolved normal tissue were more likely to express CD163, while epithelioid macrophages in regions where bacteria reside strongly expressed CD11c, CD68 and HAM56. Calprotectin-positive neutrophils were abundant in regions adjacent to caseum. iNOS, eNOS, Arg1 and Arg2 proteins were identified in macrophages and localized similarly in granulomas across species, with greater eNOS expression and ratio of iNOS:Arg1 expression in epithelioid macrophages, as compared to cells in the lymphocyte cuff. iNOS, Arg1 and Arg2 expression in neutrophils was also identified. The combination of phenotypic and functional markers support that macrophages with anti-inflammatory phenotypes localized to outer regions of granulomas while the inner regions were more likely to contain macrophages with pro-inflammatory, presumably bactericidal, phenotypes. Together these data support the concept that granulomas have organized microenvironments that balance anti-microbial anti-inflammatory responses to limit pathology in the lungs. PMID:23749634

  18. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    NASA Astrophysics Data System (ADS)

    Li, R. N.; Liu, X.; Liu, S. J.

    2013-12-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.

  19. Effects of UPR and ERAD pathway on the prolyl endopeptidase production in Pichia pastoris by controlling of nitrogen source.

    PubMed

    Wang, Xiao-Dong; Jiang, Ting; Yu, Xiao-Wei; Xu, Yan

    2017-07-01

    Prolyl endopeptidase (PEP) is very useful in various industries, while the high cost of enzyme production remains a major obstacle for its industrial applications. Pichia pastoris has been used for the PEP production; however, the fermentation process has not be investigated and little is known about the impact of excessive PEP production on the host cell physiology. Here, we optimized the nitrogen source to improve the PEP expression level and further evaluated the cellular response including UPR and ERAD. During methanol induction phase the PEP activity (1583 U/L) was increased by 1.48-fold under the optimized nitrogen concentration of NH 4 + (300 mmol/L) and casamino acids [1.0% (w/v)] in a 3-L bioreactor. Evaluated by RT-PCR the UPR and ERAD pathways were confirmed to be activated. Furthermore, a strong decrease of ERAD-related gene transcription was observed with the addition of nitrogen source, which contributed to a higher PEP expression level.

  20. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    PubMed

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2017-03-01

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L -1 of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L -1 after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:397-406, 2017. © 2017 American Institute of Chemical Engineers.

  1. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production

    PubMed Central

    2012-01-01

    Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites. PMID:23148661

  2. Two new β-glucosidases from ethanol-fermenting fungus Mucor circinelloides NBRC 4572: enzyme purification, functional characterization, and molecular cloning of the gene.

    PubMed

    Kato, Yasuo; Nomura, Taiji; Ogita, Shinjiro; Takano, Maki; Hoshino, Kazuhiro

    2013-12-01

    Two β-glucosidases (BGLs 1 and 2) were purified to homogeneity from the extracellular enzyme preparations of the ethanol-fermenting Mucor circinelloides NBRC 4572 statically grown on rice straw. BGLs 1 and 2 are monomeric glycoproteins whose apparent molecular masses (Ms) are around 78 kDa, which decreased by approximately 10 kDa upon enzymatic deglycosylation. Both BGLs showed similar enzyme characteristics in optimal temperature and pH, stability, and inhibitors. They were active against a wide range of aryl-β-glucosides and β-linked glucose oligosaccharides. Their amino acid sequences shared 81% identity and exhibited less than 60% identity with the known family-3 BGLs. Considering properties such as reduced inhibition by ethanol, glucose, and cellobiose, low transglucosylation activity, wider substrate range, less binding affinity to lignocellulosic materials, and abundant expression, BGL1 is likely to be more suitable for bioethanol production than BGL2 via simultaneous saccharification and fermentation of rice straw with M. circinelloides.

  3. Biochemical characterization of a recombinant plant class III chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    PubMed

    Ishisaki, Kana; Arai, Sachiko; Hamada, Tatsuro; Honda, Yuji

    2012-11-01

    A class III chitinase belonging to the GH18 family from Nepenthes alata (NaCHIT3) was expressed in Escherichia coli. The enzyme exhibited hydrolytic activity toward colloidal chitin, ethylene glycol chitin, and (GlcNAc)(n) (n=5 and 6). The enzyme hydrolyzed the fourth glycosidic linkage from the non-reducing end of (GlcNAc)(6). The anomeric form of the products indicated it was a retaining enzyme. The colloidal chitin hydrolytic reaction displayed high activity between pH 3.9 and 6.9, but the pH optimum of the (GlcNAc)(6) hydrolytic reaction was 3.9 at 37 °C. The optimal temperature for activity was 65 °C in 50 mM sodium acetate buffer (pH 3.9). The pH optima of NaCHIT3 and NaCHIT1 might be related to their roles in chitin degradation in the pitcher fluid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Compartmentalization - A Prerequisite for Maintaining and Changing an Identity.

    PubMed

    Rottmann, Philipp; Ward, Thomas; Panke, Sven

    2016-01-01

    The chemical manipulation of DNA is much more convenient than the manipulation of the bioproducts, such as enzymes, that it encodes. The optimization of bioproducts requires cycles of diversification of DNA followed by read-out of the information into the bioproduct. Maintaining the link between the information - the genotype - and the properties of the bioproduct - the phenotype - through some form of compartmentalization is therefore an essential aspect in directed evolution. While the ideal compartment is a biological cell, many projects involving more radical changes in the bioproduct, such as the introduction of novel cofactors, may not be suitable for expression of the information in cells, and alternative in vitro methods have to be applied. Consequently, the possibility to produce simple and advanced micro compartments at high rates and to combine them with the ability to translate the information into proteins represents a unique opportunity to explore demanding enzyme engineering projects that require the evaluation of at least hundreds of thousands of enzyme variants over multiple generations.

  5. Enzymatic reduction of disulfide bonds in lysosomes: Characterization of a Gamma-interferon-inducible lysosomal thiol reductase (GILT)

    NASA Astrophysics Data System (ADS)

    Arunachalam, Balasubramanian; Phan, Uyen T.; Geuze, Hans J.; Cresswell, Peter

    2000-01-01

    Proteins internalized into the endocytic pathway are usually degraded. Efficient proteolysis requires denaturation, induced by acidic conditions within lysosomes, and reduction of inter- and intrachain disulfide bonds. Cytosolic reduction is mediated enzymatically by thioredoxin, but the mechanism of lysosomal reduction is unknown. We describe here a lysosomal thiol reductase optimally active at low pH and capable of catalyzing disulfide bond reduction both in vivo and in vitro. The active site, determined by mutagenesis, consists of a pair of cysteine residues separated by two amino acids, similar to other enzymes of the thioredoxin family. The enzyme is a soluble glycoprotein that is synthesized as a precursor. After delivery into the endosomal/lysosomal system by the mannose 6-phosphate receptor, N- and C-terminal prosequences are removed. The enzyme is expressed constitutively in antigen-presenting cells and induced by IFN-γ in other cell types, suggesting a potentially important role in antigen processing.

  6. Dissimilarities in the metabolism of antiretroviral drugs used in HIV pre-exposure prophylaxis in colon and vagina tissues.

    PubMed

    To, Elaine E; Hendrix, Craig W; Bumpus, Namandjé N

    2013-10-01

    Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Liver carbohydrates metabolism: A new islet-neogenesis associated protein peptide (INGAP-PP) target.

    PubMed

    Villagarcía, Hernán Gonzalo; Román, Carolina Lisi; Castro, María Cecilia; González, Luisa Arbeláez; Ronco, María Teresa; Francés, Daniel Eleazar; Massa, María Laura; Maiztegui, Bárbara; Flores, Luis Emilio; Gagliardino, Juan José; Francini, Flavio

    2018-03-01

    Islet-Neogenesis Associated Protein-Pentadecapeptide (INGAP-PP) increases β-cell mass and enhances glucose and amino acids-induced insulin secretion. Our aim was to demonstrate its effect on liver metabolism. For that purpose, adult male Wistar rats were injected twice-daily (10 days) with saline solution or INGAP-PP (250 μg). Thereafter, serum glucose, triglyceride and insulin levels were measured and homeostasis model assessment (HOMA-IR) and hepatic insulin sensitivity (HIS) were determined. Liver glucokinase and glucose-6-phosphatase (G-6-Pase) expression and activity, phosphoenolpyruvate carboxykinase (PEPCK) expression, phosphofructokinase-2 (PFK-2) protein content, P-Akt/Akt and glycogen synthase kinase-3β (P-GSK3/GSK3) protein ratios and glycogen deposit were also determined. Additionally, glucokinase activity and G-6-Pase and PEPCK gene expression were also determined in isolated hepatocytes from normal rats incubated with INGAP-PP (5 μg/ml). INGAP-PP administration did not modify any of the serum parameters tested but significantly increased activity of liver glucokinase and the protein level of its cytosolic activator, PFK-2. Conversely, INGAP-PP treated rats decreased gene expression and enzyme activity of gluconeogenic enzymes, G-6-Pase and PEPCK. They also showed a higher glycogen deposit and P-GSK3/GSK3 and P-Akt/Akt ratio. In isolated hepatocytes, INGAP-PP increased GK activity and decreased G-6-Pase and PEPCK expression. These results demonstrate a direct effect of INGAP-PP on the liver acting through P-Akt signaling pathway. INGAP-PP enhances liver glucose metabolism and deposit and reduces its production/output, thereby contributing to maintain normal glucose homeostasis. These results reinforce the concept that INGAP-PP might become a useful tool to treat people with impaired islet/liver glucose metabolism as it occurs in T2D. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Diffractive variable beam splitter: optimal design.

    PubMed

    Borghi, R; Cincotti, G; Santarsiero, M

    2000-01-01

    The analytical expression of the phase profile of the optimum diffractive beam splitter with an arbitrary power ratio between the two output beams is derived. The phase function is obtained by an analytical optimization procedure such that the diffraction efficiency of the resulting optical element is the highest for an actual device. Comparisons are presented with the efficiency of a diffractive beam splitter specified by a sawtooth phase function and with the pertinent theoretical upper bound for this type of element.

  9. Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library.

    PubMed

    Yan, Wei; Li, Furong; Wang, Li; Zhu, Yaxin; Dong, Zhiyang; Bai, Linhan

    2017-03-01

    A new gene encoding a lipase (designated as Lip-1 ) was identified from a metagenomic bacterial artificial chromosome(BAC) library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1) and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production.

  10. Functional characterization of GH7 endo-1,4-β-glucanase from Aspergillus fumigatus and its potential industrial application.

    PubMed

    Bernardi, Aline Vianna; de Gouvêa, Paula Fagundes; Gerolamo, Luis Eduardo; Yonamine, Deborah Kimie; de Lourdes de Lima Balico, Laís; Uyemura, Sergio Akira; Dinamarco, Taisa Magnani

    2018-04-30

    A gene encoding an endo-1,4-β-glucanase (Afu6g01800) from A. fumigatus was cloned into the vector pET-28a(+) and expressed in the E. coli strain RosettaTM (DE3) pLysS. Sequence analysis indicated that the enzyme Af-EGL7 belonged to the GH7 family. The gene Af-egl7 encoded a protein comprising 460 amino acids, with a CBM1 domain at residues 424-460 and molecular mass of 52 kDa, as estimated by SDS-PAGE. This enzyme was optimally active at pH and temperatures ranging from 4.5 to 5.5 and from 40 to 60 °C, respectively. Mn 2+ addition significantly enhanced the Af-EGL7 cellulase activity by 233%, whereas SDS addition fully inhibited this activity. Higher activity was observed toward β-glucan than toward xyloglucan and CM-Cellulose, suggesting that the enzyme corresponds to a β-1,3-1,4-glucanase. qRT-PCR in different culture media helped to establish the time-course expression profile. Different polysaccharides induced the gene Af-egl7 in a time-dependent manner; in the particular case of the substrate sugarcane exploded bagasse (SEB), Af-egl7 was induced 2500-fold. Upon addition to a commercial cellulase cocktail, Af-EGL7 significantly improved SEB saccharification, which suggested that the enzyme Af-EGL7 had great potential to hydrolyze complex biomass. From a biotechnological point of view, A. fumigatus Af-EGL7 is a promising candidate to enhance enzyme cocktails used in biorefineries such as consolidated bioprocessing. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris.

    PubMed

    Yang, Xiaoxue; Cong, Hua; Song, Jinzhu; Zhang, Junzheng

    2013-11-01

    Trichoderma asperellum parasitizes a large variety of phytopathogenic fungi. The mycoparasitic activity of T. asperellum depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall and proteases which are a group of enzymes capable of degrading proteins from host. In this study, a full-length cDNA clone of aspartic protease gene, TaAsp, from T. asperellum was obtained and sequenced. The 1,185 bp long cDNA sequence was predicted to encode a 395 amino acid polypeptide with molecular mass of 42.3 kDa. The cDNA of TaAsp was inserted into the pPIC9K vector and transformed into yeast Pichia pastoris GS115 for heterologous expression. A clearly visible band with molecular mass about 42 kDa in the SDS-PAGE gel indicated that the transformant harboring the gene TaAsp had been successfully translated in P. pastoris and produced a recombinant protein. Enzyme characterization test showed that the optimum fermentation time for P. pastoris GS115 transformant was 72 h. Enzyme activity of the recombinant aspartic proteinase remained relatively stable at 25-60 °C and pH 3.0-9.0, which indicated its good prospect of application in biocontrol. The optimal pH value and temperature of the enzyme activity were pH 4.0 and 40 °C, and under this condition, with casein as the substrate, the recombinant protease activity was 18.5 U mL(-1). In order to evaluate antagonistic activity of the recombinant protease against pathogenic fungi, five pathogenic fungi, Fusarium oxysporum, Alternaria alternata, Cytospora chrysosperma, Sclerotinia sclerotiorum and Rhizoctonia solani, were applied to the test of in vitro inhibition of their mycelial growth by culture supernatant of P. pastoris GS115 transformant.

  12. Cloning and Expression of a Phloretin Hydrolase Gene from Eubacterium ramulus and Characterization of the Recombinant Enzyme

    PubMed Central

    Schoefer, Lilian; Braune, Annett; Blaut, Michael

    2004-01-01

    Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37°C and 7.0, respectively. The Km for phloretin was 13 ± 3 μM and the kcat was 10 ± 2 s−1. The enzyme did not transform phloretin-2′-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl2 to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively. PMID:15466559

  13. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.).

    PubMed

    Feng, Kai; Xu, Zhi-Sheng; Liu, Jie-Xia; Li, Jing-Wen; Wang, Feng; Xiong, Ai-Sheng

    2018-06-01

    This study showed that a galactosyltransferase, AgUCGalT1, is involved in anthocyanin galactosylation in purple celery. Celery is a well-known vegetable because of its rich nutrients, low calories, and medicinal values. Its petioles and leaf blades are the main organs acting as nutrient sources. UDP-galactose: cyanidin 3-O-galactosyltransferase can transfer the galactosyl moiety from UDP-galactose to the 3-O-position of cyanidin through glycosylation. This process enhances the stability and water solubility of anthocyanins. In the present study, LC-MS data indicated that abundant cyanidin-based anthocyanins accumulated in the petioles of purple celery ('Nanxuan liuhe purple celery'). A gene encoding UDP-galactose: cyanidin 3-O-galactosyltransferase, namely AgUCGalT1, was isolated from purple celery and expressed in Escherichia coli BL21 (DE3). Sequence alignments revealed that the AgUCGalT1 protein contained a highly conserved putative secondary plant glycosyltransferase (PSPG) motif. The glycosylation product catalyzed by AgUCGalT1 was detected using UPLC equipment. The recombinant AgUCGalT1 had an optimal enzyme activity at 35 °C and pH 8.0, and showed highest enzyme activity toward cyanidin among the enzyme activities involving other substances, namely, peonidin, quercetin, and kaempferol. The expression levels of AgUCGalT1 were positively correlated with the total anthocyanin contents in purple and non-purple celery varieties. Crude enzymes extracted from purple celery exhibited glycosylation ability, whereas crude enzymes obtained from non-purple celery did not have this ability. This work provided evidence as a basis for investigations on the function of AgUCGalT1 in anthocyanin glycosylation in purple celery.

  14. Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads.

    PubMed

    Banerjee, Suchetana; Banerjee, Anindita; Sarkar, Priyabrata

    2018-04-16

    Bioremediation of arsenic using green technology via microbial enzymes has attracted scientists due to its simplicity and cost effectiveness. Statistical optimization of arsenate bioremediation was conducted by the enzyme arsenate reductase extracted from arsenic tolerant bacterium Pseudomonas alcaligenes. Response surface methodology based on Box-Behnken design matrix was performed to determine the optimal operational conditions of a multivariable system and their interactive effects on the bioremediation process. The highest biosorptive activity of 96.2 µg gm -1 of beads was achieved under optimized conditions (pH = 7.0; As (V) concentration = 1000 ppb; time = 2 h). SEM analysis showed the morphological changes on the surface of enzyme immobilized gluteraldehyde crosslinked Ca-alginate beads. The immobilized enzyme retained its activity for 8 cycles. ANOVA with a high correlation coefficient (R 2 > 0.99) and lower "Prob > F"value (<0.0001) corroborated the second-order polynomial model for the biosorption process. This study on the adsorptive removal of As (V) by enzyme-loaded biosorbent revealed a possible way of its application in large scale treatment of As (V)-contaminated water bodies.

  15. Screening and optimization of pectin lyase and polygalacturonase activity from ginseng pathogen Cylindrocarpon Destructans

    PubMed Central

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Ho-Bin; Subramaniyam, Sathiyamoorthy; Lee, Ok Ran; Kim, Yeon-Ju; Yang, Deok Chun

    2011-01-01

    Cylindrocarpon destructans isolated from ginseng field was found to produce pectinolytic enzymes. A Taguchi’s orthogonal array experimental design was applied to optimize the preliminary production of polygalacturonase (PG) and pectin lyase (PL) using submerged culture condition. This method was applied to evaluate the significant parameters for the production of enzymes. The process variables were pH, pectin concentration, incubation time and temperature. Optimization of process parameters resulted in high levels of enzyme (PG and PL) production after ten days of incubation at a pH of 5.0 at 25°C in the presence of 1.5% pectin. Among different nitrogen sources, urea and peptone showed high production of PG and PL, respectively. The enzyme production and mycelial growth seems to have direct influence on the culture conditions; therefore, at stationary state high enzyme production and mycelial growth were obtained than agitation state. Along with this, optimization of enzyme activity was also determined using various physiological parameters like, temperature, incubation time and pH. Taguchi’s data was also analyzed using one step ANOVA statistical method. PMID:24031695

  16. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06more » and 0.1 measured directly in cell extracts.« less

  17. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors

    PubMed Central

    Mitsiades, Nicholas; Sung, Clifford C.; Schultz, Nikolaus; Danila, Daniel C.; He, Bin; Eedunuri, Vijay Kumar; Fleisher, Martin; Sander, Chris; Sawyers, Charles L.; Scher, Howard I.

    2012-01-01

    Androgen receptor (AR) signaling persists in castration-resistant prostate carcinomas (CRPCs), due to several mechanisms that include increased AR expression and intratumoral androgen metabolism. We investigated the mechanisms underlying aberrant expression of transcripts involved in androgen metabolism in CRPC. We compared gene expression profiles and DNA copy number alteration (CNA) data from 29 normal prostate tissue samples, 127 primary prostate carcinomas (PCas) and 19 metastatic PCas. Steroidogenic enzyme transcripts were evaluated by qRT-PCR in PCa cell lines and circulating tumor cells (CTCs) from CRPC patients. Metastatic PCas expressed higher transcript levels for AR and several steroidogenic enzymes, including SRD5A1, SRD5A3, and AKR1C3, while expression of SRD5A2, CYP3A4, CYP3A5 and CYP3A7 was decreased. This aberrant expression was rarely associated with CNAs. Instead, our data suggest distinct patterns of coordinated aberrant enzyme expression. Inhibition of AR activity by itself stimulated AKR1C3 expression. The aberrant expression of the steroidogenic enzyme transcripts were detected in CTCs from CRPC patients. In conclusion, our findings identify substantial interpatient heterogeneity and distinct patterns of dysregulated expression of enzymes involved in intratumoral androgen metabolism in PCa. These steroidogenic enzymes represent targets for complete suppression of systemic and intratumoral androgen levels, an objective that is supported by the clinical efficacy of the CYP17 inhibitor abiraterone. A comprehensive AR axis targeting approach via simultaneous, frontline enzymatic blockade and/or transcriptional repression of several steroidogenic enzymes, in combination with GnRH analogs and potent anti-androgens, would represent a powerful future strategy for PCa management. PMID:22971343

  18. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility.

    PubMed

    Yuan, Wei; Gong, Zhiwei; Wang, Guanghui; Zhou, Wenting; Liu, Yi; Wang, Xuemin; Zhao, Mi

    2018-06-14

    In the present study, a sodium hydroxide-methanol solution (SMs) pretreatment of corn stover was described to overcome biomass recalcitrance for the first time. Effects of sodium hydroxide loading, solid-to-liquid ratio, processing time and temperature on enzymatic saccharification were studied in detail. The SMs pretreatment could significantly enhance the enzyme accessibility of corn stover, minimize the degradation of sugar polymers, and decrease the energy consumption. 97.5% glucan and 83.5% xylan were preserved in the regenerated corn stover under the optimal condition. Subsequent enzymatic digestibilities of glucan and xylan reached 97.2% and 80.3%, respectively. The enzyme susceptibility of the regenerated samples was explained by their physical and chemical characteristics. This strategy provides a promising alternative for better techno-economic of the lignocelluloses-to-sugars routes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations.

    PubMed

    Banerjee, Goutami; Car, Suzana; Scott-Craig, John S; Borrusch, Melissa S; Walton, Jonathan D

    2010-10-12

    Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase) were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar) subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]). A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP) at the same protein loadings. When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3) and a lower proportion of endo-β1,4-glucanase (EG1) compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase, α-arabinosidase, and Cel12A to the core set) was determined for AFEX-pretreated corn stover, DDGS, and AP-pretreated corn stover. The optimized mixture for AP-corn stover contained more exo-β1,4-glucanase (i.e., the sum of CBH1 + CBH2) and less endo-β1,4-glucanase (EG1 + Cel5A) than the optimal mixture for AFEX-corn stover. Amyloglucosidase and β-mannanase were the two most important enzymes for release of Glc from DDGS but were not required (i.e., 0% optimum) for corn stover subjected to AP or AFEX. As a function of enzyme loading over the range 0 to 30 mg/g glucan, Glc release from AP-corn stover reached a plateau of 60-70% Glc yield at a lower enzyme loading (5-10 mg/g glucan) than AFEX-corn stover. Accellerase 1000 was superior to Spezyme CP, the core set or the 16-component mixture for Glc yield at 12 h, but the 16-component set was as effective as the commercial enzyme mixtures at 48 h. The results in this paper demonstrate that GENPLAT can be used to rapidly produce enzyme cocktails for specific pretreatment/biomass combinations. Pretreatment conditions and feedstock source both influence the Glc and Xyl yields as well as optimal enzyme proportions. It is predicted that it will be possible to improve synthetic enzyme mixtures further by the addition of additional accessory enzymes.

  20. Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.

    PubMed

    Liu, Kuan-Miao; Liu, Kuan-Ju

    2016-01-01

    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Influence of 2 cryopreservation methods to induce CCL-13 from dental pulp cells.

    PubMed

    Ahn, Su-Jin; Jang, Ji-Hyun; Seo, Ji-Sung; Cho, Kyu Min; Jung, Su-Hee; Lee, Hyeon-Woo; Kim, Eun-Cheol; Park, Sang Hyuk

    2013-12-01

    Cryopreservation preserves periodontal ligament cells but has a lower success rate with dental pulp cells (DPCs) because it causes inflammation. There are 2 well-known cryopreservation methods that reduce inflammation, slow freezing and rapid freezing, but the effects of the 2 methods on inflammation are not well-established. The purpose of this study was to compare the effects of the 2 different cryopreservation methods on CCL-13 induction from DPCs by using microarrays, real-time polymerase chain reaction (PCR), Western blotting, enzyme-linked immunosorbent assay, and confocal laser scanning microscopy (CLSM). In this study, the concentration of cryoprotectant was fixed, and the methods compared differed with respect to freezing speed. Initially we screened the DPCs of cryopreserved teeth with expression microarrays, and CCL-13 was identified as a differentially expressed gene involved in generalized inflammation. We then compared the expression of CCL-13 after exposing teeth to the 2 cryopreservation methods by using real-time PCR, Western blot, enzyme-linked immunosorbent assay, and CLSM. Expression of CCL-13 was up-regulated significantly only in the rapid freezing group, except in measurements made by real-time PCR. CLSM analysis also confirmed this up-regulation visually. Rapid freezing increased the expression of CCL-13 in DPCs compared with slow freezing. Understanding the inflammatory effect of cryopreservation should help to establish an optimal cryoprofile to minimize inflammation of DPCs and reduce the need for endodontic treatment. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Molecular responses in digestive tract of juvenile common carp after chronic exposure to sublethal tributyltin.

    PubMed

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2014-11-01

    The effect of long-term exposure to tributyltin (TBT) on the intestine-related biochemical biomarkers in common carp was investigated in this study. Fish were exposed at sub-lethal concentrations of TBT (75 ng/L, 0.75 and 7.5 μg/L) for 60 days. Multiple biomarkers were measured, including digestive enzymes (trypsin, lipase and amylase), antioxidant responses (malondialdehyde (MDA) and total antioxidative capacity (T-AOC)), RNA/DNA ratio and the expression of digestive-related genes (try, lipc and amy). TBT exposure at 0.75 and 7.5 μg/L led to significantly inhibited activities of all digestive enzymes. At higher concentration of TBT, oxidative stress was apparent as reflected by the significant higher MDA content in the fish intestine, associated with an inhibition of T-AOC activities. After 60 days, the RNA/DNA ratio in fish intestine was significantly lower in groups exposed to TBT at higher concentrations (0.75 and 7.5 μg/L). In addition, the expression levels of try, lipc and amy in intestine of all treated fish were inhibited, even at the environmental concentration (75 ng/L). Our results suggest that long-term exposure to TBT could result in different responses of intestine-related biochemical biomarkers in fish, which could be used as new potential indicators for monitoring residual TBT present in aquatic environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components.

    PubMed

    Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber

    2017-01-01

    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p < 0.05) for Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 with R 2 value of 0.9120, 0.9793, 0.9076, 0.9125, and 0.9709, respectively. Optimal conditions for the highest extraction yield of 39.28%, PTP-1B inhibition rate of 86.21%, α -glycosidase enzymes inhibition rate of 96.56%, and ABTS inhibition rate of 77.38% were derived at ethanol concentration 50.11%, extraction temperature 72.06°C, solid-to-solvent ratio 1 : 22.73 g/mL, and extraction time 2.93 h. On the basis of total polyphenol content of 48.44% in this optimal condition, the quantitative analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.

  4. DyNAVacS: an integrative tool for optimized DNA vaccine design.

    PubMed

    Harish, Nagarajan; Gupta, Rekha; Agarwal, Parul; Scaria, Vinod; Pillai, Beena

    2006-07-01

    DNA vaccines have slowly emerged as keystones in preventive immunology due to their versatility in inducing both cell-mediated as well as humoral immune responses. The design of an efficient DNA vaccine, involves choice of a suitable expression vector, ensuring optimal expression by codon optimization, engineering CpG motifs for enhancing immune responses and providing additional sequence signals for efficient translation. DyNAVacS is a web-based tool created for rapid and easy design of DNA vaccines. It follows a step-wise design flow, which guides the user through the various sequential steps in the design of the vaccine. Further, it allows restriction enzyme mapping, design of primers spanning user specified sequences and provides information regarding the vectors currently used for generation of DNA vaccines. The web version uses Apache HTTP server. The interface was written in HTML and utilizes the Common Gateway Interface scripts written in PERL for functionality. DyNAVacS is an integrated tool consisting of user-friendly programs, which require minimal information from the user. The software is available free of cost, as a web based application at URL: http://miracle.igib.res.in/dynavac/.

  5. Expression, purification and characterization of a phyAm-phyCs fusion phytase*

    PubMed Central

    Zou, Li-kou; Wang, Hong-ning; Pan, Xin; Tian, Guo-bao; Xie, Zi-wen; Wu, Qi; Chen, Hui; Xie, Tao; Yang, Zhi-rong

    2008-01-01

    The phyAm gene encoding acid phytase and optimized neutral phytase phyCs gene were inserted into expression vector pPIC9K in correct orientation and transformed into Pichia pastoris in order to expand the pH profile of phytase and decrease the cost of production. The fusion phytase phyAm-phyCs gene was successfully overexpressed in P. pastoris as an active and extracellular phytase. The yield of total extracellular fusion phytase activity is (25.4±0.53) U/ml at the flask scale and (159.1±2.92) U/ml for high cell-density fermentation, respectively. Purified fusion phytase exhibits an optimal temperature at 55 °C and an optimal pH at 5.5~6.0 and its relative activity remains at a relatively high level of above 70% in the range of pH 2.0 to 7.0. About 51% to 63% of its original activity remains after incubation at 75 °C to 95 °C for 10 min. Due to heavy glycosylation, the expressed fusion phytase shows a broad and diffuse band in SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). After deglycosylation by endoglycosidase H (EndoHf), the enzyme has an apparent molecular size of 95 kDa. The characterization of the fusion phytase was compared with those of phyCs and phyAm. PMID:18600783

  6. Construction of a Food Grade Recombinant Bacillus subtilis Based on Replicative Plasmids with an Auxotrophic Marker for Biotransformation of d-Fructose to d-Allulose.

    PubMed

    He, Weiwei; Mu, Wanmeng; Jiang, Bo; Yan, Xin; Zhang, Tao

    2016-04-27

    A food grade recombinant Bacillus subtilis that produces d-psicose 3-epimerase (DPEase; EC 5.1.3.30) was constructed by transforming a replicative multicopy plasmid with a d-alanine racemase gene marker into B. subtilis 1A751 with the d-alanine racemase gene knocked out. The DPEase was expressed in B. subtilis without antibiotic resistance genes and without adding antibiotics during fermentation. Whole cells of the food grade recombinant B. subtilis were used to biotransform d-fructose to d-allulose. The two tandem promoters, including the HpaII and P43 promoters, increased expression levels compared to the use of one promoter, HpaII. For large-scale d-allulose production, the optimal enzyme dose was 40 enzyme activity units of dry cells per gram of d-fructose, which produced a 28.5% turnover yield in 60 min. The recombinant plasmid exhibited stability over 100 generations. This food grade recombinant B. subtilis may be used for large-scale d-allulose production in the food industry.

  7. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    PubMed

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  9. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences.

    PubMed

    Schwarzenberger, Anke; Fink, Patrick

    2018-04-01

    Food quality is an important factor influencing organisms' well-being. In freshwater ecosystems, food quality has been studied extensively for the keystone herbivore genus Daphnia, as they form the critical trophic link between primary producers and higher order consumers such as fish. For Daphnia, the edible fraction of phytoplankton in lakes (consisting mostly of unicellular algae and cyanobacteria) is extraordinarily diverse. To be able to digest different food particles, Daphnia possess a set of digestive enzymes that metabolize carbohydrates, lipids and proteins. Recent studies have found a connection between gene expression and activity of single digestive enzyme types of Daphnia, i.e. lipases and proteases, and transcriptome studies have shown that a variety of genes coding for gut enzymes are differentially expressed in response to different food algae. However, never before has a set of digestive enzymes been studied simultaneously both on the gene expression and the enzyme activity level in Daphnia. Here, we investigated several digestive enzymes of Daphnia pulex in a comparison between a high-quality (green algal) and a low-quality (cyanobacterial) diet. Diet significantly affected the expression of all investigated digestive enzyme genes and enzyme activity was altered between treatments. Furthermore, we found that gene expression and enzyme activity were significantly correlated in cellulase, triacylglycerol lipase and β-glucosidase when switched from high to low-quality food. We conclude that one of the factors causing the often observed low biomass and energy transfer efficiency from cyanobacteria to Daphnia is probably the switch to a cost-effective overall increase of gene expression and activity of digestive enzymes of this herbivore. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Applications of thermal-gradients method for the optimization of α-amylase crystallization conditions based on dynamic and static light scattering data

    NASA Astrophysics Data System (ADS)

    Delboni, L. F.; Iulek, J.; Burger, R.; da Silva, A. C. R.; Moreno, A.

    2002-02-01

    The expression, purification, crystallization, and characterization by X-ray diffraction of α-amylase are described here. Dynamic and static light scattering methods with a temperature controller was used to optimize the crystallization conditions of α-amylase from Bacillus stearothermophilus an important enzyme in many fields of industrial activity. After applying thermal gradients for growing crystals, X-ray cryo-crystallographic methods were employed for the data collection. Crystals grown by these thermal-gradients diffracted up to a maximum resolution of 3.8 Å, which allowed the determination of the unit cell constants as follows: a=61.7 Å, b=86.7 Å, c=92.2 Å and space group C222 (or C222 1).

  11. Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins.

    PubMed

    Plant, Ewan P; Rakauskaite, Rasa; Taylor, Deborah R; Dinman, Jonathan D

    2010-05-01

    In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the -1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a "golden mean" model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.

  12. Analytical and experimental design and analysis of an optimal processor for image registration

    NASA Technical Reports Server (NTRS)

    Mcgillem, C. D. (Principal Investigator); Svedlow, M.; Anuta, P. E.

    1976-01-01

    The author has identified the following significant results. A quantitative measure of the registration processor accuracy in terms of the variance of the registration error was derived. With the appropriate assumptions, the variance was shown to be inversely proportional to the square of the effective bandwidth times the signal to noise ratio. The final expressions were presented to emphasize both the form and simplicity of their representation. In the situation where relative spatial distortions exist between images to be registered, expressions were derived for estimating the loss in output signal to noise ratio due to these spatial distortions. These results are in terms of a reduction factor.

  13. Microbial expression of alkaloid biosynthetic enzymes for characterization of their properties.

    PubMed

    Minami, Hiromichi; Ikezawa, Nobuhiro; Sato, Fumihiko

    2010-01-01

    A wide variety of secondary metabolites are produced in higher plants. These metabolites are synthesized in specific organs/cells at certain developmental stages and/or under specific environmental conditions. Since these biosynthetic activities are rather restricted and difficult to detect, the biochemical characterization of biosynthetic enzymes involved in secondary metabolism has been limited compared to those involved in primary metabolism. Recently, however, progress in tissue culture and molecular biology has made it easier to study biosynthetic enzymes. Here we describe protocols for expressing some biosynthetic enzymes in Escherichia coli expression systems, since this system is both efficient and cost-effective. First, we describe a standard system for expressing biosynthetic enzymes as a soluble protein under the T7 promoter of the pET expression system in E. coli. In addition, the successful expression of cytochrome P450 in E. coli in an active soluble form with N-terminal modification is discussed, since P450 is the critical enzyme in secondary metabolite biosynthesis.

  14. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Hammond, Timothy; Allen, Pat; Ott, C. Mark; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 x g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies.

  15. FabH Mutations Confer Resistance to FabF-Directed Antibiotics in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Yao, Jiangwei; Frank, Matthew W.

    2014-01-01

    Delineating the mechanisms for genetically acquired antibiotic resistance is a robust approach to target validation and anticipates the evolution of clinical drug resistance. This study defines a spectrum of mutations in fabH that render Staphylococcus aureus resistant to multiple natural products known to inhibit the elongation condensing enzyme (FabF) of bacterial type II fatty acid synthesis. Twenty independently isolated clones resistant to platensimycin, platencin, or thiolactomycin were isolated. All mutants selected against one antibiotic were cross-resistant to the other two antibiotics. Mutations were not detected in fabF, but the resistant strains harbored missense mutations in fabH. The altered amino acids clustered in and around the FabH active-site tunnel. The mutant FabH proteins were catalytically compromised based on the low activities of the purified enzymes, a fatty acid-dependent growth phenotype, and elevated expression of the fabHF operon in the mutant strains. Independent manipulation of fabF and fabH expression levels showed that the FabH/FabF activity ratio was a major determinant of antibiotic sensitivity. Missense mutations that reduce FabH activity are sufficient to confer resistance to multiple antibiotics that bind to the FabF acyl-enzyme intermediate in S. aureus. PMID:25403676

  16. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels. Published by Elsevier Ltd.

  17. A multiwell format assay for heparanase.

    PubMed

    Behzad, Farhad; Brenchley, Paul E C

    2003-09-15

    This assay employs a biotinylated heparan sulfate glycosaminoglycan (HSGAG) substrate that is covalently linked to the surface of 96-well immunoassay plates. The ratio of biotin:HSGAG and the coating concentration of substrate bound to the wells have been optimized and allow removal of biotin HSGAG within 60 min of incubation at 37 degrees C in assay buffer with a standard dilution of bacterial heparitinase or platelet heparanase. Loss of biotin signal from the well surface is detected on incubation with peroxidase-streptavidin followed by color development using 3,3',5,5'-tetramethylbenzidine as the peroxidase substrate. The new assay allows specific detection of heparanase activity in multiple samples in a total time of 3 h including a 1-h substrate digestion step and is a significant improvement with regard to sensitivity, specificity, and ease of handling of multiple samples compared to other described assays. Heparanase specifically degrades the biotinylated HSGAG substrate, when used with an optimized assay buffer. A range of enzymes including collagenase, trypsin, plasmin, pepsin, chondroitinases, hyaluronidase, and neuraminidase show no effect on the substrate under optimized assay conditions. The covalent linkage of the substrate to the well prevents leaching of substrate and allows preparation and long-term storage of substrate-coated plates. The assay can be used to detect heparanase levels in clinical samples and cell culture supernatants and is ideal as a screening method for antagonists of enzyme activity.

  18. Extraction, purification and anti-proliferative activities of polysaccharides from Lentinus edodes.

    PubMed

    Zhao, Yong-Ming; Wang, Jin; Wu, Zhi-Gang; Yang, Jian-Ming; Li, Wei; Shen, Li-Xia

    2016-12-01

    In this study, the enzyme-assisted extraction of polysaccharides from Lentinus edodes (LEPs) was optimized by response surface methodology, and a preliminary characterization of the extracted LEPs and their anti-proliferative activities were investigated. An orthogonal assay was constructed to determine the optimal amounts of cellulase, papain and pectinase, which were 15, 20 and 15g/kg, respectively. Then effects of extraction conditions were evaluated and optimized using a Box-Behnken design. The results showed that the highest polysaccharides yield of 15.65% was achieved with an extraction temperature of 54°C, pH 5.0, enzymatic treatment time of 93min and a liquid/material ratio of 29:1mL/g, which correlated well with the predicted yield of 15.58%. Subsequently, the crude LEPs were further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions, which were designated as LEP-1 and LEP-2 and their monosaccharide compositions were characterized by GC. Fourier-transform infrared spectra demonstrated that LEP-1 and LEP-2 were distinct from each other regarding their chemical structures. In addition, the LEPs exhibited inhibition of cell proliferation on HCT-116 and HeLa cells in vitro. In summary, this study provides an efficient enzyme-assisted extraction for LEPs, which can be used as natural antitumor agents in the pharmaceutical and functional food industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Control of Expression of the RNases J1 and J2 in Bacillus subtilis

    PubMed Central

    Jamalli, Ailar; Hébert, Agnès; Zig, Léna

    2014-01-01

    In Bacillus subtilis, the dual activity 5′ exo- and endoribonucleases J1 and J2 are important players in mRNA and stable RNA maturation and degradation. Recent work has improved our understanding of their structure and mechanism of action and identified numerous RNA substrates. However, almost nothing is known about the expression of these enzymes. Here, we have identified the transcriptional and translational signals that control the expression of the rnjA (RNase J1) and rnjB (RNase J2) genes. While the rnjB gene is transcribed constitutively from a sigma A promoter, optimal expression of RNase J1 requires cotranscription and cotranslation with the upstream ykzG gene, encoding a protein of unknown function. In the absence of coupled translation, RNase J1 expression is decreased more than 5-fold. Transcription of the ykzG operon initiates at a sigma A promoter with a noncanonical −35 box that is required for optimal transcription. Biosynthesis of RNase J1 is autocontrolled within a small range (1.4-fold) and also slightly stimulated (1.4-fold) in the absence of RNase J2. These controls are weak but might be useful to maintain the overall RNase J level and possibly also equimolar amounts of the two nucleases in the cell that primarily act as a heterodimer in vivo. PMID:24187087

  20. Role of loop L5-6 connecting transmembrane segments M5 and M6 in biogenesis and functioning of yeast Pma1 H+-ATPase.

    PubMed

    Petrov, V V

    2015-01-01

    The L5-6 loop is a short extracytoplasmic stretch (714-DNSLDID) connecting transmembrane segments M5 and M6 and forming along with segments M4 and M8 the core through which cations are transported by H+-, Ca2+-, K+,Na+-, H+,K+-, and other P2-ATPases. To study structure-function relationships within this loop of the yeast plasma membrane Pma1 H+-ATPase, alanine- and cysteine-scanning mutagenesis has been employed. Ala and Cys substitutions for the most conserved residue (Leu717) led to complete block in biogenesis preventing the enzyme from reaching secretory vesicles. The Ala replacement at Asp714 led to five-fold decrease in the mutant expression and loss of its activity, while the Cys substitution blocked biogenesis completely. Replacements of other residues did not lead to loss of enzymatic activity. Additional replacements were made for Asp714 and Asp720 (Asp®Asn/Glu). Of the substitutions made at Asp714, only D714N partially restored the mutant enzyme biogenesis and functioning. However, all mutant enzymes with substituted Asp720 were active. The expressed mutants (34-95% of the wild-type level) showed activity high enough (35-108%) to be analyzed in detail. One of the mutants (I719A) had three-fold reduced coupling ratio between ATP hydrolysis and H+ transport; however, the I719C mutation was rather indistinguishable from the wild-type enzyme. Thus, substitutions at two of the seven positions seriously affected biogenesis and/or functioning of the enzyme. Taken together, these results suggest that the M5-M6 loop residues play an important role in protein stability and function, and they are probably responsible for proper arrangement of transmembrane segments M5 and M6 and other domains of the enzyme. This might also be important for the regulation of the enzyme.

  1. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1.

    PubMed

    Quyen, Dinh Thi; Giang Le, Thi Thu; Nguyen, Thi Thao; Oh, Tae-Kwang; Lee, Jung-Kee

    2005-01-01

    The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).

  2. ADP-ribosyl cyclases regulate early development of the sea urchin.

    PubMed

    Ramakrishnan, Latha; Uhlinger, Kevin; Dale, Leslie; Hamdoun, Amro; Patel, Sandip

    2016-06-01

    ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca 2+ signalling such as cADPR and NAADP. Although Ca 2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca 2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.

  3. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  4. Efficient Extracellular Expression of Phospholipase D in Escherichia Coli with an Optimized Signal Peptide

    NASA Astrophysics Data System (ADS)

    Yang, Leyun; Xu, Yu; Chen, Yong; Ying, Hanjie

    2018-01-01

    New secretion vectors containing the synthetic signal sequence (OmpA’) was constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli Phospholipase D structural gene (Accession number:NC_018658) fused to various signal sequence were expressed from the Lac promoter in E. coli Rosetta strains by induction with 0.4mM IPTG at 28°C for 48h. SDS-PaGe analysis of expression and subcellular fractions of recombinant constructs revealed the translocation of Phospholipase D (PLD) not only to the medium but also remained in periplasm of E. coli with OmpA’ signal sequence at the N-terminus of PLD. Thus the study on the effects of various surfactants on PLD extracellular production in Escherichia coli in shake flasks revealed that optimal PLD extracellular production could be achieved by adding 0.4% Triton X-100 into the medium. The maximal extracellular PLD production and extracellular enzyme activity were 0.23mg ml-1 and 16U ml-1, respectively. These results demonstrate the possibility of efficient secretory production of recombinant PLD in E. coli should be a potential industrial applications.

  5. Gene Transfer Corrects Acute GM2 Gangliosidosis—Potential Therapeutic Contribution of Perivascular Enzyme Flow

    PubMed Central

    Cachón-González, M Begoña; Wang, Susan Z; McNair, Rosamund; Bradley, Josephine; Lunn, David; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2012-01-01

    The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay–Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity—as opposed to tremor-ataxia—were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue—long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system. PMID:22453766

  6. Gene transfer corrects acute GM2 gangliosidosis--potential therapeutic contribution of perivascular enzyme flow.

    PubMed

    Cachón-González, M Begoña; Wang, Susan Z; McNair, Rosamund; Bradley, Josephine; Lunn, David; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2012-08-01

    The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity-as opposed to tremor-ataxia-were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue-long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system.

  7. Medium Optimization for the Production of Fibrinolytic Enzyme by Paenibacillus sp. IND8 Using Response Surface Methodology

    PubMed Central

    Prakash Vincent, Samuel Gnana

    2014-01-01

    Production of fibrinolytic enzyme by a newly isolated Paenibacillus sp. IND8 was optimized using wheat bran in solid state fermentation. A 25 full factorial design (first-order model) was applied to elucidate the key factors as moisture, pH, sucrose, yeast extract, and sodium dihydrogen phosphate. Statistical analysis of the results has shown that moisture, sucrose, and sodium dihydrogen phosphate have the most significant effects on fibrinolytic enzymes production (P < 0.05). Central composite design (CCD) was used to determine the optimal concentrations of these three components and the experimental results were fitted with a second-order polynomial model at 95% level (P < 0.05). Overall, 4.5-fold increase in fibrinolytic enzyme production was achieved in the optimized medium as compared with the unoptimized medium. PMID:24523635

  8. Effect of phosphoric acid pretreatment of corncobs on the fermentability of Clostridium beijerinckii TISTR 1461 for biobutanol production.

    PubMed

    Boonsombuti, Akarin; Luengnaruemitchai, Apanee; Wongkasemjit, Sujitra

    2015-01-01

    Corncobs pretreated with H2SO4, HNO3, and H3PO4 were compared to evaluate the fermentation ability of Clostridium beijerinckii TISTR 1461 to produce biobutanol via acetone-butanol-ethanol (ABE) fermentation. It was found that the hydrolysate from H3PO4 pretreatment could be used as a substrate without any inhibitor removal methods. However, in terms of sugar yield, it gave the lowest total sugars in both pretreatment and enzymatic hydrolysis. Response surface methodology was applied to optimize enzymatic hydrolysis of the pretreated corncobs. The optimized conditions reduced the consumption of enzymes and hydrolysis time to 7.68 FPU/g biomass and 63.88 hr, respectively, and yielded 51.82 g/L reducing sugars. The Celluclast 1.5 L and Novozyme 188 enzyme ratio were varied to maximize the hydrolyzed sugars. The ABE fermentation, using substrate from phosphoric acid pretreatment of corncobs, with 10 g/L glucose supplementation produced 11.64 g/L of total ABE, which was close to the control experiment using synthetic medium. This study showed that corncobs pretreated with phosphoric acid could potentially be used as a substrate without using a detoxification process.

  9. An examination of the role of feeding regimens in regulating metabolism during the broiler breeder grower period. 1. Hepatic lipid metabolism.

    PubMed

    de Beer, M; Rosebrough, R W; Russell, B A; Poch, S M; Richards, M P; Coon, C N

    2007-08-01

    A trial was conducted to determine the effects of feeding regimens on hepatic lipid metabolism in 16-wk-old broiler breeder pullets. A flock of 350 Cobb 500 breeder pullets was divided into 2 at 4 wk of age and fed either every day (ED) or skip-a-day (SKIP) from 4 to 16 wk of age. Total feed intake did not differ between the 2 groups. At 112 d, 52 randomly selected ED-fed pullets, and 76 SKIP-fed pullets were individually caged and fed a 74-g (ED) or 148-g (SKIP) meal. Four pullets from each group were killed at intervals after feeding and livers were collected, weighed, and snap-frozen for determination of lipogenic gene expression. Total RNA was isolated from livers using Trizol reagent and then quantitatively measured by noting the optical density 260:280 ratio and qualitatively measured by gel electrophoresis. The expression of certain regulatory genes in metabolism [acetyl coenzyme A carboxylase; fatty acid synthase; malic enzyme (MAE); isocitrate dehydrogenase (ICDH); and aspartate aminotransferase (AAT)] were determined by real-time reverse-transcription PCR. Remaining liver portions were analyzed for enzyme activity of MAE, ICDH, and AAT as well as glycogen and lipid contents. Liver weight was higher in SKIP than in ED birds. Feeding caused dramatic increases in liver weight, glycogen, and lipids of SKIP birds. Expression of acetyl coenzyme A carboxylase, FAS, and MAE genes were increased in SKIP birds 12 and 24 h after feeding, with the increases in MAE expression from 0 to 24 h after feeding being of the greatest magnitude. In contrast, SKIP decreased ICDH and AAT gene expression, which parallels findings noted in fasting-refeeding experiments conducted with much younger birds. Skip-a-day feeding resulted in far greater changes in gene expression compared with ED, which was indicative of the inconsistent supply of nutrients in such regimens. Enzyme activity of MAE, ICDH, and AAT was reflective of noted changes in gene expression. In summary, the feeding regimen greatly affected hepatic gene expression in breeder pullets.

  10. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization.

    PubMed

    Liu, Song; Wang, Miao; Du, Guocheng; Chen, Jian

    2016-10-28

    Transglutaminases (TGase), which are synthesized as a zymogen (pro-TGase) in Streptomyces sp., are important enzymes in the food industry. Because this pro-peptide is essential for the correct folding of Streptomyces TGase, TGase is usually expressed in an inactive pro-TGase form, which is then converted to active TGase by the addition of activating proteases in vitro. In this study, Streptomyces hygroscopicus TGase was actively produced by Streptomyces lividans through promoter engineering and codon optimization. A gene fragment (tg1, 2.6 kb) that encoded the pro-TGase and its endogenous promoter region, signal peptide and terminator was amplified from S. hygroscopicus WSH03-13 and cloned into plasmid pIJ86, which resulted in pIJ86/tg1. After fermentation for 2 days, S. lividans TK24 that harbored pIJ86/tg1 produced 1.8 U/mL of TGase, and a clear TGase band (38 kDa) was detected in the culture supernatant. These results indicated that the pro-TGase was successfully expressed and correctly processed into active TGase in S. lividans TK24 by using the TGase promoter. Based on deletion analysis, the complete sequence of the TGase promoter is restricted to the region from -693 to -48. We also identified a negative element (-198 to -148) in the TGase promoter, and the deletion of this element increased the TGase production by 81.3 %, in contrast to the method by which S. lividans expresses pIJ86/tg1. Combining the deletion of the negative element of the promoter and optimization of the gene codons, the yield and productivity of TGase reached 5.73 U/mL and 0.14 U/mL/h in the recombinant S. lividans, respectively. We constructed an active TGase-producing strain that had a high yield and productivity, and the optimized TGase promoter could be a good candidate promoter for the expression of other proteins in Streptomyces.

  11. Model for Bi-objective emergency rescue vehicle routing optimization

    NASA Astrophysics Data System (ADS)

    Yang, Yuhang

    2017-03-01

    Vehicle routing problem is an important research topic in management science. In this paper, one vehicle can rescue multiple disaster points and two optimization objectives are rescue time and rescue effect. Rescue effect is expressed as the ratio of unloaded material to arrival time when rescue vehicles participate in rescue every time. In this paper, the corresponding emergency rescue model is established and the effectiveness of the model is verified by simulated annealing algorithm. It can provide the basis for practical decision-making.

  12. Mediating electrostatic binding of 1-butyl-3-methylimidazolium chloride to enzyme surfaces improves conformational stability.

    PubMed

    Nordwald, Erik M; Kaar, Joel L

    2013-08-01

    We have recently developed a general approach to improve the utility of enzymes in ionic liquids (ILs) via tuning of the ratio of enzyme-containing positive to negative surface charges. In this work, the impact of enzyme surface charge ratio on the biophysical interaction of 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) with chymotrypsin and lipase was investigated to understand this approach at the molecular level. Results of fluorescence quenching assays indicated that the extent of binding of the [BMIM] cation decreased (7- and 3.5-fold for chymotrypsin and lipase, respectively) as a function of increasing ratio of positive to negative surface charges. Conformational stability assays further showed a close correlation between thermodynamic stabilization and enzyme surface charge ratio as well as [BMIM] binding. As evidence of this correlation, succinylation and acetylation resulted in the stabilization of chymotrypsin in 10% (v/v) [BMIM][Cl] by 17.0 and 6.6 kJ/mol, respectively, while cationization destabilized chymotrypsin by 3.6 kJ/mol. Combined, these results indicate that altering the surface charge ratio mediates the organization of IL molecules, namely, [BMIM] and [Cl], around the enzymes. Preferential exclusion of [Cl], in particular, via lowering of the ratio of positive to negative surface charges, correlated with increased enzyme stability. Accordingly, these results more broadly provide insight into the mechanism of stabilization in ILs via charge modification.

  13. Bioprocessing analysis of Pyrococcus furiosus strains engineered for CO 2-based 3-hydroxypropionate production

    DOE PAGES

    Hawkins, Aaron B.; Lian, Hong; Zeldes, Benjamin M.; ...

    2015-06-11

    In this paper, metabolically engineered strains of the hyperthermophile Pyrococcus furiosus (T opt 95–100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO 2 using enzymes from the Metallosphaera sedula (T opt 73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal and sub-optimal temperatures, gas-liquid mass transfer in gas-intensive bioreactors, and potential bottlenecks arising from product formation. Transcriptomic comparisons of wild-type P. furiosus, a genetically-tractable, naturally-competent mutant (COM1), and COM1-based strains engineered for 3HP production revealed numerous differences after being shifted from 95°C to 72°C, where product formationmore » catalyzed by the heterologously-produced M. sedula enzymes occurred. At 72°C, significantly higher levels of metabolic activity and a stress response were evident in 3HP-forming strains compared to the non-producing parent strain (COM1). Gas–liquid mass transfer limitations were apparent, given that 3HP titers and volumetric productivity in stirred bioreactors could be increased over 10-fold by increased agitation and higher CO 2 sparging rates, from 18 mg/L to 276 mg/L and from 0.7 mg/L/h to 11 mg/L/h, respectively. 3HP formation triggered transcription of genes for protein stabilization and turnover, RNA degradation, and reactive oxygen species detoxification. Lastly, the results here support the prospects of using thermally diverse sources of pathways and enzymes in metabolically engineered strains designed for product formation at sub-optimal growth temperatures.« less

  14. Bioprocessing analysis of Pyrococcus furiosus strains engineered for CO 2-based 3-hydroxypropionate production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, Aaron B.; Lian, Hong; Zeldes, Benjamin M.

    In this paper, metabolically engineered strains of the hyperthermophile Pyrococcus furiosus (T opt 95–100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO 2 using enzymes from the Metallosphaera sedula (T opt 73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal and sub-optimal temperatures, gas-liquid mass transfer in gas-intensive bioreactors, and potential bottlenecks arising from product formation. Transcriptomic comparisons of wild-type P. furiosus, a genetically-tractable, naturally-competent mutant (COM1), and COM1-based strains engineered for 3HP production revealed numerous differences after being shifted from 95°C to 72°C, where product formationmore » catalyzed by the heterologously-produced M. sedula enzymes occurred. At 72°C, significantly higher levels of metabolic activity and a stress response were evident in 3HP-forming strains compared to the non-producing parent strain (COM1). Gas–liquid mass transfer limitations were apparent, given that 3HP titers and volumetric productivity in stirred bioreactors could be increased over 10-fold by increased agitation and higher CO 2 sparging rates, from 18 mg/L to 276 mg/L and from 0.7 mg/L/h to 11 mg/L/h, respectively. 3HP formation triggered transcription of genes for protein stabilization and turnover, RNA degradation, and reactive oxygen species detoxification. Lastly, the results here support the prospects of using thermally diverse sources of pathways and enzymes in metabolically engineered strains designed for product formation at sub-optimal growth temperatures.« less

  15. Indirect enzyme-linked immunosorbent assay method based on Streptococcus agalactiae rSip-Pgk-FbsA fusion protein for detection of bovine mastitis.

    PubMed

    Bu, Ri-E; Wang, Jin-Liang; Wu, Jin-Hua; Xilin, Gao-Wa; Chen, Jin-Long; Wang, Hua

    2017-03-01

    The aim of this study was to establish a rapid and accurate method for the detection of the Streptococcus agalactiae antibody (SA-Ab) to determine the presence of the bovine mastitis (BM)-causative pathogen. The multi-subunit fusion protein rSip-Pgk-FbsA was prokaryotically expressed and purified. The triple activities of the membrane surface-associated proteins Sip, phosphoglycerate kinase (Pgk), and fibronectin (FbsA) were used as the diagnostic antigens to establish an indirect enzyme-linked immunosorbent assay (ELISA) method for the detection of SA-Ab in BM. The optimal antigen coating concentration was 2 μg/mL, the optimal serum dilution was 1:160, and the optimal dilution of the enzyme-labeled secondary antibody was 1:6000. The sensitivity, specificity, and repeatability tests showed that the method established in this study had no cross-reaction with antibodies to Streptococcus pyogenes, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis in the sera. The results of the sensitivity test showed that a positive result could be obtained even if the serum dilution reached 1:12,800, indicating the high sensitivity and good repeatability of the method. The positive coincidence rate of this method was 98.6%, which is higher than that of previous tests established with the Sip or Pgk mono-antigen fusion protein, respectively, demonstrating the relatively higher sensitivity of this newly established method. The detection rate for 389 clinical samples was 46.53%. The indirect ELISA method established in this study could provide a more accurate and reliable serological method for the rapid detection of S. agalactiae in cases of BM.

  16. Efficient production of antibody Fab fragment by transient gene expression in insect cells.

    PubMed

    Mori, Keita; Hamada, Hirotsugu; Ogawa, Takafumi; Ohmuro-Matsuyama, Yuki; Katsuda, Tomohisa; Yamaji, Hideki

    2017-08-01

    Transient gene expression allows a rapid production of diverse recombinant proteins in early-stage preclinical and clinical developments of biologics. Insect cells have proven to be an excellent platform for the production of functional recombinant proteins. In the present study, the production of an antibody Fab fragment by transient gene expression in lepidopteran insect cells was investigated. The DNA fragments encoding heavy-chain (Hc; Fd fragment) and light-chain (Lc) genes of an Fab fragment were individually cloned into the plasmid vector pIHAneo, which contained the Bombyx mori actin promoter downstream of the B. mori nucleopolyhedrovirus (BmNPV) IE-1 transactivator and the BmNPV HR3 enhancer for high-level expression. Trichoplusia ni BTI-TN-5B1-4 (High Five) cells were co-transfected with the resultant plasmid vectors using linear polyethyleneimine. When the transfection efficiency was evaluated, a plasmid vector encoding an enhanced green fluorescent protein (EGFP) gene was also co-transfected. Transfection and culture conditions were optimized based on both the flow cytometry of the EGFP expression in transfected cells and the yield of the secreted Fab fragments determined by enzyme-linked immunosorbent assay (ELISA). Under optimal conditions, a yield of approximately 120 mg/L of Fab fragments was achieved in 5 days in a shake-flask culture. Transient gene expression in insect cells may offer a promising approach to the high-throughput production of recombinant proteins. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767

    PubMed Central

    2012-01-01

    Background The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme. Results We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM) compared to that of NADPH (39 μM). The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP + at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction. Conclusions In this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde. PMID:22742413

  18. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity.

    PubMed

    Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M

    2016-05-01

    Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.

  19. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    PubMed

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  20. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    PubMed Central

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration. PMID:11229915

  1. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    PubMed

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

  2. Sol-gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4-chitosan) nanoparticles improves thermal and operational stability.

    PubMed

    Long, Jie; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Tian, Yaoqi; Xie, Zhengjun; Jin, Zhengyu

    2017-06-01

    Pullulanase was sol-gel encapsulated in the presence of magnetic chitosan/Fe 3 O 4 nanoparticles. The resulting immobilized pullulanase was characterized by scanning electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The results showed that the addition of pullulanase created a more regular surface on the sol-gel matrix and an enhanced magnetic response to an applied magnetic field. The maximal activity retention (83.9%) and specific activity (291.7 U/mg) of the immobilized pullulanase were observed under optimized conditions including an octyltriethoxysilane:tetraethoxysilane (OTES:TEOS) ratio of 1:2 and enzyme concentration of 0.484 mg/mL sol. The immobilized enzyme exhibited good thermal stability. When the temperature was above 60 °C, the immobilized pullulanase showed significantly higher activity than the free enzyme (p < 0.01); enzyme immobilized by simple sol-gel encapsulation and co-immobilized by crosslinking-encapsulation retained 52 and 69% of their initial activity after 5 h at 62 °C, respectively, compared to 11% for the free enzyme. Moreover, the stability of the pullulanase was improved by crosslinking-encapsulation, as the enzyme retained more than 85 and 81% of its original activity after 5 and 6 consecutive reuses, respectively, compared to 80 and 72% of its original activity for simple sol-gel encapsulated enzymes. This indicated the leakage of enzyme molecules through the pores of the gel was substantially abated by cross-linking. Such immobilized pullulanase provides high stability and ease of enzyme recovery, characteristics that are advantageous for applications in the food industry that involve continuous starch processing.

  3. Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate.

    PubMed

    Rahman, Ida Nurhazwani Abdul; Attan, Nursyafreena; Mahat, Naji Arafat; Jamalis, Joazaizulfazli; Abdul Keyon, Aemi S; Kurniawan, Cepi; Wahab, Roswanira Abdul

    2018-04-24

    The chemical-catalyzed transesterification process to produce biofuels i.e. pentyl valerate (PeVa) is environmentally unfriendly, energy-intensive with tedious downstream treatment. The present work reports the use of Rhizomucor miehei lipase (RML) crosslinked onto magnetic chitosan/chitin nanoparticles (RML-CS/CH/MNPs). The approach used to immobilize RML onto the CS/CH/MNPs yielded RML-CS/CH/MNPs with an immobilized protein loading and specific activity of 7.6 mg/g and 5.0 U·g -1 , respectively. This was confirmed by assessing data of field emission scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis and Fourier transform infrared spectroscopy. A three-level-four-factor Box-Behnken design (incubation time, temperature, substrate molar ratio, and enzyme loading) was used to optimize the RML-CS/CH/MNP-catalyzed esterification synthesis of PeVa. Under optimum condition, the maximum yield of PeVa (97.8%) can be achieved in 5 h at 50 °C using molar ratio valeric acid:pentanol (1:2) and an enzyme load of 2 mg/mL. Consequently, operational stability experiments showed that the protocol adopted to prepare the CS/CH/MNP nanoparticles had increased the durability of RML. The RML-CS/CH/MNP could catalyze up to eight successive esterification cycles to produce PeVa. The study also demonstrated the functionality of CS/CH/MNP nanoparticles as an eco-friendly support matrix for improving enzymatic activity and operational stability of RML to produce PeVa. Copyright © 2018. Published by Elsevier B.V.

  4. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun-Ki; Himmel, Michael E.; Bomble, Yannick J.

    Members of the genusCaldicellulosiruptorhave the ability to deconstruct and grow on lignocellulosic biomass without conventional pretreatment. A genetically tractable species,Caldicellulosiruptor bescii, was recently engineered to produce ethanol directly from switchgrass.C. besciicontains more than 50 glycosyl hydrolases and a suite of extracellular enzymes for biomass deconstruction, most prominently CelA, a multidomain cellulase that uses a novel mechanism to deconstruct plant biomass. Accumulation of cellobiose, a product of CelA during growth on biomass, inhibits cellulase activity. Here, we show that heterologous expression of a cellobiose phosphorylase from Thermotoga maritimaimproves the phosphorolytic pathway inC. besciiand results in synergistic activity with endogenous enzymes, includingmore » CelA, to increase cellulolytic activity and growth on crystalline cellulose. CelA is the only known cellulase to function well on highly crystalline cellulose and it uses a mechanism distinct from those of other cellulases, including fungal cellulases. Also unlike fungal cellulases, it functions at high temperature and, in fact, outperforms commercial cellulase cocktails. Factors that inhibit CelA during biomass deconstruction are significantly different than those that impact the performance of fungal cellulases and commercial mixtures. Here, this work contributes to understanding of cellulase inhibition and enzyme function and will suggest a rational approach to engineering optimal activity.« less

  5. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity

    DOE PAGES

    Kim, Sun-Ki; Himmel, Michael E.; Bomble, Yannick J.; ...

    2017-11-03

    Members of the genusCaldicellulosiruptorhave the ability to deconstruct and grow on lignocellulosic biomass without conventional pretreatment. A genetically tractable species,Caldicellulosiruptor bescii, was recently engineered to produce ethanol directly from switchgrass.C. besciicontains more than 50 glycosyl hydrolases and a suite of extracellular enzymes for biomass deconstruction, most prominently CelA, a multidomain cellulase that uses a novel mechanism to deconstruct plant biomass. Accumulation of cellobiose, a product of CelA during growth on biomass, inhibits cellulase activity. Here, we show that heterologous expression of a cellobiose phosphorylase from Thermotoga maritimaimproves the phosphorolytic pathway inC. besciiand results in synergistic activity with endogenous enzymes, includingmore » CelA, to increase cellulolytic activity and growth on crystalline cellulose. CelA is the only known cellulase to function well on highly crystalline cellulose and it uses a mechanism distinct from those of other cellulases, including fungal cellulases. Also unlike fungal cellulases, it functions at high temperature and, in fact, outperforms commercial cellulase cocktails. Factors that inhibit CelA during biomass deconstruction are significantly different than those that impact the performance of fungal cellulases and commercial mixtures. Here, this work contributes to understanding of cellulase inhibition and enzyme function and will suggest a rational approach to engineering optimal activity.« less

  6. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgaier, M.; Reddy, A.; Park, J. I.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less

  7. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less

  8. Secretory Expression and Characterization of an Acidic Endo-Polygalacturonase Gene from Aspergillus niger SC323 in Saccharomyces cerevisiae.

    PubMed

    Zhou, Huoxiang; Li, Xi; Guo, Mingyue; Xu, Qingrui; Cao, Yu; Qiao, Dairong; Cao, Yi; Xu, Hui

    2015-07-01

    The endo-polygalacturonase gene (endo-pgaA) was cloned from DNA of Aspergillus niger SC323 using the cDNA synthesized by overlapping PCR, and successfully expressed in Saccharomyces cerevisiae EBY100 through fusing the α-factor signal peptide of yeast. The full-length cDNA consists of 1,113 bp and encodes a protein of 370 amino acids with a calculated molecular mass of 38.8 kDa. After induction by galactose for 48 h, the activity of recombinant endo-PgaA in the culture supernatant can reach up to 1,448.48 U/mg. The recombinant protein was purified to homogeneity by ammonium sulfate precipitation and gel filtration column chromatography and subsequently characterized. The optimal pH and temperature of the purified recombinant enzyme were 5.0 and 50°C, respectively. The Michaelis-Menten constant (Km) and maximal velocity (Vmax) of the enzyme for pectin were 88.54 μmol/ml and 175.44 μmol/mg/min, respectively. The enzyme activity was enhanced by Ca(2+), Cu(2+), and Na(+), and strongly inhibited by Pb(2+) and Mn(2+). The pectin hydrolysates were mainly galacturonic acid and other oligo-galacturonates. Therefore, these characteristics suggest that the recombinant endo-PgaA may be of potential use in the food and feed industries.

  9. Ultrasound-assisted three-phase partitioning of polyphenol oxidase from potato peel (Solanum tuberosum).

    PubMed

    Niphadkar, Sonali S; Rathod, Virendra K

    2015-01-01

    Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers.

  10. Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study.

    PubMed

    Uchida, Toyoyoshi; Nishimoto, Koshiro; Fukumura, Yuki; Asahina, Miki; Goto, Hiromasa; Kawano, Yui; Shimizu, Fumitaka; Tsujimura, Akira; Seki, Tsugio; Mukai, Kuniaki; Kabe, Yasuaki; Suematsu, Makoto; Gomez-Sanchez, Celso E; Yao, Takashi; Horie, Shigeo; Watada, Hirotaka

    2017-03-01

    Most adrenocortical carcinomas (ACCs) produce excessive amounts of steroid hormones including aldosterone, cortisol, and steroid precursors. However, aldosterone- and cortisol-producing cells in ACCs have not yet been immunohistochemically described. We present a case of ACC causing mild primary aldosteronism and subclinical Cushing's syndrome. Removal of the tumor cured both conditions. In order to examine the expression patterns of the steroidogenic enzymes responsible for adrenocortical hormone production, 10 tumor portions were immunohistochemically analyzed for aldosterone synthase (CYP11B2), 11β-hydroxylase (CYP11B1, cortisol-synthesizing enzyme), 3β-hydroxysteroid dehydrogenase (3βHSD, upstream enzyme for both CYP11B2 and CYP11B1), and 17α-hydroxylase/C17-20 lyase (CYP17, upstream enzyme for CYP11B1, but not for CYP11B1). CYP11B2, CYP11B1, and 3βHSD were expressed sporadically, and their expression patterns varied significantly among the different tumor portions examined. The expression of these enzymes was random and not associated with each other. CYP17 was expressed throughout the tumor, even in CYP11B2-positive cells. Small tumor cell populations were aldosterone- or cortisol-producing cells, as judged by 3βHSD coinciding with either CYP11B2 or CYP11B1, respectively. These results suggest that the tumor produced limited amounts of aldosterone and cortisol due to the lack of the coordinated expression of steroidogenic enzymes, which led to mild clinical expression in this case. We delineated the expression patterns of steroidogenic enzymes in ACC. The coordinated expression of steroidogenic enzymes in normal and adenoma cells was disturbed in ACC cells, resulting in the inefficient production of steroid hormones in relation to the large tumor volume.

  11. A review on PARP1 inhibitors: Pharmacophore modeling, virtual and biological screening studies to identify novel PARP1 inhibitors.

    PubMed

    Singh, Sardar Shamshair; Sarma, Jagarlapudi A R P; Narasu, Lakshmi; Dayam, Raveendra; Xu, Shili; Neamati, Nouri

    2014-01-01

    A tremendous research on Poly (ADP-ribose) polymerase (PARP) pertaining to cancer and ischemia is in very rapid progress. PARP's are a specific class of enzymes that repairs the damaged DNA. Recent findings suggest also that PARP-1 is the most abundantly expressed nuclear enzyme which involves in various therapeutic areas like inflammation, stroke, cardiac ischemia, cancer and diabetes. The current review describes the overview on clinical candidates of PARP1 and its current status in clinical trials. This paper also covers identification of potent PARP1 inhibitors using structure and ligand based pharmacophore models. Finally 36 potential hits were identified from the virtual screening of pharmacophore models and screened for PARP1 activity. 15 actives were identified as potent PARP1 inhibitors and further optimization of these analogues are in progress.

  12. Purification of nattokinase by reverse micelles extraction from fermentation broth: effect of temperature and phase volume ratio.

    PubMed

    Liu, Jun-Guo; Xing, Jian-Min; Chang, Tian-Shi; Liu, Hui-Zhou

    2006-03-01

    Nattokinase is a novel fibrinolytic enzyme that is considered to be a promising agent for thrombosis therapy. In this study, reverse micelles extraction was applied to purify and concentrate nattokinase from fermentation broth. The effects of temperature and phase volume ratio used for the forward and backward extraction on the extraction process were examined. The optimal temperature for forward and backward extraction were 25 degrees C and 35 degrees C respectively. Nattokinase became more thermosensitive during reverse micelles extraction. And it could be enriched in the stripping phase eight times during backward extraction. It was found that nattokinase could be purified by AOT reverse micelles with up to 80% activity recovery and with a purification factor of 3.9.

  13. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics.

    PubMed

    Zeuner, Birgitte; Jers, Carsten; Mikkelsen, Jørn Dalgaard; Meyer, Anne S

    2014-10-08

    Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic synthesis is a novel field of research in advanced food ingredient chemistry, involving the use of rare enzymes, which have until now mainly been studied for their biochemical significance, not for targeted biosynthesis applications. For the enzymatic synthesis of biofunctional glycans reaction parameter optimization to promote "reverse" catalysis with glycosidases is currently preferred over the use of glycosyl transferases. Numerous methods exist for minimizing the undesirable glycosidase-catalyzed hydrolysis and for improving the trans-glycosylation yields. This review provides an overview of the approaches and data available concerning optimization of enzymatic trans-glycosylation for novel synthesis of complex bioactive carbohydrates using sialidases, α-l-fucosidases, and β-galactosidases as examples. The use of an adequately high acceptor/donor ratio, reaction time control, continuous product removal, enzyme recycling, and/or the use of cosolvents may significantly improve trans-glycosylation and biocatalytic productivity of the enzymatic reactions. Protein engineering is also a promising technique for obtaining high trans-glycosylation yields, and proof-of-concept for reversing sialidase activity to trans-sialidase action has been established. However, the protein engineering route currently requires significant research efforts in each case because the structure-function relationship of the enzymes is presently poorly understood.

  14. Reactivity improvement of cellulolytic enzyme lignin via mild hydrothermal modification.

    PubMed

    Ma, Zhuoming; Tang, Jiafa; Li, Shujun; Suo, Enxiang

    2017-12-01

    Isolated by the cellulolytic enzyme lignin (CEL) process, water-alcohol (1:1, v/v) was introduced as co-solvent in the process of the hydrothermal treatment. The modification parameters such as reaction temperature and time, solid-to-liquid ratio, and catalysts (NaOH and NaOAlO 2 ) have been investigated in terms of the specific lignin properties, such as the phenolic hydroxyl content (OH phen ), DPPH free radical scavenging rate, and formaldehyde value. The CELs were also characterized by GPC, FT-IR and 1 H NMR spectroscopy, and Py-GC/MS. The key data are under optimal lignin modification conditions (solid-to-liquid ratio of 1:10 (w/v) and a temperature of 250°C for 60min) are: OH phen content: 2.50mmol/g; half maximal inhibitory concentration (IC 50 ) towards DPPH free radicals: 88.2mg/L; formaldehyde value: 446.9g/kg). Both base catalysts decrease the residue rate, but phenol reactivities of the products were also detracted. Py-GC/MS results revealed that modified lignin had a higher phenolic composition than the CEL did, especially the modified lignin without catalyst (ML), which represented 74.51% phenolic content. Copyright © 2017. Published by Elsevier Inc.

  15. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide.

    PubMed

    da Costa, Jessyca Aline; Marques, José Edvan; Gonçalves, Luciana Rocha Barros; Rocha, Maria Valderez Ponte

    2015-03-01

    The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system

    PubMed Central

    Ding, Haiyan; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-01-01

    ABSTRACT A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production. PMID:27095440

  17. S-Adenosylmethionine-dependent protein methylation Is required for expression of selenoprotein P and gluconeogenic enzymes in HepG2 human hepatocytes

    USDA-ARS?s Scientific Manuscript database

    Cellular methylation processes enable expression of gluconeogenic enzymes and metabolism of the nutrient selenium (Se). Se status may relate to type-II diabetes and plasma levels of selenoprotein P (SEPP1) are positively correlated with insulin resistance. Increased expression of gluconeogenic enzym...

  18. Experimental Autoimmune Encephalomyelitis (EAE)-Induced Elevated Expression of the E1 Isoform of Methyl CpG Binding Protein 2 (MeCP2E1): Implications in Multiple Sclerosis (MS)-Induced Neurological Disability and Associated Myelin Damage.

    PubMed

    Khorshid Ahmad, Tina; Zhou, Ting; AlTaweel, Khaled; Cortes, Claudia; Lillico, Ryan; Lakowski, Ted Martin; Gozda, Kiana; Namaka, Michael Peter

    2017-06-12

    Multiple sclerosis (MS) is a chronic neurological disease characterized by the destruction of central nervous system (CNS) myelin. At present, there is no cure for MS due to the inability to repair damaged myelin. Although the neurotrophin brain derived neurotrophic factor (BDNF) has a beneficial role in myelin repair, these effects may be hampered by the over-expression of a transcriptional repressor isoform of methyl CpG binding protein 2 (MeCP2) called MeCP2E1. We hypothesize that following experimental autoimmune encephalomyelitis (EAE)-induced myelin damage, the immune system induction of the pathogenic MeCP2E1 isoform hampers the myelin repair process by repressing BDNF expression. Using an EAE model of MS, we identify the temporal gene and protein expression changes of MeCP2E1, MeCP2E2 and BDNF. The expression changes of these key biological targets were then correlated with the temporal changes in neurological disability scores (NDS) over the entire disease course. Our results indicate that MeCP2E1 mRNA levels are elevated in EAE animals relative to naïve control (NC) and active control (AC) animals during all time points of disease progression. Our results suggest that the EAE-induced elevations in MeCP2E1 expression contribute to the repressed BDNF production in the spinal cord (SC). The sub-optimal levels of BDNF result in sustained NDS and associated myelin damage throughout the entire disease course. Conversely, we observed no significant differences in the expression patterns displayed for the MeCP2E2 isoform amongst our experimental groups. However, our results demonstrate that baseline protein expression ratios between the MeCP2E1 versus MeCP2E2 isoforms in the SC are higher than those identified within the dorsal root ganglia (DRG). Thus, the DRG represents a more conducive environment than that of the SC for BDNF production and transport to the CNS to assist in myelin repair. Henceforth, the sub-optimal BDNF levels we report in the SC may arise from the elevated MeCP2E1 vs. MeCP2E2 ratio in the SC that creates a more hostile environment thereby preventing local BDNF production. At the level of transcript, we demonstrate that EAE-induces the pathological enhanced expression of MeCP2E1 that contributes to enhanced NDS during the entire disease course. Thus, the pathological induction of the MeCP2E1 isoform contributes to the disruption of the normal homeostatic signaling equilibrium network that exists between cytokines, neurotrophins and chemokines that regulate the myelin repair process by repressing BDNF. Our research suggests that the elevated ratio of MeCP2E1 relative to MeCP2E2 may be a useful diagnostic marker that clinicians can utilize to determine the degree of neurological disability with associated myelin damage. The elevated MeCP2E1 vs. MeCP2E2 ratios (E1/E2) in the SC prevent BDNF from reaching optimal levels required for myelin repair. Thus, the lower E1/E2 ratios in the DRG, allow the DRG to serve as a weak secondary compensatory mechanism for enhanced production and delivery of BDNF to the SC to try to assist in myelin repair.

  19. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz).

    PubMed

    Wu, Jun-Zheng; Liu, Qin; Geng, Xiao-Shan; Li, Kai-Mian; Luo, Li-Juan; Liu, Jin-Ping

    2017-03-14

    Cassava (Manihot esculenta Crantz) is a major crop extensively cultivated in the tropics as both an important source of calories and a promising source for biofuel production. Although stable gene expression have been used for transgenic breeding and gene function study, a quick, easy and large-scale transformation platform has been in urgent need for gene functional characterization, especially after the cassava full genome was sequenced. Fully expanded leaves from in vitro plantlets of Manihot esculenta were used to optimize the concentrations of cellulase R-10 and macerozyme R-10 for obtaining protoplasts with the highest yield and viability. Then, the optimum conditions (PEG4000 concentration and transfection time) were determined for cassava protoplast transient gene expression. In addition, the reliability of the established protocol was confirmed for subcellular protein localization. In this work we optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and PEG-mediated transient gene expression in cassava. The suitable enzyme digestion system was established with the combination of 1.6% cellulase R-10 and 0.8% macerozyme R-10 for 16 h of digestion in the dark at 25 °C, resulting in the high yield (4.4 × 10 7 protoplasts/g FW) and vitality (92.6%) of mesophyll protoplasts. The maximum transfection efficiency (70.8%) was obtained with the incubation of the protoplasts/vector DNA mixture with 25% PEG4000 for 10 min. We validated the applicability of the system for studying the subcellular localization of MeSTP7 (an H + /monosaccharide cotransporter) with our transient expression protocol and a heterologous Arabidopsis transient gene expression system. We optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and transient gene expression in cassava, which will facilitate large-scale characterization of genes and pathways in cassava.

  20. Design of experiment (DOE) based screening of factors affecting municipal solid waste (MSW) composting.

    PubMed

    Kazemi, Khoshrooz; Zhang, Baiyu; Lye, Leonard M; Cai, Qinghong; Cao, Tong

    2016-12-01

    A design of experiment (DOE) based methodology was adopted in this study to investigate the effects of multiple factors and their interactions on the performance of a municipal solid waste (MSW) composting process. The impact of four factors, carbon/nitrogen ratio (C/N), moisture content (MC), type of bulking agent (BA) and aeration rate (AR) on the maturity, stability and toxicity of compost product was investigated. The statistically significant factors were identified using final C/N, germination index (GI) and especially the enzyme activities as responses. Experimental results validated the use of enzyme activities as proper indices during the course of composting. Maximum enzyme activities occurred during the active phase of decomposition. MC has a significant effect on dehydrogenase activity (DGH), β-glucosidase activity (BGH), phosphodiesterase activity (PDE) and the final moisture content of the compost. C/N is statistically significant for final C/N, DGH, BGH, and GI. The results provided guidance to optimize a MSW composting system that will lead to increased decomposition rate and the production of more stable and mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top